python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ast import literal_eval def parse_hifigan_args(parent, add_help=False): """ Parse model specific commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help, allow_abbrev=False) hfg = parser.add_argument_group('HiFi-GAN generator parameters') hfg.add_argument('--upsample_rates', default=[8, 8, 2, 2], type=literal_eval_arg, help='Upsample rates') hfg.add_argument('--upsample_kernel_sizes', default=[16, 16, 4, 4], type=literal_eval_arg, help='Upsample kernel sizes') hfg.add_argument('--upsample_initial_channel', default=512, type=int, help='Upsample initial channel') hfg.add_argument('--resblock', default='1', type=str, help='Resblock module version') hfg.add_argument('--resblock_kernel_sizes', default=[3, 7, 11], type=literal_eval_arg, help='Resblock kernel sizes') hfg.add_argument('--resblock_dilation_sizes', type=literal_eval_arg, default=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], help='Resblock dilation sizes'), hfg = parser.add_argument_group('HiFi-GAN discriminator parameters') hfg.add_argument('--mpd_periods', default=[2, 3, 5, 7, 11], type=literal_eval_arg, help='Periods of MultiPeriodDiscriminator') hfg.add_argument('--concat_fwd', action='store_true', help='Faster Discriminators (requires more GPU memory)') hfg.add_argument('--hifigan-config', type=str, default=None, required=False, help='Path to a HiFi-GAN config .json' ' (if provided, overrides model architecture flags)') return parser def literal_eval_arg(val): try: return literal_eval(val) except SyntaxError as e: # Argparse does not handle SyntaxError raise ValueError(str(e)) from e
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/hifigan/arg_parser.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, NamedTuple, Optional import numpy as np from deployment_toolkit.core import BaseMetricsCalculator class MetricsCalculator(BaseMetricsCalculator): def __init__(self, output_used_for_metrics: str): self._output_used_for_metrics = output_used_for_metrics self._MEL_MIN = -15.0 self._MEL_MAX = 3.0 def calc( self, *, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ) -> Dict[str, float]: y_pred = y_pred[self._output_used_for_metrics] value_range_correct = np.ones(y_pred.shape[0]).astype(np.int32) for idx, mel in enumerate(y_pred): mel = mel[~np.isnan(mel)] if mel.min() < self._MEL_MIN or mel.max() > self._MEL_MAX: value_range_correct[idx] = 0 return { "accuracy": np.mean(value_range_correct) } # from LJSpeech: # min(mins) # Out[27]: -11.512925148010254 # max(maxs) # Out[28]: 2.0584452152252197 # min(sizes) # Out[29]: 96 # max(sizes) # Out[30]: 870
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/metrics.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Using `calculate_metrics.py` script, you can obtain model accuracy/error metrics using defined `MetricsCalculator` class. Data provided to `MetricsCalculator` are obtained from npz dump files stored in directory pointed by `--dump-dir` argument. Above files are prepared by `run_inference_on_fw.py` and `run_inference_on_triton.py` scripts. Output data is stored in csv file pointed by `--csv` argument. Example call: ```shell script python ./triton/calculate_metrics.py \ --dump-dir /results/dump_triton \ --csv /results/accuracy_results.csv \ --metrics metrics.py \ --metric-class-param1 value ``` """ import argparse import csv import logging import string from pathlib import Path import numpy as np # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator from .deployment_toolkit.core import BaseMetricsCalculator, load_from_file from .deployment_toolkit.dump import pad_except_batch_axis LOGGER = logging.getLogger("calculate_metrics") TOTAL_COLUMN_NAME = "_total_" def get_data(dump_dir, prefix): """Loads and concatenates dump files for given prefix (ex. inputs, outputs, labels, ids)""" dump_dir = Path(dump_dir) npz_files = sorted(dump_dir.glob(f"{prefix}*.npz")) data = None if npz_files: # assume that all npz files with given prefix contain same set of names names = list(np.load(npz_files[0].as_posix()).keys()) # calculate target shape target_shape = { name: tuple(np.max([np.load(npz_file.as_posix())[name].shape for npz_file in npz_files], axis=0)) for name in names } # pad and concatenate data data = { name: np.concatenate( [pad_except_batch_axis(np.load(npz_file.as_posix())[name], target_shape[name]) for npz_file in npz_files] ) for name in names } return data def main(): logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description="Run models with given dataloader", allow_abbrev=False) parser.add_argument("--metrics", help=f"Path to python module containing metrics calculator", required=True) parser.add_argument("--csv", help="Path to csv file", required=True) parser.add_argument("--dump-dir", help="Path to directory with dumped outputs (and labels)", required=True) args, *_ = parser.parse_known_args() MetricsCalculator = load_from_file(args.metrics, "metrics", "MetricsCalculator") ArgParserGenerator(MetricsCalculator).update_argparser(parser) args = parser.parse_args() LOGGER.info(f"args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") MetricsCalculator = load_from_file(args.metrics, "metrics", "MetricsCalculator") metrics_calculator: BaseMetricsCalculator = ArgParserGenerator(MetricsCalculator).from_args(args) ids = get_data(args.dump_dir, "ids")["ids"] x = get_data(args.dump_dir, "inputs") y_true = get_data(args.dump_dir, "labels") y_pred = get_data(args.dump_dir, "outputs") common_keys = list({k for k in (y_true or [])} & {k for k in (y_pred or [])}) for key in common_keys: if y_true[key].shape != y_pred[key].shape: LOGGER.warning( f"Model predictions and labels shall have equal shapes. " f"y_pred[{key}].shape={y_pred[key].shape} != " f"y_true[{key}].shape={y_true[key].shape}" ) metrics = metrics_calculator.calc(ids=ids, x=x, y_pred=y_pred, y_real=y_true) metrics = {TOTAL_COLUMN_NAME: len(ids), **metrics} metric_names_with_space = [name for name in metrics if any([c in string.whitespace for c in name])] if metric_names_with_space: raise ValueError(f"Metric names shall have no spaces; Incorrect names: {', '.join(metric_names_with_space)}") csv_path = Path(args.csv) csv_path.parent.mkdir(parents=True, exist_ok=True) with csv_path.open("w") as csv_file: writer = csv.DictWriter(csv_file, fieldnames=list(metrics.keys())) writer.writeheader() writer.writerow(metrics) if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/calculate_metrics.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" To infer the model deployed on Triton, you can use `run_inference_on_triton.py` script. It sends a request with data obtained from pointed data loader and dumps received data into npz files. Those files are stored in directory pointed by `--output-dir` argument. Currently, the client communicates with the Triton server asynchronously using GRPC protocol. Example call: ```shell script python ./triton/run_inference_on_triton.py \ --server-url localhost:8001 \ --model-name ResNet50 \ --model-version 1 \ --dump-labels \ --output-dir /results/dump_triton ``` """ import argparse import functools import logging import queue import threading import time from pathlib import Path from typing import Optional from tqdm import tqdm # pytype: disable=import-error try: from tritonclient import utils as client_utils # noqa: F401 from tritonclient.grpc import ( InferenceServerClient, InferInput, InferRequestedOutput, ) except ImportError: import tritongrpcclient as grpc_client from tritongrpcclient import ( InferenceServerClient, InferInput, InferRequestedOutput, ) # pytype: enable=import-error # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator from .deployment_toolkit.core import DATALOADER_FN_NAME, load_from_file from .deployment_toolkit.dump import NpzWriter LOGGER = logging.getLogger("run_inference_on_triton") class AsyncGRPCTritonRunner: DEFAULT_MAX_RESP_WAIT_S = 120 DEFAULT_MAX_UNRESP_REQS = 128 DEFAULT_MAX_FINISH_WAIT_S = 900 # 15min def __init__( self, server_url: str, model_name: str, model_version: str, *, dataloader, verbose=False, resp_wait_s: Optional[float] = None, max_unresponded_reqs: Optional[int] = None, ): self._server_url = server_url self._model_name = model_name self._model_version = model_version self._dataloader = dataloader self._verbose = verbose self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s self._max_unresp_reqs = self.DEFAULT_MAX_UNRESP_REQS if max_unresponded_reqs is None else max_unresponded_reqs self._results = queue.Queue() self._processed_all = False self._errors = [] self._num_waiting_for = 0 self._sync = threading.Condition() self._req_thread = threading.Thread(target=self.req_loop, daemon=True) def __iter__(self): self._req_thread.start() timeout_s = 0.050 # check flags processed_all and error flags every 50ms while True: try: ids, x, y_pred, y_real = self._results.get(timeout=timeout_s) yield ids, x, y_pred, y_real except queue.Empty: shall_stop = self._processed_all or self._errors if shall_stop: break LOGGER.debug("Waiting for request thread to stop") self._req_thread.join() if self._errors: error_msg = "\n".join(map(str, self._errors)) raise RuntimeError(error_msg) def _on_result(self, ids, x, y_real, output_names, result, error): with self._sync: if error: self._errors.append(error) else: y_pred = {name: result.as_numpy(name) for name in output_names} self._results.put((ids, x, y_pred, y_real)) self._num_waiting_for -= 1 self._sync.notify_all() def req_loop(self): client = InferenceServerClient(self._server_url, verbose=self._verbose) self._errors = self._verify_triton_state(client) if self._errors: return LOGGER.debug( f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " f"are up and ready!" ) model_config = client.get_model_config(self._model_name, self._model_version) model_metadata = client.get_model_metadata(self._model_name, self._model_version) LOGGER.info(f"Model config {model_config}") LOGGER.info(f"Model metadata {model_metadata}") inputs = {tm.name: tm for tm in model_metadata.inputs} outputs = {tm.name: tm for tm in model_metadata.outputs} output_names = list(outputs) outputs_req = [InferRequestedOutput(name) for name in outputs] self._num_waiting_for = 0 for ids, x, y_real in self._dataloader: infer_inputs = [] for name in inputs: data = x[name] infer_input = InferInput(name, data.shape, inputs[name].datatype) target_np_dtype = client_utils.triton_to_np_dtype(inputs[name].datatype) data = data.astype(target_np_dtype) infer_input.set_data_from_numpy(data) infer_inputs.append(infer_input) with self._sync: def _check_can_send(): return self._num_waiting_for < self._max_unresp_reqs can_send = self._sync.wait_for(_check_can_send, timeout=self._response_wait_t) if not can_send: error_msg = f"Runner could not send new requests for {self._response_wait_t}s" self._errors.append(error_msg) break callback = functools.partial(AsyncGRPCTritonRunner._on_result, self, ids, x, y_real, output_names) client.async_infer( model_name=self._model_name, model_version=self._model_version, inputs=infer_inputs, outputs=outputs_req, callback=callback, ) self._num_waiting_for += 1 # wait till receive all requested data with self._sync: def _all_processed(): LOGGER.debug(f"wait for {self._num_waiting_for} unprocessed jobs") return self._num_waiting_for == 0 self._processed_all = self._sync.wait_for(_all_processed, self.DEFAULT_MAX_FINISH_WAIT_S) if not self._processed_all: error_msg = f"Runner {self._response_wait_t}s timeout received while waiting for results from server" self._errors.append(error_msg) LOGGER.debug("Finished request thread") def _verify_triton_state(self, triton_client): errors = [] if not triton_client.is_server_live(): errors.append(f"Triton server {self._server_url} is not live") elif not triton_client.is_server_ready(): errors.append(f"Triton server {self._server_url} is not ready") elif not triton_client.is_model_ready(self._model_name, self._model_version): errors.append(f"Model {self._model_name}:{self._model_version} is not ready") return errors def _parse_args(): parser = argparse.ArgumentParser(description="Infer model on Triton server", allow_abbrev=False) parser.add_argument( "--server-url", type=str, default="localhost:8001", help="Inference server URL (default localhost:8001)" ) parser.add_argument("--model-name", help="The name of the model used for inference.", required=True) parser.add_argument("--model-version", help="The version of the model used for inference.", required=True) parser.add_argument("--dataloader", help="Path to python file containing dataloader.", required=True) parser.add_argument("--dump-labels", help="Dump labels to output dir", action="store_true", default=False) parser.add_argument("--dump-inputs", help="Dump inputs to output dir", action="store_true", default=False) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) parser.add_argument("--output-dir", required=True, help="Path to directory where outputs will be saved") parser.add_argument("--response-wait-time", required=False, help="Maximal time to wait for response", type=int, default=120) parser.add_argument( "--max-unresponded-requests", required=False, help="Maximal number of unresponded requests", type=int, default=128 ) args, *_ = parser.parse_known_args() get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) args = parser.parse_args() return args def main(): args = _parse_args() log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" log_level = logging.INFO if not args.verbose else logging.DEBUG logging.basicConfig(level=log_level, format=log_format) LOGGER.info(f"args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) runner = AsyncGRPCTritonRunner( args.server_url, args.model_name, args.model_version, dataloader=dataloader_fn(), verbose=False, resp_wait_s=args.response_wait_time, max_unresponded_reqs=args.max_unresponded_requests, ) with NpzWriter(output_dir=args.output_dir) as writer: start = time.time() for ids, x, y_pred, y_real in tqdm(runner, unit="batch", mininterval=10): data = _verify_and_format_dump(args, ids, x, y_pred, y_real) writer.write(**data) stop = time.time() LOGGER.info(f"\nThe inference took {stop - start:0.3f}s") def _verify_and_format_dump(args, ids, x, y_pred, y_real): data = {"outputs": y_pred, "ids": {"ids": ids}} if args.dump_inputs: data["inputs"] = x if args.dump_labels: if not y_real: raise ValueError( "Found empty label values. Please provide labels in dataloader_fn or do not use --dump-labels argument" ) data["labels"] = y_real return data if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/run_inference_on_triton.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import importlib import numpy as np import os def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--dataloader', type=str, required=True, help='Path to file containing get_dataloader function') parser.add_argument('--input-data-dir', type=str, required=True, help='Path to directory where input data for perf client will be saved') parser.add_argument('--dataset-path', required=False, help='Path to the datset') parser.add_argument('--precision', type=str, default="fp16", help='Precision for the generated input data') parser.add_argument('--length', type=int, required=True, help='Length of the generated input data') args = parser.parse_args() args.batch_size = 1 return args def main(): args = parse_args() spec = importlib.util.spec_from_file_location('dataloader', args.dataloader) dm = importlib.util.module_from_spec(spec) spec.loader.exec_module(dm) dataloader = dm.get_dataloader_fn(dataset_path=args.dataset_path, batch_size=1, precision=args.precision) _, x, _ = next(dataloader()) for name, t in x.items(): if name == 'INPUT__0': if t.shape[1] > args.length: t = t[:,:,:args.length] elif t.shape[1] < args.length: num_tiles = int(np.ceil(1.0*args.length/t.shape[1])) t = np.tile(t, (1,1,num_tiles)) t = t[:,:,:args.length] t.tofile(os.path.join(args.input_data_dir, name)) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/prepare_input_data.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" For models with variable-sized inputs you must provide the --input-shape argument so that perf_analyzer knows what shape tensors to use. For example, for a model that has an input called IMAGE that has shape [ 3, N, M ], where N and M are variable-size dimensions, to tell perf_analyzer to send batch-size 4 requests of shape [ 3, 224, 224 ] `--shape IMAGE:3,224,224`. """ import argparse import csv import os import sys from pathlib import Path from typing import Dict, List, Optional # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.report import save_results, show_results, sort_results from .deployment_toolkit.warmup import warmup def calculate_average_latency(r): avg_sum_fields = [ "Client Send", "Network+Server Send/Recv", "Server Queue", "Server Compute", "Server Compute Input", "Server Compute Infer", "Server Compute Output", "Client Recv", ] avg_latency = sum([int(r.get(f, 0)) for f in avg_sum_fields]) return avg_latency def update_performance_data(results: List, batch_size: int, performance_partial_file: str): row: Dict = {"batch_size": batch_size} with open(performance_partial_file, "r") as csvfile: reader = csv.DictReader(csvfile) for r in reader: avg_latency = calculate_average_latency(r) row = {**row, **r, "avg latency": avg_latency} results.append(row) def _parse_batch_sizes(batch_sizes: str): batches = batch_sizes.split(sep=",") return list(map(lambda x: int(x.strip()), batches)) def offline_performance( model_name: str, batch_sizes: List[int], result_path: str, input_shapes: Optional[List[str]] = None, profiling_data: str = "random", triton_instances: int = 1, server_url: str = "localhost", measurement_window: int = 10000, shared_memory: bool = False ): print("\n") print(f"==== Static batching analysis start ====") print("\n") input_shapes = " ".join(map(lambda shape: f" --shape {shape}", input_shapes)) if input_shapes else "" results: List[Dict] = list() for batch_size in batch_sizes: print(f"Running performance tests for batch size: {batch_size}") performance_partial_file = f"triton_performance_partial_{batch_size}.csv" exec_args = f"""-max-threads {triton_instances} \ -m {model_name} \ -x 1 \ -c {triton_instances} \ -t {triton_instances} \ -p {measurement_window} \ -v \ -i http \ -u {server_url}:8000 \ -b {batch_size} \ -f {performance_partial_file} \ --input-data {profiling_data} {input_shapes}""" if shared_memory: exec_args += " --shared-memory=cuda" result = os.system(f"perf_client {exec_args}") if result != 0: print(f"Failed running performance tests. Perf client failed with exit code {result}") sys.exit(1) update_performance_data(results, batch_size, performance_partial_file) os.remove(performance_partial_file) results = sort_results(results=results) save_results(filename=result_path, data=results) show_results(results=results) print("Performance results for static batching stored in: {0}".format(result_path)) print("\n") print(f"==== Analysis done ====") print("\n") def main(): parser = argparse.ArgumentParser() parser.add_argument("--model-name", type=str, required=True, help="Name of the model to test") parser.add_argument( "--input-data", type=str, required=False, default="random", help="Input data to perform profiling." ) parser.add_argument( "--input-shape", action="append", required=False, help="Input data shape in form INPUT_NAME:<full_shape_without_batch_axis>.", ) parser.add_argument("--batch-sizes", type=str, required=True, help="List of batch sizes to tests. Comma separated.") parser.add_argument("--result-path", type=str, required=True, help="Path where result file is going to be stored.") parser.add_argument("--triton-instances", type=int, default=1, help="Number of Triton Server instances") parser.add_argument("--server-url", type=str, required=False, default="localhost", help="Url to Triton server") parser.add_argument( "--measurement-window", required=False, help="Time which perf_analyzer will wait for results", default=10000 ) parser.add_argument("--shared-memory", help="Use shared memory for communication with Triton", action="store_true", default=False) args = parser.parse_args() warmup( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, profiling_data=args.input_data, input_shapes=args.input_shape, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) offline_performance( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, profiling_data=args.input_data, input_shapes=args.input_shape, result_path=args.result_path, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/run_offline_performance_test_on_triton.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import sys from os.path import abspath, dirname sys.path.append(abspath(dirname(__file__)+'/../')) from common.text import symbols from inference import load_model_from_ckpt import models from torch.utils.data import DataLoader import torch import numpy as np def update_argparser(parser): ### copy-paste from ./fastpitch/arg_parser.py io = parser.add_argument_group('io parameters') io.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') symbols = parser.add_argument_group('symbols parameters') symbols.add_argument('--n-symbols', default=148, type=int, help='Number of symbols in dictionary') symbols.add_argument('--padding-idx', default=0, type=int, help='Index of padding symbol in dictionary') symbols.add_argument('--symbols-embedding-dim', default=384, type=int, help='Input embedding dimension') text_processing = parser.add_argument_group('Text processing parameters') text_processing.add_argument('--symbol-set', type=str, default='english_basic', help='Define symbol set for input text') in_fft = parser.add_argument_group('input FFT parameters') in_fft.add_argument('--in-fft-n-layers', default=6, type=int, help='Number of FFT blocks') in_fft.add_argument('--in-fft-n-heads', default=1, type=int, help='Number of attention heads') in_fft.add_argument('--in-fft-d-head', default=64, type=int, help='Dim of attention heads') in_fft.add_argument('--in-fft-conv1d-kernel-size', default=3, type=int, help='Conv-1D kernel size') in_fft.add_argument('--in-fft-conv1d-filter-size', default=1536, type=int, help='Conv-1D filter size') in_fft.add_argument('--in-fft-output-size', default=384, type=int, help='Output dim') in_fft.add_argument('--p-in-fft-dropout', default=0.1, type=float, help='Dropout probability') in_fft.add_argument('--p-in-fft-dropatt', default=0.1, type=float, help='Multi-head attention dropout') in_fft.add_argument('--p-in-fft-dropemb', default=0.0, type=float, help='Dropout added to word+positional embeddings') out_fft = parser.add_argument_group('output FFT parameters') out_fft.add_argument('--out-fft-n-layers', default=6, type=int, help='Number of FFT blocks') out_fft.add_argument('--out-fft-n-heads', default=1, type=int, help='Number of attention heads') out_fft.add_argument('--out-fft-d-head', default=64, type=int, help='Dim of attention head') out_fft.add_argument('--out-fft-conv1d-kernel-size', default=3, type=int, help='Conv-1D kernel size') out_fft.add_argument('--out-fft-conv1d-filter-size', default=1536, type=int, help='Conv-1D filter size') out_fft.add_argument('--out-fft-output-size', default=384, type=int, help='Output dim') out_fft.add_argument('--p-out-fft-dropout', default=0.1, type=float, help='Dropout probability for out_fft') out_fft.add_argument('--p-out-fft-dropatt', default=0.1, type=float, help='Multi-head attention dropout') out_fft.add_argument('--p-out-fft-dropemb', default=0.0, type=float, help='Dropout added to word+positional embeddings') dur_pred = parser.add_argument_group('duration predictor parameters') dur_pred.add_argument('--dur-predictor-kernel-size', default=3, type=int, help='Duration predictor conv-1D kernel size') dur_pred.add_argument('--dur-predictor-filter-size', default=256, type=int, help='Duration predictor conv-1D filter size') dur_pred.add_argument('--p-dur-predictor-dropout', default=0.1, type=float, help='Dropout probability for duration predictor') dur_pred.add_argument('--dur-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') pitch_pred = parser.add_argument_group('pitch predictor parameters') pitch_pred.add_argument('--pitch-predictor-kernel-size', default=3, type=int, help='Pitch predictor conv-1D kernel size') pitch_pred.add_argument('--pitch-predictor-filter-size', default=256, type=int, help='Pitch predictor conv-1D filter size') pitch_pred.add_argument('--p-pitch-predictor-dropout', default=0.1, type=float, help='Pitch probability for pitch predictor') pitch_pred.add_argument('--pitch-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') energy_pred = parser.add_argument_group('energy predictor parameters') energy_pred.add_argument('--energy-conditioning', type=bool, default=True) energy_pred.add_argument('--energy-predictor-kernel-size', default=3, type=int, help='Pitch predictor conv-1D kernel size') energy_pred.add_argument('--energy-predictor-filter-size', default=256, type=int, help='Pitch predictor conv-1D filter size') energy_pred.add_argument('--p-energy-predictor-dropout', default=0.1, type=float, help='Pitch probability for energy predictor') energy_pred.add_argument('--energy-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') ###~copy-paste from ./fastpitch/arg_parser.py parser.add_argument('--checkpoint', type=str, help='Full path to the FastPitch checkpoint file') parser.add_argument('--torchscript', action='store_true', help='Apply TorchScript') parser.add_argument('--ema', action='store_true', help='Use EMA averaged model \ (if saved in checkpoints)') cond = parser.add_argument_group('conditioning parameters') cond.add_argument('--pitch-embedding-kernel-size', default=3, type=int, help='Pitch embedding conv-1D kernel size') cond.add_argument('--energy-embedding-kernel-size', default=3, type=int, help='Pitch embedding conv-1D kernel size') cond.add_argument('--speaker-emb-weight', type=float, default=1.0, help='Scale speaker embedding') cond.add_argument('--n-speakers', type=int, default=1, help='Number of speakers in the model.') cond.add_argument('--pitch-conditioning-formants', default=1, type=int, help='Number of speech formants to condition on.') parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16"], help="PyTorch model precision") parser.add_argument("--output-format", type=str, required=True, help="Output format") def get_model(**model_args): import argparse args = argparse.Namespace(**model_args) model_config = models.get_model_config(model_name="FastPitch", args=args) jittable = True if 'ts-' in args.output_format else False model = models.get_model(model_name="FastPitch", model_config=model_config, device='cuda', forward_is_infer=True, jitable=jittable) model = load_model_from_ckpt(args.checkpoint, args.ema, model) if args.precision == "fp16": model = model.half() model.eval() tensor_names = {"inputs": ["INPUT__0"], "outputs" : ["OUTPUT__0", "OUTPUT__1", "OUTPUT__2", "OUTPUT__3", "OUTPUT__4"]} return model, tensor_names
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/model.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" To infer the model on framework runtime, you can use `run_inference_on_fw.py` script. It infers data obtained from pointed data loader locally and saves received data into npz files. Those files are stored in directory pointed by `--output-dir` argument. Example call: ```shell script python ./triton/run_inference_on_fw.py \ --input-path /models/exported/model.onnx \ --input-type onnx \ --dataloader triton/dataloader.py \ --data-dir /data/imagenet \ --batch-size 32 \ --output-dir /results/dump_local \ --dump-labels ``` """ import argparse import logging import os from pathlib import Path os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "0" from tqdm import tqdm # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator from .deployment_toolkit.core import DATALOADER_FN_NAME, BaseLoader, BaseRunner, Format, load_from_file from .deployment_toolkit.dump import NpzWriter from .deployment_toolkit.extensions import loaders, runners LOGGER = logging.getLogger("run_inference_on_fw") def _verify_and_format_dump(args, ids, x, y_pred, y_real): data = {"outputs": y_pred, "ids": {"ids": ids}} if args.dump_inputs: data["inputs"] = x if args.dump_labels: if not y_real: raise ValueError( "Found empty label values. Please provide labels in dataloader_fn or do not use --dump-labels argument" ) data["labels"] = y_real return data def _parse_and_validate_args(): supported_inputs = set(runners.supported_extensions) & set(loaders.supported_extensions) parser = argparse.ArgumentParser(description="Dump local inference output of given model", allow_abbrev=False) parser.add_argument("--input-path", help="Path to input model", required=True) parser.add_argument("--input-type", help="Input model type", choices=supported_inputs, required=True) parser.add_argument("--dataloader", help="Path to python file containing dataloader.", required=True) parser.add_argument("--output-dir", help="Path to dir where output files will be stored", required=True) parser.add_argument("--dump-labels", help="Dump labels to output dir", action="store_true", default=False) parser.add_argument("--dump-inputs", help="Dump inputs to output dir", action="store_true", default=False) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) args, *_ = parser.parse_known_args() get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) Loader: BaseLoader = loaders.get(args.input_type) ArgParserGenerator(Loader, module_path=args.input_path).update_argparser(parser) Runner: BaseRunner = runners.get(args.input_type) ArgParserGenerator(Runner).update_argparser(parser) args = parser.parse_args() types_requiring_io_params = [] if args.input_type in types_requiring_io_params and not all(p for p in [args.inputs, args.outputs]): parser.error(f"For {args.input_type} input provide --inputs and --outputs parameters") return args def main(): args = _parse_and_validate_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) LOGGER.info(f"args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") Loader: BaseLoader = loaders.get(args.input_type) Runner: BaseRunner = runners.get(args.input_type) loader = ArgParserGenerator(Loader, module_path=args.input_path).from_args(args) runner = ArgParserGenerator(Runner).from_args(args) LOGGER.info(f"Loading {args.input_path}") model = loader.load(args.input_path) with runner.init_inference(model=model) as runner_session, NpzWriter(args.output_dir) as writer: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) LOGGER.info(f"Data loader initialized; Running inference") for ids, x, y_real in tqdm(dataloader_fn(), unit="batch", mininterval=10): y_pred = runner_session(x) data = _verify_and_format_dump(args, ids=ids, x=x, y_pred=y_pred, y_real=y_real) writer.write(**data) LOGGER.info(f"Inference finished") if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/run_inference_on_fw.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from os.path import abspath, dirname sys.path.append(abspath(dirname(__file__)+'/../')) from fastpitch.data_function import TTSCollate, TTSDataset from torch.utils.data import DataLoader import numpy as np import inspect import torch from typing import List from common.text import cmudict def get_dataloader_fn(batch_size: int = 8, precision: str = "fp16", heteronyms_path: str = 'cmudict/heteronyms', cmudict_path: str = 'cmudict/cmudict-0.7b', dataset_path: str = './LJSpeech_1.1', filelist: str ="filelists/ljs_audio_pitch_text_test.txt", text_cleaners: List = ['english_cleaners_v2'], n_mel_channels: int = 80, symbol_set: str ='english_basic', p_arpabet: float = 1.0, n_speakers: int = 1, load_mel_from_disk: bool = False, load_pitch_from_disk: bool = True, pitch_mean: float = 214.72203, # LJSpeech defaults pitch_std: float = 65.72038, max_wav_value: float = 32768.0, sampling_rate: int = 22050, filter_length: int = 1024, hop_length: int = 256, win_length: int = 1024, mel_fmin: float = 0.0, mel_fmax: float = 8000.0): if p_arpabet > 0.0: cmudict.initialize(cmudict_path, heteronyms_path) dataset = TTSDataset(dataset_path=dataset_path, audiopaths_and_text=filelist, text_cleaners=text_cleaners, n_mel_channels=n_mel_channels, symbol_set=symbol_set, p_arpabet=p_arpabet, n_speakers=n_speakers, load_mel_from_disk=load_mel_from_disk, load_pitch_from_disk=load_pitch_from_disk, pitch_mean=pitch_mean, pitch_std=pitch_std, max_wav_value=max_wav_value, sampling_rate=sampling_rate, filter_length=filter_length, hop_length=hop_length, win_length=win_length, mel_fmin=mel_fmin, mel_fmax=mel_fmax) collate_fn = TTSCollate() dataloader = DataLoader(dataset, num_workers=8, shuffle=False, sampler=None, batch_size=batch_size, pin_memory=False, collate_fn=collate_fn) def _get_dataloader(): for idx, batch in enumerate(dataloader): text_padded, _, mel_padded, output_lengths, _, \ pitch_padded, energy_padded, *_ = batch pitch_padded = pitch_padded.float() energy_padded = energy_padded.float() dur_padded = torch.zeros_like(pitch_padded) if precision == "fp16": pitch_padded = pitch_padded.half() dur_padded = dur_padded.half() mel_padded = mel_padded.half() energy_padded = energy_padded.half() ids = np.arange(idx*batch_size, idx*batch_size + batch_size) x = {"INPUT__0": text_padded.cpu().numpy()} y_real = {"OUTPUT__0": mel_padded.cpu().numpy(), "OUTPUT__1": output_lengths.cpu().numpy(), "OUTPUT__2": dur_padded.cpu().numpy(), "OUTPUT__3": pitch_padded.cpu().numpy(), "OUTPUT__4": energy_padded.cpu().numpy()} yield (ids, x, y_real) return _get_dataloader
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/dataloader.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" To configure model on Triton, you can use `config_model_on_triton.py` script. This will prepare layout of Model Repository, including Model Configuration. ```shell script python ./triton/config_model_on_triton.py \ --model-repository /model_repository \ --model-path /models/exported/model.onnx \ --model-format onnx \ --model-name ResNet50 \ --model-version 1 \ --max-batch-size 32 \ --precision fp16 \ --backend-accelerator trt \ --load-model explicit \ --timeout 120 \ --verbose ``` If Triton server to which we prepare model repository is running with **explicit model control mode**, use `--load-model` argument to send request load_model request to Triton Inference Server. If server is listening on non-default address or port use `--server-url` argument to point server control endpoint. If it is required to use HTTP protocol to communicate with Triton server use `--http` argument. To improve inference throughput you can use [dynamic batching](https://github.com/triton-inference-server/server/blob/master/docs/model_configuration.md#dynamic-batcher) for your model by providing `--preferred-batch-sizes` and `--max-queue-delay-us` parameters. For models which doesn't support batching, set `--max-batch-sizes` to 0. By default Triton will [automatically obtain inputs and outputs definitions](https://github.com/triton-inference-server/server/blob/master/docs/model_configuration.md#auto-generated-model-configuration). but for TorchScript ang TF GraphDef models script uses file with I/O specs. This file is automatically generated when the model is converted to ScriptModule (either traced or scripted). If there is a need to pass different than default path to I/O spec file use `--io-spec` CLI argument. I/O spec file is yaml file with below structure: ```yaml - inputs: - name: input dtype: float32 # np.dtype name shape: [None, 224, 224, 3] - outputs: - name: probabilities dtype: float32 shape: [None, 1001] - name: classes dtype: int32 shape: [None, 1] ``` """ import argparse import logging import time from model_navigator.triton.config import BackendAccelerator as Accelerator from model_navigator.triton.config import TensorRTOptPrecision as Precision from model_navigator.model import Format from model_navigator.log import set_logger, log_dict from model_navigator.triton import ModelConfig, TritonClient, TritonModelStore LOGGER = logging.getLogger("config_model") def _available_enum_values(my_enum): return [item.value for item in my_enum] def main(): parser = argparse.ArgumentParser( description="Create Triton model repository and model configuration", allow_abbrev=False ) parser.add_argument("--model-repository", required=True, help="Path to Triton model repository.") parser.add_argument("--model-path", required=True, help="Path to model to configure") # TODO: automation parser.add_argument( "--model-format", required=True, choices=_available_enum_values(Format), help="Format of model to deploy", ) parser.add_argument("--model-name", required=True, help="Model name") parser.add_argument("--model-version", default="1", help="Version of model (default 1)") parser.add_argument( "--max-batch-size", type=int, default=32, help="Maximum batch size allowed for inference. " "A max_batch_size value of 0 indicates that batching is not allowed for the model", ) # TODO: automation parser.add_argument( "--precision", type=str, default=Precision.FP16.value, choices=_available_enum_values(Precision), help="Model precision (parameter used only by Tensorflow backend with TensorRT optimization)", ) # Triton Inference Server endpoint parser.add_argument( "--server-url", type=str, default="grpc://localhost:8001", help="Inference server URL in format protocol://host[:port] (default grpc://localhost:8001)", ) parser.add_argument( "--load-model", choices=["none", "poll", "explicit"], help="Loading model while Triton Server is in given model control mode", ) parser.add_argument( "--timeout", default=120, help="Timeout in seconds to wait till model load (default=120)", type=int ) # optimization related parser.add_argument( "--backend-accelerator", type=str, choices=_available_enum_values(Accelerator), default=Accelerator.TRT.value, help="Select Backend Accelerator used to serve model", ) parser.add_argument("--number-of-model-instances", type=int, default=1, help="Number of model instances per GPU") parser.add_argument( "--preferred-batch-sizes", type=int, nargs="*", help="Batch sizes that the dynamic batcher should attempt to create. " "In case --max-queue-delay-us is set and this parameter is not, default value will be --max-batch-size", ) parser.add_argument( "--max-queue-delay-us", type=int, default=0, help="Max delay time which dynamic batcher shall wait to form a batch (default 0)", ) parser.add_argument( "--capture-cuda-graph", type=int, default=0, help="Use cuda capture graph (used only by TensorRT platform)", ) parser.add_argument("-v", "--verbose", help="Provide verbose logs", action='store_true') args = parser.parse_args() set_logger(verbose=args.verbose) log_dict("args", vars(args)) config = ModelConfig.create( model_path=args.model_path, # model definition model_name=args.model_name, model_version=args.model_version, model_format=args.model_format, precision=args.precision, max_batch_size=args.max_batch_size, # optimization accelerator=args.backend_accelerator, gpu_engine_count=args.number_of_model_instances, preferred_batch_sizes=args.preferred_batch_sizes or [], max_queue_delay_us=args.max_queue_delay_us, capture_cuda_graph=args.capture_cuda_graph, ) model_store = TritonModelStore(args.model_repository) model_store.deploy_model(model_config=config, model_path=args.model_path) if args.load_model != "none": client = TritonClient(server_url=args.server_url, verbose=args.verbose) client.wait_for_server_ready(timeout=args.timeout) if args.load_model == "explicit": client.load_model(model_name=args.model_name) if args.load_model == "poll": time.sleep(15) client.wait_for_model(model_name=args.model_name, model_version=args.model_version, timeout_s=args.timeout) if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/config_model_on_triton.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" For models with variable-sized inputs you must provide the --input-shape argument so that perf_analyzer knows what shape tensors to use. For example, for a model that has an input called IMAGE that has shape [ 3, N, M ], where N and M are variable-size dimensions, to tell perf_analyzer to send batch-size 4 requests of shape [ 3, 224, 224 ] `--shape IMAGE:3,224,224`. """ import argparse import csv import os import sys from pathlib import Path from typing import List, Optional # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.report import save_results, show_results, sort_results from .deployment_toolkit.warmup import warmup def calculate_average_latency(r): avg_sum_fields = [ "Client Send", "Network+Server Send/Recv", "Server Queue", "Server Compute", "Server Compute Input", "Server Compute Infer", "Server Compute Output", "Client Recv", ] avg_latency = sum([int(r.get(f, 0)) for f in avg_sum_fields]) return avg_latency def update_performance_data(results: List, performance_file: str): with open(performance_file, "r") as csvfile: reader = csv.DictReader(csvfile) for row in reader: row["avg latency"] = calculate_average_latency(row) results.append(row) def _parse_batch_sizes(batch_sizes: str): batches = batch_sizes.split(sep=",") return list(map(lambda x: int(x.strip()), batches)) def online_performance( model_name: str, batch_sizes: List[int], result_path: str, input_shapes: Optional[List[str]] = None, profiling_data: str = "random", triton_instances: int = 1, triton_gpu_engine_count: int = 1, server_url: str = "localhost", measurement_window: int = 10000, shared_memory: bool = False ): print("\n") print(f"==== Dynamic batching analysis start ====") print("\n") input_shapes = " ".join(map(lambda shape: f" --shape {shape}", input_shapes)) if input_shapes else "" print(f"Running performance tests for dynamic batching") performance_file = f"triton_performance_dynamic_partial.csv" max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * triton_instances * triton_gpu_engine_count max_concurrency = min(256, max_total_requests) batch_size = max(1, max_total_requests // 256) step = max(1, max_concurrency // 32) min_concurrency = step exec_args = f"""-m {model_name} \ -x 1 \ -p {measurement_window} \ -v \ -i http \ -u {server_url}:8000 \ -b {batch_size} \ -f {performance_file} \ --concurrency-range {min_concurrency}:{max_concurrency}:{step} \ --input-data {profiling_data} {input_shapes}""" if shared_memory: exec_args += " --shared-memory=cuda" result = os.system(f"perf_client {exec_args}") if result != 0: print(f"Failed running performance tests. Perf client failed with exit code {result}") sys.exit(1) results = list() update_performance_data(results=results, performance_file=performance_file) results = sort_results(results=results) save_results(filename=result_path, data=results) show_results(results=results) os.remove(performance_file) print("Performance results for dynamic batching stored in: {0}".format(result_path)) print("\n") print(f"==== Analysis done ====") print("\n") def main(): parser = argparse.ArgumentParser() parser.add_argument("--model-name", type=str, required=True, help="Name of the model to test") parser.add_argument( "--input-data", type=str, required=False, default="random", help="Input data to perform profiling." ) parser.add_argument( "--input-shape", action="append", required=False, help="Input data shape in form INPUT_NAME:<full_shape_without_batch_axis>.", ) parser.add_argument("--batch-sizes", type=str, required=True, help="List of batch sizes to tests. Comma separated.") parser.add_argument("--triton-instances", type=int, default=1, help="Number of Triton Server instances") parser.add_argument( "--number-of-model-instances", type=int, default=1, help="Number of models instances on Triton Server" ) parser.add_argument("--result-path", type=str, required=True, help="Path where result file is going to be stored.") parser.add_argument("--server-url", type=str, required=False, default="localhost", help="Url to Triton server") parser.add_argument( "--measurement-window", required=False, help="Time which perf_analyzer will wait for results", default=10000 ) parser.add_argument("--shared-memory", help="Use shared memory for communication with Triton", action="store_true", default=False) args = parser.parse_args() warmup( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, triton_gpu_engine_count=args.number_of_model_instances, profiling_data=args.input_data, input_shapes=args.input_shape, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) online_performance( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, triton_gpu_engine_count=args.number_of_model_instances, profiling_data=args.input_data, input_shapes=args.input_shape, result_path=args.result_path, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/run_online_performance_test_on_triton.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" `convert_model.py` script allows to convert between model formats with additional model optimizations for faster inference. It converts model from results of get_model function. Currently supported input and output formats are: - inputs - `tf-estimator` - `get_model` function returning Tensorflow Estimator - `tf-keras` - `get_model` function returning Tensorflow Keras Model - `tf-savedmodel` - Tensorflow SavedModel binary - `pyt` - `get_model` function returning PyTorch Module - output - `tf-savedmodel` - Tensorflow saved model - `tf-trt` - TF-TRT saved model - `ts-trace` - PyTorch traced ScriptModule - `ts-script` - PyTorch scripted ScriptModule - `onnx` - ONNX - `trt` - TensorRT plan file For tf-keras input you can use: - --large-model flag - helps loading model which exceeds maximum protobuf size of 2GB - --tf-allow-growth flag - control limiting GPU memory growth feature (https://www.tensorflow.org/guide/gpu#limiting_gpu_memory_growth). By default it is disabled. """ import argparse import logging import os from pathlib import Path os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "1" # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator from .deployment_toolkit.core import ( DATALOADER_FN_NAME, BaseConverter, BaseLoader, BaseSaver, Format, Precision, load_from_file, ) from .deployment_toolkit.extensions import converters, loaders, savers LOGGER = logging.getLogger("convert_model") INPUT_MODEL_TYPES = [Format.TF_ESTIMATOR, Format.TF_KERAS, Format.TF_SAVEDMODEL, Format.PYT] OUTPUT_MODEL_TYPES = [Format.TF_SAVEDMODEL, Format.TF_TRT, Format.ONNX, Format.TRT, Format.TS_TRACE, Format.TS_SCRIPT] def _get_args(): parser = argparse.ArgumentParser(description="Script for conversion between model formats.", allow_abbrev=False) parser.add_argument("--input-path", help="Path to input model file (python module or binary file)", required=True) parser.add_argument( "--input-type", help="Input model type", choices=[f.value for f in INPUT_MODEL_TYPES], required=True ) parser.add_argument("--output-path", help="Path to output model file", required=True) parser.add_argument( "--output-type", help="Output model type", choices=[f.value for f in OUTPUT_MODEL_TYPES], required=True ) parser.add_argument("--dataloader", help="Path to python module containing data loader") parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) parser.add_argument( "--ignore-unknown-parameters", help="Ignore unknown parameters (argument often used in CI where set of arguments is constant)", action="store_true", default=False, ) args, unparsed_args = parser.parse_known_args() Loader: BaseLoader = loaders.get(args.input_type) ArgParserGenerator(Loader, module_path=args.input_path).update_argparser(parser) converter_name = f"{args.input_type}--{args.output_type}" Converter: BaseConverter = converters.get(converter_name) if Converter is not None: ArgParserGenerator(Converter).update_argparser(parser) Saver: BaseSaver = savers.get(args.output_type) ArgParserGenerator(Saver).update_argparser(parser) if args.dataloader is not None: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) if args.ignore_unknown_parameters: args, unknown_args = parser.parse_known_args() LOGGER.warning(f"Got additional args {unknown_args}") else: args = parser.parse_args() return args def main(): args = _get_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) LOGGER.info(f"args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") requested_model_precision = Precision(args.precision) dataloader_fn = None # if conversion is required, temporary change model load precision to that required by converter # it is for TensorRT converters which require fp32 models for all requested precisions converter_name = f"{args.input_type}--{args.output_type}" Converter: BaseConverter = converters.get(converter_name) if Converter: args.precision = Converter.required_source_model_precision(requested_model_precision).value Loader: BaseLoader = loaders.get(args.input_type) loader = ArgParserGenerator(Loader, module_path=args.input_path).from_args(args) model = loader.load(args.input_path) LOGGER.info("inputs: %s", model.inputs) LOGGER.info("outputs: %s", model.outputs) if Converter: # if conversion is needed # dataloader must much source model precision - so not recovering it yet if args.dataloader is not None: if args.p_arpabet > 0.0: from common.text import cmudict cmudict.initialize(args.cmudict_path, args.heteronyms_path) get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) # recover precision to that requested by user args.precision = requested_model_precision.value if Converter: converter = ArgParserGenerator(Converter).from_args(args) model = converter.convert(model, dataloader_fn=dataloader_fn) Saver: BaseSaver = savers.get(args.output_type) saver = ArgParserGenerator(Saver).from_args(args) saver.save(model, args.output_path) return 0 if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/convert_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import importlib import logging import os from enum import Enum from pathlib import Path from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union import numpy as np LOGGER = logging.getLogger(__name__) DATALOADER_FN_NAME = "get_dataloader_fn" GET_MODEL_FN_NAME = "get_model" GET_SERVING_INPUT_RECEIVER_FN = "get_serving_input_receiver_fn" GET_ARGPARSER_FN_NAME = "update_argparser" class TensorSpec(NamedTuple): name: str dtype: str shape: Tuple class Parameter(Enum): def __lt__(self, other: "Parameter") -> bool: return self.value < other.value class Accelerator(Parameter): AMP = "amp" CUDA = "cuda" TRT = "trt" class Precision(Parameter): FP16 = "fp16" FP32 = "fp32" TF32 = "tf32" # Deprecated class Format(Parameter): TF_GRAPHDEF = "tf-graphdef" TF_SAVEDMODEL = "tf-savedmodel" TF_TRT = "tf-trt" TF_ESTIMATOR = "tf-estimator" TF_KERAS = "tf-keras" ONNX = "onnx" TRT = "trt" TS_SCRIPT = "ts-script" TS_TRACE = "ts-trace" PYT = "pyt" class Model(NamedTuple): handle: object precision: Optional[Precision] inputs: Dict[str, TensorSpec] outputs: Dict[str, TensorSpec] def load_from_file(file_path, label, target): spec = importlib.util.spec_from_file_location(name=label, location=file_path) my_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(my_module) # pytype: disable=attribute-error return getattr(my_module, target, None) class BaseLoader(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def load(self, model_path: Union[str, Path], **kwargs) -> Model: """ Loads and process model from file based on given set of args """ pass class BaseSaver(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def save(self, model: Model, model_path: Union[str, Path]) -> None: """ Save model to file """ pass class BaseRunner(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def init_inference(self, model: Model): raise NotImplementedError class BaseRunnerSession(abc.ABC): def __init__(self, model: Model): self._model = model @abc.abstractmethod def __enter__(self): raise NotImplementedError() @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): raise NotImplementedError() @abc.abstractmethod def __call__(self, x: Dict[str, object]): raise NotImplementedError() def _set_env_variables(self) -> Dict[str, object]: """this method not remove values; fix it if needed""" to_set = {} old_values = {k: os.environ.pop(k, None) for k in to_set} os.environ.update(to_set) return old_values def _recover_env_variables(self, old_envs: Dict[str, object]): for name, value in old_envs.items(): if value is None: del os.environ[name] else: os.environ[name] = str(value) class BaseConverter(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def convert(self, model: Model, dataloader_fn) -> Model: raise NotImplementedError() @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: return requested_model_precision class BaseMetricsCalculator(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def calc( self, *, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ) -> Dict[str, float]: """ Calculates error/accuracy metrics Args: ids: List of ids identifying each sample in the batch y_pred: model output as dict where key is output name and value is output value x: model input as dict where key is input name and value is input value y_real: input ground truth as dict where key is output name and value is output value Returns: dictionary where key is metric name and value is its value """ pass class ShapeSpec(NamedTuple): min: Tuple opt: Tuple max: Tuple
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/core.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Dict, Iterable import numpy as np MB2B = 2 ** 20 B2MB = 1 / MB2B FLUSH_THRESHOLD_B = 256 * MB2B def pad_except_batch_axis(data: np.ndarray, target_shape_with_batch_axis: Iterable[int]): assert all( [current_size <= target_size for target_size, current_size in zip(target_shape_with_batch_axis, data.shape)] ), "target_shape should have equal or greater all dimensions comparing to data.shape" padding = [(0, 0)] + [ # (0, 0) - do not pad on batch_axis (with index 0) (0, target_size - current_size) for target_size, current_size in zip(target_shape_with_batch_axis[1:], data.shape[1:]) ] return np.pad(data, padding, "constant", constant_values=np.nan) class NpzWriter: """ Dumps dicts of numpy arrays into npz files It can/shall be used as context manager: ``` with OutputWriter('mydir') as writer: writer.write(outputs={'classes': np.zeros(8), 'probs': np.zeros((8, 4))}, labels={'classes': np.zeros(8)}, inputs={'input': np.zeros((8, 240, 240, 3)}) ``` ## Variable size data Only dynamic of last axis is handled. Data is padded with np.nan value. Also each generated file may have different size of dynamic axis. """ def __init__(self, output_dir, compress=False): self._output_dir = Path(output_dir) self._items_cache: Dict[str, Dict[str, np.ndarray]] = {} self._items_counters: Dict[str, int] = {} self._flush_threshold_b = FLUSH_THRESHOLD_B self._compress = compress @property def cache_size(self): return {name: sum([a.nbytes for a in data.values()]) for name, data in self._items_cache.items()} def _append_to_cache(self, prefix, data): if data is None: return if not isinstance(data, dict): raise ValueError(f"{prefix} data to store shall be dict") cached_data = self._items_cache.get(prefix, {}) for name, value in data.items(): assert isinstance( value, (list, np.ndarray) ), f"Values shall be lists or np.ndarrays; current type {type(value)}" if not isinstance(value, np.ndarray): value = np.array(value) assert value.dtype.kind in ["S", "U"] or not np.any( np.isnan(value) ), f"Values with np.nan is not supported; {name}={value}" cached_value = cached_data.get(name, None) if cached_value is not None: target_shape = np.max([cached_value.shape, value.shape], axis=0) cached_value = pad_except_batch_axis(cached_value, target_shape) value = pad_except_batch_axis(value, target_shape) value = np.concatenate((cached_value, value)) cached_data[name] = value self._items_cache[prefix] = cached_data def write(self, **kwargs): """ Writes named list of dictionaries of np.ndarrays. Finally keyword names will be later prefixes of npz files where those dictionaries will be stored. ex. writer.write(inputs={'input': np.zeros((2, 10))}, outputs={'classes': np.zeros((2,)), 'probabilities': np.zeros((2, 32))}, labels={'classes': np.zeros((2,))}) Args: **kwargs: named list of dictionaries of np.ndarrays to store """ for prefix, data in kwargs.items(): self._append_to_cache(prefix, data) biggest_item_size = max(self.cache_size.values()) if biggest_item_size > self._flush_threshold_b: self.flush() def flush(self): for prefix, data in self._items_cache.items(): self._dump(prefix, data) self._items_cache = {} def _dump(self, prefix, data): idx = self._items_counters.setdefault(prefix, 0) filename = f"{prefix}-{idx:012d}.npz" output_path = self._output_dir / filename if self._compress: np.savez_compressed(output_path, **data) else: np.savez(output_path, **data) nitems = len(list(data.values())[0]) msg_for_labels = ( "If these are correct shapes - consider moving loading of them into metrics.py." if prefix == "labels" else "" ) shapes = {name: value.shape if isinstance(value, np.ndarray) else (len(value),) for name, value in data.items()} assert all(len(v) == nitems for v in data.values()), ( f'All items in "{prefix}" shall have same size on 0 axis equal to batch size. {msg_for_labels}' f'{", ".join(f"{name}: {shape}" for name, shape in shapes.items())}' ) self._items_counters[prefix] += nitems def __enter__(self): if self._output_dir.exists() and len(list(self._output_dir.iterdir())): raise ValueError(f"{self._output_dir.as_posix()} is not empty") self._output_dir.mkdir(parents=True, exist_ok=True) return self def __exit__(self, exc_type, exc_val, exc_tb): self.flush()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/dump.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import logging import os import re from pathlib import Path from typing import List LOGGER = logging.getLogger(__name__) class ExtensionManager: def __init__(self, name: str): self._name = name self._registry = {} def register_extension(self, extension: str, clazz): already_registered_class = self._registry.get(extension, None) if already_registered_class and already_registered_class.__module__ != clazz.__module__: raise RuntimeError( f"Conflicting extension {self._name}/{extension}; " f"{already_registered_class.__module__}.{already_registered_class.__name} " f"and " f"{clazz.__module__}.{clazz.__name__}" ) elif already_registered_class is None: clazz_full_name = f"{clazz.__module__}.{clazz.__name__}" if clazz is not None else "None" LOGGER.debug(f"Registering extension {self._name}/{extension}: {clazz_full_name}") self._registry[extension] = clazz def get(self, extension): if extension not in self._registry: raise RuntimeError(f"Missing extension {self._name}/{extension}") return self._registry[extension] @property def supported_extensions(self): return list(self._registry) @staticmethod def scan_for_extensions(extension_dirs: List[Path]): register_pattern = r".*\.register_extension\(.*" for extension_dir in extension_dirs: for python_path in extension_dir.rglob("*.py"): if not python_path.is_file(): continue payload = python_path.read_text() if re.findall(register_pattern, payload): import_path = python_path.relative_to(toolkit_root_dir.parent) package = import_path.parent.as_posix().replace(os.sep, ".") package_with_module = f"{package}.{import_path.stem}" spec = importlib.util.spec_from_file_location(name=package_with_module, location=python_path) my_module = importlib.util.module_from_spec(spec) my_module.__package__ = package try: spec.loader.exec_module(my_module) # pytype: disable=attribute-error except ModuleNotFoundError as e: LOGGER.error( f"Could not load extensions from {import_path} due to missing python packages; {e}" ) runners = ExtensionManager("runners") loaders = ExtensionManager("loaders") savers = ExtensionManager("savers") converters = ExtensionManager("converters") toolkit_root_dir = (Path(__file__).parent / "..").resolve() ExtensionManager.scan_for_extensions([toolkit_root_dir])
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/extensions.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from typing import List, Optional def warmup( model_name: str, batch_sizes: List[int], triton_gpu_engine_count: int = 1, triton_instances: int = 1, profiling_data: str = "random", input_shapes: Optional[List[str]] = None, server_url: str = "localhost", measurement_window: int = 10000, shared_memory: bool = False ): print("\n") print(f"==== Warmup start ====") print("\n") input_shapes = " ".join(map(lambda shape: f" --shape {shape}", input_shapes)) if input_shapes else "" measurement_window = 6 * measurement_window max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * triton_instances * triton_gpu_engine_count max_concurrency = min(256, max_total_requests) batch_size = max(1, max_total_requests // 256) step = max(1, max_concurrency // 2) min_concurrency = step exec_args = f"""-m {model_name} \ -x 1 \ -p {measurement_window} \ -v \ -i http \ -u {server_url}:8000 \ -b {batch_size} \ --concurrency-range {min_concurrency}:{max_concurrency}:{step} \ --input-data {profiling_data} {input_shapes}""" if shared_memory: exec_args += " --shared-memory=cuda" result = os.system(f"perf_client {exec_args}") if result != 0: print(f"Failed running performance tests. Perf client failed with exit code {result}") sys.exit(1) print("\n") print(f"==== Warmup done ====") print("\n")
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/warmup.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import inspect import logging from typing import Any, Callable, Dict, Optional, Union from .core import GET_ARGPARSER_FN_NAME, load_from_file LOGGER = logging.getLogger(__name__) def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def filter_fn_args(args: Union[dict, argparse.Namespace], fn: Callable) -> dict: signature = inspect.signature(fn) parameters_names = list(signature.parameters) if isinstance(args, argparse.Namespace): args = vars(args) args = {k: v for k, v in args.items() if k in parameters_names} return args def add_args_for_fn_signature(parser, fn) -> argparse.ArgumentParser: parser.conflict_handler = "resolve" signature = inspect.signature(fn) for parameter in signature.parameters.values(): if parameter.name in ["self", "args", "kwargs"]: continue argument_kwargs = {} if parameter.annotation != inspect.Parameter.empty: if parameter.annotation == bool: argument_kwargs["type"] = str2bool argument_kwargs["choices"] = [0, 1] elif type(parameter.annotation) == type(Union): # isinstance(parameter.annotation, type(Optional[Any])): types = [type_ for type_ in parameter.annotation.__args__ if not isinstance(None, type_)] if len(types) != 1: raise RuntimeError( f"Could not prepare argument parser for {parameter.name}: {parameter.annotation} in {fn}" ) argument_kwargs["type"] = types[0] else: argument_kwargs["type"] = parameter.annotation if parameter.default != inspect.Parameter.empty: if parameter.annotation == bool: argument_kwargs["default"] = str2bool(parameter.default) else: argument_kwargs["default"] = parameter.default else: argument_kwargs["required"] = True name = parameter.name.replace("_", "-") LOGGER.debug(f"Adding argument {name} with {argument_kwargs}") parser.add_argument(f"--{name}", **argument_kwargs) return parser class ArgParserGenerator: def __init__(self, cls_or_fn, module_path: Optional[str] = None): self._cls_or_fn = cls_or_fn self._handle = cls_or_fn if inspect.isfunction(cls_or_fn) else getattr(cls_or_fn, "__init__") input_is_python_file = module_path and module_path.endswith(".py") self._input_path = module_path if input_is_python_file else None self._required_fn_name_for_signature_parsing = getattr( cls_or_fn, "required_fn_name_for_signature_parsing", None ) def update_argparser(self, parser): name = self._handle.__name__ group_parser = parser.add_argument_group(name) add_args_for_fn_signature(group_parser, fn=self._handle) self._update_argparser(group_parser) def get_args(self, args: argparse.Namespace): filtered_args = filter_fn_args(args, fn=self._handle) tmp_parser = argparse.ArgumentParser(allow_abbrev=False) self._update_argparser(tmp_parser) custom_names = [ p.dest.replace("-", "_") for p in tmp_parser._actions if not isinstance(p, argparse._HelpAction) ] custom_params = {n: getattr(args, n) for n in custom_names} filtered_args = {**filtered_args, **custom_params} return filtered_args def from_args(self, args: Union[argparse.Namespace, Dict]): args = self.get_args(args) LOGGER.info(f"Initializing {self._cls_or_fn.__name__}({args})") return self._cls_or_fn(**args) def _update_argparser(self, parser): label = "argparser_update" if self._input_path: update_argparser_handle = load_from_file(self._input_path, label=label, target=GET_ARGPARSER_FN_NAME) if update_argparser_handle: update_argparser_handle(parser) elif self._required_fn_name_for_signature_parsing: fn_handle = load_from_file( self._input_path, label=label, target=self._required_fn_name_for_signature_parsing ) if fn_handle: add_args_for_fn_signature(parser, fn_handle)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/args.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import re from typing import Dict, List from natsort import natsorted from tabulate import tabulate def sort_results(results: List): results = natsorted(results, key=lambda item: [item[key] for key in item.keys()]) return results def save_results(filename: str, data: List, formatted: bool = False): data = format_data(data=data) if formatted else data with open(filename, "a") as csvfile: fieldnames = data[0].keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in data: writer.writerow(row) def format_data(data: List[Dict]) -> List[Dict]: formatted_data = list() for item in data: formatted_item = format_keys(data=item) formatted_data.append(formatted_item) return formatted_data def format_keys(data: Dict) -> Dict: keys = {format_key(key=key): value for key, value in data.items()} return keys def format_key(key: str) -> str: key = " ".join([k.capitalize() for k in re.split("_| ", key)]) return key def show_results(results: List[Dict]): headers = list(results[0].keys()) summary = map(lambda x: list(map(lambda item: item[1], x.items())), results) print(tabulate(summary, headers=headers))
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/report.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Dict, Iterable, Optional # pytype: disable=import-error import onnx import tensorrt as trt from ..core import BaseConverter, Format, Model, Precision, ShapeSpec from ..extensions import converters from .utils import get_input_shapes # pytype: enable=import-error LOGGER = logging.getLogger(__name__) TRT_LOGGER = trt.Logger(trt.Logger.INFO) class Onnx2TRTConverter(BaseConverter): def __init__(self, *, max_batch_size: int, max_workspace_size: int, precision: str): self._max_batch_size = max_batch_size self._max_workspace_size = max_workspace_size self._precision = Precision(precision) def convert(self, model: Model, dataloader_fn) -> Model: input_shapes = get_input_shapes(dataloader_fn(), self._max_batch_size) cuda_engine = onnx2trt( model.handle, shapes=input_shapes, max_workspace_size=self._max_workspace_size, max_batch_size=self._max_batch_size, model_precision=self._precision.value, ) return model._replace(handle=cuda_engine) @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: # TensorRT requires source models to be in FP32 precision return Precision.FP32 def onnx2trt( onnx_model: onnx.ModelProto, *, shapes: Dict[str, ShapeSpec], max_workspace_size: int, max_batch_size: int, model_precision: str, ) -> "trt.ICudaEngine": """ Converts onnx model to TensorRT ICudaEngine Args: onnx_model: onnx.Model to convert shapes: dictionary containing min shape, max shape, opt shape for each input name max_workspace_size: The maximum GPU temporary memory which the CudaEngine can use at execution time. max_batch_size: The maximum batch size which can be used at execution time, and also the batch size for which the CudaEngine will be optimized. model_precision: precision of kernels (possible values: fp16, fp32) Returns: TensorRT ICudaEngine """ # Whether or not 16-bit kernels are permitted. # During :class:`ICudaEngine` build fp16 kernels will also be tried when this mode is enabled. fp16_mode = "16" in model_precision builder = trt.Builder(TRT_LOGGER) builder.fp16_mode = fp16_mode builder.max_batch_size = max_batch_size builder.max_workspace_size = max_workspace_size # In TensorRT 7.0, the ONNX parser only supports full-dimensions mode, # meaning that your network definition must be created with the explicitBatch flag set. # For more information, see # https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work_dynamic_shapes flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network = builder.create_network(flags) with trt.OnnxParser(network, TRT_LOGGER) as parser: # onnx model parsing if not parser.parse(onnx_model.SerializeToString()): for i in range(parser.num_errors): LOGGER.error(f"OnnxParser error {i}/{parser.num_errors}: {parser.get_error(i)}") raise RuntimeError("Error during parsing ONNX model (see logs for details)") # optimization config = builder.create_builder_config() config.flags |= bool(fp16_mode) << int(trt.BuilderFlag.FP16) config.max_workspace_size = max_workspace_size profile = builder.create_optimization_profile() for name, spec in shapes.items(): profile.set_shape(name, **spec._asdict()) config.add_optimization_profile(profile) engine = builder.build_engine(network, config=config) return engine converters.register_extension(f"{Format.ONNX.value}--{Format.TRT.value}", Onnx2TRTConverter)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/bermuda/onnx2trt_conv.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from pathlib import Path from typing import Dict, Optional, Union import numpy as np # pytype: disable=import-error import onnx import onnx.optimizer import onnx.shape_inference import onnxruntime from google.protobuf import text_format from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE # pytype: enable=import-error from ..core import BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec from ..extensions import loaders, runners, savers from .utils import infer_precision LOGGER = logging.getLogger(__name__) def _value_info2tensor_spec(value_info: onnx.ValueInfoProto): onnx_data_type_map = {"float": "float32", "double": "float64"} elem_type_name = onnx.TensorProto.DataType.Name(value_info.type.tensor_type.elem_type).lower() dtype = onnx_data_type_map.get(elem_type_name, elem_type_name) def _get_dim(dim): which = dim.WhichOneof("value") if which is not None: # which is None when dim is None dim = getattr(dim, which) return None if isinstance(dim, (str, bytes)) else dim shape = value_info.type.tensor_type.shape shape = tuple([_get_dim(d) for d in shape.dim]) return TensorSpec(value_info.name, dtype=dtype, shape=shape) def _infer_graph_precision(onnx_graph: onnx.GraphProto) -> Optional[Precision]: import networkx as nx # build directed graph nx_graph = nx.DiGraph() def _get_dtype(vi): t = vi.type if hasattr(t, "tensor_type"): type_id = t.tensor_type.elem_type else: raise NotImplementedError("Not implemented yet") return TENSOR_TYPE_TO_NP_TYPE[type_id] node_output2type = {vi.name: _get_dtype(vi) for vi in onnx_graph.value_info} node_outputs2node = {output_name: node for node in onnx_graph.node for output_name in node.output} node_inputs2node = {input_name: node for node in onnx_graph.node for input_name in node.input} for node in onnx_graph.node: node_dtype = node_output2type.get("+".join(node.output), None) nx_graph.add_node( node.name, op=node.op_type, attr={a.name: a for a in node.attribute}, dtype=node_dtype, ) for input_name in node.input: prev_node = node_outputs2node.get(input_name, None) if prev_node: nx_graph.add_edge(prev_node.name, node.name) for input_node in onnx_graph.input: input_name = input_node.name nx_graph.add_node(input_name, op="input", dtype=_get_dtype(input_node)) next_node = node_inputs2node.get(input_name, None) if next_node: nx_graph.add_edge(input_name, next_node.name) for output in onnx_graph.output: output_name = output.name nx_graph.add_node(output_name, op="output", dtype=_get_dtype(output)) prev_node = node_outputs2node.get(output_name, None) if prev_node: nx_graph.add_edge(prev_node.name, output_name) else: LOGGER.warning(f"Could not find previous node for {output_name}") input_names = [n.name for n in onnx_graph.input] output_names = [n.name for n in onnx_graph.output] most_common_dtype = infer_precision(nx_graph, input_names, output_names, lambda node: node.get("dtype", None)) if most_common_dtype is not None: precision = {np.dtype("float32"): Precision.FP32, np.dtype("float16"): Precision.FP16}[most_common_dtype] else: precision = None return precision class OnnxLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() model = onnx.load(model_path) onnx.checker.check_model(model) onnx.helper.strip_doc_string(model) model = onnx.shape_inference.infer_shapes(model) # TODO: probably modification of onnx model ios causes error on optimize # from onnx.utils import polish_model # model = polish_model(model) # run checker, docs strip, optimizer and shape inference inputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.input} outputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.output} precision = _infer_graph_precision(model.graph) return Model(model, precision, inputs, outputs) class OnnxSaver(BaseSaver): def __init__(self, as_text: bool = False): self._as_text = as_text def save(self, model: Model, model_path: Union[str, Path]) -> None: model_path = Path(model_path) LOGGER.debug(f"Saving ONNX model to {model_path.as_posix()}") model_path.parent.mkdir(parents=True, exist_ok=True) onnx_model: onnx.ModelProto = model.handle if self._as_text: with model_path.open("w") as f: f.write(text_format.MessageToString(onnx_model)) else: with model_path.open("wb") as f: f.write(onnx_model.SerializeToString()) """ ExecutionProviders on onnxruntime 1.4.0 ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'MIGraphXExecutionProvider', 'NGRAPHExecutionProvider', 'OpenVINOExecutionProvider', 'DnnlExecutionProvider', 'NupharExecutionProvider', 'VitisAIExecutionProvider', 'ArmNNExecutionProvider', 'ACLExecutionProvider', 'CPUExecutionProvider'] """ def _check_providers(providers): providers = providers or [] if not isinstance(providers, (list, tuple)): providers = [providers] available_providers = onnxruntime.get_available_providers() unavailable = set(providers) - set(available_providers) if unavailable: raise RuntimeError(f"Unavailable providers {unavailable}") return providers class OnnxRunner(BaseRunner): def __init__(self, verbose_runtime_logs: bool = False): self._providers = None self._verbose_runtime_logs = verbose_runtime_logs def init_inference(self, model: Model): assert isinstance(model.handle, onnx.ModelProto) return OnnxRunnerSession( model=model, providers=self._providers, verbose_runtime_logs=self._verbose_runtime_logs ) class OnnxRunnerSession(BaseRunnerSession): def __init__(self, model: Model, providers, verbose_runtime_logs: bool = False): super().__init__(model) self._input_names = None self._output_names = None self._session = None self._providers = providers self._verbose_runtime_logs = verbose_runtime_logs self._old_env_values = {} def __enter__(self): self._old_env_values = self._set_env_variables() sess_options = onnxruntime.SessionOptions() # default session options if self._verbose_runtime_logs: sess_options.log_severity_level = 0 sess_options.log_verbosity_level = 1 LOGGER.info( f"Starting inference session for onnx model providers={self._providers} sess_options={sess_options}" ) self._input_names = list(self._model.inputs) self._output_names = list(self._model.outputs) model_payload = self._model.handle.SerializeToString() self._session = onnxruntime.InferenceSession( model_payload, providers=self._providers, sess_options=sess_options ) return self def __exit__(self, exc_type, exc_value, traceback): self._input_names = None self._output_names = None self._session = None self._recover_env_variables(self._old_env_values) def __call__(self, x: Dict[str, object]): feed_dict = {k: x[k] for k in self._input_names} y_pred = self._session.run(self._output_names, feed_dict) y_pred = dict(zip(self._output_names, y_pred)) return y_pred loaders.register_extension(Format.ONNX.value, OnnxLoader) runners.register_extension(Format.ONNX.value, OnnxRunner) savers.register_extension(Format.ONNX.value, OnnxSaver)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/bermuda/onnx.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/bermuda/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter from typing import Callable, Dict, List import networkx as nx from ..core import ShapeSpec def infer_precision( nx_graph: nx.Graph, input_names: List[str], output_names: List[str], get_node_dtype_fn: Callable, ): node_dtypes = [nx_graph.nodes[node_name].get("dtype", None) for node_name in nx_graph.nodes] node_dtypes = [dt for dt in node_dtypes if dt is None or dt.kind not in ["i", "b"]] dtypes_counter = Counter(node_dtypes) return dtypes_counter.most_common()[0][0] def get_shapes_with_dynamic_axes(dataloader, batch_size_dim=0): def _set_dynamic_shapes(t, shapes): for k, v in t.items(): shape = list(v.shape) for dim, s in enumerate(shape): if shapes[k][dim] != -1 and shapes[k][dim] != s: shapes[k][dim] = -1 ## get all shapes from input and output tensors input_shapes = {} output_shapes = {} for batch in dataloader: _, x, y = batch for k, v in x.items(): input_shapes[k] = list(v.shape) for k, v in y.items(): output_shapes[k] = list(v.shape) break # based on max <max_num_iters> iterations, check which # dimensions differ to determine dynamic_axes max_num_iters = 100 for idx, batch in enumerate(dataloader): if idx >= max_num_iters: break _, x, y = batch _set_dynamic_shapes(x, input_shapes) _set_dynamic_shapes(y, output_shapes) return input_shapes, output_shapes def get_dynamic_axes(dataloader, batch_size_dim=0): input_shapes, output_shapes = get_shapes_with_dynamic_axes(dataloader, batch_size_dim) all_shapes = {**input_shapes, **output_shapes} dynamic_axes = {} for k, shape in all_shapes.items(): for idx, s in enumerate(shape): if s == -1: dynamic_axes[k] = {idx: k + "_" + str(idx)} for k, v in all_shapes.items(): if k in dynamic_axes: dynamic_axes[k].update({batch_size_dim: "batch_size_" + str(batch_size_dim)}) else: dynamic_axes[k] = {batch_size_dim: "batch_size_" + str(batch_size_dim)} return dynamic_axes def get_input_shapes(dataloader, max_batch_size=1) -> Dict[str, ShapeSpec]: def init_counters_and_shapes(x, counters, min_shapes, max_shapes): for k, v in x.items(): counters[k] = Counter() min_shapes[k] = [float("inf")] * v.ndim max_shapes[k] = [float("-inf")] * v.ndim counters = {} min_shapes: Dict[str, tuple] = {} max_shapes: Dict[str, tuple] = {} for idx, batch in enumerate(dataloader): ids, x, y = batch if idx == 0: init_counters_and_shapes(x, counters, min_shapes, max_shapes) for k, v in x.items(): shape = v.shape counters[k][shape] += 1 min_shapes[k] = tuple([min(a, b) for a, b in zip(min_shapes[k], shape)]) max_shapes[k] = tuple([max(a, b) for a, b in zip(max_shapes[k], shape)]) opt_shapes: Dict[str, tuple] = {} for k, v in counters.items(): opt_shapes[k] = v.most_common(1)[0][0] shapes = {} for k in opt_shapes.keys(): # same keys in min_shapes and max_shapes shapes[k] = ShapeSpec( min=(1,) + min_shapes[k][1:], max=(max_batch_size,) + max_shapes[k][1:], opt=(max_batch_size,) + opt_shapes[k][1:], ) return shapes
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/bermuda/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys from pathlib import Path from typing import Dict, NamedTuple, Optional, Union import numpy as np # pytype: disable=import-error try: import pycuda.autoinit import pycuda.driver as cuda except (ImportError, Exception) as e: logging.getLogger(__name__).warning(f"Problems with importing pycuda package; {e}") # pytype: enable=import-error import tensorrt as trt # pytype: disable=import-error from ..core import BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec from ..extensions import loaders, runners, savers LOGGER = logging.getLogger(__name__) TRT_LOGGER = trt.Logger(trt.Logger.INFO) """ documentation: https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#python_samples_section """ class TensorRTLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: model_path = Path(model_path) LOGGER.debug(f"Loading TensorRT engine from {model_path}") with model_path.open("rb") as fh, trt.Runtime(TRT_LOGGER) as runtime: engine = runtime.deserialize_cuda_engine(fh.read()) if engine is None: raise RuntimeError(f"Could not load ICudaEngine from {model_path}") inputs = {} outputs = {} for binding_idx in range(engine.num_bindings): name = engine.get_binding_name(binding_idx) is_input = engine.binding_is_input(binding_idx) dtype = engine.get_binding_dtype(binding_idx) shape = engine.get_binding_shape(binding_idx) if is_input: inputs[name] = TensorSpec(name, dtype, shape) else: outputs[name] = TensorSpec(name, dtype, shape) return Model(engine, None, inputs, outputs) class TensorRTSaver(BaseSaver): def __init__(self): pass def save(self, model: Model, model_path: Union[str, Path]) -> None: model_path = Path(model_path) LOGGER.debug(f"Saving TensorRT engine to {model_path.as_posix()}") model_path.parent.mkdir(parents=True, exist_ok=True) engine: "trt.ICudaEngine" = model.handle with model_path.open("wb") as fh: fh.write(engine.serialize()) class TRTBuffers(NamedTuple): x_host: Optional[Dict[str, object]] x_dev: Dict[str, object] y_pred_host: Dict[str, object] y_pred_dev: Dict[str, object] class TensorRTRunner(BaseRunner): def __init__(self): pass def init_inference(self, model: Model): return TensorRTRunnerSession(model=model) class TensorRTRunnerSession(BaseRunnerSession): def __init__(self, model: Model): super().__init__(model) assert isinstance(model.handle, trt.ICudaEngine) self._model = model self._has_dynamic_shapes = None self._context = None self._engine: trt.ICudaEngine = self._model.handle self._cuda_context = pycuda.autoinit.context self._input_names = None self._output_names = None self._buffers = None def __enter__(self): self._context = self._engine.create_execution_context() self._context.__enter__() self._input_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if self._engine.binding_is_input(idx) ] self._output_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if not self._engine.binding_is_input(idx) ] # all_binding_shapes_specified is True for models without dynamic shapes # so initially this variable is False for models with dynamic shapes self._has_dynamic_shapes = not self._context.all_binding_shapes_specified return self def __exit__(self, exc_type, exc_value, traceback): self._context.__exit__(exc_type, exc_value, traceback) self._input_names = None self._output_names = None # TODO: are cuda buffers dealloc automatically? self._buffers = None def __call__(self, x): buffers = self._prepare_buffers_if_needed(x) bindings = self._update_bindings(buffers) for name in self._input_names: cuda.memcpy_htod(buffers.x_dev[name], buffers.x_host[name]) self._cuda_context.push() self._context.execute_v2(bindings=bindings) self._cuda_context.pop() for name in self._output_names: cuda.memcpy_dtoh(buffers.y_pred_host[name], buffers.y_pred_dev[name]) return buffers.y_pred_host def _update_bindings(self, buffers: TRTBuffers): bindings = [None] * self._engine.num_bindings for name in buffers.y_pred_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.y_pred_dev[name] for name in buffers.x_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.x_dev[name] return bindings def _set_dynamic_input_shapes(self, x_host): def _is_shape_dynamic(input_shape): return any([dim is None or dim == -1 for dim in input_shape]) for name in self._input_names: bindings_idx = self._engine[name] data_shape = x_host[name].shape # pytype: disable=attribute-error if self._engine.is_shape_binding(bindings_idx): input_shape = self._context.get_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_shape_input(bindings_idx, data_shape) else: input_shape = self._engine.get_binding_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_binding_shape(bindings_idx, data_shape) assert self._context.all_binding_shapes_specified and self._context.all_shape_inputs_specified def _prepare_buffers_if_needed(self, x_host: Dict[str, object]): # pytype: disable=attribute-error new_batch_size = list(x_host.values())[0].shape[0] current_batch_size = list(self._buffers.y_pred_host.values())[0].shape[0] if self._buffers else 0 # pytype: enable=attribute-error if self._has_dynamic_shapes or new_batch_size != current_batch_size: # TODO: are CUDA buffers dealloc automatically? self._set_dynamic_input_shapes(x_host) y_pred_host = {} for name in self._output_names: shape = self._context.get_binding_shape(self._engine[name]) y_pred_host[name] = np.zeros(shape, dtype=trt.nptype(self._model.outputs[name].dtype)) y_pred_dev = {name: cuda.mem_alloc(data.nbytes) for name, data in y_pred_host.items()} x_dev = { name: cuda.mem_alloc(host_input.nbytes) for name, host_input in x_host.items() if name in self._input_names # pytype: disable=attribute-error } self._buffers = TRTBuffers(None, x_dev, y_pred_host, y_pred_dev) return self._buffers._replace(x_host=x_host) if "pycuda.driver" in sys.modules: loaders.register_extension(Format.TRT.value, TensorRTLoader) runners.register_extension(Format.TRT.value, TensorRTRunner) savers.register_extension(Format.TRT.value, TensorRTSaver) else: LOGGER.warning("Do not register TensorRT extension due problems with importing pycuda.driver package.")
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/bermuda/tensorrt.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from collections import Counter from pathlib import Path from typing import Dict, Iterable, NamedTuple, Optional, Union import torch # pytype: disable=import-error import yaml from ..core import ( GET_MODEL_FN_NAME, BaseConverter, BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec, load_from_file, ) from ..extensions import converters, loaders, runners, savers from .utils import get_dynamic_axes, get_input_shapes, get_shapes_with_dynamic_axes LOGGER = logging.getLogger(__name__) class InputOutputSpec(NamedTuple): inputs: Dict[str, TensorSpec] outputs: Dict[str, TensorSpec] def get_sample_input(dataloader, device): for batch in dataloader: _, x, _ = batch break if isinstance(x, dict): sample_input = list(x.values()) elif isinstance(x, list): sample_input = x else: raise TypeError("The first element (x) of batch returned by dataloader must be a list or a dict") for idx, s in enumerate(sample_input): sample_input[idx] = torch.from_numpy(s).to(device) return tuple(sample_input) def get_model_device(torch_model): if next(torch_model.parameters()).is_cuda: return "cuda" else: return "cpu" def infer_model_precision(model): counter = Counter() for param in model.parameters(): counter[param.dtype] += 1 if counter[torch.float16] > 0: return Precision.FP16 else: return Precision.FP32 def _get_tensor_dtypes(dataloader, precision): def _get_dtypes(t): dtypes = {} for k, v in t.items(): dtype = str(v.dtype) if dtype == "float64": dtype = "float32" if precision == Precision.FP16 and dtype == "float32": dtype = "float16" dtypes[k] = dtype return dtypes input_dtypes = {} output_dtypes = {} for batch in dataloader: _, x, y = batch input_dtypes = _get_dtypes(x) output_dtypes = _get_dtypes(y) break return input_dtypes, output_dtypes ### TODO assumption: floating point input ### type has same precision as the model def _get_io_spec(model, dataloader_fn): precision = model.precision dataloader = dataloader_fn() input_dtypes, output_dtypes = _get_tensor_dtypes(dataloader, precision) input_shapes, output_shapes = get_shapes_with_dynamic_axes(dataloader) inputs = { name: TensorSpec(name=name, dtype=input_dtypes[name], shape=tuple(input_shapes[name])) for name in model.inputs } outputs = { name: TensorSpec(name=name, dtype=output_dtypes[name], shape=tuple(output_shapes[name])) for name in model.outputs } return InputOutputSpec(inputs, outputs) class PyTorchModelLoader(BaseLoader): required_fn_name_for_signature_parsing: Optional[str] = GET_MODEL_FN_NAME def __init__(self, **kwargs): self._model_args = kwargs def load(self, model_path: Union[str, Path], **_) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() get_model = load_from_file(model_path, "model", GET_MODEL_FN_NAME) model, tensor_infos = get_model(**self._model_args) io_spec = InputOutputSpec(tensor_infos["inputs"], tensor_infos["outputs"]) precision = infer_model_precision(model) return Model(handle=model, precision=precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class TorchScriptLoader(BaseLoader): def __init__(self, tensor_names_path: str = None, **kwargs): self._model_args = kwargs self._io_spec = None if tensor_names_path is not None: with Path(tensor_names_path).open("r") as fh: tensor_infos = yaml.load(fh, Loader=yaml.SafeLoader) self._io_spec = InputOutputSpec(tensor_infos["inputs"], tensor_infos["outputs"]) def load(self, model_path: Union[str, Path], **_) -> Model: if not isinstance(model_path, Path): model_path = Path(model_path) model = torch.jit.load(model_path.as_posix()) precision = infer_model_precision(model) io_spec = self._io_spec if not io_spec: yaml_path = model_path.parent / f"{model_path.stem}.yaml" if not yaml_path.is_file(): raise ValueError( f"If `--tensor-names-path is not provided, " f"TorchScript model loader expects file {yaml_path} with tensor information." ) with yaml_path.open("r") as fh: tensor_info = yaml.load(fh, Loader=yaml.SafeLoader) io_spec = InputOutputSpec(tensor_info["inputs"], tensor_info["outputs"]) return Model(handle=model, precision=precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class TorchScriptTraceConverter(BaseConverter): def __init__(self): pass def convert(self, model: Model, dataloader_fn) -> Model: device = get_model_device(model.handle) dummy_input = get_sample_input(dataloader_fn(), device) converted_model = torch.jit.trace_module(model.handle, {"forward": dummy_input}) io_spec = _get_io_spec(model, dataloader_fn) return Model(converted_model, precision=model.precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class TorchScriptScriptConverter(BaseConverter): def __init__(self): pass def convert(self, model: Model, dataloader_fn) -> Model: converted_model = torch.jit.script(model.handle) io_spec = _get_io_spec(model, dataloader_fn) return Model(converted_model, precision=model.precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class PYT2ONNXConverter(BaseConverter): def __init__(self, onnx_opset: int = None): self._onnx_opset = onnx_opset def convert(self, model: Model, dataloader_fn) -> Model: import tempfile import onnx # pytype: disable=import-error assert isinstance(model.handle, torch.jit.ScriptModule) or isinstance( model.handle, torch.nn.Module ), "The model must be of type 'torch.jit.ScriptModule' or 'torch.nn.Module'. Converter aborted." dynamic_axes = get_dynamic_axes(dataloader_fn()) device = get_model_device(model.handle) dummy_input = get_sample_input(dataloader_fn(), device) with tempfile.TemporaryDirectory() as tmpdirname: export_path = os.path.join(tmpdirname, "model.onnx") with torch.no_grad(): torch.onnx.export( model.handle, dummy_input, export_path, do_constant_folding=True, input_names=list(model.inputs), output_names=list(model.outputs), dynamic_axes=dynamic_axes, opset_version=self._onnx_opset, enable_onnx_checker=True, ) onnx_model = onnx.load(export_path) onnx.checker.check_model(onnx_model) onnx.helper.strip_doc_string(onnx_model) onnx_model = onnx.shape_inference.infer_shapes(onnx_model) return Model( handle=onnx_model, precision=model.precision, inputs=model.inputs, outputs=model.outputs, ) class PYT2TensorRTConverter(BaseConverter): def __init__(self, max_batch_size: int, max_workspace_size: int, onnx_opset: int, precision: str): self._max_batch_size = max_batch_size self._max_workspace_size = max_workspace_size self._onnx_opset = onnx_opset self._precision = Precision(precision) def convert(self, model: Model, dataloader_fn) -> Model: from .onnx import _infer_graph_precision from .onnx2trt_conv import onnx2trt pyt2onnx_converter = PYT2ONNXConverter(self._onnx_opset) onnx_model = pyt2onnx_converter.convert(model, dataloader_fn).handle precision = _infer_graph_precision(onnx_model.graph) input_shapes = get_input_shapes(dataloader_fn(), self._max_batch_size) cuda_engine = onnx2trt( onnx_model, shapes=input_shapes, max_workspace_size=self._max_workspace_size, max_batch_size=self._max_batch_size, model_precision=self._precision.value, ) return Model( handle=cuda_engine, precision=model.precision, inputs=model.inputs, outputs=model.outputs, ) @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: # TensorRT requires source models to be in FP32 precision return Precision.FP32 class TorchScriptSaver(BaseSaver): def save(self, model: Model, model_path: Union[str, Path]) -> None: if not isinstance(model_path, Path): model_path = Path(model_path) if isinstance(model.handle, torch.jit.ScriptModule): torch.jit.save(model.handle, model_path.as_posix()) else: print("The model must be of type 'torch.jit.ScriptModule'. Saving aborted.") assert False # temporary error handling def _format_tensor_spec(tensor_spec): # wrapping shape with list and whole tensor_spec with dict() is required for correct yaml dump tensor_spec = tensor_spec._replace(shape=list(tensor_spec.shape)) tensor_spec = dict(tensor_spec._asdict()) return tensor_spec # store TensorSpecs from inputs and outputs in a yaml file tensor_specs = { "inputs": {k: _format_tensor_spec(v) for k, v in model.inputs.items()}, "outputs": {k: _format_tensor_spec(v) for k, v in model.outputs.items()}, } yaml_path = model_path.parent / f"{model_path.stem}.yaml" with Path(yaml_path).open("w") as fh: yaml.dump(tensor_specs, fh, indent=4) class PyTorchRunner(BaseRunner): def __init__(self): pass def init_inference(self, model: Model): return PyTorchRunnerSession(model=model) class PyTorchRunnerSession(BaseRunnerSession): def __init__(self, model: Model): super().__init__(model) assert isinstance(model.handle, torch.jit.ScriptModule) or isinstance( model.handle, torch.nn.Module ), "The model must be of type 'torch.jit.ScriptModule' or 'torch.nn.Module'. Runner aborted." self._model = model self._output_names = None def __enter__(self): self._output_names = list(self._model.outputs) return self def __exit__(self, exc_type, exc_value, traceback): self._output_names = None self._model = None def __call__(self, x: Dict[str, object]): with torch.no_grad(): feed_list = [torch.from_numpy(v).cuda() for k, v in x.items()] y_pred = self._model.handle(*feed_list) if isinstance(y_pred, torch.Tensor): y_pred = (y_pred,) y_pred = [t.cpu().numpy() for t in y_pred] y_pred = dict(zip(self._output_names, y_pred)) return y_pred loaders.register_extension(Format.PYT.value, PyTorchModelLoader) loaders.register_extension(Format.TS_TRACE.value, TorchScriptLoader) loaders.register_extension(Format.TS_SCRIPT.value, TorchScriptLoader) converters.register_extension(f"{Format.PYT.value}--{Format.TS_SCRIPT.value}", TorchScriptScriptConverter) converters.register_extension(f"{Format.PYT.value}--{Format.TS_TRACE.value}", TorchScriptTraceConverter) converters.register_extension(f"{Format.PYT.value}--{Format.ONNX.value}", PYT2ONNXConverter) converters.register_extension(f"{Format.PYT.value}--{Format.TRT.value}", PYT2TensorRTConverter) savers.register_extension(Format.TS_SCRIPT.value, TorchScriptSaver) savers.register_extension(Format.TS_TRACE.value, TorchScriptSaver) runners.register_extension(Format.PYT.value, PyTorchRunner) runners.register_extension(Format.TS_SCRIPT.value, PyTorchRunner) runners.register_extension(Format.TS_TRACE.value, PyTorchRunner)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/bermuda/pyt.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch import nn from torch.nn import functional as F class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super(ConvNorm, self).__init__() if padding is None: assert(kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): conv_signal = self.conv(signal) return conv_signal class Invertible1x1ConvLUS(torch.nn.Module): def __init__(self, c): super(Invertible1x1ConvLUS, self).__init__() # Sample a random orthonormal matrix to initialize weights W, _ = torch.linalg.qr(torch.randn(c, c)) # Ensure determinant is 1.0 not -1.0 if torch.det(W) < 0: W[:, 0] = -1*W[:, 0] p, lower, upper = torch.lu_unpack(*torch.lu(W)) self.register_buffer('p', p) # diagonals of lower will always be 1s anyway lower = torch.tril(lower, -1) lower_diag = torch.diag(torch.eye(c, c)) self.register_buffer('lower_diag', lower_diag) self.lower = nn.Parameter(lower) self.upper_diag = nn.Parameter(torch.diag(upper)) self.upper = nn.Parameter(torch.triu(upper, 1)) def forward(self, z, reverse=False): U = torch.triu(self.upper, 1) + torch.diag(self.upper_diag) L = torch.tril(self.lower, -1) + torch.diag(self.lower_diag) W = torch.mm(self.p, torch.mm(L, U)) if reverse: if not hasattr(self, 'W_inverse'): # Reverse computation W_inverse = W.float().inverse() if z.type() == 'torch.cuda.HalfTensor': W_inverse = W_inverse.half() self.W_inverse = W_inverse[..., None] z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) return z else: W = W[..., None] z = F.conv1d(z, W, bias=None, stride=1, padding=0) log_det_W = torch.sum(torch.log(torch.abs(self.upper_diag))) return z, log_det_W class ConvAttention(torch.nn.Module): def __init__(self, n_mel_channels=80, n_speaker_dim=128, n_text_channels=512, n_att_channels=80, temperature=1.0, n_mel_convs=2, align_query_enc_type='3xconv', use_query_proj=True): super(ConvAttention, self).__init__() self.temperature = temperature self.att_scaling_factor = np.sqrt(n_att_channels) self.softmax = torch.nn.Softmax(dim=3) self.log_softmax = torch.nn.LogSoftmax(dim=3) self.query_proj = Invertible1x1ConvLUS(n_mel_channels) self.attn_proj = torch.nn.Conv2d(n_att_channels, 1, kernel_size=1) self.align_query_enc_type = align_query_enc_type self.use_query_proj = bool(use_query_proj) self.key_proj = nn.Sequential( ConvNorm(n_text_channels, n_text_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'), torch.nn.ReLU(), ConvNorm(n_text_channels * 2, n_att_channels, kernel_size=1, bias=True)) self.align_query_enc_type = align_query_enc_type if align_query_enc_type == "inv_conv": self.query_proj = Invertible1x1ConvLUS(n_mel_channels) elif align_query_enc_type == "3xconv": self.query_proj = nn.Sequential( ConvNorm(n_mel_channels, n_mel_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'), torch.nn.ReLU(), ConvNorm(n_mel_channels * 2, n_mel_channels, kernel_size=1, bias=True), torch.nn.ReLU(), ConvNorm(n_mel_channels, n_att_channels, kernel_size=1, bias=True)) else: raise ValueError("Unknown query encoder type specified") def run_padded_sequence(self, sorted_idx, unsort_idx, lens, padded_data, recurrent_model): """Sorts input data by previded ordering (and un-ordering) and runs the packed data through the recurrent model Args: sorted_idx (torch.tensor): 1D sorting index unsort_idx (torch.tensor): 1D unsorting index (inverse of sorted_idx) lens: lengths of input data (sorted in descending order) padded_data (torch.tensor): input sequences (padded) recurrent_model (nn.Module): recurrent model to run data through Returns: hidden_vectors (torch.tensor): outputs of the RNN, in the original, unsorted, ordering """ # sort the data by decreasing length using provided index # we assume batch index is in dim=1 padded_data = padded_data[:, sorted_idx] padded_data = nn.utils.rnn.pack_padded_sequence(padded_data, lens) hidden_vectors = recurrent_model(padded_data)[0] hidden_vectors, _ = nn.utils.rnn.pad_packed_sequence(hidden_vectors) # unsort the results at dim=1 and return hidden_vectors = hidden_vectors[:, unsort_idx] return hidden_vectors def encode_query(self, query, query_lens): query = query.permute(2, 0, 1) # seq_len, batch, feature dim lens, ids = torch.sort(query_lens, descending=True) original_ids = [0] * lens.size(0) for i in range(len(ids)): original_ids[ids[i]] = i query_encoded = self.run_padded_sequence(ids, original_ids, lens, query, self.query_lstm) query_encoded = query_encoded.permute(1, 2, 0) return query_encoded def forward(self, queries, keys, query_lens, mask=None, key_lens=None, keys_encoded=None, attn_prior=None): """Attention mechanism for flowtron parallel Unlike in Flowtron, we have no restrictions such as causality etc, since we only need this during training. Args: queries (torch.tensor): B x C x T1 tensor (probably going to be mel data) keys (torch.tensor): B x C2 x T2 tensor (text data) query_lens: lengths for sorting the queries in descending order mask (torch.tensor): uint8 binary mask for variable length entries (should be in the T2 domain) Output: attn (torch.tensor): B x 1 x T1 x T2 attention mask. Final dim T2 should sum to 1 """ keys_enc = self.key_proj(keys) # B x n_attn_dims x T2 # Beware can only do this since query_dim = attn_dim = n_mel_channels if self.use_query_proj: if self.align_query_enc_type == "inv_conv": queries_enc, log_det_W = self.query_proj(queries) elif self.align_query_enc_type == "3xconv": queries_enc = self.query_proj(queries) log_det_W = 0.0 else: queries_enc, log_det_W = self.query_proj(queries) else: queries_enc, log_det_W = queries, 0.0 # different ways of computing attn, # one is isotopic gaussians (per phoneme) # Simplistic Gaussian Isotopic Attention # B x n_attn_dims x T1 x T2 attn = (queries_enc[:, :, :, None] - keys_enc[:, :, None]) ** 2 # compute log likelihood from a gaussian attn = -0.0005 * attn.sum(1, keepdim=True) if attn_prior is not None: attn = self.log_softmax(attn) + torch.log(attn_prior[:, None]+1e-8) attn_logprob = attn.clone() if mask is not None: attn.data.masked_fill_(mask.permute(0, 2, 1).unsqueeze(2), -float("inf")) attn = self.softmax(attn) # Softmax along T2 return attn, attn_logprob
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/attention.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** from typing import Optional import torch from torch import nn as nn from common import filter_warnings from fastpitch.model import TemporalPredictor from fastpitch.transformer_jit import FFTransformer def regulate_len(durations, enc_out, pace: float = 1.0, mel_max_len: Optional[int] = None): """If target=None, then predicted durations are applied""" reps = torch.round(durations.float() / pace).long() dec_lens = reps.sum(dim=1) max_len = dec_lens.max() bsz, _, hid = enc_out.size() reps_padded = torch.cat([reps, (max_len - dec_lens)[:, None]], dim=1) pad_vec = torch.zeros(bsz, 1, hid, dtype=enc_out.dtype, device=enc_out.device) enc_rep = torch.cat([enc_out, pad_vec], dim=1) enc_rep = torch.repeat_interleave( enc_rep.view(-1, hid), reps_padded.view(-1), dim=0 ).view(bsz, -1, hid) if mel_max_len is not None: enc_rep = enc_rep[:, :mel_max_len] dec_lens = torch.clamp_max(dec_lens, mel_max_len) return enc_rep, dec_lens class FastPitchJIT(nn.Module): __constants__ = ['energy_conditioning'] def __init__(self, n_mel_channels, n_symbols, padding_idx, symbols_embedding_dim, in_fft_n_layers, in_fft_n_heads, in_fft_d_head, in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size, in_fft_output_size, p_in_fft_dropout, p_in_fft_dropatt, p_in_fft_dropemb, out_fft_n_layers, out_fft_n_heads, out_fft_d_head, out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size, out_fft_output_size, p_out_fft_dropout, p_out_fft_dropatt, p_out_fft_dropemb, dur_predictor_kernel_size, dur_predictor_filter_size, p_dur_predictor_dropout, dur_predictor_n_layers, pitch_predictor_kernel_size, pitch_predictor_filter_size, p_pitch_predictor_dropout, pitch_predictor_n_layers, pitch_embedding_kernel_size, energy_conditioning, energy_predictor_kernel_size, energy_predictor_filter_size, p_energy_predictor_dropout, energy_predictor_n_layers, energy_embedding_kernel_size, n_speakers, speaker_emb_weight, pitch_conditioning_formants=1): super(FastPitchJIT, self).__init__() self.encoder = FFTransformer( n_layer=in_fft_n_layers, n_head=in_fft_n_heads, d_model=symbols_embedding_dim, d_head=in_fft_d_head, d_inner=in_fft_conv1d_filter_size, kernel_size=in_fft_conv1d_kernel_size, dropout=p_in_fft_dropout, dropatt=p_in_fft_dropatt, dropemb=p_in_fft_dropemb, embed_input=True, d_embed=symbols_embedding_dim, n_embed=n_symbols, padding_idx=padding_idx) if n_speakers > 1: self.speaker_emb = nn.Embedding(n_speakers, symbols_embedding_dim) else: self.speaker_emb = None self.speaker_emb_weight = speaker_emb_weight self.duration_predictor = TemporalPredictor( in_fft_output_size, filter_size=dur_predictor_filter_size, kernel_size=dur_predictor_kernel_size, dropout=p_dur_predictor_dropout, n_layers=dur_predictor_n_layers ) self.decoder = FFTransformer( n_layer=out_fft_n_layers, n_head=out_fft_n_heads, d_model=symbols_embedding_dim, d_head=out_fft_d_head, d_inner=out_fft_conv1d_filter_size, kernel_size=out_fft_conv1d_kernel_size, dropout=p_out_fft_dropout, dropatt=p_out_fft_dropatt, dropemb=p_out_fft_dropemb, embed_input=False, d_embed=symbols_embedding_dim ) self.pitch_predictor = TemporalPredictor( in_fft_output_size, filter_size=pitch_predictor_filter_size, kernel_size=pitch_predictor_kernel_size, dropout=p_pitch_predictor_dropout, n_layers=pitch_predictor_n_layers, n_predictions=pitch_conditioning_formants ) self.pitch_emb = nn.Conv1d( pitch_conditioning_formants, symbols_embedding_dim, kernel_size=pitch_embedding_kernel_size, padding=int((pitch_embedding_kernel_size - 1) / 2)) # Store values precomputed for training data within the model self.register_buffer('pitch_mean', torch.zeros(1)) self.register_buffer('pitch_std', torch.zeros(1)) self.energy_conditioning = energy_conditioning if energy_conditioning: self.energy_predictor = TemporalPredictor( in_fft_output_size, filter_size=energy_predictor_filter_size, kernel_size=energy_predictor_kernel_size, dropout=p_energy_predictor_dropout, n_layers=energy_predictor_n_layers, n_predictions=1 ) self.energy_emb = nn.Conv1d( 1, symbols_embedding_dim, kernel_size=energy_embedding_kernel_size, padding=int((energy_embedding_kernel_size - 1) / 2)) self.proj = nn.Linear(out_fft_output_size, n_mel_channels, bias=True) # skip self.attention (used only in training) def infer(self, inputs, pace: float = 1.0, dur_tgt: Optional[torch.Tensor] = None, pitch_tgt: Optional[torch.Tensor] = None, energy_tgt: Optional[torch.Tensor] = None, speaker: int = 0): if self.speaker_emb is None: spk_emb = None else: speaker = (torch.ones(inputs.size(0)).long().to(inputs.device) * speaker) spk_emb = self.speaker_emb(speaker).unsqueeze(1) spk_emb.mul_(self.speaker_emb_weight) # Input FFT enc_out, enc_mask = self.encoder(inputs, conditioning=spk_emb) # Predict durations log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1) dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, 100.0) # Pitch over chars pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1) if pitch_tgt is None: pitch_emb = self.pitch_emb(pitch_pred).transpose(1, 2) else: pitch_emb = self.pitch_emb(pitch_tgt).transpose(1, 2) enc_out = enc_out + pitch_emb # Predict energy if self.energy_conditioning: if energy_tgt is None: energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1) energy_emb = self.energy_emb(energy_pred.unsqueeze(1)).transpose(1, 2) else: energy_pred = None energy_emb = self.energy_emb(energy_tgt).transpose(1, 2) enc_out = enc_out + energy_emb else: energy_pred = None len_regulated, dec_lens = regulate_len( dur_pred if dur_tgt is None else dur_tgt, enc_out, pace, mel_max_len=None) dec_out, dec_mask = self.decoder(len_regulated, dec_lens) mel_out = self.proj(dec_out) # mel_lens = dec_mask.squeeze(2).sum(axis=1).long() mel_out = mel_out.permute(0, 2, 1) # For inference.py return mel_out, dec_lens, dur_pred, pitch_pred, energy_pred
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/model_jit.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from numba import jit, prange @jit(nopython=True) def mas(log_attn_map, width=1): # assumes mel x text opt = np.zeros_like(log_attn_map) log_attn_map = log_attn_map.copy() log_attn_map[0, 1:] = -np.inf log_p = np.zeros_like(log_attn_map) log_p[0, :] = log_attn_map[0, :] prev_ind = np.zeros_like(log_attn_map, dtype=np.int64) for i in range(1, log_attn_map.shape[0]): for j in range(log_attn_map.shape[1]): # for each text dim prev_j = np.arange(max(0, j-width), j+1) prev_log = np.array([log_p[i-1, prev_idx] for prev_idx in prev_j]) ind = np.argmax(prev_log) log_p[i, j] = log_attn_map[i, j] + prev_log[ind] prev_ind[i, j] = prev_j[ind] # now backtrack curr_text_idx = log_attn_map.shape[1]-1 for i in range(log_attn_map.shape[0]-1, -1, -1): opt[i, curr_text_idx] = 1 curr_text_idx = prev_ind[i, curr_text_idx] opt[0, curr_text_idx] = 1 return opt @jit(nopython=True) def mas_width1(log_attn_map): """mas with hardcoded width=1""" # assumes mel x text neg_inf = log_attn_map.dtype.type(-np.inf) log_p = log_attn_map.copy() log_p[0, 1:] = neg_inf for i in range(1, log_p.shape[0]): prev_log1 = neg_inf for j in range(log_p.shape[1]): prev_log2 = log_p[i-1, j] log_p[i, j] += max(prev_log1, prev_log2) prev_log1 = prev_log2 # now backtrack opt = np.zeros_like(log_p) one = opt.dtype.type(1) j = log_p.shape[1]-1 for i in range(log_p.shape[0]-1, 0, -1): opt[i, j] = one if log_p[i-1, j-1] >= log_p[i-1, j]: j -= 1 if j == 0: opt[1:i, j] = one break opt[0, j] = one return opt @jit(nopython=True, parallel=True) def b_mas(b_log_attn_map, in_lens, out_lens, width=1): assert width == 1 attn_out = np.zeros_like(b_log_attn_map) for b in prange(b_log_attn_map.shape[0]): out = mas_width1(b_log_attn_map[b, 0, :out_lens[b], :in_lens[b]]) attn_out[b, 0, :out_lens[b], :in_lens[b]] = out return attn_out
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/alignment.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def pitch_transform_custom(pitch, pitch_lens): """Apply a custom pitch transformation to predicted pitch values. This sample modification linearly increases the pitch throughout the utterance from 0.5 of predicted pitch to 1.5 of predicted pitch. In other words, it starts low and ends high. PARAMS ------ pitch: torch.Tensor (bs, max_len) Predicted pitch values for each lexical unit, padded to max_len (in Hz). pitch_lens: torch.Tensor (bs, max_len) Number of lexical units in each utterance. RETURNS ------- pitch: torch.Tensor Modified pitch (in Hz). """ weights = torch.arange(pitch.size(1), dtype=torch.float32, device=pitch.device) # The weights increase linearly from 0.0 to 1.0 in every i-th row # in the range (0, pitch_lens[i]) weights = weights.unsqueeze(0) / pitch_lens.unsqueeze(1) # Shift the range from (0.0, 1.0) to (0.5, 1.5) weights += 0.5 return pitch * weights
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/pitch_transform.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F from common.utils import mask_from_lens class PositionalEmbedding(nn.Module): def __init__(self, demb): super(PositionalEmbedding, self).__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer('inv_freq', inv_freq) def forward(self, pos_seq, bsz: Optional[int] = None): sinusoid_inp = torch.ger(pos_seq, self.inv_freq) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=1) if bsz is not None: return pos_emb[None, :, :].expand(bsz, -1, -1) else: return pos_emb[None, :, :] class PositionwiseFF(nn.Module): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False): super(PositionwiseFF, self).__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Linear(d_model, d_inner), nn.ReLU(), nn.Dropout(dropout), nn.Linear(d_inner, d_model), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model) self.pre_lnorm = pre_lnorm def forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.CoreNet(self.layer_norm(inp)) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.CoreNet(inp) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class PositionwiseConvFF(nn.Module): def __init__(self, d_model, d_inner, kernel_size, dropout, pre_lnorm=False): super(PositionwiseConvFF, self).__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Conv1d(d_model, d_inner, kernel_size, 1, (kernel_size // 2)), nn.ReLU(), # nn.Dropout(dropout), # worse convergence nn.Conv1d(d_inner, d_model, kernel_size, 1, (kernel_size // 2)), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model) self.pre_lnorm = pre_lnorm def forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(self.layer_norm(core_out)) core_out = core_out.transpose(1, 2) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(core_out) core_out = core_out.transpose(1, 2) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class MultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / (d_head ** 0.5) self.dropout = dropout self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask: Optional[torch.Tensor] = None): residual = inp if self.pre_lnorm: # layer normalization inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=-1) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view( inp.size(0), inp.size(1), n_head * d_head) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: # residual connection output = residual + attn_out else: # residual connection + layer normalization # XXX Running TorchScript on 20.02 and 20.03 containers crashes here # XXX Works well with 20.01-py3 container. # XXX dirty fix is: # XXX output = self.layer_norm(residual + attn_out).half() output = self.layer_norm(residual + attn_out) return output class TransformerLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, kernel_size, dropout, **kwargs): super(TransformerLayer, self).__init__() self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs) self.pos_ff = PositionwiseConvFF(d_model, d_inner, kernel_size, dropout, pre_lnorm=kwargs.get('pre_lnorm')) def forward(self, dec_inp, mask): output = self.dec_attn(dec_inp, attn_mask=~mask.squeeze(2)) output *= mask output = self.pos_ff(output) output *= mask return output class FFTransformer(nn.Module): def __init__(self, n_layer, n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt, dropemb=0.0, embed_input=True, n_embed=None, d_embed=None, padding_idx=0, pre_lnorm=False): super(FFTransformer, self).__init__() self.d_model = d_model self.n_head = n_head self.d_head = d_head self.padding_idx = padding_idx self.n_embed = n_embed self.embed_input = embed_input if embed_input: self.word_emb = nn.Embedding(n_embed, d_embed or d_model, padding_idx=self.padding_idx) else: self.word_emb = nn.Identity() self.pos_emb = PositionalEmbedding(self.d_model) self.drop = nn.Dropout(dropemb) self.layers = nn.ModuleList() for _ in range(n_layer): self.layers.append( TransformerLayer( n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm) ) def forward(self, dec_inp, seq_lens: Optional[torch.Tensor] = None, conditioning: Optional[torch.Tensor] = None): if not self.embed_input: inp = dec_inp assert seq_lens is not None mask = mask_from_lens(seq_lens).unsqueeze(2) else: inp = self.word_emb(dec_inp) # [bsz x L x 1] mask = (dec_inp != self.padding_idx).unsqueeze(2) pos_seq = torch.arange(inp.size(1), device=inp.device, dtype=inp.dtype) pos_emb = self.pos_emb(pos_seq) * mask if conditioning is not None: out = self.drop(inp + pos_emb + conditioning) else: out = self.drop(inp + pos_emb) for layer in self.layers: out = layer(out, mask=mask) # out = self.drop(out) return out, mask
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/transformer_jit.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import functools import json import re from pathlib import Path import librosa import numpy as np import torch import torch.nn.functional as F from scipy import ndimage from scipy.stats import betabinom import common.layers as layers from common.text.text_processing import get_text_processing from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class BetaBinomialInterpolator: """Interpolates alignment prior matrices to save computation. Calculating beta-binomial priors is costly. Instead cache popular sizes and use img interpolation to get priors faster. """ def __init__(self, round_mel_len_to=100, round_text_len_to=20): self.round_mel_len_to = round_mel_len_to self.round_text_len_to = round_text_len_to self.bank = functools.lru_cache(beta_binomial_prior_distribution) def round(self, val, to): return max(1, int(np.round((val + 1) / to))) * to def __call__(self, w, h): bw = self.round(w, to=self.round_mel_len_to) bh = self.round(h, to=self.round_text_len_to) ret = ndimage.zoom(self.bank(bw, bh).T, zoom=(w / bw, h / bh), order=1) assert ret.shape[0] == w, ret.shape assert ret.shape[1] == h, ret.shape return ret def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling=1.0): P = phoneme_count M = mel_count x = np.arange(0, P) mel_text_probs = [] for i in range(1, M+1): a, b = scaling * i, scaling * (M + 1 - i) rv = betabinom(P, a, b) mel_i_prob = rv.pmf(x) mel_text_probs.append(mel_i_prob) return torch.tensor(np.array(mel_text_probs)) def estimate_pitch(wav, mel_len, method='pyin', normalize_mean=None, normalize_std=None, n_formants=1): if type(normalize_mean) is float or type(normalize_mean) is list: normalize_mean = torch.tensor(normalize_mean) if type(normalize_std) is float or type(normalize_std) is list: normalize_std = torch.tensor(normalize_std) if method == 'pyin': snd, sr = librosa.load(wav) pitch_mel, voiced_flag, voiced_probs = librosa.pyin( snd, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), frame_length=1024) assert np.abs(mel_len - pitch_mel.shape[0]) <= 1.0 pitch_mel = np.where(np.isnan(pitch_mel), 0.0, pitch_mel) pitch_mel = torch.from_numpy(pitch_mel).unsqueeze(0) pitch_mel = F.pad(pitch_mel, (0, mel_len - pitch_mel.size(1))) if n_formants > 1: raise NotImplementedError else: raise ValueError pitch_mel = pitch_mel.float() if normalize_mean is not None: assert normalize_std is not None pitch_mel = normalize_pitch(pitch_mel, normalize_mean, normalize_std) return pitch_mel def normalize_pitch(pitch, mean, std): zeros = (pitch == 0.0) pitch -= mean[:, None] pitch /= std[:, None] pitch[zeros] = 0.0 return pitch class TTSDataset(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, text_cleaners, n_mel_channels, symbol_set='english_basic', p_arpabet=1.0, n_speakers=1, load_mel_from_disk=True, load_pitch_from_disk=True, pitch_mean=214.72203, # LJSpeech defaults pitch_std=65.72038, max_wav_value=None, sampling_rate=None, filter_length=None, hop_length=None, win_length=None, mel_fmin=None, mel_fmax=None, prepend_space_to_text=False, append_space_to_text=False, pitch_online_dir=None, betabinomial_online_dir=None, use_betabinomial_interpolator=True, pitch_online_method='pyin', **ignored): # Expect a list of filenames if type(audiopaths_and_text) is str: audiopaths_and_text = [audiopaths_and_text] self.dataset_path = dataset_path self.audiopaths_and_text = load_filepaths_and_text( dataset_path, audiopaths_and_text, has_speakers=(n_speakers > 1)) self.load_mel_from_disk = load_mel_from_disk if not load_mel_from_disk: self.max_wav_value = max_wav_value self.sampling_rate = sampling_rate self.stft = layers.TacotronSTFT( filter_length, hop_length, win_length, n_mel_channels, sampling_rate, mel_fmin, mel_fmax) self.load_pitch_from_disk = load_pitch_from_disk self.prepend_space_to_text = prepend_space_to_text self.append_space_to_text = append_space_to_text assert p_arpabet == 0.0 or p_arpabet == 1.0, ( 'Only 0.0 and 1.0 p_arpabet is currently supported. ' 'Variable probability breaks caching of betabinomial matrices.') self.tp = get_text_processing(symbol_set, text_cleaners, p_arpabet) self.n_speakers = n_speakers self.pitch_tmp_dir = pitch_online_dir self.f0_method = pitch_online_method self.betabinomial_tmp_dir = betabinomial_online_dir self.use_betabinomial_interpolator = use_betabinomial_interpolator if use_betabinomial_interpolator: self.betabinomial_interpolator = BetaBinomialInterpolator() expected_columns = (2 + int(load_pitch_from_disk) + (n_speakers > 1)) assert not (load_pitch_from_disk and self.pitch_tmp_dir is not None) if len(self.audiopaths_and_text[0]) < expected_columns: raise ValueError(f'Expected {expected_columns} columns in audiopaths file. ' 'The format is <mel_or_wav>|[<pitch>|]<text>[|<speaker_id>]') if len(self.audiopaths_and_text[0]) > expected_columns: print('WARNING: Audiopaths file has more columns than expected') to_tensor = lambda x: torch.Tensor([x]) if type(x) is float else x self.pitch_mean = to_tensor(pitch_mean) self.pitch_std = to_tensor(pitch_std) def __getitem__(self, index): # Separate filename and text if self.n_speakers > 1: audiopath, *extra, text, speaker = self.audiopaths_and_text[index] speaker = int(speaker) else: audiopath, *extra, text = self.audiopaths_and_text[index] speaker = None mel = self.get_mel(audiopath) text = self.get_text(text) pitch = self.get_pitch(index, mel.size(-1)) energy = torch.norm(mel.float(), dim=0, p=2) attn_prior = self.get_prior(index, mel.shape[1], text.shape[0]) assert pitch.size(-1) == mel.size(-1) # No higher formants? if len(pitch.size()) == 1: pitch = pitch[None, :] return (text, mel, len(text), pitch, energy, speaker, attn_prior, audiopath) def __len__(self): return len(self.audiopaths_and_text) def get_mel(self, filename): if not self.load_mel_from_disk: audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) else: melspec = torch.load(filename) # assert melspec.size(0) == self.stft.n_mel_channels, ( # 'Mel dimension mismatch: given {}, expected {}'.format( # melspec.size(0), self.stft.n_mel_channels)) return melspec def get_text(self, text): text = self.tp.encode_text(text) space = [self.tp.encode_text("A A")[1]] if self.prepend_space_to_text: text = space + text if self.append_space_to_text: text = text + space return torch.LongTensor(text) def get_prior(self, index, mel_len, text_len): if self.use_betabinomial_interpolator: return torch.from_numpy(self.betabinomial_interpolator(mel_len, text_len)) if self.betabinomial_tmp_dir is not None: audiopath, *_ = self.audiopaths_and_text[index] fname = Path(audiopath).relative_to(self.dataset_path) fname = fname.with_suffix('.pt') cached_fpath = Path(self.betabinomial_tmp_dir, fname) if cached_fpath.is_file(): return torch.load(cached_fpath) attn_prior = beta_binomial_prior_distribution(text_len, mel_len) if self.betabinomial_tmp_dir is not None: cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(attn_prior, cached_fpath) return attn_prior def get_pitch(self, index, mel_len=None): audiopath, *fields = self.audiopaths_and_text[index] if self.n_speakers > 1: spk = int(fields[-1]) else: spk = 0 if self.load_pitch_from_disk: pitchpath = fields[0] pitch = torch.load(pitchpath) if self.pitch_mean is not None: assert self.pitch_std is not None pitch = normalize_pitch(pitch, self.pitch_mean, self.pitch_std) return pitch if self.pitch_tmp_dir is not None: fname = Path(audiopath).relative_to(self.dataset_path) fname_method = fname.with_suffix('.pt') cached_fpath = Path(self.pitch_tmp_dir, fname_method) if cached_fpath.is_file(): return torch.load(cached_fpath) # No luck so far - calculate wav = audiopath if not wav.endswith('.wav'): wav = re.sub('/mels/', '/wavs/', wav) wav = re.sub('.pt$', '.wav', wav) pitch_mel = estimate_pitch(wav, mel_len, self.f0_method, self.pitch_mean, self.pitch_std) if self.pitch_tmp_dir is not None and not cached_fpath.is_file(): cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(pitch_mel, cached_fpath) return pitch_mel def ensure_disjoint(*tts_datasets): paths = [set(list(zip(*d.audiopaths_and_text))[0]) for d in tts_datasets] assert sum(len(p) for p in paths) == len(set().union(*paths)), ( "Your datasets (train, val) are not disjoint. " "Review filelists and restart training." ) class TTSCollate: """Zero-pads model inputs and targets based on number of frames per step""" def __call__(self, batch): """Collate training batch from normalized text and mel-spec""" # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, :text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) # Include mel padded and gate padded mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, :mel.size(1)] = mel output_lengths[i] = mel.size(1) n_formants = batch[0][3].shape[0] pitch_padded = torch.zeros(mel_padded.size(0), n_formants, mel_padded.size(2), dtype=batch[0][3].dtype) energy_padded = torch.zeros_like(pitch_padded[:, 0, :]) for i in range(len(ids_sorted_decreasing)): pitch = batch[ids_sorted_decreasing[i]][3] energy = batch[ids_sorted_decreasing[i]][4] pitch_padded[i, :, :pitch.shape[1]] = pitch energy_padded[i, :energy.shape[0]] = energy if batch[0][5] is not None: speaker = torch.zeros_like(input_lengths) for i in range(len(ids_sorted_decreasing)): speaker[i] = batch[ids_sorted_decreasing[i]][5] else: speaker = None attn_prior_padded = torch.zeros(len(batch), max_target_len, max_input_len) attn_prior_padded.zero_() for i in range(len(ids_sorted_decreasing)): prior = batch[ids_sorted_decreasing[i]][6] attn_prior_padded[i, :prior.size(0), :prior.size(1)] = prior # Count number of items - characters in text len_x = [x[2] for x in batch] len_x = torch.Tensor(len_x) audiopaths = [batch[i][7] for i in ids_sorted_decreasing] return (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior_padded, audiopaths) def batch_to_gpu(batch): (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior, audiopaths) = batch text_padded = to_gpu(text_padded).long() input_lengths = to_gpu(input_lengths).long() mel_padded = to_gpu(mel_padded).float() output_lengths = to_gpu(output_lengths).long() pitch_padded = to_gpu(pitch_padded).float() energy_padded = to_gpu(energy_padded).float() attn_prior = to_gpu(attn_prior).float() if speaker is not None: speaker = to_gpu(speaker).long() # Alignments act as both inputs and targets - pass shallow copies x = [text_padded, input_lengths, mel_padded, output_lengths, pitch_padded, energy_padded, speaker, attn_prior, audiopaths] y = [mel_padded, input_lengths, output_lengths] len_x = torch.sum(output_lengths) return (x, y, len_x)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/data_function.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** from typing import Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from common import filter_warnings from common.layers import ConvReLUNorm from common.utils import mask_from_lens from fastpitch.alignment import b_mas, mas_width1 from fastpitch.attention import ConvAttention from fastpitch.transformer import FFTransformer def regulate_len(durations, enc_out, pace: float = 1.0, mel_max_len: Optional[int] = None): """If target=None, then predicted durations are applied""" dtype = enc_out.dtype reps = durations.float() / pace reps = (reps + 0.5).long() dec_lens = reps.sum(dim=1) max_len = dec_lens.max() reps_cumsum = torch.cumsum(F.pad(reps, (1, 0, 0, 0), value=0.0), dim=1)[:, None, :] reps_cumsum = reps_cumsum.to(dtype) range_ = torch.arange(max_len, device=enc_out.device)[None, :, None] mult = ((reps_cumsum[:, :, :-1] <= range_) & (reps_cumsum[:, :, 1:] > range_)) mult = mult.to(dtype) enc_rep = torch.matmul(mult, enc_out) if mel_max_len is not None: enc_rep = enc_rep[:, :mel_max_len] dec_lens = torch.clamp_max(dec_lens, mel_max_len) return enc_rep, dec_lens def average_pitch(pitch, durs): durs_cums_ends = torch.cumsum(durs, dim=1).long() durs_cums_starts = F.pad(durs_cums_ends[:, :-1], (1, 0)) pitch_nonzero_cums = F.pad(torch.cumsum(pitch != 0.0, dim=2), (1, 0)) pitch_cums = F.pad(torch.cumsum(pitch, dim=2), (1, 0)) bs, l = durs_cums_ends.size() n_formants = pitch.size(1) dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l) dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l) pitch_sums = (torch.gather(pitch_cums, 2, dce) - torch.gather(pitch_cums, 2, dcs)).float() pitch_nelems = (torch.gather(pitch_nonzero_cums, 2, dce) - torch.gather(pitch_nonzero_cums, 2, dcs)).float() pitch_avg = torch.where(pitch_nelems == 0.0, pitch_nelems, pitch_sums / pitch_nelems) return pitch_avg class TemporalPredictor(nn.Module): """Predicts a single float per each temporal location""" def __init__(self, input_size, filter_size, kernel_size, dropout, n_layers=2, n_predictions=1): super(TemporalPredictor, self).__init__() self.layers = nn.Sequential(*[ ConvReLUNorm(input_size if i == 0 else filter_size, filter_size, kernel_size=kernel_size, dropout=dropout) for i in range(n_layers)] ) self.n_predictions = n_predictions self.fc = nn.Linear(filter_size, self.n_predictions, bias=True) def forward(self, enc_out, enc_out_mask): out = enc_out * enc_out_mask out = self.layers(out.transpose(1, 2)).transpose(1, 2) out = self.fc(out) * enc_out_mask return out class FastPitch(nn.Module): def __init__(self, n_mel_channels, n_symbols, padding_idx, symbols_embedding_dim, in_fft_n_layers, in_fft_n_heads, in_fft_d_head, in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size, in_fft_output_size, p_in_fft_dropout, p_in_fft_dropatt, p_in_fft_dropemb, out_fft_n_layers, out_fft_n_heads, out_fft_d_head, out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size, out_fft_output_size, p_out_fft_dropout, p_out_fft_dropatt, p_out_fft_dropemb, dur_predictor_kernel_size, dur_predictor_filter_size, p_dur_predictor_dropout, dur_predictor_n_layers, pitch_predictor_kernel_size, pitch_predictor_filter_size, p_pitch_predictor_dropout, pitch_predictor_n_layers, pitch_embedding_kernel_size, energy_conditioning, energy_predictor_kernel_size, energy_predictor_filter_size, p_energy_predictor_dropout, energy_predictor_n_layers, energy_embedding_kernel_size, n_speakers, speaker_emb_weight, pitch_conditioning_formants=1): super(FastPitch, self).__init__() self.encoder = FFTransformer( n_layer=in_fft_n_layers, n_head=in_fft_n_heads, d_model=symbols_embedding_dim, d_head=in_fft_d_head, d_inner=in_fft_conv1d_filter_size, kernel_size=in_fft_conv1d_kernel_size, dropout=p_in_fft_dropout, dropatt=p_in_fft_dropatt, dropemb=p_in_fft_dropemb, embed_input=True, d_embed=symbols_embedding_dim, n_embed=n_symbols, padding_idx=padding_idx) if n_speakers > 1: self.speaker_emb = nn.Embedding(n_speakers, symbols_embedding_dim) else: self.speaker_emb = None self.speaker_emb_weight = speaker_emb_weight self.duration_predictor = TemporalPredictor( in_fft_output_size, filter_size=dur_predictor_filter_size, kernel_size=dur_predictor_kernel_size, dropout=p_dur_predictor_dropout, n_layers=dur_predictor_n_layers ) self.decoder = FFTransformer( n_layer=out_fft_n_layers, n_head=out_fft_n_heads, d_model=symbols_embedding_dim, d_head=out_fft_d_head, d_inner=out_fft_conv1d_filter_size, kernel_size=out_fft_conv1d_kernel_size, dropout=p_out_fft_dropout, dropatt=p_out_fft_dropatt, dropemb=p_out_fft_dropemb, embed_input=False, d_embed=symbols_embedding_dim ) self.pitch_predictor = TemporalPredictor( in_fft_output_size, filter_size=pitch_predictor_filter_size, kernel_size=pitch_predictor_kernel_size, dropout=p_pitch_predictor_dropout, n_layers=pitch_predictor_n_layers, n_predictions=pitch_conditioning_formants ) self.pitch_emb = nn.Conv1d( pitch_conditioning_formants, symbols_embedding_dim, kernel_size=pitch_embedding_kernel_size, padding=int((pitch_embedding_kernel_size - 1) / 2)) # Store values precomputed for training data within the model self.register_buffer('pitch_mean', torch.zeros(1)) self.register_buffer('pitch_std', torch.zeros(1)) self.energy_conditioning = energy_conditioning if energy_conditioning: self.energy_predictor = TemporalPredictor( in_fft_output_size, filter_size=energy_predictor_filter_size, kernel_size=energy_predictor_kernel_size, dropout=p_energy_predictor_dropout, n_layers=energy_predictor_n_layers, n_predictions=1 ) self.energy_emb = nn.Conv1d( 1, symbols_embedding_dim, kernel_size=energy_embedding_kernel_size, padding=int((energy_embedding_kernel_size - 1) / 2)) self.proj = nn.Linear(out_fft_output_size, n_mel_channels, bias=True) self.attention = ConvAttention( n_mel_channels, 0, symbols_embedding_dim, use_query_proj=True, align_query_enc_type='3xconv') def binarize_attention(self, attn, in_lens, out_lens): """For training purposes only. Binarizes attention with MAS. These will no longer recieve a gradient. Args: attn: B x 1 x max_mel_len x max_text_len """ b_size = attn.shape[0] with torch.no_grad(): attn_out_cpu = np.zeros(attn.data.shape, dtype=np.float32) log_attn_cpu = torch.log(attn.data).to(device='cpu', dtype=torch.float32) log_attn_cpu = log_attn_cpu.numpy() out_lens_cpu = out_lens.cpu() in_lens_cpu = in_lens.cpu() for ind in range(b_size): hard_attn = mas_width1( log_attn_cpu[ind, 0, :out_lens_cpu[ind], :in_lens_cpu[ind]]) attn_out_cpu[ind, 0, :out_lens_cpu[ind], :in_lens_cpu[ind]] = hard_attn attn_out = torch.tensor( attn_out_cpu, device=attn.get_device(), dtype=attn.dtype) return attn_out def binarize_attention_parallel(self, attn, in_lens, out_lens): """For training purposes only. Binarizes attention with MAS. These will no longer recieve a gradient. Args: attn: B x 1 x max_mel_len x max_text_len """ with torch.no_grad(): log_attn_cpu = torch.log(attn.data).cpu().numpy() attn_out = b_mas(log_attn_cpu, in_lens.cpu().numpy(), out_lens.cpu().numpy(), width=1) return torch.from_numpy(attn_out).to(attn.get_device()) def forward(self, inputs, use_gt_pitch=True, pace=1.0, max_duration=75): (inputs, input_lens, mel_tgt, mel_lens, pitch_dense, energy_dense, speaker, attn_prior, audiopaths) = inputs text_max_len = inputs.size(1) mel_max_len = mel_tgt.size(2) # Calculate speaker embedding if self.speaker_emb is None: spk_emb = 0 else: spk_emb = self.speaker_emb(speaker).unsqueeze(1) spk_emb.mul_(self.speaker_emb_weight) # Input FFT enc_out, enc_mask = self.encoder(inputs, conditioning=spk_emb) # Predict durations log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1) dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration) # Predict pitch pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1) # Alignment text_emb = self.encoder.word_emb(inputs) # make sure to do the alignments before folding attn_mask = mask_from_lens(input_lens, max_len=text_max_len) attn_mask = attn_mask[..., None] == 0 # attn_mask should be 1 for unused timesteps in the text_enc_w_spkvec tensor attn_soft, attn_logprob = self.attention( mel_tgt, text_emb.permute(0, 2, 1), mel_lens, attn_mask, key_lens=input_lens, keys_encoded=enc_out, attn_prior=attn_prior) attn_hard = self.binarize_attention(attn_soft, input_lens, mel_lens) # Viterbi --> durations attn_hard_dur = attn_hard.sum(2)[:, 0, :] dur_tgt = attn_hard_dur assert torch.all(torch.eq(dur_tgt.sum(dim=1), mel_lens)) # Average pitch over characters pitch_tgt = average_pitch(pitch_dense, dur_tgt) if use_gt_pitch and pitch_tgt is not None: pitch_emb = self.pitch_emb(pitch_tgt) else: pitch_emb = self.pitch_emb(pitch_pred) enc_out = enc_out + pitch_emb.transpose(1, 2) # Predict energy if self.energy_conditioning: energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1) # Average energy over characters energy_tgt = average_pitch(energy_dense.unsqueeze(1), dur_tgt) energy_tgt = torch.log(1.0 + energy_tgt) energy_emb = self.energy_emb(energy_tgt) energy_tgt = energy_tgt.squeeze(1) enc_out = enc_out + energy_emb.transpose(1, 2) else: energy_pred = None energy_tgt = None len_regulated, dec_lens = regulate_len( dur_tgt, enc_out, pace, mel_max_len) # Output FFT dec_out, dec_mask = self.decoder(len_regulated, dec_lens) mel_out = self.proj(dec_out) return (mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred, pitch_tgt, energy_pred, energy_tgt, attn_soft, attn_hard, attn_hard_dur, attn_logprob) def infer(self, inputs, pace=1.0, dur_tgt=None, pitch_tgt=None, energy_tgt=None, pitch_transform=None, max_duration=75, speaker=0): if self.speaker_emb is None: spk_emb = 0 else: speaker = (torch.ones(inputs.size(0)).long().to(inputs.device) * speaker) spk_emb = self.speaker_emb(speaker).unsqueeze(1) spk_emb.mul_(self.speaker_emb_weight) # Input FFT enc_out, enc_mask = self.encoder(inputs, conditioning=spk_emb) # Predict durations log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1) dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration) # Pitch over chars pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1) if pitch_transform is not None: if self.pitch_std[0] == 0.0: # XXX LJSpeech-1.1 defaults mean, std = 218.14, 67.24 else: mean, std = self.pitch_mean[0], self.pitch_std[0] pitch_pred = pitch_transform(pitch_pred, enc_mask.sum(dim=(1,2)), mean, std) if pitch_tgt is None: pitch_emb = self.pitch_emb(pitch_pred).transpose(1, 2) else: pitch_emb = self.pitch_emb(pitch_tgt).transpose(1, 2) enc_out = enc_out + pitch_emb # Predict energy if self.energy_conditioning: if energy_tgt is None: energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1) energy_emb = self.energy_emb(energy_pred.unsqueeze(1)).transpose(1, 2) else: energy_emb = self.energy_emb(energy_tgt).transpose(1, 2) enc_out = enc_out + energy_emb else: energy_pred = None len_regulated, dec_lens = regulate_len( dur_pred if dur_tgt is None else dur_tgt, enc_out, pace, mel_max_len=None) dec_out, dec_mask = self.decoder(len_regulated, dec_lens) mel_out = self.proj(dec_out) # mel_lens = dec_mask.squeeze(2).sum(axis=1).long() mel_out = mel_out.permute(0, 2, 1) # For inference.py return mel_out, dec_lens, dur_pred, pitch_pred, energy_pred
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/model.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import torch.nn.functional as F from torch import nn from common.utils import mask_from_lens from fastpitch.attn_loss_function import AttentionCTCLoss class FastPitchLoss(nn.Module): def __init__(self, dur_predictor_loss_scale=1.0, pitch_predictor_loss_scale=1.0, attn_loss_scale=1.0, energy_predictor_loss_scale=0.1): super(FastPitchLoss, self).__init__() self.dur_predictor_loss_scale = dur_predictor_loss_scale self.pitch_predictor_loss_scale = pitch_predictor_loss_scale self.energy_predictor_loss_scale = energy_predictor_loss_scale self.attn_loss_scale = attn_loss_scale self.attn_ctc_loss = AttentionCTCLoss() def forward(self, model_out, targets, is_training=True, meta_agg='mean'): (mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred, pitch_tgt, energy_pred, energy_tgt, attn_soft, attn_hard, attn_dur, attn_logprob) = model_out (mel_tgt, in_lens, out_lens) = targets dur_tgt = attn_dur dur_lens = in_lens mel_tgt.requires_grad = False # (B,H,T) => (B,T,H) mel_tgt = mel_tgt.transpose(1, 2) dur_mask = mask_from_lens(dur_lens, max_len=dur_tgt.size(1)) log_dur_tgt = torch.log(dur_tgt.float() + 1) loss_fn = F.mse_loss dur_pred_loss = loss_fn(log_dur_pred, log_dur_tgt, reduction='none') dur_pred_loss = (dur_pred_loss * dur_mask).sum() / dur_mask.sum() ldiff = mel_tgt.size(1) - mel_out.size(1) mel_out = F.pad(mel_out, (0, 0, 0, ldiff, 0, 0), value=0.0) mel_mask = mel_tgt.ne(0).float() loss_fn = F.mse_loss mel_loss = loss_fn(mel_out, mel_tgt, reduction='none') mel_loss = (mel_loss * mel_mask).sum() / mel_mask.sum() ldiff = pitch_tgt.size(2) - pitch_pred.size(2) pitch_pred = F.pad(pitch_pred, (0, ldiff, 0, 0, 0, 0), value=0.0) pitch_loss = F.mse_loss(pitch_tgt, pitch_pred, reduction='none') pitch_loss = (pitch_loss * dur_mask.unsqueeze(1)).sum() / dur_mask.sum() if energy_pred is not None: energy_pred = F.pad(energy_pred, (0, ldiff, 0, 0), value=0.0) energy_loss = F.mse_loss(energy_tgt, energy_pred, reduction='none') energy_loss = (energy_loss * dur_mask).sum() / dur_mask.sum() else: energy_loss = 0 # Attention loss attn_loss = self.attn_ctc_loss(attn_logprob, in_lens, out_lens) loss = (mel_loss + dur_pred_loss * self.dur_predictor_loss_scale + pitch_loss * self.pitch_predictor_loss_scale + energy_loss * self.energy_predictor_loss_scale + attn_loss * self.attn_loss_scale) meta = { 'loss': loss.clone().detach(), 'mel_loss': mel_loss.clone().detach(), 'duration_predictor_loss': dur_pred_loss.clone().detach(), 'pitch_loss': pitch_loss.clone().detach(), 'attn_loss': attn_loss.clone().detach(), 'dur_error': (torch.abs(dur_pred - dur_tgt).sum() / dur_mask.sum()).detach(), } if energy_pred is not None: meta['energy_loss'] = energy_loss.clone().detach() assert meta_agg in ('sum', 'mean') if meta_agg == 'sum': bsz = mel_out.size(0) meta = {k: v * bsz for k, v in meta.items()} return loss, meta
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/loss_function.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse def parse_fastpitch_args(parent, add_help=False): """ Parse commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help, allow_abbrev=False) io = parser.add_argument_group('io parameters') io.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') io.add_argument('--max-seq-len', default=2048, type=int, help='') symbols = parser.add_argument_group('symbols parameters') symbols.add_argument('--n-symbols', default=148, type=int, help='Number of symbols in dictionary') symbols.add_argument('--padding-idx', default=0, type=int, help='Index of padding symbol in dictionary') symbols.add_argument('--symbols-embedding-dim', default=384, type=int, help='Input embedding dimension') in_fft = parser.add_argument_group('input FFT parameters') in_fft.add_argument('--in-fft-n-layers', default=6, type=int, help='Number of FFT blocks') in_fft.add_argument('--in-fft-n-heads', default=1, type=int, help='Number of attention heads') in_fft.add_argument('--in-fft-d-head', default=64, type=int, help='Dim of attention heads') in_fft.add_argument('--in-fft-conv1d-kernel-size', default=3, type=int, help='Conv-1D kernel size') in_fft.add_argument('--in-fft-conv1d-filter-size', default=1536, type=int, help='Conv-1D filter size') in_fft.add_argument('--in-fft-output-size', default=384, type=int, help='Output dim') in_fft.add_argument('--p-in-fft-dropout', default=0.1, type=float, help='Dropout probability') in_fft.add_argument('--p-in-fft-dropatt', default=0.1, type=float, help='Multi-head attention dropout') in_fft.add_argument('--p-in-fft-dropemb', default=0.0, type=float, help='Dropout added to word+positional embeddings') out_fft = parser.add_argument_group('output FFT parameters') out_fft.add_argument('--out-fft-n-layers', default=6, type=int, help='Number of FFT blocks') out_fft.add_argument('--out-fft-n-heads', default=1, type=int, help='Number of attention heads') out_fft.add_argument('--out-fft-d-head', default=64, type=int, help='Dim of attention head') out_fft.add_argument('--out-fft-conv1d-kernel-size', default=3, type=int, help='Conv-1D kernel size') out_fft.add_argument('--out-fft-conv1d-filter-size', default=1536, type=int, help='Conv-1D filter size') out_fft.add_argument('--out-fft-output-size', default=384, type=int, help='Output dim') out_fft.add_argument('--p-out-fft-dropout', default=0.1, type=float, help='Dropout probability for out_fft') out_fft.add_argument('--p-out-fft-dropatt', default=0.1, type=float, help='Multi-head attention dropout') out_fft.add_argument('--p-out-fft-dropemb', default=0.0, type=float, help='Dropout added to word+positional embeddings') dur_pred = parser.add_argument_group('duration predictor parameters') dur_pred.add_argument('--dur-predictor-kernel-size', default=3, type=int, help='Duration predictor conv-1D kernel size') dur_pred.add_argument('--dur-predictor-filter-size', default=256, type=int, help='Duration predictor conv-1D filter size') dur_pred.add_argument('--p-dur-predictor-dropout', default=0.1, type=float, help='Dropout probability for duration predictor') dur_pred.add_argument('--dur-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') pitch_pred = parser.add_argument_group('pitch predictor parameters') pitch_pred.add_argument('--pitch-predictor-kernel-size', default=3, type=int, help='Pitch predictor conv-1D kernel size') pitch_pred.add_argument('--pitch-predictor-filter-size', default=256, type=int, help='Pitch predictor conv-1D filter size') pitch_pred.add_argument('--p-pitch-predictor-dropout', default=0.1, type=float, help='Pitch probability for pitch predictor') pitch_pred.add_argument('--pitch-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') energy_pred = parser.add_argument_group('energy predictor parameters') energy_pred.add_argument('--energy-conditioning', action='store_true') energy_pred.add_argument('--energy-predictor-kernel-size', default=3, type=int, help='Pitch predictor conv-1D kernel size') energy_pred.add_argument('--energy-predictor-filter-size', default=256, type=int, help='Pitch predictor conv-1D filter size') energy_pred.add_argument('--p-energy-predictor-dropout', default=0.1, type=float, help='Pitch probability for energy predictor') energy_pred.add_argument('--energy-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') cond = parser.add_argument_group('conditioning parameters') cond.add_argument('--pitch-embedding-kernel-size', default=3, type=int, help='Pitch embedding conv-1D kernel size') cond.add_argument('--energy-embedding-kernel-size', default=3, type=int, help='Pitch embedding conv-1D kernel size') cond.add_argument('--speaker-emb-weight', type=float, default=1.0, help='Scale speaker embedding') return parser
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/arg_parser.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F from common.utils import mask_from_lens class PositionalEmbedding(nn.Module): def __init__(self, demb): super(PositionalEmbedding, self).__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer('inv_freq', inv_freq) def forward(self, pos_seq, bsz=None): sinusoid_inp = torch.matmul(torch.unsqueeze(pos_seq, -1), torch.unsqueeze(self.inv_freq, 0)) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=1) if bsz is not None: return pos_emb[None, :, :].expand(bsz, -1, -1) else: return pos_emb[None, :, :] class PositionwiseConvFF(nn.Module): def __init__(self, d_model, d_inner, kernel_size, dropout, pre_lnorm=False): super(PositionwiseConvFF, self).__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Conv1d(d_model, d_inner, kernel_size, 1, (kernel_size // 2)), nn.ReLU(), # nn.Dropout(dropout), # worse convergence nn.Conv1d(d_inner, d_model, kernel_size, 1, (kernel_size // 2)), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model) self.pre_lnorm = pre_lnorm def forward(self, inp): return self._forward(inp) def _forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(self.layer_norm(core_out).to(inp.dtype)) core_out = core_out.transpose(1, 2) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(core_out) core_out = core_out.transpose(1, 2) # residual connection + layer normalization output = self.layer_norm(inp + core_out).to(inp.dtype) return output class MultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / (d_head ** 0.5) self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask=None): return self._forward(inp, attn_mask) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: # layer normalization inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(2, 0, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(2, 0, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(2, 0, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1).to(attn_score.dtype) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask.to(torch.bool), -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view( inp.size(0), inp.size(1), n_head * d_head) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: # residual connection output = residual + attn_out else: # residual connection + layer normalization output = self.layer_norm(residual + attn_out) output = output.to(attn_out.dtype) return output class TransformerLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, kernel_size, dropout, **kwargs): super(TransformerLayer, self).__init__() self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs) self.pos_ff = PositionwiseConvFF(d_model, d_inner, kernel_size, dropout, pre_lnorm=kwargs.get('pre_lnorm')) def forward(self, dec_inp, mask=None): output = self.dec_attn(dec_inp, attn_mask=~mask.squeeze(2)) output *= mask output = self.pos_ff(output) output *= mask return output class FFTransformer(nn.Module): def __init__(self, n_layer, n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt, dropemb=0.0, embed_input=True, n_embed=None, d_embed=None, padding_idx=0, pre_lnorm=False): super(FFTransformer, self).__init__() self.d_model = d_model self.n_head = n_head self.d_head = d_head self.padding_idx = padding_idx if embed_input: self.word_emb = nn.Embedding(n_embed, d_embed or d_model, padding_idx=self.padding_idx) else: self.word_emb = None self.pos_emb = PositionalEmbedding(self.d_model) self.drop = nn.Dropout(dropemb) self.layers = nn.ModuleList() for _ in range(n_layer): self.layers.append( TransformerLayer( n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm) ) def forward(self, dec_inp, seq_lens=None, conditioning=0): if self.word_emb is None: inp = dec_inp mask = mask_from_lens(seq_lens).unsqueeze(2) else: inp = self.word_emb(dec_inp) # [bsz x L x 1] mask = (dec_inp != self.padding_idx).unsqueeze(2) pos_seq = torch.arange(inp.size(1), device=inp.device).to(inp.dtype) pos_emb = self.pos_emb(pos_seq) * mask out = self.drop(inp + pos_emb + conditioning) for layer in self.layers: out = layer(out, mask=mask) # out = self.drop(out) return out, mask
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/transformer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class AttentionCTCLoss(torch.nn.Module): def __init__(self, blank_logprob=-1): super(AttentionCTCLoss, self).__init__() self.log_softmax = torch.nn.LogSoftmax(dim=-1) self.blank_logprob = blank_logprob self.CTCLoss = nn.CTCLoss(zero_infinity=True) def forward(self, attn_logprob, in_lens, out_lens): key_lens = in_lens query_lens = out_lens max_key_len = attn_logprob.size(-1) # Reorder input to [query_len, batch_size, key_len] attn_logprob = attn_logprob.squeeze(1) attn_logprob = attn_logprob.permute(1, 0, 2) # Add blank label attn_logprob = F.pad( input=attn_logprob, pad=(1, 0, 0, 0, 0, 0), value=self.blank_logprob) # Convert to log probabilities # Note: Mask out probs beyond key_len key_inds = torch.arange( max_key_len+1, device=attn_logprob.device, dtype=torch.long) attn_logprob.masked_fill_( key_inds.view(1,1,-1) > key_lens.view(1,-1,1), # key_inds >= key_lens+1 -float("inf")) attn_logprob = self.log_softmax(attn_logprob) # Target sequences target_seqs = key_inds[1:].unsqueeze(0) target_seqs = target_seqs.repeat(key_lens.numel(), 1) # Evaluate CTC loss cost = self.CTCLoss( attn_logprob, target_seqs, input_lengths=query_lens, target_lengths=key_lens) return cost class AttentionBinarizationLoss(torch.nn.Module): def __init__(self): super(AttentionBinarizationLoss, self).__init__() def forward(self, hard_attention, soft_attention, eps=1e-12): log_sum = torch.log(torch.clamp(soft_attention[hard_attention == 1], min=eps)).sum() return -log_sum / hard_attention.sum()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/fastpitch/attn_loss_function.py
import atexit import glob import re from itertools import product from pathlib import Path import dllogger import torch import numpy as np from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from torch.utils.tensorboard import SummaryWriter tb_loggers = {} class TBLogger: """ xyz_dummies: stretch the screen with empty plots so the legend would always fit for other plots """ def __init__(self, enabled, log_dir, name, interval=1, dummies=True): self.enabled = enabled self.interval = interval self.cache = {} if self.enabled: self.summary_writer = SummaryWriter( log_dir=Path(log_dir, name), flush_secs=120, max_queue=200) atexit.register(self.summary_writer.close) if dummies: for key in ('_', '✕'): self.summary_writer.add_scalar(key, 0.0, 1) def log(self, step, data): for k, v in data.items(): self.log_value(step, k, v.item() if type(v) is torch.Tensor else v) def log_value(self, step, key, val, stat='mean'): if self.enabled: if key not in self.cache: self.cache[key] = [] self.cache[key].append(val) if len(self.cache[key]) == self.interval: agg_val = getattr(np, stat)(self.cache[key]) self.summary_writer.add_scalar(key, agg_val, step) del self.cache[key] def log_grads(self, step, model): if self.enabled: norms = [p.grad.norm().item() for p in model.parameters() if p.grad is not None] for stat in ('max', 'min', 'mean'): self.log_value(step, f'grad_{stat}', getattr(np, stat)(norms), stat=stat) def unique_log_fpath(fpath): """Have a unique log filename for every separate run""" log_num = max([0] + [int(re.search("\.(\d+)", Path(f).suffix).group(1)) for f in glob.glob(f"{fpath}.*")]) return f"{fpath}.{log_num + 1}" def stdout_step_format(step): if isinstance(step, str): return step fields = [] if len(step) > 0: fields.append("epoch {:>4}".format(step[0])) if len(step) > 1: fields.append("iter {:>3}".format(step[1])) if len(step) > 2: fields[-1] += "/{}".format(step[2]) return " | ".join(fields) def stdout_metric_format(metric, metadata, value): name = metadata.get("name", metric + " : ") unit = metadata.get("unit", None) format = f'{{{metadata.get("format", "")}}}' fields = [name, format.format(value) if value is not None else value, unit] fields = [f for f in fields if f is not None] return "| " + " ".join(fields) def init(log_fpath, log_dir, enabled=True, tb_subsets=[], **tb_kw): if enabled: backends = [ JSONStreamBackend(Verbosity.DEFAULT, log_fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, step_format=stdout_step_format, metric_format=stdout_metric_format) ] else: backends = [] dllogger.init(backends=backends) dllogger.metadata("train_lrate", {"name": "lrate", "unit": None, "format": ":>3.2e"}) for id_, pref in [('train', ''), ('train_avg', 'avg train '), ('val', ' avg val '), ('val_ema', ' EMA val ')]: dllogger.metadata(f"{id_}_loss", {"name": f"{pref}loss", "unit": None, "format": ":>5.2f"}) dllogger.metadata(f"{id_}_mel_loss", {"name": f"{pref}mel loss", "unit": None, "format": ":>5.2f"}) dllogger.metadata(f"{id_}_kl_loss", {"name": f"{pref}kl loss", "unit": None, "format": ":>5.5f"}) dllogger.metadata(f"{id_}_kl_weight", {"name": f"{pref}kl weight", "unit": None, "format": ":>5.5f"}) dllogger.metadata(f"{id_}_frames/s", {"name": None, "unit": "frames/s", "format": ":>10.2f"}) dllogger.metadata(f"{id_}_took", {"name": "took", "unit": "s", "format": ":>3.2f"}) global tb_loggers tb_loggers = {s: TBLogger(enabled, log_dir, name=s, **tb_kw) for s in tb_subsets} def init_inference_metadata(batch_size=None): modalities = [('latency', 's', ':>10.5f'), ('RTF', 'x', ':>10.2f'), ('frames/s', 'frames/s', ':>10.2f'), ('samples/s', 'samples/s', ':>10.2f'), ('letters/s', 'letters/s', ':>10.2f'), ('tokens/s', 'tokens/s', ':>10.2f')] if batch_size is not None: modalities.append((f'RTF@{batch_size}', 'x', ':>10.2f')) percs = ['', 'avg', '90%', '95%', '99%'] models = ['', 'fastpitch', 'waveglow', 'hifigan'] for perc, model, (mod, unit, fmt) in product(percs, models, modalities): name = f'{perc} {model} {mod}'.strip().replace(' ', ' ') dllogger.metadata(name.replace(' ', '_'), {'name': f'{name: <26}', 'unit': unit, 'format': fmt}) def log(step, tb_total_steps=None, data={}, subset='train'): if tb_total_steps is not None: tb_loggers[subset].log(tb_total_steps, data) if subset != '': data = {f'{subset}_{key}': v for key, v in data.items()} dllogger.log(step, data=data) def log_grads_tb(tb_total_steps, grads, tb_subset='train'): tb_loggers[tb_subset].log_grads(tb_total_steps, grads) def parameters(data, verbosity=0, tb_subset=None): for k, v in data.items(): dllogger.log(step="PARAMETER", data={k: v}, verbosity=verbosity) if tb_subset is not None and tb_loggers[tb_subset].enabled: tb_data = {k: v for k, v in data.items() if type(v) in (str, bool, int, float)} tb_loggers[tb_subset].summary_writer.add_hparams(tb_data, {}) def flush(): dllogger.flush() for tbl in tb_loggers.values(): if tbl.enabled: tbl.summary_writer.flush()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/tb_dllogger.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data pipeline elements which wrap the data N times A RepeatedDataLoader resets its iterator less frequently. This saves time on multi-GPU platforms and is invisible to the training loop. NOTE: Repeating puts a block of (len(dataset) * repeats) int64s into RAM. Do not use more repeats than necessary (e.g., 10**6 to simulate infinity). """ import itertools from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler class RepeatedDataLoader(DataLoader): def __init__(self, repeats, *args, **kwargs): self.repeats = repeats super().__init__(*args, **kwargs) def __iter__(self): if self._iterator is None or self.repeats_done >= self.repeats: self.repeats_done = 1 return super().__iter__() else: self.repeats_done += 1 return self._iterator class RepeatedDistributedSampler(DistributedSampler): def __init__(self, repeats, *args, **kwargs): self.repeats = repeats assert self.repeats <= 10000, "Too many repeats overload RAM." super().__init__(*args, **kwargs) def __iter__(self): # Draw indices for `self.repeats` epochs forward start_epoch = self.epoch iters = [] for r in range(self.repeats): self.set_epoch(start_epoch + r) iters.append(super().__iter__()) self.set_epoch(start_epoch) return itertools.chain.from_iterable(iters)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/repeated_dataloader.py
import os import shutil from collections import defaultdict class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class DefaultAttrDict(defaultdict): def __init__(self, *args, **kwargs): super(DefaultAttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def __getattr__(self, item): return self[item] def build_env(config, config_name, path): t_path = os.path.join(path, config_name) if config != t_path: os.makedirs(path, exist_ok=True) shutil.copyfile(config, os.path.join(path, config_name))
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/env.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import math import os import pathlib import re import pynvml pynvml.nvmlInit() def systemGetDriverVersion(): return pynvml.nvmlSystemGetDriverVersion() def deviceGetCount(): return pynvml.nvmlDeviceGetCount() class device: # assume nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def getName(self): return pynvml.nvmlDeviceGetName(self.handle) def getCpuAffinity(self): affinity_string = '' for j in pynvml.nvmlDeviceGetCpuAffinity( self.handle, device._nvml_affinity_elements ): # assume nvml returns list of 64 bit ints affinity_string = '{:064b}'.format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list ret = [i for i, e in enumerate(affinity_list) if e != 0] return ret def set_socket_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity) def set_single_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity[:1]) def set_single_unique_affinity(gpu_id, nproc_per_node): devices = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in devices] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) affinities = [] assigned = [] for socket_affinity in socket_affinities: for core in socket_affinity: if core not in assigned: affinities.append([core]) assigned.append(core) break os.sched_setaffinity(0, affinities[gpu_id]) def set_socket_unique_affinity(gpu_id, nproc_per_node, mode): device_ids = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in device_ids] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) socket_affinities_to_device_ids = collections.defaultdict(list) for idx, socket_affinity in enumerate(socket_affinities): socket_affinities_to_device_ids[tuple(socket_affinity)].append(idx) for socket_affinity, device_ids in socket_affinities_to_device_ids.items(): devices_per_group = len(device_ids) cores_per_device = len(socket_affinity) // devices_per_group for group_id, device_id in enumerate(device_ids): if device_id == gpu_id: if mode == 'interleaved': affinity = list(socket_affinity[group_id::devices_per_group]) elif mode == 'continuous': affinity = list(socket_affinity[group_id*cores_per_device:(group_id+1)*cores_per_device]) else: raise RuntimeError('Unknown set_socket_unique_affinity mode') # reintroduce siblings affinity += [siblings_dict[aff] for aff in affinity if aff in siblings_dict] os.sched_setaffinity(0, affinity) def get_thread_siblings_list(): path = '/sys/devices/system/cpu/cpu*/topology/thread_siblings_list' thread_siblings_list = [] pattern = re.compile(r'(\d+)\D(\d+)') for fname in pathlib.Path(path[0]).glob(path[1:]): with open(fname) as f: content = f.read().strip() res = pattern.findall(content) if res: pair = tuple(map(int, res[0])) thread_siblings_list.append(pair) return thread_siblings_list def set_affinity(gpu_id, nproc_per_node, mode='socket'): if mode == 'socket': set_socket_affinity(gpu_id) elif mode == 'single': set_single_affinity(gpu_id) elif mode == 'single_unique': set_single_unique_affinity(gpu_id, nproc_per_node) elif mode == 'socket_unique_interleaved': set_socket_unique_affinity(gpu_id, nproc_per_node, 'interleaved') elif mode == 'socket_unique_continuous': set_socket_unique_affinity(gpu_id, nproc_per_node, 'continuous') else: raise RuntimeError('Unknown affinity mode') affinity = os.sched_getaffinity(0) return affinity
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/gpu_affinity.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mutes known and unrelated PyTorch warnings. The warnings module keeps a list of filters. Importing it as late as possible prevents its filters from being overriden. """ import warnings # NGC 22.04-py3 container (PyTorch 1.12.0a0+bd13bc6) warnings.filterwarnings( "ignore", message='positional arguments and argument "destination" are deprecated.' ' nn.Module.state_dict will not accept them in the future.') # 22.08-py3 container warnings.filterwarnings( "ignore", message="is_namedtuple is deprecated, please use the python checks")
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/filter_warnings.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import librosa.util as librosa_util import numpy as np import torch from scipy.signal import get_window def window_sumsquare(window, n_frames, hop_length=200, win_length=800, n_fft=800, dtype=np.float32, norm=None): """ # from librosa 0.6 Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function """ if win_length is None: win_length = n_fft n = n_fft + hop_length * (n_frames - 1) x = np.zeros(n, dtype=dtype) # Compute the squared window at the desired length win_sq = get_window(window, win_length, fftbins=True) win_sq = librosa_util.normalize(win_sq, norm=norm)**2 win_sq = librosa_util.pad_center(win_sq, size=n_fft) # Fill the envelope for i in range(n_frames): sample = i * hop_length x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))] return x def griffin_lim(magnitudes, stft_fn, n_iters=30): """ PARAMS ------ magnitudes: spectrogram magnitudes stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods """ angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) angles = angles.astype(np.float32) angles = torch.autograd.Variable(torch.from_numpy(angles)) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) for i in range(n_iters): _, angles = stft_fn.transform(signal) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) return signal def dynamic_range_compression(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return torch.exp(x) / C
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/audio_processing.py
""" BSD 3-Clause License Copyright (c) 2017, Prem Seetharaman All rights reserved. * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import torch import numpy as np import torch.nn.functional as F from torch.autograd import Variable from scipy.signal import get_window from librosa.util import pad_center, tiny from common.audio_processing import window_sumsquare class STFT(torch.nn.Module): """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): super(STFT, self).__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]) forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].copy()) if window is not None: assert(filter_length >= win_length) # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, size=filter_length) fft_window = torch.from_numpy(fft_window).float() # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.register_buffer('forward_basis', forward_basis.float()) self.register_buffer('inverse_basis', inverse_basis.float()) def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), mode='reflect') input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0) cutoff = int((self.filter_length / 2) + 1) real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) phase = torch.autograd.Variable( torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1) with torch.no_grad(): inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, self.inverse_basis, stride=self.hop_length, padding=0) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0]) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length/2):] inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/stft.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # init_weights, get_padding, AttrDict import ctypes import glob import os import re import shutil import warnings from collections import defaultdict, OrderedDict from pathlib import Path from typing import Optional import librosa import numpy as np import torch import torch.distributed as dist from scipy.io.wavfile import read def mask_from_lens(lens, max_len: Optional[int] = None): if max_len is None: max_len = lens.max() ids = torch.arange(0, max_len, device=lens.device, dtype=lens.dtype) mask = torch.lt(ids, lens.unsqueeze(1)) return mask def load_wav(full_path, torch_tensor=False): import soundfile # flac data, sampling_rate = soundfile.read(full_path, dtype='int16') if torch_tensor: return torch.FloatTensor(data.astype(np.float32)), sampling_rate else: return data, sampling_rate def load_wav_to_torch(full_path, force_sampling_rate=None): if force_sampling_rate is not None: data, sampling_rate = librosa.load(full_path, sr=force_sampling_rate) else: sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(dataset_path, fnames, has_speakers=False, split="|"): def split_line(root, line): parts = line.strip().split(split) if has_speakers: paths, non_paths = parts[:-2], parts[-2:] else: paths, non_paths = parts[:-1], parts[-1:] return tuple(str(Path(root, p)) for p in paths) + tuple(non_paths) fpaths_and_text = [] for fname in fnames: with open(fname, encoding='utf-8') as f: fpaths_and_text += [split_line(dataset_path, line) for line in f] return fpaths_and_text def to_gpu(x): x = x.contiguous() return x.cuda(non_blocking=True) if torch.cuda.is_available() else x def l2_promote(): _libcudart = ctypes.CDLL('libcudart.so') # Set device limit on the current device # cudaLimitMaxL2FetchGranularity = 0x05 pValue = ctypes.cast((ctypes.c_int*1)(), ctypes.POINTER(ctypes.c_int)) _libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128)) _libcudart.cudaDeviceGetLimit(pValue, ctypes.c_int(0x05)) assert pValue.contents.value == 128 def prepare_tmp(path): if path is None: return p = Path(path) if p.is_dir(): warnings.warn(f'{p} exists. Removing...') shutil.rmtree(p, ignore_errors=True) p.mkdir(parents=False, exist_ok=False) def print_once(*msg): if not dist.is_initialized() or dist.get_rank() == 0: print(*msg) def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def load_pretrained_weights(model, ckpt_fpath): model = getattr(model, "module", model) weights = torch.load(ckpt_fpath, map_location="cpu")["state_dict"] weights = {re.sub("^module.", "", k): v for k, v in weights.items()} ckpt_emb = weights["encoder.word_emb.weight"] new_emb = model.state_dict()["encoder.word_emb.weight"] ckpt_vocab_size = ckpt_emb.size(0) new_vocab_size = new_emb.size(0) if ckpt_vocab_size != new_vocab_size: print("WARNING: Resuming from a checkpoint with a different size " "of embedding table. For best results, extend the vocab " "and ensure the common symbols' indices match.") min_len = min(ckpt_vocab_size, new_vocab_size) weights["encoder.word_emb.weight"] = ckpt_emb if ckpt_vocab_size > new_vocab_size else new_emb weights["encoder.word_emb.weight"][:min_len] = ckpt_emb[:min_len] model.load_state_dict(weights) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class DefaultAttrDict(defaultdict): def __init__(self, *args, **kwargs): super(DefaultAttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def __getattr__(self, item): return self[item] class BenchmarkStats: """ Tracks statistics used for benchmarking. """ def __init__(self): self.num_frames = [] self.losses = [] self.mel_losses = [] self.took = [] def update(self, num_frames, losses, mel_losses, took): self.num_frames.append(num_frames) self.losses.append(losses) self.mel_losses.append(mel_losses) self.took.append(took) def get(self, n_epochs): frames_s = sum(self.num_frames[-n_epochs:]) / sum(self.took[-n_epochs:]) return {'frames/s': frames_s, 'loss': np.mean(self.losses[-n_epochs:]), 'mel_loss': np.mean(self.mel_losses[-n_epochs:]), 'took': np.mean(self.took[-n_epochs:]), 'benchmark_epochs_num': n_epochs} def __len__(self): return len(self.losses) class Checkpointer: def __init__(self, save_dir, keep_milestones=[]): self.save_dir = save_dir self.keep_milestones = keep_milestones find = lambda name: [ (int(re.search("_(\d+).pt", fn).group(1)), fn) for fn in glob.glob(f"{save_dir}/{name}_checkpoint_*.pt")] tracked = sorted(find("FastPitch"), key=lambda t: t[0]) self.tracked = OrderedDict(tracked) def last_checkpoint(self, output): def corrupted(fpath): try: torch.load(fpath, map_location="cpu") return False except: warnings.warn(f"Cannot load {fpath}") return True saved = sorted( glob.glob(f"{output}/FastPitch_checkpoint_*.pt"), key=lambda f: int(re.search("_(\d+).pt", f).group(1))) if len(saved) >= 1 and not corrupted(saved[-1]): return saved[-1] elif len(saved) >= 2: return saved[-2] else: return None def maybe_load(self, model, optimizer, scaler, train_state, args, ema_model=None): assert args.checkpoint_path is None or args.resume is False, ( "Specify a single checkpoint source") fpath = None if args.checkpoint_path is not None: fpath = args.checkpoint_path self.tracked = OrderedDict() # Do not track/delete prev ckpts elif args.resume: fpath = self.last_checkpoint(args.output) if fpath is None: return print_once(f"Loading model and optimizer state from {fpath}") ckpt = torch.load(fpath, map_location="cpu") train_state["epoch"] = ckpt["epoch"] + 1 train_state["total_iter"] = ckpt["iteration"] no_pref = lambda sd: {re.sub("^module.", "", k): v for k, v in sd.items()} unwrap = lambda m: getattr(m, "module", m) unwrap(model).load_state_dict(no_pref(ckpt["state_dict"])) if ema_model is not None: unwrap(ema_model).load_state_dict(no_pref(ckpt["ema_state_dict"])) optimizer.load_state_dict(ckpt["optimizer"]) if "scaler" in ckpt: scaler.load_state_dict(ckpt["scaler"]) else: warnings.warn("AMP scaler state missing from the checkpoint.") def maybe_save(self, args, model, ema_model, optimizer, scaler, epoch, total_iter, config): intermediate = (args.epochs_per_checkpoint > 0 and epoch % args.epochs_per_checkpoint == 0) final = epoch == args.epochs if not intermediate and not final and epoch not in self.keep_milestones: return rank = 0 if dist.is_initialized(): dist.barrier() rank = dist.get_rank() if rank != 0: return unwrap = lambda m: getattr(m, "module", m) ckpt = {"epoch": epoch, "iteration": total_iter, "config": config, "train_setup": args.__dict__, "state_dict": unwrap(model).state_dict(), "optimizer": optimizer.state_dict(), "scaler": scaler.state_dict()} if ema_model is not None: ckpt["ema_state_dict"] = unwrap(ema_model).state_dict() fpath = Path(args.output, f"FastPitch_checkpoint_{epoch}.pt") print(f"Saving model and optimizer state at epoch {epoch} to {fpath}") torch.save(ckpt, fpath) # Remove old checkpoints; keep milestones and the last two self.tracked[epoch] = fpath for epoch in set(list(self.tracked)[:-2]) - set(self.keep_milestones): try: os.remove(self.tracked[epoch]) except: pass del self.tracked[epoch]
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/utils.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import torch.nn.functional as F from librosa.filters import mel as librosa_mel_fn from common.audio_processing import (dynamic_range_compression, dynamic_range_decompression) from common.stft import STFT class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear', batch_norm=False): super(ConvNorm, self).__init__() if padding is None: assert(kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) self.norm = torch.nn.BatchNorm1D(out_channels) if batch_norm else None torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): if self.norm is None: return self.conv(signal) else: return self.norm(self.conv(signal)) class ConvReLUNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): super(ConvReLUNorm, self).__init__() self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=(kernel_size // 2)) self.norm = torch.nn.LayerNorm(out_channels) self.dropout = torch.nn.Dropout(dropout) def forward(self, signal): out = F.relu(self.conv(signal)) out = self.norm(out.transpose(1, 2)).transpose(1, 2).to(signal.dtype) return self.dropout(out) class TacotronSTFT(torch.nn.Module): def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0): super(TacotronSTFT, self).__init__() self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate self.stft_fn = STFT(filter_length, hop_length, win_length) mel_basis = librosa_mel_fn( sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax ) mel_basis = torch.from_numpy(mel_basis).float() self.register_buffer('mel_basis', mel_basis) def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def mel_spectrogram(self, y): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert(torch.min(y.data) >= -1) assert(torch.max(y.data) <= 1) magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data mel_output = torch.matmul(self.mel_basis, magnitudes) mel_output = self.spectral_normalize(mel_output) return mel_output
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/layers.py
############################################################################## # Foreing utils.py from HiFi-GAN ############################################################################## def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/utils_hfg.py
import re _letters_and_numbers_re = re.compile( r"((?:[a-zA-Z]+[0-9]|[0-9]+[a-zA-Z])[a-zA-Z0-9']*)", re.IGNORECASE) _hardware_re = re.compile( '([0-9]+(?:[.,][0-9]+)?)(?:\s?)(tb|gb|mb|kb|ghz|mhz|khz|hz|mm)', re.IGNORECASE) _hardware_key = {'tb': 'terabyte', 'gb': 'gigabyte', 'mb': 'megabyte', 'kb': 'kilobyte', 'ghz': 'gigahertz', 'mhz': 'megahertz', 'khz': 'kilohertz', 'hz': 'hertz', 'mm': 'millimeter', 'cm': 'centimeter', 'km': 'kilometer'} _dimension_re = re.compile( r'\b(\d+(?:[,.]\d+)?\s*[xX]\s*\d+(?:[,.]\d+)?\s*[xX]\s*\d+(?:[,.]\d+)?(?:in|inch|m)?)\b|\b(\d+(?:[,.]\d+)?\s*[xX]\s*\d+(?:[,.]\d+)?(?:in|inch|m)?)\b') _dimension_key = {'m': 'meter', 'in': 'inch', 'inch': 'inch'} def _expand_letters_and_numbers(m): text = re.split(r'(\d+)', m.group(0)) # remove trailing space if text[-1] == '': text = text[:-1] elif text[0] == '': text = text[1:] # if not like 1920s, or AK47's , 20th, 1st, 2nd, 3rd, etc... if text[-1] in ("'s", "s", "th", "nd", "st", "rd") and text[-2].isdigit(): text[-2] = text[-2] + text[-1] text = text[:-1] # for combining digits 2 by 2 new_text = [] for i in range(len(text)): string = text[i] if string.isdigit() and len(string) < 5: # heuristics if len(string) > 2 and string[-2] == '0': if string[-1] == '0': string = [string] else: string = [string[:-2], string[-2], string[-1]] elif len(string) % 2 == 0: string = [string[i:i+2] for i in range(0, len(string), 2)] elif len(string) > 2: string = [string[0]] + [string[i:i+2] for i in range(1, len(string), 2)] new_text.extend(string) else: new_text.append(string) text = new_text text = " ".join(text) return text def _expand_hardware(m): quantity, measure = m.groups(0) measure = _hardware_key[measure.lower()] if measure[-1] != 'z' and float(quantity.replace(',', '')) > 1: return "{} {}s".format(quantity, measure) return "{} {}".format(quantity, measure) def _expand_dimension(m): text = "".join([x for x in m.groups(0) if x != 0]) text = text.replace(' x ', ' by ') text = text.replace('x', ' by ') if text.endswith(tuple(_dimension_key.keys())): if text[-2].isdigit(): text = "{} {}".format(text[:-1], _dimension_key[text[-1:]]) elif text[-3].isdigit(): text = "{} {}".format(text[:-2], _dimension_key[text[-2:]]) return text def normalize_letters_and_numbers(text): text = re.sub(_hardware_re, _expand_hardware, text) text = re.sub(_dimension_re, _expand_dimension, text) text = re.sub(_letters_and_numbers_re, _expand_letters_and_numbers, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/letters_and_numbers.py
""" from https://github.com/keithito/tacotron """ import re import sys import urllib.request from pathlib import Path valid_symbols = [ 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH' ] _valid_symbol_set = set(valid_symbols) class CMUDict: '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict''' def __init__(self, file_or_path=None, heteronyms_path=None, keep_ambiguous=True): self._entries = {} self.heteronyms = [] if file_or_path is not None: self.initialize(file_or_path, heteronyms_path, keep_ambiguous) def initialize(self, file_or_path, heteronyms_path, keep_ambiguous=True): if isinstance(file_or_path, str): if not Path(file_or_path).exists(): print("CMUdict missing. Downloading to data/cmudict/.") self.download() with open(file_or_path, encoding='latin-1') as f: entries = _parse_cmudict(f) else: entries = _parse_cmudict(file_or_path) if not keep_ambiguous: entries = {word: pron for word, pron in entries.items() if len(pron) == 1} self._entries = entries if heteronyms_path is not None: with open(heteronyms_path, encoding='utf-8') as f: self.heteronyms = [l.rstrip() for l in f] def __len__(self): if len(self._entries) == 0: raise ValueError("CMUDict not initialized") return len(self._entries) def lookup(self, word): '''Returns list of ARPAbet pronunciations of the given word.''' if len(self._entries) == 0: raise ValueError("CMUDict not initialized") return self._entries.get(word.upper()) def download(self): url = 'https://github.com/Alexir/CMUdict/raw/master/cmudict-0.7b' try: Path('cmudict').mkdir(parents=False, exist_ok=True) urllib.request.urlretrieve(url, filename='cmudict/cmudict-0.7b') except: print("Automatic download of CMUdict failed. Try manually with:") print() print(" bash scripts/download_cmudict.sh") print() print("and re-run the script.") sys.exit(0) _alt_re = re.compile(r'\([0-9]+\)') def _parse_cmudict(file): cmudict = {} for line in file: if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"): parts = line.split(' ') word = re.sub(_alt_re, '', parts[0]) pronunciation = _get_pronunciation(parts[1]) if pronunciation: if word in cmudict: cmudict[word].append(pronunciation) else: cmudict[word] = [pronunciation] return cmudict def _get_pronunciation(s): parts = s.strip().split(' ') for part in parts: if part not in _valid_symbol_set: return None return ' '.join(parts)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/cmudict.py
import re _no_period_re = re.compile(r'(No[.])(?=[ ]?[0-9])') _percent_re = re.compile(r'([ ]?[%])') _half_re = re.compile('([0-9]½)|(½)') _url_re = re.compile(r'([a-zA-Z])\.(com|gov|org)') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('mrs', 'misess'), ('ms', 'miss'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ('sen', 'senator'), ('etc', 'et cetera'), ]] def _expand_no_period(m): word = m.group(0) if word[0] == 'N': return 'Number' return 'number' def _expand_percent(m): return ' percent' def _expand_half(m): word = m.group(1) if word is None: return 'half' return word[0] + ' and a half' def _expand_urls(m): return f'{m.group(1)} dot {m.group(2)}' def normalize_abbreviations(text): text = re.sub(_no_period_re, _expand_no_period, text) text = re.sub(_percent_re, _expand_percent, text) text = re.sub(_half_re, _expand_half, text) text = re.sub('&', ' and ', text) text = re.sub('@', ' at ', text) text = re.sub(_url_re, _expand_urls, text) for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/abbreviations.py
""" adapted from https://github.com/keithito/tacotron """ import re import numpy as np from . import cleaners from .symbols import get_symbols from . import cmudict from .numerical import _currency_re, _expand_currency ######### # REGEX # ######### # Regular expression matching text enclosed in curly braces for encoding _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') # Regular expression matching words and not words _words_re = re.compile(r"([a-zA-ZÀ-ž]+['][a-zA-ZÀ-ž]{1,2}|[a-zA-ZÀ-ž]+)|([{][^}]+[}]|[^a-zA-ZÀ-ž{}]+)") # Regular expression separating words enclosed in curly braces for cleaning _arpa_re = re.compile(r'{[^}]+}|\S+') class TextProcessing(object): def __init__(self, symbol_set, cleaner_names, p_arpabet=0.0, handle_arpabet='word', handle_arpabet_ambiguous='ignore', expand_currency=True): self.symbols = get_symbols(symbol_set) self.cleaner_names = cleaner_names # Mappings from symbol to numeric ID and vice versa: self.symbol_to_id = {s: i for i, s in enumerate(self.symbols)} self.id_to_symbol = {i: s for i, s in enumerate(self.symbols)} self.expand_currency = expand_currency # cmudict self.p_arpabet = p_arpabet self.handle_arpabet = handle_arpabet self.handle_arpabet_ambiguous = handle_arpabet_ambiguous def text_to_sequence(self, text): sequence = [] # Check for curly braces and treat their contents as ARPAbet: while len(text): m = _curly_re.match(text) if not m: sequence += self.symbols_to_sequence(text) break sequence += self.symbols_to_sequence(m.group(1)) sequence += self.arpabet_to_sequence(m.group(2)) text = m.group(3) return sequence def sequence_to_text(self, sequence): result = '' for symbol_id in sequence: if symbol_id in self.id_to_symbol: s = self.id_to_symbol[symbol_id] # Enclose ARPAbet back in curly braces: if len(s) > 1 and s[0] == '@': s = '{%s}' % s[1:] result += s return result.replace('}{', ' ') def clean_text(self, text): for name in self.cleaner_names: cleaner = getattr(cleaners, name) if not cleaner: raise Exception('Unknown cleaner: %s' % name) text = cleaner(text) return text def symbols_to_sequence(self, symbols): return [self.symbol_to_id[s] for s in symbols if s in self.symbol_to_id] def arpabet_to_sequence(self, text): return self.symbols_to_sequence(['@' + s for s in text.split()]) def get_arpabet(self, word): arpabet_suffix = '' if word.lower() in cmudict.heteronyms: return word if len(word) > 2 and word.endswith("'s"): arpabet = cmudict.lookup(word) if arpabet is None: arpabet = self.get_arpabet(word[:-2]) arpabet_suffix = ' Z' elif len(word) > 1 and word.endswith("s"): arpabet = cmudict.lookup(word) if arpabet is None: arpabet = self.get_arpabet(word[:-1]) arpabet_suffix = ' Z' else: arpabet = cmudict.lookup(word) if arpabet is None: return word elif arpabet[0] == '{': arpabet = [arpabet[1:-1]] # XXX arpabet might not be a list here if type(arpabet) is not list: return word if len(arpabet) > 1: if self.handle_arpabet_ambiguous == 'first': arpabet = arpabet[0] elif self.handle_arpabet_ambiguous == 'random': arpabet = np.random.choice(arpabet) elif self.handle_arpabet_ambiguous == 'ignore': return word else: arpabet = arpabet[0] arpabet = "{" + arpabet + arpabet_suffix + "}" return arpabet def encode_text(self, text, return_all=False): if self.expand_currency: text = re.sub(_currency_re, _expand_currency, text) text_clean = [self.clean_text(split) if split[0] != '{' else split for split in _arpa_re.findall(text)] text_clean = ' '.join(text_clean) text_clean = cleaners.collapse_whitespace(text_clean) text = text_clean text_arpabet = '' if self.p_arpabet > 0: if self.handle_arpabet == 'sentence': if np.random.uniform() < self.p_arpabet: words = _words_re.findall(text) text_arpabet = [ self.get_arpabet(word[0]) if (word[0] != '') else word[1] for word in words] text_arpabet = ''.join(text_arpabet) text = text_arpabet elif self.handle_arpabet == 'word': words = _words_re.findall(text) text_arpabet = [ word[1] if word[0] == '' else ( self.get_arpabet(word[0]) if np.random.uniform() < self.p_arpabet else word[0]) for word in words] text_arpabet = ''.join(text_arpabet) text = text_arpabet elif self.handle_arpabet != '': raise Exception("{} handle_arpabet is not supported".format( self.handle_arpabet)) text_encoded = self.text_to_sequence(text) if return_all: return text_encoded, text_clean, text_arpabet return text_encoded def get_text_processing(symbol_set, text_cleaners, p_arpabet): if symbol_set in ['english_basic', 'english_basic_lowercase', 'english_expanded']: return TextProcessing(symbol_set, text_cleaners, p_arpabet=p_arpabet) elif symbol_set == 'english_mandarin_basic': from common.text.zh.mandarin_text_processing import MandarinTextProcessing return MandarinTextProcessing(symbol_set, text_cleaners, p_arpabet=p_arpabet) else: raise ValueError(f"No TextProcessing for symbol set {symbol_set} unknown.")
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/text_processing.py
from .cmudict import CMUDict cmudict = CMUDict()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/__init__.py
""" adapted from https://github.com/keithito/tacotron """ import inflect import re _magnitudes = ['trillion', 'billion', 'million', 'thousand', 'hundred', 'm', 'b', 't'] _magnitudes_key = {'m': 'million', 'b': 'billion', 't': 'trillion'} _measurements = '(f|c|k|d|m)' _measurements_key = {'f': 'fahrenheit', 'c': 'celsius', 'k': 'thousand', 'm': 'meters'} _currency_key = {'$': 'dollar', '£': 'pound', '€': 'euro', '₩': 'won'} _inflect = inflect.engine() _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])') _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)') _currency_re = re.compile(r'([\$€£₩])([0-9\.\,]*[0-9]+)(?:[ ]?({})(?=[^a-zA-Z]|$))?'.format("|".join(_magnitudes)), re.IGNORECASE) _measurement_re = re.compile(r'([0-9\.\,]*[0-9]+(\s)?{}\b)'.format(_measurements), re.IGNORECASE) _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)') # _range_re = re.compile(r'(?<=[0-9])+(-)(?=[0-9])+.*?') _roman_re = re.compile(r'\b(?=[MDCLXVI]+\b)M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{2,3})\b') # avoid I _multiply_re = re.compile(r'(\b[0-9]+)(x)([0-9]+)') _number_re = re.compile(r"[0-9]+'s|[0-9]+s|[0-9]+") def _remove_commas(m): return m.group(1).replace(',', '') def _expand_decimal_point(m): return m.group(1).replace('.', ' point ') def _expand_currency(m): currency = _currency_key[m.group(1)] quantity = m.group(2) magnitude = m.group(3) # remove commas from quantity to be able to convert to numerical quantity = quantity.replace(',', '') # check for million, billion, etc... if magnitude is not None and magnitude.lower() in _magnitudes: if len(magnitude) == 1: magnitude = _magnitudes_key[magnitude.lower()] return "{} {} {}".format(_expand_hundreds(quantity), magnitude, currency+'s') parts = quantity.split('.') if len(parts) > 2: return quantity + " " + currency + "s" # Unexpected format dollars = int(parts[0]) if parts[0] else 0 cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 if dollars and cents: dollar_unit = currency if dollars == 1 else currency+'s' cent_unit = 'cent' if cents == 1 else 'cents' return "{} {}, {} {}".format( _expand_hundreds(dollars), dollar_unit, _inflect.number_to_words(cents), cent_unit) elif dollars: dollar_unit = currency if dollars == 1 else currency+'s' return "{} {}".format(_expand_hundreds(dollars), dollar_unit) elif cents: cent_unit = 'cent' if cents == 1 else 'cents' return "{} {}".format(_inflect.number_to_words(cents), cent_unit) else: return 'zero' + ' ' + currency + 's' def _expand_hundreds(text): number = float(text) if 1000 < number < 10000 and (number % 100 == 0) and (number % 1000 != 0): return _inflect.number_to_words(int(number / 100)) + " hundred" else: return _inflect.number_to_words(text) def _expand_ordinal(m): return _inflect.number_to_words(m.group(0)) def _expand_measurement(m): _, number, measurement = re.split('(\d+(?:\.\d+)?)', m.group(0)) number = _inflect.number_to_words(number) measurement = "".join(measurement.split()) measurement = _measurements_key[measurement.lower()] return "{} {}".format(number, measurement) def _expand_range(m): return ' to ' def _expand_multiply(m): left = m.group(1) right = m.group(3) return "{} by {}".format(left, right) def _expand_roman(m): # from https://stackoverflow.com/questions/19308177/converting-roman-numerals-to-integers-in-python roman_numerals = {'I':1, 'V':5, 'X':10, 'L':50, 'C':100, 'D':500, 'M':1000} result = 0 num = m.group(0) for i, c in enumerate(num): if (i+1) == len(num) or roman_numerals[c] >= roman_numerals[num[i+1]]: result += roman_numerals[c] else: result -= roman_numerals[c] return str(result) def _expand_number(m): _, number, suffix = re.split(r"(\d+(?:'?\d+)?)", m.group(0)) number = int(number) if number > 1000 < 10000 and (number % 100 == 0) and (number % 1000 != 0): text = _inflect.number_to_words(number // 100) + " hundred" elif number > 1000 and number < 3000: if number == 2000: text = 'two thousand' elif number > 2000 and number < 2010: text = 'two thousand ' + _inflect.number_to_words(number % 100) elif number % 100 == 0: text = _inflect.number_to_words(number // 100) + ' hundred' else: number = _inflect.number_to_words(number, andword='', zero='oh', group=2).replace(', ', ' ') number = re.sub(r'-', ' ', number) text = number else: number = _inflect.number_to_words(number, andword='and') number = re.sub(r'-', ' ', number) number = re.sub(r',', '', number) text = number if suffix in ("'s", "s"): if text[-1] == 'y': text = text[:-1] + 'ies' else: text = text + suffix return text def normalize_numbers(text): text = re.sub(_comma_number_re, _remove_commas, text) text = re.sub(_currency_re, _expand_currency, text) text = re.sub(_decimal_number_re, _expand_decimal_point, text) text = re.sub(_ordinal_re, _expand_ordinal, text) # text = re.sub(_range_re, _expand_range, text) # text = re.sub(_measurement_re, _expand_measurement, text) text = re.sub(_roman_re, _expand_roman, text) text = re.sub(_multiply_re, _expand_multiply, text) text = re.sub(_number_re, _expand_number, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/numerical.py
""" from https://github.com/keithito/tacotron """ ''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' from .cmudict import valid_symbols # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): _arpabet = ['@' + s for s in valid_symbols] def get_symbols(symbol_set='english_basic'): if symbol_set == 'english_basic': _pad = '_' _punctuation = '!\'(),.:;? ' _special = '-' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' symbols = list(_pad + _special + _punctuation + _letters) + _arpabet elif symbol_set == 'english_basic_lowercase': _pad = '_' _punctuation = '!\'"(),.:;? ' _special = '-' _letters = 'abcdefghijklmnopqrstuvwxyz' symbols = list(_pad + _special + _punctuation + _letters) + _arpabet elif symbol_set == 'english_expanded': _punctuation = '!\'",.:;? ' _math = '#%&*+-/[]()' _special = '_@©°½—₩€$' _accented = 'áçéêëñöøćž' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' symbols = list(_punctuation + _math + _special + _accented + _letters) + _arpabet elif symbol_set == 'english_mandarin_basic': from .zh.chinese import chinese_punctuations, valid_symbols as mandarin_valid_symbols # Prepend "#" to mandarin phonemes to ensure uniqueness (some are the same as uppercase letters): _mandarin_phonemes = ['#' + s for s in mandarin_valid_symbols] _pad = '_' _punctuation = '!\'(),.:;? ' _chinese_punctuation = ["#" + p for p in chinese_punctuations] _special = '-' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' symbols = list(_pad + _special + _punctuation + _letters) + _arpabet + _mandarin_phonemes + _chinese_punctuation else: raise Exception("{} symbol set does not exist".format(symbol_set)) return symbols def get_pad_idx(symbol_set='english_basic'): if symbol_set in {'english_basic', 'english_basic_lowercase', 'english_mandarin_basic'}: return 0 else: raise Exception("{} symbol set not used yet".format(symbol_set))
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/symbols.py
""" adapted from https://github.com/keithito/tacotron """ ''' Cleaners are transformations that run over the input text at both training and eval time. Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" hyperparameter. Some cleaners are English-specific. You'll typically want to use: 1. "english_cleaners" for English text 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using the Unidecode library (https://pypi.python.org/pypi/Unidecode) 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update the symbols in symbols.py to match your data). ''' import re from .abbreviations import normalize_abbreviations from .acronyms import normalize_acronyms, spell_acronyms from .datestime import normalize_datestime from .letters_and_numbers import normalize_letters_and_numbers from .numerical import normalize_numbers from .unidecoder import unidecoder # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') def expand_abbreviations(text): return normalize_abbreviations(text) def expand_numbers(text): return normalize_numbers(text) def expand_acronyms(text): return normalize_acronyms(text) def expand_datestime(text): return normalize_datestime(text) def expand_letters_and_numbers(text): return normalize_letters_and_numbers(text) def lowercase(text): return text.lower() def collapse_whitespace(text): return re.sub(_whitespace_re, ' ', text) def separate_acronyms(text): text = re.sub(r"([0-9]+)([a-zA-Z]+)", r"\1 \2", text) text = re.sub(r"([a-zA-Z]+)([0-9]+)", r"\1 \2", text) return text def convert_to_ascii(text): return unidecoder(text) def basic_cleaners(text): '''Basic pipeline that collapses whitespace without transliteration.''' text = lowercase(text) text = collapse_whitespace(text) return text def transliteration_cleaners(text): '''Pipeline for non-English text that transliterates to ASCII.''' text = convert_to_ascii(text) text = lowercase(text) text = collapse_whitespace(text) return text def english_cleaners(text): '''Pipeline for English text, with number and abbreviation expansion.''' text = convert_to_ascii(text) text = lowercase(text) text = expand_numbers(text) text = expand_abbreviations(text) text = collapse_whitespace(text) return text def english_cleaners_v2(text): text = convert_to_ascii(text) text = expand_datestime(text) text = expand_letters_and_numbers(text) text = expand_numbers(text) text = expand_abbreviations(text) text = spell_acronyms(text) text = lowercase(text) text = collapse_whitespace(text) # compatibility with basic_english symbol set text = re.sub(r'/+', ' ', text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/cleaners.py
import re _ampm_re = re.compile( r'([0-9]|0[0-9]|1[0-9]|2[0-3]):?([0-5][0-9])?\s*([AaPp][Mm]\b)') def _expand_ampm(m): matches = list(m.groups(0)) txt = matches[0] txt = txt if int(matches[1]) == 0 else txt + ' ' + matches[1] if matches[2][0].lower() == 'a': txt += ' a.m.' elif matches[2][0].lower() == 'p': txt += ' p.m.' return txt def normalize_datestime(text): text = re.sub(_ampm_re, _expand_ampm, text) #text = re.sub(r"([0-9]|0[0-9]|1[0-9]|2[0-3]):([0-5][0-9])?", r"\1 \2", text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/datestime.py
import re from . import cmudict _letter_to_arpabet = { 'A': 'EY1', 'B': 'B IY1', 'C': 'S IY1', 'D': 'D IY1', 'E': 'IY1', 'F': 'EH1 F', 'G': 'JH IY1', 'H': 'EY1 CH', 'I': 'AY1', 'J': 'JH EY1', 'K': 'K EY1', 'L': 'EH1 L', 'M': 'EH1 M', 'N': 'EH1 N', 'O': 'OW1', 'P': 'P IY1', 'Q': 'K Y UW1', 'R': 'AA1 R', 'S': 'EH1 S', 'T': 'T IY1', 'U': 'Y UW1', 'V': 'V IY1', 'X': 'EH1 K S', 'Y': 'W AY1', 'W': 'D AH1 B AH0 L Y UW0', 'Z': 'Z IY1', 's': 'Z' } # Acronyms that should not be expanded hardcoded_acronyms = [ 'BMW', 'MVD', 'WDSU', 'GOP', 'UK', 'AI', 'GPS', 'BP', 'FBI', 'HD', 'CES', 'LRA', 'PC', 'NBA', 'BBL', 'OS', 'IRS', 'SAC', 'UV', 'CEO', 'TV', 'CNN', 'MSS', 'GSA', 'USSR', 'DNA', 'PRS', 'TSA', 'US', 'GPU', 'USA', 'FPCC', 'CIA'] # Words and acronyms that should be read as regular words, e.g., NATO, HAPPY, etc. uppercase_whiteliset = [] acronyms_exceptions = { 'NVIDIA': 'N.VIDIA', } non_uppercase_exceptions = { 'email': 'e-mail', } # must ignore roman numerals _acronym_re = re.compile(r'([a-z]*[A-Z][A-Z]+)s?\.?') _non_uppercase_re = re.compile(r'\b({})\b'.format('|'.join(non_uppercase_exceptions.keys())), re.IGNORECASE) def _expand_acronyms_to_arpa(m, add_spaces=True): acronym = m.group(0) # remove dots if they exist acronym = re.sub('\.', '', acronym) acronym = "".join(acronym.split()) arpabet = cmudict.lookup(acronym) if arpabet is None: acronym = list(acronym) arpabet = ["{" + _letter_to_arpabet[letter] + "}" for letter in acronym] # temporary fix if arpabet[-1] == '{Z}' and len(arpabet) > 1: arpabet[-2] = arpabet[-2][:-1] + ' ' + arpabet[-1][1:] del arpabet[-1] arpabet = ' '.join(arpabet) elif len(arpabet) == 1: arpabet = "{" + arpabet[0] + "}" else: arpabet = acronym return arpabet def normalize_acronyms(text): text = re.sub(_acronym_re, _expand_acronyms_to_arpa, text) return text def expand_acronyms(m): text = m.group(1) if text in acronyms_exceptions: text = acronyms_exceptions[text] elif text in uppercase_whiteliset: text = text else: text = '.'.join(text) + '.' if 's' in m.group(0): text = text + '\'s' if text[-1] != '.' and m.group(0)[-1] == '.': return text + '.' else: return text def spell_acronyms(text): text = re.sub(_non_uppercase_re, lambda m: non_uppercase_exceptions[m.group(0).lower()], text) text = re.sub(_acronym_re, expand_acronyms, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/acronyms.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Sindre Sorhus <[email protected]> (https://sindresorhus.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on: # https://github.com/sindresorhus/transliterate/blob/main/replacements.js # replacements = [ # German umlauts ['ß', 'ss'], ['ẞ', 'Ss'], ['ä', 'ae'], ['Ä', 'Ae'], ['ö', 'oe'], ['Ö', 'Oe'], ['ü', 'ue'], ['Ü', 'Ue'], # Latin ['À', 'A'], ['Á', 'A'], ['Â', 'A'], ['Ã', 'A'], ['Ä', 'Ae'], ['Å', 'A'], ['Æ', 'AE'], ['Ç', 'C'], ['È', 'E'], ['É', 'E'], ['Ê', 'E'], ['Ë', 'E'], ['Ì', 'I'], ['Í', 'I'], ['Î', 'I'], ['Ï', 'I'], ['Ð', 'D'], ['Ñ', 'N'], ['Ò', 'O'], ['Ó', 'O'], ['Ô', 'O'], ['Õ', 'O'], ['Ö', 'Oe'], ['Ő', 'O'], ['Ø', 'O'], ['Ù', 'U'], ['Ú', 'U'], ['Û', 'U'], ['Ü', 'Ue'], ['Ű', 'U'], ['Ý', 'Y'], ['Þ', 'TH'], ['ß', 'ss'], ['à', 'a'], ['á', 'a'], ['â', 'a'], ['ã', 'a'], ['ä', 'ae'], ['å', 'a'], ['æ', 'ae'], ['ç', 'c'], ['è', 'e'], ['é', 'e'], ['ê', 'e'], ['ë', 'e'], ['ì', 'i'], ['í', 'i'], ['î', 'i'], ['ï', 'i'], ['ð', 'd'], ['ñ', 'n'], ['ò', 'o'], ['ó', 'o'], ['ô', 'o'], ['õ', 'o'], ['ö', 'oe'], ['ő', 'o'], ['ø', 'o'], ['ù', 'u'], ['ú', 'u'], ['û', 'u'], ['ü', 'ue'], ['ű', 'u'], ['ý', 'y'], ['þ', 'th'], ['ÿ', 'y'], ['ẞ', 'SS'], # Vietnamese ['à', 'a'], ['À', 'A'], ['á', 'a'], ['Á', 'A'], ['â', 'a'], ['Â', 'A'], ['ã', 'a'], ['Ã', 'A'], ['è', 'e'], ['È', 'E'], ['é', 'e'], ['É', 'E'], ['ê', 'e'], ['Ê', 'E'], ['ì', 'i'], ['Ì', 'I'], ['í', 'i'], ['Í', 'I'], ['ò', 'o'], ['Ò', 'O'], ['ó', 'o'], ['Ó', 'O'], ['ô', 'o'], ['Ô', 'O'], ['õ', 'o'], ['Õ', 'O'], ['ù', 'u'], ['Ù', 'U'], ['ú', 'u'], ['Ú', 'U'], ['ý', 'y'], ['Ý', 'Y'], ['ă', 'a'], ['Ă', 'A'], ['Đ', 'D'], ['đ', 'd'], ['ĩ', 'i'], ['Ĩ', 'I'], ['ũ', 'u'], ['Ũ', 'U'], ['ơ', 'o'], ['Ơ', 'O'], ['ư', 'u'], ['Ư', 'U'], ['ạ', 'a'], ['Ạ', 'A'], ['ả', 'a'], ['Ả', 'A'], ['ấ', 'a'], ['Ấ', 'A'], ['ầ', 'a'], ['Ầ', 'A'], ['ẩ', 'a'], ['Ẩ', 'A'], ['ẫ', 'a'], ['Ẫ', 'A'], ['ậ', 'a'], ['Ậ', 'A'], ['ắ', 'a'], ['Ắ', 'A'], ['ằ', 'a'], ['Ằ', 'A'], ['ẳ', 'a'], ['Ẳ', 'A'], ['ẵ', 'a'], ['Ẵ', 'A'], ['ặ', 'a'], ['Ặ', 'A'], ['ẹ', 'e'], ['Ẹ', 'E'], ['ẻ', 'e'], ['Ẻ', 'E'], ['ẽ', 'e'], ['Ẽ', 'E'], ['ế', 'e'], ['Ế', 'E'], ['ề', 'e'], ['Ề', 'E'], ['ể', 'e'], ['Ể', 'E'], ['ễ', 'e'], ['Ễ', 'E'], ['ệ', 'e'], ['Ệ', 'E'], ['ỉ', 'i'], ['Ỉ', 'I'], ['ị', 'i'], ['Ị', 'I'], ['ọ', 'o'], ['Ọ', 'O'], ['ỏ', 'o'], ['Ỏ', 'O'], ['ố', 'o'], ['Ố', 'O'], ['ồ', 'o'], ['Ồ', 'O'], ['ổ', 'o'], ['Ổ', 'O'], ['ỗ', 'o'], ['Ỗ', 'O'], ['ộ', 'o'], ['Ộ', 'O'], ['ớ', 'o'], ['Ớ', 'O'], ['ờ', 'o'], ['Ờ', 'O'], ['ở', 'o'], ['Ở', 'O'], ['ỡ', 'o'], ['Ỡ', 'O'], ['ợ', 'o'], ['Ợ', 'O'], ['ụ', 'u'], ['Ụ', 'U'], ['ủ', 'u'], ['Ủ', 'U'], ['ứ', 'u'], ['Ứ', 'U'], ['ừ', 'u'], ['Ừ', 'U'], ['ử', 'u'], ['Ử', 'U'], ['ữ', 'u'], ['Ữ', 'U'], ['ự', 'u'], ['Ự', 'U'], ['ỳ', 'y'], ['Ỳ', 'Y'], ['ỵ', 'y'], ['Ỵ', 'Y'], ['ỷ', 'y'], ['Ỷ', 'Y'], ['ỹ', 'y'], ['Ỹ', 'Y'], # Arabic ['ء', 'e'], ['آ', 'a'], ['أ', 'a'], ['ؤ', 'w'], ['إ', 'i'], ['ئ', 'y'], ['ا', 'a'], ['ب', 'b'], ['ة', 't'], ['ت', 't'], ['ث', 'th'], ['ج', 'j'], ['ح', 'h'], ['خ', 'kh'], ['د', 'd'], ['ذ', 'dh'], ['ر', 'r'], ['ز', 'z'], ['س', 's'], ['ش', 'sh'], ['ص', 's'], ['ض', 'd'], ['ط', 't'], ['ظ', 'z'], ['ع', 'e'], ['غ', 'gh'], ['ـ', '_'], ['ف', 'f'], ['ق', 'q'], ['ك', 'k'], ['ل', 'l'], ['م', 'm'], ['ن', 'n'], ['ه', 'h'], ['و', 'w'], ['ى', 'a'], ['ي', 'y'], ['َ‎', 'a'], ['ُ', 'u'], ['ِ‎', 'i'], ['٠', '0'], ['١', '1'], ['٢', '2'], ['٣', '3'], ['٤', '4'], ['٥', '5'], ['٦', '6'], ['٧', '7'], ['٨', '8'], ['٩', '9'], # Persian / Farsi ['چ', 'ch'], ['ک', 'k'], ['گ', 'g'], ['پ', 'p'], ['ژ', 'zh'], ['ی', 'y'], ['۰', '0'], ['۱', '1'], ['۲', '2'], ['۳', '3'], ['۴', '4'], ['۵', '5'], ['۶', '6'], ['۷', '7'], ['۸', '8'], ['۹', '9'], # Pashto ['ټ', 'p'], ['ځ', 'z'], ['څ', 'c'], ['ډ', 'd'], ['ﺫ', 'd'], ['ﺭ', 'r'], ['ړ', 'r'], ['ﺯ', 'z'], ['ږ', 'g'], ['ښ', 'x'], ['ګ', 'g'], ['ڼ', 'n'], ['ۀ', 'e'], ['ې', 'e'], ['ۍ', 'ai'], # Urdu ['ٹ', 't'], ['ڈ', 'd'], ['ڑ', 'r'], ['ں', 'n'], ['ہ', 'h'], ['ھ', 'h'], ['ے', 'e'], # Russian ['А', 'A'], ['а', 'a'], ['Б', 'B'], ['б', 'b'], ['В', 'V'], ['в', 'v'], ['Г', 'G'], ['г', 'g'], ['Д', 'D'], ['д', 'd'], ['ъе', 'ye'], ['Ъе', 'Ye'], ['ъЕ', 'yE'], ['ЪЕ', 'YE'], ['Е', 'E'], ['е', 'e'], ['Ё', 'Yo'], ['ё', 'yo'], ['Ж', 'Zh'], ['ж', 'zh'], ['З', 'Z'], ['з', 'z'], ['И', 'I'], ['и', 'i'], ['ый', 'iy'], ['Ый', 'Iy'], ['ЫЙ', 'IY'], ['ыЙ', 'iY'], ['Й', 'Y'], ['й', 'y'], ['К', 'K'], ['к', 'k'], ['Л', 'L'], ['л', 'l'], ['М', 'M'], ['м', 'm'], ['Н', 'N'], ['н', 'n'], ['О', 'O'], ['о', 'o'], ['П', 'P'], ['п', 'p'], ['Р', 'R'], ['р', 'r'], ['С', 'S'], ['с', 's'], ['Т', 'T'], ['т', 't'], ['У', 'U'], ['у', 'u'], ['Ф', 'F'], ['ф', 'f'], ['Х', 'Kh'], ['х', 'kh'], ['Ц', 'Ts'], ['ц', 'ts'], ['Ч', 'Ch'], ['ч', 'ch'], ['Ш', 'Sh'], ['ш', 'sh'], ['Щ', 'Sch'], ['щ', 'sch'], ['Ъ', ''], ['ъ', ''], ['Ы', 'Y'], ['ы', 'y'], ['Ь', ''], ['ь', ''], ['Э', 'E'], ['э', 'e'], ['Ю', 'Yu'], ['ю', 'yu'], ['Я', 'Ya'], ['я', 'ya'], # Romanian ['ă', 'a'], ['Ă', 'A'], ['ș', 's'], ['Ș', 'S'], ['ț', 't'], ['Ț', 'T'], ['ţ', 't'], ['Ţ', 'T'], # Turkish ['ş', 's'], ['Ş', 'S'], ['ç', 'c'], ['Ç', 'C'], ['ğ', 'g'], ['Ğ', 'G'], ['ı', 'i'], ['İ', 'I'], # Armenian ['ա', 'a'], ['Ա', 'A'], ['բ', 'b'], ['Բ', 'B'], ['գ', 'g'], ['Գ', 'G'], ['դ', 'd'], ['Դ', 'D'], ['ե', 'ye'], ['Ե', 'Ye'], ['զ', 'z'], ['Զ', 'Z'], ['է', 'e'], ['Է', 'E'], ['ը', 'y'], ['Ը', 'Y'], ['թ', 't'], ['Թ', 'T'], ['ժ', 'zh'], ['Ժ', 'Zh'], ['ի', 'i'], ['Ի', 'I'], ['լ', 'l'], ['Լ', 'L'], ['խ', 'kh'], ['Խ', 'Kh'], ['ծ', 'ts'], ['Ծ', 'Ts'], ['կ', 'k'], ['Կ', 'K'], ['հ', 'h'], ['Հ', 'H'], ['ձ', 'dz'], ['Ձ', 'Dz'], ['ղ', 'gh'], ['Ղ', 'Gh'], ['ճ', 'tch'], ['Ճ', 'Tch'], ['մ', 'm'], ['Մ', 'M'], ['յ', 'y'], ['Յ', 'Y'], ['ն', 'n'], ['Ն', 'N'], ['շ', 'sh'], ['Շ', 'Sh'], ['ո', 'vo'], ['Ո', 'Vo'], ['չ', 'ch'], ['Չ', 'Ch'], ['պ', 'p'], ['Պ', 'P'], ['ջ', 'j'], ['Ջ', 'J'], ['ռ', 'r'], ['Ռ', 'R'], ['ս', 's'], ['Ս', 'S'], ['վ', 'v'], ['Վ', 'V'], ['տ', 't'], ['Տ', 'T'], ['ր', 'r'], ['Ր', 'R'], ['ց', 'c'], ['Ց', 'C'], ['ու', 'u'], ['ՈՒ', 'U'], ['Ու', 'U'], ['փ', 'p'], ['Փ', 'P'], ['ք', 'q'], ['Ք', 'Q'], ['օ', 'o'], ['Օ', 'O'], ['ֆ', 'f'], ['Ֆ', 'F'], ['և', 'yev'], # Georgian ['ა', 'a'], ['ბ', 'b'], ['გ', 'g'], ['დ', 'd'], ['ე', 'e'], ['ვ', 'v'], ['ზ', 'z'], ['თ', 't'], ['ი', 'i'], ['კ', 'k'], ['ლ', 'l'], ['მ', 'm'], ['ნ', 'n'], ['ო', 'o'], ['პ', 'p'], ['ჟ', 'zh'], ['რ', 'r'], ['ს', 's'], ['ტ', 't'], ['უ', 'u'], ['ფ', 'ph'], ['ქ', 'q'], ['ღ', 'gh'], ['ყ', 'k'], ['შ', 'sh'], ['ჩ', 'ch'], ['ც', 'ts'], ['ძ', 'dz'], ['წ', 'ts'], ['ჭ', 'tch'], ['ხ', 'kh'], ['ჯ', 'j'], ['ჰ', 'h'], # Czech ['č', 'c'], ['ď', 'd'], ['ě', 'e'], ['ň', 'n'], ['ř', 'r'], ['š', 's'], ['ť', 't'], ['ů', 'u'], ['ž', 'z'], ['Č', 'C'], ['Ď', 'D'], ['Ě', 'E'], ['Ň', 'N'], ['Ř', 'R'], ['Š', 'S'], ['Ť', 'T'], ['Ů', 'U'], ['Ž', 'Z'], # Dhivehi ['ހ', 'h'], ['ށ', 'sh'], ['ނ', 'n'], ['ރ', 'r'], ['ބ', 'b'], ['ޅ', 'lh'], ['ކ', 'k'], ['އ', 'a'], ['ވ', 'v'], ['މ', 'm'], ['ފ', 'f'], ['ދ', 'dh'], ['ތ', 'th'], ['ލ', 'l'], ['ގ', 'g'], ['ޏ', 'gn'], ['ސ', 's'], ['ޑ', 'd'], ['ޒ', 'z'], ['ޓ', 't'], ['ޔ', 'y'], ['ޕ', 'p'], ['ޖ', 'j'], ['ޗ', 'ch'], ['ޘ', 'tt'], ['ޙ', 'hh'], ['ޚ', 'kh'], ['ޛ', 'th'], ['ޜ', 'z'], ['ޝ', 'sh'], ['ޞ', 's'], ['ޟ', 'd'], ['ޠ', 't'], ['ޡ', 'z'], ['ޢ', 'a'], ['ޣ', 'gh'], ['ޤ', 'q'], ['ޥ', 'w'], ['ަ', 'a'], ['ާ', 'aa'], ['ި', 'i'], ['ީ', 'ee'], ['ު', 'u'], ['ޫ', 'oo'], ['ެ', 'e'], ['ޭ', 'ey'], ['ޮ', 'o'], ['ޯ', 'oa'], ['ް', ''], # Greek ['α', 'a'], ['β', 'v'], ['γ', 'g'], ['δ', 'd'], ['ε', 'e'], ['ζ', 'z'], ['η', 'i'], ['θ', 'th'], ['ι', 'i'], ['κ', 'k'], ['λ', 'l'], ['μ', 'm'], ['ν', 'n'], ['ξ', 'ks'], ['ο', 'o'], ['π', 'p'], ['ρ', 'r'], ['σ', 's'], ['τ', 't'], ['υ', 'y'], ['φ', 'f'], ['χ', 'x'], ['ψ', 'ps'], ['ω', 'o'], ['ά', 'a'], ['έ', 'e'], ['ί', 'i'], ['ό', 'o'], ['ύ', 'y'], ['ή', 'i'], ['ώ', 'o'], ['ς', 's'], ['ϊ', 'i'], ['ΰ', 'y'], ['ϋ', 'y'], ['ΐ', 'i'], ['Α', 'A'], ['Β', 'B'], ['Γ', 'G'], ['Δ', 'D'], ['Ε', 'E'], ['Ζ', 'Z'], ['Η', 'I'], ['Θ', 'TH'], ['Ι', 'I'], ['Κ', 'K'], ['Λ', 'L'], ['Μ', 'M'], ['Ν', 'N'], ['Ξ', 'KS'], ['Ο', 'O'], ['Π', 'P'], ['Ρ', 'R'], ['Σ', 'S'], ['Τ', 'T'], ['Υ', 'Y'], ['Φ', 'F'], ['Χ', 'X'], ['Ψ', 'PS'], ['Ω', 'O'], ['Ά', 'A'], ['Έ', 'E'], ['Ί', 'I'], ['Ό', 'O'], ['Ύ', 'Y'], ['Ή', 'I'], ['Ώ', 'O'], ['Ϊ', 'I'], ['Ϋ', 'Y'], # Disabled as it conflicts with German and Latin. # Hungarian # ['ä', 'a'], # ['Ä', 'A'], # ['ö', 'o'], # ['Ö', 'O'], # ['ü', 'u'], # ['Ü', 'U'], # ['ű', 'u'], # ['Ű', 'U'], # Latvian ['ā', 'a'], ['ē', 'e'], ['ģ', 'g'], ['ī', 'i'], ['ķ', 'k'], ['ļ', 'l'], ['ņ', 'n'], ['ū', 'u'], ['Ā', 'A'], ['Ē', 'E'], ['Ģ', 'G'], ['Ī', 'I'], ['Ķ', 'K'], ['Ļ', 'L'], ['Ņ', 'N'], ['Ū', 'U'], ['č', 'c'], ['š', 's'], ['ž', 'z'], ['Č', 'C'], ['Š', 'S'], ['Ž', 'Z'], # Lithuanian ['ą', 'a'], ['č', 'c'], ['ę', 'e'], ['ė', 'e'], ['į', 'i'], ['š', 's'], ['ų', 'u'], ['ū', 'u'], ['ž', 'z'], ['Ą', 'A'], ['Č', 'C'], ['Ę', 'E'], ['Ė', 'E'], ['Į', 'I'], ['Š', 'S'], ['Ų', 'U'], ['Ū', 'U'], # Macedonian ['Ќ', 'Kj'], ['ќ', 'kj'], ['Љ', 'Lj'], ['љ', 'lj'], ['Њ', 'Nj'], ['њ', 'nj'], ['Тс', 'Ts'], ['тс', 'ts'], # Polish ['ą', 'a'], ['ć', 'c'], ['ę', 'e'], ['ł', 'l'], ['ń', 'n'], ['ś', 's'], ['ź', 'z'], ['ż', 'z'], ['Ą', 'A'], ['Ć', 'C'], ['Ę', 'E'], ['Ł', 'L'], ['Ń', 'N'], ['Ś', 'S'], ['Ź', 'Z'], ['Ż', 'Z'], # Disabled as it conflicts with Vietnamese. # Serbian # ['љ', 'lj'], # ['њ', 'nj'], # ['Љ', 'Lj'], # ['Њ', 'Nj'], # ['đ', 'dj'], # ['Đ', 'Dj'], # ['ђ', 'dj'], # ['ј', 'j'], # ['ћ', 'c'], # ['џ', 'dz'], # ['Ђ', 'Dj'], # ['Ј', 'j'], # ['Ћ', 'C'], # ['Џ', 'Dz'], # Disabled as it conflicts with German and Latin. # Slovak # ['ä', 'a'], # ['Ä', 'A'], # ['ľ', 'l'], # ['ĺ', 'l'], # ['ŕ', 'r'], # ['Ľ', 'L'], # ['Ĺ', 'L'], # ['Ŕ', 'R'], # Disabled as it conflicts with German and Latin. # Swedish # ['å', 'o'], # ['Å', 'o'], # ['ä', 'a'], # ['Ä', 'A'], # ['ë', 'e'], # ['Ë', 'E'], # ['ö', 'o'], # ['Ö', 'O'], # Ukrainian ['Є', 'Ye'], ['І', 'I'], ['Ї', 'Yi'], ['Ґ', 'G'], ['є', 'ye'], ['і', 'i'], ['ї', 'yi'], ['ґ', 'g'], # Dutch ['IJ', 'IJ'], ['ij', 'ij'], # Danish # ['Æ', 'Ae'], # ['Ø', 'Oe'], # ['Å', 'Aa'], # ['æ', 'ae'], # ['ø', 'oe'], # ['å', 'aa'] # Currencies ['¢', 'c'], ['¥', 'Y'], ['߿', 'b'], ['৳', 't'], ['૱', 'Bo'], ['฿', 'B'], ['₠', 'CE'], ['₡', 'C'], ['₢', 'Cr'], ['₣', 'F'], ['₥', 'm'], ['₦', 'N'], ['₧', 'Pt'], ['₨', 'Rs'], ['₩', 'W'], ['₫', 's'], ['€', 'E'], ['₭', 'K'], ['₮', 'T'], ['₯', 'Dp'], ['₰', 'S'], ['₱', 'P'], ['₲', 'G'], ['₳', 'A'], ['₴', 'S'], ['₵', 'C'], ['₶', 'tt'], ['₷', 'S'], ['₸', 'T'], ['₹', 'R'], ['₺', 'L'], ['₽', 'P'], ['₿', 'B'], ['﹩', '$'], ['¢', 'c'], ['¥', 'Y'], ['₩', 'W'], # Latin ['𝐀', 'A'], ['𝐁', 'B'], ['𝐂', 'C'], ['𝐃', 'D'], ['𝐄', 'E'], ['𝐅', 'F'], ['𝐆', 'G'], ['𝐇', 'H'], ['𝐈', 'I'], ['𝐉', 'J'], ['𝐊', 'K'], ['𝐋', 'L'], ['𝐌', 'M'], ['𝐍', 'N'], ['𝐎', 'O'], ['𝐏', 'P'], ['𝐐', 'Q'], ['𝐑', 'R'], ['𝐒', 'S'], ['𝐓', 'T'], ['𝐔', 'U'], ['𝐕', 'V'], ['𝐖', 'W'], ['𝐗', 'X'], ['𝐘', 'Y'], ['𝐙', 'Z'], ['𝐚', 'a'], ['𝐛', 'b'], ['𝐜', 'c'], ['𝐝', 'd'], ['𝐞', 'e'], ['𝐟', 'f'], ['𝐠', 'g'], ['𝐡', 'h'], ['𝐢', 'i'], ['𝐣', 'j'], ['𝐤', 'k'], ['𝐥', 'l'], ['𝐦', 'm'], ['𝐧', 'n'], ['𝐨', 'o'], ['𝐩', 'p'], ['𝐪', 'q'], ['𝐫', 'r'], ['𝐬', 's'], ['𝐭', 't'], ['𝐮', 'u'], ['𝐯', 'v'], ['𝐰', 'w'], ['𝐱', 'x'], ['𝐲', 'y'], ['𝐳', 'z'], ['𝐴', 'A'], ['𝐵', 'B'], ['𝐶', 'C'], ['𝐷', 'D'], ['𝐸', 'E'], ['𝐹', 'F'], ['𝐺', 'G'], ['𝐻', 'H'], ['𝐼', 'I'], ['𝐽', 'J'], ['𝐾', 'K'], ['𝐿', 'L'], ['𝑀', 'M'], ['𝑁', 'N'], ['𝑂', 'O'], ['𝑃', 'P'], ['𝑄', 'Q'], ['𝑅', 'R'], ['𝑆', 'S'], ['𝑇', 'T'], ['𝑈', 'U'], ['𝑉', 'V'], ['𝑊', 'W'], ['𝑋', 'X'], ['𝑌', 'Y'], ['𝑍', 'Z'], ['𝑎', 'a'], ['𝑏', 'b'], ['𝑐', 'c'], ['𝑑', 'd'], ['𝑒', 'e'], ['𝑓', 'f'], ['𝑔', 'g'], ['𝑖', 'i'], ['𝑗', 'j'], ['𝑘', 'k'], ['𝑙', 'l'], ['𝑚', 'm'], ['𝑛', 'n'], ['𝑜', 'o'], ['𝑝', 'p'], ['𝑞', 'q'], ['𝑟', 'r'], ['𝑠', 's'], ['𝑡', 't'], ['𝑢', 'u'], ['𝑣', 'v'], ['𝑤', 'w'], ['𝑥', 'x'], ['𝑦', 'y'], ['𝑧', 'z'], ['𝑨', 'A'], ['𝑩', 'B'], ['𝑪', 'C'], ['𝑫', 'D'], ['𝑬', 'E'], ['𝑭', 'F'], ['𝑮', 'G'], ['𝑯', 'H'], ['𝑰', 'I'], ['𝑱', 'J'], ['𝑲', 'K'], ['𝑳', 'L'], ['𝑴', 'M'], ['𝑵', 'N'], ['𝑶', 'O'], ['𝑷', 'P'], ['𝑸', 'Q'], ['𝑹', 'R'], ['𝑺', 'S'], ['𝑻', 'T'], ['𝑼', 'U'], ['𝑽', 'V'], ['𝑾', 'W'], ['𝑿', 'X'], ['𝒀', 'Y'], ['𝒁', 'Z'], ['𝒂', 'a'], ['𝒃', 'b'], ['𝒄', 'c'], ['𝒅', 'd'], ['𝒆', 'e'], ['𝒇', 'f'], ['𝒈', 'g'], ['𝒉', 'h'], ['𝒊', 'i'], ['𝒋', 'j'], ['𝒌', 'k'], ['𝒍', 'l'], ['𝒎', 'm'], ['𝒏', 'n'], ['𝒐', 'o'], ['𝒑', 'p'], ['𝒒', 'q'], ['𝒓', 'r'], ['𝒔', 's'], ['𝒕', 't'], ['𝒖', 'u'], ['𝒗', 'v'], ['𝒘', 'w'], ['𝒙', 'x'], ['𝒚', 'y'], ['𝒛', 'z'], ['𝒜', 'A'], ['𝒞', 'C'], ['𝒟', 'D'], ['𝒢', 'g'], ['𝒥', 'J'], ['𝒦', 'K'], ['𝒩', 'N'], ['𝒪', 'O'], ['𝒫', 'P'], ['𝒬', 'Q'], ['𝒮', 'S'], ['𝒯', 'T'], ['𝒰', 'U'], ['𝒱', 'V'], ['𝒲', 'W'], ['𝒳', 'X'], ['𝒴', 'Y'], ['𝒵', 'Z'], ['𝒶', 'a'], ['𝒷', 'b'], ['𝒸', 'c'], ['𝒹', 'd'], ['𝒻', 'f'], ['𝒽', 'h'], ['𝒾', 'i'], ['𝒿', 'j'], ['𝓀', 'h'], ['𝓁', 'l'], ['𝓂', 'm'], ['𝓃', 'n'], ['𝓅', 'p'], ['𝓆', 'q'], ['𝓇', 'r'], ['𝓈', 's'], ['𝓉', 't'], ['𝓊', 'u'], ['𝓋', 'v'], ['𝓌', 'w'], ['𝓍', 'x'], ['𝓎', 'y'], ['𝓏', 'z'], ['𝓐', 'A'], ['𝓑', 'B'], ['𝓒', 'C'], ['𝓓', 'D'], ['𝓔', 'E'], ['𝓕', 'F'], ['𝓖', 'G'], ['𝓗', 'H'], ['𝓘', 'I'], ['𝓙', 'J'], ['𝓚', 'K'], ['𝓛', 'L'], ['𝓜', 'M'], ['𝓝', 'N'], ['𝓞', 'O'], ['𝓟', 'P'], ['𝓠', 'Q'], ['𝓡', 'R'], ['𝓢', 'S'], ['𝓣', 'T'], ['𝓤', 'U'], ['𝓥', 'V'], ['𝓦', 'W'], ['𝓧', 'X'], ['𝓨', 'Y'], ['𝓩', 'Z'], ['𝓪', 'a'], ['𝓫', 'b'], ['𝓬', 'c'], ['𝓭', 'd'], ['𝓮', 'e'], ['𝓯', 'f'], ['𝓰', 'g'], ['𝓱', 'h'], ['𝓲', 'i'], ['𝓳', 'j'], ['𝓴', 'k'], ['𝓵', 'l'], ['𝓶', 'm'], ['𝓷', 'n'], ['𝓸', 'o'], ['𝓹', 'p'], ['𝓺', 'q'], ['𝓻', 'r'], ['𝓼', 's'], ['𝓽', 't'], ['𝓾', 'u'], ['𝓿', 'v'], ['𝔀', 'w'], ['𝔁', 'x'], ['𝔂', 'y'], ['𝔃', 'z'], ['𝔄', 'A'], ['𝔅', 'B'], ['𝔇', 'D'], ['𝔈', 'E'], ['𝔉', 'F'], ['𝔊', 'G'], ['𝔍', 'J'], ['𝔎', 'K'], ['𝔏', 'L'], ['𝔐', 'M'], ['𝔑', 'N'], ['𝔒', 'O'], ['𝔓', 'P'], ['𝔔', 'Q'], ['𝔖', 'S'], ['𝔗', 'T'], ['𝔘', 'U'], ['𝔙', 'V'], ['𝔚', 'W'], ['𝔛', 'X'], ['𝔜', 'Y'], ['𝔞', 'a'], ['𝔟', 'b'], ['𝔠', 'c'], ['𝔡', 'd'], ['𝔢', 'e'], ['𝔣', 'f'], ['𝔤', 'g'], ['𝔥', 'h'], ['𝔦', 'i'], ['𝔧', 'j'], ['𝔨', 'k'], ['𝔩', 'l'], ['𝔪', 'm'], ['𝔫', 'n'], ['𝔬', 'o'], ['𝔭', 'p'], ['𝔮', 'q'], ['𝔯', 'r'], ['𝔰', 's'], ['𝔱', 't'], ['𝔲', 'u'], ['𝔳', 'v'], ['𝔴', 'w'], ['𝔵', 'x'], ['𝔶', 'y'], ['𝔷', 'z'], ['𝔸', 'A'], ['𝔹', 'B'], ['𝔻', 'D'], ['𝔼', 'E'], ['𝔽', 'F'], ['𝔾', 'G'], ['𝕀', 'I'], ['𝕁', 'J'], ['𝕂', 'K'], ['𝕃', 'L'], ['𝕄', 'M'], ['𝕆', 'N'], ['𝕊', 'S'], ['𝕋', 'T'], ['𝕌', 'U'], ['𝕍', 'V'], ['𝕎', 'W'], ['𝕏', 'X'], ['𝕐', 'Y'], ['𝕒', 'a'], ['𝕓', 'b'], ['𝕔', 'c'], ['𝕕', 'd'], ['𝕖', 'e'], ['𝕗', 'f'], ['𝕘', 'g'], ['𝕙', 'h'], ['𝕚', 'i'], ['𝕛', 'j'], ['𝕜', 'k'], ['𝕝', 'l'], ['𝕞', 'm'], ['𝕟', 'n'], ['𝕠', 'o'], ['𝕡', 'p'], ['𝕢', 'q'], ['𝕣', 'r'], ['𝕤', 's'], ['𝕥', 't'], ['𝕦', 'u'], ['𝕧', 'v'], ['𝕨', 'w'], ['𝕩', 'x'], ['𝕪', 'y'], ['𝕫', 'z'], ['𝕬', 'A'], ['𝕭', 'B'], ['𝕮', 'C'], ['𝕯', 'D'], ['𝕰', 'E'], ['𝕱', 'F'], ['𝕲', 'G'], ['𝕳', 'H'], ['𝕴', 'I'], ['𝕵', 'J'], ['𝕶', 'K'], ['𝕷', 'L'], ['𝕸', 'M'], ['𝕹', 'N'], ['𝕺', 'O'], ['𝕻', 'P'], ['𝕼', 'Q'], ['𝕽', 'R'], ['𝕾', 'S'], ['𝕿', 'T'], ['𝖀', 'U'], ['𝖁', 'V'], ['𝖂', 'W'], ['𝖃', 'X'], ['𝖄', 'Y'], ['𝖅', 'Z'], ['𝖆', 'a'], ['𝖇', 'b'], ['𝖈', 'c'], ['𝖉', 'd'], ['𝖊', 'e'], ['𝖋', 'f'], ['𝖌', 'g'], ['𝖍', 'h'], ['𝖎', 'i'], ['𝖏', 'j'], ['𝖐', 'k'], ['𝖑', 'l'], ['𝖒', 'm'], ['𝖓', 'n'], ['𝖔', 'o'], ['𝖕', 'p'], ['𝖖', 'q'], ['𝖗', 'r'], ['𝖘', 's'], ['𝖙', 't'], ['𝖚', 'u'], ['𝖛', 'v'], ['𝖜', 'w'], ['𝖝', 'x'], ['𝖞', 'y'], ['𝖟', 'z'], ['𝖠', 'A'], ['𝖡', 'B'], ['𝖢', 'C'], ['𝖣', 'D'], ['𝖤', 'E'], ['𝖥', 'F'], ['𝖦', 'G'], ['𝖧', 'H'], ['𝖨', 'I'], ['𝖩', 'J'], ['𝖪', 'K'], ['𝖫', 'L'], ['𝖬', 'M'], ['𝖭', 'N'], ['𝖮', 'O'], ['𝖯', 'P'], ['𝖰', 'Q'], ['𝖱', 'R'], ['𝖲', 'S'], ['𝖳', 'T'], ['𝖴', 'U'], ['𝖵', 'V'], ['𝖶', 'W'], ['𝖷', 'X'], ['𝖸', 'Y'], ['𝖹', 'Z'], ['𝖺', 'a'], ['𝖻', 'b'], ['𝖼', 'c'], ['𝖽', 'd'], ['𝖾', 'e'], ['𝖿', 'f'], ['𝗀', 'g'], ['𝗁', 'h'], ['𝗂', 'i'], ['𝗃', 'j'], ['𝗄', 'k'], ['𝗅', 'l'], ['𝗆', 'm'], ['𝗇', 'n'], ['𝗈', 'o'], ['𝗉', 'p'], ['𝗊', 'q'], ['𝗋', 'r'], ['𝗌', 's'], ['𝗍', 't'], ['𝗎', 'u'], ['𝗏', 'v'], ['𝗐', 'w'], ['𝗑', 'x'], ['𝗒', 'y'], ['𝗓', 'z'], ['𝗔', 'A'], ['𝗕', 'B'], ['𝗖', 'C'], ['𝗗', 'D'], ['𝗘', 'E'], ['𝗙', 'F'], ['𝗚', 'G'], ['𝗛', 'H'], ['𝗜', 'I'], ['𝗝', 'J'], ['𝗞', 'K'], ['𝗟', 'L'], ['𝗠', 'M'], ['𝗡', 'N'], ['𝗢', 'O'], ['𝗣', 'P'], ['𝗤', 'Q'], ['𝗥', 'R'], ['𝗦', 'S'], ['𝗧', 'T'], ['𝗨', 'U'], ['𝗩', 'V'], ['𝗪', 'W'], ['𝗫', 'X'], ['𝗬', 'Y'], ['𝗭', 'Z'], ['𝗮', 'a'], ['𝗯', 'b'], ['𝗰', 'c'], ['𝗱', 'd'], ['𝗲', 'e'], ['𝗳', 'f'], ['𝗴', 'g'], ['𝗵', 'h'], ['𝗶', 'i'], ['𝗷', 'j'], ['𝗸', 'k'], ['𝗹', 'l'], ['𝗺', 'm'], ['𝗻', 'n'], ['𝗼', 'o'], ['𝗽', 'p'], ['𝗾', 'q'], ['𝗿', 'r'], ['𝘀', 's'], ['𝘁', 't'], ['𝘂', 'u'], ['𝘃', 'v'], ['𝘄', 'w'], ['𝘅', 'x'], ['𝘆', 'y'], ['𝘇', 'z'], ['𝘈', 'A'], ['𝘉', 'B'], ['𝘊', 'C'], ['𝘋', 'D'], ['𝘌', 'E'], ['𝘍', 'F'], ['𝘎', 'G'], ['𝘏', 'H'], ['𝘐', 'I'], ['𝘑', 'J'], ['𝘒', 'K'], ['𝘓', 'L'], ['𝘔', 'M'], ['𝘕', 'N'], ['𝘖', 'O'], ['𝘗', 'P'], ['𝘘', 'Q'], ['𝘙', 'R'], ['𝘚', 'S'], ['𝘛', 'T'], ['𝘜', 'U'], ['𝘝', 'V'], ['𝘞', 'W'], ['𝘟', 'X'], ['𝘠', 'Y'], ['𝘡', 'Z'], ['𝘢', 'a'], ['𝘣', 'b'], ['𝘤', 'c'], ['𝘥', 'd'], ['𝘦', 'e'], ['𝘧', 'f'], ['𝘨', 'g'], ['𝘩', 'h'], ['𝘪', 'i'], ['𝘫', 'j'], ['𝘬', 'k'], ['𝘭', 'l'], ['𝘮', 'm'], ['𝘯', 'n'], ['𝘰', 'o'], ['𝘱', 'p'], ['𝘲', 'q'], ['𝘳', 'r'], ['𝘴', 's'], ['𝘵', 't'], ['𝘶', 'u'], ['𝘷', 'v'], ['𝘸', 'w'], ['𝘹', 'x'], ['𝘺', 'y'], ['𝘻', 'z'], ['𝘼', 'A'], ['𝘽', 'B'], ['𝘾', 'C'], ['𝘿', 'D'], ['𝙀', 'E'], ['𝙁', 'F'], ['𝙂', 'G'], ['𝙃', 'H'], ['𝙄', 'I'], ['𝙅', 'J'], ['𝙆', 'K'], ['𝙇', 'L'], ['𝙈', 'M'], ['𝙉', 'N'], ['𝙊', 'O'], ['𝙋', 'P'], ['𝙌', 'Q'], ['𝙍', 'R'], ['𝙎', 'S'], ['𝙏', 'T'], ['𝙐', 'U'], ['𝙑', 'V'], ['𝙒', 'W'], ['𝙓', 'X'], ['𝙔', 'Y'], ['𝙕', 'Z'], ['𝙖', 'a'], ['𝙗', 'b'], ['𝙘', 'c'], ['𝙙', 'd'], ['𝙚', 'e'], ['𝙛', 'f'], ['𝙜', 'g'], ['𝙝', 'h'], ['𝙞', 'i'], ['𝙟', 'j'], ['𝙠', 'k'], ['𝙡', 'l'], ['𝙢', 'm'], ['𝙣', 'n'], ['𝙤', 'o'], ['𝙥', 'p'], ['𝙦', 'q'], ['𝙧', 'r'], ['𝙨', 's'], ['𝙩', 't'], ['𝙪', 'u'], ['𝙫', 'v'], ['𝙬', 'w'], ['𝙭', 'x'], ['𝙮', 'y'], ['𝙯', 'z'], ['𝙰', 'A'], ['𝙱', 'B'], ['𝙲', 'C'], ['𝙳', 'D'], ['𝙴', 'E'], ['𝙵', 'F'], ['𝙶', 'G'], ['𝙷', 'H'], ['𝙸', 'I'], ['𝙹', 'J'], ['𝙺', 'K'], ['𝙻', 'L'], ['𝙼', 'M'], ['𝙽', 'N'], ['𝙾', 'O'], ['𝙿', 'P'], ['𝚀', 'Q'], ['𝚁', 'R'], ['𝚂', 'S'], ['𝚃', 'T'], ['𝚄', 'U'], ['𝚅', 'V'], ['𝚆', 'W'], ['𝚇', 'X'], ['𝚈', 'Y'], ['𝚉', 'Z'], ['𝚊', 'a'], ['𝚋', 'b'], ['𝚌', 'c'], ['𝚍', 'd'], ['𝚎', 'e'], ['𝚏', 'f'], ['𝚐', 'g'], ['𝚑', 'h'], ['𝚒', 'i'], ['𝚓', 'j'], ['𝚔', 'k'], ['𝚕', 'l'], ['𝚖', 'm'], ['𝚗', 'n'], ['𝚘', 'o'], ['𝚙', 'p'], ['𝚚', 'q'], ['𝚛', 'r'], ['𝚜', 's'], ['𝚝', 't'], ['𝚞', 'u'], ['𝚟', 'v'], ['𝚠', 'w'], ['𝚡', 'x'], ['𝚢', 'y'], ['𝚣', 'z'], # Dotless letters ['𝚤', 'l'], ['𝚥', 'j'], # Greek ['𝛢', 'A'], ['𝛣', 'B'], ['𝛤', 'G'], ['𝛥', 'D'], ['𝛦', 'E'], ['𝛧', 'Z'], ['𝛨', 'I'], ['𝛩', 'TH'], ['𝛪', 'I'], ['𝛫', 'K'], ['𝛬', 'L'], ['𝛭', 'M'], ['𝛮', 'N'], ['𝛯', 'KS'], ['𝛰', 'O'], ['𝛱', 'P'], ['𝛲', 'R'], ['𝛳', 'TH'], ['𝛴', 'S'], ['𝛵', 'T'], ['𝛶', 'Y'], ['𝛷', 'F'], ['𝛸', 'x'], ['𝛹', 'PS'], ['𝛺', 'O'], ['𝛻', 'D'], ['𝛼', 'a'], ['𝛽', 'b'], ['𝛾', 'g'], ['𝛿', 'd'], ['𝜀', 'e'], ['𝜁', 'z'], ['𝜂', 'i'], ['𝜃', 'th'], ['𝜄', 'i'], ['𝜅', 'k'], ['𝜆', 'l'], ['𝜇', 'm'], ['𝜈', 'n'], ['𝜉', 'ks'], ['𝜊', 'o'], ['𝜋', 'p'], ['𝜌', 'r'], ['𝜍', 's'], ['𝜎', 's'], ['𝜏', 't'], ['𝜐', 'y'], ['𝜑', 'f'], ['𝜒', 'x'], ['𝜓', 'ps'], ['𝜔', 'o'], ['𝜕', 'd'], ['𝜖', 'E'], ['𝜗', 'TH'], ['𝜘', 'K'], ['𝜙', 'f'], ['𝜚', 'r'], ['𝜛', 'p'], ['𝜜', 'A'], ['𝜝', 'V'], ['𝜞', 'G'], ['𝜟', 'D'], ['𝜠', 'E'], ['𝜡', 'Z'], ['𝜢', 'I'], ['𝜣', 'TH'], ['𝜤', 'I'], ['𝜥', 'K'], ['𝜦', 'L'], ['𝜧', 'M'], ['𝜨', 'N'], ['𝜩', 'KS'], ['𝜪', 'O'], ['𝜫', 'P'], ['𝜬', 'S'], ['𝜭', 'TH'], ['𝜮', 'S'], ['𝜯', 'T'], ['𝜰', 'Y'], ['𝜱', 'F'], ['𝜲', 'X'], ['𝜳', 'PS'], ['𝜴', 'O'], ['𝜵', 'D'], ['𝜶', 'a'], ['𝜷', 'v'], ['𝜸', 'g'], ['𝜹', 'd'], ['𝜺', 'e'], ['𝜻', 'z'], ['𝜼', 'i'], ['𝜽', 'th'], ['𝜾', 'i'], ['𝜿', 'k'], ['𝝀', 'l'], ['𝝁', 'm'], ['𝝂', 'n'], ['𝝃', 'ks'], ['𝝄', 'o'], ['𝝅', 'p'], ['𝝆', 'r'], ['𝝇', 's'], ['𝝈', 's'], ['𝝉', 't'], ['𝝊', 'y'], ['𝝋', 'f'], ['𝝌', 'x'], ['𝝍', 'ps'], ['𝝎', 'o'], ['𝝏', 'a'], ['𝝐', 'e'], ['𝝑', 'i'], ['𝝒', 'k'], ['𝝓', 'f'], ['𝝔', 'r'], ['𝝕', 'p'], ['𝝖', 'A'], ['𝝗', 'B'], ['𝝘', 'G'], ['𝝙', 'D'], ['𝝚', 'E'], ['𝝛', 'Z'], ['𝝜', 'I'], ['𝝝', 'TH'], ['𝝞', 'I'], ['𝝟', 'K'], ['𝝠', 'L'], ['𝝡', 'M'], ['𝝢', 'N'], ['𝝣', 'KS'], ['𝝤', 'O'], ['𝝥', 'P'], ['𝝦', 'R'], ['𝝧', 'TH'], ['𝝨', 'S'], ['𝝩', 'T'], ['𝝪', 'Y'], ['𝝫', 'F'], ['𝝬', 'X'], ['𝝭', 'PS'], ['𝝮', 'O'], ['𝝯', 'D'], ['𝝰', 'a'], ['𝝱', 'v'], ['𝝲', 'g'], ['𝝳', 'd'], ['𝝴', 'e'], ['𝝵', 'z'], ['𝝶', 'i'], ['𝝷', 'th'], ['𝝸', 'i'], ['𝝹', 'k'], ['𝝺', 'l'], ['𝝻', 'm'], ['𝝼', 'n'], ['𝝽', 'ks'], ['𝝾', 'o'], ['𝝿', 'p'], ['𝞀', 'r'], ['𝞁', 's'], ['𝞂', 's'], ['𝞃', 't'], ['𝞄', 'y'], ['𝞅', 'f'], ['𝞆', 'x'], ['𝞇', 'ps'], ['𝞈', 'o'], ['𝞉', 'a'], ['𝞊', 'e'], ['𝞋', 'i'], ['𝞌', 'k'], ['𝞍', 'f'], ['𝞎', 'r'], ['𝞏', 'p'], ['𝞐', 'A'], ['𝞑', 'V'], ['𝞒', 'G'], ['𝞓', 'D'], ['𝞔', 'E'], ['𝞕', 'Z'], ['𝞖', 'I'], ['𝞗', 'TH'], ['𝞘', 'I'], ['𝞙', 'K'], ['𝞚', 'L'], ['𝞛', 'M'], ['𝞜', 'N'], ['𝞝', 'KS'], ['𝞞', 'O'], ['𝞟', 'P'], ['𝞠', 'S'], ['𝞡', 'TH'], ['𝞢', 'S'], ['𝞣', 'T'], ['𝞤', 'Y'], ['𝞥', 'F'], ['𝞦', 'X'], ['𝞧', 'PS'], ['𝞨', 'O'], ['𝞩', 'D'], ['𝞪', 'av'], ['𝞫', 'g'], ['𝞬', 'd'], ['𝞭', 'e'], ['𝞮', 'z'], ['𝞯', 'i'], ['𝞰', 'i'], ['𝞱', 'th'], ['𝞲', 'i'], ['𝞳', 'k'], ['𝞴', 'l'], ['𝞵', 'm'], ['𝞶', 'n'], ['𝞷', 'ks'], ['𝞸', 'o'], ['𝞹', 'p'], ['𝞺', 'r'], ['𝞻', 's'], ['𝞼', 's'], ['𝞽', 't'], ['𝞾', 'y'], ['𝞿', 'f'], ['𝟀', 'x'], ['𝟁', 'ps'], ['𝟂', 'o'], ['𝟃', 'a'], ['𝟄', 'e'], ['𝟅', 'i'], ['𝟆', 'k'], ['𝟇', 'f'], ['𝟈', 'r'], ['𝟉', 'p'], ['𝟊', 'F'], ['𝟋', 'f'], ['⒜', '(a)'], ['⒝', '(b)'], ['⒞', '(c)'], ['⒟', '(d)'], ['⒠', '(e)'], ['⒡', '(f)'], ['⒢', '(g)'], ['⒣', '(h)'], ['⒤', '(i)'], ['⒥', '(j)'], ['⒦', '(k)'], ['⒧', '(l)'], ['⒨', '(m)'], ['⒩', '(n)'], ['⒪', '(o)'], ['⒫', '(p)'], ['⒬', '(q)'], ['⒭', '(r)'], ['⒮', '(s)'], ['⒯', '(t)'], ['⒰', '(u)'], ['⒱', '(v)'], ['⒲', '(w)'], ['⒳', '(x)'], ['⒴', '(y)'], ['⒵', '(z)'], ['Ⓐ', '(A)'], ['Ⓑ', '(B)'], ['Ⓒ', '(C)'], ['Ⓓ', '(D)'], ['Ⓔ', '(E)'], ['Ⓕ', '(F)'], ['Ⓖ', '(G)'], ['Ⓗ', '(H)'], ['Ⓘ', '(I)'], ['Ⓙ', '(J)'], ['Ⓚ', '(K)'], ['Ⓛ', '(L)'], ['Ⓝ', '(N)'], ['Ⓞ', '(O)'], ['Ⓟ', '(P)'], ['Ⓠ', '(Q)'], ['Ⓡ', '(R)'], ['Ⓢ', '(S)'], ['Ⓣ', '(T)'], ['Ⓤ', '(U)'], ['Ⓥ', '(V)'], ['Ⓦ', '(W)'], ['Ⓧ', '(X)'], ['Ⓨ', '(Y)'], ['Ⓩ', '(Z)'], ['ⓐ', '(a)'], ['ⓑ', '(b)'], ['ⓒ', '(b)'], ['ⓓ', '(c)'], ['ⓔ', '(e)'], ['ⓕ', '(f)'], ['ⓖ', '(g)'], ['ⓗ', '(h)'], ['ⓘ', '(i)'], ['ⓙ', '(j)'], ['ⓚ', '(k)'], ['ⓛ', '(l)'], ['ⓜ', '(m)'], ['ⓝ', '(n)'], ['ⓞ', '(o)'], ['ⓟ', '(p)'], ['ⓠ', '(q)'], ['ⓡ', '(r)'], ['ⓢ', '(s)'], ['ⓣ', '(t)'], ['ⓤ', '(u)'], ['ⓥ', '(v)'], ['ⓦ', '(w)'], ['ⓧ', '(x)'], ['ⓨ', '(y)'], ['ⓩ', '(z)'], # Numbers ['𝟎', '0'], ['𝟏', '1'], ['𝟐', '2'], ['𝟑', '3'], ['𝟒', '4'], ['𝟓', '5'], ['𝟔', '6'], ['𝟕', '7'], ['𝟖', '8'], ['𝟗', '9'], ['𝟘', '0'], ['𝟙', '1'], ['𝟚', '2'], ['𝟛', '3'], ['𝟜', '4'], ['𝟝', '5'], ['𝟞', '6'], ['𝟟', '7'], ['𝟠', '8'], ['𝟡', '9'], ['𝟢', '0'], ['𝟣', '1'], ['𝟤', '2'], ['𝟥', '3'], ['𝟦', '4'], ['𝟧', '5'], ['𝟨', '6'], ['𝟩', '7'], ['𝟪', '8'], ['𝟫', '9'], ['𝟬', '0'], ['𝟭', '1'], ['𝟮', '2'], ['𝟯', '3'], ['𝟰', '4'], ['𝟱', '5'], ['𝟲', '6'], ['𝟳', '7'], ['𝟴', '8'], ['𝟵', '9'], ['𝟶', '0'], ['𝟷', '1'], ['𝟸', '2'], ['𝟹', '3'], ['𝟺', '4'], ['𝟻', '5'], ['𝟼', '6'], ['𝟽', '7'], ['𝟾', '8'], ['𝟿', '9'], ['①', '1'], ['②', '2'], ['③', '3'], ['④', '4'], ['⑤', '5'], ['⑥', '6'], ['⑦', '7'], ['⑧', '8'], ['⑨', '9'], ['⑩', '10'], ['⑪', '11'], ['⑫', '12'], ['⑬', '13'], ['⑭', '14'], ['⑮', '15'], ['⑯', '16'], ['⑰', '17'], ['⑱', '18'], ['⑲', '19'], ['⑳', '20'], ['⑴', '1'], ['⑵', '2'], ['⑶', '3'], ['⑷', '4'], ['⑸', '5'], ['⑹', '6'], ['⑺', '7'], ['⑻', '8'], ['⑼', '9'], ['⑽', '10'], ['⑾', '11'], ['⑿', '12'], ['⒀', '13'], ['⒁', '14'], ['⒂', '15'], ['⒃', '16'], ['⒄', '17'], ['⒅', '18'], ['⒆', '19'], ['⒇', '20'], ['⒈', '1.'], ['⒉', '2.'], ['⒊', '3.'], ['⒋', '4.'], ['⒌', '5.'], ['⒍', '6.'], ['⒎', '7.'], ['⒏', '8.'], ['⒐', '9.'], ['⒑', '10.'], ['⒒', '11.'], ['⒓', '12.'], ['⒔', '13.'], ['⒕', '14.'], ['⒖', '15.'], ['⒗', '16.'], ['⒘', '17.'], ['⒙', '18.'], ['⒚', '19.'], ['⒛', '20.'], ['⓪', '0'], ['⓫', '11'], ['⓬', '12'], ['⓭', '13'], ['⓮', '14'], ['⓯', '15'], ['⓰', '16'], ['⓱', '17'], ['⓲', '18'], ['⓳', '19'], ['⓴', '20'], ['⓵', '1'], ['⓶', '2'], ['⓷', '3'], ['⓸', '4'], ['⓹', '5'], ['⓺', '6'], ['⓻', '7'], ['⓼', '8'], ['⓽', '9'], ['⓾', '10'], ['⓿', '0'], # Punctuation ['🙰', '&'], ['🙱', '&'], ['🙲', '&'], ['🙳', '&'], ['🙴', '&'], ['🙵', '&'], ['🙶', '"'], ['🙷', '"'], ['🙸', '"'], ['‽', '?!'], ['🙹', '?!'], ['🙺', '?!'], ['🙻', '?!'], ['🙼', '/'], ['🙽', '\\'], # Alchemy ['🜇', 'AR'], ['🜈', 'V'], ['🜉', 'V'], ['🜆', 'VR'], ['🜅', 'VF'], ['🜩', '2'], ['🜪', '5'], ['🝡', 'f'], ['🝢', 'W'], ['🝣', 'U'], ['🝧', 'V'], ['🝨', 'T'], ['🝪', 'V'], ['🝫', 'MB'], ['🝬', 'VB'], ['🝲', '3B'], ['🝳', '3B'], # Emojis ['💯', '100'], ['🔙', 'BACK'], ['🔚', 'END'], ['🔛', 'ON!'], ['🔜', 'SOON'], ['🔝', 'TOP'], ['🔞', '18'], ['🔤', 'abc'], ['🔠', 'ABCD'], ['🔡', 'abcd'], ['🔢', '1234'], ['🔣', 'T&@%'], ['#️⃣', '#'], ['*️⃣', '*'], ['0️⃣', '0'], ['1️⃣', '1'], ['2️⃣', '2'], ['3️⃣', '3'], ['4️⃣', '4'], ['5️⃣', '5'], ['6️⃣', '6'], ['7️⃣', '7'], ['8️⃣', '8'], ['9️⃣', '9'], ['🔟', '10'], ['🅰️', 'A'], ['🅱️', 'B'], ['🆎', 'AB'], ['🆑', 'CL'], ['🅾️', 'O'], ['🅿', 'P'], ['🆘', 'SOS'], ['🅲', 'C'], ['🅳', 'D'], ['🅴', 'E'], ['🅵', 'F'], ['🅶', 'G'], ['🅷', 'H'], ['🅸', 'I'], ['🅹', 'J'], ['🅺', 'K'], ['🅻', 'L'], ['🅼', 'M'], ['🅽', 'N'], ['🆀', 'Q'], ['🆁', 'R'], ['🆂', 'S'], ['🆃', 'T'], ['🆄', 'U'], ['🆅', 'V'], ['🆆', 'W'], ['🆇', 'X'], ['🆈', 'Y'], ['🆉', 'Z'], ]
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/unidecoder/replacements.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import warnings from .homoglyphs import homoglyphs from .replacements import replacements _replacements = {uni: asc for uni, asc in replacements} _homoglyphs = {g: asc for asc, glyphs in homoglyphs.items() for g in glyphs} def unidecoder(s, homoglyphs=False): """Transliterate unicode Args: s (str): unicode string homoglyphs (bool): prioritize translating to homoglyphs """ warned = False # Once per utterance ret = '' for u in s: if ord(u) < 127: a = u elif homoglyphs: a = _homoglyphs.get(u, _replacements.get(u, None)) else: a = _replacements.get(u, _homoglyphs.get(u, None)) if a is None: if not warned: warnings.warn(f'Unexpected character {u}: ' 'please revise your text cleaning rules.', stacklevel=10**6) warned = True else: ret += a return ret
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/unidecoder/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The MIT License (MIT) # # Copyright (c) 2015 Rob Dawson # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on: # https://github.com/codebox/homoglyph/blob/master/raw_data/chars.txt # homoglyphs = { ' ': ['\xa0', '\u1680', '\u2000', '\u2001', '\u2002', '\u2003', '\u2004', '\u2005', '\u2006', '\u2007', '\u2008', '\u2009', '\u200a', '\u2028', '\u2029', '\u202f', '\u205f'], '!': ['ǃ', 'ⵑ', '!'], '$': ['$'], '%': ['%'], '&': ['ꝸ', '&'], "'": ['´', 'ʹ', 'ʻ', 'ʼ', 'ʽ', 'ʾ', 'ˈ', 'ˊ', 'ˋ', '˴', 'ʹ', '΄', '՚', '՝', 'י', '׳', 'ߴ', 'ߵ', 'ᑊ', 'ᛌ', '᾽', '᾿', '`', '´', '῾', '‘', '’', '‛', '′', '‵', 'ꞌ', ''', '`', '𖽑', '𖽒'], '"': ['¨', 'ʺ', '˝', 'ˮ', '״', '“', '”', '‟', '❝', '❞', '⠐', '⹂'], '(': ['❨', '❲', '〔', '﴾', '(', '['], ')': ['❩', '❳', '〕', '﴿', ')', ']'], '*': ['٭', '⁎', '∗', '*', '𐌟'], '+': ['᛭', '➕', '+', '𐊛'], ',': ['¸', '؍', '٫', '‚', 'ꓹ', ','], '-': ['˗', '۔', '‐', '‑', '‒', '–', '⁃', '−', '➖', 'Ⲻ', '﹘'], '.': ['٠', '۰', '܁', '܂', '․', 'ꓸ', '꘎', '.', '𐩐', '𝅭'], '/': ['᜵', '⁁', '⁄', '∕', '╱', '⟋', '⧸', 'Ⳇ', '⼃', '〳', 'ノ', '㇓', '丿', '/', '𝈺'], '2': ['Ƨ', 'Ϩ', 'ᒿ', 'Ꙅ', 'ꛯ', 'Ꝛ', '2', '𝟐', '𝟚', '𝟤', '𝟮', '𝟸', '\U0001fbf2'], '3': ['Ʒ', 'Ȝ', 'З', 'Ӡ', 'Ⳍ', 'Ꝫ', 'Ɜ', '3', '𑣊', '𖼻', '𝈆', '𝟑', '𝟛', '𝟥', '𝟯', '𝟹', '\U0001fbf3'], '4': ['Ꮞ', '4', '𑢯', '𝟒', '𝟜', '𝟦', '𝟰', '𝟺', '\U0001fbf4'], '5': ['Ƽ', '5', '𑢻', '𝟓', '𝟝', '𝟧', '𝟱', '𝟻', '\U0001fbf5'], '6': ['б', 'Ꮾ', 'Ⳓ', '6', '𑣕', '𝟔', '𝟞', '𝟨', '𝟲', '𝟼', '\U0001fbf6'], '7': ['7', '𐓒', '𑣆', '𝈒', '𝟕', '𝟟', '𝟩', '𝟳', '𝟽', '\U0001fbf7'], '8': ['Ȣ', 'ȣ', '৪', '੪', 'ଃ', '8', '𐌚', '𝟖', '𝟠', '𝟪', '𝟴', '𝟾', '𞣋', '\U0001fbf8'], '9': ['৭', '੧', '୨', '൭', 'Ⳋ', 'Ꝯ', '9', '𑢬', '𑣌', '𑣖', '𝟗', '𝟡', '𝟫', '𝟵', '𝟿', '\U0001fbf9'], ':': ['ː', '˸', '։', '׃', '܃', '܄', 'ः', 'ઃ', '᛬', '᠃', '᠉', '⁚', '∶', 'ꓽ', '꞉', '︰', ':'], ';': [';', ';'], '<': ['˂', 'ᐸ', 'ᚲ', '‹', '❮', '<', '𝈶'], '=': ['᐀', '⹀', '゠', '꓿', '='], '>': ['˃', 'ᐳ', '›', '❯', '>', '𖼿', '𝈷'], '?': ['Ɂ', 'ʔ', 'ॽ', 'Ꭾ', 'ꛫ', '?'], '@': ['@'], 'A': ['Α', 'А', 'Ꭺ', 'ᗅ', 'ᴀ', 'ꓮ', 'ꭺ', 'A', '𐊠', '𖽀', '𝐀', '𝐴', '𝑨', '𝒜', '𝓐', '𝔄', '𝔸', '𝕬', '𝖠', '𝗔', '𝘈', '𝘼', '𝙰', '𝚨', '𝛢', '𝜜', '𝝖', '𝞐'], 'B': ['ʙ', 'Β', 'В', 'в', 'Ᏼ', 'ᏼ', 'ᗷ', 'ᛒ', 'ℬ', 'ꓐ', 'Ꞵ', 'B', '𐊂', '𐊡', '𐌁', '𝐁', '𝐵', '𝑩', '𝓑', '𝔅', '𝔹', '𝕭', '𝖡', '𝗕', '𝘉', '𝘽', '𝙱', '𝚩', '𝛣', '𝜝', '𝝗', '𝞑'], 'C': ['Ϲ', 'С', 'Ꮯ', 'ᑕ', 'ℂ', 'ℭ', 'Ⅽ', '⊂', 'Ⲥ', '⸦', 'ꓚ', 'C', '𐊢', '𐌂', '𐐕', '𐔜', '𑣩', '𑣲', '𝐂', '𝐶', '𝑪', '𝒞', '𝓒', '𝕮', '𝖢', '𝗖', '𝘊', '𝘾', '𝙲', '🝌'], 'D': ['Ꭰ', 'ᗞ', 'ᗪ', 'ᴅ', 'ⅅ', 'Ⅾ', 'ꓓ', 'ꭰ', 'D', '𝐃', '𝐷', '𝑫', '𝒟', '𝓓', '𝔇', '𝔻', '𝕯', '𝖣', '𝗗', '𝘋', '𝘿', '𝙳'], 'E': ['Ε', 'Е', 'Ꭼ', 'ᴇ', 'ℰ', '⋿', 'ⴹ', 'ꓰ', 'ꭼ', 'E', '𐊆', '𑢦', '𑢮', '𝐄', '𝐸', '𝑬', '𝓔', '𝔈', '𝔼', '𝕰', '𝖤', '𝗘', '𝘌', '𝙀', '𝙴', '𝚬', '𝛦', '𝜠', '𝝚', '𝞔'], 'F': ['Ϝ', 'ᖴ', 'ℱ', 'ꓝ', 'Ꞙ', 'F', '𐊇', '𐊥', '𐔥', '𑢢', '𑣂', '𝈓', '𝐅', '𝐹', '𝑭', '𝓕', '𝔉', '𝔽', '𝕱', '𝖥', '𝗙', '𝘍', '𝙁', '𝙵', '𝟊'], 'G': ['ɢ', 'Ԍ', 'ԍ', 'Ꮐ', 'Ᏻ', 'ᏻ', 'ꓖ', 'ꮐ', 'G', '𝐆', '𝐺', '𝑮', '𝒢', '𝓖', '𝔊', '𝔾', '𝕲', '𝖦', '𝗚', '𝘎', '𝙂', '𝙶'], 'H': ['ʜ', 'Η', 'Н', 'н', 'Ꮋ', 'ᕼ', 'ℋ', 'ℌ', 'ℍ', 'Ⲏ', 'ꓧ', 'ꮋ', 'H', '𐋏', '𝐇', '𝐻', '𝑯', '𝓗', '𝕳', '𝖧', '𝗛', '𝘏', '𝙃', '𝙷', '𝚮', '𝛨', '𝜢', '𝝜', '𝞖'], 'J': ['Ϳ', 'Ј', 'Ꭻ', 'ᒍ', 'ᴊ', 'ꓙ', 'Ʝ', 'ꭻ', 'J', '𝐉', '𝐽', '𝑱', '𝒥', '𝓙', '𝔍', '𝕁', '𝕵', '𝖩', '𝗝', '𝘑', '𝙅', '𝙹'], 'K': ['Κ', 'К', 'Ꮶ', 'ᛕ', 'K', 'Ⲕ', 'ꓗ', 'K', '𐔘', '𝐊', '𝐾', '𝑲', '𝒦', '𝓚', '𝔎', '𝕂', '𝕶', '𝖪', '𝗞', '𝘒', '𝙆', '𝙺', '𝚱', '𝛫', '𝜥', '𝝟', '𝞙'], 'L': ['ʟ', 'Ꮮ', 'ᒪ', 'ℒ', 'Ⅼ', 'Ⳑ', 'ⳑ', 'ꓡ', 'ꮮ', 'L', '𐐛', '𐑃', '𐔦', '𑢣', '𑢲', '𖼖', '𝈪', '𝐋', '𝐿', '𝑳', '𝓛', '𝔏', '𝕃', '𝕷', '𝖫', '𝗟', '𝘓', '𝙇', '𝙻'], 'M': ['Μ', 'Ϻ', 'М', 'Ꮇ', 'ᗰ', 'ᛖ', 'ℳ', 'Ⅿ', 'Ⲙ', 'ꓟ', 'M', '𐊰', '𐌑', '𝐌', '𝑀', '𝑴', '𝓜', '𝔐', '𝕄', '𝕸', '𝖬', '𝗠', '𝘔', '𝙈', '𝙼', '𝚳', '𝛭', '𝜧', '𝝡', '𝞛'], 'N': ['ɴ', 'Ν', 'ℕ', 'Ⲛ', 'ꓠ', 'N', '𐔓', '𝐍', '𝑁', '𝑵', '𝒩', '𝓝', '𝔑', '𝕹', '𝖭', '𝗡', '𝘕', '𝙉', '𝙽', '𝚴', '𝛮', '𝜨', '𝝢', '𝞜'], 'P': ['Ρ', 'Р', 'Ꮲ', 'ᑭ', 'ᴘ', 'ᴩ', 'ℙ', 'Ⲣ', 'ꓑ', 'ꮲ', 'P', '𐊕', '𝐏', '𝑃', '𝑷', '𝒫', '𝓟', '𝔓', '𝕻', '𝖯', '𝗣', '𝘗', '𝙋', '𝙿', '𝚸', '𝛲', '𝜬', '𝝦', '𝞠'], 'Q': ['ℚ', 'ⵕ', 'Q', '𝐐', '𝑄', '𝑸', '𝒬', '𝓠', '𝔔', '𝕼', '𝖰', '𝗤', '𝘘', '𝙌', '𝚀'], 'R': ['Ʀ', 'ʀ', 'Ꭱ', 'Ꮢ', 'ᖇ', 'ᚱ', 'ℛ', 'ℜ', 'ℝ', 'ꓣ', 'ꭱ', 'ꮢ', 'R', '𐒴', '𖼵', '𝈖', '𝐑', '𝑅', '𝑹', '𝓡', '𝕽', '𝖱', '𝗥', '𝘙', '𝙍', '𝚁'], 'S': ['Ѕ', 'Տ', 'Ꮥ', 'Ꮪ', 'ꓢ', 'S', '𐊖', '𐐠', '𖼺', '𝐒', '𝑆', '𝑺', '𝒮', '𝓢', '𝔖', '𝕊', '𝕾', '𝖲', '𝗦', '𝘚', '𝙎', '𝚂'], 'T': ['Τ', 'τ', 'Т', 'т', 'Ꭲ', 'ᴛ', '⊤', '⟙', 'Ⲧ', 'ꓔ', 'ꭲ', 'T', '𐊗', '𐊱', '𐌕', '𑢼', '𖼊', '𝐓', '𝑇', '𝑻', '𝒯', '𝓣', '𝔗', '𝕋', '𝕿', '𝖳', '𝗧', '𝘛', '𝙏', '𝚃', '𝚻', '𝛕', '𝛵', '𝜏', '𝜯', '𝝉', '𝝩', '𝞃', '𝞣', '𝞽', '🝨'], 'U': ['Ս', 'ሀ', 'ᑌ', '∪', '⋃', 'ꓴ', 'U', '𐓎', '𑢸', '𖽂', '𝐔', '𝑈', '𝑼', '𝒰', '𝓤', '𝔘', '𝕌', '𝖀', '𝖴', '𝗨', '𝘜', '𝙐', '𝚄'], 'V': ['Ѵ', '٧', '۷', 'Ꮩ', 'ᐯ', 'Ⅴ', 'ⴸ', 'ꓦ', 'ꛟ', 'V', '𐔝', '𑢠', '𖼈', '𝈍', '𝐕', '𝑉', '𝑽', '𝒱', '𝓥', '𝔙', '𝕍', '𝖁', '𝖵', '𝗩', '𝘝', '𝙑', '𝚅'], 'W': ['Ԝ', 'Ꮃ', 'Ꮤ', 'ꓪ', 'W', '𑣦', '𑣯', '𝐖', '𝑊', '𝑾', '𝒲', '𝓦', '𝔚', '𝕎', '𝖂', '𝖶', '𝗪', '𝘞', '𝙒', '𝚆'], 'X': ['Χ', 'Х', '᙭', 'ᚷ', 'Ⅹ', '╳', 'Ⲭ', 'ⵝ', 'ꓫ', 'Ꭓ', 'X', '𐊐', '𐊴', '𐌗', '𐌢', '𐔧', '𑣬', '𝐗', '𝑋', '𝑿', '𝒳', '𝓧', '𝔛', '𝕏', '𝖃', '𝖷', '𝗫', '𝘟', '𝙓', '𝚇', '𝚾', '𝛸', '𝜲', '𝝬', '𝞦'], 'Y': ['Υ', 'ϒ', 'У', 'Ү', 'Ꭹ', 'Ꮍ', 'Ⲩ', 'ꓬ', 'Y', '𐊲', '𑢤', '𖽃', '𝐘', '𝑌', '𝒀', '𝒴', '𝓨', '𝔜', '𝕐', '𝖄', '𝖸', '𝗬', '𝘠', '𝙔', '𝚈', '𝚼', '𝛶', '𝜰', '𝝪', '𝞤'], 'Z': ['Ζ', 'Ꮓ', 'ℤ', 'ℨ', 'ꓜ', 'Z', '𐋵', '𑢩', '𑣥', '𝐙', '𝑍', '𝒁', '𝒵', '𝓩', '𝖅', '𝖹', '𝗭', '𝘡', '𝙕', '𝚉', '𝚭', '𝛧', '𝜡', '𝝛', '𝞕'], '\\': ['∖', '⟍', '⧵', '⧹', '⼂', '㇔', '丶', '﹨', '\', '𝈏', '𝈻'], '^': ['˄', 'ˆ'], '_': ['ߺ', '﹍', '﹎', '﹏', '_'], 'a': ['ɑ', 'α', 'а', '⍺', 'a', '𝐚', '𝑎', '𝒂', '𝒶', '𝓪', '𝔞', '𝕒', '𝖆', '𝖺', '𝗮', '𝘢', '𝙖', '𝚊', '𝛂', '𝛼', '𝜶', '𝝰', '𝞪'], 'b': ['Ƅ', 'Ь', 'Ꮟ', 'ᑲ', 'ᖯ', 'b', '𝐛', '𝑏', '𝒃', '𝒷', '𝓫', '𝔟', '𝕓', '𝖇', '𝖻', '𝗯', '𝘣', '𝙗', '𝚋'], 'c': ['ϲ', 'с', 'ᴄ', 'ⅽ', 'ⲥ', 'ꮯ', 'c', '𐐽', '𝐜', '𝑐', '𝒄', '𝒸', '𝓬', '𝔠', '𝕔', '𝖈', '𝖼', '𝗰', '𝘤', '𝙘', '𝚌'], 'd': ['ԁ', 'Ꮷ', 'ᑯ', 'ⅆ', 'ⅾ', 'ꓒ', 'd', '𝐝', '𝑑', '𝒅', '𝒹', '𝓭', '𝔡', '𝕕', '𝖉', '𝖽', '𝗱', '𝘥', '𝙙', '𝚍'], 'e': ['е', 'ҽ', '℮', 'ℯ', 'ⅇ', 'ꬲ', 'e', '𝐞', '𝑒', '𝒆', '𝓮', '𝔢', '𝕖', '𝖊', '𝖾', '𝗲', '𝘦', '𝙚', '𝚎'], 'f': ['ſ', 'ϝ', 'ք', 'ẝ', 'ꞙ', 'ꬵ', 'f', '𝐟', '𝑓', '𝒇', '𝒻', '𝓯', '𝔣', '𝕗', '𝖋', '𝖿', '𝗳', '𝘧', '𝙛', '𝚏', '𝟋'], 'g': ['ƍ', 'ɡ', 'ց', 'ᶃ', 'ℊ', 'g', '𝐠', '𝑔', '𝒈', '𝓰', '𝔤', '𝕘', '𝖌', '𝗀', '𝗴', '𝘨', '𝙜', '𝚐'], 'h': ['һ', 'հ', 'Ꮒ', 'ℎ', 'h', '𝐡', '𝒉', '𝒽', '𝓱', '𝔥', '𝕙', '𝖍', '𝗁', '𝗵', '𝘩', '𝙝', '𝚑'], 'i': ['ı', 'ɩ', 'ɪ', '˛', 'ͺ', 'ι', 'і', 'ӏ', 'Ꭵ', 'ι', 'ℹ', 'ⅈ', 'ⅰ', '⍳', 'ꙇ', 'ꭵ', 'i', '𑣃', '𝐢', '𝑖', '𝒊', '𝒾', '𝓲', '𝔦', '𝕚', '𝖎', '𝗂', '𝗶', '𝘪', '𝙞', '𝚒', '𝚤', '𝛊', '𝜄', '𝜾', '𝝸', '𝞲'], 'j': ['ϳ', 'ј', 'ⅉ', 'j', '𝐣', '𝑗', '𝒋', '𝒿', '𝓳', '𝔧', '𝕛', '𝖏', '𝗃', '𝗷', '𝘫', '𝙟', '𝚓'], 'k': ['k', '𝐤', '𝑘', '𝒌', '𝓀', '𝓴', '𝔨', '𝕜', '𝖐', '𝗄', '𝗸', '𝘬', '𝙠', '𝚔'], 'l': ['Ɩ', 'ǀ', 'Ι', 'І', 'Ӏ', '׀', 'ו', 'ן', 'ا', '١', '۱', 'ߊ', 'ᛁ', 'ℐ', 'ℑ', 'ℓ', 'Ⅰ', 'ⅼ', '∣', '⏽', 'Ⲓ', 'ⵏ', 'ꓲ', 'ﺍ', 'ﺎ', '1', 'I', 'l', '│', '𐊊', '𐌉', '𐌠', '𖼨', '𝐈', '𝐥', '𝐼', '𝑙', '𝑰', '𝒍', '𝓁', '𝓘', '𝓵', '𝔩', '𝕀', '𝕝', '𝕴', '𝖑', '𝖨', '𝗅', '𝗜', '𝗹', '𝘐', '𝘭', '𝙄', '𝙡', '𝙸', '𝚕', '𝚰', '𝛪', '𝜤', '𝝞', '𝞘', '𝟏', '𝟙', '𝟣', '𝟭', '𝟷', '𞣇', '𞸀', '𞺀', '\U0001fbf1'], 'm': ['m'], 'n': ['ո', 'ռ', 'n', '𝐧', '𝑛', '𝒏', '𝓃', '𝓷', '𝔫', '𝕟', '𝖓', '𝗇', '𝗻', '𝘯', '𝙣', '𝚗'], 'o': ['Ο', 'ο', 'σ', 'О', 'о', 'Օ', 'օ', 'ס', 'ه', '٥', 'ھ', 'ہ', 'ە', '۵', '߀', '०', '০', '੦', '૦', 'ଠ', '୦', '௦', 'ం', '౦', 'ಂ', '೦', 'ം', 'ഠ', '൦', 'ං', '๐', '໐', 'ဝ', '၀', 'ჿ', 'ዐ', 'ᴏ', 'ᴑ', 'ℴ', 'Ⲟ', 'ⲟ', 'ⵔ', '〇', 'ꓳ', 'ꬽ', 'ﮦ', 'ﮧ', 'ﮨ', 'ﮩ', 'ﮪ', 'ﮫ', 'ﮬ', 'ﮭ', 'ﻩ', 'ﻪ', 'ﻫ', 'ﻬ', '0', 'O', 'o', '𐊒', '𐊫', '𐐄', '𐐬', '𐓂', '𐓪', '𐔖', '𑓐', '𑢵', '𑣈', '𑣗', '𑣠', '𝐎', '𝐨', '𝑂', '𝑜', '𝑶', '𝒐', '𝒪', '𝓞', '𝓸', '𝔒', '𝔬', '𝕆', '𝕠', '𝕺', '𝖔', '𝖮', '𝗈', '𝗢', '𝗼', '𝘖', '𝘰', '𝙊', '𝙤', '𝙾', '𝚘', '𝚶', '𝛐', '𝛔', '𝛰', '𝜊', '𝜎', '𝜪', '𝝄', '𝝈', '𝝤', '𝝾', '𝞂', '𝞞', '𝞸', '𝞼', '𝟎', '𝟘', '𝟢', '𝟬', '𝟶', '𞸤', '𞹤', '𞺄', '\U0001fbf0'], 'p': ['ρ', 'ϱ', 'р', '⍴', 'ⲣ', 'p', '𝐩', '𝑝', '𝒑', '𝓅', '𝓹', '𝔭', '𝕡', '𝖕', '𝗉', '𝗽', '𝘱', '𝙥', '𝚙', '𝛒', '𝛠', '𝜌', '𝜚', '𝝆', '𝝔', '𝞀', '𝞎', '𝞺', '𝟈'], 'q': ['ԛ', 'գ', 'զ', 'q', '𝐪', '𝑞', '𝒒', '𝓆', '𝓺', '𝔮', '𝕢', '𝖖', '𝗊', '𝗾', '𝘲', '𝙦', '𝚚'], 'r': ['г', 'ᴦ', 'ⲅ', 'ꭇ', 'ꭈ', 'ꮁ', 'r', '𝐫', '𝑟', '𝒓', '𝓇', '𝓻', '𝔯', '𝕣', '𝖗', '𝗋', '𝗿', '𝘳', '𝙧', '𝚛'], 's': ['ƽ', 'ѕ', 'ꜱ', 'ꮪ', 's', '𐑈', '𑣁', '𝐬', '𝑠', '𝒔', '𝓈', '𝓼', '𝔰', '𝕤', '𝖘', '𝗌', '𝘀', '𝘴', '𝙨', '𝚜'], 't': ['t', '𝐭', '𝑡', '𝒕', '𝓉', '𝓽', '𝔱', '𝕥', '𝖙', '𝗍', '𝘁', '𝘵', '𝙩', '𝚝'], 'u': ['ʋ', 'υ', 'ս', 'ᴜ', 'ꞟ', 'ꭎ', 'ꭒ', 'u', '𐓶', '𑣘', '𝐮', '𝑢', '𝒖', '𝓊', '𝓾', '𝔲', '𝕦', '𝖚', '𝗎', '𝘂', '𝘶', '𝙪', '𝚞', '𝛖', '𝜐', '𝝊', '𝞄', '𝞾'], 'v': ['ν', 'ѵ', 'ט', 'ᴠ', 'ⅴ', '∨', '⋁', 'ꮩ', 'v', '𑜆', '𑣀', '𝐯', '𝑣', '𝒗', '𝓋', '𝓿', '𝔳', '𝕧', '𝖛', '𝗏', '𝘃', '𝘷', '𝙫', '𝚟', '𝛎', '𝜈', '𝝂', '𝝼', '𝞶'], 'w': ['ɯ', 'ѡ', 'ԝ', 'ա', 'ᴡ', 'ꮃ', 'w', '𑜊', '𑜎', '𑜏', '𝐰', '𝑤', '𝒘', '𝓌', '𝔀', '𝔴', '𝕨', '𝖜', '𝗐', '𝘄', '𝘸', '𝙬', '𝚠'], 'x': ['×', 'х', 'ᕁ', 'ᕽ', '᙮', 'ⅹ', '⤫', '⤬', '⨯', 'x', '𝐱', '𝑥', '𝒙', '𝓍', '𝔁', '𝔵', '𝕩', '𝖝', '𝗑', '𝘅', '𝘹', '𝙭', '𝚡'], 'y': ['ɣ', 'ʏ', 'γ', 'у', 'ү', 'ყ', 'ᶌ', 'ỿ', 'ℽ', 'ꭚ', 'y', '𑣜', '𝐲', '𝑦', '𝒚', '𝓎', '𝔂', '𝔶', '𝕪', '𝖞', '𝗒', '𝘆', '𝘺', '𝙮', '𝚢', '𝛄', '𝛾', '𝜸', '𝝲', '𝞬'], 'z': ['ᴢ', 'ꮓ', 'z', '𑣄', '𝐳', '𝑧', '𝒛', '𝓏', '𝔃', '𝔷', '𝕫', '𝖟', '𝗓', '𝘇', '𝘻', '𝙯', '𝚣'], '{': ['❴', '{', '𝄔'], '}': ['❵', '}'], '~': ['˜', '῀', '⁓', '∼'], }
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/unidecoder/homoglyphs.py
import re import numpy as np from .chinese import split_text, is_chinese, chinese_text_to_symbols from ..text_processing import TextProcessing class MandarinTextProcessing(TextProcessing): def __init__(self, symbol_set, cleaner_names, p_arpabet=0.0, handle_arpabet='word', handle_arpabet_ambiguous='ignore', expand_currency=True): super().__init__(symbol_set, cleaner_names, p_arpabet, handle_arpabet, handle_arpabet_ambiguous, expand_currency) def sequence_to_text(self, sequence): result = '' tmp = '' for symbol_id in sequence: if symbol_id in self.id_to_symbol: s = self.id_to_symbol[symbol_id] # Enclose ARPAbet and mandarin phonemes back in curly braces: if len(s) > 1 and s[0] == '@': s = '{%s}' % s[1:] result += s elif len(s) > 1 and s[0] == '#' and s[1].isdigit(): # mandarin tone tmp += s[1] + '} ' result += tmp tmp = '' elif len(s) > 1 and s[0] == '#' and (s[1].isalpha() or s[1] == '^'): # mandarin phoneme if tmp == '': tmp += ' {' + s[1:] + ' ' else: tmp += s[1:] + ' ' elif len(s) > 1 and s[0] == '#': # chinese punctuation s = s[1] result += s else: result += s return result.replace('}{', ' ').replace(' ', ' ') def chinese_symbols_to_sequence(self, symbols): return self.symbols_to_sequence(['#' + s for s in symbols]) def encode_text(self, text, return_all=False): # split the text into English and Chinese segments segments = [segment for segment in split_text(text) if segment != ""] text_encoded = [] text_clean = "" text_arpabet = "" for segment in segments: if is_chinese(segment[0]): # process the Chinese segment chinese_symbols, segment_arpabet = chinese_text_to_symbols(segment) segment_encoded = self.chinese_symbols_to_sequence(chinese_symbols) segment_clean = segment segment_encoded = segment_encoded else: # process the English segment segment_encoded, segment_clean, segment_arpabet = \ super().encode_text(segment, return_all=True) text_encoded += segment_encoded text_clean += segment_clean text_arpabet += segment_arpabet if return_all: return text_encoded, text_clean, text_arpabet return text_encoded
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/zh/mandarin_text_processing.py
# ***************************************************************************** # Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import re from pypinyin import lazy_pinyin, Style valid_symbols = ['^', 'A', 'AI', 'AN', 'ANG', 'AO', 'B', 'C', 'CH', 'D', 'E', 'EI', 'EN', 'ENG', 'ER', 'F', 'G', 'H', 'I', 'IE', 'IN', 'ING', 'IU', 'J', 'K', 'L', 'M', 'N', 'O', 'ONG', 'OU', 'P', 'Q', 'R', 'S', 'SH', 'T', 'U', 'UI', 'UN', 'V', 'VE', 'VN', 'W', 'X', 'Y', 'Z', 'ZH'] tones = ['1', '2', '3', '4', '5'] chinese_punctuations = ",。?!;:、‘’“”()【】「」《》" valid_symbols += tones def load_pinyin_dict(path="common/text/zh/pinyin_dict.txt"): with open(path) as f: return {l.split()[0]: l.split()[1:] for l in f} pinyin_dict = load_pinyin_dict() def is_chinese(text): return u'\u4e00' <= text[0] <= u'\u9fff' or text[0] in chinese_punctuations def split_text(text): regex = r'([\u4e00-\u9fff' + chinese_punctuations + ']+)' return re.split(regex, text) def chinese_text_to_symbols(text): symbols = [] phonemes_and_tones = "" # convert text to mandarin pinyin sequence # ignore polyphonic words as it has little effect on training pinyin_seq = lazy_pinyin(text, style=Style.TONE3) for item in pinyin_seq: if item in chinese_punctuations: symbols += [item] phonemes_and_tones += ' ' + item continue if not item[-1].isdigit(): item += '5' item, tone = item[:-1], item[-1] phonemes = pinyin_dict[item.upper()] symbols += phonemes symbols += [tone] phonemes_and_tones += '{' + ' '.join(phonemes + [tone]) + '}' return symbols, phonemes_and_tones
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/common/text/zh/chinese.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path # Define val and test; the remaining ones will be train IDs val_ids = { 'com_SF_ce227', 'com_SF_ce832', 'com_SF_ce912','com_SF_ce979', 'com_SF_ce998', 'com_SF_ce1045', 'com_SF_ce1282','com_SF_ce1329', 'com_SF_ce1350', 'com_SF_ce1376', 'com_SF_ce1519','com_SF_ce1664', 'com_SF_ce1777', 'com_SF_ce1843', 'com_SF_ce2017','com_SF_ce2042', 'com_SF_ce2100', 'com_SF_ce2251', 'com_SF_ce2443','com_SF_ce2566', } test_ids = { 'com_SF_ce161', 'com_SF_ce577', 'com_SF_ce781', 'com_SF_ce814', 'com_SF_ce1042', 'com_SF_ce1089', 'com_SF_ce1123', 'com_SF_ce1425', 'com_SF_ce1514', 'com_SF_ce1577', 'com_SF_ce1780', 'com_SF_ce1857', 'com_SF_ce1940', 'com_SF_ce2051', 'com_SF_ce2181', 'com_SF_ce2258', 'com_SF_ce2406', 'com_SF_ce2512', 'com_SF_ce2564', 'com_SF_ce2657' } def generate(fpath, ids_text, pitch=True, text=True): with open(fpath, 'w') as f: for id_, txt in ids_text.items(): row = f"wavs/{id_}.wav" row += "|" + f"pitch/{id_}.pt" if pitch else "" row += "|" + txt if text else "" f.write(row + "\n") def generate_inference_tsv(fpath, ids_text): with open(fpath, 'w') as f: f.write("output\ttext\n") for id_, txt in ids_text.items(): f.write(f"{id_}.wav\t{txt}\n") def main(): parser = argparse.ArgumentParser( description='SF bilingual dataset filelists generator') parser.add_argument('transcripts', type=Path, default='./text_SF.txt', help='Path to LJSpeech dataset metadata') parser.add_argument('output_dir', default='data/filelists', type=Path, help='Directory to generate filelists to') args = parser.parse_args() with open(args.transcripts) as f: # A dict of ID:transcript pairs transcripts = dict(line.replace("\ufeff", "").replace("-", "-").strip().split(' ', 1) for line in f) transcripts = {id_.replace("com_DL", "com_SF"): text.lower() for id_, text in transcripts.items()} val_ids_text = {id_: transcripts[id_] for id_ in val_ids} test_ids_text = {id_: transcripts[id_] for id_ in test_ids} train_ids_text = {id_: transcripts[id_] for id_ in transcripts if id_ not in test_ids and id_ not in val_ids} prefix = Path(args.output_dir, "sf_audio_pitch_text_") generate(str(prefix) + "val.txt", val_ids_text) generate(str(prefix) + "test.txt", test_ids_text) generate(str(prefix) + "train.txt", train_ids_text) prefix = Path(args.output_dir, "sf_audio_") generate(str(prefix) + "val.txt", val_ids_text, False, False) generate(str(prefix) + "test.txt", test_ids_text, False, False) generate(str(prefix) + "train.txt", train_ids_text, False, False) # train + val + test for pre-processing generate(Path(args.output_dir, "sf_audio_text.txt"), {**val_ids_text, **test_ids_text, **train_ids_text}, False, True) generate_inference_tsv(Path(args.output_dir, "sf_test.tsv"), test_ids_text) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/scripts/mandarin_chinese/split_sf.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import torch.nn as nn from tacotron2.loss_function import Tacotron2Loss from waveglow.loss_function import WaveGlowLoss def get_loss_function(loss_function, sigma=1.0): if loss_function == 'Tacotron2': loss = Tacotron2Loss() elif loss_function == 'WaveGlow': loss = WaveGlowLoss(sigma=sigma) else: raise NotImplementedError( "unknown loss function requested: {}".format(loss_function)) loss.cuda() return loss
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/loss_functions.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import sys from os.path import abspath, dirname # enabling modules discovery from global entrypoint sys.path.append(abspath(dirname(__file__)+'/')) from tacotron2.model import Tacotron2 from waveglow.model import WaveGlow import torch def model_parser(model_name, parser, add_help=False): if model_name == 'Tacotron2': from tacotron2.arg_parser import tacotron2_parser return tacotron2_parser(parser, add_help) if model_name == 'WaveGlow': from waveglow.arg_parser import waveglow_parser return waveglow_parser(parser, add_help) else: raise NotImplementedError(model_name) def batchnorm_to_float(module): """Converts batch norm to FP32""" if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module.float() for child in module.children(): batchnorm_to_float(child) return module def init_bn(module): if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): if module.affine: module.weight.data.uniform_() for child in module.children(): init_bn(child) def get_model(model_name, model_config, cpu_run, uniform_initialize_bn_weight=False, forward_is_infer=False, jittable=False): """ Code chooses a model based on name""" model = None if model_name == 'Tacotron2': if forward_is_infer: class Tacotron2__forward_is_infer(Tacotron2): def forward(self, inputs, input_lengths): return self.infer(inputs, input_lengths) model = Tacotron2__forward_is_infer(**model_config) else: model = Tacotron2(**model_config) elif model_name == 'WaveGlow': model = WaveGlow(**model_config) if forward_is_infer: model.forward = model.infer else: raise NotImplementedError(model_name) if uniform_initialize_bn_weight: init_bn(model) if not cpu_run: model = model.cuda() return model def get_model_config(model_name, args): """ Code chooses a model based on name""" if model_name == 'Tacotron2': model_config = dict( # optimization mask_padding=args.mask_padding, # audio n_mel_channels=args.n_mel_channels, # symbols n_symbols=args.n_symbols, symbols_embedding_dim=args.symbols_embedding_dim, # encoder encoder_kernel_size=args.encoder_kernel_size, encoder_n_convolutions=args.encoder_n_convolutions, encoder_embedding_dim=args.encoder_embedding_dim, # attention attention_rnn_dim=args.attention_rnn_dim, attention_dim=args.attention_dim, # attention location attention_location_n_filters=args.attention_location_n_filters, attention_location_kernel_size=args.attention_location_kernel_size, # decoder n_frames_per_step=args.n_frames_per_step, decoder_rnn_dim=args.decoder_rnn_dim, prenet_dim=args.prenet_dim, max_decoder_steps=args.max_decoder_steps, gate_threshold=args.gate_threshold, p_attention_dropout=args.p_attention_dropout, p_decoder_dropout=args.p_decoder_dropout, # postnet postnet_embedding_dim=args.postnet_embedding_dim, postnet_kernel_size=args.postnet_kernel_size, postnet_n_convolutions=args.postnet_n_convolutions, decoder_no_early_stopping=args.decoder_no_early_stopping ) return model_config elif model_name == 'WaveGlow': model_config = dict( n_mel_channels=args.n_mel_channels, n_flows=args.flows, n_group=args.groups, n_early_every=args.early_every, n_early_size=args.early_size, WN_config=dict( n_layers=args.wn_layers, kernel_size=args.wn_kernel_size, n_channels=args.wn_channels ) ) return model_config else: raise NotImplementedError(model_name)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/models.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** from tacotron2.text import text_to_sequence import models import torch import argparse import numpy as np from scipy.io.wavfile import write import sys from inference import checkpoint_from_distributed, unwrap_distributed, MeasureTime, prepare_input_sequence, load_and_setup_model import time import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from apex import amp from waveglow.denoiser import Denoiser def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--tacotron2', type=str, help='full path to the Tacotron2 model checkpoint file') parser.add_argument('--waveglow', type=str, help='full path to the WaveGlow model checkpoint file') parser.add_argument('-s', '--sigma-infer', default=0.6, type=float) parser.add_argument('-d', '--denoising-strength', default=0.01, type=float) parser.add_argument('-sr', '--sampling-rate', default=22050, type=int, help='Sampling rate') run_mode = parser.add_mutually_exclusive_group() run_mode.add_argument('--fp16', action='store_true', help='Run inference with FP16') run_mode.add_argument('--cpu', action='store_true', help='Run inference on CPU') parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging') parser.add_argument('--stft-hop-length', type=int, default=256, help='STFT hop length for estimating audio length from mel size') parser.add_argument('--num-iters', type=int, default=10, help='Number of iterations') parser.add_argument('-il', '--input-length', type=int, default=64, help='Input length') parser.add_argument('-bs', '--batch-size', type=int, default=1, help='Batch size') return parser def print_stats(measurements_all): throughput = measurements_all['throughput'] preprocessing = measurements_all['pre_processing'] type_conversion = measurements_all['type_conversion'] storage = measurements_all['storage'] data_transfer = measurements_all['data_transfer'] postprocessing = [sum(p) for p in zip(type_conversion,storage,data_transfer)] latency = measurements_all['latency'] waveglow_latency = measurements_all['waveglow_latency'] tacotron2_latency = measurements_all['tacotron2_latency'] denoiser_latency = measurements_all['denoiser_latency'] num_mels_per_audio = measurements_all['num_mels_per_audio'] latency.sort() cf_50 = max(latency[:int(len(latency)*0.50)]) cf_90 = max(latency[:int(len(latency)*0.90)]) cf_95 = max(latency[:int(len(latency)*0.95)]) cf_99 = max(latency[:int(len(latency)*0.99)]) cf_100 = max(latency[:int(len(latency)*1.0)]) print("Throughput average (samples/sec) = {:.0f}".format(np.mean(throughput))) print("Preprocessing average (seconds) = {:.4f}".format(np.mean(preprocessing))) print("Postprocessing average (seconds) = {:.4f}".format(np.mean(postprocessing))) print("Number of mels per audio average = {:.0f}".format(np.mean(num_mels_per_audio))) print("Tacotron2 latency average (seconds) = {:.2f}".format(np.mean(tacotron2_latency))) print("WaveGlow latency average (seconds) = {:.2f}".format(np.mean(waveglow_latency))) print("Denoiser latency average (seconds) = {:.4f}".format(np.mean(denoiser_latency))) print("Latency average (seconds) = {:.2f}".format(np.mean(latency))) print("Latency std (seconds) = {:.2f}".format(np.std(latency))) print("Latency cl 50 (seconds) = {:.2f}".format(cf_50)) print("Latency cl 90 (seconds) = {:.2f}".format(cf_90)) print("Latency cl 95 (seconds) = {:.2f}".format(cf_95)) print("Latency cl 99 (seconds) = {:.2f}".format(cf_99)) print("Latency cl 100 (seconds) = {:.2f}".format(cf_100)) def main(): """ Launches text to speech (inference). Inference is executed on a single GPU or CPU. """ parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args, unknown_args = parser.parse_known_args() DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, args.log_file), StdOutBackend(Verbosity.VERBOSE)]) for k,v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k:v}) DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'}) measurements_all = {"pre_processing": [], "tacotron2_latency": [], "waveglow_latency": [], "denoiser_latency": [], "latency": [], "type_conversion": [], "data_transfer": [], "storage": [], "tacotron2_items_per_sec": [], "waveglow_items_per_sec": [], "num_mels_per_audio": [], "throughput": []} print("args:", args, unknown_args) tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2, args.fp16, args.cpu, forward_is_infer=True) waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow, args.fp16, args.cpu, forward_is_infer=True) denoiser = Denoiser(waveglow) if not args.cpu: denoiser.cuda() texts = ["The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves."] texts = [texts[0][:args.input_length]] texts = texts*args.batch_size warmup_iters = 3 for iter in range(args.num_iters): measurements = {} with MeasureTime(measurements, "pre_processing", args.cpu): sequences_padded, input_lengths = prepare_input_sequence(texts, args.cpu) with torch.no_grad(): with MeasureTime(measurements, "latency", args.cpu): with MeasureTime(measurements, "tacotron2_latency", args.cpu): mel, mel_lengths, _ = tacotron2.infer(sequences_padded, input_lengths) with MeasureTime(measurements, "waveglow_latency", args.cpu): audios = waveglow.infer(mel, sigma=args.sigma_infer) num_mels = mel.size(0)*mel.size(2) num_samples = audios.size(0)*audios.size(1) with MeasureTime(measurements, "type_conversion", args.cpu): audios = audios.float() with torch.no_grad(), MeasureTime(measurements, "denoiser_latency", args.cpu): audios = denoiser(audios, strength=args.denoising_strength).squeeze(1) with MeasureTime(measurements, "data_transfer", args.cpu): audios = audios.cpu() with MeasureTime(measurements, "storage", args.cpu): audios = audios.numpy() for i, audio in enumerate(audios): audio_path = "audio_"+str(i)+".wav" write(audio_path, args.sampling_rate, audio[:mel_lengths[i]*args.stft_hop_length]) measurements['tacotron2_items_per_sec'] = num_mels/measurements['tacotron2_latency'] measurements['waveglow_items_per_sec'] = num_samples/measurements['waveglow_latency'] measurements['num_mels_per_audio'] = mel.size(2) measurements['throughput'] = num_samples/measurements['latency'] if iter >= warmup_iters: for k,v in measurements.items(): measurements_all[k].append(v) DLLogger.log(step=(iter-warmup_iters), data={k: v}) DLLogger.flush() print_stats(measurements_all) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/test_infer.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import models import torch import argparse import numpy as np import json import time import os import sys import random from inference import checkpoint_from_distributed, unwrap_distributed, load_and_setup_model, MeasureTime, prepare_input_sequence import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-m', '--model-name', type=str, default='', required=True, help='Model to train') parser.add_argument('--model', type=str, default='', help='Full path to the model checkpoint file') parser.add_argument('-sr', '--sampling-rate', default=22050, type=int, help='Sampling rate') parser.add_argument('--fp16', action='store_true', help='inference with AMP') parser.add_argument('-bs', '--batch-size', type=int, default=1) parser.add_argument('-o', '--output', type=str, required=True, help='Directory to save results') parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging') parser.add_argument('--synth-data', action='store_true', help='Test with synthetic data') return parser def gen_text(use_synthetic_data): batch_size = 1 text_len = 170 if use_synthetic_data: text_padded = torch.randint(low=0, high=148, size=(batch_size, text_len), dtype=torch.long).cuda() input_lengths = torch.IntTensor([text_padded.size(1)]* batch_size).cuda().long() else: text = 'The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves. '*2 text = [text[:text_len]] text_padded, input_lengths = prepare_input_sequence(text) return (text_padded, input_lengths) def gen_mel(use_synthetic_data, n_mel_channels, fp16): if use_synthetic_data: batch_size = 1 num_mels = 895 mel_padded = torch.zeros(batch_size, n_mel_channels, num_mels).normal_(-5.62, 1.98).cuda() else: mel_padded = torch.load("data/mel.pt") if fp16: mel_padded = mel_padded.half() return mel_padded def main(): """ Launches inference benchmark. Inference is executed on a single GPU. """ parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args, _ = parser.parse_known_args() log_file = os.path.join(args.output, args.log_file) torch.manual_seed(1234) random.seed(1234) np.random.seed(1234) DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, log_file), StdOutBackend(Verbosity.VERBOSE)]) for k,v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k:v}) DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'}) DLLogger.metadata('infer_latency', {'unit': 's'}) DLLogger.metadata('infer_items_per_sec', {'unit': 'items/s'}) if args.synth_data: model = load_and_setup_model(args.model_name, parser, None, args.fp16, cpu_run=False, forward_is_infer=True) else: if not os.path.isfile(args.model): print(f"File {args.model} does not exist!") sys.exit(1) model = load_and_setup_model(args.model_name, parser, args.model, args.fp16, cpu_run=False, forward_is_infer=True) if args.model_name == "Tacotron2": model = torch.jit.script(model) warmup_iters = 6 num_iters = warmup_iters + 1 for i in range(num_iters): measurements = {} if args.model_name == 'Tacotron2': text_padded, input_lengths = gen_text(args.synth_data) with torch.no_grad(), MeasureTime(measurements, "inference_time"): mels, _, _ = model(text_padded, input_lengths) num_items = mels.size(0)*mels.size(2) if args.model_name == 'WaveGlow': n_mel_channels = model.upsample.in_channels mel_padded = gen_mel(args.synth_data, n_mel_channels, args.fp16) with torch.no_grad(), MeasureTime(measurements, "inference_time"): audios = model(mel_padded) audios = audios.float() num_items = audios.size(0)*audios.size(1) if i >= warmup_iters: DLLogger.log(step=(i-warmup_iters,), data={"latency": measurements['inference_time']}) DLLogger.log(step=(i-warmup_iters,), data={"items_per_sec": num_items/measurements['inference_time']}) DLLogger.log(step=tuple(), data={'infer_latency': measurements['inference_time']}) DLLogger.log(step=tuple(), data={'infer_items_per_sec': num_items/measurements['inference_time']}) DLLogger.flush() if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/inference_perf.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch from tacotron2.data_function import TextMelCollate from tacotron2.data_function import TextMelLoader from waveglow.data_function import MelAudioLoader from tacotron2.data_function import batch_to_gpu as batch_to_gpu_tacotron2 from waveglow.data_function import batch_to_gpu as batch_to_gpu_waveglow def get_collate_function(model_name, n_frames_per_step=1): if model_name == 'Tacotron2': collate_fn = TextMelCollate(n_frames_per_step) elif model_name == 'WaveGlow': collate_fn = torch.utils.data.dataloader.default_collate else: raise NotImplementedError( "unknown collate function requested: {}".format(model_name)) return collate_fn def get_data_loader(model_name, dataset_path, audiopaths_and_text, args): if model_name == 'Tacotron2': data_loader = TextMelLoader(dataset_path, audiopaths_and_text, args) elif model_name == 'WaveGlow': data_loader = MelAudioLoader(dataset_path, audiopaths_and_text, args) else: raise NotImplementedError( "unknown data loader requested: {}".format(model_name)) return data_loader def get_batch_to_gpu(model_name): if model_name == 'Tacotron2': batch_to_gpu = batch_to_gpu_tacotron2 elif model_name == 'WaveGlow': batch_to_gpu = batch_to_gpu_waveglow else: raise NotImplementedError( "unknown batch_to_gpu requested: {}".format(model_name)) return batch_to_gpu
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/data_functions.py
import argparse import torch from tacotron2.data_function import TextMelLoader from tacotron2_common.utils import load_filepaths_and_text def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-d', '--dataset-path', type=str, default='./', help='Path to dataset') parser.add_argument('--wav-files', required=True, type=str, help='Path to filelist with audio paths and text') parser.add_argument('--mel-files', required=True, type=str, help='Path to filelist with mel paths and text') parser.add_argument('--text-cleaners', nargs='*', default=['english_cleaners'], type=str, help='Type of text cleaners for input text') parser.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value') parser.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate') parser.add_argument('--filter-length', default=1024, type=int, help='Filter length') parser.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length') parser.add_argument('--win-length', default=1024, type=int, help='Window length') parser.add_argument('--mel-fmin', default=0.0, type=float, help='Minimum mel frequency') parser.add_argument('--mel-fmax', default=8000.0, type=float, help='Maximum mel frequency') parser.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') return parser def audio2mel(dataset_path, audiopaths_and_text, melpaths_and_text, args): melpaths_and_text_list = load_filepaths_and_text(dataset_path, melpaths_and_text) audiopaths_and_text_list = load_filepaths_and_text(dataset_path, audiopaths_and_text) data_loader = TextMelLoader(dataset_path, audiopaths_and_text, args) for i in range(len(melpaths_and_text_list)): if i%100 == 0: print("done", i, "/", len(melpaths_and_text_list)) mel = data_loader.get_mel(audiopaths_and_text_list[i][0]) torch.save(mel, melpaths_and_text_list[i][0]) def main(): parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training') parser = parse_args(parser) args = parser.parse_args() args.load_mel_from_disk = False audio2mel(args.dataset_path, args.wav_files, args.mel_files, args) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/preprocess_audio2mel.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import time import argparse import numpy as np from contextlib import contextmanager import torch from torch.utils.data import DataLoader import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP import models import loss_functions import data_functions from tacotron2_common.utils import ParseFromConfigFile import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-o', '--output', type=str, required=True, help='Directory to save checkpoints') parser.add_argument('-d', '--dataset-path', type=str, default='./', help='Path to dataset') parser.add_argument('-m', '--model-name', type=str, default='', required=True, help='Model to train') parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging') parser.add_argument('--anneal-steps', nargs='*', help='Epochs after which decrease learning rate') parser.add_argument('--anneal-factor', type=float, choices=[0.1, 0.3], default=0.1, help='Factor for annealing learning rate') parser.add_argument('--config-file', action=ParseFromConfigFile, type=str, help='Path to configuration file') parser.add_argument('--seed', default=None, type=int, help='Seed for random number generators') # training training = parser.add_argument_group('training setup') training.add_argument('--epochs', type=int, required=True, help='Number of total epochs to run') training.add_argument('--epochs-per-checkpoint', type=int, default=50, help='Number of epochs per checkpoint') training.add_argument('--checkpoint-path', type=str, default='', help='Checkpoint path to resume training') training.add_argument('--resume-from-last', action='store_true', help='Resumes training from the last checkpoint; uses the directory provided with \'--output\' option to search for the checkpoint \"checkpoint_<model_name>_last.pt\"') training.add_argument('--dynamic-loss-scaling', type=bool, default=True, help='Enable dynamic loss scaling') training.add_argument('--amp', action='store_true', help='Enable AMP') training.add_argument('--cudnn-enabled', action='store_true', help='Enable cudnn') training.add_argument('--cudnn-benchmark', action='store_true', help='Run cudnn benchmark') training.add_argument('--disable-uniform-initialize-bn-weight', action='store_true', help='disable uniform initialization of batchnorm layer weight') optimization = parser.add_argument_group('optimization setup') optimization.add_argument( '--use-saved-learning-rate', default=False, type=bool) optimization.add_argument('-lr', '--learning-rate', type=float, required=True, help='Learing rate') optimization.add_argument('--weight-decay', default=1e-6, type=float, help='Weight decay') optimization.add_argument('--grad-clip-thresh', default=1.0, type=float, help='Clip threshold for gradients') optimization.add_argument('-bs', '--batch-size', type=int, required=True, help='Batch size per GPU') optimization.add_argument('--grad-clip', default=5.0, type=float, help='Enables gradient clipping and sets maximum gradient norm value') # dataset parameters dataset = parser.add_argument_group('dataset parameters') dataset.add_argument('--load-mel-from-disk', action='store_true', help='Loads mel spectrograms from disk instead of computing them on the fly') dataset.add_argument('--training-files', default='filelists/ljs_audio_text_train_filelist.txt', type=str, help='Path to training filelist') dataset.add_argument('--validation-files', default='filelists/ljs_audio_text_val_filelist.txt', type=str, help='Path to validation filelist') dataset.add_argument('--text-cleaners', nargs='*', default=['english_cleaners'], type=str, help='Type of text cleaners for input text') # audio parameters audio = parser.add_argument_group('audio parameters') audio.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value') audio.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate') audio.add_argument('--filter-length', default=1024, type=int, help='Filter length') audio.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length') audio.add_argument('--win-length', default=1024, type=int, help='Window length') audio.add_argument('--mel-fmin', default=0.0, type=float, help='Minimum mel frequency') audio.add_argument('--mel-fmax', default=8000.0, type=float, help='Maximum mel frequency') distributed = parser.add_argument_group('distributed setup') # distributed.add_argument('--distributed-run', default=True, type=bool, # help='enable distributed run') distributed.add_argument('--rank', default=0, type=int, help='Rank of the process, do not set! Done by multiproc module') distributed.add_argument('--world-size', default=1, type=int, help='Number of processes, do not set! Done by multiproc module') distributed.add_argument('--dist-url', type=str, default='tcp://localhost:23456', help='Url used to set up distributed training') distributed.add_argument('--group-name', type=str, default='group_name', required=False, help='Distributed group name') distributed.add_argument('--dist-backend', default='nccl', type=str, choices={'nccl'}, help='Distributed run backend') benchmark = parser.add_argument_group('benchmark') benchmark.add_argument('--bench-class', type=str, default='') return parser def reduce_tensor(tensor, num_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) if rt.is_floating_point(): rt = rt/num_gpus else: rt = torch.div(rt, num_gpus, rounding_mode='floor') return rt def init_distributed(args, world_size, rank, group_name): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=world_size, rank=rank, group_name=group_name) print("Done initializing distributed") def save_checkpoint(model, optimizer, scaler, epoch, config, output_dir, model_name, local_rank, world_size): random_rng_state = torch.random.get_rng_state().cuda() cuda_rng_state = torch.cuda.get_rng_state(local_rank).cuda() random_rng_states_all = [torch.empty_like(random_rng_state) for _ in range(world_size)] cuda_rng_states_all = [torch.empty_like(cuda_rng_state) for _ in range(world_size)] if world_size > 1: dist.all_gather(random_rng_states_all, random_rng_state) dist.all_gather(cuda_rng_states_all, cuda_rng_state) else: random_rng_states_all = [random_rng_state] cuda_rng_states_all = [cuda_rng_state] random_rng_states_all = torch.stack(random_rng_states_all).cpu() cuda_rng_states_all = torch.stack(cuda_rng_states_all).cpu() if local_rank == 0: checkpoint = {'epoch': epoch, 'cuda_rng_state_all': cuda_rng_states_all, 'random_rng_states_all': random_rng_states_all, 'config': config, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scaler': scaler.state_dict()} checkpoint_filename = "checkpoint_{}_{}.pt".format(model_name, epoch) checkpoint_path = os.path.join(output_dir, checkpoint_filename) print("Saving model and optimizer state at epoch {} to {}".format( epoch, checkpoint_path)) torch.save(checkpoint, checkpoint_path) symlink_src = checkpoint_filename symlink_dst = os.path.join( output_dir, "checkpoint_{}_last.pt".format(model_name)) if os.path.exists(symlink_dst) and os.path.islink(symlink_dst): print("Updating symlink", symlink_dst, "to point to", symlink_src) os.remove(symlink_dst) os.symlink(symlink_src, symlink_dst) def get_last_checkpoint_filename(output_dir, model_name): symlink = os.path.join(output_dir, "checkpoint_{}_last.pt".format(model_name)) if os.path.exists(symlink): print("Loading checkpoint from symlink", symlink) return os.path.join(output_dir, os.readlink(symlink)) else: print("No last checkpoint available - starting from epoch 0 ") return "" def load_checkpoint(model, optimizer, scaler, epoch, filepath, local_rank): checkpoint = torch.load(filepath, map_location='cpu') epoch[0] = checkpoint['epoch']+1 device_id = local_rank % torch.cuda.device_count() torch.cuda.set_rng_state(checkpoint['cuda_rng_state_all'][device_id]) if 'random_rng_states_all' in checkpoint: torch.random.set_rng_state(checkpoint['random_rng_states_all'][device_id]) elif 'random_rng_state' in checkpoint: torch.random.set_rng_state(checkpoint['random_rng_state']) else: raise Exception("Model checkpoint must have either 'random_rng_state' or 'random_rng_states_all' key.") model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scaler.load_state_dict(checkpoint['scaler']) return checkpoint['config'] # adapted from: https://discuss.pytorch.org/t/opinion-eval-should-be-a-context-manager/18998/3 # Following snippet is licensed under MIT license @contextmanager def evaluating(model): '''Temporarily switch to evaluation mode.''' istrain = model.training try: model.eval() yield model finally: if istrain: model.train() def validate(model, criterion, valset, epoch, batch_iter, batch_size, world_size, collate_fn, distributed_run, perf_bench, batch_to_gpu, amp_run): """Handles all the validation scoring and printing""" with evaluating(model), torch.no_grad(): val_sampler = DistributedSampler(valset) if distributed_run else None val_loader = DataLoader(valset, num_workers=1, shuffle=False, sampler=val_sampler, batch_size=batch_size, pin_memory=False, collate_fn=collate_fn, drop_last=(True if perf_bench else False)) val_loss = 0.0 num_iters = 0 val_items_per_sec = 0.0 for i, batch in enumerate(val_loader): torch.cuda.synchronize() iter_start_time = time.perf_counter() x, y, num_items = batch_to_gpu(batch) #AMP upstream autocast with torch.cuda.amp.autocast(enabled=amp_run): y_pred = model(x) loss = criterion(y_pred, y) if distributed_run: reduced_val_loss = reduce_tensor(loss.data, world_size).item() reduced_num_items = reduce_tensor(num_items.data, 1).item() else: # reduced_val_loss = loss.item() reduced_num_items = num_items.item() val_loss += reduced_val_loss torch.cuda.synchronize() iter_stop_time = time.perf_counter() iter_time = iter_stop_time - iter_start_time items_per_sec = reduced_num_items/iter_time DLLogger.log(step=(epoch, batch_iter, i), data={'val_items_per_sec': items_per_sec}) val_items_per_sec += items_per_sec num_iters += 1 val_loss = val_loss/num_iters val_items_per_sec = val_items_per_sec/num_iters DLLogger.log(step=(epoch,), data={'val_loss': val_loss}) DLLogger.log(step=(epoch,), data={'val_items_per_sec': val_items_per_sec}) return val_loss, val_items_per_sec def adjust_learning_rate(iteration, epoch, optimizer, learning_rate, anneal_steps, anneal_factor, rank): p = 0 if anneal_steps is not None: for i, a_step in enumerate(anneal_steps): if epoch >= int(a_step): p = p+1 if anneal_factor == 0.3: lr = learning_rate*((0.1 ** (p//2))*(1.0 if p % 2 == 0 else 0.3)) else: lr = learning_rate*(anneal_factor ** p) if optimizer.param_groups[0]['lr'] != lr: DLLogger.log(step=(epoch, iteration), data={'learning_rate changed': str(optimizer.param_groups[0]['lr'])+" -> "+str(lr)}) for param_group in optimizer.param_groups: param_group['lr'] = lr def main(): parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training') parser = parse_args(parser) args, _ = parser.parse_known_args() if 'LOCAL_RANK' in os.environ and 'WORLD_SIZE' in os.environ: local_rank = int(os.environ['LOCAL_RANK']) world_size = int(os.environ['WORLD_SIZE']) else: local_rank = args.rank world_size = args.world_size distributed_run = world_size > 1 if args.seed is not None: torch.manual_seed(args.seed + local_rank) np.random.seed(args.seed + local_rank) if local_rank == 0: log_file = os.path.join(args.output, args.log_file) DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, log_file), StdOutBackend(Verbosity.VERBOSE)]) else: DLLogger.init(backends=[]) for k,v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k:v}) DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'}) DLLogger.metadata('run_time', {'unit': 's'}) DLLogger.metadata('val_loss', {'unit': None}) DLLogger.metadata('train_items_per_sec', {'unit': 'items/s'}) DLLogger.metadata('val_items_per_sec', {'unit': 'items/s'}) model_name = args.model_name parser = models.model_parser(model_name, parser) args, _ = parser.parse_known_args() torch.backends.cudnn.enabled = args.cudnn_enabled torch.backends.cudnn.benchmark = args.cudnn_benchmark if distributed_run: init_distributed(args, world_size, local_rank, args.group_name) torch.cuda.synchronize() run_start_time = time.perf_counter() model_config = models.get_model_config(model_name, args) model = models.get_model(model_name, model_config, cpu_run=False, uniform_initialize_bn_weight=not args.disable_uniform_initialize_bn_weight) if distributed_run: model = DDP(model, device_ids=[local_rank], output_device=local_rank) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay) scaler = torch.cuda.amp.GradScaler(enabled=args.amp) try: sigma = args.sigma except AttributeError: sigma = None start_epoch = [0] if args.resume_from_last: args.checkpoint_path = get_last_checkpoint_filename(args.output, model_name) if args.checkpoint_path != "": model_config = load_checkpoint(model, optimizer, scaler, start_epoch, args.checkpoint_path, local_rank) start_epoch = start_epoch[0] criterion = loss_functions.get_loss_function(model_name, sigma) try: n_frames_per_step = args.n_frames_per_step except AttributeError: n_frames_per_step = None collate_fn = data_functions.get_collate_function( model_name, n_frames_per_step) trainset = data_functions.get_data_loader( model_name, args.dataset_path, args.training_files, args) if distributed_run: train_sampler = DistributedSampler(trainset, seed=(args.seed or 0)) shuffle = False else: train_sampler = None shuffle = True train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle, sampler=train_sampler, batch_size=args.batch_size, pin_memory=False, drop_last=True, collate_fn=collate_fn) valset = data_functions.get_data_loader( model_name, args.dataset_path, args.validation_files, args) batch_to_gpu = data_functions.get_batch_to_gpu(model_name) iteration = 0 train_epoch_items_per_sec = 0.0 val_loss = 0.0 num_iters = 0 model.train() for epoch in range(start_epoch, args.epochs): torch.cuda.synchronize() epoch_start_time = time.perf_counter() # used to calculate avg items/sec over epoch reduced_num_items_epoch = 0 train_epoch_items_per_sec = 0.0 num_iters = 0 reduced_loss = 0 if distributed_run: train_loader.sampler.set_epoch(epoch) for i, batch in enumerate(train_loader): torch.cuda.synchronize() iter_start_time = time.perf_counter() DLLogger.log(step=(epoch, i), data={'glob_iter/iters_per_epoch': str(iteration)+"/"+str(len(train_loader))}) adjust_learning_rate(iteration, epoch, optimizer, args.learning_rate, args.anneal_steps, args.anneal_factor, local_rank) model.zero_grad() x, y, num_items = batch_to_gpu(batch) #AMP upstream autocast with torch.cuda.amp.autocast(enabled=args.amp): y_pred = model(x) loss = criterion(y_pred, y) if distributed_run: reduced_loss = reduce_tensor(loss.data, world_size).item() reduced_num_items = reduce_tensor(num_items.data, 1).item() else: reduced_loss = loss.item() reduced_num_items = num_items.item() if np.isnan(reduced_loss): raise Exception("loss is NaN") DLLogger.log(step=(epoch,i), data={'train_loss': reduced_loss}) num_iters += 1 # accumulate number of items processed in this epoch reduced_num_items_epoch += reduced_num_items if args.amp: scaler.scale(loss).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_( model.parameters(), args.grad_clip_thresh) scaler.step(optimizer) scaler.update() else: loss.backward() torch.nn.utils.clip_grad_norm_( model.parameters(), args.grad_clip_thresh) optimizer.step() model.zero_grad(set_to_none=True) torch.cuda.synchronize() iter_stop_time = time.perf_counter() iter_time = iter_stop_time - iter_start_time items_per_sec = reduced_num_items/iter_time train_epoch_items_per_sec += items_per_sec DLLogger.log(step=(epoch, i), data={'train_items_per_sec': items_per_sec}) DLLogger.log(step=(epoch, i), data={'train_iter_time': iter_time}) iteration += 1 torch.cuda.synchronize() epoch_stop_time = time.perf_counter() epoch_time = epoch_stop_time - epoch_start_time DLLogger.log(step=(epoch,), data={'train_items_per_sec': (train_epoch_items_per_sec/num_iters if num_iters > 0 else 0.0)}) DLLogger.log(step=(epoch,), data={'train_loss': reduced_loss}) DLLogger.log(step=(epoch,), data={'train_epoch_time': epoch_time}) val_loss, val_items_per_sec = validate(model, criterion, valset, epoch, iteration, args.batch_size, world_size, collate_fn, distributed_run, args.bench_class=="perf-train", batch_to_gpu, args.amp) if (epoch % args.epochs_per_checkpoint == 0) and (args.bench_class == "" or args.bench_class == "train"): save_checkpoint(model, optimizer, scaler, epoch, model_config, args.output, args.model_name, local_rank, world_size) if local_rank == 0: DLLogger.flush() torch.cuda.synchronize() run_stop_time = time.perf_counter() run_time = run_stop_time - run_start_time DLLogger.log(step=tuple(), data={'run_time': run_time}) DLLogger.log(step=tuple(), data={'val_loss': val_loss}) DLLogger.log(step=tuple(), data={'train_loss': reduced_loss}) DLLogger.log(step=tuple(), data={'train_items_per_sec': (train_epoch_items_per_sec/num_iters if num_iters > 0 else 0.0)}) DLLogger.log(step=tuple(), data={'val_items_per_sec': val_items_per_sec}) if local_rank == 0: DLLogger.flush() if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/train.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** from tacotron2.text import text_to_sequence import models import torch import argparse import os import numpy as np from scipy.io.wavfile import write import matplotlib import matplotlib.pyplot as plt import sys import time import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from waveglow.denoiser import Denoiser def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-i', '--input', type=str, required=True, help='full path to the input text (phareses separated by new line)') parser.add_argument('-o', '--output', required=True, help='output folder to save audio (file per phrase)') parser.add_argument('--suffix', type=str, default="", help="output filename suffix") parser.add_argument('--tacotron2', type=str, help='full path to the Tacotron2 model checkpoint file') parser.add_argument('--waveglow', type=str, help='full path to the WaveGlow model checkpoint file') parser.add_argument('-s', '--sigma-infer', default=0.9, type=float) parser.add_argument('-d', '--denoising-strength', default=0.01, type=float) parser.add_argument('-sr', '--sampling-rate', default=22050, type=int, help='Sampling rate') run_mode = parser.add_mutually_exclusive_group() run_mode.add_argument('--fp16', action='store_true', help='Run inference with mixed precision') run_mode.add_argument('--cpu', action='store_true', help='Run inference on CPU') parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging') parser.add_argument('--include-warmup', action='store_true', help='Include warmup') parser.add_argument('--stft-hop-length', type=int, default=256, help='STFT hop length for estimating audio length from mel size') return parser def checkpoint_from_distributed(state_dict): """ Checks whether checkpoint was generated by DistributedDataParallel. DDP wraps model in additional "module.", it needs to be unwrapped for single GPU inference. :param state_dict: model's state dict """ ret = False for key, _ in state_dict.items(): if key.find('module.') != -1: ret = True break return ret def unwrap_distributed(state_dict): """ Unwraps model from DistributedDataParallel. DDP wraps model in additional "module.", it needs to be removed for single GPU inference. :param state_dict: model's state dict """ new_state_dict = {} for key, value in state_dict.items(): new_key = key.replace('module.', '') new_state_dict[new_key] = value return new_state_dict def load_and_setup_model(model_name, parser, checkpoint, fp16_run, cpu_run, forward_is_infer=False, jittable=False): model_parser = models.model_parser(model_name, parser, add_help=False) model_args, _ = model_parser.parse_known_args() model_config = models.get_model_config(model_name, model_args) model = models.get_model(model_name, model_config, cpu_run=cpu_run, forward_is_infer=forward_is_infer, jittable=jittable) if checkpoint is not None: if cpu_run: state_dict = torch.load(checkpoint, map_location=torch.device('cpu'))['state_dict'] else: state_dict = torch.load(checkpoint)['state_dict'] if checkpoint_from_distributed(state_dict): state_dict = unwrap_distributed(state_dict) model.load_state_dict(state_dict) if model_name == "WaveGlow": model = model.remove_weightnorm(model) model.eval() if fp16_run: model.half() return model # taken from tacotron2/data_function.py:TextMelCollate.__call__ def pad_sequences(batch): # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x) for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]] text_padded[i, :text.size(0)] = text return text_padded, input_lengths def prepare_input_sequence(texts, cpu_run=False): d = [] for i,text in enumerate(texts): d.append(torch.IntTensor( text_to_sequence(text, ['english_cleaners'])[:])) text_padded, input_lengths = pad_sequences(d) if not cpu_run: text_padded = text_padded.cuda().long() input_lengths = input_lengths.cuda().long() else: text_padded = text_padded.long() input_lengths = input_lengths.long() return text_padded, input_lengths class MeasureTime(): def __init__(self, measurements, key, cpu_run=False): self.measurements = measurements self.key = key self.cpu_run = cpu_run def __enter__(self): if not self.cpu_run: torch.cuda.synchronize() self.t0 = time.perf_counter() def __exit__(self, exc_type, exc_value, exc_traceback): if not self.cpu_run: torch.cuda.synchronize() self.measurements[self.key] = time.perf_counter() - self.t0 def main(): """ Launches text to speech (inference). Inference is executed on a single GPU or CPU. """ parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args, _ = parser.parse_known_args() log_file = os.path.join(args.output, args.log_file) DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, log_file), StdOutBackend(Verbosity.VERBOSE)]) for k,v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k:v}) DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'}) tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2, args.fp16, args.cpu, forward_is_infer=True) waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow, args.fp16, args.cpu, forward_is_infer=True, jittable=True) denoiser = Denoiser(waveglow) if not args.cpu: denoiser.cuda() waveglow.make_ts_scriptable() jitted_waveglow = torch.jit.script(waveglow) jitted_tacotron2 = torch.jit.script(tacotron2) texts = [] try: f = open(args.input, 'r') texts = f.readlines() except: print("Could not read file") sys.exit(1) if args.include_warmup: sequence = torch.randint(low=0, high=148, size=(1,50)).long() input_lengths = torch.IntTensor([sequence.size(1)]).long() if not args.cpu: sequence = sequence.cuda() input_lengths = input_lengths.cuda() for i in range(3): with torch.no_grad(): mel, mel_lengths, _ = jitted_tacotron2(sequence, input_lengths) _ = jitted_waveglow(mel) measurements = {} sequences_padded, input_lengths = prepare_input_sequence(texts, args.cpu) with torch.no_grad(), MeasureTime(measurements, "tacotron2_time", args.cpu): mel, mel_lengths, alignments = jitted_tacotron2(sequences_padded, input_lengths) with torch.no_grad(), MeasureTime(measurements, "waveglow_time", args.cpu): audios = jitted_waveglow(mel, sigma=args.sigma_infer) audios = audios.float() with torch.no_grad(), MeasureTime(measurements, "denoiser_time", args.cpu): audios = denoiser(audios, strength=args.denoising_strength).squeeze(1) print("Stopping after",mel.size(2),"decoder steps") tacotron2_infer_perf = mel.size(0)*mel.size(2)/measurements['tacotron2_time'] waveglow_infer_perf = audios.size(0)*audios.size(1)/measurements['waveglow_time'] DLLogger.log(step=0, data={"tacotron2_items_per_sec": tacotron2_infer_perf}) DLLogger.log(step=0, data={"tacotron2_latency": measurements['tacotron2_time']}) DLLogger.log(step=0, data={"waveglow_items_per_sec": waveglow_infer_perf}) DLLogger.log(step=0, data={"waveglow_latency": measurements['waveglow_time']}) DLLogger.log(step=0, data={"denoiser_latency": measurements['denoiser_time']}) DLLogger.log(step=0, data={"latency": (measurements['tacotron2_time']+measurements['waveglow_time']+measurements['denoiser_time'])}) for i, audio in enumerate(audios): plt.imshow(alignments[i].float().data.cpu().numpy().T, aspect="auto", origin="lower") figure_path = os.path.join(args.output,"alignment_"+str(i)+args.suffix+".png") plt.savefig(figure_path) audio = audio[:mel_lengths[i]*args.stft_hop_length] audio = audio/torch.max(torch.abs(audio)) audio_path = os.path.join(args.output,"audio_"+str(i)+args.suffix+".wav") write(audio_path, args.sampling_rate, audio.cpu().numpy()) DLLogger.flush() if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/inference.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse from train import main as main_train from inference_perf import main as main_infer def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--bench-class', type=str, choices=['train', 'perf-infer', 'perf-train'], required=True, help='Choose test class') return parser def main(): parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Testing') parser = parse_args(parser) args, unknown_args = parser.parse_known_args() if "train" in args.bench_class: main_train() else: main_infer() if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/main.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import sys import subprocess import torch def main(): argslist = list(sys.argv)[1:] world_size = torch.cuda.device_count() if '--world-size' in argslist: argslist[argslist.index('--world-size') + 1] = str(world_size) else: argslist.append('--world-size') argslist.append(str(world_size)) workers = [] for i in range(world_size): if '--rank' in argslist: argslist[argslist.index('--rank') + 1] = str(i) else: argslist.append('--rank') argslist.append(str(i)) stdout = None if i == 0 else subprocess.DEVNULL worker = subprocess.Popen( [str(sys.executable)] + argslist, stdout=stdout) workers.append(worker) returncode = 0 try: pending = len(workers) while pending > 0: for worker in workers: try: worker_returncode = worker.wait(1) except subprocess.TimeoutExpired: continue pending -= 1 if worker_returncode != 0: if returncode != 1: for worker in workers: worker.terminate() returncode = 1 except KeyboardInterrupt: print('Pressed CTRL-C, TERMINATING') for worker in workers: worker.terminate() for worker in workers: worker.wait() raise sys.exit(returncode) if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/multiproc.py
from .entrypoints import nvidia_waveglow
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/waveglow/__init__.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # *****************************************************************************\ import torch import tacotron2_common.layers as layers from tacotron2_common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class MelAudioLoader(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, args): self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text) self.max_wav_value = args.max_wav_value self.sampling_rate = args.sampling_rate self.stft = layers.TacotronSTFT( args.filter_length, args.hop_length, args.win_length, args.n_mel_channels, args.sampling_rate, args.mel_fmin, args.mel_fmax) self.segment_length = args.segment_length def get_mel_audio_pair(self, filename): audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) # Take segment if audio.size(0) >= self.segment_length: max_audio_start = audio.size(0) - self.segment_length audio_start = torch.randint(0, max_audio_start + 1, size=(1,)).item() audio = audio[audio_start:audio_start+self.segment_length] else: audio = torch.nn.functional.pad( audio, (0, self.segment_length - audio.size(0)), 'constant').data audio = audio / self.max_wav_value audio_norm = audio.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = melspec.squeeze(0) return (melspec, audio, len(audio)) def __getitem__(self, index): return self.get_mel_audio_pair(self.audiopaths_and_text[index][0]) def __len__(self): return len(self.audiopaths_and_text) def batch_to_gpu(batch): x, y, len_y = batch x = to_gpu(x).float() y = to_gpu(y).float() len_y = to_gpu(torch.sum(len_y)) return ((x, y), y, len_y)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/waveglow/data_function.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch torch._C._jit_set_autocast_mode(False) import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels : int): n_channels_int = n_channels in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts class Invertible1x1Conv(torch.nn.Module): """ The layer outputs both the convolution, and the log determinant of its weight matrix. If reverse=True it does convolution with inverse """ def __init__(self, c): super(Invertible1x1Conv, self).__init__() self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, bias=False) # Sample a random orthonormal matrix to initialize weights W = torch.linalg.qr(torch.FloatTensor(c, c).normal_())[0] # Ensure determinant is 1.0 not -1.0 if torch.det(W) < 0: W[:, 0] = -1 * W[:, 0] W = W.view(c, c, 1) W = W.contiguous() self.conv.weight.data = W def forward(self, z): # shape batch_size, group_size, n_of_groups = z.size() W = self.conv.weight.squeeze() # Forward computation log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0).float()).squeeze() z = self.conv(z) return z, log_det_W def infer(self, z): self._invert() return F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) def _invert(self): if not hasattr(self, 'W_inverse'): W = self.conv.weight.squeeze() self.W_inverse = W.float().inverse().unsqueeze(-1).to(W.dtype) class WN(torch.nn.Module): """ This is the WaveNet like layer for the affine coupling. The primary difference from WaveNet is the convolutions need not be causal. There is also no dilation size reset. The dilation only doubles on each layer """ def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size): super(WN, self).__init__() assert(kernel_size % 2 == 1) assert(n_channels % 2 == 0) self.n_layers = n_layers self.n_channels = n_channels self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.cond_layers = torch.nn.ModuleList() start = torch.nn.Conv1d(n_in_channels, n_channels, 1) start = torch.nn.utils.weight_norm(start, name='weight') self.start = start # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end for i in range(n_layers): dilation = 2 ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size, dilation=dilation, padding=padding) in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') self.in_layers.append(in_layer) cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1) cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') self.cond_layers.append(cond_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * n_channels else: res_skip_channels = n_channels res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm( res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, audio, spect): audio = self.start(audio) output = 0 for i, (in_layer, cond_layer, res_skip_layer) in enumerate( zip(self.in_layers, self.cond_layers, self.res_skip_layers)): acts = fused_add_tanh_sigmoid_multiply( in_layer(audio), cond_layer(spect), self.n_channels) res_skip_acts = res_skip_layer(acts) if i < self.n_layers - 1: audio = res_skip_acts[:, :self.n_channels, :] + audio skip_acts = res_skip_acts[:, self.n_channels:, :] else: skip_acts = res_skip_acts output += skip_acts return self.end(output) class WaveGlow(torch.nn.Module): def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, n_early_size, WN_config): super(WaveGlow, self).__init__() self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, n_mel_channels, 1024, stride=256) assert(n_group % 2 == 0) self.n_flows = n_flows self.n_group = n_group self.n_early_every = n_early_every self.n_early_size = n_early_size self.WN = torch.nn.ModuleList() self.convinv = torch.nn.ModuleList() n_half = int(n_group / 2) # Set up layers with the right sizes based on how many dimensions # have been output already n_remaining_channels = n_group for k in range(n_flows): if k % self.n_early_every == 0 and k > 0: n_half = n_half - int(self.n_early_size / 2) n_remaining_channels = n_remaining_channels - self.n_early_size self.convinv.append(Invertible1x1Conv(n_remaining_channels)) self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config)) self.n_remaining_channels = n_remaining_channels def forward(self, forward_input): """ forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames forward_input[1] = audio: batch x time """ spect, audio = forward_input # Upsample spectrogram to size of audio spect = self.upsample(spect) assert(spect.size(2) >= audio.size(1)) if spect.size(2) > audio.size(1): spect = spect[:, :, :audio.size(1)] spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) spect = spect.permute(0, 2, 1) audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) output_audio = [] log_s_list = [] log_det_W_list = [] for k in range(self.n_flows): if k % self.n_early_every == 0 and k > 0: output_audio.append(audio[:, :self.n_early_size, :]) audio = audio[:, self.n_early_size:, :] audio, log_det_W = self.convinv[k](audio) log_det_W_list.append(log_det_W) n_half = int(audio.size(1) // 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:, :] output = self.WN[k](audio_0, spect) log_s = output[:, n_half:, :] b = output[:, :n_half, :] audio_1 = torch.exp(log_s) * audio_1 + b log_s_list.append(log_s) audio = torch.cat([audio_0, audio_1], 1) output_audio.append(audio) return torch.cat(output_audio, 1), log_s_list, log_det_W_list def infer(self, spect, sigma=1.0): spect = self.upsample(spect) # trim conv artifacts. maybe pad spec to kernel multiple time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] spect = spect[:, :, :-time_cutoff] spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) spect = spect.permute(0, 2, 1) audio = torch.randn(spect.size(0), self.n_remaining_channels, spect.size(2), device=spect.device).to(spect.dtype) audio = torch.autograd.Variable(sigma * audio) for k in reversed(range(self.n_flows)): n_half = int(audio.size(1) / 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:, :] output = self.WN[k](audio_0, spect) s = output[:, n_half:, :] b = output[:, :n_half, :] audio_1 = (audio_1 - b) / torch.exp(s) audio = torch.cat([audio_0, audio_1], 1) audio = self.convinv[k].infer(audio) if k % self.n_early_every == 0 and k > 0: z = torch.randn(spect.size(0), self.n_early_size, spect.size( 2), device=spect.device).to(spect.dtype) audio = torch.cat((sigma * z, audio), 1) audio = audio.permute( 0, 2, 1).contiguous().view( audio.size(0), -1).data return audio def infer_onnx(self, spect, z, sigma=0.9): spect = self.upsample(spect) # trim conv artifacts. maybe pad spec to kernel multiple time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] spect = spect[:, :, :-time_cutoff] length_spect_group = spect.size(2)//8 mel_dim = 80 batch_size = spect.size(0) spect = spect.view((batch_size, mel_dim, length_spect_group, self.n_group)) spect = spect.permute(0, 2, 1, 3) spect = spect.contiguous() spect = spect.view((batch_size, length_spect_group, self.n_group*mel_dim)) spect = spect.permute(0, 2, 1) spect = spect.contiguous() audio = z[:, :self.n_remaining_channels, :] z = z[:, self.n_remaining_channels:self.n_group, :] audio = sigma*audio for k in reversed(range(self.n_flows)): n_half = int(audio.size(1) // 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:(n_half+n_half), :] output = self.WN[k](audio_0, spect) s = output[:, n_half:(n_half+n_half), :] b = output[:, :n_half, :] audio_1 = (audio_1 - b) / torch.exp(s) audio = torch.cat([audio_0, audio_1], 1) audio = self.convinv[k].infer(audio) if k % self.n_early_every == 0 and k > 0: audio = torch.cat((z[:, :self.n_early_size, :], audio), 1) z = z[:, self.n_early_size:self.n_group, :] audio = audio.permute(0,2,1).contiguous().view(batch_size, (length_spect_group * self.n_group)) return audio def _infer_ts(self, spect, sigma : float=1.0): spect = self.upsample(spect) # trim conv artifacts. maybe pad spec to kernel multiple time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] spect = spect[:, :, :-time_cutoff] spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) spect = spect.permute(0, 2, 1) audio = torch.randn(spect.size(0), self.n_remaining_channels, spect.size(2), device=spect.device, dtype=spect.dtype) audio *= sigma for kk, (wn, convinv) in enumerate(zip(self.WN_rev, self.convinv_rev)): k = self.n_flows - kk - 1 n_half = int(audio.size(1) / 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:, :] output = wn(audio_0, spect) s = output[:, n_half:, :] b = output[:, :n_half, :] audio_1 = (audio_1 - b) / torch.exp(s) audio = torch.cat([audio_0, audio_1], 1) audio = convinv.infer(audio) if k % self.n_early_every == 0 and k > 0: z = torch.randn(spect.size(0), self.n_early_size, spect.size(2), device=spect.device, dtype=spect.dtype) audio = torch.cat((sigma * z, audio), 1) return audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data def make_ts_scriptable(self, forward_is_infer=True): self.WN_rev = torch.nn.ModuleList(reversed(self.WN)) self.convinv_rev = torch.nn.ModuleList(reversed(self.convinv)) for conv in self.convinv_rev: conv._invert() self.infer = self._infer_ts if forward_is_infer: self.forward = self._infer_ts @staticmethod def remove_weightnorm(model): waveglow = model for WN in waveglow.WN: WN.start = torch.nn.utils.remove_weight_norm(WN.start) WN.in_layers = remove(WN.in_layers) WN.cond_layers = remove(WN.cond_layers) WN.res_skip_layers = remove(WN.res_skip_layers) return waveglow def remove(conv_list): new_conv_list = torch.nn.ModuleList() for old_conv in conv_list: old_conv = torch.nn.utils.remove_weight_norm(old_conv) new_conv_list.append(old_conv) return new_conv_list
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/waveglow/model.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import sys sys.path.append('tacotron2') import torch from tacotron2_common.layers import STFT class Denoiser(torch.nn.Module): """ Removes model bias from audio produced with waveglow """ def __init__(self, waveglow, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros'): super(Denoiser, self).__init__() device = waveglow.upsample.weight.device dtype = waveglow.upsample.weight.dtype self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), win_length=win_length).to(device) if mode == 'zeros': mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device) elif mode == 'normal': mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device) else: raise Exception("Mode {} if not supported".format(mode)) with torch.no_grad(): bias_audio = waveglow.infer(mel_input, sigma=0.0).float() bias_spec, _ = self.stft.transform(bias_audio) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) def forward(self, audio, strength=0.1): audio_spec, audio_angles = self.stft.transform(audio) audio_spec_denoised = audio_spec - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) return audio_denoised
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/waveglow/denoiser.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch class WaveGlowLoss(torch.nn.Module): def __init__(self, sigma=1.0): super(WaveGlowLoss, self).__init__() self.sigma = sigma def forward(self, model_output, clean_audio): # clean_audio is unused; z, log_s_list, log_det_W_list = model_output for i, log_s in enumerate(log_s_list): if i == 0: log_s_total = torch.sum(log_s) log_det_W_total = log_det_W_list[i] else: log_s_total = log_s_total + torch.sum(log_s) log_det_W_total += log_det_W_list[i] loss = torch.sum( z * z) / (2 * self.sigma * self.sigma) - log_s_total - log_det_W_total # noqa: E501 return loss / (z.size(0) * z.size(1) * z.size(2))
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/waveglow/loss_function.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse def waveglow_parser(parent, add_help=False): """ Parse commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help) # misc parameters parser.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') # glow parameters parser.add_argument('--flows', default=12, type=int, help='Number of steps of flow') parser.add_argument('--groups', default=8, type=int, help='Number of samples in a group processed by the steps of flow') parser.add_argument('--early-every', default=4, type=int, help='Determines how often (i.e., after how many coupling layers) \ a number of channels (defined by --early-size parameter) are output\ to the loss function') parser.add_argument('--early-size', default=2, type=int, help='Number of channels output to the loss function') parser.add_argument('--sigma', default=1.0, type=float, help='Standard deviation used for sampling from Gaussian') parser.add_argument('--segment-length', default=4000, type=int, help='Segment length (audio samples) processed per iteration') # wavenet parameters wavenet = parser.add_argument_group('WaveNet parameters') wavenet.add_argument('--wn-kernel-size', default=3, type=int, help='Kernel size for dialted convolution in the affine coupling layer (WN)') wavenet.add_argument('--wn-channels', default=512, type=int, help='Number of channels in WN') wavenet.add_argument('--wn-layers', default=8, type=int, help='Number of layers in WN') return parser
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/waveglow/arg_parser.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import urllib.request import torch import os import sys # from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py def checkpoint_from_distributed(state_dict): """ Checks whether checkpoint was generated by DistributedDataParallel. DDP wraps model in additional "module.", it needs to be unwrapped for single GPU inference. :param state_dict: model's state dict """ ret = False for key, _ in state_dict.items(): if key.find('module.') != -1: ret = True break return ret # from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py def unwrap_distributed(state_dict): """ Unwraps model from DistributedDataParallel. DDP wraps model in additional "module.", it needs to be removed for single GPU inference. :param state_dict: model's state dict """ new_state_dict = {} for key, value in state_dict.items(): new_key = key.replace('module.1.', '') new_key = new_key.replace('module.', '') new_state_dict[new_key] = value return new_state_dict def _download_checkpoint(checkpoint, force_reload): model_dir = os.path.join(torch.hub._get_torch_home(), 'checkpoints') if not os.path.exists(model_dir): os.makedirs(model_dir) ckpt_file = os.path.join(model_dir, os.path.basename(checkpoint)) if not os.path.exists(ckpt_file) or force_reload: sys.stderr.write('Downloading checkpoint from {}\n'.format(checkpoint)) urllib.request.urlretrieve(checkpoint, ckpt_file) return ckpt_file def nvidia_waveglow(pretrained=True, **kwargs): """Constructs a WaveGlow model (nn.module with additional infer(input) method). For detailed information on model input and output, training recipies, inference and performance visit: github.com/NVIDIA/DeepLearningExamples and/or ngc.nvidia.com Args: pretrained (bool): If True, returns a model pretrained on LJ Speech dataset. model_math (str, 'fp32'): returns a model in given precision ('fp32' or 'fp16') """ from waveglow import model as waveglow fp16 = "model_math" in kwargs and kwargs["model_math"] == "fp16" force_reload = "force_reload" in kwargs and kwargs["force_reload"] if pretrained: if fp16: checkpoint = 'https://api.ngc.nvidia.com/v2/models/nvidia/waveglow_ckpt_amp/versions/19.09.0/files/nvidia_waveglowpyt_fp16_20190427' else: checkpoint = 'https://api.ngc.nvidia.com/v2/models/nvidia/waveglow_ckpt_fp32/versions/19.09.0/files/nvidia_waveglowpyt_fp32_20190427' ckpt_file = _download_checkpoint(checkpoint, force_reload) ckpt = torch.load(ckpt_file) state_dict = ckpt['state_dict'] if checkpoint_from_distributed(state_dict): state_dict = unwrap_distributed(state_dict) config = ckpt['config'] else: config = {'n_mel_channels': 80, 'n_flows': 12, 'n_group': 8, 'n_early_every': 4, 'n_early_size': 2, 'WN_config': {'n_layers': 8, 'kernel_size': 3, 'n_channels': 512}} for k,v in kwargs.items(): if k in config.keys(): config[k] = v elif k in config['WN_config'].keys(): config['WN_config'][k] = v m = waveglow.WaveGlow(**config) if pretrained: m.load_state_dict(state_dict) return m
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/waveglow/entrypoints.py
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import json import torch import sys import os from scipy.signal import get_window import librosa.util as librosa_util WAVEGLOW_CONFIG = { "n_mel_channels": 80, "n_flows": 12, "n_group": 8, "n_early_every": 4, "n_early_size": 2, "WN_config": { "n_layers": 8, "kernel_size": 3, "n_channels": 256 } } def gen_win_sq( denoiser): window = denoiser.stft.window win_length = denoiser.stft.win_length n_fft = denoiser.stft.filter_length # Compute the squared window at the desired length win_sq = get_window(window, win_length, fftbins=True) win_sq = librosa_util.normalize(win_sq, norm=None)**2 win_sq = librosa_util.pad_center(win_sq, n_fft) return win_sq if len(sys.argv) < 4 or len(sys.argv) > 5: print("USAGE:") print( "\t%s <tacotron2 directory> <waveglow checkpoint> <json output> [strength, default=0.1]" % sys.argv[0]) sys.exit(1) json_path = sys.argv[3] sys.path.append(sys.argv[1]) # must be imported after path is modified from import_utils import load_waveglow from waveglow.denoiser import Denoiser strength = 0.1 if len(sys.argv) == 5: strength = float(sys.argv[4]) print("Building denoiser") waveglow = load_waveglow(sys.argv[2], WAVEGLOW_CONFIG) denoiser = Denoiser(waveglow).cuda() statedict = {} statedict["denoiser.stft.forward_basis"] = denoiser.stft.forward_basis.cpu( ).numpy().tolist() statedict["denoiser.stft.inverse_basis"] = denoiser.stft.inverse_basis.cpu( ).numpy().tolist() statedict["denoiser.stft.win_sq"] = gen_win_sq(denoiser).tolist() statedict["denoiser.bias_spec"] = ( denoiser.bias_spec*strength).cpu().numpy().tolist() with open(json_path, "w") as fout: json.dump(statedict, fout, indent=2) print("Wrote to '%s'" % json_path)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/denoiser_to_json.py
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import sys if len(sys.argv) != 3: print("Must specify path to PyTorch Tacotron2 containing 'text' module o load and text file to write") sys.exit(1) modulePath = sys.argv[1] outputPath = sys.argv[2] sys.path.append(modulePath) from text import symbols i=0 with open(outputPath, "w") as fout: print("# sequence-number symbol", file=fout) for s in symbols: print("%d %s" % (i, s), file=fout) i+=1 print("Successfully wrote %d symbols to '%s'." % (i, outputPath))
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/export_symbols.py
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import json import sys import onnx import numpy as np from scipy.io.wavfile import write import argparse import torch args = None def convert_conv_1d_to_2d(conv1d): conv2d = torch.nn.Conv2d(conv1d.weight.size(1), conv1d.weight.size(0), (conv1d.weight.size(2), 1), stride=(conv1d.stride[0], 1), dilation=(conv1d.dilation[0], 1), padding=(conv1d.padding[0], 0)) conv2d.weight.data[:, :, :, 0] = conv1d.weight.data conv2d.bias.data = conv1d.bias.data return conv2d def convert_WN_1d_to_2d_(WN): """ Modifies the WaveNet like affine coupling layer in-place to use 2-d convolutions """ WN.start = convert_conv_1d_to_2d(WN.start) WN.end = convert_conv_1d_to_2d(WN.end) for i in range(len(WN.in_layers)): WN.in_layers[i] = convert_conv_1d_to_2d(WN.in_layers[i]) for i in range(len(WN.res_skip_layers)): WN.res_skip_layers[i] = convert_conv_1d_to_2d(WN.res_skip_layers[i]) for i in range(len(WN.res_skip_layers)): WN.cond_layers[i] = convert_conv_1d_to_2d(WN.cond_layers[i]) def convert_convinv_1d_to_2d(convinv): """ Takes an invertible 1x1 1-d convolution and returns a 2-d convolution that does the inverse """ conv2d = torch.nn.Conv2d(convinv.W_inverse.size(1), convinv.W_inverse.size(0), 1, bias=False) conv2d.weight.data[:, :, :, 0] = convinv.W_inverse.data return conv2d def convert_1d_to_2d_(glow): """ Caffe2 and TensorRT don't seem to support 1-d convolutions or properly convert ONNX exports with 1d convolutions to 2d convolutions yet, so we do the conversion to 2-d convolutions before ONNX export """ # Convert upsample to 2d upsample = torch.nn.ConvTranspose2d(glow.upsample.weight.size(0), glow.upsample.weight.size(1), (glow.upsample.weight.size(2), 1), stride=(glow.upsample.stride[0], 1)) upsample.weight.data[:, :, :, 0] = glow.upsample.weight.data upsample.bias.data = glow.upsample.bias.data glow.upsample = upsample # Convert WN to 2d for WN in glow.WN: convert_WN_1d_to_2d_(WN) # Convert invertible conv to 2d for i in range(len(glow.convinv)): glow.convinv[i] = convert_convinv_1d_to_2d(glow.convinv[i]) def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): in_act = input_a+input_b in_left = in_act[:, 0:n_channels, :, :] in_right = in_act[:, n_channels:2*n_channels, :, :] t_act = torch.tanh(in_left) s_act = torch.sigmoid(in_right) acts = t_act * s_act return acts def WN_forward(self, forward_input): """ This is a forward replacement for the WN forward. This is required because the code was written for 1d convs which isn't yet supported from ONNX exports. """ audio, spect = forward_input audio = self.start(audio) for i in range(self.n_layers): acts = fused_add_tanh_sigmoid_multiply( self.in_layers[i](audio), self.cond_layers[i](spect), self.n_channels) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: audio = res_skip_acts[:, 0:self.n_channels, :, :] + audio skip_acts = res_skip_acts[:, self.n_channels:2*self.n_channels, :, :] else: skip_acts = res_skip_acts if i == 0: output = skip_acts else: output = skip_acts + output return self.end(output) def infer_o(self, spect, z): """ In order to for the trace to work running through ONNX with 2d convolutions we need to overwrite the forward method. All shape information is pre-calculated so ONNX doesn't export "Dynamic" outputs which are not yet suported by TensorRT """ batch_size = spect.size(0) spect = spect.permute(0, 3, 2, 1).contiguous() spect = self.upsample(spect) spect = torch.squeeze(spect, 3) spect = spect.view(batch_size, self.upsample_weight_size, self.length_spect_group, self.n_group) spect = spect.permute(0, 2, 1, 3) spect = spect.contiguous() spect = spect.view(batch_size, self.length_spect_group, self.upsample_weight_size*self.n_group) spect = spect.permute(0, 2, 1) spect = torch.unsqueeze(spect, 3) spect = spect.contiguous() audio = z[:, :self.n_remaining_channels, :, :] z = z[:, self.n_remaining_channels:self.n_group, :, :] for k in reversed(range(self.n_flows)): n_half = self.n_halves[k] audio_0 = audio[:, 0:n_half, :, :] audio_1 = audio[:, n_half:2*n_half, :, :] output = self.WN[k]((audio_0, spect)) s = output[:, n_half:2*n_half, :, :] b = output[:, 0:n_half, :, :] audio_1 = (audio_1 - b)/torch.exp(s) audio_0 = audio_0.expand(audio_1.size(0), audio_0.size(1), audio_0.size(2), audio_0.size(3)) audio = torch.cat([audio_0, audio_1], 1) audio = self.convinv[k](audio) if k % self.n_early_every == 0 and k > 0: zb = z[:, 0:self.n_early_size, :, :].expand(audio.size(0), self.n_early_size, z.size(2), z.size(3)) audio = torch.cat((zb, audio), 1) z = z[:, self.n_early_size:self.n_group - self.n_remaining_channels, :, :] audio = torch.squeeze(audio, 3) audio = audio.permute(0, 2, 1).contiguous().view( audio.size(0), (self.length_spect_group * self.n_group)) return audio def main(waveglow_path, output_path, batch_size, length_mels): """ Takes a waveglow model, a batch size, and a length in mels about outputs a static ONNX representation using 2D convoultions """ torch.manual_seed(0) model = load_waveglow(waveglow_path, waveglow_config) length_spect = length_mels length_samples = 768 + 256*length_spect model.upsample_weight_size = model.upsample.weight.size(0) spect = torch.cuda.FloatTensor( batch_size, model.upsample_weight_size, length_spect).normal_() spect = torch.autograd.Variable(spect.cuda(), requires_grad=False) # Run inference because it forces inverses to be calculated with torch.no_grad(): test_out1 = model.infer(spect) assert(length_samples % model.n_group == 0) model.length_spect_group = int(length_samples / model.n_group) # Pre-calculating the sizes of noise to use so it's not dynamic n_halves = [] n_half = int(model.n_remaining_channels/2) for k in reversed(range(model.n_flows)): n_halves.append(n_half) if k % model.n_early_every == 0 and k > 0: n_half = n_half + int(model.n_early_size/2) n_halves.reverse() model.n_halves = n_halves spect = torch.cuda.FloatTensor( batch_size, 1, length_spect, model.upsample.weight.size(0)).normal_() z = torch.cuda.FloatTensor( 1, model.n_group, model.length_spect_group, 1).normal_() spect = torch.autograd.Variable(spect.cuda(), requires_grad=False) z = torch.autograd.Variable(z, requires_grad=False) # Replace old forward with inference glow.WaveGlow.forward = infer_o #glow.WN.forward = WN_forward # Convert whole model to 2d convolutions convert_1d_to_2d_(model) model.cuda() # Get output for comparison with Caffe2 with torch.no_grad(): test_out2 = model(spect, z) # Export model torch.onnx.export(model, (spect, z), output_path, dynamic_axes={'spect': {0: 'batch_size'}, 'audio': {0: 'batch_size'}}, input_names=['spect', 'z'], output_names=['audio'], opset_version=10, verbose=True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-w', '--waveglow_path', help='Path to waveglow decoder checkpoint with model', required=True) parser.add_argument('-W', '--tacotron2_home', help='Path to DeepLearningExamples/PyTorch/SpeechSynthesis/Tacotron2 directory.', required=True) parser.add_argument('-o', "--onnx_path", help="Path to output ONNX file", required=True) parser.add_argument("--batch_size", default=1, type=int) parser.add_argument("--length_mels", default=160, type=int) # add wave glow arguments waveglow = parser.add_argument_group("WaveGlow parameters") waveglow.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') # glow parameters waveglow.add_argument('--flows', default=12, type=int, help='Number of steps of flow') waveglow.add_argument('--groups', default=8, type=int, help='Number of samples in a group processed by the steps of flow') waveglow.add_argument('--early-every', default=4, type=int, help='Determines how often (i.e., after how many coupling layers) \ a number of channels (defined by --early-size parameter) are output\ to the loss function') waveglow.add_argument('--early-size', default=2, type=int, help='Number of channels output to the loss function') waveglow.add_argument('--sigma', default=1.0, type=float, help='Standard deviation used for sampling from Gaussian') waveglow.add_argument('--segment-length', default=4000, type=int, help='Segment length (audio samples) processed per iteration') # wavenet parameters wavenet = waveglow.add_argument_group('WaveNet parameters') wavenet.add_argument('--wn-kernel-size', default=3, type=int, help='Kernel size for dialted convolution in the affine coupling layer (WN)') wavenet.add_argument('--wn-channels', default=256, type=int, help='Number of channels in WN') wavenet.add_argument('--wn-layers', default=8, type=int, help='Number of layers in WN') args = parser.parse_args() # do imports as needed sys.path.append(args.tacotron2_home) import waveglow.model as glow from import_utils import load_waveglow global waveglow_config waveglow_config = { "n_mel_channels": args.n_mel_channels, "n_flows": args.flows, "n_group": args.groups, "n_early_every": args.early_every, "n_early_size": args.early_size, "WN_config": { "n_layers": args.wn_layers, "kernel_size": args.wn_kernel_size, "n_channels": args.wn_channels } } main(args.waveglow_path, args.onnx_path, args.batch_size, args.length_mels)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/waveglow_to_onnx.py
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import json import torch import sys if len(sys.argv) != 3: print("Must specify statedict to load and json to write") sys.exit(1) statedict_path = sys.argv[1] json_path = sys.argv[2] print("Reading from '%s' and writing to '%s'." % (statedict_path, json_path)) statedict = dict(torch.load(statedict_path)["state_dict"]) outdict = {} for k, v in dict(statedict).items(): if k.startswith("module."): k = k[len("module."):] print(k) outdict[k] = v.cpu().numpy().tolist() with open(json_path, "w") as fout: json.dump(outdict, fout) print("Wrote to '%s'" % json_path)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/tacotron2_to_json.py
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from .waveglow import load_waveglow
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/import_utils/__init__.py
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import pickle import torch from waveglow.model import WaveGlow def split_cond_layers(model): for WN in model.WN: if hasattr(WN, "cond_layer"): n_layers = len(WN.res_skip_layers) conv_weights = WN.cond_layer.weight conv_bias = WN.cond_layer.bias conv_stride = WN.cond_layer.stride conv_dilation = WN.cond_layer.dilation conv_padding = WN.cond_layer.padding num_in_channels = conv_weights.size(1) num_out_channels = conv_weights.size(0)//n_layers kernel_size = conv_weights.size(2) WN.cond_layers = [] for i in range(n_layers): layer = torch.nn.Conv1d( in_channels=num_in_channels, out_channels=num_out_channels, kernel_size=kernel_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation) layer.weight.data[:, :, :] = conv_weights.data[ i*num_out_channels:(i+1)*num_out_channels, :, :] layer.bias.data[:] = conv_bias.data[ i*num_out_channels:(i+1)*num_out_channels] layer = torch.nn.utils.weight_norm(layer, name='weight') WN.cond_layers.append(layer) return model def load_waveglow(filename, waveglow_config): class RenamingUnpickler(pickle.Unpickler): def find_class(self, module, name): if module == 'glow': module = 'waveglow.model' return super().find_class(module, name) class RenamingPickleModule: def load(self, f, *args, **kw_args): return self.Unpickler(f, *args, **kw_args).load() def Unpickler(self, f, **pickle_load_args): return RenamingUnpickler(f, **pickle_load_args) pickle_module = RenamingPickleModule() blob = torch.load(filename, pickle_module=pickle_module) if 'state_dict' in blob: waveglow = WaveGlow(**waveglow_config).cuda() state_dict = {} for key, value in blob["state_dict"].items(): newKey = key if key.startswith("module."): newKey = key[len("module."):] state_dict[newKey] = value waveglow.load_state_dict(state_dict) else: waveglow = blob['model'] waveglow = split_cond_layers(waveglow) waveglow = waveglow.remove_weightnorm(waveglow) waveglow.cuda().eval() return waveglow
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/import_utils/waveglow.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import numpy as np from scipy.signal import get_window import librosa.util as librosa_util def window_sumsquare(window, n_frames, hop_length=200, win_length=800, n_fft=800, dtype=np.float32, norm=None): """ # from librosa 0.6 Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function """ if win_length is None: win_length = n_fft n = n_fft + hop_length * (n_frames - 1) x = np.zeros(n, dtype=dtype) # Compute the squared window at the desired length win_sq = get_window(window, win_length, fftbins=True) win_sq = librosa_util.normalize(win_sq, norm=norm)**2 win_sq = librosa_util.pad_center(win_sq, size=n_fft) # Fill the envelope for i in range(n_frames): sample = i * hop_length x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))] return x def griffin_lim(magnitudes, stft_fn, n_iters=30): """ PARAMS ------ magnitudes: spectrogram magnitudes stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods """ angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) angles = angles.astype(np.float32) angles = torch.autograd.Variable(torch.from_numpy(angles)) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) for i in range(n_iters): _, angles = stft_fn.transform(signal) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) return signal def dynamic_range_compression(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return torch.exp(x) / C
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tacotron2_common/audio_processing.py
""" BSD 3-Clause License Copyright (c) 2017, Prem Seetharaman All rights reserved. * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import torch import numpy as np import torch.nn.functional as F from torch.autograd import Variable from scipy.signal import get_window from librosa.util import pad_center, tiny from tacotron2_common.audio_processing import window_sumsquare class STFT(torch.nn.Module): """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): super(STFT, self).__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]) forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32)) if window is not None: assert(filter_length >= win_length) # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, size=filter_length) fft_window = torch.from_numpy(fft_window).float() # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.register_buffer('forward_basis', forward_basis.float()) self.register_buffer('inverse_basis', inverse_basis.float()) def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), mode='reflect') input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0) cutoff = int((self.filter_length / 2) + 1) real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) phase = torch.autograd.Variable( torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1) inverse_transform = F.conv_transpose2d( recombine_magnitude_phase.unsqueeze(-1), Variable(self.inverse_basis.unsqueeze(-1), requires_grad=False), stride=(self.hop_length,1), padding=(0,0)) inverse_transform = inverse_transform.squeeze(-1) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0]) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length/2):] inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tacotron2_common/stft.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import numpy as np from scipy.io.wavfile import read import torch import os import argparse import json class ParseFromConfigFile(argparse.Action): def __init__(self, option_strings, type, dest, help=None, required=False): super(ParseFromConfigFile, self).__init__(option_strings=option_strings, type=type, dest=dest, help=help, required=required) def __call__(self, parser, namespace, values, option_string): with open(values, 'r') as f: data = json.load(f) for group in data.keys(): for k,v in data[group].items(): underscore_k = k.replace('-', '_') setattr(namespace, underscore_k, v) def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype) mask = (ids < lengths.unsqueeze(1)).byte() mask = torch.le(mask, 0) return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(dataset_path, filename, split="|"): with open(filename, encoding='utf-8') as f: def split_line(root, line): parts = line.strip().split(split) if len(parts) > 2: raise Exception( "incorrect line format for file: {}".format(filename)) path = os.path.join(root, parts[0]) text = parts[1] return path,text filepaths_and_text = [split_line(dataset_path, line) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return x
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tacotron2_common/utils.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch from librosa.filters import mel as librosa_mel_fn from tacotron2_common.audio_processing import dynamic_range_compression, dynamic_range_decompression from tacotron2_common.stft import STFT class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super(ConvNorm, self).__init__() if padding is None: assert(kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): return self.conv(signal) class TacotronSTFT(torch.nn.Module): def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0): super(TacotronSTFT, self).__init__() self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate self.stft_fn = STFT(filter_length, hop_length, win_length) mel_basis = librosa_mel_fn( sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax ) mel_basis = torch.from_numpy(mel_basis).float() self.register_buffer('mel_basis', mel_basis) def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def mel_spectrogram(self, y): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert(torch.min(y.data) >= -1) assert(torch.max(y.data) <= 1) magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data mel_output = torch.matmul(self.mel_basis, magnitudes) mel_output = self.spectral_normalize(mel_output) return mel_output
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tacotron2_common/layers.py
# ***************************************************************************** # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import argparse def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument("--trtis_model_name", type=str, default='waveglow', help="exports to appropriate directory for TRTIS") parser.add_argument("--trtis_model_version", type=int, default=1, help="exports to appropriate directory for TRTIS") parser.add_argument('--fp16', action='store_true', help='inference with mixed precision') return parser def main(): parser = argparse.ArgumentParser( description='PyTorch WaveGlow TRTIS config exporter') parser = parse_args(parser) args = parser.parse_args() # prepare repository model_folder = os.path.join('./trtis_repo', args.trtis_model_name) version_folder = os.path.join(model_folder, str(args.trtis_model_version)) if not os.path.exists(version_folder): os.makedirs(version_folder) # build the config for TRTIS config_filename = os.path.join(model_folder, "config.pbtxt") config_template = r""" name: "{model_name}" platform: "tensorrt_plan" default_model_filename: "waveglow_fp16.engine" max_batch_size: 1 input {{ name: "mel" data_type: {fp_type} dims: [80, -1, 1] }} input {{ name: "z" data_type: {fp_type} dims: [8, -1, 1] }} output {{ name: "audio" data_type: {fp_type} dims: [-1] }} """ config_values = { "model_name": args.trtis_model_name, "fp_type": "TYPE_FP16" if args.fp16 else "TYPE_FP32" } with open(model_folder + "/config.pbtxt", "w") as file: final_config_str = config_template.format_map(config_values) file.write(final_config_str) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/exports/export_waveglow_trt_config.py
# ***************************************************************************** # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import argparse import sys sys.path.append('./') from inference import checkpoint_from_distributed, unwrap_distributed, load_and_setup_model def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--tacotron2', type=str, required=True, help='full path to the Tacotron2 model checkpoint file') parser.add_argument('-o', '--output', type=str, default="trtis_repo/tacotron/1/model.pt", help='filename for the Tacotron 2 TorchScript model') parser.add_argument('--fp16', action='store_true', help='inference with mixed precision') return parser def main(): parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args = parser.parse_args() tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2, amp_run=args.fp16, cpu_run=False, forward_is_infer=True) jitted_tacotron2 = torch.jit.script(tacotron2) torch.jit.save(jitted_tacotron2, args.output) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/exports/export_tacotron2_ts.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch from torch import nn from torch.nn import functional as F import argparse import sys sys.path.append('./') import models from inference import checkpoint_from_distributed, unwrap_distributed, load_and_setup_model, prepare_input_sequence from tacotron2_common.utils import to_gpu, get_mask_from_lengths def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--tacotron2', type=str, help='full path to the Tacotron2 model checkpoint file') parser.add_argument('-o', '--output', type=str, required=True, help='Directory for the exported Tacotron 2 ONNX model') parser.add_argument('--fp16', action='store_true', help='Export with half precision to ONNX') return parser def encoder_infer(self, x, input_lengths): device = x.device for conv in self.convolutions: x = F.dropout(F.relu(conv(x.to(device))), 0.5, False) x = x.transpose(1, 2) input_lengths_cpu = input_lengths[:] # TODO input_lengths_cpu = input_lengths_cpu.cpu().numpy() # TODO x = nn.utils.rnn.pack_padded_sequence( x, input_lengths_cpu, batch_first=True) outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True) lens = input_lengths*2 return outputs, lens class Encoder(torch.nn.Module): def __init__(self, tacotron2): super(Encoder, self).__init__() self.tacotron2 = tacotron2 self.tacotron2.encoder.lstm.flatten_parameters() self.infer = encoder_infer def forward(self, sequence, sequence_lengths): embedded_inputs = self.tacotron2.embedding(sequence).transpose(1, 2) memory, lens = self.infer(self.tacotron2.encoder, embedded_inputs, sequence_lengths) processed_memory = self.tacotron2.decoder.attention_layer.memory_layer(memory) return memory, processed_memory, lens class Postnet(torch.nn.Module): def __init__(self, tacotron2): super(Postnet, self).__init__() self.tacotron2 = tacotron2 def forward(self, mel_outputs): mel_outputs_postnet = self.tacotron2.postnet(mel_outputs) return mel_outputs + mel_outputs_postnet def lstmcell2lstm_params(lstm_mod, lstmcell_mod): lstm_mod.weight_ih_l0 = torch.nn.Parameter(lstmcell_mod.weight_ih) lstm_mod.weight_hh_l0 = torch.nn.Parameter(lstmcell_mod.weight_hh) lstm_mod.bias_ih_l0 = torch.nn.Parameter(lstmcell_mod.bias_ih) lstm_mod.bias_hh_l0 = torch.nn.Parameter(lstmcell_mod.bias_hh) def prenet_infer(self, x): x1 = x[:] for linear in self.layers: x1 = F.relu(linear(x1)) x0 = x1[0].unsqueeze(0) mask = torch.le(torch.rand(256, device='cuda').to(x.dtype), 0.5).to(x.dtype) mask = mask.expand(x1.size(0), x1.size(1)) x1 = x1*mask*2.0 return x1 class DecoderIter(torch.nn.Module): def __init__(self, tacotron2): super(DecoderIter, self).__init__() self.tacotron2 = tacotron2 dec = tacotron2.decoder self.p_attention_dropout = dec.p_attention_dropout self.p_decoder_dropout = dec.p_decoder_dropout self.prenet = dec.prenet self.prenet.infer = prenet_infer self.attention_rnn = nn.LSTM(dec.prenet_dim + dec.encoder_embedding_dim, dec.attention_rnn_dim, 1) lstmcell2lstm_params(self.attention_rnn, dec.attention_rnn) self.attention_rnn.flatten_parameters() self.attention_layer = dec.attention_layer self.decoder_rnn = nn.LSTM(dec.attention_rnn_dim + dec.encoder_embedding_dim, dec.decoder_rnn_dim, 1) lstmcell2lstm_params(self.decoder_rnn, dec.decoder_rnn) self.decoder_rnn.flatten_parameters() self.linear_projection = dec.linear_projection self.gate_layer = dec.gate_layer def decode(self, decoder_input, in_attention_hidden, in_attention_cell, in_decoder_hidden, in_decoder_cell, in_attention_weights, in_attention_weights_cum, in_attention_context, memory, processed_memory, mask): cell_input = torch.cat((decoder_input, in_attention_context), -1) _, (out_attention_hidden, out_attention_cell) = self.attention_rnn( cell_input.unsqueeze(0), (in_attention_hidden.unsqueeze(0), in_attention_cell.unsqueeze(0))) out_attention_hidden = out_attention_hidden.squeeze(0) out_attention_cell = out_attention_cell.squeeze(0) out_attention_hidden = F.dropout( out_attention_hidden, self.p_attention_dropout, False) attention_weights_cat = torch.cat( (in_attention_weights.unsqueeze(1), in_attention_weights_cum.unsqueeze(1)), dim=1) out_attention_context, out_attention_weights = self.attention_layer( out_attention_hidden, memory, processed_memory, attention_weights_cat, mask) out_attention_weights_cum = in_attention_weights_cum + out_attention_weights decoder_input_tmp = torch.cat( (out_attention_hidden, out_attention_context), -1) _, (out_decoder_hidden, out_decoder_cell) = self.decoder_rnn( decoder_input_tmp.unsqueeze(0), (in_decoder_hidden.unsqueeze(0), in_decoder_cell.unsqueeze(0))) out_decoder_hidden = out_decoder_hidden.squeeze(0) out_decoder_cell = out_decoder_cell.squeeze(0) out_decoder_hidden = F.dropout( out_decoder_hidden, self.p_decoder_dropout, False) decoder_hidden_attention_context = torch.cat( (out_decoder_hidden, out_attention_context), 1) decoder_output = self.linear_projection( decoder_hidden_attention_context) gate_prediction = self.gate_layer(decoder_hidden_attention_context) return (decoder_output, gate_prediction, out_attention_hidden, out_attention_cell, out_decoder_hidden, out_decoder_cell, out_attention_weights, out_attention_weights_cum, out_attention_context) # @torch.jit.script def forward(self, decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask): decoder_input1 = self.prenet.infer(self.prenet, decoder_input) outputs = self.decode(decoder_input1, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) return outputs def test_inference(encoder, decoder_iter, postnet): encoder.eval() decoder_iter.eval() postnet.eval() from trt.inference_trt import init_decoder_inputs texts = ["Hello World, good day."] sequences, sequence_lengths = prepare_input_sequence(texts) measurements = {} print("Running Tacotron2 Encoder") with torch.no_grad(): memory, processed_memory, lens = encoder(sequences, sequence_lengths) print("Running Tacotron2 Decoder") device = memory.device mel_lengths = torch.zeros([memory.size(0)], dtype=torch.int32, device = device) not_finished = torch.ones([memory.size(0)], dtype=torch.int32, device = device) mel_outputs, gate_outputs, alignments = (torch.zeros(1), torch.zeros(1), torch.zeros(1)) gate_threshold = 0.6 max_decoder_steps = 1000 first_iter = True (decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) = init_decoder_inputs(memory, processed_memory, sequence_lengths) while True: with torch.no_grad(): (mel_output, gate_output, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context) = decoder_iter(decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) if first_iter: mel_outputs = torch.unsqueeze(mel_output, 2) gate_outputs = torch.unsqueeze(gate_output, 2) alignments = torch.unsqueeze(attention_weights, 2) first_iter = False else: mel_outputs = torch.cat((mel_outputs, torch.unsqueeze(mel_output, 2)), 2) gate_outputs = torch.cat((gate_outputs, torch.unsqueeze(gate_output, 2)), 2) alignments = torch.cat((alignments, torch.unsqueeze(attention_weights, 2)), 2) dec = torch.le(torch.sigmoid(gate_output), gate_threshold).to(torch.int32).squeeze(1) not_finished = not_finished*dec mel_lengths += not_finished if torch.sum(not_finished) == 0: print("Stopping after ",mel_outputs.size(2)," decoder steps") break if mel_outputs.size(2) == max_decoder_steps: print("Warning! Reached max decoder steps") break decoder_input = mel_output print("Running Tacotron2 PostNet") with torch.no_grad(): mel_outputs_postnet = postnet(mel_outputs) return mel_outputs_postnet def main(): parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 export to TRT') parser = parse_args(parser) args, _ = parser.parse_known_args() tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2, fp16_run=args.fp16, cpu_run=False) opset_version = 10 sequences = torch.randint(low=0, high=148, size=(1,50), dtype=torch.long).cuda() sequence_lengths = torch.IntTensor([sequences.size(1)]).cuda().long() dummy_input = (sequences, sequence_lengths) encoder = Encoder(tacotron2) encoder.eval() with torch.no_grad(): encoder(*dummy_input) torch.onnx.export(encoder, dummy_input, args.output+"/"+"encoder.onnx", opset_version=opset_version, do_constant_folding=True, input_names=["sequences", "sequence_lengths"], output_names=["memory", "processed_memory", "lens"], dynamic_axes={"sequences": {1: "text_seq"}, "memory": {1: "mem_seq"}, "processed_memory": {1: "mem_seq"} }) decoder_iter = DecoderIter(tacotron2) memory = torch.randn((1,sequence_lengths[0],512)).cuda() #encoder_outputs if args.fp16: memory = memory.half() memory_lengths = sequence_lengths # initialize decoder states for dummy_input decoder_input = tacotron2.decoder.get_go_frame(memory) mask = get_mask_from_lengths(memory_lengths) (attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, processed_memory) = tacotron2.decoder.initialize_decoder_states(memory) dummy_input = (decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) decoder_iter = DecoderIter(tacotron2) decoder_iter.eval() with torch.no_grad(): decoder_iter(*dummy_input) torch.onnx.export(decoder_iter, dummy_input, args.output+"/"+"decoder_iter.onnx", opset_version=opset_version, do_constant_folding=True, input_names=["decoder_input", "attention_hidden", "attention_cell", "decoder_hidden", "decoder_cell", "attention_weights", "attention_weights_cum", "attention_context", "memory", "processed_memory", "mask"], output_names=["decoder_output", "gate_prediction", "out_attention_hidden", "out_attention_cell", "out_decoder_hidden", "out_decoder_cell", "out_attention_weights", "out_attention_weights_cum", "out_attention_context"], dynamic_axes={"attention_weights" : {1: "seq_len"}, "attention_weights_cum" : {1: "seq_len"}, "memory" : {1: "seq_len"}, "processed_memory" : {1: "seq_len"}, "mask" : {1: "seq_len"}, "out_attention_weights" : {1: "seq_len"}, "out_attention_weights_cum" : {1: "seq_len"} }) postnet = Postnet(tacotron2) dummy_input = torch.randn((1,80,620)).cuda() if args.fp16: dummy_input = dummy_input.half() torch.onnx.export(postnet, dummy_input, args.output+"/"+"postnet.onnx", opset_version=opset_version, do_constant_folding=True, input_names=["mel_outputs"], output_names=["mel_outputs_postnet"], dynamic_axes={"mel_outputs": {2: "mel_seq"}, "mel_outputs_postnet": {2: "mel_seq"}}) mel = test_inference(encoder, decoder_iter, postnet) torch.save(mel, "mel.pt") if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/exports/export_tacotron2_onnx.py
# ***************************************************************************** # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import types import torch import argparse import sys sys.path.append('./') from inference import checkpoint_from_distributed, unwrap_distributed, load_and_setup_model def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--waveglow', type=str, required=True, help='full path to the WaveGlow model checkpoint file') parser.add_argument('-o', '--output', type=str, required=True, help='Directory for the exported WaveGlow ONNX model') parser.add_argument('--fp16', action='store_true', help='inference with AMP') parser.add_argument('-s', '--sigma-infer', default=0.6, type=float) return parser def infer_onnx(self, spect, z, sigma=0.9): spect = self.upsample(spect) # trim conv artifacts. maybe pad spec to kernel multiple time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] spect = spect[:, :, :-time_cutoff] length_spect_group = spect.size(2)//8 mel_dim = 80 batch_size = spect.size(0) spect = spect.view((batch_size, mel_dim, length_spect_group, self.n_group)) spect = spect.permute(0, 2, 1, 3) spect = spect.contiguous() spect = spect.view((batch_size, length_spect_group, self.n_group*mel_dim)) spect = spect.permute(0, 2, 1) spect = spect.contiguous() audio = z[:, :self.n_remaining_channels, :] z = z[:, self.n_remaining_channels:self.n_group, :] audio = sigma*audio for k in reversed(range(self.n_flows)): n_half = int(audio.size(1) / 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:(n_half+n_half), :] output = self.WN[k]((audio_0, spect)) s = output[:, n_half:(n_half+n_half), :] b = output[:, :n_half, :] audio_1 = (audio_1 - b) / torch.exp(s) audio = torch.cat([audio_0, audio_1], 1) audio = self.convinv[k].infer(audio) if k % self.n_early_every == 0 and k > 0: audio = torch.cat((z[:, :self.n_early_size, :], audio), 1) z = z[:, self.n_early_size:self.n_group, :] audio = audio.permute(0,2,1).contiguous().view(batch_size, (length_spect_group * self.n_group)) return audio def export_onnx(parser, args): waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow, fp16_run=args.fp16, cpu_run=False, forward_is_infer=False) # 80 mel channels, 620 mel spectrograms ~ 7 seconds of speech mel = torch.randn(1, 80, 620).cuda() stride = 256 # value from waveglow upsample n_group = 8 z_size2 = (mel.size(2)*stride)//n_group z = torch.randn(1, n_group, z_size2).cuda() if args.fp16: mel = mel.half() z = z.half() with torch.no_grad(): # run inference to force calculation of inverses waveglow.infer(mel, sigma=args.sigma_infer) # export to ONNX if args.fp16: waveglow = waveglow.half() fType = types.MethodType waveglow.forward = fType(infer_onnx, waveglow) opset_version = 12 torch.onnx.export(waveglow, (mel, z), args.output+"/"+"waveglow.onnx", opset_version=opset_version, do_constant_folding=True, input_names=["mel", "z"], output_names=["audio"], dynamic_axes={"mel": {0: "batch_size", 2: "mel_seq"}, "z": {0: "batch_size", 2: "z_seq"}, "audio": {0: "batch_size", 1: "audio_seq"}}) def main(): parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args, _ = parser.parse_known_args() export_onnx(parser, args) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/exports/export_waveglow_onnx.py
# ***************************************************************************** # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import argparse def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument("--trtis_model_name", type=str, default='tacotron2', help="exports to appropriate directory for TRTIS") parser.add_argument("--trtis_model_version", type=int, default=1, help="exports to appropriate directory for TRTIS") parser.add_argument("--trtis_max_batch_size", type=int, default=1, help="Specifies the 'max_batch_size' in the TRTIS model config.\ See the TRTIS documentation for more info.") parser.add_argument('--fp16', action='store_true', help='inference with mixed precision') return parser def main(): parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 TRTIS config exporter') parser = parse_args(parser) args = parser.parse_args() # prepare repository model_folder = os.path.join('./trtis_repo', args.trtis_model_name) version_folder = os.path.join(model_folder, str(args.trtis_model_version)) if not os.path.exists(version_folder): os.makedirs(version_folder) # build the config for TRTIS config_filename = os.path.join(model_folder, "config.pbtxt") config_template = r""" name: "{model_name}" platform: "pytorch_libtorch" max_batch_size: {max_batch_size} input [ {{ name: "sequence__0" data_type: TYPE_INT64 dims: [-1] }}, {{ name: "input_lengths__1" data_type: TYPE_INT64 dims: [1] reshape: {{ shape: [ ] }} }} ] output [ {{ name: "mel_outputs_postnet__0" data_type: {fp_type} dims: [80,-1] }}, {{ name: "mel_lengths__1" data_type: TYPE_INT32 dims: [1] reshape: {{ shape: [ ] }} }}, {{ name: "alignments__2" data_type: {fp_type} dims: [-1,-1] }} ] """ config_values = { "model_name": args.trtis_model_name, "max_batch_size": args.trtis_max_batch_size, "fp_type": "TYPE_FP16" if args.fp16 else "TYPE_FP32" } with open(model_folder + "/config.pbtxt", "w") as file: final_config_str = config_template.format_map(config_values) file.write(final_config_str) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/exports/export_tacotron2_ts_config.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import sys sys.path.append('./') from tacotron2.text import text_to_sequence import models import torch import argparse import numpy as np from scipy.io.wavfile import write from inference import checkpoint_from_distributed, unwrap_distributed, MeasureTime, prepare_input_sequence, load_and_setup_model from inference_trt import infer_tacotron2_trt, infer_waveglow_trt from trt_utils import load_engine import tensorrt as trt import time import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from apex import amp def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--encoder', type=str, required=True, help='full path to the Encoder engine') parser.add_argument('--decoder', type=str, required=True, help='full path to the DecoderIter engine') parser.add_argument('--postnet', type=str, required=True, help='full path to the Postnet engine') parser.add_argument('--waveglow', type=str, required=True, help='full path to the WaveGlow engine') parser.add_argument('--waveglow-ckpt', type=str, default="", help='full path to the WaveGlow model checkpoint file') parser.add_argument('-s', '--sigma-infer', default=0.6, type=float) parser.add_argument('-sr', '--sampling-rate', default=22050, type=int, help='Sampling rate') parser.add_argument('--fp16', action='store_true', help='inference with FP16') parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging') parser.add_argument('--stft-hop-length', type=int, default=256, help='STFT hop length for estimating audio length from mel size') parser.add_argument('--num-iters', type=int, default=10, help='Number of iterations') parser.add_argument('-il', '--input-length', type=int, default=64, help='Input length') parser.add_argument('-bs', '--batch-size', type=int, default=1, help='Batch size') return parser def print_stats(measurements_all): print(np.mean(measurements_all['latency'][1:]), np.mean(measurements_all['throughput'][1:]), np.mean(measurements_all['pre_processing'][1:]), np.mean(measurements_all['type_conversion'][1:])+ np.mean(measurements_all['storage'][1:])+ np.mean(measurements_all['data_transfer'][1:]), np.mean(measurements_all['num_mels_per_audio'][1:])) throughput = measurements_all['throughput'] preprocessing = measurements_all['pre_processing'] type_conversion = measurements_all['type_conversion'] storage = measurements_all['storage'] data_transfer = measurements_all['data_transfer'] postprocessing = [sum(p) for p in zip(type_conversion,storage,data_transfer)] latency = measurements_all['latency'] num_mels_per_audio = measurements_all['num_mels_per_audio'] latency.sort() cf_50 = max(latency[:int(len(latency)*0.50)]) cf_90 = max(latency[:int(len(latency)*0.90)]) cf_95 = max(latency[:int(len(latency)*0.95)]) cf_99 = max(latency[:int(len(latency)*0.99)]) cf_100 = max(latency[:int(len(latency)*1.0)]) print("Throughput average (samples/sec) = {:.4f}".format(np.mean(throughput))) print("Preprocessing average (seconds) = {:.4f}".format(np.mean(preprocessing))) print("Postprocessing average (seconds) = {:.4f}".format(np.mean(postprocessing))) print("Number of mels per audio average = {}".format(np.mean(num_mels_per_audio))) # print("Latency average (seconds) = {:.4f}".format(np.mean(latency))) print("Latency std (seconds) = {:.4f}".format(np.std(latency))) print("Latency cl 50 (seconds) = {:.4f}".format(cf_50)) print("Latency cl 90 (seconds) = {:.4f}".format(cf_90)) print("Latency cl 95 (seconds) = {:.4f}".format(cf_95)) print("Latency cl 99 (seconds) = {:.4f}".format(cf_99)) print("Latency cl 100 (seconds) = {:.4f}".format(cf_100)) def main(): """ Launches text to speech (inference). Inference is executed on a single GPU. """ parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args, unknown_args = parser.parse_known_args() DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, args.log_file), StdOutBackend(Verbosity.VERBOSE)]) for k,v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k:v}) DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'}) measurements_all = {"pre_processing": [], "tacotron2_encoder_time": [], "tacotron2_decoder_time": [], "tacotron2_postnet_time": [], "tacotron2_latency": [], "waveglow_latency": [], "latency": [], "type_conversion": [], "data_transfer": [], "storage": [], "tacotron2_items_per_sec": [], "waveglow_items_per_sec": [], "num_mels_per_audio": [], "throughput": []} print("args:", args, unknown_args) torch.cuda.init() TRT_LOGGER = trt.Logger(trt.Logger.WARNING) encoder = load_engine(args.encoder, TRT_LOGGER) decoder_iter = load_engine(args.decoder, TRT_LOGGER) postnet = load_engine(args.postnet, TRT_LOGGER) waveglow = load_engine(args.waveglow, TRT_LOGGER) if args.waveglow_ckpt != "": # setup denoiser using WaveGlow PyTorch checkpoint waveglow_ckpt = load_and_setup_model('WaveGlow', parser, args.waveglow_ckpt, fp16_run=args.fp16, cpu_run=False, forward_is_infer=True) denoiser = Denoiser(waveglow_ckpt).cuda() # after initialization, we don't need WaveGlow PyTorch checkpoint # anymore - deleting del waveglow_ckpt torch.cuda.empty_cache() # create TRT contexts for each engine encoder_context = encoder.create_execution_context() decoder_context = decoder_iter.create_execution_context() postnet_context = postnet.create_execution_context() waveglow_context = waveglow.create_execution_context() texts = ["The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves."] texts = [texts[0][:args.input_length]] texts = texts*args.batch_size warmup_iters = 3 for iter in range(args.num_iters): measurements = {} with MeasureTime(measurements, "pre_processing"): sequences_padded, input_lengths = prepare_input_sequence(texts) sequences_padded = sequences_padded.to(torch.int32) input_lengths = input_lengths.to(torch.int32) with torch.no_grad(): with MeasureTime(measurements, "latency"): with MeasureTime(measurements, "tacotron2_latency"): mel, mel_lengths = infer_tacotron2_trt(encoder, decoder_iter, postnet, encoder_context, decoder_context, postnet_context, sequences_padded, input_lengths, measurements, args.fp16) with MeasureTime(measurements, "waveglow_latency"): audios = infer_waveglow_trt(waveglow, waveglow_context, mel, measurements, args.fp16) num_mels = mel.size(0)*mel.size(2) num_samples = audios.size(0)*audios.size(1) with MeasureTime(measurements, "type_conversion"): audios = audios.float() with MeasureTime(measurements, "data_transfer"): audios = audios.cpu() with MeasureTime(measurements, "storage"): audios = audios.numpy() for i, audio in enumerate(audios): audio_path = "audio_"+str(i)+".wav" write(audio_path, args.sampling_rate, audio[:mel_lengths[i]*args.stft_hop_length]) measurements['tacotron2_items_per_sec'] = num_mels/measurements['tacotron2_latency'] measurements['waveglow_items_per_sec'] = num_samples/measurements['waveglow_latency'] measurements['num_mels_per_audio'] = mel.size(2) measurements['throughput'] = num_samples/measurements['latency'] if iter >= warmup_iters: for k,v in measurements.items(): if k in measurements_all.keys(): measurements_all[k].append(v) DLLogger.log(step=(iter-warmup_iters), data={k: v}) DLLogger.flush() print_stats(measurements_all) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tensorrt/test_infer_trt.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import tensorrt as trt def is_dimension_dynamic(dim): return dim is None or dim <= 0 def is_shape_dynamic(shape): return any([is_dimension_dynamic(dim) for dim in shape]) def run_trt_engine(context, engine, tensors): bindings = [None]*engine.num_bindings for name,tensor in tensors['inputs'].items(): idx = engine.get_binding_index(name) bindings[idx] = tensor.data_ptr() if engine.is_shape_binding(idx) and is_shape_dynamic(context.get_shape(idx)): context.set_shape_input(idx, tensor) elif is_shape_dynamic(engine.get_binding_shape(idx)): context.set_binding_shape(idx, tensor.shape) for name,tensor in tensors['outputs'].items(): idx = engine.get_binding_index(name) bindings[idx] = tensor.data_ptr() context.execute_v2(bindings=bindings) def load_engine(engine_filepath, trt_logger): with open(engine_filepath, "rb") as f, trt.Runtime(trt_logger) as runtime: engine = runtime.deserialize_cuda_engine(f.read()) return engine def engine_info(engine_filepath): TRT_LOGGER = trt.Logger(trt.Logger.WARNING) engine = load_engine(engine_filepath, TRT_LOGGER) binding_template = r""" {btype} {{ name: "{bname}" data_type: {dtype} dims: {dims} }}""" type_mapping = {"DataType.HALF": "TYPE_FP16", "DataType.FLOAT": "TYPE_FP32", "DataType.INT32": "TYPE_INT32", "DataType.BOOL" : "TYPE_BOOL"} print("engine name", engine.name) print("has_implicit_batch_dimension", engine.has_implicit_batch_dimension) start_dim = 0 if engine.has_implicit_batch_dimension else 1 print("num_optimization_profiles", engine.num_optimization_profiles) print("max_batch_size:", engine.max_batch_size) print("device_memory_size:", engine.device_memory_size) print("max_workspace_size:", engine.max_workspace_size) print("num_layers:", engine.num_layers) for i in range(engine.num_bindings): btype = "input" if engine.binding_is_input(i) else "output" bname = engine.get_binding_name(i) dtype = engine.get_binding_dtype(i) bdims = engine.get_binding_shape(i) config_values = { "btype": btype, "bname": bname, "dtype": type_mapping[str(dtype)], "dims": list(bdims[start_dim:]) } final_binding_str = binding_template.format_map(config_values) print(final_binding_str) def build_engine(model_file, shapes, max_ws=512*1024*1024, fp16=False): TRT_LOGGER = trt.Logger(trt.Logger.WARNING) builder = trt.Builder(TRT_LOGGER) builder.fp16_mode = fp16 config = builder.create_builder_config() config.max_workspace_size = max_ws if fp16: config.flags |= 1 << int(trt.BuilderFlag.FP16) profile = builder.create_optimization_profile() for s in shapes: profile.set_shape(s['name'], min=s['min'], opt=s['opt'], max=s['max']) config.add_optimization_profile(profile) explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network = builder.create_network(explicit_batch) with trt.OnnxParser(network, TRT_LOGGER) as parser: with open(model_file, 'rb') as model: parsed = parser.parse(model.read()) for i in range(parser.num_errors): print("TensorRT ONNX parser error:", parser.get_error(i)) engine = builder.build_engine(network, config=config) return engine
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tensorrt/trt_utils.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import tensorrt as trt import numpy as np from scipy.io.wavfile import write import time import torch import argparse import sys sys.path.append('./') from tacotron2_common.utils import to_gpu, get_mask_from_lengths from tacotron2.text import text_to_sequence from inference import MeasureTime, prepare_input_sequence, load_and_setup_model import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from trt_utils import load_engine, run_trt_engine from waveglow.denoiser import Denoiser def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-i', '--input', type=str, required=True, help='full path to the input text (phareses separated by new line)') parser.add_argument('-o', '--output', required=True, help='output folder to save audio (file per phrase)') parser.add_argument('--encoder', type=str, required=True, help='full path to the Encoder engine') parser.add_argument('--decoder', type=str, required=True, help='full path to the DecoderIter engine') parser.add_argument('--postnet', type=str, required=True, help='full path to the Postnet engine') parser.add_argument('--waveglow', type=str, required=True, help='full path to the WaveGlow engine') parser.add_argument('--waveglow-ckpt', type=str, default="", help='full path to the WaveGlow model checkpoint file') parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging') parser.add_argument('-d', '--denoising-strength', default=0.01, type=float) parser.add_argument('-sr', '--sampling-rate', default=22050, type=int, help='Sampling rate') parser.add_argument('--stft-hop-length', type=int, default=256, help='STFT hop length for estimating audio length from mel size') parser.add_argument('--fp16', action='store_true', help='inference with FP16') return parser def init_decoder_inputs(memory, processed_memory, memory_lengths): device = memory.device dtype = memory.dtype bs = memory.size(0) seq_len = memory.size(1) attention_rnn_dim = 1024 decoder_rnn_dim = 1024 encoder_embedding_dim = 512 n_mel_channels = 80 attention_hidden = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype) attention_cell = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype) decoder_hidden = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype) decoder_cell = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype) attention_weights = torch.zeros(bs, seq_len, device=device, dtype=dtype) attention_weights_cum = torch.zeros(bs, seq_len, device=device, dtype=dtype) attention_context = torch.zeros(bs, encoder_embedding_dim, device=device, dtype=dtype) mask = get_mask_from_lengths(memory_lengths).to(device) decoder_input = torch.zeros(bs, n_mel_channels, device=device, dtype=dtype) return (decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) def init_decoder_outputs(memory, memory_lengths): device = memory.device dtype = memory.dtype bs = memory.size(0) seq_len = memory.size(1) attention_rnn_dim = 1024 decoder_rnn_dim = 1024 encoder_embedding_dim = 512 n_mel_channels = 80 attention_hidden = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype) attention_cell = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype) decoder_hidden = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype) decoder_cell = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype) attention_weights = torch.zeros(bs, seq_len, device=device, dtype=dtype) attention_weights_cum = torch.zeros(bs, seq_len, device=device, dtype=dtype) attention_context = torch.zeros(bs, encoder_embedding_dim, device=device, dtype=dtype) decoder_output = torch.zeros(bs, n_mel_channels, device=device, dtype=dtype) gate_prediction = torch.zeros(bs, 1, device=device, dtype=dtype) return (attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, decoder_output, gate_prediction) def init_decoder_tensors(decoder_inputs, decoder_outputs): decoder_tensors = { "inputs" : { 'decoder_input': decoder_inputs[0], 'attention_hidden': decoder_inputs[1], 'attention_cell': decoder_inputs[2], 'decoder_hidden': decoder_inputs[3], 'decoder_cell': decoder_inputs[4], 'attention_weights': decoder_inputs[5], 'attention_weights_cum': decoder_inputs[6], 'attention_context': decoder_inputs[7], 'memory': decoder_inputs[8], 'processed_memory': decoder_inputs[9], 'mask': decoder_inputs[10] }, "outputs" : { 'out_attention_hidden': decoder_outputs[0], 'out_attention_cell': decoder_outputs[1], 'out_decoder_hidden': decoder_outputs[2], 'out_decoder_cell': decoder_outputs[3], 'out_attention_weights': decoder_outputs[4], 'out_attention_weights_cum': decoder_outputs[5], 'out_attention_context': decoder_outputs[6], 'decoder_output': decoder_outputs[7], 'gate_prediction': decoder_outputs[8] } } return decoder_tensors def swap_inputs_outputs(decoder_inputs, decoder_outputs): new_decoder_inputs = (decoder_outputs[7], # decoder_output decoder_outputs[0], # attention_hidden decoder_outputs[1], # attention_cell decoder_outputs[2], # decoder_hidden decoder_outputs[3], # decoder_cell decoder_outputs[4], # attention_weights decoder_outputs[5], # attention_weights_cum decoder_outputs[6], # attention_context decoder_inputs[8], # memory decoder_inputs[9], # processed_memory decoder_inputs[10]) # mask new_decoder_outputs = (decoder_inputs[1], # attention_hidden decoder_inputs[2], # attention_cell decoder_inputs[3], # decoder_hidden decoder_inputs[4], # decoder_cell decoder_inputs[5], # attention_weights decoder_inputs[6], # attention_weights_cum decoder_inputs[7], # attention_context decoder_inputs[0], # decoder_input decoder_outputs[8])# gate_output return new_decoder_inputs, new_decoder_outputs def infer_tacotron2_trt(encoder, decoder_iter, postnet, encoder_context, decoder_context, postnet_context, sequences, sequence_lengths, measurements, fp16): memory = torch.zeros((len(sequence_lengths), sequence_lengths[0], 512)).cuda() if fp16: memory = memory.half() device = memory.device dtype = memory.dtype processed_memory = torch.zeros((len(sequence_lengths),sequence_lengths[0],128), device=device, dtype=dtype) lens = torch.zeros_like(sequence_lengths) encoder_tensors = { "inputs" : {'sequences': sequences, 'sequence_lengths': sequence_lengths}, "outputs" : {'memory': memory, 'lens': lens, 'processed_memory': processed_memory} } print("Running Tacotron2 Encoder") with MeasureTime(measurements, "tacotron2_encoder_time"): run_trt_engine(encoder_context, encoder, encoder_tensors) device = memory.device mel_lengths = torch.zeros([memory.size(0)], dtype=torch.int32, device = device) not_finished = torch.ones([memory.size(0)], dtype=torch.int32, device = device) mel_outputs, gate_outputs, alignments = (torch.zeros(1, device = device), torch.zeros(1, device = device), torch.zeros(1, device = device)) gate_threshold = 0.5 max_decoder_steps = 1664 first_iter = True decoder_inputs = init_decoder_inputs(memory, processed_memory, sequence_lengths) decoder_outputs = init_decoder_outputs(memory, sequence_lengths) print("Running Tacotron2 Decoder") measurements_decoder = {} while True: decoder_tensors = init_decoder_tensors(decoder_inputs, decoder_outputs) with MeasureTime(measurements_decoder, "step"): run_trt_engine(decoder_context, decoder_iter, decoder_tensors) if first_iter: mel_outputs = torch.unsqueeze(decoder_outputs[7], 2) gate_outputs = torch.unsqueeze(decoder_outputs[8], 2) alignments = torch.unsqueeze(decoder_outputs[4], 2) measurements['tacotron2_decoder_time'] = measurements_decoder['step'] first_iter = False else: mel_outputs = torch.cat((mel_outputs, torch.unsqueeze(decoder_outputs[7], 2)), 2) gate_outputs = torch.cat((gate_outputs, torch.unsqueeze(decoder_outputs[8], 2)), 2) alignments = torch.cat((alignments, torch.unsqueeze(decoder_outputs[4], 2)), 2) measurements['tacotron2_decoder_time'] += measurements_decoder['step'] dec = torch.le(torch.sigmoid(decoder_outputs[8]), gate_threshold).to(torch.int32).squeeze(1) not_finished = not_finished*dec mel_lengths += not_finished if torch.sum(not_finished) == 0: print("Stopping after",mel_outputs.size(2),"decoder steps") break if mel_outputs.size(2) == max_decoder_steps: print("Warning! Reached max decoder steps") break decoder_inputs, decoder_outputs = swap_inputs_outputs(decoder_inputs, decoder_outputs) mel_outputs_postnet = torch.zeros_like(mel_outputs, device=device, dtype=dtype) postnet_tensors = { "inputs" : {'mel_outputs': mel_outputs}, "outputs" : {'mel_outputs_postnet': mel_outputs_postnet} } print("Running Tacotron2 Postnet") with MeasureTime(measurements, "tacotron2_postnet_time"): run_trt_engine(postnet_context, postnet, postnet_tensors) print("Tacotron2 Postnet done") return mel_outputs_postnet, mel_lengths def infer_waveglow_trt(waveglow, waveglow_context, mel, measurements, fp16): mel_size = mel.size(2) batch_size = mel.size(0) stride = 256 n_group = 8 z_size = mel_size*stride z_size = z_size//n_group z = torch.randn(batch_size, n_group, z_size).cuda() audios = torch.zeros(batch_size, mel_size*stride).cuda() if fp16: z = z.half() mel = mel.half() audios = audios.half() waveglow_tensors = { "inputs" : {'input__0': mel, 'input__1': z}, "outputs" : {'output__0': audios} } print("Running WaveGlow") with MeasureTime(measurements, "waveglow_time"): run_trt_engine(waveglow_context, waveglow, waveglow_tensors) return audios def main(): parser = argparse.ArgumentParser( description='TensorRT Tacotron 2 Inference') parser = parse_args(parser) args, _ = parser.parse_known_args() # initialize CUDA state torch.cuda.init() TRT_LOGGER = trt.Logger(trt.Logger.WARNING) encoder = load_engine(args.encoder, TRT_LOGGER) decoder_iter = load_engine(args.decoder, TRT_LOGGER) postnet = load_engine(args.postnet, TRT_LOGGER) waveglow = load_engine(args.waveglow, TRT_LOGGER) if args.waveglow_ckpt != "": # setup denoiser using WaveGlow PyTorch checkpoint waveglow_ckpt = load_and_setup_model('WaveGlow', parser, args.waveglow_ckpt, True, forward_is_infer=True) denoiser = Denoiser(waveglow_ckpt).cuda() # after initialization, we don't need WaveGlow PyTorch checkpoint # anymore - deleting del waveglow_ckpt torch.cuda.empty_cache() # create TRT contexts for each engine encoder_context = encoder.create_execution_context() decoder_context = decoder_iter.create_execution_context() postnet_context = postnet.create_execution_context() waveglow_context = waveglow.create_execution_context() DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, args.output+'/'+args.log_file), StdOutBackend(Verbosity.VERBOSE)]) texts = [] try: f = open(args.input, 'r') texts = f.readlines() except: print("Could not read file") sys.exit(1) measurements = {} sequences, sequence_lengths = prepare_input_sequence(texts) sequences = sequences.to(torch.int32) sequence_lengths = sequence_lengths.to(torch.int32) with MeasureTime(measurements, "latency"): mel, mel_lengths = infer_tacotron2_trt(encoder, decoder_iter, postnet, encoder_context, decoder_context, postnet_context, sequences, sequence_lengths, measurements, args.fp16) audios = infer_waveglow_trt(waveglow, waveglow_context, mel, measurements, args.fp16) with encoder_context, decoder_context, postnet_context, waveglow_context: pass audios = audios.float() if args.waveglow_ckpt != "": with MeasureTime(measurements, "denoiser"): audios = denoiser(audios, strength=args.denoising_strength).squeeze(1) for i, audio in enumerate(audios): audio = audio[:mel_lengths[i]*args.stft_hop_length] audio = audio/torch.max(torch.abs(audio)) audio_path = args.output + "audio_"+str(i)+"_trt.wav" write(audio_path, args.sampling_rate, audio.cpu().numpy()) DLLogger.log(step=0, data={"tacotron2_encoder_latency": measurements['tacotron2_encoder_time']}) DLLogger.log(step=0, data={"tacotron2_decoder_latency": measurements['tacotron2_decoder_time']}) DLLogger.log(step=0, data={"tacotron2_postnet_latency": measurements['tacotron2_postnet_time']}) DLLogger.log(step=0, data={"waveglow_latency": measurements['waveglow_time']}) DLLogger.log(step=0, data={"latency": measurements['latency']}) if args.waveglow_ckpt != "": DLLogger.log(step=0, data={"denoiser": measurements['denoiser']}) DLLogger.flush() prec = "fp16" if args.fp16 else "fp32" latency = measurements['latency'] throughput = audios.size(1)/latency log_data = "1,"+str(sequence_lengths[0].item())+","+prec+","+str(latency)+","+str(throughput)+","+str(mel_lengths[0].item())+"\n" with open("log_bs1_"+prec+".log", 'a') as f: f.write(log_data) if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tensorrt/inference_trt.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import argparse import os import sys sys.path.append('./') from tacotron2_common.utils import ParseFromConfigFile from inference import load_and_setup_model def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--waveglow', type=str, required=True, help='full path to the WaveGlow model checkpoint file') parser.add_argument('-o', '--output', type=str, required=True, help='Directory for the exported WaveGlow ONNX model') parser.add_argument('--fp16', action='store_true', help='inference with AMP') parser.add_argument('-s', '--sigma-infer', default=0.6, type=float) parser.add_argument('--config-file', action=ParseFromConfigFile, type=str, help='Path to configuration file') return parser def export_onnx(parser, args): waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow, fp16_run=args.fp16, cpu_run=False, forward_is_infer=False) # 80 mel channels, 620 mel spectrograms ~ 7 seconds of speech mel = torch.randn(1, 80, 620).cuda() stride = 256 # value from waveglow upsample n_group = 8 z_size2 = (mel.size(2)*stride)//n_group z = torch.randn(1, n_group, z_size2).cuda() if args.fp16: mel = mel.half() z = z.half() with torch.no_grad(): # run inference to force calculation of inverses waveglow.infer(mel, sigma=args.sigma_infer) # export to ONNX if args.fp16: waveglow = waveglow.half() waveglow.forward = waveglow.infer_onnx opset_version = 12 output_path = os.path.join(args.output, "waveglow.onnx") torch.onnx.export(waveglow, (mel, z), output_path, opset_version=opset_version, do_constant_folding=True, input_names=["mel", "z"], output_names=["audio"], dynamic_axes={"mel": {0: "batch_size", 2: "mel_seq"}, "z": {0: "batch_size", 2: "z_seq"}, "audio": {0: "batch_size", 1: "audio_seq"}}) def main(): parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args, _ = parser.parse_known_args() export_onnx(parser, args) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tensorrt/convert_waveglow2onnx.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch from torch import nn from torch.nn import functional as F import argparse import sys sys.path.append('./') import models from inference import checkpoint_from_distributed, unwrap_distributed, load_and_setup_model, prepare_input_sequence from tacotron2_common.utils import to_gpu, get_mask_from_lengths def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('--tacotron2', type=str, help='full path to the Tacotron2 model checkpoint file') parser.add_argument('-o', '--output', type=str, required=True, help='Directory for the exported Tacotron 2 ONNX model') parser.add_argument('--fp16', action='store_true', help='Export with half precision to ONNX') return parser def encoder_infer(self, x, input_lengths): device = x.device for conv in self.convolutions: x = F.dropout(F.relu(conv(x.to(device))), 0.5, False) x = x.transpose(1, 2) x = nn.utils.rnn.pack_padded_sequence( x, input_lengths, batch_first=True) outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True) lens = input_lengths*2 return outputs, lens class Encoder(torch.nn.Module): def __init__(self, tacotron2): super(Encoder, self).__init__() self.tacotron2 = tacotron2 self.tacotron2.encoder.lstm.flatten_parameters() self.infer = encoder_infer def forward(self, sequence, sequence_lengths): embedded_inputs = self.tacotron2.embedding(sequence).transpose(1, 2) memory, lens = self.infer(self.tacotron2.encoder, embedded_inputs, sequence_lengths) processed_memory = self.tacotron2.decoder.attention_layer.memory_layer(memory) return memory, processed_memory, lens class Postnet(torch.nn.Module): def __init__(self, tacotron2): super(Postnet, self).__init__() self.tacotron2 = tacotron2 def forward(self, mel_outputs): mel_outputs_postnet = self.tacotron2.postnet(mel_outputs) return mel_outputs + mel_outputs_postnet def lstmcell2lstm_params(lstm_mod, lstmcell_mod): lstm_mod.weight_ih_l0 = torch.nn.Parameter(lstmcell_mod.weight_ih) lstm_mod.weight_hh_l0 = torch.nn.Parameter(lstmcell_mod.weight_hh) lstm_mod.bias_ih_l0 = torch.nn.Parameter(lstmcell_mod.bias_ih) lstm_mod.bias_hh_l0 = torch.nn.Parameter(lstmcell_mod.bias_hh) def prenet_infer(self, x): x1 = x[:] for linear in self.layers: x1 = F.relu(linear(x1)) x0 = x1[0].unsqueeze(0) mask = torch.le(torch.rand(256, device='cuda').to(x.dtype), 0.5).to(x.dtype) mask = mask.expand(x1.size(0), x1.size(1)) x1 = x1*mask*2.0 return x1 class DecoderIter(torch.nn.Module): def __init__(self, tacotron2): super(DecoderIter, self).__init__() self.tacotron2 = tacotron2 dec = tacotron2.decoder self.p_attention_dropout = dec.p_attention_dropout self.p_decoder_dropout = dec.p_decoder_dropout self.prenet = dec.prenet self.prenet.infer = prenet_infer self.attention_rnn = nn.LSTM(dec.prenet_dim + dec.encoder_embedding_dim, dec.attention_rnn_dim, 1) lstmcell2lstm_params(self.attention_rnn, dec.attention_rnn) self.attention_rnn.flatten_parameters() self.attention_layer = dec.attention_layer self.decoder_rnn = nn.LSTM(dec.attention_rnn_dim + dec.encoder_embedding_dim, dec.decoder_rnn_dim, 1) lstmcell2lstm_params(self.decoder_rnn, dec.decoder_rnn) self.decoder_rnn.flatten_parameters() self.linear_projection = dec.linear_projection self.gate_layer = dec.gate_layer def decode(self, decoder_input, in_attention_hidden, in_attention_cell, in_decoder_hidden, in_decoder_cell, in_attention_weights, in_attention_weights_cum, in_attention_context, memory, processed_memory, mask): cell_input = torch.cat((decoder_input, in_attention_context), -1) _, (out_attention_hidden, out_attention_cell) = self.attention_rnn( cell_input.unsqueeze(0), (in_attention_hidden.unsqueeze(0), in_attention_cell.unsqueeze(0))) out_attention_hidden = out_attention_hidden.squeeze(0) out_attention_cell = out_attention_cell.squeeze(0) out_attention_hidden = F.dropout( out_attention_hidden, self.p_attention_dropout, False) attention_weights_cat = torch.cat( (in_attention_weights.unsqueeze(1), in_attention_weights_cum.unsqueeze(1)), dim=1) out_attention_context, out_attention_weights = self.attention_layer( out_attention_hidden, memory, processed_memory, attention_weights_cat, mask) out_attention_weights_cum = in_attention_weights_cum + out_attention_weights decoder_input_tmp = torch.cat( (out_attention_hidden, out_attention_context), -1) _, (out_decoder_hidden, out_decoder_cell) = self.decoder_rnn( decoder_input_tmp.unsqueeze(0), (in_decoder_hidden.unsqueeze(0), in_decoder_cell.unsqueeze(0))) out_decoder_hidden = out_decoder_hidden.squeeze(0) out_decoder_cell = out_decoder_cell.squeeze(0) out_decoder_hidden = F.dropout( out_decoder_hidden, self.p_decoder_dropout, False) decoder_hidden_attention_context = torch.cat( (out_decoder_hidden, out_attention_context), 1) decoder_output = self.linear_projection( decoder_hidden_attention_context) gate_prediction = self.gate_layer(decoder_hidden_attention_context) return (decoder_output, gate_prediction, out_attention_hidden, out_attention_cell, out_decoder_hidden, out_decoder_cell, out_attention_weights, out_attention_weights_cum, out_attention_context) # @torch.jit.script def forward(self, decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask): decoder_input1 = self.prenet.infer(self.prenet, decoder_input) outputs = self.decode(decoder_input1, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) return outputs def test_inference(encoder, decoder_iter, postnet): encoder.eval() decoder_iter.eval() postnet.eval() sys.path.append('./tensorrt') from inference_trt import init_decoder_inputs texts = ["Hello World, good day."] sequences, sequence_lengths = prepare_input_sequence(texts) measurements = {} print("Running Tacotron2 Encoder") with torch.no_grad(): memory, processed_memory, lens = encoder(sequences, sequence_lengths) print("Running Tacotron2 Decoder") device = memory.device dtype = memory.dtype mel_lengths = torch.zeros([memory.size(0)], dtype=torch.int32, device = device) not_finished = torch.ones([memory.size(0)], dtype=torch.int32, device = device) mel_outputs, gate_outputs, alignments = (torch.zeros(1), torch.zeros(1), torch.zeros(1)) gate_threshold = 0.6 max_decoder_steps = 1000 first_iter = True (decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) = init_decoder_inputs(memory, processed_memory, sequence_lengths) while True: with torch.no_grad(): (mel_output, gate_output, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context) = decoder_iter(decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) if first_iter: mel_outputs = torch.unsqueeze(mel_output, 2) gate_outputs = torch.unsqueeze(gate_output, 2) alignments = torch.unsqueeze(attention_weights, 2) first_iter = False else: mel_outputs = torch.cat((mel_outputs, torch.unsqueeze(mel_output, 2)), 2) gate_outputs = torch.cat((gate_outputs, torch.unsqueeze(gate_output, 2)), 2) alignments = torch.cat((alignments, torch.unsqueeze(attention_weights, 2)), 2) dec = torch.le(torch.sigmoid(gate_output), gate_threshold).to(torch.int32).squeeze(1) not_finished = not_finished*dec mel_lengths += not_finished if torch.sum(not_finished) == 0: print("Stopping after ",mel_outputs.size(2)," decoder steps") break if mel_outputs.size(2) == max_decoder_steps: print("Warning! Reached max decoder steps") break decoder_input = mel_output print("Running Tacotron2 PostNet") with torch.no_grad(): mel_outputs_postnet = postnet(mel_outputs) return mel_outputs_postnet def main(): parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 export to TRT') parser = parse_args(parser) args, _ = parser.parse_known_args() tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2, fp16_run=args.fp16, cpu_run=False) opset_version = 10 sequences = torch.randint(low=0, high=148, size=(1,50), dtype=torch.long).cuda() sequence_lengths = torch.IntTensor([sequences.size(1)]).cuda().long() dummy_input = (sequences, sequence_lengths) encoder = Encoder(tacotron2) encoder.eval() with torch.no_grad(): encoder(*dummy_input) torch.onnx.export(encoder, dummy_input, args.output+"/"+"encoder.onnx", opset_version=opset_version, do_constant_folding=True, input_names=["sequences", "sequence_lengths"], output_names=["memory", "processed_memory", "lens"], dynamic_axes={"sequences": {1: "text_seq"}, "memory": {1: "mem_seq"}, "processed_memory": {1: "mem_seq"} }) decoder_iter = DecoderIter(tacotron2) memory = torch.randn((1,sequence_lengths[0],512)).cuda() #encoder_outputs if args.fp16: memory = memory.half() memory_lengths = sequence_lengths # initialize decoder states for dummy_input decoder_input = tacotron2.decoder.get_go_frame(memory) mask = get_mask_from_lengths(memory_lengths) (attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, processed_memory) = tacotron2.decoder.initialize_decoder_states(memory) dummy_input = (decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) decoder_iter = DecoderIter(tacotron2) decoder_iter.eval() with torch.no_grad(): decoder_iter(*dummy_input) torch.onnx.export(decoder_iter, dummy_input, args.output+"/"+"decoder_iter.onnx", opset_version=opset_version, do_constant_folding=True, input_names=["decoder_input", "attention_hidden", "attention_cell", "decoder_hidden", "decoder_cell", "attention_weights", "attention_weights_cum", "attention_context", "memory", "processed_memory", "mask"], output_names=["decoder_output", "gate_prediction", "out_attention_hidden", "out_attention_cell", "out_decoder_hidden", "out_decoder_cell", "out_attention_weights", "out_attention_weights_cum", "out_attention_context"], dynamic_axes={"attention_weights" : {1: "seq_len"}, "attention_weights_cum" : {1: "seq_len"}, "memory" : {1: "seq_len"}, "processed_memory" : {1: "seq_len"}, "mask" : {1: "seq_len"}, "out_attention_weights" : {1: "seq_len"}, "out_attention_weights_cum" : {1: "seq_len"} }) postnet = Postnet(tacotron2) dummy_input = torch.randn((1,80,620)).cuda() if args.fp16: dummy_input = dummy_input.half() torch.onnx.export(postnet, dummy_input, args.output+"/"+"postnet.onnx", opset_version=opset_version, do_constant_folding=True, input_names=["mel_outputs"], output_names=["mel_outputs_postnet"], dynamic_axes={"mel_outputs": {2: "mel_seq"}, "mel_outputs_postnet": {2: "mel_seq"}}) mel = test_inference(encoder, decoder_iter, postnet) torch.save(mel, "mel.pt") if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tensorrt/convert_tacotron22onnx.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import pycuda.driver as cuda import pycuda.autoinit import onnx import argparse import tensorrt as trt import os import sys sys.path.append('./') from trt_utils import build_engine def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-o', '--output', required=True, help='output folder to save audio (file per phrase)') parser.add_argument('--encoder', type=str, default="", help='full path to the Encoder ONNX') parser.add_argument('--decoder', type=str, default="", help='full path to the DecoderIter ONNX') parser.add_argument('--postnet', type=str, default="", help='full path to the Postnet ONNX') parser.add_argument('--waveglow', type=str, default="", help='full path to the WaveGlow ONNX') parser.add_argument('--fp16', action='store_true', help='inference with FP16') return parser def main(): parser = argparse.ArgumentParser( description='Export from ONNX to TensorRT for Tacotron 2 and WaveGlow') parser = parse_args(parser) args = parser.parse_args() engine_prec = "_fp16" if args.fp16 else "_fp32" # Encoder shapes=[{"name": "sequences", "min": (1,4), "opt": (1,128), "max": (1,256)}, {"name": "sequence_lengths", "min": (1,), "opt": (1,), "max": (1,)}] if args.encoder != "": print("Building Encoder ...") encoder_engine = build_engine(args.encoder, shapes=shapes, fp16=args.fp16) if encoder_engine is not None: with open(args.output+"/"+"encoder"+engine_prec+".engine", 'wb') as f: f.write(encoder_engine.serialize()) else: print("Failed to build engine from", args.encoder) sys.exit() # DecoderIter shapes=[{"name": "decoder_input", "min": (1,80), "opt": (1,80), "max": (1,80)}, {"name": "attention_hidden", "min": (1,1024), "opt": (1,1024), "max": (1,1024)}, {"name": "attention_cell", "min": (1,1024), "opt": (1,1024), "max": (1,1024)}, {"name": "decoder_hidden", "min": (1,1024), "opt": (1,1024), "max": (1,1024)}, {"name": "decoder_cell", "min": (1,1024), "opt": (1,1024), "max": (1,1024)}, {"name": "attention_weights", "min": (1,4), "opt": (1,128), "max": (1,256)}, {"name": "attention_weights_cum", "min": (1,4), "opt": (1,128), "max": (1,256)}, {"name": "attention_context", "min": (1,512), "opt": (1,512), "max": (1,512)}, {"name": "memory", "min": (1,4,512), "opt": (1,128,512), "max": (1,256,512)}, {"name": "processed_memory", "min": (1,4,128), "opt": (1,128,128), "max": (1,256,128)}, {"name": "mask", "min": (1,4), "opt": (1,128), "max": (1,256)}] if args.decoder != "": print("Building Decoder ...") decoder_iter_engine = build_engine(args.decoder, shapes=shapes, fp16=args.fp16) if decoder_iter_engine is not None: with open(args.output+"/"+"decoder_iter"+engine_prec+".engine", 'wb') as f: f.write(decoder_iter_engine.serialize()) else: print("Failed to build engine from", args.decoder) sys.exit() # Postnet shapes=[{"name": "mel_outputs", "min": (1,80,32), "opt": (1,80,768), "max": (1,80,1664)}] if args.postnet != "": print("Building Postnet ...") postnet_engine = build_engine(args.postnet, shapes=shapes, fp16=args.fp16) if postnet_engine is not None: with open(args.output+"/"+"postnet"+engine_prec+".engine", 'wb') as f: f.write(postnet_engine.serialize()) else: print("Failed to build engine from", args.postnet) sys.exit() # WaveGlow shapes=[{"name": "mel", "min": (1,80,32), "opt": (1,80,768), "max": (1,80,1664)}, {"name": "z", "min": (1,8,1024), "opt": (1,8,24576), "max": (1,8,53248)}] if args.waveglow != "": print("Building WaveGlow ...") waveglow_engine = build_engine(args.waveglow, shapes=shapes, fp16=args.fp16) if waveglow_engine is not None: engine_path = os.path.join(args.output, "waveglow"+engine_prec+".engine") with open(engine_path, 'wb') as f: f.write(waveglow_engine.serialize()) else: print("Failed to build engine from", args.waveglow) sys.exit() if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/Tacotron2/tensorrt/convert_onnx2trt.py