python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import yaml import os from typing import Dict from typing import List import numpy as np from dlrm.data.defaults import CATEGORICAL_CHANNEL, NUMERICAL_CHANNEL, LABEL_CHANNEL, \ TRAIN_MAPPING, TEST_MAPPING, \ TYPE_SELECTOR, FEATURES_SELECTOR, FILES_SELECTOR, CARDINALITY_SELECTOR, DTYPE_SELECTOR, \ SPLIT_BINARY, \ get_categorical_feature_type """ For performance reasons, numerical features are required to appear in the same order in both source_spec and channel_spec. For more detailed requirements, see the check_feature_spec method""" class FeatureSpec: def __init__(self, feature_spec=None, source_spec=None, channel_spec=None, metadata=None, base_directory=None): self.feature_spec: Dict = feature_spec if feature_spec is not None else {} self.source_spec: Dict = source_spec if source_spec is not None else {} self.channel_spec: Dict = channel_spec if channel_spec is not None else {} self.metadata: Dict = metadata if metadata is not None else {} self.base_directory: str = base_directory @classmethod def from_yaml(cls, path): with open(path, 'r') as feature_spec_file: base_directory = os.path.dirname(path) feature_spec = yaml.safe_load(feature_spec_file) return cls.from_dict(feature_spec, base_directory=base_directory) @classmethod def from_dict(cls, source_dict, base_directory): return cls(base_directory=base_directory, **source_dict) def to_dict(self) -> Dict: attributes_to_dump = ['feature_spec', 'source_spec', 'channel_spec', 'metadata'] return {attr: self.__dict__[attr] for attr in attributes_to_dump} def to_string(self): return yaml.dump(self.to_dict()) def to_yaml(self, output_path=None): if not output_path: output_path = self.base_directory + '/feature_spec.yaml' with open(output_path, 'w') as output_file: print(yaml.dump(self.to_dict()), file=output_file) def get_number_of_numerical_features(self) -> int: numerical_features = self.channel_spec[NUMERICAL_CHANNEL] return len(numerical_features) def cat_positions_to_names(self, positions: List[int]): # Ordering needs to correspond to the one in get_categorical_sizes() feature_names = self.get_categorical_feature_names() return [feature_names[i] for i in positions] def get_categorical_feature_names(self): """ Provides the categorical feature names. The returned order should me maintained.""" return self.channel_spec[CATEGORICAL_CHANNEL] def get_categorical_sizes(self) -> List[int]: """For a given feature spec, this function is expected to return the sizes in the order corresponding to the order in the channel_spec section """ categorical_features = self.get_categorical_feature_names() cardinalities = [self.feature_spec[feature_name][CARDINALITY_SELECTOR] for feature_name in categorical_features] return cardinalities def check_feature_spec(self): # TODO check if cardinality fits in dtype, check if base directory is set # TODO split into two checking general and model specific requirements # check that mappings are the ones expected mapping_name_list = list(self.source_spec.keys()) assert sorted(mapping_name_list) == sorted([TEST_MAPPING, TRAIN_MAPPING]) # check that channels are the ones expected channel_name_list = list(self.channel_spec.keys()) assert sorted(channel_name_list) == sorted([CATEGORICAL_CHANNEL, NUMERICAL_CHANNEL, LABEL_CHANNEL]) categorical_features_list = self.channel_spec[CATEGORICAL_CHANNEL] numerical_features_list = self.channel_spec[NUMERICAL_CHANNEL] label_features_list = self.channel_spec[LABEL_CHANNEL] set_of_categorical_features = set(categorical_features_list) set_of_numerical_features = set(numerical_features_list) # check that exactly one label feature is selected assert len(label_features_list) == 1 label_feature_name = label_features_list[0] # check that lists in channel spec contain unique names assert sorted(list(set_of_categorical_features)) == sorted(categorical_features_list) assert sorted(list(set_of_numerical_features)) == sorted(numerical_features_list) # check that all features used in channel spec are exactly ones defined in feature_spec feature_spec_features = list(self.feature_spec.keys()) channel_spec_features = list(set.union(set_of_categorical_features, set_of_numerical_features, {label_feature_name})) assert sorted(feature_spec_features) == sorted(channel_spec_features) # check that correct dtypes are provided for all features for feature_dict in self.feature_spec.values(): assert DTYPE_SELECTOR in feature_dict try: np.dtype(feature_dict[DTYPE_SELECTOR]) except TypeError: assert False, "Type not understood by numpy" # check that categorical features have cardinality provided for feature_name, feature_dict in self.feature_spec.items(): if feature_name in set_of_categorical_features: assert CARDINALITY_SELECTOR in feature_dict assert isinstance(feature_dict[CARDINALITY_SELECTOR], int) for mapping_name in [TRAIN_MAPPING, TEST_MAPPING]: mapping = self.source_spec[mapping_name] mapping_features = set() for chunk in mapping: # check that chunk has the correct type assert chunk[TYPE_SELECTOR] == SPLIT_BINARY contained_features = chunk[FEATURES_SELECTOR] containing_files = chunk[FILES_SELECTOR] # check that features are unique in mapping for feature in contained_features: assert feature not in mapping_features mapping_features.add(feature) # check that chunk has at least one features assert len(contained_features) >= 1 # check that chunk has exactly file assert len(containing_files) == 1 first_feature = contained_features[0] if first_feature in set_of_categorical_features: # check that each categorical feature is in a different file assert len(contained_features) == 1 elif first_feature in set_of_numerical_features: # check that numerical features are all in one chunk assert sorted(contained_features) == sorted(numerical_features_list) # check that ordering is exactly same as in channel spec - required for performance assert contained_features == numerical_features_list # check numerical dtype for feature in contained_features: assert np.dtype(self.feature_spec[feature][DTYPE_SELECTOR]) == np.float16 elif first_feature == label_feature_name: # check that label feature is in a separate file assert len(contained_features) == 1 # check label dtype assert np.dtype(self.feature_spec[first_feature][DTYPE_SELECTOR]) == np.bool else: assert False, "Feature of unknown type" # check that all features appeared in mapping assert sorted(mapping_features) == sorted(feature_spec_features) @staticmethod def get_default_feature_spec(number_of_numerical_features, categorical_feature_cardinalities): numerical_feature_fstring = "num_{}" categorical_feature_fstring = "cat_{}.bin" label_feature_name = "label" numerical_file_name = "numerical.bin" categorical_file_fstring = "{}" # TODO remove .bin from feature name, add to file name label_file_name = "label.bin" number_of_categorical_features = len(categorical_feature_cardinalities) numerical_feature_names = [numerical_feature_fstring.format(i) for i in range(number_of_numerical_features)] categorical_feature_names = [categorical_feature_fstring.format(i) for i in range(number_of_categorical_features)] cat_feature_types = [get_categorical_feature_type(int(cat_size)) for cat_size in categorical_feature_cardinalities] feature_dict = {f_name: {DTYPE_SELECTOR: str(np.dtype(f_type)), CARDINALITY_SELECTOR: f_size} for f_name, f_type, f_size in zip(categorical_feature_names, cat_feature_types, categorical_feature_cardinalities)} for f_name in numerical_feature_names: feature_dict[f_name] = {DTYPE_SELECTOR: str(np.dtype(np.float16))} feature_dict[label_feature_name] = {DTYPE_SELECTOR: str(np.dtype(np.bool))} channel_spec = {CATEGORICAL_CHANNEL: categorical_feature_names, NUMERICAL_CHANNEL: numerical_feature_names, LABEL_CHANNEL: [label_feature_name]} source_spec = {} for filename in (TRAIN_MAPPING, TEST_MAPPING): source_spec[filename] = [] dst_folder = filename numerical_file_path = os.path.join(dst_folder, numerical_file_name) source_spec[filename].append({TYPE_SELECTOR: SPLIT_BINARY, FEATURES_SELECTOR: numerical_feature_names, FILES_SELECTOR: [numerical_file_path]}) label_file_path = os.path.join(dst_folder, label_file_name) source_spec[filename].append({TYPE_SELECTOR: SPLIT_BINARY, FEATURES_SELECTOR: [label_feature_name], FILES_SELECTOR: [label_file_path]}) for feature_name in categorical_feature_names: categorical_file_name = categorical_file_fstring.format(feature_name) categorical_file_path = os.path.join(dst_folder, categorical_file_name) source_spec[filename].append({TYPE_SELECTOR: SPLIT_BINARY, FEATURES_SELECTOR: [feature_name], FILES_SELECTOR: [categorical_file_path]}) return FeatureSpec(feature_spec=feature_dict, source_spec=source_spec, channel_spec=channel_spec, metadata={}) def get_mapping_paths(self, mapping_name: str): label_feature_name = self.channel_spec[LABEL_CHANNEL][0] set_of_categorical_features = set(self.channel_spec[CATEGORICAL_CHANNEL]) set_of_numerical_features = set(self.channel_spec[NUMERICAL_CHANNEL]) label_path = None numerical_path = None categorical_paths = dict() for chunk in self.source_spec[mapping_name]: local_path = os.path.join(self.base_directory, chunk[FILES_SELECTOR][0]) if chunk[FEATURES_SELECTOR][0] in set_of_numerical_features: numerical_path = local_path elif chunk[FEATURES_SELECTOR][0] in set_of_categorical_features: local_feature = chunk[FEATURES_SELECTOR][0] categorical_paths[local_feature] = local_path elif chunk[FEATURES_SELECTOR][0] == label_feature_name: label_path = local_path return label_path, numerical_path, categorical_paths
DeepLearningExamples-master
PyTorch/Recommendation/DLRM/dlrm/data/feature_spec.py
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import concurrent import math import os import queue import torch import numpy as np from torch.utils.data import Dataset from typing import Optional, Sequence, Tuple, List from dlrm.data.defaults import CATEGORICAL_CHANNEL, NUMERICAL_CHANNEL, LABEL_CHANNEL, \ DTYPE_SELECTOR, FEATURES_SELECTOR, FILES_SELECTOR from dlrm.data.feature_spec import FeatureSpec class SyntheticDataset(Dataset): """Synthetic dataset version of criteo dataset.""" def __init__( self, num_entries: int, device: str = 'cuda', batch_size: int = 32768, numerical_features: Optional[int] = None, categorical_feature_sizes: Optional[Sequence[int]] = None # features are returned in this order ): cat_features_count = len(categorical_feature_sizes) if categorical_feature_sizes is not None else 0 num_features_count = numerical_features if numerical_features is not None else 0 self._batches_per_epoch = math.ceil(num_entries / batch_size) self._num_tensor = torch.rand(size=(batch_size, num_features_count), device=device, dtype=torch.float32) \ if num_features_count > 0 else None self._label_tensor = torch.randint(low=0, high=2, size=(batch_size,), device=device, dtype=torch.float32) self._cat_tensor = torch.cat( [torch.randint(low=0, high=cardinality, size=(batch_size, 1), device=device, dtype=torch.long) for cardinality in categorical_feature_sizes], dim=1) if cat_features_count > 0 else None def __len__(self): return self._batches_per_epoch def __getitem__(self, idx: int): if idx >= self._batches_per_epoch: raise IndexError() return self._num_tensor, self._cat_tensor, self._label_tensor class ParametricDataset(Dataset): def __init__( self, feature_spec: FeatureSpec, mapping: str, batch_size: int = 1, numerical_features_enabled: bool = False, categorical_features_to_read: List[str] = None, # This parameter dictates order of returned features prefetch_depth: int = 10, drop_last_batch: bool = False, **kwargs ): self._feature_spec = feature_spec self._batch_size = batch_size self._mapping = mapping feature_spec.check_feature_spec() categorical_features = feature_spec.channel_spec[CATEGORICAL_CHANNEL] numerical_features = feature_spec.channel_spec[NUMERICAL_CHANNEL] label_features = feature_spec.channel_spec[LABEL_CHANNEL] set_of_categorical_features = set(categorical_features) set_of_numerical_features = set(numerical_features) set_of_label_features = set(label_features) set_of_categoricals_to_read = set(categorical_features_to_read) bytes_per_feature = {feature_name: np.dtype(feature_spec.feature_spec[feature_name][DTYPE_SELECTOR]).itemsize for feature_name in feature_spec.feature_spec.keys()} self._numerical_features_file = None self._label_file = None self._numerical_bytes_per_batch = bytes_per_feature[numerical_features[0]] * \ len(numerical_features) * batch_size self._label_bytes_per_batch = np.dtype(np.bool).itemsize * batch_size self._number_of_numerical_features = len(numerical_features) chosen_mapping = feature_spec.source_spec[mapping] categorical_feature_files = {} root_path = feature_spec.base_directory number_of_batches = None for chunk in chosen_mapping: contained_features = chunk[FEATURES_SELECTOR] containing_file = chunk[FILES_SELECTOR][0] first_feature = contained_features[0] if first_feature in set_of_categorical_features: # Load categorical if first_feature not in set_of_categoricals_to_read: continue # skip chunk path_to_open = os.path.join(root_path, containing_file) cat_file = os.open(path_to_open, os.O_RDONLY) bytes_per_batch = bytes_per_feature[first_feature] * self._batch_size batch_num_float = os.fstat(cat_file).st_size / bytes_per_batch categorical_feature_files[first_feature] = cat_file elif first_feature in set_of_numerical_features: # Load numerical if not numerical_features_enabled: continue # skip chunk path_to_open = os.path.join(root_path, containing_file) self._numerical_features_file = os.open(path_to_open, os.O_RDONLY) batch_num_float = os.fstat(self._numerical_features_file).st_size / self._numerical_bytes_per_batch elif first_feature in set_of_label_features: # Load label path_to_open = os.path.join(root_path, containing_file) self._label_file = os.open(path_to_open, os.O_RDONLY) batch_num_float = os.fstat(self._label_file).st_size / self._label_bytes_per_batch else: raise ValueError("Unknown chunk type") local_number_of_batches = math.ceil(batch_num_float) if not drop_last_batch else math.floor(batch_num_float) if number_of_batches is not None: if local_number_of_batches != number_of_batches: raise ValueError("Size mismatch in data files") else: number_of_batches = local_number_of_batches self._categorical_features_files = None if len(categorical_features_to_read) > 0: self._categorical_features_files = [categorical_feature_files[feature] for feature in categorical_features_to_read] self._categorical_bytes_per_batch = [bytes_per_feature[feature] * self._batch_size for feature in categorical_features_to_read] self._categorical_types = [feature_spec.feature_spec[feature][DTYPE_SELECTOR] for feature in categorical_features_to_read] self._num_entries = number_of_batches self._prefetch_depth = min(prefetch_depth, self._num_entries) self._prefetch_queue = queue.Queue() self._executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) def __len__(self): return self._num_entries def __getitem__(self, idx: int): """ Numerical features are returned in the order they appear in the channel spec section For performance reasons, this is required to be the order they are saved in, as specified by the relevant chunk in source spec. Categorical features are returned in the order they appear in the channel spec section """ if idx >= self._num_entries: raise IndexError() if self._prefetch_depth <= 1: return self._get_item(idx) # At the start, fill up the prefetching queue if idx == 0: for i in range(self._prefetch_depth): self._prefetch_queue.put(self._executor.submit(self._get_item, (i))) # Extend the prefetching window by one if not at the end of the dataset if idx < self._num_entries - self._prefetch_depth: self._prefetch_queue.put(self._executor.submit(self._get_item, (idx + self._prefetch_depth))) return self._prefetch_queue.get().result() def _get_item(self, idx: int) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: click = self._get_label(idx) numerical_features = self._get_numerical_features(idx) categorical_features = self._get_categorical_features(idx) return numerical_features, categorical_features, click def _get_label(self, idx: int) -> torch.Tensor: raw_label_data = os.pread(self._label_file, self._label_bytes_per_batch, idx * self._label_bytes_per_batch) array = np.frombuffer(raw_label_data, dtype=np.bool) return torch.from_numpy(array).to(torch.float32) def _get_numerical_features(self, idx: int) -> Optional[torch.Tensor]: if self._numerical_features_file is None: return None raw_numerical_data = os.pread(self._numerical_features_file, self._numerical_bytes_per_batch, idx * self._numerical_bytes_per_batch) array = np.frombuffer(raw_numerical_data, dtype=np.float16) return torch.from_numpy(array).view(-1, self._number_of_numerical_features) def _get_categorical_features(self, idx: int) -> Optional[torch.Tensor]: if self._categorical_features_files is None: return None categorical_features = [] for cat_bytes, cat_type, cat_file in zip(self._categorical_bytes_per_batch, self._categorical_types, self._categorical_features_files): raw_cat_data = os.pread(cat_file, cat_bytes, idx * cat_bytes) array = np.frombuffer(raw_cat_data, dtype=cat_type) tensor = torch.from_numpy(array).unsqueeze(1).to(torch.long) categorical_features.append(tensor) return torch.cat(categorical_features, dim=1) def __del__(self): data_files = [self._label_file, self._numerical_features_file] if self._categorical_features_files is not None: data_files += self._categorical_features_files for data_file in data_files: if data_file is not None: os.close(data_file)
DeepLearningExamples-master
PyTorch/Recommendation/DLRM/dlrm/data/datasets.py
DeepLearningExamples-master
PyTorch/Recommendation/DLRM/dlrm/data/__init__.py
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from typing import Tuple, Optional, Callable, Dict import torch from torch.utils.data import Dataset, Sampler, RandomSampler from dlrm.data.datasets import SyntheticDataset, ParametricDataset from dlrm.data.defaults import TEST_MAPPING, TRAIN_MAPPING from dlrm.data.feature_spec import FeatureSpec from dlrm.data.samplers import RandomDistributedSampler from dlrm.data.utils import collate_split_tensors from dlrm.utils.distributed import is_distributed, get_rank class DatasetFactory: def __init__(self, flags, device_mapping: Optional[Dict] = None): self._flags = flags self._device_mapping = device_mapping def create_collate_fn(self) -> Optional[Callable]: raise NotImplementedError() def create_datasets(self) -> Tuple[Dataset, Dataset]: raise NotImplementedError() def create_sampler(self, dataset: Dataset) -> Optional[Sampler]: return RandomDistributedSampler(dataset) if is_distributed() else RandomSampler(dataset) def create_data_loader( self, dataset, collate_fn: Optional[Callable] = None, sampler: Optional[Sampler] = None): return torch.utils.data.DataLoader( dataset, collate_fn=collate_fn, sampler=sampler, batch_size=None, num_workers=0, pin_memory=False ) class SyntheticGpuDatasetFactory(DatasetFactory): def __init__(self, flags, local_numerical_features_num, local_categorical_feature_sizes): self.local_numerical_features = local_numerical_features_num self.local_categorical_features = local_categorical_feature_sizes super().__init__(flags) def create_collate_fn(self) -> Optional[Callable]: return None def create_sampler(self, dataset) -> Optional[Sampler]: return None def create_datasets(self) -> Tuple[Dataset, Dataset]: flags = self._flags dataset_train = SyntheticDataset(num_entries=flags.synthetic_dataset_num_entries, batch_size=flags.batch_size, numerical_features=self.local_numerical_features, categorical_feature_sizes=self.local_categorical_features) dataset_test = SyntheticDataset(num_entries=flags.synthetic_dataset_num_entries, batch_size=flags.test_batch_size, numerical_features=self.local_numerical_features, categorical_feature_sizes=self.local_categorical_features) return dataset_train, dataset_test class ParametricDatasetFactory(DatasetFactory): def __init__(self, flags, feature_spec: FeatureSpec, numerical_features_enabled, categorical_features_to_read): super().__init__(flags) self._base_device = flags.base_device self._train_batch_size = flags.batch_size self._test_batch_size = flags.test_batch_size self._feature_spec = feature_spec self._numerical_features_enabled = numerical_features_enabled self._categorical_features_to_read = categorical_features_to_read def create_collate_fn(self): orig_stream = torch.cuda.current_stream() if self._base_device == 'cuda' else None return functools.partial( collate_split_tensors, device=self._base_device, orig_stream=orig_stream, numerical_type=torch.float32 ) def create_datasets(self) -> Tuple[Dataset, Dataset]: # prefetching is currently unsupported if using the batch-wise shuffle prefetch_depth = 0 if self._flags.shuffle_batch_order else 10 dataset_train = ParametricDataset( feature_spec=self._feature_spec, mapping=TRAIN_MAPPING, batch_size=self._train_batch_size, numerical_features_enabled=self._numerical_features_enabled, categorical_features_to_read=self._categorical_features_to_read, prefetch_depth=prefetch_depth ) dataset_test = ParametricDataset( feature_spec=self._feature_spec, mapping=TEST_MAPPING, batch_size=self._test_batch_size, numerical_features_enabled=self._numerical_features_enabled, categorical_features_to_read=self._categorical_features_to_read, prefetch_depth=prefetch_depth ) return dataset_train, dataset_test def create_dataset_factory(flags, feature_spec: FeatureSpec, device_mapping: Optional[dict] = None) -> DatasetFactory: """ By default each dataset can be used in single GPU or distributed setting - please keep that in mind when adding new datasets. Distributed case requires selection of categorical features provided in `device_mapping` (see `DatasetFactory#create_collate_fn`). :param flags: :param device_mapping: dict, information about model bottom mlp and embeddings devices assignment :return: """ dataset_type = flags.dataset_type num_numerical_features = feature_spec.get_number_of_numerical_features() if is_distributed() or device_mapping: assert device_mapping is not None, "Distributed dataset requires information about model device mapping." rank = get_rank() local_categorical_positions = device_mapping["embedding"][rank] numerical_features_enabled = device_mapping["bottom_mlp"] == rank else: local_categorical_positions = list(range(len(feature_spec.get_categorical_feature_names()))) numerical_features_enabled = True if dataset_type == "parametric": local_categorical_names = feature_spec.cat_positions_to_names(local_categorical_positions) return ParametricDatasetFactory(flags=flags, feature_spec=feature_spec, numerical_features_enabled=numerical_features_enabled, categorical_features_to_read=local_categorical_names ) if dataset_type == "synthetic_gpu": local_numerical_features = num_numerical_features if numerical_features_enabled else 0 world_categorical_sizes = feature_spec.get_categorical_sizes() local_categorical_sizes = [world_categorical_sizes[i] for i in local_categorical_positions] return SyntheticGpuDatasetFactory(flags, local_numerical_features_num=local_numerical_features, local_categorical_feature_sizes=local_categorical_sizes) raise NotImplementedError(f"unknown dataset type: {dataset_type}")
DeepLearningExamples-master
PyTorch/Recommendation/DLRM/dlrm/data/factories.py
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Tuple, Optional, List import numpy as np import torch from torch import Tensor from torch.cuda import Stream from torch.utils.data import Dataset, DataLoader import tqdm from dlrm.data.defaults import TRAIN_MAPPING, TEST_MAPPING, DTYPE_SELECTOR from dlrm.data.feature_spec import FeatureSpec def collate_split_tensors( tensors: Tuple[Tensor, Tensor, Tensor], device: str, orig_stream: Stream, numerical_type: torch.dtype = torch.float32 ): tensors = [tensor.to(device, non_blocking=True) if tensor is not None else None for tensor in tensors] if device == 'cuda': for tensor in tensors: if tensor is not None: tensor.record_stream(orig_stream) numerical_features, categorical_features, click = tensors if numerical_features is not None: numerical_features = numerical_features.to(numerical_type) return numerical_features, categorical_features, click def collate_array( array: np.array, device: str, orig_stream: Stream, num_numerical_features: int, selected_categorical_features: Optional[Tensor] = None ): # numerical features are encoded as float32 numerical_features = array[:, 1:1 + num_numerical_features].view(dtype=np.float32) numerical_features = torch.from_numpy(numerical_features) categorical_features = torch.from_numpy(array[:, 1 + num_numerical_features:]) click = torch.from_numpy(array[:, 0]) categorical_features = categorical_features.to(device, non_blocking=True).to(torch.long) numerical_features = numerical_features.to(device, non_blocking=True) click = click.to(torch.float32).to(device, non_blocking=True) if selected_categorical_features is not None: categorical_features = categorical_features[:, selected_categorical_features] if device == 'cuda': numerical_features.record_stream(orig_stream) categorical_features.record_stream(orig_stream) click.record_stream(orig_stream) return numerical_features, categorical_features, click def write_dataset_to_disk(dataset_train: Dataset, dataset_test: Dataset, feature_spec: FeatureSpec, saving_batch_size=512) -> None: feature_spec.check_feature_spec() # We rely on the feature spec being properly formatted categorical_features_list = feature_spec.get_categorical_feature_names() categorical_features_types = [feature_spec.feature_spec[feature_name][DTYPE_SELECTOR] for feature_name in categorical_features_list] number_of_numerical_features = feature_spec.get_number_of_numerical_features() number_of_categorical_features = len(categorical_features_list) for mapping_name, dataset in zip((TRAIN_MAPPING, TEST_MAPPING), (dataset_train, dataset_test)): file_streams = [] label_path, numerical_path, categorical_paths = feature_spec.get_mapping_paths(mapping_name) try: os.makedirs(os.path.dirname(numerical_path), exist_ok=True) numerical_f = open(numerical_path, "wb+") file_streams.append(numerical_f) os.makedirs(os.path.dirname(label_path), exist_ok=True) label_f = open(label_path, 'wb+') file_streams.append(label_f) categorical_fs = [] for feature_name in categorical_features_list: local_path = categorical_paths[feature_name] os.makedirs(os.path.dirname(local_path), exist_ok=True) fs = open(local_path, 'wb+') categorical_fs.append(fs) file_streams.append(fs) for numerical, categorical, label in tqdm.tqdm( DataLoader(dataset, saving_batch_size), desc=mapping_name + " dataset saving", unit_scale=saving_batch_size ): assert (numerical.shape[-1] == number_of_numerical_features) assert (categorical.shape[-1] == number_of_categorical_features) numerical_f.write(numerical.to(torch.float16).cpu().numpy().tobytes()) label_f.write(label.to(torch.bool).cpu().numpy().tobytes()) for cat_idx, cat_feature_type in enumerate(categorical_features_types): categorical_fs[cat_idx].write( categorical[:, :, cat_idx].cpu().numpy().astype(cat_feature_type).tobytes()) finally: for stream in file_streams: stream.close() feature_spec.to_yaml() def prefetcher(load_iterator, prefetch_stream): def _prefetch(): with torch.cuda.stream(prefetch_stream): try: data_batch = next(load_iterator) except StopIteration: return None return data_batch next_data_batch = _prefetch() while next_data_batch is not None: torch.cuda.current_stream().wait_stream(prefetch_stream) data_batch = next_data_batch next_data_batch = _prefetch() yield data_batch def get_embedding_sizes(fspec: FeatureSpec, max_table_size: Optional[int]) -> List[int]: if max_table_size is not None: return [min(s, max_table_size) for s in fspec.get_categorical_sizes()] else: return fspec.get_categorical_sizes()
DeepLearningExamples-master
PyTorch/Recommendation/DLRM/dlrm/data/utils.py
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np CATEGORICAL_CHANNEL = "categorical" NUMERICAL_CHANNEL = "numerical" LABEL_CHANNEL = "label" SPLIT_BINARY = "split_binary" TRAIN_MAPPING = "train" TEST_MAPPING = "test" TYPE_SELECTOR = "type" FEATURES_SELECTOR = "features" FILES_SELECTOR = "files" DTYPE_SELECTOR = "dtype" CARDINALITY_SELECTOR = "cardinality" def get_categorical_feature_type(size: int): """This function works both when max value and cardinality is passed. Consistency by the user is required""" types = (np.int8, np.int16, np.int32) for numpy_type in types: if size < np.iinfo(numpy_type).max: return numpy_type raise RuntimeError(f"Categorical feature of size {size} is too big for defined types")
DeepLearningExamples-master
PyTorch/Recommendation/DLRM/dlrm/data/defaults.py
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch.utils.data import RandomSampler from dlrm.utils.distributed import get_local_rank class RandomDistributedSampler(RandomSampler): _SAMPLE_FILE = "/tmp/dlrm_training_sample.npy" def __iter__(self): """ To guarantee all ranks have the same same permutation, generating it from rank 0 and sync to other rank by writing to disk """ if get_local_rank() == 0: np.save(self._SAMPLE_FILE, np.array(list(super().__iter__()))) torch.distributed.barrier() sample = np.load(self._SAMPLE_FILE) return iter(sample)
DeepLearningExamples-master
PyTorch/Recommendation/DLRM/dlrm/data/samplers.py
# Copyright (c) 2018, deepakn94, codyaustun, robieta. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import os from feature_spec import FeatureSpec from neumf_constants import USER_CHANNEL_NAME, ITEM_CHANNEL_NAME, LABEL_CHANNEL_NAME, TEST_SAMPLES_PER_SERIES class TorchTensorDataset: """ Warning! This dataset/loader uses torch.load. Torch.load implicitly uses pickle. Pickle is insecure. It is trivial to achieve arbitrary code execution using a prepared pickle payload. Only unpickle data you trust.""" def __init__(self, feature_spec: FeatureSpec, mapping_name: str, args): self.local_rank = args.local_rank self.mapping_name = mapping_name self.features = dict() self.feature_spec = feature_spec self._load_features() def _load_features(self): chunks = self.feature_spec.source_spec[self.mapping_name] for chunk in chunks: assert chunk['type'] == 'torch_tensor', "Only torch_tensor files supported in this loader" files_list = chunk['files'] assert len(files_list) == 1, "Only one file per chunk supported in this loader" file_relative_path = files_list[0] path_to_load = os.path.join(self.feature_spec.base_directory, file_relative_path) chunk_data = torch.load(path_to_load, map_location=torch.device('cuda:{}'.format(self.local_rank))) running_pos = 0 for feature_name in chunk['features']: next_running_pos = running_pos + 1 feature_data = chunk_data[:, running_pos:next_running_pos] # This is needed because slicing instead of indexing keeps the data 2-dimensional feature_data = feature_data.reshape(-1, 1) running_pos = next_running_pos self.features[feature_name] = feature_data class TestDataLoader: def __init__(self, dataset: TorchTensorDataset, args): self.dataset = dataset self.feature_spec = dataset.feature_spec self.channel_spec = self.feature_spec.channel_spec self.samples_in_series = self.feature_spec.metadata[TEST_SAMPLES_PER_SERIES] self.raw_dataset_length = None # First feature loaded sets this. Total length before splitting across cards self.data = dict() self.world_size = args.world_size self.local_rank = args.local_rank self.batch_size = args.valid_batch_size self._build_channel_dict() self._deduplication_augmentation() self._split_between_devices() self._split_into_batches() def _build_channel_dict(self): for channel_name, channel_features in self.channel_spec.items(): channel_tensors = dict() for feature_name in channel_features: channel_tensors[feature_name] = self.dataset.features[feature_name] if not self.raw_dataset_length: self.raw_dataset_length = channel_tensors[feature_name].shape[0] else: assert self.raw_dataset_length == channel_tensors[feature_name].shape[0] self.data[channel_name] = channel_tensors def _deduplication_augmentation(self): # Augmentation # This adds a duplication mask tensor. # This is here to exactly replicate the MLPerf training regime. Moving this deduplication to the candidate item # generation stage increases the real diversity of the candidates, which makes the ranking task harder # and results in a drop in HR@10 of approx 0.01. This has been deemed unacceptable (May 2021). # We need the duplication mask to determine if a given item should be skipped during ranking # If an item with label 1 is duplicated in the sampled ones, we need to be careful to not mark the one with # label 1 as a duplicate. If an item appears repeatedly only with label 1, no duplicates are marked. # To easily compute candidates, we sort the items. This will impact the distribution of examples between # devices, but should not influence the numerics or performance meaningfully. # We need to assure that the positive item, which we don't want to mark as a duplicate, appears first. # We do this by adding labels as a secondary factor # Reshape the tensors to have items for a given user in a single row user_feature_name = self.channel_spec[USER_CHANNEL_NAME][0] item_feature_name = self.channel_spec[ITEM_CHANNEL_NAME][0] label_feature_name = self.channel_spec[LABEL_CHANNEL_NAME][0] self.ignore_mask_channel_name = 'mask_ch' self.ignore_mask_feature_name = 'mask' items = self.data[ITEM_CHANNEL_NAME][item_feature_name].view(-1, self.samples_in_series) users = self.data[USER_CHANNEL_NAME][user_feature_name].view(-1, self.samples_in_series) labels = self.data[LABEL_CHANNEL_NAME][label_feature_name].view(-1, self.samples_in_series) sorting_weights = items.float() - labels.float() * 0.5 _, indices = torch.sort(sorting_weights) # The gather reorders according to the indices decided by the sort above sorted_items = torch.gather(items, 1, indices) sorted_labels = torch.gather(labels, 1, indices) sorted_users = torch.gather(users, 1, indices) dup_mask = sorted_items[:, 0:-1] == sorted_items[:, 1:] # This says if a given item is equal to the next one dup_mask = dup_mask.type(torch.bool) # The first item for a given user can never be a duplicate: dup_mask = torch.cat((torch.zeros_like(dup_mask[:, 0:1]), dup_mask), dim=1) # Reshape them back self.data[ITEM_CHANNEL_NAME][item_feature_name] = sorted_items.view(-1, 1) self.data[USER_CHANNEL_NAME][user_feature_name] = sorted_users.view(-1, 1) self.data[LABEL_CHANNEL_NAME][label_feature_name] = sorted_labels.view(-1, 1) self.data[self.ignore_mask_channel_name] = dict() self.data[self.ignore_mask_channel_name][self.ignore_mask_feature_name] = dup_mask.view(-1, 1) def _split_between_devices(self): if self.world_size > 1: # DO NOT REPLACE WITH torch.chunk (number of returned chunks can silently be lower than requested). # It would break compatibility with small datasets. num_test_cases = self.raw_dataset_length / self.samples_in_series smaller_batch = (int(num_test_cases // self.world_size)) * self.samples_in_series bigger_batch = smaller_batch + self.samples_in_series remainder = int(num_test_cases % self.world_size) samples_per_card = [bigger_batch] * remainder + [smaller_batch] * (self.world_size - remainder) for channel_name, channel_dict in self.data.items(): for feature_name, feature_tensor in channel_dict.items(): channel_dict[feature_name] = \ channel_dict[feature_name].split(samples_per_card)[self.local_rank] def _split_into_batches(self): self.batches = None # This is the structure of each batch, waiting to be copied and filled in with data for channel_name, channel_dict in self.data.items(): for feature_name, feature_tensor in channel_dict.items(): feature_batches = feature_tensor.view(-1).split(self.batch_size) if not self.batches: self.batches = list( {channel_name: dict() for channel_name in self.data.keys()} for _ in feature_batches) for pos, feature_batch_data in enumerate(feature_batches): self.batches[pos][channel_name][feature_name] = feature_batch_data def get_epoch_data(self): return self.batches def get_ignore_mask(self): return self.data[self.ignore_mask_channel_name][self.ignore_mask_feature_name] class TrainDataloader: def __init__(self, dataset: TorchTensorDataset, args): self.dataset = dataset self.local_rank = args.local_rank if args.distributed: self.local_batch = args.batch_size // args.world_size else: self.local_batch = args.batch_size self.feature_spec = dataset.feature_spec self.channel_spec = self.feature_spec.channel_spec self.negative_samples = args.negative_samples self.data = dict() self.raw_dataset_length = None # first feature loaded sets this self._build_channel_dict() self.length_after_augmentation = self.raw_dataset_length * (self.negative_samples + 1) samples_per_worker = self.length_after_augmentation / args.world_size self.samples_begin = int(samples_per_worker * args.local_rank) self.samples_end = int(samples_per_worker * (args.local_rank + 1)) def _build_channel_dict(self): for channel_name, channel_features in self.channel_spec.items(): channel_tensors = dict() for feature_name in channel_features: channel_tensors[feature_name] = self.dataset.features[feature_name] if not self.raw_dataset_length: self.raw_dataset_length = channel_tensors[feature_name].shape[0] else: assert self.raw_dataset_length == channel_tensors[feature_name].shape[0] self.data[channel_name] = channel_tensors def get_epoch_data(self): # Augment, appending args.negative_samples times the original set, now with random items end negative labels augmented_data = {channel_name: dict() for channel_name in self.data.keys()} user_feature_name = self.channel_spec[USER_CHANNEL_NAME][0] item_feature_name = self.channel_spec[ITEM_CHANNEL_NAME][0] label_feature_name = self.channel_spec[LABEL_CHANNEL_NAME][0] # USER user_tensor = self.data[USER_CHANNEL_NAME][user_feature_name] neg_users = user_tensor.repeat(self.negative_samples, 1) augmented_users = torch.cat((user_tensor, neg_users)) augmented_data[USER_CHANNEL_NAME][user_feature_name] = augmented_users del neg_users # ITEM item_tensor = self.data[ITEM_CHANNEL_NAME][item_feature_name] neg_items = torch.empty_like(item_tensor).repeat(self.negative_samples, 1) \ .random_(0, self.feature_spec.feature_spec[item_feature_name]['cardinality']) augmented_items = torch.cat((item_tensor, neg_items)) augmented_data[ITEM_CHANNEL_NAME][item_feature_name] = augmented_items del neg_items # LABEL label_tensor = self.data[LABEL_CHANNEL_NAME][label_feature_name] neg_label = torch.zeros_like(label_tensor, dtype=torch.float32).repeat(self.negative_samples, 1) augmented_labels = torch.cat((label_tensor, neg_label)) del neg_label augmented_data[LABEL_CHANNEL_NAME][label_feature_name] = augmented_labels # Labels are not shuffled between cards. # This replicates previous behaviour. epoch_indices = torch.randperm(self.samples_end - self.samples_begin, device='cuda:{}'.format(self.local_rank)) epoch_indices += self.samples_begin batches = None for channel_name, channel_dict in augmented_data.items(): for feature_name, feature_tensor in channel_dict.items(): # the last batch will almost certainly be smaller, drop it # Warning: may not work if there's only one feature_batches = feature_tensor.view(-1)[epoch_indices].split(self.local_batch)[:-1] if not batches: batches = list({channel_name: dict() for channel_name in self.data.keys()} for _ in feature_batches) for pos, feature_batch_data in enumerate(feature_batches): batches[pos][channel_name][feature_name] = feature_batch_data return batches
DeepLearningExamples-master
PyTorch/Recommendation/NCF/dataloading.py
# Copyright (c) 2018, deepakn94, codyaustun, robieta. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.jit from apex.optimizers import FusedAdam import os import math import time import numpy as np from argparse import ArgumentParser import torch import torch.nn as nn import utils import dataloading from neumf import NeuMF from feature_spec import FeatureSpec from neumf_constants import USER_CHANNEL_NAME, ITEM_CHANNEL_NAME, LABEL_CHANNEL_NAME import dllogger def synchronized_timestamp(): torch.cuda.synchronize() return time.time() def parse_args(): parser = ArgumentParser(description="Train a Neural Collaborative" " Filtering model") parser.add_argument('--data', type=str, help='Path to the directory containing the feature specification yaml') parser.add_argument('--feature_spec_file', type=str, default='feature_spec.yaml', help='Name of the feature specification file or path relative to the data directory.') parser.add_argument('-e', '--epochs', type=int, default=30, help='Number of epochs for training') parser.add_argument('-b', '--batch_size', type=int, default=2 ** 20, help='Number of examples for each iteration. This will be divided by the number of devices') parser.add_argument('--valid_batch_size', type=int, default=2 ** 20, help='Number of examples in each validation chunk. This will be the maximum size of a batch ' 'on each device.') parser.add_argument('-f', '--factors', type=int, default=64, help='Number of predictive factors') parser.add_argument('--layers', nargs='+', type=int, default=[256, 256, 128, 64], help='Sizes of hidden layers for MLP') parser.add_argument('-n', '--negative_samples', type=int, default=4, help='Number of negative examples per interaction') parser.add_argument('-l', '--learning_rate', type=float, default=0.0045, help='Learning rate for optimizer') parser.add_argument('-k', '--topk', type=int, default=10, help='Rank for test examples to be considered a hit') parser.add_argument('--seed', '-s', type=int, default=None, help='Manually set random seed for torch') parser.add_argument('--threshold', '-t', type=float, default=1.0, help='Stop training early at threshold') parser.add_argument('--beta1', '-b1', type=float, default=0.25, help='Beta1 for Adam') parser.add_argument('--beta2', '-b2', type=float, default=0.5, help='Beta1 for Adam') parser.add_argument('--eps', type=float, default=1e-8, help='Epsilon for Adam') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout probability, if equal to 0 will not use dropout at all') parser.add_argument('--checkpoint_dir', default='', type=str, help='Path to the directory storing the checkpoint file, ' 'passing an empty path disables checkpoint saving') parser.add_argument('--load_checkpoint_path', default=None, type=str, help='Path to the checkpoint file to be loaded before training/evaluation') parser.add_argument('--mode', choices=['train', 'test'], default='train', type=str, help='Passing "test" will only run a single evaluation; ' 'otherwise, full training will be performed') parser.add_argument('--grads_accumulated', default=1, type=int, help='Number of gradients to accumulate before performing an optimization step') parser.add_argument('--amp', action='store_true', help='Enable mixed precision training') parser.add_argument('--log_path', default='log.json', type=str, help='Path for the JSON training log') return parser.parse_args() def init_distributed(args): args.world_size = int(os.environ.get('WORLD_SIZE', default=1)) args.distributed = args.world_size > 1 if args.distributed: args.local_rank = int(os.environ['LOCAL_RANK']) ''' Set cuda device so everything is done on the right GPU. THIS MUST BE DONE AS SOON AS POSSIBLE. ''' torch.cuda.set_device(args.local_rank) '''Initialize distributed communication''' torch.distributed.init_process_group(backend='nccl', init_method='env://') else: args.local_rank = 0 def val_epoch(model, dataloader: dataloading.TestDataLoader, k, distributed=False, world_size=1): model.eval() user_feature_name = dataloader.channel_spec[USER_CHANNEL_NAME][0] item_feature_name = dataloader.channel_spec[ITEM_CHANNEL_NAME][0] label_feature_name = dataloader.channel_spec[LABEL_CHANNEL_NAME][0] with torch.no_grad(): p = [] labels_list = [] losses = [] for batch_dict in dataloader.get_epoch_data(): user_batch = batch_dict[USER_CHANNEL_NAME][user_feature_name] item_batch = batch_dict[ITEM_CHANNEL_NAME][item_feature_name] label_batch = batch_dict[LABEL_CHANNEL_NAME][label_feature_name] prediction_batch = model(user_batch, item_batch, sigmoid=True).detach() loss_batch = torch.nn.functional.binary_cross_entropy(input=prediction_batch.reshape([-1]), target=label_batch) losses.append(loss_batch) p.append(prediction_batch) labels_list.append(label_batch) ignore_mask = dataloader.get_ignore_mask().view(-1, dataloader.samples_in_series) ratings = torch.cat(p).view(-1, dataloader.samples_in_series) ratings[ignore_mask] = -1 labels = torch.cat(labels_list).view(-1, dataloader.samples_in_series) del p, labels_list top_indices = torch.topk(ratings, k)[1] # Positive items are always first in a given series labels_of_selected = torch.gather(labels, 1, top_indices) ifzero = (labels_of_selected == 1) hits = ifzero.sum() ndcg = (math.log(2) / (torch.nonzero(ifzero)[:, 1].view(-1).to(torch.float) + 2).log_()).sum() total_validation_loss = torch.mean(torch.stack(losses, dim=0)) # torch.nonzero may cause host-device synchronization if distributed: torch.distributed.all_reduce(hits, op=torch.distributed.ReduceOp.SUM) torch.distributed.all_reduce(ndcg, op=torch.distributed.ReduceOp.SUM) torch.distributed.all_reduce(total_validation_loss, op=torch.distributed.ReduceOp.SUM) total_validation_loss = total_validation_loss / world_size num_test_cases = dataloader.raw_dataset_length / dataloader.samples_in_series hr = hits.item() / num_test_cases ndcg = ndcg.item() / num_test_cases model.train() return hr, ndcg, total_validation_loss def main(): args = parse_args() init_distributed(args) if args.local_rank == 0: dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)]) else: dllogger.init(backends=[]) dllogger.metadata('train_throughput', {"name": 'train_throughput', 'unit': 'samples/s', 'format': ":.3e"}) dllogger.metadata('best_train_throughput', {'unit': 'samples/s'}) dllogger.metadata('mean_train_throughput', {'unit': 'samples/s'}) dllogger.metadata('eval_throughput', {"name": 'eval_throughput', 'unit': 'samples/s', 'format': ":.3e"}) dllogger.metadata('best_eval_throughput', {'unit': 'samples/s'}) dllogger.metadata('mean_eval_throughput', {'unit': 'samples/s'}) dllogger.metadata('train_epoch_time', {"name": 'train_epoch_time', 'unit': 's', 'format': ":.3f"}) dllogger.metadata('validation_epoch_time', {"name": 'validation_epoch_time', 'unit': 's', 'format': ":.3f"}) dllogger.metadata('time_to_target', {'unit': 's'}) dllogger.metadata('time_to_best_model', {'unit': 's'}) dllogger.metadata('hr@10', {"name": 'hr@10', 'unit': None, 'format': ":.5f"}) dllogger.metadata('best_accuracy', {'unit': None}) dllogger.metadata('best_epoch', {'unit': None}) dllogger.metadata('validation_loss', {"name": 'validation_loss', 'unit': None, 'format': ":.5f"}) dllogger.metadata('train_loss', {"name": 'train_loss', 'unit': None, 'format': ":.5f"}) dllogger.log(data=vars(args), step='PARAMETER') if args.seed is not None: torch.manual_seed(args.seed) if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir: print("Saving results to {}".format(args.checkpoint_dir)) os.makedirs(args.checkpoint_dir, exist_ok=True) # sync workers before timing if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) torch.cuda.synchronize() main_start_time = synchronized_timestamp() feature_spec_path = os.path.join(args.data, args.feature_spec_file) feature_spec = FeatureSpec.from_yaml(feature_spec_path) trainset = dataloading.TorchTensorDataset(feature_spec, mapping_name='train', args=args) testset = dataloading.TorchTensorDataset(feature_spec, mapping_name='test', args=args) train_loader = dataloading.TrainDataloader(trainset, args) test_loader = dataloading.TestDataLoader(testset, args) # make pytorch memory behavior more consistent later torch.cuda.empty_cache() # Create model user_feature_name = feature_spec.channel_spec[USER_CHANNEL_NAME][0] item_feature_name = feature_spec.channel_spec[ITEM_CHANNEL_NAME][0] label_feature_name = feature_spec.channel_spec[LABEL_CHANNEL_NAME][0] model = NeuMF(nb_users=feature_spec.feature_spec[user_feature_name]['cardinality'], nb_items=feature_spec.feature_spec[item_feature_name]['cardinality'], mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) optimizer = FusedAdam(model.parameters(), lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps) criterion = nn.BCEWithLogitsLoss(reduction='none') # use torch.mean() with dim later to avoid copy to host # Move model and loss to GPU model = model.cuda() criterion = criterion.cuda() if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model) local_batch = args.batch_size // args.world_size traced_criterion = torch.jit.trace(criterion.forward, (torch.rand(local_batch, 1), torch.rand(local_batch, 1))) print(model) print("{} parameters".format(utils.count_parameters(model))) if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} model.load_state_dict(state_dict) if args.mode == 'test': start = synchronized_timestamp() hr, ndcg, val_loss = val_epoch(model, test_loader, args.topk, distributed=args.distributed, world_size=args.world_size) val_time = synchronized_timestamp() - start eval_size = test_loader.raw_dataset_length eval_throughput = eval_size / val_time dllogger.log(step=tuple(), data={'best_eval_throughput': eval_throughput, 'hr@10': hr, 'validation_loss': float(val_loss.item())}) return # this should always be overridden if hr>0. # It is theoretically possible for the hit rate to be zero in the first epoch, which would result in referring # to an uninitialized variable. max_hr = 0 best_epoch = 0 best_model_timestamp = synchronized_timestamp() train_throughputs, eval_throughputs = [], [] scaler = torch.cuda.amp.GradScaler(enabled=args.amp) for epoch in range(args.epochs): begin = synchronized_timestamp() batch_dict_list = train_loader.get_epoch_data() num_batches = len(batch_dict_list) for i in range(num_batches // args.grads_accumulated): for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j batch_dict = batch_dict_list[batch_idx] user_features = batch_dict[USER_CHANNEL_NAME] item_features = batch_dict[ITEM_CHANNEL_NAME] user_batch = user_features[user_feature_name] item_batch = item_features[item_feature_name] label_features = batch_dict[LABEL_CHANNEL_NAME] label_batch = label_features[label_feature_name] with torch.cuda.amp.autocast(enabled=args.amp): outputs = model(user_batch, item_batch) loss = traced_criterion(outputs, label_batch.view(-1, 1)) loss = torch.mean(loss.float().view(-1), 0) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() for p in model.parameters(): p.grad = None del batch_dict_list train_time = synchronized_timestamp() - begin begin = synchronized_timestamp() epoch_samples = train_loader.length_after_augmentation train_throughput = epoch_samples / train_time train_throughputs.append(train_throughput) hr, ndcg, val_loss = val_epoch(model, test_loader, args.topk, distributed=args.distributed, world_size=args.world_size) val_time = synchronized_timestamp() - begin eval_size = test_loader.raw_dataset_length eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) if args.distributed: torch.distributed.all_reduce(loss, op=torch.distributed.ReduceOp.SUM) loss = loss / args.world_size dllogger.log(step=(epoch,), data={'train_throughput': train_throughput, 'hr@10': hr, 'train_epoch_time': train_time, 'validation_epoch_time': val_time, 'eval_throughput': eval_throughput, 'validation_loss': float(val_loss.item()), 'train_loss': float(loss.item())}) if hr > max_hr and args.local_rank == 0: max_hr = hr best_epoch = epoch print("New best hr!") if args.checkpoint_dir: save_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.pth') print("Saving the model to: ", save_checkpoint_path) torch.save(model.state_dict(), save_checkpoint_path) best_model_timestamp = synchronized_timestamp() if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) break if args.local_rank == 0: dllogger.log(data={'best_train_throughput': max(train_throughputs), 'best_eval_throughput': max(eval_throughputs), 'mean_train_throughput': np.mean(train_throughputs), 'mean_eval_throughput': np.mean(eval_throughputs), 'best_accuracy': max_hr, 'best_epoch': best_epoch, 'time_to_target': synchronized_timestamp() - main_start_time, 'time_to_best_model': best_model_timestamp - main_start_time, 'validation_loss': float(val_loss.item()), 'train_loss': float(loss.item())}, step=tuple()) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/Recommendation/NCF/ncf.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from feature_spec import FeatureSpec from neumf_constants import TEST_SAMPLES_PER_SERIES from dataloading import TorchTensorDataset import torch import os import sys def test_matches_template(path, template_path): loaded_featurespec_string = FeatureSpec.from_yaml(path).to_string() loaded_template_string = FeatureSpec.from_yaml(template_path).to_string() assert loaded_template_string == loaded_featurespec_string def mock_args(): class Obj: pass args = Obj() args.__dict__['local_rank'] = 0 return args def test_dtypes(path): loaded_featurespec = FeatureSpec.from_yaml(path) features = loaded_featurespec.feature_spec declared_dtypes = {name: data['dtype'] for name, data in features.items()} source_spec = loaded_featurespec.source_spec for mapping in source_spec.values(): for chunk in mapping: chunk_dtype = None for present_feature in chunk['features']: assert present_feature in declared_dtypes, "unknown feature in mapping" # Check declared type feature_dtype = declared_dtypes[present_feature] if chunk_dtype is None: chunk_dtype = feature_dtype else: assert chunk_dtype == feature_dtype path_to_load = os.path.join(loaded_featurespec.base_directory, chunk['files'][0]) loaded_data = torch.load(path_to_load) assert str(loaded_data.dtype) == chunk_dtype def test_cardinalities(path): loaded_featurespec = FeatureSpec.from_yaml(path) features = loaded_featurespec.feature_spec declared_cardinalities = {name: data['cardinality'] for name, data in features.items() if 'cardinality' in data} source_spec = loaded_featurespec.source_spec for mapping_name, mapping in source_spec.items(): dataset = TorchTensorDataset(loaded_featurespec, mapping_name, mock_args()) for feature_name, cardinality in declared_cardinalities.items(): feature_data = dataset.features[feature_name] biggest_num = feature_data.max().item() assert biggest_num < cardinality def test_samples_in_test_series(path): loaded_featurespec = FeatureSpec.from_yaml(path) series_length = loaded_featurespec.metadata[TEST_SAMPLES_PER_SERIES] dataset = TorchTensorDataset(loaded_featurespec, 'test', mock_args()) for feature in dataset.features.values(): assert len(feature) % series_length == 0 if __name__ == '__main__': tested_spec = sys.argv[1] template = sys.argv[2] test_cardinalities(tested_spec) test_dtypes(tested_spec) test_samples_in_test_series(tested_spec) test_matches_template(tested_spec, template)
DeepLearningExamples-master
PyTorch/Recommendation/NCF/test_featurespec_correctness.py
# Copyright (c) 2018, deepakn94, codyaustun, robieta. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser import pandas as pd from load import implicit_load from feature_spec import FeatureSpec from neumf_constants import USER_CHANNEL_NAME, ITEM_CHANNEL_NAME, LABEL_CHANNEL_NAME, TEST_SAMPLES_PER_SERIES import torch import os import tqdm TEST_1 = 'test_data_1.pt' TEST_0 = 'test_data_0.pt' TRAIN_1 = 'train_data_1.pt' TRAIN_0 = 'train_data_0.pt' USER_COLUMN = 'user_id' ITEM_COLUMN = 'item_id' def parse_args(): parser = ArgumentParser() parser.add_argument('--path', type=str, default='/data/ml-20m/ratings.csv', help='Path to reviews CSV file from MovieLens') parser.add_argument('--output', type=str, default='/data', help='Output directory for train and test files') parser.add_argument('--valid_negative', type=int, default=100, help='Number of negative samples for each positive test example') parser.add_argument('--seed', '-s', type=int, default=1, help='Manually set random seed for torch') return parser.parse_args() class _TestNegSampler: def __init__(self, train_ratings, nb_neg): self.nb_neg = nb_neg self.nb_users = int(train_ratings[:, 0].max()) + 1 self.nb_items = int(train_ratings[:, 1].max()) + 1 # compute unique ids for quickly created hash set and fast lookup ids = (train_ratings[:, 0] * self.nb_items) + train_ratings[:, 1] self.set = set(ids) def generate(self, batch_size=128 * 1024): users = torch.arange(0, self.nb_users).reshape([1, -1]).repeat([self.nb_neg, 1]).transpose(0, 1).reshape(-1) items = [-1] * len(users) random_items = torch.LongTensor(batch_size).random_(0, self.nb_items).tolist() print('Generating validation negatives...') for idx, u in enumerate(tqdm.tqdm(users.tolist())): if not random_items: random_items = torch.LongTensor(batch_size).random_(0, self.nb_items).tolist() j = random_items.pop() while u * self.nb_items + j in self.set: if not random_items: random_items = torch.LongTensor(batch_size).random_(0, self.nb_items).tolist() j = random_items.pop() items[idx] = j items = torch.LongTensor(items) return items def save_feature_spec(user_cardinality, item_cardinality, dtypes, test_negative_samples, output_path, user_feature_name='user', item_feature_name='item', label_feature_name='label'): feature_spec = { user_feature_name: { 'dtype': dtypes[user_feature_name], 'cardinality': int(user_cardinality) }, item_feature_name: { 'dtype': dtypes[item_feature_name], 'cardinality': int(item_cardinality) }, label_feature_name: { 'dtype': dtypes[label_feature_name], } } metadata = { TEST_SAMPLES_PER_SERIES: test_negative_samples + 1 } train_mapping = [ { 'type': 'torch_tensor', 'features': [ user_feature_name, item_feature_name ], 'files': [TRAIN_0] }, { 'type': 'torch_tensor', 'features': [ label_feature_name ], 'files': [TRAIN_1] } ] test_mapping = [ { 'type': 'torch_tensor', 'features': [ user_feature_name, item_feature_name ], 'files': [TEST_0], }, { 'type': 'torch_tensor', 'features': [ label_feature_name ], 'files': [TEST_1], } ] channel_spec = { USER_CHANNEL_NAME: [user_feature_name], ITEM_CHANNEL_NAME: [item_feature_name], LABEL_CHANNEL_NAME: [label_feature_name] } source_spec = {'train': train_mapping, 'test': test_mapping} feature_spec = FeatureSpec(feature_spec=feature_spec, metadata=metadata, source_spec=source_spec, channel_spec=channel_spec, base_directory="") feature_spec.to_yaml(output_path=output_path) def main(): args = parse_args() if args.seed is not None: torch.manual_seed(args.seed) print("Loading raw data from {}".format(args.path)) df = implicit_load(args.path, sort=False) print("Mapping original user and item IDs to new sequential IDs") df[USER_COLUMN] = pd.factorize(df[USER_COLUMN])[0] df[ITEM_COLUMN] = pd.factorize(df[ITEM_COLUMN])[0] user_cardinality = df[USER_COLUMN].max() + 1 item_cardinality = df[ITEM_COLUMN].max() + 1 # Need to sort before popping to get last item df.sort_values(by='timestamp', inplace=True) # clean up data del df['rating'], df['timestamp'] df = df.drop_duplicates() # assuming it keeps order # Test set is the last interaction for a given user grouped_sorted = df.groupby(USER_COLUMN, group_keys=False) test_data = grouped_sorted.tail(1).sort_values(by=USER_COLUMN) # Train set is all interactions but the last one train_data = grouped_sorted.apply(lambda x: x.iloc[:-1]) sampler = _TestNegSampler(train_data.values, args.valid_negative) test_negs = sampler.generate().cuda() test_negs = test_negs.reshape(-1, args.valid_negative) # Reshape train set into user,item,label tabular and save train_ratings = torch.from_numpy(train_data.values).cuda() train_labels = torch.ones_like(train_ratings[:, 0:1], dtype=torch.float32) torch.save(train_ratings, os.path.join(args.output, TRAIN_0)) torch.save(train_labels, os.path.join(args.output, TRAIN_1)) # Reshape test set into user,item,label tabular and save # All users have the same number of items, items for a given user appear consecutively test_ratings = torch.from_numpy(test_data.values).cuda() test_users_pos = test_ratings[:, 0:1] # slicing instead of indexing to keep dimensions test_items_pos = test_ratings[:, 1:2] test_users = test_users_pos.repeat_interleave(args.valid_negative + 1, dim=0) test_items = torch.cat((test_items_pos.reshape(-1, 1), test_negs), dim=1).reshape(-1, 1) positive_labels = torch.ones_like(test_users_pos, dtype=torch.float32) negative_labels = torch.zeros_like(test_users_pos, dtype=torch.float32).repeat(1, args.valid_negative) test_labels = torch.cat((positive_labels, negative_labels), dim=1).reshape(-1, 1) dtypes = {'user': str(test_users.dtype), 'item': str(test_items.dtype), 'label': str(test_labels.dtype)} test_tensor = torch.cat((test_users, test_items), dim=1) torch.save(test_tensor, os.path.join(args.output, TEST_0)) torch.save(test_labels, os.path.join(args.output, TEST_1)) save_feature_spec(user_cardinality=user_cardinality, item_cardinality=item_cardinality, dtypes=dtypes, test_negative_samples=args.valid_negative, output_path=args.output + '/feature_spec.yaml') if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/Recommendation/NCF/convert.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import yaml import os from typing import List, Dict class FeatureSpec: def __init__(self, feature_spec, source_spec, channel_spec, metadata, base_directory): self.feature_spec: Dict = feature_spec self.source_spec: Dict = source_spec self.channel_spec: Dict = channel_spec self.metadata: Dict = metadata self.base_directory: str = base_directory @classmethod def from_yaml(cls, path): with open(path, 'r') as feature_spec_file: base_directory = os.path.dirname(path) feature_spec = yaml.safe_load(feature_spec_file) return cls.from_dict(feature_spec, base_directory=base_directory) @classmethod def from_dict(cls, source_dict, base_directory): return cls(base_directory=base_directory, **source_dict) def to_dict(self) -> Dict: attributes_to_dump = ['feature_spec', 'source_spec', 'channel_spec', 'metadata'] return {attr: self.__dict__[attr] for attr in attributes_to_dump} def to_string(self): return yaml.dump(self.to_dict()) def to_yaml(self, output_path=None): if not output_path: output_path = self.base_directory + '/feature_spec.yaml' with open(output_path, 'w') as output_file: print(yaml.dump(self.to_dict()), file=output_file)
DeepLearningExamples-master
PyTorch/Recommendation/NCF/feature_spec.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser import os import torch import pandas as pd from feature_spec import FeatureSpec from neumf_constants import USER_CHANNEL_NAME, ITEM_CHANNEL_NAME, LABEL_CHANNEL_NAME def parse_args(): parser = ArgumentParser() parser.add_argument('--path', type=str, default='', help='Path to input data directory') parser.add_argument('--feature_spec_in', type=str, default='feature_spec.yaml', help='Name of the input feature specification file, or path relative to data directory.') parser.add_argument('--output', type=str, default='/data', help='Path to output data directory') parser.add_argument('--feature_spec_out', type=str, default='feature_spec.yaml', help='Name of the output feature specification file, or path relative to data directory.') return parser.parse_args() def main(): args = parse_args() args_output = args.output args_path = args.path args_feature_spec_in = args.feature_spec_in args_feature_spec_out = args.feature_spec_out feature_spec_path = os.path.join(args_path, args_feature_spec_in) feature_spec = FeatureSpec.from_yaml(feature_spec_path) # Only three features are transcoded - this is NCF specific user_feature_name = feature_spec.channel_spec[USER_CHANNEL_NAME][0] item_feature_name = feature_spec.channel_spec[ITEM_CHANNEL_NAME][0] label_feature_name = feature_spec.channel_spec[LABEL_CHANNEL_NAME][0] categorical_features = [user_feature_name, item_feature_name] found_cardinalities = {f: 0 for f in categorical_features} new_source_spec = {} for mapping_name, mapping in feature_spec.source_spec.items(): # Load all chunks and link into one df chunk_dfs = [] for chunk in mapping: assert chunk['type'] == 'csv', "Only csv files supported in this transcoder" file_dfs = [] for file in chunk['files']: path_to_load = os.path.join(feature_spec.base_directory, file) file_dfs.append(pd.read_csv(path_to_load, header=None)) chunk_df = pd.concat(file_dfs, ignore_index=True) chunk_df.columns = chunk['features'] chunk_df.reset_index(drop=True, inplace=True) chunk_dfs.append(chunk_df) mapping_df = pd.concat(chunk_dfs, axis=1) # This takes care of making sure feature names are unique for feature in categorical_features: mapping_cardinality = mapping_df[feature].max() + 1 previous_cardinality = found_cardinalities[feature] found_cardinalities[feature] = max(previous_cardinality, mapping_cardinality) # We group together users and items, while separating labels. This is because of the target dtypes: ids are int, # while labels are float to compute loss. ints_tensor = torch.from_numpy(mapping_df[[user_feature_name, item_feature_name]].values).long() ints_file = f"{mapping_name}_data_0.pt" ints_chunk = {"type": "torch_tensor", "features": [user_feature_name, item_feature_name], "files": [ints_file]} torch.save(ints_tensor, os.path.join(args_output, ints_file)) floats_tensor = torch.from_numpy(mapping_df[[label_feature_name]].values).float() floats_file = f"{mapping_name}_data_1.pt" floats_chunk = {"type": "torch_tensor", "features": [label_feature_name], "files": [floats_file]} torch.save(floats_tensor, os.path.join(args_output, floats_file)) new_source_spec[mapping_name] = [ints_chunk, floats_chunk] for feature in categorical_features: found_cardinality = found_cardinalities[feature] declared_cardinality = feature_spec.feature_spec[feature].get('cardinality', 'auto') if declared_cardinality != "auto": declared = int(declared_cardinality) assert declared >= found_cardinality, "Specified cardinality conflicts data" found_cardinalities[feature] = declared new_inner_feature_spec = { user_feature_name: { "dtype": "torch.int64", "cardinality": int(found_cardinalities[user_feature_name]) }, item_feature_name: { "dtype": "torch.int64", "cardinality": int(found_cardinalities[item_feature_name]) }, label_feature_name: { "dtype": "torch.float32" } } new_feature_spec = FeatureSpec(feature_spec=new_inner_feature_spec, source_spec=new_source_spec, channel_spec=feature_spec.channel_spec, metadata=feature_spec.metadata, base_directory="") feature_spec_save_path = os.path.join(args_output, args_feature_spec_out) new_feature_spec.to_yaml(output_path=feature_spec_save_path) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/Recommendation/NCF/transcode.py
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import reduce def count_parameters(model): c = map(lambda p: reduce(lambda x, y: x * y, p.size()), model.parameters()) return sum(c) def save_result(result, path): write_heading = not os.path.exists(path) with open(path, mode='a') as out: if write_heading: out.write(",".join([str(k) for k, v in result.items()]) + '\n') out.write(",".join([str(v) for k, v in result.items()]) + '\n')
DeepLearningExamples-master
PyTorch/Recommendation/NCF/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. USER_CHANNEL_NAME = 'user_ch' ITEM_CHANNEL_NAME = 'item_ch' LABEL_CHANNEL_NAME = 'label_ch' TEST_SAMPLES_PER_SERIES = 'test_samples_per_series'
DeepLearningExamples-master
PyTorch/Recommendation/NCF/neumf_constants.py
# # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.jit import time from argparse import ArgumentParser import numpy as np import torch from neumf import NeuMF import dllogger def parse_args(): parser = ArgumentParser(description="Benchmark inference performance of the NCF model") parser.add_argument('--load_checkpoint_path', default=None, type=str, help='Path to the checkpoint file to be loaded before training/evaluation') parser.add_argument('--n_users', default=138493, type=int, help='Number of users. Defaults to the number of users in the ml-20m dataset after preprocessing') parser.add_argument('--n_items', default=26744, type=int, help='Number of items. Defaults to the number of users in the ml-20m dataset after preprocessing') parser.add_argument('-f', '--factors', type=int, default=64, help='Number of predictive factors') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout probability, if equal to 0 will not use dropout at all') parser.add_argument('--layers', nargs='+', type=int, default=[256, 256, 128, 64], help='Sizes of hidden layers for MLP') parser.add_argument('--batch_sizes', default='1,4,16,64,256,1024,4096,16384,65536,262144,1048576', type=str, help='A list of comma-separated batch size values to benchmark') parser.add_argument('--num_batches', default=200, type=int, help='Number of batches for which to measure latency and throughput') parser.add_argument('--fp16', action='store_true', help='Cast the model to FP16 precision', default=False) parser.add_argument('--log_path', default='log.json', type=str, help='Path for the JSON training log') return parser.parse_args() def main(): args = parse_args() dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)]) dllogger.log(data=vars(args), step='PARAMETER') model = NeuMF(nb_users=args.n_users, nb_items=args.n_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) model = model.cuda() if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) model.load_state_dict(state_dict) if args.fp16: model.half() model.eval() batch_sizes = args.batch_sizes.split(',') batch_sizes = [int(s) for s in batch_sizes] result_data = {} for batch_size in batch_sizes: print('benchmarking batch size: ', batch_size) users = torch.cuda.LongTensor(batch_size).random_(0, args.n_users) items = torch.cuda.LongTensor(batch_size).random_(0, args.n_items) latencies = [] for i in range(args.num_batches): torch.cuda.synchronize() start = time.time() _ = model(users, items, sigmoid=True) torch.cuda.synchronize() end_time = time.time() if i < 10: # warmup iterations continue latencies.append(end_time - start) result_data[f'batch_{batch_size}_mean_throughput'] = batch_size / np.mean(latencies) result_data[f'batch_{batch_size}_mean_latency'] = np.mean(latencies) result_data[f'batch_{batch_size}_p90_latency'] = np.percentile(latencies, 90) result_data[f'batch_{batch_size}_p95_latency'] = np.percentile(latencies, 95) result_data[f'batch_{batch_size}_p99_latency'] = np.percentile(latencies, 99) for batch_size in batch_sizes: dllogger.metadata(f'batch_{batch_size}_mean_throughput', {'unit': 'samples/s'}) for p in ['mean', 'p90', 'p95', 'p99']: dllogger.metadata(f'batch_{batch_size}_{p}_latency', {'unit': 's'}) dllogger.log(data=result_data, step=tuple()) dllogger.flush() return if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/Recommendation/NCF/inference.py
# Copyright (c) 2018, deepakn94. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple import pandas as pd RatingData = namedtuple('RatingData', ['items', 'users', 'ratings', 'min_date', 'max_date']) def describe_ratings(ratings): info = RatingData(items=len(ratings['item_id'].unique()), users=len(ratings['user_id'].unique()), ratings=len(ratings), min_date=ratings['timestamp'].min(), max_date=ratings['timestamp'].max()) print("{ratings} ratings on {items} items from {users} users" " from {min_date} to {max_date}" .format(**(info._asdict()))) return info def process_movielens(ratings, sort=True): ratings['timestamp'] = pd.to_datetime(ratings['timestamp'], unit='s') if sort: ratings.sort_values(by='timestamp', inplace=True) describe_ratings(ratings) return ratings def load_ml_100k(filename, sort=True): names = ['user_id', 'item_id', 'rating', 'timestamp'] ratings = pd.read_csv(filename, sep='\t', names=names) return process_movielens(ratings, sort=sort) def load_ml_1m(filename, sort=True): names = ['user_id', 'item_id', 'rating', 'timestamp'] ratings = pd.read_csv(filename, sep='::', names=names, engine='python') return process_movielens(ratings, sort=sort) def load_ml_10m(filename, sort=True): names = ['user_id', 'item_id', 'rating', 'timestamp'] ratings = pd.read_csv(filename, sep='::', names=names, engine='python') return process_movielens(ratings, sort=sort) def load_ml_20m(filename, sort=True): ratings = pd.read_csv(filename) ratings['timestamp'] = pd.to_datetime(ratings['timestamp'], unit='s') names = {'userId': 'user_id', 'movieId': 'item_id'} ratings.rename(columns=names, inplace=True) return process_movielens(ratings, sort=sort) def load_unknown(filename, sort=True): names = ['user_id', 'item_id', 'timestamp'] ratings = pd.read_csv(filename, names=names, header=0, engine='python') ratings['rating'] = 5 return process_movielens(ratings, sort=sort) DATASETS = [k.replace('load_', '') for k in locals().keys() if "load_" in k] def get_dataset_name(filename): for dataset in DATASETS: if dataset in filename.replace('-', '_').lower(): return dataset print("Unknown dataset. Expecting `user_id`, `item_id` , and `timestamp`") return "unknown" def implicit_load(filename, sort=True): func = globals()["load_" + get_dataset_name(filename)] return func(filename, sort=sort)
DeepLearningExamples-master
PyTorch/Recommendation/NCF/load.py
# Copyright (c) 2018, deepakn94, codyaustun, robieta. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser import pandas as pd import numpy as np from load import implicit_load from convert import save_feature_spec, _TestNegSampler, TEST_0, TEST_1, TRAIN_0, TRAIN_1 import torch import os USER_COLUMN = 'user_id' ITEM_COLUMN = 'item_id' def parse_args(): parser = ArgumentParser() parser.add_argument('--path', type=str, default='/data/ml-20m/ratings.csv', help='Path to reviews CSV file from MovieLens') parser.add_argument('--output', type=str, default='/data', help='Output directory for train and test files') parser.add_argument('--valid_negative', type=int, default=100, help='Number of negative samples for each positive test example') parser.add_argument('--seed', '-s', type=int, default=1, help='Manually set random seed for torch') parser.add_argument('--test', type=str, help='select modification to be applied to the set') return parser.parse_args() def main(): args = parse_args() if args.seed is not None: torch.manual_seed(args.seed) print("Loading raw data from {}".format(args.path)) df = implicit_load(args.path, sort=False) if args.test == 'less_user': to_drop = set(list(df[USER_COLUMN].unique())[-100:]) df = df[~df[USER_COLUMN].isin(to_drop)] if args.test == 'less_item': to_drop = set(list(df[ITEM_COLUMN].unique())[-100:]) df = df[~df[ITEM_COLUMN].isin(to_drop)] if args.test == 'more_user': sample = df.sample(frac=0.2).copy() sample[USER_COLUMN] = sample[USER_COLUMN] + 10000000 df = df.append(sample) users = df[USER_COLUMN] df = df[users.isin(users[users.duplicated(keep=False)])] # make sure something remains in the train set if args.test == 'more_item': sample = df.sample(frac=0.2).copy() sample[ITEM_COLUMN] = sample[ITEM_COLUMN] + 10000000 df = df.append(sample) print("Mapping original user and item IDs to new sequential IDs") df[USER_COLUMN] = pd.factorize(df[USER_COLUMN])[0] df[ITEM_COLUMN] = pd.factorize(df[ITEM_COLUMN])[0] user_cardinality = df[USER_COLUMN].max() + 1 item_cardinality = df[ITEM_COLUMN].max() + 1 # Need to sort before popping to get last item df.sort_values(by='timestamp', inplace=True) # clean up data del df['rating'], df['timestamp'] df = df.drop_duplicates() # assuming it keeps order # Test set is the last interaction for a given user grouped_sorted = df.groupby(USER_COLUMN, group_keys=False) test_data = grouped_sorted.tail(1).sort_values(by=USER_COLUMN) # Train set is all interactions but the last one train_data = grouped_sorted.apply(lambda x: x.iloc[:-1]) sampler = _TestNegSampler(train_data.values, args.valid_negative) test_negs = sampler.generate().cuda() if args.valid_negative > 0: test_negs = test_negs.reshape(-1, args.valid_negative) else: test_negs = test_negs.reshape(test_data.shape[0], 0) if args.test == 'more_pos': mask = np.random.rand(len(test_data)) < 0.5 sample = test_data[mask].copy() sample[ITEM_COLUMN] = sample[ITEM_COLUMN] + 5 test_data = test_data.append(sample) test_negs_copy = test_negs[mask] test_negs = torch.cat((test_negs, test_negs_copy), dim=0) if args.test == 'less_pos': mask = np.random.rand(len(test_data)) < 0.5 test_data = test_data[mask] test_negs = test_negs[mask] # Reshape train set into user,item,label tabular and save train_ratings = torch.from_numpy(train_data.values).cuda() train_labels = torch.ones_like(train_ratings[:, 0:1], dtype=torch.float32) torch.save(train_ratings, os.path.join(args.output, TRAIN_0)) torch.save(train_labels, os.path.join(args.output, TRAIN_1)) # Reshape test set into user,item,label tabular and save # All users have the same number of items, items for a given user appear consecutively test_ratings = torch.from_numpy(test_data.values).cuda() test_users_pos = test_ratings[:, 0:1] # slicing instead of indexing to keep dimensions test_items_pos = test_ratings[:, 1:2] test_users = test_users_pos.repeat_interleave(args.valid_negative + 1, dim=0) test_items = torch.cat((test_items_pos.reshape(-1, 1), test_negs), dim=1).reshape(-1, 1) positive_labels = torch.ones_like(test_users_pos, dtype=torch.float32) negative_labels = torch.zeros_like(test_users_pos, dtype=torch.float32).repeat(1, args.valid_negative) test_labels = torch.cat((positive_labels, negative_labels), dim=1).reshape(-1, 1) dtypes = {'user': str(test_users.dtype), 'item': str(test_items.dtype), 'label': str(test_labels.dtype)} test_tensor = torch.cat((test_users, test_items), dim=1) torch.save(test_tensor, os.path.join(args.output, TEST_0)) torch.save(test_labels, os.path.join(args.output, TEST_1)) if args.test == 'other_names': dtypes = {'user_2': str(test_users.dtype), 'item_2': str(test_items.dtype), 'label_2': str(test_labels.dtype)} save_feature_spec(user_cardinality=user_cardinality, item_cardinality=item_cardinality, dtypes=dtypes, test_negative_samples=args.valid_negative, output_path=args.output + '/feature_spec.yaml', user_feature_name='user_2', item_feature_name='item_2', label_feature_name='label_2') else: save_feature_spec(user_cardinality=user_cardinality, item_cardinality=item_cardinality, dtypes=dtypes, test_negative_samples=args.valid_negative, output_path=args.output + '/feature_spec.yaml') if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/Recommendation/NCF/convert_test.py
# Copyright (c) 2018, deepakn94, robieta. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import torch.nn as nn import sys from os.path import abspath, join, dirname class NeuMF(nn.Module): def __init__(self, nb_users, nb_items, mf_dim, mlp_layer_sizes, dropout=0): if mlp_layer_sizes[0] % 2 != 0: raise RuntimeError('u dummy, mlp_layer_sizes[0] % 2 != 0') super(NeuMF, self).__init__() nb_mlp_layers = len(mlp_layer_sizes) self.mf_user_embed = nn.Embedding(nb_users, mf_dim) self.mf_item_embed = nn.Embedding(nb_items, mf_dim) self.mlp_user_embed = nn.Embedding(nb_users, mlp_layer_sizes[0] // 2) self.mlp_item_embed = nn.Embedding(nb_items, mlp_layer_sizes[0] // 2) self.dropout = dropout self.mlp = nn.ModuleList() for i in range(1, nb_mlp_layers): self.mlp.extend([nn.Linear(mlp_layer_sizes[i - 1], mlp_layer_sizes[i])]) # noqa: E501 self.final = nn.Linear(mlp_layer_sizes[-1] + mf_dim, 1) self.mf_user_embed.weight.data.normal_(0., 0.01) self.mf_item_embed.weight.data.normal_(0., 0.01) self.mlp_user_embed.weight.data.normal_(0., 0.01) self.mlp_item_embed.weight.data.normal_(0., 0.01) def glorot_uniform(layer): fan_in, fan_out = layer.in_features, layer.out_features limit = np.sqrt(6. / (fan_in + fan_out)) layer.weight.data.uniform_(-limit, limit) def lecunn_uniform(layer): fan_in, fan_out = layer.in_features, layer.out_features # noqa: F841, E501 limit = np.sqrt(3. / fan_in) layer.weight.data.uniform_(-limit, limit) for layer in self.mlp: if type(layer) != nn.Linear: continue glorot_uniform(layer) lecunn_uniform(self.final) def forward(self, user, item, sigmoid=False): xmfu = self.mf_user_embed(user) xmfi = self.mf_item_embed(item) xmf = xmfu * xmfi xmlpu = self.mlp_user_embed(user) xmlpi = self.mlp_item_embed(item) xmlp = torch.cat((xmlpu, xmlpi), dim=1) for i, layer in enumerate(self.mlp): xmlp = layer(xmlp) xmlp = nn.functional.relu(xmlp) if self.dropout != 0: xmlp = nn.functional.dropout(xmlp, p=self.dropout, training=self.training) x = torch.cat((xmf, xmlp), dim=1) x = self.final(x) if sigmoid: x = torch.sigmoid(x) return x
DeepLearningExamples-master
PyTorch/Recommendation/NCF/neumf.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import matplotlib.pyplot as plt def get_curve(filename): hrs = [] with open(filename, 'r') as opened: for line in opened.readlines(): d = json.loads(line[len("DLLL "):]) try: hrs.append(d["data"]["hr@10"]) except KeyError: pass return hrs a100 = "runs/pytorch_ncf_A100-SXM4-40GBx{numgpus}gpus_{precision}_{num_run}.json" v16 = "runs/pytorch_ncf_Tesla V100-SXM2-16GBx{numgpus}gpus_{precision}_{num_run}.json" v32 = "runs/pytorch_ncf_Tesla V100-SXM2-32GBx{numgpus}gpus_{precision}_{num_run}.json" dgx2 = "runs/pytorch_ncf_Tesla V100-SXM3-32GBx{numgpus}gpus_{precision}_{num_run}.json" fp32 = "FP32" amp = "Mixed (AMP)" tf32 = "TF32" def get_accs(arch, numgpu, prec): data = [get_curve(arch.format(numgpus=numgpu, num_run=num_run, precision=prec)) for num_run in range(1, 21)] return data[0] def get_plots(): archs = [dgx2, a100] titles = ["DGX2 32GB", "DGX A100 40GB"] fullprecs = [fp32, tf32] halfprecs = [amp, amp] gpuranges = [(1, 8, 16), (1, 8)] fig, axs = plt.subplots(1, 2, sharey=True, figsize=(10, 5)) plt.subplots_adjust(hspace=0.5) for x, prec in enumerate([fullprecs, halfprecs]): for i, arch in enumerate(archs): for numgpu in gpuranges[i]: d = get_accs(arch, numgpu, prec[i]) axs[x].plot(range(len(d)), d, label=f"{titles[i]} x {numgpu} {prec[i]}") axs[x].legend() #plt.show() plt.savefig("val_curves.png") if __name__ == "__main__": get_plots()
DeepLearningExamples-master
PyTorch/Recommendation/NCF/qa/generate_validation_curves.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tabulate archs = ["a100", "v100"] precs = ["full", "half"] for arch in archs: for prec in precs: filename = f"inference/{arch}_{prec}.log" with open(filename) as opened: line = opened.readlines()[-1] log = json.loads(line[len("DLLL "):])['data'] print(log) batch_sizes = [1024, 4096, 16384, 65536, 262144, 1048576] t_avg = "batch_{}_mean_throughput" l_mean = "batch_{}_mean_latency" l_90 = "batch_{}_p90_latency" l_95 = "batch_{}_p95_latency" l_99 = "batch_{}_p99_latency" headers = ["Batch size", "Throughput Avg", "Latency Avg", "Latency 90%", "Latency 95%", "Latency 99%"] table = [] for bsize in batch_sizes: table.append([bsize, "{:3.3f}".format(log[t_avg.format(bsize)]), "{:.6f}".format(log[l_mean.format(bsize)]), "{:.6f}".format(log[l_90.format(bsize)]), "{:.6f}".format(log[l_95.format(bsize)]), "{:.6f}".format(log[l_99.format(bsize)])]) print(filename) print(tabulate.tabulate(table, headers, tablefmt='pipe'))
DeepLearningExamples-master
PyTorch/Recommendation/NCF/qa/inference_table.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import matplotlib.pyplot as plt def get_training_data(filename): with open(filename, 'r') as opened: line = opened.readlines()[-1] json_content = line[len("DLLL "):] data = json.loads(json_content)["data"] with open(filename, 'r') as opened: for line in opened.readlines(): d = json.loads(line[len("DLLL "):]) if d.get("step", "") == "PARAMETER": data['batch_size'] = d["data"]["batch_size"] return data a100 = "runs/pytorch_ncf_A100-SXM4-40GBx{numgpus}gpus_{precision}_{num_run}.json" v16 = "runs/pytorch_ncf_Tesla V100-SXM2-16GBx{numgpus}gpus_{precision}_{num_run}.json" v32 = "runs/pytorch_ncf_Tesla V100-SXM2-32GBx{numgpus}gpus_{precision}_{num_run}.json" dgx2 = "runs/pytorch_ncf_Tesla V100-SXM3-32GBx{numgpus}gpus_{precision}_{num_run}.json" fp32 = "FP32" amp = "Mixed (AMP)" tf32 = "TF32" def get_accs(arch, numgpu, prec): data = [get_training_data(arch.format(numgpus=numgpu, num_run=num_run, precision=prec)) for num_run in range(1, 21)] accs = [d["best_accuracy"] for d in data] return accs def get_plots(): archs = [dgx2, a100] gpuranges = [(1, 8, 16), (1, 8)] titles = ["DGX2 32GB", "DGX A100 40GB"] fullprecs = [fp32, tf32] fig, axs = plt.subplots(2, 3, sharey=True, figsize=(8, 8)) plt.subplots_adjust(hspace=0.5) for x, arch in enumerate(archs): gpurange = gpuranges[x] for y, gpu in enumerate(gpurange): f_data = get_accs(arch, gpu, fullprecs[x]) h_data = get_accs(arch, gpu, amp) axs[x, y].boxplot([f_data, h_data]) axs[x, y].set_xticklabels([fullprecs[x], amp]) axs[x, y].set_title(f"{gpu} GPUs" if gpu > 1 else "1 GPU") axs[x, 0].set_ylabel(titles[x]) fig.delaxes(axs[1, 2]) # plt.show() plt.savefig("box_plots.png") if __name__ == "__main__": get_plots()
DeepLearningExamples-master
PyTorch/Recommendation/NCF/qa/generate_boxplots.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tabulate import numpy as np def get_training_data(filename): with open(filename, 'r') as opened: line = opened.readlines()[-1] json_content = line[len("DLLL "):] data = json.loads(json_content)["data"] with open(filename, 'r') as opened: for line in opened.readlines(): d = json.loads(line[len("DLLL "):]) if d.get("step", "") == "PARAMETER": data['batch_size'] = d["data"]["batch_size"] return data a100 = "runs/pytorch_ncf_A100-SXM4-40GBx{numgpus}gpus_{precision}_{num_run}.json" v16 = "runs/pytorch_ncf_Tesla V100-SXM2-16GBx{numgpus}gpus_{precision}_{num_run}.json" v32 = "runs/pytorch_ncf_Tesla V100-SXM2-32GBx{numgpus}gpus_{precision}_{num_run}.json" dgx2 = "runs/pytorch_ncf_Tesla V100-SXM3-32GBx{numgpus}gpus_{precision}_{num_run}.json" fp32 = "FP32" amp = "Mixed (AMP)" tf32 = "TF32" first = a100.format(numgpus=1, precision=fp32, num_run=1) timevar = 'time_to_target' #"time_to_best_model" def get_acc_table(arch, numgpus, fullprec): headers = ["GPUs", "Batch size / GPU", f"Accuracy - {fullprec}", "Accuracy - mixed precision", f"Time to train - {fullprec}", "Time to train - mixed precision", f"Time to train speedup ({fullprec} to mixed precision)"] table = [] for numgpus in numgpus: data_full = [get_training_data(arch.format(numgpus=numgpus, num_run=num_run, precision=fullprec)) for num_run in range(1, 21)] data_mixed = [get_training_data(arch.format(numgpus=numgpus, num_run=num_run, precision=amp)) for num_run in range(1, 21)] bsize = data_full[0]['batch_size']/numgpus accs_full = np.mean([d["best_accuracy"] for d in data_full]) accs_mixed = np.mean([d["best_accuracy"] for d in data_mixed]) time_full = np.mean([d[timevar] for d in data_full]) time_mixed = np.mean([d[timevar] for d in data_mixed]) speedup = time_full / time_mixed row = [numgpus, int(bsize), "{:.6f}".format(accs_full), "{:.6f}".format(accs_mixed), "{:.6f}".format(time_full), "{:.6f}".format(time_mixed), "{:.2f}".format(speedup)] table.append(row) print(tabulate.tabulate(table, headers, tablefmt='pipe')) def get_perf_table(arch, numgpus, fullprec): headers = ["GPUs", "Batch size / GPU", f"Throughput - {fullprec} (samples/s)", "Throughput - mixed precision (samples/s)", f"Throughput speedup ({fullprec} to mixed precision)", f"Strong scaling - {fullprec}", "Strong scaling - mixed precision", ] table = [] base_full = None base_mixed = None for numgpus in numgpus: data_full = [get_training_data(arch.format(numgpus=numgpus, num_run=num_run, precision=fullprec)) for num_run in range(1, 21)] data_mixed = [get_training_data(arch.format(numgpus=numgpus, num_run=num_run, precision=amp)) for num_run in range(1, 21)] bsize = data_full[0]['batch_size']/numgpus _full = np.mean([d["best_train_throughput"] for d in data_full]) _mixed = np.mean([d["best_train_throughput"] for d in data_mixed]) if numgpus == 1: base_full = _full base_mixed = _mixed scaling_full = _full/ base_full scaling_mixed = _mixed / base_mixed time_mixed = np.mean([d[timevar] for d in data_mixed]) speedup = _full / _mixed row = [numgpus, int(bsize), "{:.2f}M".format(_full / 10**6), "{:.2f}M".format(_mixed / 10**6), "{:.2f}".format(speedup), "{:.2f}".format(scaling_full), "{:.2f}".format(scaling_mixed)] table.append(row) print(tabulate.tabulate(table, headers, tablefmt='pipe')) #get_acc_table(a100, (1, 8), tf32) #get_acc_table(v16, (1, 8), fp32) #get_acc_table(v32, (1, 8), fp32) #get_acc_table(dgx2, (1, 8, 16), fp32) #get_perf_table(a100, (1, 8), tf32) #get_perf_table(v16, (1, 8), fp32) #get_perf_table(v32, (1, 8), fp32) #get_perf_table(dgx2, (1, 8, 16), fp32)
DeepLearningExamples-master
PyTorch/Recommendation/NCF/qa/generate_tables.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import common.filter_warnings import argparse import copy import io import os import sys import random from functools import partial from itertools import cycle, islice from pathlib import Path import torch import numpy as np from contextlib import suppress as empty_context from torch.nn.parallel import DistributedDataParallel import wav2vec2.arg_parser from common import tb_dllogger as logger from common.dataset import adjust_max_tokens, get_batch_iterator from common.fairseq.data import Dictionary from common.fairseq.dist import ModuleProxyWrapper from common.fairseq.utils import multiply_grads from common.helpers import (Checkpointer, num_weights, to_gpu, init_multi_tensor_ema, apply_multi_tensor_ema) from common.optimizers import get_optimizer, lr_exp_policy, lr_poly_policy from common.utils import print_once, set_torch_seed, setup_distributed from wav2vec2.criterion import Wav2vecCriterion, CTCCriterion from wav2vec2.logging import init_logger, W2v2Metrics, W2v2FineTuningMetrics from wav2vec2.utils import build_model, load_dataset @torch.no_grad() def validate(epoch, step, valid_loader, model, ema_model, criterion, val_metrics, val_ema_metrics, world_size, fp16, bf16): val_losses = [] val_wer = [] for model, metrics, scope in [(model, val_metrics, 'val'), (ema_model, val_ema_metrics, 'val_ema')]: if model is None: continue model.eval() criterion.eval() metrics._start_accumulating(None, True, scope=scope) output_keys = None assert len(valid_loader) > 1, ( 'Validation needs at least 2 iterations to handle empty batches.') for batch in valid_loader: is_empty_batch = len(batch) == 0 if not is_empty_batch: to_gpu(batch, fp16=fp16, bf16=bf16) loss, _, logging_output = criterion(model, batch) if output_keys is None: output_keys = logging_output.keys() else: assert output_keys is not None, ( f'Invalid iters num: {len(valid_loader)}') logging_output = {k: 0 for k in output_keys} logging_output['ignore'] = int(is_empty_batch) metrics.log_scalars(logging_output) metrics.all_reduce(world_size) metrics.accumulate() metrics.finish_val(scope=scope) logger.log(() if epoch is None else (epoch,), metrics, scope=scope, tb_iter=step) val_losses.append(metrics.metrics[scope]['loss']) if 'wer' in metrics.metrics[scope]: val_wer.append(metrics.metrics[scope]['wer']) model.train() criterion.train() return val_losses, val_wer def main(): parser = argparse.ArgumentParser( description='wav2vec 2.0 Deep Learning Example') wav2vec2.arg_parser.populate(parser) args = parser.parse_args() assert not args.bf16 or args.fp32_pos_conv, ( "bfloat16 requires casting positional convolutions to float32") if args.mode == 'finetune': wav2vec2.utils.update_args_for_finetuning(args, args.w2v_path) head = lambda list_: list_[0] # fairseq compat, scalars wrapped w/ lists args.lr = head(args.lr) args.update_freq = head(args.update_freq) assert(torch.cuda.is_available()) torch.backends.cudnn.benchmark = args.cudnn_benchmark world_size = setup_distributed(args.local_rank) args.world_size = world_size # For FP16Optimizer print_once(f"World size: {world_size}") assert args.seed is not None, ( "Random seed is used to ensure same model weights across all devices. " "To allow None, draw a seed and synchronize across devices") set_torch_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) random.seed(args.seed + args.local_rank) pre_training = (args.mode == 'pretrain') checkpointer = Checkpointer(args, 'wav2vec2') if not pre_training: assert args.labels or checkpointer.last_state, \ "Supply output labels or resume from a checkpoint." if checkpointer.last_state is not None: f = io.StringIO(checkpointer.last_state["output_labels"]) else: f = open(Path(args.data, f"dict.{args.labels}.txt")) target_dictionary = Dictionary.load(f) f.seek(0) checkpointer.output_labels = f.read() f.close() Metrics = W2v2FineTuningMetrics criterion = CTCCriterion(target_dictionary, post_process='letter') else: target_dictionary = None Metrics = W2v2Metrics criterion = Wav2vecCriterion(args) kw = {'benchmark_epochs': args.benchmark_epochs_num, 'cuda': not args.cpu} metrics = Metrics(**kw) val_metrics = Metrics(scopes=['val'], **kw) val_ema_metrics = Metrics(scopes=['val_ema'], **kw) init_logger(args.output_dir, args.log_file, args.ema) logger.log_parameters(vars(args), tb_subset='train') assert args.update_freq >= 1 model, seq_gen, tokenizer = build_model(args, args.mode, target_dictionary) model.cuda() print_once(f'Model size: {num_weights(model) / 10 ** 6:.1f}M params\n') print_once('Setting up datasets...') train_dataset = load_dataset(args.train_subset, args, target_dictionary, with_labels=not pre_training, training=True) valid_dataset = load_dataset(args.valid_subset, args, target_dictionary, with_labels=not pre_training, training=False) # Future-proof for adoption of native AMP scaler = torch.cuda.amp.GradScaler(enabled=False) lr_kw = {'initial_lr_scale': args.initial_lr_scale, 'final_lr_scale': args.final_lr_scale, 'warmup_steps': args.warmup_updates, 'hold_steps': args.hold_updates, 'num_steps': args.max_update, 'lr': args.lr} if args.lr_policy == 'poly': adjust_lr = partial(lr_poly_policy, power=args.lr_poly_power, **lr_kw) elif args.lr_policy == 'exp': adjust_lr = partial(lr_exp_policy, decay=args.lr_exp_decay, **lr_kw) else: raise ValueError assert args.fp16 + args.bf16 <= 1, ( "Select a single mechanism for mixed precision training.") checkpointer.maybe_load_state(model=model) if args.bf16: model.to(dtype=torch.bfloat16) if args.fp16: model.half() if (args.fp16 or args.bf16) and args.fp32_pos_conv: w2v = model.w2v_encoder.w2v_model if args.mode == 'finetune' else model w2v.encoder.pos_conv.to(dtype=torch.float32) multi_gpu = world_size > 1 if multi_gpu: model = DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) model = ModuleProxyWrapper(model) args.bf16_disable_loss_scaler = False # TODO Add support in the future optim = get_optimizer(model, args) adjust_lr(1, optim) if args.ema > 0.0: raise NotImplementedError( "EMA disabled, see https://github.com/pytorch/pytorch/issues/28594" ) else: ema_model = None train_state = {'step': 0, 'epoch': 1, 'best_val_loss': float('inf'), 'best_val_wer': float('inf')} checkpointer.maybe_load_state(ema_model=ema_model, optimizer=optim, scaler=scaler, train_state=train_state) shard_id = int(os.getenv("RANK", args.local_rank)) train_loader, sampler = get_batch_iterator( train_dataset, True, max_tokens=args.max_tokens, max_sentences=args.batch_size, max_positions=(args.max_tokens, args.max_tokens), ignore_invalid_inputs=True, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_shards=world_size, shard_id=shard_id, num_workers=args.num_workers, num_concat_batches=args.num_concat_batches) valid_loader, _ = get_batch_iterator( valid_dataset, False, max_tokens=args.max_tokens_valid, max_sentences=args.batch_size_valid, max_positions=(sys.maxsize, sys.maxsize), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_shards=world_size, shard_id=shard_id, num_workers=args.num_workers, num_concat_batches=args.num_concat_batches) steps_per_epoch = len(train_loader) // args.update_freq checkpointer.maybe_load_state(train_loader=train_loader) checkpointer.last_state = None print_once(model) model.train() step, epoch = train_state['step'], train_state['epoch'] start_step = step start_epoch = epoch while step < args.max_update: # training loop set_torch_seed(args.seed + step) # reproducibility after resuming metrics.start_epoch(epoch) sampler.set_epoch(epoch) optim.zero_grad() itr = islice(train_loader, steps_per_epoch * args.update_freq) for batch, accum_batches in zip(itr, cycle(range(args.update_freq))): if accum_batches == 0: step += 1 model.set_num_updates(step) metrics.start_iter(accum_batches) to_gpu(batch, fp16=args.fp16, bf16=args.bf16) # use context manager to prevent redundant sync of gradients if (multi_gpu and accum_batches + 1 < args.update_freq): ctx = model.no_sync() else: ctx = empty_context() with ctx: loss, _, logging_output = criterion(model, batch) if args.fp16 or args.bf16: optim.backward(loss) else: scaler.scale(loss).backward() # at this point, loss is scaled by loss_scale # and averaged over different devices (because of DDP) (*) metrics.log_scalars(logging_output) if (accum_batches + 1) % args.update_freq == 0: metrics.all_reduce(world_size) # scales gradients update by world_size # (to restore sum of gradients - see (*)) # divided by step_ntoks to average over tokens. grads_mult_factor = world_size / metrics.partials['sample_size'] if args.optimizer == 'adam' and not (args.fp16 or args.bf16): # adam and non-amp optimizer - can use 'scale' kwarg for step # and defer grad multiplication pass elif args.fp16 or args.bf16: optim.multiply_grads(grads_mult_factor) else: multiply_grads(optim, grads_mult_factor) try: if args.fp16 or args.bf16: # calculate grad norm, maybe clip grad_norm = optim.clip_grad_norm(args.clip_norm) if args.optimizer == 'adam' and not (args.fp16 or args.bf16): scaler.step(optim, scale=1. / grads_mult_factor) else: scaler.step(optim) scaler.update() model.set_num_updates(step) except OverflowError as e: print_once(f"Grad overflow, ignoring grad. {str(e)}") grad_norm = torch.tensor(0.0).cuda() optim.zero_grad() if args.ema > 0.0: apply_multi_tensor_ema(args.ema, *mt_ema_params) if args.fp16 or args.bf16: metrics['loss_scale'] = optim.scaler.loss_scale metrics['lr'] = optim.param_groups[0]['lr'] metrics.accumulate() metrics.finish_iter() if step % args.log_frequency == 0: metrics.finish_logging_interval() epoch_step = step % steps_per_epoch or steps_per_epoch logger.log((epoch, epoch_step, steps_per_epoch), metrics, scope='train', tb_iter=step) adjust_lr(step, optim) if step >= args.max_update: break # NOTE this will brake when resuming training on a different dataset assert step <= steps_per_epoch * epoch # end of iter metrics.finish_epoch() logger.log((epoch,), metrics, scope='train_avg', flush_log=True, tb_iter=step) print_once('Validating...') val_losses, val_wer = validate( epoch, step, valid_loader, model, ema_model, criterion, val_metrics, val_ema_metrics, world_size, args.fp16, args.bf16) # save best ckpt based on non-EMA val results checkpointer.maybe_save(model, ema_model, optim, scaler, train_state, step, epoch, val_losses, val_wer, args) if 0 < args.epochs_this_job <= epoch + 1 - start_epoch: print_once(f'Reached {args.epochs_this_job} epochs in this run.') break if step >= args.max_update: print_once(f'Reached {step} total updates.') break epoch += 1 # end of epoch # finished training if step > start_step: logger.log((), metrics, scope='train_benchmark') logger.log((), val_metrics, scope='val') logger.log((), val_ema_metrics, scope='val_ema', flush_log=True) print_once(f'Finished after reaching update {step}.') if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/train.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import math import os import random import time import warnings from argparse import ArgumentParser from heapq import nlargest from itertools import chain, repeat from pathlib import Path from tqdm import tqdm import dllogger import numpy as np import torch import torch.distributed as distrib from dllogger import JSONStreamBackend, StdOutBackend, Verbosity import wav2vec2.arg_parser import wav2vec2.utils import common.fairseq.utils as utils from common.fairseq.data import Dictionary from common.helpers import (gather_predictions, gather_transcripts, load_wrapped_state, process_evaluation_epoch) from common.tb_dllogger import stdout_metric_format, unique_log_fpath from common.utils import print_once from torch.utils.data import DataLoader, DistributedSampler from wav2vec2.logging import init_infer_metadata def durs_to_percentiles(durations, ratios): durations = np.asarray(durations) * 1000 # in ms latency = durations latency = latency[5:] mean_latency = np.mean(latency) latency_worst = nlargest(math.ceil((1 - min(ratios)) * len(latency)), latency) latency_ranges = get_percentile(ratios, latency_worst, len(latency)) latency_ranges[0.5] = mean_latency return latency_ranges def get_percentile(ratios, arr, nsamples): res = {} for a in ratios: idx = max(int(nsamples * (1 - a)), 0) res[a] = arr[idx] return res def fp_convert_batch(batch, precision): dt = {'fp32': torch.float32, 'fp16': torch.half, 'bf16': torch.bfloat16}[precision] def maybe_cast(t): if t.dtype is torch.float32: return t.to(dtype=dt) return t return utils.apply_to_sample(maybe_cast, batch) def main(): parser = ArgumentParser(description='wav2vec2.0 inference') wav2vec2.arg_parser.populate_infer(parser) args = parser.parse_args() ckpt = torch.load(args.w2v_path, map_location=torch.device("cpu")) train_args = wav2vec2.utils.get_ckpt_args(ckpt) is_nv_ckpt = "mode" in train_args if is_nv_ckpt: print("Loaded a model trained with NVIDIA DLE") args.fp32_pos_conv = train_args.get("fp32_pos_conv", args.fp16 or args.bf16) args.fp32_conv_norms = train_args.get("fp32_conv_norms", args.fp16) else: args.fp32_pos_conv = args.fp16 args.fp32_conv_norms = args.fp16 args.fp32_pos_conv = True args.fp32_conv_norms = True log_fpath = args.log_file or str(Path(args.output_dir, 'nvlog_infer.json')) dllogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, log_fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, metric_format=stdout_metric_format) ]) [dllogger.log("PARAMETER", {k: v}) for k, v in vars(args).items()] init_infer_metadata() if ((train_args.get("fp16", False) or train_args.get("amp", False)) and args.bf16): warnings.warn('Using FP16 ckpts in BF16 precision.') if train_args.get("bf16", False) and args.fp16: warnings.warn('Using BF16 ckpts in FP16 precision.') # load output labels - either from a file, or stored inside an nv ckpt assert args.labels_path is not None or is_nv_ckpt if args.labels_path is None: f = io.StringIO(ckpt["output_labels"]) else: f = open(args.labels_path) target_dictionary = Dictionary.load(f) f.close() w2v_path_for_args = args.w2v_path_for_args or args.w2v_path wav2vec2.utils.update_args_for_finetuning(args, w2v_path_for_args) # "default" GroupNorm might leak padding args.masked_feature_extractor = True if args.torchscript: from common.fairseq.modules import layer_norm layer_norm.TORCHSCRIPT = True model, *_ = wav2vec2.utils.build_model(args, "infer", target_dictionary) load_wrapped_state(model, ckpt["model"]) model.w2v_encoder.w2v_model.remove_conv_wn() model.w2v_encoder.w2v_model.feature_extractor.forward = \ model.w2v_encoder.w2v_model.feature_extractor.masked_forward model.w2v_encoder.forward = model.w2v_encoder.infer model.w2v_encoder.w2v_model.forward = model.w2v_encoder.w2v_model.infer if args.cpu: device = torch.device('cpu') else: assert torch.cuda.is_available() device = torch.device('cuda') torch.backends.cudnn.benchmark = args.cudnn_benchmark if args.seed is not None: torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) random.seed(args.seed + args.local_rank) # set up distributed training multi_gpu = not args.cpu and int(os.environ.get('WORLD_SIZE', 1)) > 1 if multi_gpu: torch.cuda.set_device(args.local_rank) distrib.init_process_group(backend='nccl', init_method='env://') print_once(f'Inference with {distrib.get_world_size()} GPUs') measure_perf = args.steps > 0 # Compliance with fairseq dataloader assert args.batch_size is not None args.min_sample_size = None args.max_sample_size = None if args.transcribe_wav or args.transcribe_filelist: assert args.max_duration is None and not measure_perf assert not (args.transcribe_wav and args.transcribe_filelist) assert args.labels is None, "Labels won't be used during trainscribing" assert not multi_gpu, ( "multigpu is currently supported only for WER/perf measurements") if args.transcribe_wav: dataset = wav2vec2.utils.single_audio_dataset(args.transcribe_wav, args) else: dataset = wav2vec2.utils.load_dataset(args.transcribe_filelist, args, target_dictionary) data_loader = DataLoader( dataset=dataset, batch_size=args.batch_size, shuffle=False, collate_fn=dataset.collater, num_workers=args.num_workers, pin_memory=True, persistent_workers=args.num_workers > 0, drop_last=False, ) else: # compute WER or measure perf assert args.labels is not None or measure_perf dataset = wav2vec2.utils.load_dataset(args.valid_subset, args, target_dictionary, with_labels=True) sampler = DistributedSampler( dataset, shuffle=False, drop_last=False ) if multi_gpu else None data_loader = DataLoader( dataset=dataset, batch_size=args.batch_size, sampler=sampler, shuffle=False, collate_fn=dataset.collater, num_workers=args.num_workers, pin_memory=True, persistent_workers=args.num_workers > 0, drop_last=(True if measure_perf else False), ) model.to(device) model.eval() assert args.amp == args.fp16, 'During inference these are equivalent' if args.fp16: model = model.half() if args.bf16: model = model.to(dtype=torch.bfloat16) if (args.fp16 or args.bf16) and args.fp32_pos_conv: model.w2v_encoder.w2v_model.encoder.pos_conv.to(dtype=torch.float32) if args.torchscript: print("Attempting TorchScript export...") model = torch.jit.script(model) agg = {'txts': [], 'preds': [], 'logits': [], 'ids': []} dur = {'data': [], 'dnn': [], 'data+dnn': []} looped_loader = chain.from_iterable(repeat(data_loader)) sync = lambda: torch.cuda.synchronize() if device.type == 'cuda' else None steps = args.steps + args.warmup_steps or len(data_loader) desc = 'warmup' if args.warmup_steps > 0 else 'inference' pbar = tqdm(looped_loader, initial=1, total=steps, desc=desc) for it, batch in enumerate(pbar): if it == args.warmup_steps: pbar.set_description('inference') batch = utils.move_to_cuda(batch) sync() t1 = time.time() if args.fp16: batch = fp_convert_batch(batch, 'fp16') if args.bf16: batch = fp_convert_batch(batch, 'bf16') with torch.no_grad(): enc_out, padding_mask = model(batch["net_input"]["source"], batch["net_input"]["padding_mask"]) logp = model.get_normalized_probs(enc_out, padding_mask, log_probs=True).contiguous() # greedy decoding preds = logp.argmax(dim=-1, keepdim=False).int() sync() t2 = time.time() # burn-in period; wait for a new loader due to num_workers if it >= 1 and (args.steps == 0 or it >= args.warmup_steps): dur['data'].append(t1 - t0) dur['dnn'].append(t2 - t1) dur['data+dnn'].append(t2 - t0) preds = preds.transpose(0, 1) agg['preds'] += gather_predictions([preds], target_dictionary, blank_id=0) agg['logits'].append(logp) if 'target' in batch: agg['txts'] += gather_transcripts([batch['target']], [batch['target_lengths']], target_dictionary) if multi_gpu: # ids are needed to remove duplicates in multi_gpu inference agg['ids'] += batch['id'].tolist() if it + 1 == steps: break sync() t0 = time.time() tdict = target_dictionary agg['preds'] = [pred.replace(tdict[tdict.nspecial], ' ') for pred in agg['preds']] agg['txts'] = [txt.replace(tdict[tdict.nspecial], ' ') for txt in agg['txts']] # communicate the results if args.transcribe_wav or args.transcribe_filelist: for idx, p in enumerate(agg['preds']): print_once(f'Prediction {idx + 1: >3}: {p}') elif args.valid_subset and not measure_perf: wer, _ = process_evaluation_epoch(agg) if not multi_gpu or distrib.get_rank() == 0: dllogger.log(step=(), data={'eval_wer': 100 * wer}) if args.save_predictions and (not multi_gpu or distrib.get_rank() == 0): with open(args.save_predictions, 'w') as f: f.write('\n'.join(agg['preds'])) if args.save_logits and (not multi_gpu or distrib.get_rank() == 0): logits = torch.cat(agg['logits'], dim=0).cpu() torch.save(logits, args.save_logits) # report timings if len(dur['data']) >= 20 and (not multi_gpu or distrib.get_rank() == 0): ratios = [0.9, 0.95, 0.99] for stage in dur: lat = durs_to_percentiles(dur[stage], ratios) for k in [0.99, 0.95, 0.9, 0.5]: k_ = str(k).replace('.', '_') dllogger.log(step=(), data={f'{stage}_latency_{k_}': lat[k]}) else: print_once('Not enough samples to measure latencies.') if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os.path import commonpath, join, relpath import sys def load_tsv(fpath): with open(fpath) as f: return [l.split() for l in f] tsvs = [load_tsv(tsv) for tsv in sys.argv[1:]] root = commonpath([t[0][0] for t in tsvs]) tsvs = [[(relpath(join(lines[0][0], p), root), frames) for p, frames in lines[1:]] for lines in tsvs] print(root) for lines in tsvs: for line in lines: print("\t".join(line))
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/combine_filelists.py
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import glob import multiprocessing import json import pandas as pd from preprocessing_utils import parallel_preprocess parser = argparse.ArgumentParser(description='Preprocess LibriSpeech.') parser.add_argument('--input_dir', type=str, required=True, help='LibriSpeech collection input dir') parser.add_argument('--dest_dir', type=str, required=True, help='Output dir') parser.add_argument('--output_json', type=str, default='./', help='name of the output json file.') parser.add_argument('-s', '--speed', type=float, nargs='*', help='Speed perturbation ratio') parser.add_argument('--target_sr', type=int, default=None, help='Target sample rate. ' 'defaults to the input sample rate') parser.add_argument('--overwrite', action='store_true', help='Overwrite file if exists') parser.add_argument('--parallel', type=int, default=multiprocessing.cpu_count(), help='Number of threads to use when processing audio files') args = parser.parse_args() args.input_dir = args.input_dir.rstrip('/') args.dest_dir = args.dest_dir.rstrip('/') def build_input_arr(input_dir): txt_files = glob.glob(os.path.join(input_dir, '**', '*.trans.txt'), recursive=True) input_data = [] for txt_file in txt_files: rel_path = os.path.relpath(txt_file, input_dir) with open(txt_file) as fp: for line in fp: fname, _, transcript = line.partition(' ') input_data.append(dict(input_relpath=os.path.dirname(rel_path), input_fname=fname+'.flac', transcript=transcript)) return input_data print("[%s] Scaning input dir..." % args.output_json) dataset = build_input_arr(input_dir=args.input_dir) print("[%s] Converting audio files..." % args.output_json) dataset = parallel_preprocess(dataset=dataset, input_dir=args.input_dir, dest_dir=args.dest_dir, target_sr=args.target_sr, speed=args.speed, overwrite=args.overwrite, parallel=args.parallel) print("[%s] Generating json..." % args.output_json) df = pd.DataFrame(dataset, dtype=object) # Save json with python. df.to_json() produces back slashed in file paths dataset = df.to_dict(orient='records') with open(args.output_json, 'w') as fp: json.dump(dataset, fp, indent=2)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/convert_librispeech.py
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import hashlib import os import requests import tarfile from tqdm import tqdm urls = { "dev-clean": ("http://www.openslr.org/resources/12/dev-clean.tar.gz", "42e2234ba48799c1f50f24a7926300a1"), "dev-other": ("http://www.openslr.org/resources/12/dev-other.tar.gz", "c8d0bcc9cca99d4f8b62fcc847357931"), "test-clean": ("http://www.openslr.org/resources/12/test-clean.tar.gz", "32fa31d27d2e1cad72775fee3f4849a9"), "test-other": ("http://www.openslr.org/resources/12/test-other.tar.gz", "fb5a50374b501bb3bac4815ee91d3135"), "train-clean-100": ("http://www.openslr.org/resources/12/train-clean-100.tar.gz", "2a93770f6d5c6c964bc36631d331a522"), "train-clean-360": ("http://www.openslr.org/resources/12/train-clean-360.tar.gz", "c0e676e450a7ff2f54aeade5171606fa"), "train-other-500": ("http://www.openslr.org/resources/12/train-other-500.tar.gz", "d1a0fd59409feb2c614ce4d30c387708"), } def download_file(url, dest_folder, fname, overwrite=False): fpath = os.path.join(dest_folder, fname) if os.path.isfile(fpath): if overwrite: print("Overwriting existing file") else: print("File exists, skipping download.") return tmp_fpath = fpath + '.tmp' if not os.path.exists(os.path.dirname(tmp_fpath)): os.makedirs(os.path.dirname(tmp_fpath)) r = requests.get(url, stream=True) file_size = int(r.headers['Content-Length']) chunk_size = 1024 * 1024 # 1MB total_chunks = int(file_size / chunk_size) with open(tmp_fpath, 'wb') as fp: content_iterator = r.iter_content(chunk_size=chunk_size) chunks = tqdm(content_iterator, total=total_chunks, unit='MB', desc=fpath, leave=True) for chunk in chunks: fp.write(chunk) os.rename(tmp_fpath, fpath) def md5_checksum(fpath, target_hash): file_hash = hashlib.md5() with open(fpath, "rb") as fp: for chunk in iter(lambda: fp.read(1024*1024), b""): file_hash.update(chunk) return file_hash.hexdigest() == target_hash def extract(fpath, dest_folder): if fpath.endswith('.tar.gz'): mode = 'r:gz' elif fpath.endswith('.tar'): mode = 'r:' else: raise IOError('fpath has unknown extention: %s' % fpath) with tarfile.open(fpath, mode) as tar: members = tar.getmembers() for member in tqdm(iterable=members, total=len(members), leave=True): tar.extract(path=dest_folder, member=member) if __name__ == "__main__": parser = argparse.ArgumentParser( description='Download, verify and extract dataset files') parser.add_argument('dest', type=str, help='Download destnation folder.') parser.add_argument('-e', type=str, default=None, help='Extraction destnation folder. Defaults to download folder if not provided') parser.add_argument('--skip_download', action='store_true', help='Skip downloading the files') parser.add_argument('--skip_checksum', action='store_true', help='Skip checksum') parser.add_argument('--skip_extract', action='store_true', help='Skip extracting files') parser.add_argument('--subsets', type=str, nargs="+", choices=list(urls.keys()), default=list(urls.keys()), help='Subsets to download') args = parser.parse_args() args.e = args.e or args.dest print("\nNOTE: Depending on the selected subsets and connection bandwith " "this process might take a few hours.\n") for subset in args.subsets: url, md5 = urls[subset] if not args.skip_download: fname = url.split('/')[-1] print("Downloading %s:" % fname) download_file(url=url, dest_folder=args.dest, fname=fname) else: print("Skipping file download") if not args.skip_checksum: fname = url.split('/')[-1] fpath = os.path.join(args.dest, fname) print("Verifing %s: " % fname, end='') ret = md5_checksum(fpath=fpath, target_hash=md5) print("Passed" if ret else "Failed") else: print("Skipping checksum") if not args.skip_extract: fname = url.split('/')[-1] fpath = os.path.join(args.dest, fname) print("Decompressing %s:" % fpath) extract(fpath=fpath, dest_folder=args.e) else: print("Skipping file extraction")
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/download_librispeech.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter import sys in_ltr = sys.argv[1] out_dict = sys.argv[2] counter = Counter() with open(in_ltr) as ltr: for line in ltr: counter.update(line[:-1].replace(" ", "")) with open(out_dict, "w") as out: for letter, cnt in counter.most_common(): out.write(f"{letter} {cnt}\n")
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/generate_dictionary.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--manifest', type=Path, nargs='+', help='w2v2 manifest files with <ID> <duration> on every line') parser.add_argument( '--alignments', type=Path, help='CPC_audio alignments with <ID> <PHONE_ID_LIST> on every line') parser.add_argument( '--ids', type=Path, help='List of IDs for this split (train/test, one per line)') parser.add_argument( '--out', type=Path, help='Output manifest fpath') args = parser.parse_args() header = None fpaths = {} durs = {} alis = {} ids = [] out = [] for fpath in args.manifest: print(f'Loading {fpath}') with open(fpath) as f: for i, line in enumerate(f): if i == 0: header = line.strip() continue fp, dur = line.split() id = Path(fp).stem fpaths[id] = fp durs[id] = dur # int(dur) with open(args.alignments) as f: for line in f: id, ph = line.strip().split(' ', 1) alis[id] = ph ids = [line.strip() for line in open(args.ids)] for id in ids: fp = fpaths[id] d = durs[id] a = alis[id] out.append([fp, d, a]) with open(args.out.with_suffix('.tsv'), 'w') as f: f.write(header + '\n') for o in out: f.write('\t'.join(o[:2]) + '\n') with open(args.out.with_suffix('.ph'), 'w') as f: for o in out: f.write(o[2] + '\n')
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/combine_w2v2_filelist_with_phone_alignments.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path import soundfile import tqdm parser = argparse.ArgumentParser(description="Write .tsv dataset filelists") parser.add_argument("dir", type=Path, help="Dataset directory") parser.add_argument("output_tsv", type=Path, help="Output .tsv file path") parser.add_argument("--extension", type=str, default="flac", help="Find files with this extension") args = parser.parse_args() num_files = 0 print(f"Collecting .{args.extension} files in {args.dir} ...") with open(args.output_tsv, "w") as f: f.write(f"{args.dir}\n") for fname in tqdm.tqdm(args.dir.rglob("*." + args.extension)): num_frames = soundfile.info(fname).frames f.write(f"{fname.relative_to(args.dir)}\t{num_frames}\n") num_files += 1 print(f"Found {num_files} files for {args.output_tsv} .")
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/generate_filelist.py
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/__init__.py
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import multiprocessing import functools import sox from tqdm import tqdm def preprocess(data, input_dir, dest_dir, target_sr=None, speed=None, overwrite=True): speed = speed or [] speed.append(1) speed = list(set(speed)) # Make uniqe input_fname = os.path.join(input_dir, data['input_relpath'], data['input_fname']) input_sr = sox.file_info.sample_rate(input_fname) target_sr = target_sr or input_sr os.makedirs(os.path.join(dest_dir, data['input_relpath']), exist_ok=True) output_dict = {} output_dict['transcript'] = data['transcript'].lower().strip() output_dict['files'] = [] fname = os.path.splitext(data['input_fname'])[0] for s in speed: output_fname = fname + '{}.wav'.format('' if s == 1 else '-{}'.format(s)) output_fpath = os.path.join(dest_dir, data['input_relpath'], output_fname) if not os.path.exists(output_fpath) or overwrite: cbn = sox.Transformer().speed(factor=s).convert(target_sr) cbn.build(input_fname, output_fpath) file_info = sox.file_info.info(output_fpath) file_info['fname'] = os.path.join(os.path.basename(dest_dir), data['input_relpath'], output_fname) file_info['speed'] = s output_dict['files'].append(file_info) if s == 1: file_info = sox.file_info.info(output_fpath) output_dict['original_duration'] = file_info['duration'] output_dict['original_num_samples'] = file_info['num_samples'] return output_dict def parallel_preprocess(dataset, input_dir, dest_dir, target_sr, speed, overwrite, parallel): with multiprocessing.Pool(parallel) as p: func = functools.partial(preprocess, input_dir=input_dir, dest_dir=dest_dir, target_sr=target_sr, speed=speed, overwrite=overwrite) dataset = list(tqdm(p.imap(func, dataset), total=len(dataset))) return dataset
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/preprocessing_utils.py
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import requests import os import tarfile import tqdm def download_file(url, dest_folder, fname, overwrite=False): fpath = os.path.join(dest_folder, fname) if os.path.isfile(fpath): if overwrite: print("Overwriting existing file") else: print("File exists, skipping download.") return tmp_fpath = fpath + '.tmp' if not os.path.exists(os.path.dirname(tmp_fpath)): os.makedirs(os.path.dirname(tmp_fpath)) r = requests.get(url, stream=True) file_size = int(r.headers['Content-Length']) chunk_size = 1024 * 1024 # 1MB total_chunks = int(file_size / chunk_size) with open(tmp_fpath, 'wb') as fp: content_iterator = r.iter_content(chunk_size=chunk_size) chunks = tqdm.tqdm(content_iterator, total=total_chunks, unit='MB', desc=fpath, leave=True) for chunk in chunks: fp.write(chunk) os.rename(tmp_fpath, fpath) def md5_checksum(fpath, target_hash): file_hash = hashlib.md5() with open(fpath, "rb") as fp: for chunk in iter(lambda: fp.read(1024*1024), b""): file_hash.update(chunk) return file_hash.hexdigest() == target_hash def extract(fpath, dest_folder): if fpath.endswith('.tar.gz'): mode = 'r:gz' elif fpath.endswith('.tar'): mode = 'r:' else: raise IOError('fpath has unknown extention: %s' % fpath) with tarfile.open(fpath, mode) as tar: members = tar.getmembers() for member in tqdm.tqdm(iterable=members, total=len(members), leave=True): tar.extract(path=dest_folder, member=member)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/download_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from itertools import chain from pathlib import Path def load_lines(fpath): with open(fpath) as f: return [line for line in f] parser = argparse.ArgumentParser() parser.add_argument('ls_ft', type=Path, help='Libri-light librispeech_finetuning dir') parser.add_argument('ls_filelists', type=Path, help='Directory with .tsv .wrd etc files for LibriSpeech full 960') parser.add_argument('out', type=Path, help='Output directory') args = parser.parse_args() # Load LS tsv = load_lines(args.ls_filelists / "train-full-960.tsv") wrd = load_lines(args.ls_filelists / "train-full-960.wrd") ltr = load_lines(args.ls_filelists / "train-full-960.ltr") assert len(tsv) == len(wrd) + 1 assert len(ltr) == len(wrd) files = {} for path_frames, w, l in zip(tsv[1:], wrd, ltr): path, _ = path_frames.split("\t") key = Path(path).stem files[key] = (path_frames, w, l) print(f"Loaded {len(files)} entries from {args.ls_filelists}/train-full-960") # Load LL-LS files_1h = list((args.ls_ft / "1h").rglob("*.flac")) files_9h = list((args.ls_ft / "9h").rglob("*.flac")) print(f"Found {len(files_1h)} files in the 1h dataset") print(f"Found {len(files_9h)} files in the 9h dataset") for name, file_iter in [("train-1h", files_1h), ("train-10h", chain(files_1h, files_9h))]: with open(args.out / f"{name}.tsv", "w") as ftsv, \ open(args.out / f"{name}.wrd", "w") as fwrd, \ open(args.out / f"{name}.ltr", "w") as fltr: nframes = 0 ftsv.write(tsv[0]) for fpath in file_iter: key = fpath.stem t, w, l = files[key] ftsv.write(t) fwrd.write(w) fltr.write(l) nframes += int(t.split()[1]) print(f"Written {nframes} frames ({nframes / 16000 / 60 / 60:.2f} h at 16kHz)")
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/generate_1h_10h_datasets.py
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helper script to pre-compute embeddings for a flashlight (previously called wav2letter++) dataset """ import argparse import os def main(): parser = argparse.ArgumentParser() parser.add_argument("tsv") parser.add_argument("--output-dir", required=True) parser.add_argument("--output-name", required=True) args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) transcriptions = {} with open(args.tsv, "r") as tsv, open( os.path.join(args.output_dir, args.output_name + ".ltr"), "w" ) as ltr_out, open( os.path.join(args.output_dir, args.output_name + ".wrd"), "w" ) as wrd_out: root = next(tsv).strip() for line in tsv: line = line.strip() dir = os.path.dirname(line) if dir not in transcriptions: parts = dir.split(os.path.sep) trans_path = f"{parts[-2]}-{parts[-1]}.trans.txt" path = os.path.join(root, dir, trans_path) assert os.path.exists(path), f"File {path} does not exist." texts = {} with open(path, "r") as trans_f: for tline in trans_f: items = tline.strip().split() texts[items[0]] = " ".join(items[1:]) transcriptions[dir] = texts part = os.path.basename(line).split(".")[0] assert part in transcriptions[dir] print(transcriptions[dir][part], file=wrd_out) print( " ".join(list(transcriptions[dir][part].replace(" ", "|"))) + " |", file=ltr_out, ) if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/utils/libri_labels.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from pathlib import Path import dllogger import torch.distributed as dist from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from common import tb_dllogger from common.metrics import MetricsAggregator from common.tb_dllogger import (stdout_metric_format, stdout_step_format, unique_log_fpath, TBLogger) def init_logger(output_dir, log_file, ema_decay=0.0): local_rank = 0 if not dist.is_initialized() else dist.get_rank() if local_rank == 0: Path(output_dir).mkdir(parents=False, exist_ok=True) log_fpath = log_file or Path(output_dir, 'nvlog.json') dllogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, log_fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, step_format=stdout_step_format, metric_format=stdout_metric_format) ]) init_train_metadata() else: dllogger.init(backends=[]) tb_train = ['train', 'train_avg'] tb_val = ['val'] tb_ema = [k + '_ema' for k in tb_val] if ema_decay > 0.0 else [] subset_names = { 'train': 'train_inner', 'train_avg': 'train', 'val': 'valid', 'val_ema': 'valid_ema', } enabled = (local_rank == 0) tb_dllogger.tb_loggers = { s: TBLogger(enabled, log_dir=output_dir, name=subset_names[s]) for s in tb_train + tb_val + tb_ema} def init_train_metadata(): for id_, pref in [('train', ''), ('train_avg', 'avg train '), ('val', ' avg val '), ('val_ema', ' EMA val ')]: dllogger.metadata(f"{id_}_loss", {"name": f"{pref} loss", "format": ":>6.3f"}) dllogger.metadata(f"{id_}_accuracy", {"name": f"{pref}acc", "format": ":>6.3f"}) dllogger.metadata(f"{id_}_prob_perplexity", {"name": f"{pref}p pplx", "format": ":>6.3f"}) dllogger.metadata(f"{id_}_code_perplexity", {"name": f"{pref}c pplx", "format": ":>6.3f"}) dllogger.metadata(f"{id_}_ntokens", {"name": None, "unit": "tokens", "format": ":>8.0f"}) dllogger.metadata(f"{id_}_took", {"name": "took", "unit": "s", "format": ":>3.2f"}) dllogger.metadata(f"{id_}_ntokens/s", {"name": None, "unit": "tokens/s", "format": ":>8.2f"}) dllogger.metadata(f"{id_}_uer", {"name": f"{pref} uer", "format": ":>6.2f"}) dllogger.metadata(f"{id_}_wer", {"name": f"{pref} wer", "format": ":>6.2f"}) dllogger.metadata(f"{id_}_raw_wer", {"name": f"{pref} raw wer", "format": ":>6.2f"}) dllogger.metadata(f"{id_}_lr", {"name": "lr", "format": ":>3.2e"}) dllogger.metadata(f"{id_}_loss_scale", {"name": "loss scale", "format": ":>3.2e"}) def init_infer_metadata(): for step in ['DNN', 'data+DNN', 'data']: for c in [0.99, 0.95, 0.9, 0.5]: cs = 'avg' if c == 0.5 else f'{int(100 * c)}%' dllogger.metadata(f'{step.lower()}_latency_{c}', {'name': f'{step} latency {cs}', 'format': ':>7.2f', 'unit': 'ms'}) dllogger.metadata( 'eval_wer', {'name': 'WER', 'format': ':>3.2f', 'unit': '%'}) class W2v2Metrics(MetricsAggregator): def __init__(self, benchmark_epochs, scopes=('train', 'train_avg'), cuda=True): super().__init__( benchmark_epochs=benchmark_epochs, benchmark_keys=('took', 'accuracy', 'loss', 'ntokens/s'), scopes=scopes, dllogger_keys=('loss', 'ntokens', 'accuracy', 'prob_perplexity', 'code_perplexity', 'took', 'loss_scale', 'lr', 'ntokens/s'), reduce_mean=('temp', 'prob_perplexity', 'code_perplexity'), reduce_last=('lr', 'loss_scale'), cuda=cuda) def accumulate(self, scopes=None): if 'ignore' not in self.partials or self.partials['ignore'] == 0.0: # compute_loss_and_accuracy ntokens = self.partials['ntokens'] for k, v in self.partials.items(): if k.startswith('loss'): self.partials[k] = v / ntokens / math.log(2) # as in fairseq self['accuracy'] = (self.partials.pop('correct') / self.partials.pop('count')) part_counts = self.partial_counts assert part_counts['correct'] == part_counts['count'] == 1 super().accumulate(scopes=scopes) def _finish_accumulating(self, scope='train'): super()._finish_accumulating(scope=scope) m = self.metrics[scope] count = self.metric_counts[scope] m['ntokens/s'] = m['ntokens'] * count['ntokens'] / m['took'] class W2v2FineTuningMetrics(MetricsAggregator): def __init__( self, benchmark_epochs, benchmark_keys=('took', 'accuracy', 'loss', 'ntokens/s'), scopes=('train', 'train_avg'), dllogger_keys=('loss', 'ntokens', 'accuracy', 'lr', 'prob_perplexity', 'took', 'ntokens/s', 'uer', 'wer', 'raw_wer'), reduce_mean=('temp', 'prob_perplexity', 'code_perplexity'), reduce_last=('lr',), cuda=True): super().__init__( benchmark_epochs=benchmark_epochs, benchmark_keys=benchmark_keys, scopes=scopes, dllogger_keys=dllogger_keys, reduce_mean=reduce_mean, reduce_last=reduce_last, cuda=cuda) def accumulate(self, scopes=None): if 'ignore' not in self.partials or self.partials['ignore'] == 0.0: # compute_loss_and_accuracy nsentences = self.partials['nsentences'] for k, v in self.partials.items(): if k.startswith('loss'): self.partials[k] = v / nsentences / math.log(2) # as in fairseq super().accumulate(scopes=scopes) def _finish_accumulating(self, scope='train'): super()._finish_accumulating(scope=scope) m = self.metrics[scope] count = self.metric_counts[scope] m['ntokens/s'] = m['ntokens'] * count['ntokens'] / m['took'] if 'c_errs' in m: m['uer'] = 100 * m['c_errs'] / m['c_len'] if 'w_errs' in m: m['wer'] = 100 * m['w_errs'] / m['w_len'] if 'wv_errs' in m: m['raw_wer'] = 100 * m['wv_errs'] / m['w_len']
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/wav2vec2/logging.py
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/wav2vec2/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import math from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from common import fairseq_fake_modules from common.fairseq import utils from common.fairseq.data.data_utils import compute_mask_indices from common.fairseq.modules import ( Fp32GroupNorm, Fp32LayerNorm, Fp32MaskedGroupNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MaskedGroupNorm, MultiheadAttention, SamePad, TransposeLast, ) from common.features import FilterbankFeatures from common.helpers import load_wrapped_state from common.pyt_mha import PytMultiheadAttention from common.utils import print_once class Fp32Conv1d(nn.Conv1d): """Casts to FP32. TorchScript ready, does not use inheritance. Details: https://github.com/pytorch/pytorch/issues/42885 . """ def forward(self, x): return F.conv1d( x.float(), self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups ).to(dtype=x.dtype) def init_bert_params(module): """ Initialize the weights specific to the BERT Model. This overrides the default initializations depending on the specified arguments. 1. If normal_init_linear_weights is set then weights of linear layer will be initialized using the normal distribution and bais will be set to the specified value. 2. If normal_init_embed_weights is set then weights of embedding layer will be initialized using the normal distribution. 3. If normal_init_proj_weights is set then weights of in_project_weight for MultiHeadAttention initialized using the normal distribution (to be validated). """ def normal_(data): # with FSDP, module params will be on CUDA, so we cast them back to CPU # so that the RNG is consistent with and without FSDP data.copy_( data.cpu().normal_(mean=0.0, std=0.02).to(data.device) ) if isinstance(module, nn.Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): normal_(module.q_proj.weight.data) normal_(module.k_proj.weight.data) normal_(module.v_proj.weight.data) if isinstance(module, PytMultiheadAttention): normal_(module.qkv.weight.data) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m class MaskedBlock(nn.Module): def __init__(self, *args): super().__init__() self.conv = args[0] self.drop = args[1] if len(args) == 4: self.norm = args[2] self.activation = args[3] else: self.norm = None self.activation = args[2] def hook(state_dict, prefix, *args, **kwargs): """Rename Blocks saved as nn.Sequential.""" new_sd = {} for k, v in state_dict.items(): if not k.startswith(prefix): new_sd[k] = v else: *pref, feat, conv, mod_num, layer_num, param = k.split(".") assert feat == "feature_extractor" and conv == "conv_layers" if layer_num == "0": new_k = ".".join(pref + [feat, conv, mod_num, "conv", param]) elif layer_num == "2": new_k = ".".join(pref + [feat, conv, mod_num, "norm", param]) else: raise ValueError print(f"Rename {k} --> {new_k}") new_sd[new_k] = v state_dict.clear() state_dict.update(new_sd) self._register_load_state_dict_pre_hook(hook) def forward(self, x: Tensor, x_lens: Tensor): x = self.drop(self.conv(x)) x_lens = (x_lens - self.conv.kernel_size[0]) / self.conv.stride[0] + 1 x_lens = torch.floor(x_lens).long() if self.norm is not None: if isinstance(self.norm, nn.Sequential): # LayerNorm wraped with nn.Sequential raise ValueError("LayerNorm does not require masking") else: x = self.norm(x, x_lens) return self.activation(x), x_lens class Wav2Vec2Model(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.use_spectrogram_features = cfg.use_spectrogram_features if self.use_spectrogram_features: self.spec_feature_extractor = FilterbankFeatures( frame_stacking=cfg.spectrogram_feature_stacking, frame_subsampling=cfg.spectrogram_feature_subsampling, window_size=cfg.spectrogram_window_size, window_stride=cfg.spectrogram_window_stride, n_filt=cfg.spectrogram_n_filt).cuda() self.feature_extractr = None self.spec_feature_extractor.eval() self.embed = self.spec_feature_extractor.output_dim() else: feature_enc_layers = eval(cfg.conv_feature_layers) self.embed = feature_enc_layers[-1][0] self.spec_feature_extractor = None self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, fp32_norms=cfg.fp32_conv_norms, masked=getattr(cfg, 'masked_feature_extractor', False), ) self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_before = cfg.mask_channel_before self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.quantizer = None self.input_quantizer = None self.n_negatives = cfg.num_negatives self.cross_sample_negatives = cfg.cross_sample_negatives self.codebook_negatives = cfg.codebook_negatives self.negatives_from_everywhere = cfg.negatives_from_everywhere self.logit_temp = cfg.logit_temp self.fp32_cosine_sim = cfg.fp32_cosine_sim final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim if cfg.quantize_targets: vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim self.quantizer = GumbelVectorQuantizer( dim=self.embed, num_vars=cfg.latent_vars, temp=cfg.latent_temp, groups=cfg.latent_groups, combine_groups=False, vq_dim=vq_dim, time_first=True, weight_proj_depth=cfg.quantizer_depth, weight_proj_factor=cfg.quantizer_factor, ) self.project_q = nn.Linear(vq_dim, final_dim) else: self.project_q = nn.Linear(self.embed, final_dim) if cfg.quantize_input: if cfg.same_quantizer and self.quantizer is not None: vq_dim = final_dim self.input_quantizer = self.quantizer else: vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim self.input_quantizer = GumbelVectorQuantizer( dim=self.embed, num_vars=cfg.latent_vars, temp=cfg.latent_temp, groups=cfg.latent_groups, combine_groups=False, vq_dim=vq_dim, time_first=True, weight_proj_depth=cfg.quantizer_depth, weight_proj_factor=cfg.quantizer_factor, ) self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) self.conv_cfg_list = eval(self.cfg.conv_feature_layers) def apply_mask( self, x, padding_mask, mask_indices=None, mask_channel_indices=None, ): B, T, C = x.shape if self.mask_channel_prob > 0 and self.mask_channel_before: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 if self.mask_prob > 0: if mask_indices is None: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, require_same_masks=True, mask_dropout=0.0, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0 and not self.mask_channel_before: if mask_channel_indices is None: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def sample_negatives(self, y, num, padding_count=None): if self.n_negatives == 0 and self.cross_sample_negatives == 0: return y.new(0) bsz, tsz, fsz = y.shape y = y.view(-1, fsz) # BTC => (BxT)C cross_high = tsz * bsz high = tsz - (padding_count or 0) with torch.no_grad(): assert high > 1, f"{bsz,tsz,fsz}" if self.n_negatives > 0: tszs = torch.arange(num, device=y.device).unsqueeze(-1) tszs = tszs.expand(-1, self.n_negatives).flatten() neg_idxs = torch.randint( low=0, high=high - 1, size=(bsz, self.n_negatives * num), device=y.device ) neg_idxs[neg_idxs >= tszs] += 1 if self.cross_sample_negatives > 0: tszs = torch.arange(num, device=y.device).unsqueeze(-1) tszs = tszs.expand(-1, self.cross_sample_negatives).flatten() cross_neg_idxs = torch.randint( low=0, high=cross_high - 1, size=(bsz, self.cross_sample_negatives * num), device=y.device ) cross_neg_idxs[cross_neg_idxs >= tszs] += 1 if self.n_negatives > 0: for i in range(1, bsz): neg_idxs[i] += i * high else: neg_idxs = cross_neg_idxs if self.cross_sample_negatives > 0 and self.n_negatives > 0: neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) negs = y[neg_idxs.view(-1)] negs = negs.view( bsz, num, self.n_negatives + self.cross_sample_negatives, fsz ).permute( 2, 0, 1, 3 ) # to NxBxTxC return negs, neg_idxs def compute_preds(self, x, y, negatives): neg_is_pos = (y == negatives).all(-1) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) if self.fp32_cosine_sim: logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x) else: logits = torch.cosine_similarity(x, targets, dim=-1) logits = logits / self.logit_temp if neg_is_pos.any(): if not hasattr(self, "_inftensor"): self._inftensor = float("-inf") logits[1:][neg_is_pos] = self._inftensor return logits def _conv_out_length(self, input_length: torch.Tensor, kernel_size: int, stride: int): return torch.floor((input_length - kernel_size) / stride + 1) def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ for i in range(len(self.conv_cfg_list)): input_lengths = self._conv_out_length( input_lengths, self.conv_cfg_list[i][1], self.conv_cfg_list[i][2] ) return input_lengths.to(torch.long) def infer(self, source: Tensor, padding_mask: Tensor): """Forward method for (masked) inference.""" input_lengths = (1 - padding_mask.long()).sum(-1) output_lengths = self._get_feat_extract_output_lengths(input_lengths) features, _ = self.feature_extractor.masked_forward(source, input_lengths) features = features.transpose(1, 2) features = self.layer_norm(features) padding_mask = torch.zeros( features.shape[:2], dtype=features.dtype, device=features.device ) # these two operations makes sure that all values # before the output lengths indices are attended to padding_mask[ ( torch.arange(padding_mask.shape[0], device=padding_mask.device), output_lengths - 1, ) ] = 1 padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])) == 1 if self.post_extract_proj is not None: features = self.post_extract_proj(features) x = self.dropout_input(features) x, _ = self.encoder(x, padding_mask=padding_mask) return x, padding_mask def forward( self, source, padding_mask: Optional[Tensor] = None, mask=True, features_only=False, layer=-1, mask_indices=None, mask_channel_indices=None, padding_count=None, sub_batch_sizes=None, sub_batch_lens=None, ): masked_inference = self.feature_extractor.masked if self.spec_feature_extractor is not None: if padding_mask is not None and padding_mask.any(): input_lengths = (1 - padding_mask.long()).sum(-1) else: input_lengths = (torch.zeros(source.size(0)) + source.size(1)).cuda() features, output_lengths = self.spec_feature_extractor(source, input_lengths) output_lengths = output_lengths.to(torch.long) else: if self.training and self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): if masked_inference: input_lengths = (1 - padding_mask.long()).sum(-1) features, _ = self.feature_extractor.masked_forward(source, input_lengths) else: features = self.feature_extractor(source) if masked_inference or (padding_mask is not None and padding_mask.any()): input_lengths = (1 - padding_mask.long()).sum(-1) # apply conv formula to get real output_lengths output_lengths = self._get_feat_extract_output_lengths(input_lengths) else: output_lengths = None features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if output_lengths is not None: padding_mask = torch.zeros( features.shape[:2], dtype=features.dtype, device=features.device ) # these two operations makes sure that all values # before the output lengths indices are attended to padding_mask[ ( torch.arange(padding_mask.shape[0], device=padding_mask.device), output_lengths - 1, ) ] = 1 padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])) == 1 else: padding_mask = None if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) num_vars = None code_ppl = None prob_ppl = None curr_temp = None if self.input_quantizer: q = self.input_quantizer(features, produce_targets=False) features = q["x"] num_vars = q["num_vars"] code_ppl = q["code_perplexity"] prob_ppl = q["prob_perplexity"] curr_temp = q["temp"] features = self.project_inp(features) split_accumulation = sub_batch_sizes is not None and sub_batch_sizes.size(0) > 1 if split_accumulation: assert sub_batch_sizes is not None assert self.quantizer is not None assert not self.negatives_from_everywhere assert self.codebook_negatives == 0 assert self.target_glu is None assert mask_indices is None assert mask_channel_indices is None assert mask split_sizes = sub_batch_sizes.tolist() sub_x, sub_y, sub_mask_indices, sub_negs = [], [], [], [] for s, e in zip(np.cumsum(split_sizes) - split_sizes, np.cumsum(split_sizes)): x_, mask_indices_ = self.apply_mask( features[s:e], padding_mask[s:e] if padding_mask is not None else None, ) sub_x.append(x_) sub_mask_indices.append(mask_indices_) y_ = unmasked_features[s:e][mask_indices_].view( e-s, -1, unmasked_features.size(-1) ) q_ = self.quantizer(y_, produce_targets=False) y_ = q_["x"] y_ = self.project_q(y_) negs_, _ = self.sample_negatives( y_, y_.size(1), padding_count=padding_count, ) sub_y.append(y_) sub_negs.append(negs_) x = torch.cat(sub_x, dim=0) mask_indices = torch.cat(sub_mask_indices, dim=0) x, layer_results = self.encoder(x, padding_mask=padding_mask, layer=layer) if features_only: return { "x": x, "padding_mask": padding_mask, "features": unmasked_features, "layer_results": layer_results, } x = x[mask_indices] # .view(x.size(0), -1, x.size(-1)) x = self.final_proj(x) # At this point, x needs to be smartly reshaped / split into x_'s sub_x2 = [] offset = 0 for y_, mask_inds_, negs_ in zip(sub_y, sub_mask_indices, sub_negs): sz = mask_inds_.sum() x_ = x[offset:offset+sz].view(mask_inds_.size(0), -1, x.size(-1)) x_ = self.compute_preds(x_, y_, negs_) sub_x2.append(x_) offset += sz x = torch.cat([x_.view(x_.size(0), 1, -1) for x_ in sub_x2], dim=2) result = { "x": x, "padding_mask": padding_mask, "features_pen": features_pen, } # TODO Reassemble q stats, currently using first chunk's stats q = q_ if q["prob_perplexity"] is not None: result["prob_perplexity"] = q["prob_perplexity"] result["code_perplexity"] = q["code_perplexity"] result["num_vars"] = q["num_vars"] result["temp"] = q["temp"] return result # End split_accumulation ---------------------------------------------- if mask: x, mask_indices = self.apply_mask( features, padding_mask, mask_indices=mask_indices, mask_channel_indices=mask_channel_indices, ) if mask_indices is not None: y = unmasked_features[mask_indices].view( unmasked_features.size(0), -1, unmasked_features.size(-1) ) else: y = unmasked_features else: x = features y = unmasked_features mask_indices = None x, layer_results = self.encoder(x, padding_mask=padding_mask, layer=layer) if features_only: return { "x": x, "padding_mask": padding_mask, "features": unmasked_features, "layer_results": layer_results, } if self.quantizer: q = self.quantizer(y, produce_targets=False) y = q["x"] num_vars = q["num_vars"] code_ppl = q["code_perplexity"] prob_ppl = q["prob_perplexity"] curr_temp = q["temp"] y = self.project_q(y) if self.negatives_from_everywhere: neg_cands = self.quantizer(unmasked_features, produce_targets=False)[ "x" ] negs, _ = self.sample_negatives( neg_cands, y.size(1), padding_count=padding_count, ) negs = self.project_q(negs) else: negs, _ = self.sample_negatives( y, y.size(1), padding_count=padding_count, ) if self.codebook_negatives > 0: cb_negs = self.quantizer.sample_from_codebook( y.size(0) * y.size(1), self.codebook_negatives ) cb_negs = cb_negs.view( self.codebook_negatives, y.size(0), y.size(1), -1 ) # order doesnt matter cb_negs = self.project_q(cb_negs) negs = torch.cat([negs, cb_negs], dim=0) else: y = self.project_q(y) if self.negatives_from_everywhere: negs, _ = self.sample_negatives( unmasked_features, y.size(1), padding_count=padding_count, ) negs = self.project_q(negs) else: negs, _ = self.sample_negatives( y, y.size(1), padding_count=padding_count, ) x = x[mask_indices].view(x.size(0), -1, x.size(-1)) if self.target_glu: y = self.target_glu(y) negs = self.target_glu(negs) x = self.final_proj(x) x = self.compute_preds(x, y, negs) result = { "x": x, "padding_mask": padding_mask, "features_pen": features_pen, } if prob_ppl is not None: result["prob_perplexity"] = prob_ppl result["code_perplexity"] = code_ppl result["num_vars"] = num_vars result["temp"] = curr_temp return result def quantize(self, x): assert self.quantizer is not None x = self.feature_extractor(x) x = x.transpose(1, 2) x = self.layer_norm(x) return self.quantizer.forward_idx(x) def extract_features(self, source, padding_mask, mask=False, layer=-1): res = self.forward( source, padding_mask, mask=mask, features_only=True, layer=layer ) return res def get_logits(self, net_output): logits = net_output["x"] logits = logits.transpose(0, 2) logits = logits.reshape(-1, logits.size(-1)) return logits def get_targets(self, sample, net_output, expand_steps=True): x = net_output["x"] return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long) def get_extra_losses(self, net_output): pen = [] if "prob_perplexity" in net_output: pen.append( (net_output["num_vars"] - net_output["prob_perplexity"]) / net_output["num_vars"] ) if "features_pen" in net_output: pen.append(net_output["features_pen"]) return pen def remove_pretraining_modules(self): self.quantizer = None self.project_q = None self.target_glu = None self.final_proj = None def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def get_normalized_probs_scriptable( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Scriptable helper function for get_normalized_probs in ~BaseFairseqModel""" if hasattr(self, "decoder"): return self.decoder.get_normalized_probs(net_output, log_probs, sample) elif torch.is_tensor(net_output): # syntactic sugar for simple models which don't have a decoder # (e.g., the classification tutorial) logits = net_output.float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) raise NotImplementedError def max_positions(self): """Maximum length supported by the model.""" return None def load_state_dict( self, state_dict, strict=True, ): """Copies parameters and buffers from *state_dict* into this module and its descendants. Overrides the method in :class:`nn.Module`. Compared with that method this additionally "upgrades" *state_dicts* from old checkpoints. """ self.upgrade_state_dict(state_dict) new_state_dict = state_dict return super().load_state_dict(new_state_dict, strict) def upgrade_state_dict(self, state_dict): """Upgrade old state dicts to work with newer code.""" self.upgrade_state_dict_named(state_dict, "") def upgrade_state_dict_named(self, state_dict, name): """Upgrade old state dicts to work with newer code. Args: state_dict (dict): state dictionary to upgrade, in place name (str): the state dict key corresponding to the current module """ assert state_dict is not None def do_upgrade(m, prefix): if len(prefix) > 0: prefix += "." for n, c in m.named_children(): name = prefix + n if hasattr(c, "upgrade_state_dict_named"): c.upgrade_state_dict_named(state_dict, name) elif hasattr(c, "upgrade_state_dict"): c.upgrade_state_dict(state_dict) do_upgrade(c, name) do_upgrade(self, name) def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" for m in self.modules(): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) def prepare_for_inference_(self, cfg): """Prepare model for inference.""" kwargs = {} kwargs["beamable_mm_beam_size"] = ( None if getattr(cfg.generation, "no_beamable_mm", False) else getattr(cfg.generation, "beam", 5) ) kwargs["need_attn"] = getattr(cfg.generation, "print_alignment", False) if getattr(cfg.generation, "retain_dropout", False): kwargs["retain_dropout"] = cfg.generation.retain_dropout kwargs["retain_dropout_modules"] = cfg.generation.retain_dropout_modules self.make_generation_fast_(**kwargs) def make_generation_fast_(self, **kwargs): """ Legacy entry point to optimize model for faster generation. Prefer prepare_for_inference_. """ if self._is_generation_fast: return # only apply once self._is_generation_fast = True # remove weight norm from all modules in the network def apply_remove_weight_norm(module): try: nn.utils.remove_weight_norm(module) except (AttributeError, ValueError): # this module didn't have weight norm return self.apply(apply_remove_weight_norm) def train(mode=True): if mode: raise RuntimeError("cannot train after make_generation_fast") # this model should no longer be used for training self.eval() self.train = train def prepare_for_onnx_export_(self, **kwargs): """Make model exportable via ONNX trace.""" seen = set() def apply_prepare_for_onnx_export_(module): if ( module != self and hasattr(module, "prepare_for_onnx_export_") and module not in seen ): seen.add(module) module.prepare_for_onnx_export_(**kwargs) self.apply(apply_prepare_for_onnx_export_) def remove_conv_wn(self): nn.utils.remove_weight_norm(self.encoder.pos_conv[0]) def apply_conv_wn(self): nn.utils.weight_norm(self.encoder.pos_conv[0], name="weight", dim=2) class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers: List[Tuple[int, int, int]], dropout: float = 0.0, mode: str = "default", conv_bias: bool = False, fp32_norms: bool = True, masked: bool = False, ): super().__init__() assert mode in {"default", "layer_norm"} self.mode = mode self.masked = masked LayerNorm_ = Fp32LayerNorm if fp32_norms else nn.LayerNorm if masked and mode == "default": Block_ = MaskedBlock GroupNorm_ = Fp32MaskedGroupNorm if fp32_norms else MaskedGroupNorm else: Block_ = nn.Sequential GroupNorm_ = Fp32GroupNorm if fp32_norms else nn.GroupNorm def block( n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False, ): assert not (is_layer_norm and is_group_norm), ( "layer norm and group norm are mutually exclusive") def make_conv(): conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) nn.init.kaiming_normal_(conv.weight) return conv def make_norm(): if is_group_norm: l = GroupNorm_(dim, dim, affine=True) elif is_layer_norm: l = nn.Sequential(TransposeLast(), LayerNorm_(dim, elementwise_affine=True), TransposeLast()) return l has_norm = is_layer_norm or is_group_norm return Block_(make_conv(), nn.Dropout(p=dropout), *([make_norm()] if has_norm else []), nn.GELU()) in_d = 1 self.conv_layers = nn.ModuleList() for i, cl in enumerate(conv_layers): assert len(cl) == 3, "invalid conv definition: " + str(cl) (dim, k, stride) = cl self.conv_layers.append( block( in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias, ) ) in_d = dim def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: x = conv(x) return x def masked_forward(self, x: Tensor, x_lens: Tensor): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: x, x_lens = conv(x, x_lens) return x, x_lens class Upsampler(nn.Module): def __init__(self, emb_dim, factor, mode="linear"): super().__init__() assert mode in ("linear", "naive") self.factor = factor if mode == "linear": self.linear = nn.Linear(emb_dim, emb_dim * factor) else: self.linear = None def forward(self, x): if self.linear is not None: # T x B x C -> B x T x C x = x.transpose(0, 1) x = self.linear(x) x = x.reshape(x.size(0), x.size(1) * self.factor, -1) x = x.transpose(0, 1) else: x = x.repeat_interleave(self.factor, dim=0) return x class Downsampler(nn.Module): def __init__(self, emb_dim, factor, mode="linear"): super().__init__() assert mode in ("linear", "naive") self.factor = factor if mode == "linear": self.linear = nn.Linear(emb_dim * factor, emb_dim) else: self.linear = None def forward(self, x): if self.linear is not None: # T x B x C -> B x T x C x = x.transpose(0, 1) B, T, C = x.size() x = x.reshape(B, T // self.factor, C * self.factor) x = self.linear(x) x = x.transpose(0, 1) else: # T x B x C -> B x C x T x = x.permute(1, 2, 0) x = F.avg_pool1d(x, kernel_size=self.factor, stride=self.factor) x = x.permute(2, 0, 1) return x class TransformerEncoder(nn.Module): def __init__(self, args): super().__init__() self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim PosConv = Fp32Conv1d if args.fp32_pos_conv else nn.Conv1d self.pos_conv = PosConv( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) nn.init.normal_(self.pos_conv.weight, mean=0, std=std) nn.init.constant_(self.pos_conv.bias, 0) self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) def create_decoder_layers(n_layers): return nn.ModuleList([ TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, rotary_embeddings=args.rotary_embeddings, mha=args.mha, fp32_transformer_layernorm=args.fp32_transformer_layernorm, fp32_mha_softmax=args.fp32_mha_softmax, ) for _ in range(n_layers) ]) if args.hourglass_transformer: n_pre, (n_hourglass, self.shorten_factor), n_post = eval( args.hourglass_transformer) self.layers = create_decoder_layers(n_pre) self.hourglass_layers = create_decoder_layers(n_hourglass) self.post_layers = create_decoder_layers(n_post) assert args.hourglass_resample in ['linear', 'naive'] # otherwise i want to resample before merging resutls assert not args.layer_norm_first kw = {'emb_dim': self.embedding_dim, 'factor': self.shorten_factor, 'mode': args.hourglass_resample} self.upsample_layer = Upsampler(**kw) self.downsample_layer = Downsampler(**kw) else: self.layers = create_decoder_layers(args.encoder_layers) self.hourglass_layers = None self.post_layers = None self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop self.apply(init_bert_params) def forward(self, x: Tensor, padding_mask: Optional[Tensor] = None, layer: int = -1): x, layer_results = self.extract_features(x, padding_mask, layer) if self.layer_norm_first and layer == -1: x = self.layer_norm(x) return x, layer_results def process_layers(self, x: Tensor, padding_mask: Optional[Tensor], tgt_layer: int = -1): for i, layer in enumerate(self.layers): if not self.training or (torch.rand(1) > self.layerdrop): x, _ = layer(x, self_attn_padding_mask=padding_mask, need_weights=False) if i == tgt_layer: return x return x def process_hourglass_layers(self, x: Tensor, padding_mask: Optional[Tensor], tgt_layer: int = -1): for i, layer in enumerate(self.hourglass_layers): if not self.training or (torch.rand(1) > self.layerdrop): x, _ = layer(x, self_attn_padding_mask=padding_mask, need_weights=False) if i == tgt_layer: return x return x def process_post_layers(self, x: Tensor, padding_mask: Optional[Tensor], tgt_layer: int = -1): if self.post_layers is None: return x else: for i, layer in enumerate(self.post_layers): if not self.training or (torch.rand(1) > self.layerdrop): x, _ = layer(x, self_attn_padding_mask=padding_mask, need_weights=False) if i == tgt_layer: return x return x def extract_features(self, x: Tensor, padding_mask: Optional[Tensor] = None, tgt_layer: int = -1): if padding_mask is not None: x[padding_mask] = 0 x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x = x + x_conv if not self.layer_norm_first: x = self.layer_norm(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) if self.hourglass_layers is not None: # we don't want to take outputs from inside of hourglass # as they are shortened and differnt n_layers_before_upsampling = (len(self.layers) # pre layers + len(self.hourglass_layers)) assert tgt_layer == -1 or tgt_layer >= n_layers_before_upsampling if tgt_layer is not None: tgt_layer = tgt_layer - n_layers_before_upsampling x = self.process_layers(x, padding_mask) res = x hourglass_pad_mask = padding_mask diff = ((self.shorten_factor - x.size(0) % self.shorten_factor) % self.shorten_factor) if diff != 0: x = torch.cat([x, x.new_zeros(diff, x.size(1), x.size(2))]) if hourglass_pad_mask is not None: if diff != 0: hourglass_pad_mask = torch.cat([ hourglass_pad_mask, x.new_ones(hourglass_pad_mask.size(0), diff) ], dim=1) hourglass_pad_mask = (F.avg_pool1d( hourglass_pad_mask.unsqueeze(0).float(), self.shorten_factor, self.shorten_factor ).int() > 0).squeeze(0) x = self.downsample_layer(x) x = self.process_hourglass_layers(x, hourglass_pad_mask) x = self.upsample_layer(x) if diff != 0: x = x[:-diff] x = x + res x = self.process_post_layers(x, padding_mask, tgt_layer) else: x = self.process_layers(x, padding_mask, tgt_layer) # T x B x C -> B x T x C return x.transpose(0, 1), [] def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict class TransformerSentenceEncoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, rotary_embeddings: bool = False, mha: str = 'fairseq', fp32_transformer_layernorm: bool = False, fp32_mha_softmax: bool = False, ) -> None: assert not fp32_mha_softmax, "Support for FP32 MHA Softmax disabled" super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) MHA = {'fairseq': MultiheadAttention, 'pyt': PytMultiheadAttention}[mha] self.self_attn = MHA( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, rotary_embeddings=rotary_embeddings ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first LN = Fp32LayerNorm if fp32_transformer_layernorm else LayerNorm # layer norm associated with the self attention layer self.self_attn_layer_norm = LN(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LN(self.embedding_dim) def forward( self, x: torch.Tensor, self_attn_mask: Optional[Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, need_weights: bool = False, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, attn class Wav2VecEncoder(nn.Module): def __init__(self, cfg, init_state_dict=None, output_size=None): super().__init__() self.apply_mask = cfg.apply_mask self.w2v_model = Wav2Vec2Model(cfg) if init_state_dict is not None: load_wrapped_state(self.w2v_model, init_state_dict) self.w2v_model.remove_pretraining_modules() d = cfg.encoder_embed_dim self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 tgt_d = None self.proj = None if output_size is not None: tgt_d = output_size elif getattr(cfg, "decoder_embed_dim", d) != d: tgt_d = cfg.decoder_embed_dim if tgt_d is not None: self.proj = Linear(d, tgt_d) def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.num_updates = num_updates def extract_features(self, source, padding_mask, layer): assert not self.training with torch.no_grad(): out = self.w2v_model.extract_features( source=source, padding_mask=padding_mask, mask=False, layer=layer) return out def infer(self, source: Tensor, padding_mask: Optional[Tensor], tbc: bool = True): assert padding_mask is not None x, padding_mask = self.w2v_model.infer(source, padding_mask) if tbc: # BTC -> TBC x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj is not None: x = self.proj(x) return x, padding_mask def forward(self, source: Tensor, padding_mask: Optional[Tensor], tbc: bool = True): ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): res = self.w2v_model.extract_features( source=source, padding_mask=padding_mask, mask=self.apply_mask and self.training ) x = res["x"] padding_mask = res["padding_mask"] layer_results = res["layer_results"] if tbc: # BTC -> TBC x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj is not None: x = self.proj(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask.transpose(0, 1) if padding_mask is not None else None, # T x B "padding_mask": padding_mask, "layer_results": layer_results, } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class Wav2VecCtc(nn.Module): def __init__(self, cfg, w2v_encoder): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder self.blank_weight = cfg.blank_weight self.blank_mode = cfg.blank_mode def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @torch.jit.export def get_logits(self, logits: Tensor, padding_mask: Optional[Tensor], normalize: bool = False): if self.blank_weight != 0: if self.blank_mode == "add": logits[..., 0] += self.blank_weight elif self.blank_mode == "set": logits[..., 0] = self.blank_weight else: raise ValueError(f"invalid blank mode {self.blank_mode}") if padding_mask is not None and padding_mask.any(): num_classes = logits.size(-1) masking_tensor = torch.full((num_classes,), float("-inf"), dtype=logits.dtype, device=logits.device) masking_tensor[0] = 0 logits[padding_mask.T] = masking_tensor if normalize: logits = F.log_softmax(logits.float(), dim=-1) return logits @torch.jit.export def get_normalized_probs(self, logits: Tensor, padding_mask: Optional[Tensor], log_probs: bool): """Get normalized probabilities (or log probs) from a net's output.""" logits = self.get_logits(logits, padding_mask, normalize=False) if log_probs: return F.log_softmax(logits.float(), dim=-1) else: return F.softmax(logits.float(), dim=-1) def forward(self, source: Tensor, padding_mask: Optional[Tensor], tbc: bool = True): return self.w2v_encoder(source, padding_mask, tbc) def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.w2v_encoder.set_num_updates(num_updates)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/wav2vec2/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys def populate(parser): choices = ["pretrain", "finetune"] parser.add_argument("mode", help="Training mode", choices=choices) mode = parser.parse_args([a for a in sys.argv[1:] if a in choices]).mode if mode == "pretrain": populate_pretraining(parser) else: populate_finetuning(parser) populate_common(parser) return parser def populate_infer(parser): populate_finetuning(parser) populate_common(parser) _populate_infer(parser) return parser def populate_common(parser): train = parser.add_argument_group("training setup") train.add_argument("--epochs_this_job", default=0, type=int, help="Run for a number of epochs and exit") train.add_argument("--cudnn_benchmark", action="store_true", help="Enable cudnn benchmark") train.add_argument("--local_rank", default=os.getenv("LOCAL_RANK", 0), type=int, help="GPU id used for distributed training") optim = parser.add_argument_group("optimization setup") optim.add_argument("--optimizer", default="adam", type=str, help="Optimization algorithm") optim.add_argument("--ema", type=float, default=0.0, help="Discount factor for EMA of model weights") io = parser.add_argument_group("feature and checkpointing setup") io.add_argument("--log_frequency", default=1, type=int, help="Number of steps between printing training stats") io.add_argument("--output_dir", type=str, required=True, help="Directory for logs and checkpoints") io.add_argument("--log_file", type=str, default=None, help="Path to save the training logfile.") io.add_argument("--benchmark_epochs_num", type=int, default=3, help="Number of last epochs to calculate throughput stats") ckpt = parser.add_argument_group("checkpoint") ckpt.add_argument("--no_save", action="store_true", help="Don't save models or checkpoints") ckpt.add_argument("--resume", action="store_true", help="Try to resume from last saved checkpoint") ckpt.add_argument("--ckpt", default=None, type=str, help="Path to a checkpoint for resuming training") ckpt.add_argument("--save_frequency", default=10, type=int, help="Checkpoint saving frequency in epochs") ckpt.add_argument("--keep_milestones", default=[100, 200, 300, 400], type=int, nargs="+", help="Milestone checkpoints to keep from removing") # io.add_argument("--save_best_from", default=380, type=int, # help="Epoch on which to begin tracking best checkpoint (dev WER)") common = parser.add_argument_group("common") common.add_argument("--seed", type=int, default=1, help="Pseudo random number generator seed") common.add_argument("--cpu", action="store_true", help="Use CPU instead of CUDA") common.add_argument("--amp", action="store_true", help="Use automatic mixed precision") common.add_argument("--fp16", action="store_true", help="If fp16 is being used") common.add_argument("--bf16", action="store_true", help="Train in bfloat16 precision") common.add_argument("--min_loss_scale", type=float, default=0.0001, help="Minimum FP16/AMP loss scale, after which " "training is stopped") common.add_argument("--fp16_init_scale", type=int, default=128, help="Default FP16 loss scale") common.add_argument("--fp32_transformer_layernorm", action="store_true", help="Calculate MHA LayerNorms in full precision") common.add_argument("--fp32_mha_softmax", action="store_true", help="Calculate multi-head attention to FP32") common.add_argument("--fp32_cosine_sim", action="store_true", help="Calculate cosine similarity in FP32") common.add_argument("--fp32_pos_conv", action="store_true", help="Calculate positional conv in FP32") common.add_argument("--fp32_conv_norms", action="store_true", help="Calculate normalization in conv layers in FP32") common.add_argument("--mha", type=str, default="fairseq", choices=["fairseq", "pyt"], help="MHA implementation") common.add_argument("--num_concat_batches", type=int, default=1) dataset = parser.add_argument_group("dataset") dataset.add_argument("--num_workers", type=int, default=6, help="How many subprocesses to use for data loading") dataset.add_argument("--skip_invalid_size_inputs_valid_test", action="store_true", help="Ignore too long or too short lines in valid and" " test set") dataset.add_argument("--max_tokens", type=int, default=1400000, help="Maximum number of tokens in a batch") dataset.add_argument("--max_tokens_valid", type=int, default=1400000, help="Maximum number of tokens in a validation batch " "(defaults to --max-tokens)") dataset.add_argument("--required_batch_size_multiple", type=int, default=8, help="Batch size will be a multiplier of this value") dataset.add_argument("--required_seq_len_multiple", type=int, default=2, help="Pad the input to encoder such that the sequence" " length is divisible by multiple") dataset.add_argument("--train_subset", type=str, default="train", help="Data subset to use for training (e.g. train, " "valid, test)") dataset.add_argument("--valid_subset", type=str, default="valid", help="Comma separated list of data subsets to use for" " validation (e.g. train, valid, test)") dataset.add_argument("--batch_size", type=int, default=None, help="Number of examples in a batch") dataset.add_argument("--batch_size_valid", type=int, default=None, help="Batch size of the validation batch (defaults " "to --batch-size)") task = parser.add_argument_group("task") task.add_argument("--data", type=str, default="/workspace/fairseq/librispeech", help="Path to data directory") task.add_argument("--sample_rate", type=int, default=16000, help="Target sample rate. audio files will be up/down " "sampled to this rate") task.add_argument("--enable_padding", action="store_true", help="Pad shorter samples instead of cropping") task.add_argument("--min_sample_size", type=int, default=None, help="Min sample size to crop to for batching") task.add_argument("--max_sample_size", type=int, default=None, help="Max sample size to crop to for batching") task.add_argument("--num_batch_buckets", type=int, default=0, help="If >0, then bucket source and target lengths into " "N buckets and pad accordingly; this is useful on " "TPUs to minimize the number of compilations") opt = parser.add_argument_group("optimization & optimizer") opt.add_argument("--max_update", type=int, default=400000, help="Force stop training at specified update") opt.add_argument("--update_freq", type=int, nargs="+", default=[64], help="Accumulate grads and update params every N batches") opt.add_argument("--lr", type=float, nargs="+", default=[0.0005], help="Max learning rate, must be more than cfg.min_lr") opt.add_argument("--adam_betas", type=float, nargs="+", default=[0.9, 0.98], help="Betas for Adam optimizer") opt.add_argument("--adam_eps", type=float, default=1e-06, help="Epsilon for Adam optimizer") opt.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay") opt.add_argument("--clip_norm", type=float, default=0.0, help="Clip threshold of gradients") sched = parser.add_argument_group("lr_scheduler") sched.add_argument("--lr_policy", type=str, default="poly", choices=["poly", "exp"], help="LR decay policy") sched.add_argument("--warmup_updates", type=int, default=32000, help="Warmup the learning rate linearly for the first " "N updates") sched.add_argument("--hold_updates", type=int, default=0, help="The number of updates with const learning rate") sched.add_argument("--initial_lr_scale", type=float, default=0.0, help="Initial learning rate scale") sched.add_argument("--final_lr_scale", type=float, default=0.0, help="Final learning rate scale") sched.add_argument("--lr_poly_power", type=float, default=1.0, help="Poly lr policy policy power") sched.add_argument("--lr_exp_decay", type=float, default=None, help="Exp lr policy decay factor") drop = parser.add_argument_group("dropout") drop.add_argument("--dropout", type=float, default=0.1, help="Dropout probability for the transformer") drop.add_argument("--attention_dropout", type=float, default=0.0, help="Dropout probability for attention weights") drop.add_argument("--activation_dropout", type=float, default=0.0, help="Dropout probability after activation in FFN") drop.add_argument("--dropout_input", type=float, default=0.1, help="Dropout to apply to the input (after feat extr)") drop.add_argument("--dropout_features", type=float, default=0.1, help="Dropout to apply to the features (after feat extr)") mask = parser.add_argument_group("input masking") mask.add_argument("--apply_mask", action="store_true", help="Apply masking during fine-tuning") mask.add_argument("--mask_length", type=int, default=10, help="Repeat the mask indices multiple times") mask.add_argument("--mask_prob", type=float, default=0.5, help="Probability of replacing a token with mask " "(normalized by length)") mask.add_argument("--require_same_masks", type=bool, default=True, help="Whether to number of masked timesteps must be the" " same across all examples in a batch") mask.add_argument("--mask_selection", default="static", choices=["static", "uniform", "normal", "poisson"], help="How to choose masks") mask.add_argument("--mask_other", type=float, default=0, help="Secondary mask argument (used for more complex " "distributions), see help in compute_mask_indices") mask.add_argument("--no_mask_overlap", type=bool, default=False, help="Whether to allow masks to overlap") mask.add_argument("--mask_min_space", type=int, default=1, help="Min space between spans (if no overlap is enabled)") mask.add_argument("--mask_channel_length", type=int, default=10, help="Length of the mask for features (channels)") mask.add_argument("--mask_channel_prob", type=float, default=0.0, help="Probability of replacing a feature with 0") mask.add_argument("--mask_channel_before", type=bool, default=False, help="Apply channel-masking before frequency-masking") mask.add_argument("--mask_channel_selection", default="static", choices=["static", "uniform", "normal", "poisson"], help="How to choose mask length for channel masking") mask.add_argument("--mask_channel_other", type=float, default=0, help="Secondary mask argument (used for more complex " "distributions), see help in compute_mask_indicesh") mask.add_argument("--no_mask_channel_overlap", type=bool, default=False, help="Whether to allow channel masks to overlap") mask.add_argument("--mask_channel_min_space", type=int, default=1, help="Min space between spans (if no overlap is enabled)") parser.add_argument("--feature_grad_mult", type=float, default=0.1, help="Reset feature grad mult in wav2vec 2.0 to this") # NOTE In Fairseq this is called `--layerdrop` in fine-tuning yamls parser.add_argument("--encoder_layerdrop", type=float, default=0.05, help="Probability of dropping a layer in wav2vec 2.0") mask.add_argument("--mask_dropout", type=float, default=0.0, help="Percent of masks to unmask for each sample") def populate_finetuning(parser): """Args for fine-tuning, absent from pre-trained ckpts.""" ft = parser.add_argument_group("supervised fine-tuning") ft.add_argument("--final_dropout", type=float, default=0.0, help="Dropout after transformer and before final proj") ft.add_argument("--w2v_path", type=str, default=None, help="Path to wav2vec 2.0 model") ft.add_argument("--blank_weight", type=float, default=0) ft.add_argument("--blank_mode", type=str, default="add") ft.add_argument("--labels", type=str, default="ltr", help="Extension of the label file to load for fine-tuning") ft.add_argument("--freeze_finetune_updates", type=int, default=0, help="Don't finetune wav2vec for this many updates") def populate_pretraining(parser): """During fine-tuning these parameters will be loaded from a ckpt.""" model = parser.add_argument_group("model") model.add_argument("--extractor_mode", type=str, default="default", help="Mode for feature extractor. default has a single " "group norm with d groups in the first conv block," " whereas layer_norm has layer norms in every " "block (meant to use with normalize=True)") model.add_argument("--encoder_layers", type=int, default=12, help="Num encoder layers in the transformer") model.add_argument("--encoder_embed_dim", type=int, default=768, help="Encoder embedding dimension") model.add_argument("--encoder_ffn_embed_dim", type=int, default=3072, help="Encoder embedding dimension for FFN") model.add_argument("--encoder_attention_heads", type=int, default=12, help="Num encoder attention heads") model.add_argument("--activation_fn", type=str, default="gelu", help="Activation function to use") model.add_argument("--final_dim", type=int, default=256, help="Project final representations and targets to this" " many dimensions. set to encoder_embed_dim " "is <= 0") model.add_argument("--layer_norm_first", action="store_true", help="Apply layernorm first in the transformer") model.add_argument("--conv_feature_layers", type=str, default="[(512,10,5)]+[(512,3,2)]*4+[(512,2,2)]+[(512,2,2)]", help="String describing convolutional feature " "extraction layers in form of a python list that " "contains [(dim, kernel_size, stride), ...]") model.add_argument("--conv_bias", action="store_true", help="Include bias in conv encoder") model.add_argument("--logit_temp", type=float, default=0.1, help="Temperature to divide logits by") model.add_argument("--quantize_targets", action="store_true", help="Use quantized targets") model.add_argument("--quantize_input", action="store_true", help="Use quantized inputs") model.add_argument("--target_glu", action="store_true", help="Adds projection + glu to targets") model.add_argument("--quantizer_depth", type=int, default=1, help="Number of quantizer layers") model.add_argument("--quantizer_factor", type=int, default=3, help="Dimensionality increase for inner quantizer " "layers (if depth > 1)") model.add_argument("--latent_vars", type=int, default=320, help="Number of latent variables V in each group of the" " codebook") model.add_argument("--latent_groups", type=int, default=2, help="Number of groups G of latent variables in the " "codebook") model.add_argument("--latent_dim", type=int, default=0, help="If > 0, uses this dimensionality for latent var" "iables. otherwise uses final_dim / latent_groups") model.add_argument("--num_negatives", type=int, default=100, help="Num of sampled negatives") model.add_argument("--negatives_from_everywhere", action="store_true", help="Sample negatives from everywhere, not just masked" " states") model.add_argument("--cross_sample_negatives", type=int, default=0, help="Num of cross sampled negatives") model.add_argument("--codebook_negatives", type=int, default=0, help="Number of negative examples codebook") model.add_argument("--conv_pos", type=int, default=128, help="Number of filters for convolutional positional " "embeddings") model.add_argument("--conv_pos_groups", type=int, default=16, help="Number of groups for convolutional positional " "embedding") model.add_argument("--latent_temp", type=float, nargs="+", default=[2.0, 0.5, 0.999995], help="Legacy (to be removed)") model.add_argument("--normalize", action="store_true", help="If set, normalizes input to have 0 mean and unit " "variance") parser.add_argument("--log_keys", type=str, nargs="*", default=["prob_perplexity", "code_perplexity", "temp"], help="Additional output keys to log") crit = parser.add_argument_group("criterion") crit.add_argument("--infonce", action="store_true", help="If set, uses cross entropy instead of binary cross" " entropy (i.e. InfoNCE loss)") crit.add_argument("--loss_weights", type=float, nargs="*", default=[0.1, 10.0], help="Weights for the loss terms") joc = parser.add_argument_group("joc experimental") joc.add_argument("--use_spectrogram_features", action="store_true", help="Train on input spectrograms") joc.add_argument("--rotary_embeddings", action="store_true", help="Use rotarty embeddings for Transformer layers") joc.add_argument("--hourglass_transformer", type=str, default=None, help="Specify the number of layers and shorteining, e.g.," " [n_pre,(n_hourglass, shorten_factor),n_post]") joc.add_argument("--hourglass_resample", type=str, default="naive", help="Method of up/downsampling in the hourglass model") joc.add_argument("--spectrogram_feature_stacking", type=int, default=1) joc.add_argument("--spectrogram_feature_subsampling", type=int, default=1) joc.add_argument("--spectrogram_window_size", type=float, default=0.02) joc.add_argument("--spectrogram_window_stride", type=float, default=0.01) joc.add_argument("--spectrogram_n_filt", type=int, default=80) return parser def _populate_infer(parser): # Fine-tuning only infer = parser.add_argument_group("inference") infer.add_argument("--steps", default=0, type=int, help="Eval this many steps for every worker") infer.add_argument("--warmup_steps", default=0, type=int, help="Burn-in period before measuring latencies") infer.add_argument("--labels_path", type=str, default=None, help="Path to output labels file, e.g., dict.ltr.txt") infer.add_argument("--save_predictions", type=str, default=None, help="Save predictions in text form at this location") infer.add_argument("--save_logits", default=None, type=str, help="Save output logits under specified path") infer.add_argument("--transcribe_wav", type=str, help="Path to a single .wav file (16KHz)") infer.add_argument("--transcribe_filelist", type=str, help="Path to a filelist with one .wav path per line") infer.add_argument("--torchscript", action="store_true", help="Evaluate with a TorchScripted model") infer.add_argument("--w2v_path_for_args", type=str, default=None, help="Args to build model for inference (weights will " "be loaded from --w2v_path)")
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/wav2vec2/arg_parser.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from functools import reduce from pathlib import Path import torch import wav2vec2.arg_parser from common.fairseq.data import AddTargetDataset, FileAudioDataset from common.utils import AttrDict, print_once from wav2vec2.model import Wav2Vec2Model, Wav2VecEncoder, Wav2VecCtc blank_symbol = "<s>" # for CTC # Supervised CTC training class LabelEncoder(object): def __init__(self, dictionary): self.dictionary = dictionary def __call__(self, label): return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False ) # For frame-wise phoneme labels class PhoneLabelEncoder: def __call__(self, label): return torch.IntTensor([int(id) for id in label.split()]) def load_dataset(split, args, target_dictionary=None, with_labels=False, training=True): dataset = FileAudioDataset( manifest_path=Path(args.data, f'{split}.tsv'), sample_rate=args.sample_rate, min_sample_size=args.min_sample_size if training else None, max_sample_size=args.max_sample_size if training else None, pad=(hasattr(args, 'labels') or args.enable_padding), normalize=args.normalize, num_buckets=args.num_batch_buckets, compute_mask_indices=False, repeat_to_refsize=(args.num_concat_batches > 1), ) if with_labels: assert args.labels assert hasattr(args, 'labels') skip_inds = getattr(dataset, "skipped_indices", set()) with open(Path(args.data, f"{split}.{args.labels}")) as f: labels = [line for i, line in enumerate(f) if i not in skip_inds] assert len(labels) == len(dataset), ( f"labels length ({len(labels)}) and dataset length " f"({len(dataset)}) do not match" ) dataset = AddTargetDataset( dataset, labels, pad=target_dictionary.pad(), eos=target_dictionary.eos(), batch_targets=True, process_label=LabelEncoder(target_dictionary), add_to_input=False ) return dataset def load_phone_classification_dataset(split, args): assert not args.labels manifest_path = os.path.join(args.data, "{}.tsv".format(split)) dataset = FileAudioDataset( manifest_path=manifest_path, sample_rate=args.sample_rate, max_sample_size=args.max_sample_size, min_sample_size=args.min_sample_size, pad=args.labels is not None or args.enable_padding, normalize=args.normalize, num_buckets=args.num_batch_buckets, compute_mask_indices=False, ) return dataset def _prune_infer_state_dict_prefix(state_dict, prefix='w2v_encoder.w2v_model.'): pref_len = len(prefix) return { (k[pref_len:] if k.startswith(prefix) else k): v for k, v in state_dict.items() } def build_model(args, mode='pretrain', target_dictionary=None): cfg = AttrDict(vars(args)) if mode == 'pretrain': assert target_dictionary is None model = Wav2Vec2Model(cfg) elif mode == 'finetune': state = torch.load(args.w2v_path, map_location='cpu')['model'] enc = Wav2VecEncoder(cfg, state, output_size=len(target_dictionary)) model = Wav2VecCtc(cfg, enc) elif mode == 'infer': enc = Wav2VecEncoder(cfg, None, output_size=len(target_dictionary)) model = Wav2VecCtc(cfg, enc) else: raise ValueError sequence_generator = None tokenizer = None actualized_cfg = getattr(model, "cfg", None) if actualized_cfg is not None and "w2v_args" in actualized_cfg: cfg.w2v_args = actualized_cfg.w2v_args return model, sequence_generator, tokenizer def build_phone_classification_model(args): model = Wav2VecEncoder(args) actualized_cfg = getattr(model, "cfg", None) if actualized_cfg is not None: if "w2v_args" in actualized_cfg: raise NotImplementedError return model def get_ckpt_args(ckpt): """Return a dictionary of args saved inside a ckpt. Handles old and new Fairseq ckpts, Nvidia DLE ckpts. """ if "cfg" in ckpt: import omegaconf w2v_args = omegaconf.OmegaConf.to_container(ckpt["cfg"]) # Flatten nested dicts (hopefully matching keys have same values) w2v_args = reduce(lambda a, b: {**(a or {}), **(b or {})}, w2v_args.values()) else: # Legacy checkpoints w2v_args = ckpt["args"] if type(w2v_args) is argparse.Namespace: w2v_args = vars(w2v_args) return w2v_args def update_args_for_finetuning(args, w2v_path_for_args): w2v_args = get_ckpt_args(torch.load(w2v_path_for_args, map_location="cpu")) pretrain_parser = argparse.ArgumentParser() wav2vec2.arg_parser.populate_pretraining(pretrain_parser) my_args = vars(pretrain_parser.parse_args([])) for arg in my_args: if arg in w2v_args and my_args[arg] != w2v_args[arg]: fname = Path(args.w2v_path).name print_once(f'Setting from {fname}: {arg}={w2v_args[arg]}', local_rank=args.local_rank) setattr(args, arg, w2v_args[arg]) else: setattr(args, arg, my_args[arg])
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/wav2vec2/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import editdistance import torch import torch.nn.functional as F from torch.nn.modules.loss import _Loss from common.fairseq import utils from common.fairseq.data.data_utils import post_process from common.utils import AttrDict class Wav2vecCriterion(_Loss): def __init__(self, args): super().__init__(args) self.infonce = args.infonce self.loss_weights = args.loss_weights self.log_keys = [] if args.log_keys is None else args.log_keys def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"], sub_batch_sizes=sample["sub_batch_sizes"], sub_batch_lens=sample["sub_batch_lens"]) logits = model.get_logits(net_output).float() target = model.get_targets(sample, net_output) weights = None if hasattr(model, "get_target_weights") and not self.infonce: weights = model.get_target_weights(target, net_output) if torch.is_tensor(weights): weights = weights.float() losses = [] reduction = "sum" if reduce else "none" if self.infonce: loss = F.cross_entropy(logits, target, reduction=reduction) else: loss = F.binary_cross_entropy_with_logits( logits, target.float(), weights, reduction=reduction ) if 'sample_size' in sample: sample_size = sample['sample_size'] elif 'mask_indices' in sample['net_input']: sample_size = sample['net_input']['mask_indices'].sum() elif self.infonce: sample_size = target.numel() else: sample_size = target.long().sum().item() losses.append(loss.detach().clone()) if self.loss_weights is not None: assert hasattr(model, "get_extra_losses") extra_losses = model.get_extra_losses(net_output) if torch.is_tensor(extra_losses): extra_losses = [extra_losses] if len(self.loss_weights) == 1 and len(extra_losses) != 1: self.loss_weights = [self.loss_weights[0]] * len(extra_losses) assert len(extra_losses) == len(self.loss_weights), \ f"{len(extra_losses)}, {len(self.loss_weights)}" for p, coef in zip(extra_losses, self.loss_weights): if coef != 0 and p is not None: p = coef * p.float() * sample_size loss += p losses.append(p) log_out = { "loss": loss.item() if reduce else loss.detach(), "ntokens": sample_size, "nsentences": sample["id"].numel(), "sample_size": sample_size, } for lk in self.log_keys: # Only store "logits" and "target" for computing MAP and MAUC # during validation if lk == "logits": if not self.training: log_out["logits"] = logits.cpu().numpy() elif lk == "target": if not self.training: # If the targets have been mixed with the predictions of # teacher models, find the original targets if hasattr(model, "get_original_targets"): original_target = model.get_original_targets( sample, net_output) else: original_target = target log_out["target"] = original_target.cpu().numpy() elif lk in net_output: log_out[lk] = float(net_output[lk]) if len(losses) > 1: for i, l in enumerate(losses): log_out[f"loss_{i}"] = l.item() if self.infonce: with torch.no_grad(): if logits.numel() == 0: corr = 0 count = 0 else: assert logits.dim() > 1, logits.shape max_ = logits.argmax(-1) == 0 min_ = logits.argmin(-1) == 0 both = max_ & min_ corr = max_.long().sum().item() - both.long().sum().item() count = float(max_.numel()) log_out["correct"] = corr log_out["count"] = count return loss, sample_size, log_out class CTCCriterion(_Loss): def __init__(self, target_dictionary, blank_idx=0, pad_idx=1, eos_idx=2, zero_infinity=True, sentence_avg=True, post_process='letter'): super().__init__() # keep all indexes for compatibility with fairseq self.blank_idx = blank_idx self.pad_idx = target_dictionary.pad() self.eos_idx = target_dictionary.eos() assert self.blank_idx != self.pad_idx != self.eos_idx self.target_dictionary = target_dictionary self.zero_infinity = zero_infinity self.sentence_avg = sentence_avg self.post_process = post_process # currently we don't support decoders (e.g., KenLM) self.w2l_decoder = None def forward(self, model, sample, reduce=True): net_out = model(**sample["net_input"]) logp = model.get_normalized_probs( net_out["encoder_out"], net_out["padding_mask"], log_probs=True ).contiguous() T, B, _ = logp.size() if net_out["padding_mask"] is not None: lens = (~net_out["padding_mask"]).long().sum(-1) else: lens = logp.new_full((B,), T, dtype=torch.long) tgt = sample["target"] pad_mask = (tgt != self.pad_idx) & (tgt != self.eos_idx) tgt_flat = tgt.masked_select(pad_mask) tgt_lens = sample["target_lengths"] with torch.backends.cudnn.flags(enabled=False): loss = F.ctc_loss(logp, tgt_flat, lens, tgt_lens, blank=self.blank_idx, reduction="sum", zero_infinity=self.zero_infinity) log_out = { "loss": utils.item(loss.data), "ntokens": sample["ntokens"], "nsentences": sample["id"].numel(), "sample_size": B if self.sentence_avg else sample["ntokens"] } if not model.training: log_out.update(self.calculate_wer(sample, logp, lens)) return loss, log_out['sample_size'], log_out def calculate_wer(self, sample, logp, lens): with torch.no_grad(): log = AttrDict({"wv_errs": 0, "w_errs": 0, "w_len": 0, "c_errs": 0, "c_len": 0}) logp_t = logp.transpose(0, 1).float().contiguous().cpu() tgt_labels = sample.get('target_label', sample['target']) head = lambda l: None if l is None or len(l) < 1 else l[0] for lp, L, tgt in zip(logp_t, lens, tgt_labels): lp = lp[:L].unsqueeze(0) if self.w2l_decoder is not None: decoded = head(head(self.w2l_decoder.decode(lp))) else: decoded = None mask = (tgt != self.pad_idx) & (tgt != self.eos_idx) tgt_units = self.target_dictionary.string(tgt[mask]) tgt_units_arr = tgt[mask].tolist() toks = lp.argmax(dim=-1).unique_consecutive() pred_units_arr = toks[toks != self.blank_idx].tolist() log.c_errs += editdistance.eval(pred_units_arr, tgt_units_arr) log.c_len += len(tgt_units_arr) tgt_words = post_process(tgt_units, self.post_process).split() pred_units = self.target_dictionary.string(pred_units_arr) pred_words_raw = post_process(pred_units, self.post_process).split() if decoded is not None and "words" in decoded: pred_words = decoded["words"] log.w_errs += editdistance.eval(pred_words, tgt_words) log.wv_errs += editdistance.eval(pred_words_raw, tgt_words) else: dist = editdistance.eval(pred_words_raw, tgt_words) log.w_errs += dist log.wv_errs += dist log.w_len += len(tgt_words) return vars(log)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/wav2vec2/criterion.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import glob import os import re from pathlib import Path import numpy as np import torch from torch.utils.tensorboard import SummaryWriter import dllogger tb_loggers = {} class TBLogger: """ xyz_dummies: stretch the screen with empty plots so the legend would always fit for other plots """ def __init__(self, enabled, log_dir, name, interval=1, dummies=True): self.enabled = enabled self.interval = interval self.cache = {} if self.enabled: self.summary_writer = SummaryWriter( log_dir=os.path.join(log_dir, name), flush_secs=120, max_queue=200) atexit.register(self.summary_writer.close) if dummies: for key in ('_', '✕'): self.summary_writer.add_scalar(key, 0.0, 1) def log(self, step, data): for k, v in data.items(): self.log_value(step, k, v.item() if type(v) is torch.Tensor else v) def log_value(self, step, key, val, stat='mean'): if self.enabled: if key not in self.cache: self.cache[key] = [] self.cache[key].append(val) if len(self.cache[key]) == self.interval: agg_val = getattr(np, stat)(self.cache[key]) self.summary_writer.add_scalar(key, agg_val, step) del self.cache[key] def log_grads(self, step, model): if self.enabled: norms = [p.grad.norm().item() for p in model.parameters() if p.grad is not None] for stat in ('max', 'min', 'mean'): self.log_value(step, f'grad_{stat}', getattr(np, stat)(norms), stat=stat) def unique_log_fpath(fpath): """Have a unique log filename for every separate run""" log_num = max([0] + [int(re.search("\.(\d+)", Path(f).suffix).group(1)) for f in glob.glob(f"{fpath}.*")]) return f"{fpath}.{log_num + 1}" def stdout_step_format(step): if isinstance(step, str): return step fields = [] if len(step) > 0: fields.append("epoch {:>4}".format(step[0])) if len(step) > 1: fields.append("iter {:>3}".format(step[1])) if len(step) > 2: fields[-1] += "/{}".format(step[2]) return " | ".join(fields) def stdout_metric_format(metric, metadata, value): name = metadata.get("name", metric + " : ") unit = metadata.get("unit", None) fmt = f'{{{metadata.get("format", "")}}}' fields = [name, fmt.format(value) if value is not None else value, unit] fields = [f for f in fields if f is not None] return "| " + " ".join(fields) def log(when, metrics={}, scope='train', flush_log=False, tb_iter=None): dllogger.log(when, data=metrics.get_metrics(scope, 'dll')) if tb_iter is not None: tb_loggers[scope].log(tb_iter, metrics.get_metrics(scope, 'tb')) if flush_log: flush() def log_grads_tb(tb_total_steps, grads, tb_subset='train'): tb_loggers[tb_subset].log_grads(tb_total_steps, grads) def log_parameters(data, verbosity=0, tb_subset=None): for k, v in data.items(): v = str(v) if isinstance(v, Path) else v dllogger.log(step="PARAMETER", data={k: v}, verbosity=verbosity) if tb_subset is not None and tb_loggers[tb_subset].enabled: tb_data = {k: v for k, v in data.items() if type(v) in (str, bool, int, float)} tb_loggers[tb_subset].summary_writer.add_hparams(tb_data, {}) def flush(): dllogger.flush() for tbl in tb_loggers.values(): if tbl.enabled: tbl.summary_writer.flush()
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/tb_dllogger.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''Fake fairseq.* modules allowing to torch.load fairseq checkpoints.''' import sys class Dummy: pass class FakeModule: def __init__(self, classes=["AverageMeter", "TimeMeter", "StopwatchMeter"]): [setattr(self, cls, Dummy) for cls in classes] sys.modules["fairseq"] = Dummy() sys.modules["fairseq.data"] = Dummy() sys.modules["fairseq.data.dictionary"] = FakeModule(["Dictionary"]) sys.modules["fairseq.logging.meters"] = FakeModule() sys.modules["fairseq.meters"] = FakeModule()
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq_fake_modules.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from collections import defaultdict from copy import copy import numpy as np import torch from common.utils import all_reduce_cpu_scalars, print_once def __levenshtein(a, b): """Calculates the Levenshtein distance between two sequences.""" n, m = len(a), len(b) if n > m: # Make sure n <= m, to use O(min(n,m)) space a, b = b, a n, m = m, n current = list(range(n + 1)) for i in range(1, m + 1): previous, current = current, [i] + [0] * n for j in range(1, n + 1): add, delete = previous[j] + 1, current[j - 1] + 1 change = previous[j - 1] if a[j - 1] != b[i - 1]: change = change + 1 current[j] = min(add, delete, change) return current[n] def word_error_rate(hypotheses, references): """Computes average Word Error Rate (WER) between two text lists.""" scores = 0 words = 0 len_diff = len(references) - len(hypotheses) if len_diff > 0: raise ValueError("Uneqal number of hypthoses and references: " "{0} and {1}".format(len(hypotheses), len(references))) elif len_diff < 0: hypotheses = hypotheses[:len_diff] for h, r in zip(hypotheses, references): h_list = h.split() r_list = r.split() words += len(r_list) scores += __levenshtein(h_list, r_list) if words != 0: wer = 1.0*scores/words else: wer = float('inf') return wer, scores, words class MetricsAggregator: def __init__(self, scopes=('train', 'train_avg'), dllogger_keys=(), benchmark_keys=(), benchmark_epochs=0, reduce_mean=(), reduce_last=(), group_tb_entries=False, cuda=True): """ Args: scopes: possible scopes of metrics accumulation dll_keys: metrics to log with dllogger benchmark_keys: metrics to log as benchmark metrics benchmark_epochs: num of last epochs to benchmark """ super().__init__() self.dll_keys = dllogger_keys self.partials = defaultdict(float) self.partial_counts = defaultdict(int) self.accum_reductions = defaultdict(lambda: 'sum') self.accum_reductions.update({k: 'mean' for k in reduce_mean}) self.accum_reductions.update({k: 'last' for k in reduce_last}) self.metrics = {scope: defaultdict(float) for scope in scopes} self.metric_counts = {scope: defaultdict(int) for scope in scopes} self.start_time = {scope: None for scope in scopes} self.done_accumulating = {scope: True for scope in scopes} self.benchmark_epochs = benchmark_epochs self.metrics['train_benchmark'] = defaultdict(list) self.benchmark_keys = benchmark_keys self.scopes = scopes self.group_tb_entries = group_tb_entries self.cuda = cuda def log_scalar(self, key, val, accum_reduction=None): """Main primitive for logging partial metrics from single batch. NOTE: Assumption: `log_scalar` cannot be called with different `accum_reduction` for the same `key`. This results in undefined behavior Args: key: metric key val: metric value accum_reduction: defines how to accumulate given metric: - 'sum': sums metrics across grad acc and devices batches - 'mean': same as 'sum' but with averaging - 'last': overwrites previous accumulated values. Useful for logging metric once in a grad acc batch, e.g. learning rate. If None, a default value is fetched from self.accum_reductions. If not None, overwrites defaults in self.accum_reductions """ if accum_reduction is None: accum_reduction = self.accum_reductions[key] else: self.accum_reductions[key] = accum_reduction if accum_reduction == 'sum': self.partials[key] += val self.partial_counts[key] = 1 elif accum_reduction == 'mean': self.partials[key] += val self.partial_counts[key] += 1 elif accum_reduction == 'last': self.partials[key] = val # overwrite accumulation self.partial_counts[key] = 1 else: raise ValueError(accum_reduction) def log_scalars(self, scalars_dict, accum_reduction=None): """ Log whole dict of metrics at once """ for k, v in scalars_dict.items(): self.log_scalar(k, v, accum_reduction) def __setitem__(self, key, val): """ Convenience logging method. Use sparingly (see NOTE below). Uses 'last' aggregation and extracts tensors. Example: >>> metrics['lr'] = optim.param_groups[0]['lr'] NOTE: `metrics['lr'] = ...` is very different from `metrics.partial['lr'] = ...` """ extract = lambda t: t.item() if type(t) is torch.Tensor else t if type(val) is dict: for k, v in val.items(): self.log_scalar(k, extract(v), 'last') else: self.log_scalar(key, extract(val), 'last') def accumulate(self, scopes=None): """ Accumulates partial metrics in metrics for given scopes. Defines boundaries of accum_reduction in `log_scalar` method. Intended to run after each gradient accumulation adjusted iteration. """ scopes = scopes if scopes is not None else self.scopes for scope in scopes: for k, v in self.partials.items(): self.metrics[scope][k] += v self.metric_counts[scope][k] += self.partial_counts.get(k, 1) self.partials.clear() self.partial_counts.clear() def all_reduce(self, world_size): """ Reduce metrics across devices. Currently assumes that all metrics are float scalars. After reducing, `log_scalar` method with accumulation other than 'last' shouldn't be called prior to calling `accumulate`. """ if world_size == 1: return self.partials = defaultdict(float, all_reduce_cpu_scalars(self.partials)) for k, v in self.partials.items(): if self.accum_reductions[k] in ('mean', 'last'): self.partial_counts[k] *= (world_size - self.partials.get('ignore', 0)) if self.partials.get('ignore', 0) > 0: assert self.accum_reductions[k] == 'mean' print_once(f'reducing with world size {world_size - self.partials.get("ignore", 0)}') def start_iter(self, iter): self._start_accumulating(iter, True, 'train') def start_epoch(self, epoch): if self.cuda: torch.cuda.synchronize() self._start_accumulating(epoch, True, 'train_avg') def start_val(self): if self.cuda: torch.cuda.synchronize() self._start_accumulating(None, True, 'val') def finish_iter(self): self._accumulate_time('train') def finish_logging_interval(self): self._finish_accumulating('train') def finish_epoch(self): if self.cuda: torch.cuda.synchronize() self._accumulate_time('train_avg') self._finish_accumulating('train_avg') metr = self.metrics['train_benchmark'] for k in self.benchmark_keys: metr[k].append(self.metrics['train_avg'][k]) if len(metr[k]) > self.benchmark_epochs: metr[k].pop(0) def finish_val(self, scope='val'): if self.cuda: torch.cuda.synchronize() self._accumulate_time(scope) self._finish_accumulating(scope) def get_metrics(self, scope='train', target='dll'): if scope == 'train_benchmark': metr = self.metrics[scope] ret = {'train_avg_' + k: np.mean(v) for k, v in metr.items()} ret['benchmark_epochs_num'] = len(list(metr.values())[0]) return ret assert self.done_accumulating[scope] ret = copy(self.metrics[scope]) if target == 'dll': ret = {f'{scope}_{k}': v for k, v in ret.items() if k in self.dll_keys} elif target == 'tb' and self.group_tb_entries: # Rename keys so they would group nicely inside TensorBoard def split_key(k): pos = k.rfind('_') return k[:pos] + '/' + k[pos+1:] if pos >= 0 else k ret = {split_key(k): v for k, v in ret.items()} return ret def _start_accumulating(self, step, start_timer=True, scope='train'): del step # unused assert not self.partials, 'metrics.accumulate call missed' assert not self.partial_counts, 'metrics.accumulate call missed' if self.done_accumulating[scope]: self.metrics[scope].clear() self.metric_counts[scope].clear() if start_timer: self.start_time[scope] = time.time() self.done_accumulating[scope] = False def _finish_accumulating(self, scope='train'): assert not self.done_accumulating[scope] metr = self.metrics[scope] counts = self.metric_counts[scope] for k, v in metr.items(): metr[k] = v / counts[k] self.done_accumulating[scope] = True def _accumulate_time(self, scope='train'): assert not self.done_accumulating[scope] took = time.time() - self.start_time[scope] self.start_time[scope] = None self.metrics[scope]['took'] += took self.metric_counts[scope]['took'] = 1 # not +=
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/metrics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings # NGC 22.04-py3 container (PyTorch 1.12.0a0+bd13bc6) warnings.filterwarnings( "ignore", message='positional arguments and argument "destination" are deprecated.' ' nn.Module.state_dict will not accept them in the future.') # NGC ~22.05-py3 warnings.filterwarnings( "ignore", message="pyprof will be removed by the end of June, 2022") # 22.08-py3 RC warnings.filterwarnings( "ignore", message="is_namedtuple is deprecated, please use the python checks")
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/filter_warnings.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import torch import torch.nn as nn import torch.nn.functional as F from common.fairseq.modules.multihead_attention import RotaryEmbedding def mha_state_dict_to_fairseq(sd): """Concatenate q, k, v matrices and load as usual.""" new_sd = {} qkv = defaultdict(dict) for key, val in sd.items(): fields = key.split('.') if len(fields) < 2: continue prefix = '.'.join(fields[:-2] + [""]) module, param = fields[-2:] if module in ['q_proj', 'k_proj', 'v_proj']: qkv[prefix][module + '.' + param] = val else: new_sd[key] = val for prefix, param_dict in qkv.items(): # Stitch qkv params together assert len(param_dict) == 6 new_sd[f"{prefix}qkv.weight"] = torch.cat( [param_dict[f"{k}_proj.weight"] for k in ["q", "k", "v"]], dim=0) new_sd[f"{prefix}qkv.bias"] = torch.cat( [param_dict[f"{k}_proj.bias"] for k in ["q", "k", "v"]], dim=0) return new_sd class PytMultiheadAttention(nn.Module): """Drop-in replacement for Fairseq MHA. Calls torch.nn.functional with combined qkv. """ def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, self_attention=True, rotary_embeddings=False, ): super().__init__() assert self_attention assert not rotary_embeddings, "Not yet supported" self.embed_dim = embed_dim self.num_heads = num_heads self.rotary_embeddings = rotary_embeddings if self.rotary_embeddings: self.rotary_freq = RotaryEmbedding(embed_dim) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.qkv = nn.Linear(embed_dim, 3 * num_heads * self.head_dim, bias=bias) self.dropatt = nn.Dropout(dropout) self.out_proj = nn.Linear(num_heads * self.head_dim, embed_dim, bias=bias) self.reset_parameters() def hook(state_dict, prefix, *args, **kwargs): this_keys = {k for k in state_dict.keys() if k.startswith(prefix)} new_sd = {k: v for k, v in state_dict.items() if k in this_keys} for k in this_keys: del state_dict[k] state_dict.update(mha_state_dict_to_fairseq(new_sd)) self._register_load_state_dict_pre_hook(hook) def forward(self, query, key=None, value=None, key_padding_mask=None, attn_mask=None): return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.qkv.weight, self.qkv.bias, None, None, False, self.dropatt.p, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=False, attn_mask=attn_mask, average_attn_weights=False, ) def state_dict(self, *args, destination=None, prefix='', keep_vars=False): """Split q, k, v matrices for bwd compatibility with Fairseq.""" sd = super().state_dict(*args, destination, prefix, keep_vars) for key in list(sd.keys()): if not (key.endswith(".qkv.weight") or key.endswith(".qkv.bias")): continue *pref, qkv, param = key.split(".") pref = ".".join(pref) assert qkv == "qkv" q, k, v = torch.chunk(sd.pop(key), 3, dim=0) sd[f"{pref}.q_proj.{param}"] = q sd[f"{pref}.k_proj.{param}"] = k sd[f"{pref}.v_proj.{param}"] = v return sd def reset_parameters(self): # Init as in Fairseq with qkv_same_dim=True and separate qkv projs t = self.qkv.weight.size(0) // 3 nn.init.xavier_uniform_(self.qkv.weight[0*t:1*t], gain=1 / (2 ** 0.5)) nn.init.xavier_uniform_(self.qkv.weight[1*t:2*t], gain=1 / (2 ** 0.5)) nn.init.xavier_uniform_(self.qkv.weight[2*t:3*t], gain=1 / (2 ** 0.5)) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) class Fp32Softmax(nn.Softmax): def forward(self, x): return F.softmax(x.float(), dim=self.dim).type_as(x) class SlowMultiHeadAttention(nn.Module): """Drop-in replacement for Fairseq MHA.""" def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, self_attention=True, rotary_embeddings=None, fp32_softmax=False, ): super().__init__() n_head = num_heads d_model = embed_dim d_head = embed_dim // n_head dropatt = dropout pre_lnorm = False assert self_attention assert rotary_embeddings is None, "Rotary embs not yet supported" self.embed_dim = embed_dim self.num_heads = num_heads self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / (d_head ** 0.5) self.pre_lnorm = pre_lnorm self.qkv = nn.Linear(d_model, 3 * n_head * d_head, bias=bias) self.dropatt = nn.Dropout(dropatt) self.proj = nn.Linear(n_head * d_head, d_model, bias=bias) self.layer_norm = nn.LayerNorm(d_model, elementwise_affine=False) self.softmax = Fp32Softmax(dim=2) if fp32_softmax else nn.Softmax(dim=2) def state_dict(self): """Convert QKV to be compatible with Fairseq""" sd = super().state_dict() ret = {} for key, val in sd.items(): fields = key.split('.') if len(fields) < 2: continue prefix = '.'.join(fields[:-2] + [""]) module, param = fields[-2:] if module == 'qkv': q, k, v = torch.chunk(val, 3, dim=0) ret[f"{prefix}q_proj.{param}"] = q ret[f"{prefix}k_proj.{param}"] = k ret[f"{prefix}v_proj.{param}"] = v else: ret[key] = val return ret def load_state_dict(self, sd): from collections import defaultdict ret = {} qkv = defaultdict(dict) for key, val in sd.items(): fields = key.split('.') if len(fields) < 2: continue prefix = '.'.join(fields[:-2] + [""]) module, param = fields[-2:] if module in ['q_proj', 'k_proj', 'v_proj']: qkv[prefix][module + '.' + param] = val else: ret[key] = val for prefix, param_dict in qkv.items(): # Stitch qkv params together assert len(param_dict) == 6 ret[f"{prefix}qkv.weight"] = torch.cat( [param_dict[f"{k}_proj.weight"] for k in ["q", "k", "v"]], dim=0) ret[f"{prefix}qkv.bias"] = torch.cat( [param_dict[f"{k}_proj.bias"] for k in ["q", "k", "v"]], dim=0) super().load_state_dict(ret) def forward(self, inp, attn_mask=None): inp = inp.permute(1, 0, 2) # (T, B, H) -> (B, T, H) if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(2, 0, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(2, 0, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(2, 0, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1).to(attn_score.dtype) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask.to(torch.bool), -float('inf')) attn_prob = self.softmax(attn_score) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view( inp.size(0), inp.size(1), n_head * d_head) output = self.proj(attn_vec) return output.permute(1, 0, 2) # (B, T, H) -> (T, B, H)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/pyt_mha.py
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import random import librosa import torch import torch.nn as nn class BaseFeatures(nn.Module): """Base class for GPU accelerated audio preprocessing.""" __constants__ = ["pad_align", "pad_to_max_duration", "max_len"] def __init__(self, pad_align, pad_to_max_duration, max_duration, sample_rate, window_size, window_stride, spec_augment=None, cutout_augment=None): super(BaseFeatures, self).__init__() self.pad_align = pad_align self.pad_to_max_duration = pad_to_max_duration self.win_length = int(sample_rate * window_size) # frame size self.hop_length = int(sample_rate * window_stride) # Calculate maximum sequence length (# frames) if pad_to_max_duration: self.max_len = 1 + math.ceil( (max_duration * sample_rate - self.win_length) / self.hop_length ) if spec_augment is not None: self.spec_augment = SpecAugment(**spec_augment) else: self.spec_augment = None if cutout_augment is not None: self.cutout_augment = CutoutAugment(**cutout_augment) else: self.cutout_augment = None @torch.no_grad() def calculate_features(self, audio, audio_lens): return audio, audio_lens def __call__(self, audio, audio_lens): dtype = audio.dtype audio = audio.float() feat, feat_lens = self.calculate_features(audio, audio_lens) feat = self.apply_padding(feat) if self.cutout_augment is not None: feat = self.cutout_augment(feat) if self.spec_augment is not None: feat = self.spec_augment(feat) feat = feat.to(dtype) return feat, feat_lens def apply_padding(self, x): if self.pad_to_max_duration: x_size = max(x.size(-1), self.max_len) else: x_size = x.size(-1) if self.pad_align > 0: pad_amt = x_size % self.pad_align else: pad_amt = 0 padded_len = x_size + (self.pad_align - pad_amt if pad_amt > 0 else 0) return nn.functional.pad(x, (0, padded_len - x.size(-1))) class SpecAugment(nn.Module): """Spec augment. refer to https://arxiv.org/abs/1904.08779 """ def __init__(self, freq_masks=0, min_freq=0, max_freq=10, time_masks=0, min_time=0, max_time=10): super(SpecAugment, self).__init__() assert 0 <= min_freq <= max_freq assert 0 <= min_time <= max_time self.freq_masks = freq_masks self.min_freq = min_freq self.max_freq = max_freq self.time_masks = time_masks self.min_time = min_time self.max_time = max_time @torch.no_grad() def forward(self, x): sh = x.shape mask = torch.zeros(x.shape, dtype=torch.bool, device=x.device) for idx in range(sh[0]): for _ in range(self.freq_masks): w = torch.randint(self.min_freq, self.max_freq + 1, size=(1,)).item() f0 = torch.randint(0, max(1, sh[1] - w), size=(1,)) mask[idx, f0:f0+w] = 1 for _ in range(self.time_masks): w = torch.randint(self.min_time, self.max_time + 1, size=(1,)).item() t0 = torch.randint(0, max(1, sh[2] - w), size=(1,)) mask[idx, :, t0:t0+w] = 1 return x.masked_fill(mask, 0) class CutoutAugment(nn.Module): """Cutout. refer to https://arxiv.org/pdf/1708.04552.pdf """ def __init__(self, masks=0, min_freq=20, max_freq=20, min_time=5, max_time=5): super(CutoutAugment, self).__init__() assert 0 <= min_freq <= max_freq assert 0 <= min_time <= max_time self.masks = masks self.min_freq = min_freq self.max_freq = max_freq self.min_time = min_time self.max_time = max_time @torch.no_grad() def forward(self, x): sh = x.shape mask = torch.zeros(x.shape, dtype=torch.bool, device=x.device) for idx in range(sh[0]): for i in range(self.masks): w = torch.randint(self.min_freq, self.max_freq + 1, size=(1,)).item() h = torch.randint(self.min_time, self.max_time + 1, size=(1,)).item() f0 = int(random.uniform(0, sh[1] - w)) t0 = int(random.uniform(0, sh[2] - h)) mask[idx, f0:f0+w, t0:t0+h] = 1 return x.masked_fill(mask, 0) @torch.jit.script def normalize_batch(x, seq_len, normalize_type: str): if normalize_type == "per_feature": x_mean = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) x_std = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i, :] = x[i, :, :seq_len[i]].mean(dim=1) x_std[i, :] = x[i, :, :seq_len[i]].std(dim=1) # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2) elif normalize_type == "all_features": x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i] = x[i, :, :int(seq_len[i])].mean() x_std[i] = x[i, :, :int(seq_len[i])].std() # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1) else: return x @torch.jit.script def stack_subsample_frames(x, x_lens, stacking: int = 1, subsampling: int = 1): """ Stacks frames together across feature dim, and then subsamples input is batch_size, feature_dim, num_frames output is batch_size, feature_dim * stacking, num_frames / subsampling """ seq = [x] for n in range(1, stacking): tmp = torch.zeros_like(x) tmp[:, :, :-n] = x[:, :, n:] seq.append(tmp) x = torch.cat(seq, dim=1)[:, :, ::subsampling] if subsampling > 1: x_lens = torch.ceil(x_lens.float() / subsampling).int() if x.size(2) > x_lens.max().item(): assert abs(x.size(2) - x_lens.max().item()) <= 1 x = x[:,:,:x_lens.max().item()] return x, x_lens class FilterbankFeatures(BaseFeatures): # For JIT, https://pytorch.org/docs/stable/jit.html#python-defined-constants __constants__ = ["dither", "preemph", "n_fft", "hop_length", "win_length", "log", "frame_stacking", "frame_subsampling", "normalize"] # torchscript: "center" removed due to a bug def __init__(self, spec_augment=None, cutout_augment=None, sample_rate=16000, window_size=0.02, window_stride=0.01, window="hann", normalize="per_feature", n_fft=512, preemph=0.97, n_filt=80, lowfreq=0, highfreq=None, log=True, dither=1e-5, pad_align=16, pad_to_max_duration=False, max_duration=float('inf'), frame_stacking=1, frame_subsampling=1): super(FilterbankFeatures, self).__init__( pad_align=pad_align, pad_to_max_duration=pad_to_max_duration, max_duration=max_duration, sample_rate=sample_rate, window_size=window_size, window_stride=window_stride, spec_augment=spec_augment, cutout_augment=cutout_augment) torch_windows = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, } self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length)) self.normalize = normalize self.log = log #TORCHSCRIPT: Check whether or not we need this self.dither = dither self.frame_stacking = frame_stacking self.frame_subsampling = frame_subsampling self.n_filt = n_filt self.preemph = preemph highfreq = highfreq or sample_rate / 2 window_fn = torch_windows.get(window, None) window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None filterbanks = torch.tensor( librosa.filters.mel(sample_rate, self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq), dtype=torch.float).unsqueeze(0) # torchscript self.register_buffer("fb", filterbanks) self.register_buffer("window", window_tensor) def output_dim(self): return self.n_filt * self.frame_stacking def get_seq_len(self, seq_len): return torch.ceil(seq_len.to(dtype=torch.float) / self.hop_length).to( dtype=torch.int) # TORCHSCRIPT: center removed due to bug def stft(self, x): spec = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window.to(dtype=torch.float), return_complex=True) return torch.view_as_real(spec) @torch.no_grad() def calculate_features(self, x, x_lens): dtype = x.dtype x_lens = self.get_seq_len(x_lens) # dither if self.dither > 0: x += self.dither * torch.randn_like(x) # do preemphasis if self.preemph is not None: x = torch.cat( x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1], dim=1) x = self.stft(x) # get power spectrum x = x.pow(2).sum(-1) # dot with filterbank energies x = torch.matmul(self.fb.to(x.dtype), x) # log features if required if self.log: x = torch.log(x + 1e-20) # normalize if required x = normalize_batch(x, x_lens, normalize_type=self.normalize) if self.frame_stacking > 1 or self.frame_subsampling > 1: x, x_lens = stack_subsample_frames(x, x_lens, self.frame_stacking, self.frame_subsampling) # mask to zero any values beyond x_lens in batch, # pad to multiple of `pad_align` (for efficiency) max_len = x.size(-1) mask = torch.arange(max_len, dtype=x_lens.dtype, device=x.device) mask = mask.expand(x.size(0), max_len) >= x_lens.unsqueeze(1) x = x.masked_fill(mask.unsqueeze(1), 0) # TORCHSCRIPT: Is this del important? It breaks scripting # del mask return x.to(dtype), x_lens
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/features.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from common.fairseq.optim.adam import FairseqAdam from common.fairseq.optim.fp16_optimizer import FP16Optimizer from common.fairseq.optim.fused_adam import get_fused_adam_class from common.utils import print_once def lr_poly_policy(step, optimizer, lr, initial_lr_scale=0.0, final_lr_scale=0.0, warmup_steps=1000, hold_steps=0, num_steps=None, power=1.0): """Polynomial decay LR policy with an optional hold period.""" assert step >= 1 assert num_steps is not None assert power is not None start_lr = initial_lr_scale * lr end_lr = final_lr_scale * lr if step <= warmup_steps: new_lr = start_lr + (step) / warmup_steps * (lr - start_lr) elif step <= warmup_steps + hold_steps: new_lr = lr elif warmup_steps + hold_steps < step <= num_steps: remain = 1 - (step - warmup_steps) / (num_steps - warmup_steps) new_lr = (lr - end_lr) * remain ** power + end_lr else: new_lr = end_lr for param_group in optimizer.param_groups: param_group['lr'] = new_lr def lr_exp_policy(step, optimizer, initial_lr_scale, lr, final_lr_scale=0.0, warmup_steps=1000, hold_steps=0, num_steps=float('inf'), decay=None): """Exponential LR policy with an optional hold period. If `decay` factor is not supplied, it is calculated to reach `end_lr` on `num_steps` steps. Args: num_steps (int): Limits the number of decay steps. end_lr (float): The lowest possible LR. decay (float or None): Decay factor; if None, the it will be derived from `num_steps` and `end_lr`. """ assert step >= 1 start_lr = initial_lr_scale * lr end_lr = final_lr_scale * lr if decay is None: assert not math.isinf(num_steps) and end_lr > 0.0 decay_steps = num_steps - warmup_steps - hold_steps decay = math.log(end_lr / lr) / decay_steps else: decay = math.log(decay) if step <= warmup_steps: new_lr = start_lr + (step) / warmup_steps * (lr - start_lr) elif step <= warmup_steps + hold_steps: new_lr = lr else: a = math.exp(decay * (min(step, num_steps) - warmup_steps - hold_steps)) new_lr = max(a * lr, end_lr) for param_group in optimizer.param_groups: param_group['lr'] = new_lr def get_optimizer(model, args): kw = {'lr': args.lr, 'weight_decay': args.weight_decay} if args.optimizer == 'adam' and (args.fp16 or args.bf16): print_once('WARNING: Using Fairseq FP16Optimizer') # based on fairseq.optim.FP16Optimizer.build_optimizer flatten = True # not args.fp16_no_flatten_grads args.betas = args.adam_betas args.eps = args.adam_eps params = list(filter(lambda p: p.requires_grad, model.parameters())) fp32_params = FP16Optimizer.build_fp32_params(args, params, flatten=flatten) # based on fairseq.optim.build_optimizer def build_optimizer(cfg, params, *extra_args, **extra_kwargs): if all(isinstance(p, dict) for p in params): params = [t for p in params for t in p.values()] params = list(filter(lambda p: p.requires_grad, params)) return FairseqAdam(cfg, params, *extra_args, **extra_kwargs) if flatten: fp32_optimizer = build_optimizer(args, [fp32_params]) else: fp32_optimizer = build_optimizer(args, fp32_params) if flatten and not fp32_optimizer.supports_flat_params: raise RuntimeError( f"chosen optimizer {fp32_optimizer.__class__.__name__} does " "not support flat params, please set --fp16-no-flatten-grads" ) kwargs = {} optimizer = FP16Optimizer(args, params, fp32_optimizer, fp32_params, **kwargs) elif args.optimizer == 'adam' and not (args.fp16 or args.bf16): print_once('WARNING: Using FusedAdam instead of Adam') kw.update({'betas': args.adam_betas, 'eps': args.adam_eps}) fused_adam_cls = get_fused_adam_class() optimizer = fused_adam_cls(model.parameters(), **kw) else: raise ValueError(f'Invalid optimizer "{args.optimizer}"') return optimizer
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/optimizers.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np from torch.utils.data import DataLoader from common.fairseq.data import data_utils from common.helpers import print_once from common.sampler import DistributedIndicesSampler def adjust_max_tokens(train_dataset, world_size, args): def get_steps_per_epoch(world_size, max_tokens, update_freq): train_loader, sampler = get_batch_iterator( train_dataset, True, max_tokens=max_tokens, max_sentences=args.batch_size, max_positions=(max_tokens, max_tokens), ignore_invalid_inputs=True, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_shards=world_size, shard_id=0, num_workers=args.num_workers) steps_per_epoch = len(train_loader) // update_freq return steps_per_epoch steps_ref = get_steps_per_epoch(args.ref_world_size, args.ref_max_tokens, 1) min_ = args.ref_max_tokens // 20 max_ = args.ref_max_tokens * 20 prev_max_tokens = 0 align_to = 1000 while min_ < max_: max_tokens = (max_ + min_) // 2 // align_to * align_to # try to round if max_tokens == prev_max_tokens: break prev_max_tokens = max_tokens steps = get_steps_per_epoch(world_size, max_tokens, args.update_freq) print_once(f"max_tokens={max_tokens} yields {steps} steps " f"(adjusting for {steps_ref}).") if steps == steps_ref: break elif steps > steps_ref: min_ = max_tokens else: max_ = max_tokens args.max_tokens = max_tokens args.max_tokens_valid = max_tokens def filter_indices_by_size( indices, dataset, max_positions=None, ignore_invalid_inputs=False ): """ Filter examples that are too large Args: indices (np.array): original array of sample indices dataset (~fairseq.data.FairseqDataset): dataset to batch max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). Returns: np.array: array of filtered sample indices """ indices, ignored = dataset.filter_indices_by_size(indices, max_positions) # TODO: consider removing this function. If `len(ignored) > 0`, # an error is raised in fairseq dataset code, both in sup and unsup case if len(ignored) > 0: if not ignore_invalid_inputs: raise Exception( ( "Size of sample #{} is invalid (={}) since max_positions={}, " "skip this example with --skip-invalid-size-inputs-valid-test" ).format(ignored[0], dataset.size(ignored[0]), max_positions) ) print( ( "WARNING: {:,} samples have invalid sizes and will be skipped, " "max_positions={}, first few sample ids={}" ).format(len(ignored), max_positions, ignored[:10]) ) return indices def get_batch_iterator( dataset, training, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, num_concat_batches=1, ): # get indices ordered by example size with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() # filter examples that are too large if max_positions is not None: indices = filter_indices_by_size( indices, dataset, max_positions, ignore_invalid_inputs) # create mini-batches with given size constraints batch_inds, non_grouped_batch_inds = dataset.batch_by_size( indices, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, num_concat_batches=num_concat_batches, ) batch_ids = copy.deepcopy(non_grouped_batch_inds) [bi.fill(i) for i, bi in enumerate(batch_ids)] inds_ids = zip(np.concatenate(batch_inds), np.concatenate(batch_ids)) dataset.batch_ids = {idx: batch_idx for idx, batch_idx in inds_ids} # Batches are already specified, now we just need to shuffle them batch_ind_sampler = DistributedIndicesSampler(batch_inds, shuffle=training, num_replicas=num_shards, rank=shard_id, seed=seed, drop_last=training, fillvalue=[]) loader = DataLoader( dataset=dataset, collate_fn=dataset.collater, batch_sampler=batch_ind_sampler, num_workers=num_workers, pin_memory=True, persistent_workers=num_workers > 0, ) return loader, batch_ind_sampler
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import torch.distributed as dist def print_once(*msg, local_rank=0): """Single stdout print with multiple processes.""" if dist.is_initialized(): if dist.get_rank() == 0: print(*msg) elif int(os.environ.get('WORLD_SIZE', 1)) == 1: print(*msg) elif int(os.environ.get('RANK', 0)) == 0 and local_rank == 0: print(*msg) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def set_torch_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) def reduce_tensor(tensor, world_size, mean=True): if world_size == 1: return tensor rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) if mean: rt = rt.true_divide(world_size) return rt def all_reduce_cpu_scalars(data, device=torch.device('cuda')): data_keys = list(data.keys()) data_vals = list(data.values()) tensor_vals = torch.tensor(data_vals, dtype=torch.double, device=device) dist.all_reduce(tensor_vals, op=dist.ReduceOp.SUM) data_vals = tensor_vals.cpu().numpy() return dict(zip(data_keys, data_vals)) def setup_distributed(local_rank): multi_gpu = int(os.environ.get('WORLD_SIZE', 1)) > 1 if multi_gpu: torch.cuda.set_device(local_rank) dist.init_process_group(backend='nccl', init_method='env://') world_size = dist.get_world_size() print_once(f'Distributed training with {world_size} GPUs\n') else: world_size = 1 return world_size
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/utils.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TypeVar, List import torch import numpy as np from torch.utils.data import (RandomSampler, Sampler, DistributedSampler as TorchDistributedSampler) from common.fairseq.data import data_utils T = TypeVar('T') class DistributedSampler(Sampler): def __init__(self, dataset, batch_size, world_size, rank): """ Constructor for the DistributedSampler. :param dataset: dataset :param batch_size: local batch size :param world_size: number of distributed workers :param rank: rank of the current process """ self.dataset = dataset self.world_size = world_size self.rank = rank self.epoch = 0 self.batch_size = batch_size self.global_batch_size = batch_size * world_size self.data_len = len(self.dataset) self.num_samples = self.data_len // self.global_batch_size \ * self.global_batch_size def distribute_batches(self, indices): """ Assigns batches to workers. Consecutive ranks are getting consecutive batches. :param indices: torch.tensor with batch indices """ assert len(indices) == self.num_samples indices = indices.view(-1, self.batch_size) indices = indices[self.rank::self.world_size].contiguous() indices = indices.view(-1) indices = indices.tolist() assert len(indices) == self.num_samples // self.world_size return indices def reshuffle_batches(self, indices, rng): """ Permutes global batches :param indices: torch.tensor with batch indices :param rng: instance of torch.Generator """ indices = indices.view(-1, self.global_batch_size) num_batches = indices.shape[0] order = torch.randperm(num_batches, generator=rng) indices = indices[order, :] indices = indices.view(-1) return indices def __iter__(self): g = torch.Generator() g.manual_seed(self.epoch) # generate permutation indices = torch.randperm(self.data_len, generator=g) # make indices evenly divisible by (batch_size * world_size) indices = indices[:self.num_samples] # assign batches to workers indices = self.distribute_batches(indices) return iter(indices) def set_epoch(self, epoch): """ Sets current epoch index. Epoch index is used to seed RNG in __iter__() function. :param epoch: index of current epoch """ self.epoch = epoch def __len__(self): return self.num_samples // self.world_size class BucketingSampler(DistributedSampler): def __init__(self, dataset, batch_size, num_buckets, world_size, rank): """ Bucketing sampler with approx. equally-sized buckets. :param dataset: dataset :param batch_size: local batch size :param seeds: list of seeds, one seed for each training epoch :param num_buckets: number of buckets :param world_size: number of distributed workers :param rank: rank of the current process """ super().__init__(dataset, batch_size, world_size, rank) self.num_buckets = num_buckets len_ids = np.argsort([sample['duration'] for sample in dataset.samples]) self.buckets = [torch.from_numpy(t) for t in np.array_split(len_ids, num_buckets)] def __iter__(self): g = torch.Generator() g.manual_seed(self.epoch) global_bsz = self.global_batch_size indices = [] for bid in range(self.num_buckets): # random shuffle within current bucket perm = torch.randperm(len(self.buckets[bid]), generator=g) bucket_indices = self.buckets[bid][perm] # add samples from current bucket to indices for current epoch indices.append(bucket_indices) indices = torch.cat(indices) # make indices evenly divisible by global batch size length = len(indices) // global_bsz * global_bsz indices = indices[:length] assert len(indices) % self.global_batch_size == 0 # perform global reshuffle of all global batches indices = self.reshuffle_batches(indices, g) # distribute batches to individual workers indices = self.distribute_batches(indices) return iter(indices) class DistributedIndicesSampler(TorchDistributedSampler): """ DistributedSampler operating on indices. Differences wrt. DistributedSampler: 1) use Numpy RNG instead of PyTorch RNG 2) treat `self.dataset` as indices - DistributedSampler assumes indices are determined with `range(len(self.dataset))` 3) if `drop_last` is False, pad indices with `fillvalue` or don't pad at all if `fillvalue` is None (useful for validation) """ def __init__(self, *args, fillvalue=None, **kwargs): super().__init__(*args, **kwargs) self.fillvalue = fillvalue if not self.drop_last and self.fillvalue is None: self.total_size = len(self.dataset) # possibly different num_samples for each device, # this will work with DDP only for validation self.num_samples = len(range(self.rank, self.total_size, self.num_replicas)) def __iter__(self): indices = list(self.dataset) if self.shuffle: # deterministically shuffle based on epoch and seed with data_utils.numpy_seed(self.seed + self.epoch): np.random.shuffle(indices) if not self.drop_last: if self.fillvalue is not None: # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) indices += [self.fillvalue] * padding_size else: # remove tail of data to make it evenly divisible. indices = indices[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) class RandomSeedableSampler(RandomSampler): def __init__(self, *args, generator=None, seed=0, **kwargs): if generator is None: generator = torch.Generator() if seed is not None: generator.manual_seed(seed) super().__init__(*args, generator=generator, **kwargs) self.epoch = 0 self.seed = seed def __iter__(self): self.generator.manual_seed(self.seed + self.epoch) return super().__iter__() def set_epoch(self, epoch: int) -> None: """ Allows reproducibility after resuming training. """ self.epoch = epoch class IndexMappingSampler(Sampler[T]): """ Transforms index-based sampler to arbitrary one, e.g. batch-based. """ def __init__(self, indices_map: List[T], base_sampler: Sampler[int]): super().__init__(indices_map) self.base_sampler = base_sampler self.indices_map = indices_map assert len(self.base_sampler) <= len(indices_map) def __iter__(self): return map(lambda ind: self.indices_map[ind], iter(self.base_sampler)) def __len__(self): return len(self.base_sampler) def set_epoch(self, epoch: int) -> None: """ Allows reproducibility after resuming training. """ self.base_sampler.set_epoch(epoch)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/sampler.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re from collections import OrderedDict from pathlib import Path import amp_C import numpy as np import torch import torch.distributed as dist from .metrics import word_error_rate from common.utils import print_once def to_gpu(batch, fp16=False, bf16=False): assert not (fp16 and bf16) for k, v in batch['net_input'].items(): if fp16 and v.dtype is torch.float: batch['net_input'][k] = v.cuda(non_blocking=True).half() elif bf16 and v.dtype is torch.float: batch['net_input'][k] = v.cuda(non_blocking=True).to(dtype=torch.bfloat16) else: batch['net_input'][k] = v.cuda(non_blocking=True) def init_multi_tensor_ema(model, ema_model): model_weights = list(model.state_dict().values()) ema_model_weights = list(ema_model.state_dict().values()) ema_overflow_buf = torch.cuda.IntTensor([0]) return model_weights, ema_model_weights, ema_overflow_buf def apply_multi_tensor_ema(decay, model_weights, ema_model_weights, overflow_buf): amp_C.multi_tensor_axpby( 65536, overflow_buf, [ema_model_weights, model_weights, ema_model_weights], decay, 1-decay, -1) def apply_ema(model, ema_model, decay, patch_conv_wn=False): if not decay: return if patch_conv_wn: torch.nn.utils.remove_weight_norm(model.encoder.pos_conv[0]) sd = getattr(model, 'module', model).state_dict() for k, v in ema_model.state_dict().items(): v.copy_(decay * v + (1 - decay) * sd[k]) if patch_conv_wn: torch.nn.utils.weight_norm( model.encoder.pos_conv[0], name="weight", dim=2) def add_ctc_blank(symbols): return symbols + ['<BLANK>'] def ctc_decoder_predictions_tensor(tensor, labels, blank_id=None): """ Takes output of greedy ctc decoder and performs ctc decoding algorithm to remove duplicates and special symbol. Returns prediction Args: tensor: model output tensor label: A list of labels Returns: prediction """ if blank_id is None: blank_id = len(labels) - 1 hypotheses = [] labels_map = {i: labels[i] for i in range(len(labels))} prediction_cpu_tensor = tensor.long().cpu() # iterate over batch for prediction in prediction_cpu_tensor: prediction = prediction.numpy().tolist() # CTC decoding procedure decoded_prediction = [] previous = blank_id for p in prediction: if (p != previous or previous == blank_id) and p != blank_id: decoded_prediction.append(p) previous = p hypothesis = ''.join([labels_map[c] for c in decoded_prediction]) hypotheses.append(hypothesis) return hypotheses def greedy_wer(preds, tgt, tgt_lens, labels): """ Takes output of greedy ctc decoder and performs ctc decoding algorithm to remove duplicates and special symbol. Prints wer and prediction examples to screen. Args: tensors: A list of 3 tensors (predictions, targets, target_lengths) labels: A list of labels Returns: word error rate """ with torch.no_grad(): references = gather_transcripts([tgt], [tgt_lens], labels) hypotheses = ctc_decoder_predictions_tensor(preds, labels) wer, _, _ = word_error_rate(hypotheses, references) return wer, hypotheses[0], references[0] def gather_losses(losses_list): return [torch.mean(torch.stack(losses_list))] def gather_predictions(predictions_list, labels, blank_id=None): results = [] for prediction in predictions_list: results += ctc_decoder_predictions_tensor(prediction, labels=labels, blank_id=blank_id) return results def gather_transcripts(transcript_list, transcript_len_list, labels): results = [] labels_map = {i: labels[i] for i in range(len(labels))} # iterate over workers for txt, lens in zip(transcript_list, transcript_len_list): for t, l in zip(txt.long().cpu(), lens.long().cpu()): t = list(t.numpy()) results.append(''.join([labels_map[c] for c in t[:l]])) return results def process_evaluation_batch(tensors, global_vars, labels): """ Processes results of an iteration and saves it in global_vars Args: tensors: dictionary with results of an evaluation iteration, e.g., loss, predictions, transcript, and output global_vars: dictionary where processes results of iteration are saved labels: A list of labels """ for kv, v in tensors.items(): if kv.startswith('loss'): global_vars['EvalLoss'] += gather_losses(v) elif kv.startswith('predictions'): global_vars['preds'] += gather_predictions(v, labels) elif kv.startswith('transcript_length'): transcript_len_list = v elif kv.startswith('transcript'): transcript_list = v elif kv.startswith('output'): global_vars['logits'] += v global_vars['txts'] += gather_transcripts( transcript_list, transcript_len_list, labels) def process_evaluation_epoch(aggregates): """ Processes results from each worker and combine to final result. Args: aggregates: dictionary containing information of entire evaluation Return: wer: final word error rate loss: final loss """ if 'losses' in aggregates: eloss = torch.mean(torch.stack(aggregates['losses'])).item() else: eloss = None hypotheses = aggregates['preds'] references = aggregates['txts'] ids = aggregates['ids'] wer, scores, num_words = word_error_rate(hypotheses, references) multi_gpu = dist.is_initialized() if multi_gpu: if eloss is not None: eloss /= dist.get_world_size() eloss_tensor = torch.tensor(eloss).cuda() dist.all_reduce(eloss_tensor) eloss = eloss_tensor.item() scores_tensor = torch.tensor(scores).cuda().unsqueeze(-1) num_words_tensor = torch.tensor(num_words).cuda().unsqueeze(-1) ids_tensor = torch.tensor(ids).cuda().unsqueeze(-1) result_tensor = torch.cat( [scores_tensor, num_words_tensor, ids_tensor], dim=-1) result_tensor_list = [torch.zeros_like(result_tensor) for i in range(dist.get_world_size())] dist.all_gather(result_tensor_list, result_tensor) if dist.get_rank() == 0: agg_results = torch.cat(result_tensor_list, dim=0) agg_ids = set() agg_score, agg_num_words = 0, 0 for x in agg_results.cpu().numpy(): score, num_words, sample_id = x if sample_id in agg_ids: continue else: agg_ids.add(sample_id) agg_score += score agg_num_words += num_words wer = 1.0 * agg_score / agg_num_words return wer, eloss def num_weights(module): return sum(p.numel() for p in module.parameters() if p.requires_grad) def load_wrapped_state(model, state_dict, strict=True): if model is None: return unwrap_ddp = lambda model: getattr(model, 'module', model) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} unwrap_ddp(unwrap_ddp(model)).load_state_dict(state_dict, strict=strict) class Checkpointer: def __init__(self, args, model_name): self.no_save = args.no_save self.save_dir = args.output_dir self.keep_milestones = args.keep_milestones self.model_name = model_name self.output_labels = None # for supervised training pattern = f'{self.model_name}_update*.pt' tracked = [(int(re.search('update(\d+)\.pt', str(f)).group(1)), f) for f in Path(args.output_dir).rglob(pattern)] self.tracked = OrderedDict(sorted(tracked, key=lambda t: t[0])) fpath = (self.last_checkpoint() if args.resume else None) or args.ckpt if fpath is not None: print_once(f'Loading model from {fpath}') self.last_state = torch.load(fpath, map_location="cpu") else: self.last_state = None def maybe_save(self, model, ema_model, optimizer, scaler, train_state, step, epoch, val_losses, val_wer, args): """Saves model checkpoint for inference/resuming training. Args: model: the model, optionally wrapped by DistributedDataParallel ema_model: model with averaged weights, can be None optimizer: optimizer epoch (int): epoch during which the model is saved step (int): number of steps since beginning of training best_wer (float): lowest recorded WER on the dev set is_best (bool, optional): set name of checkpoint to 'best' and overwrite the previous one """ if epoch == 0 or args.no_save: return if args.local_rank != 0 or int(os.environ.get('RANK', 0)) != 0: return if args.mode == "finetune": is_best_ckpt = val_wer[0] < train_state["best_val_wer"] elif args.mode == "pretrain": is_best_ckpt = val_losses[0] < train_state["best_val_loss"] if not is_best_ckpt and epoch % args.save_frequency != 0: return unwrap_ = lambda model: getattr(model, 'module', model) unwrap_ddp = lambda model: unwrap_(unwrap_(model)) state_dict = lambda m: m.state_dict() if m is not None else None type_name = lambda m: None if m is None else type(m).__name__ val_wer = val_wer or [float("inf")] # wer absent in pretraining train_state.update({ 'optimizer_type': type_name(optimizer), 'scaler_type': type_name(scaler), 'step': step, 'epoch': epoch + 1, # fairseq compat; restart at the next epoch 'best_val_wer': min(val_wer[0], train_state["best_val_wer"]), 'best_val_loss': min(val_losses[0], train_state['best_val_loss']), }) state = { 'args': args.__dict__, 'model': state_dict(unwrap_ddp(model)), 'ema_model': state_dict(unwrap_ddp(ema_model)), 'optimizer': state_dict(optimizer), 'scaler': state_dict(scaler), 'train_state': train_state, **({'output_labels': self.output_labels} if self.output_labels else {}), } if is_best_ckpt: fpath = Path(self.save_dir, f"{self.model_name}_best.pt") print_once(f"Saving {fpath}...") torch.save(state, fpath) fpath = Path(self.save_dir, f"{self.model_name}_update{step}.pt") print_once(f"Saving {fpath}...") torch.save(state, fpath) # keep checkpoints with steps closest to milestones for_keeps = set() if len(self.tracked) > 0: tracked = np.array(list(self.tracked.keys())) for milestone in self.keep_milestones: st = tracked[np.argmin(np.abs(tracked - milestone))] for_keeps.add(st) # remove old checkpoints; keep milestones and the last two self.tracked[step] = fpath for epoch in set(list(self.tracked)[:-2]) - for_keeps: try: os.remove(self.tracked[epoch]) except: pass del self.tracked[epoch] def maybe_load_state(self, model=None, ema_model=None, optimizer=None, scaler=None, train_state=None, train_loader=None): if self.last_state is None: return if model is not None: load_wrapped_state(model, self.last_state['model']) if ema_model is not None: if checkpoint.get('ema_model', None) is not None: load_wrapped_state(ema_model, self.last_state['ema_model']) else: print_once('WARNING: EMA weights not found in the ckpt.') print_once('WARNING: Initializing EMA model with main model.') # https://github.com/pytorch/pytorch/issues/28594 model.remove_conv_wn() load_wrapped_state(ema_model, model.state_dict()) model.apply_conv_wn() if optimizer is not None: if 'last_optimizer_state' in self.last_state: optimizer.load_state_dict( self.last_state['last_optimizer_state']) elif 'optimizer' in self.last_state: optimizer.load_state_dict(self.last_state['optimizer']) else: raise ValueError('Optimizer state not found') if scaler is not None: if 'scaler' in self.last_state: scaler.load_state_dict(self.last_state['scaler']) elif 'amp' in self.last_state: scaler.load_state_dict(self.last_state['amp']) else: raise ValueError('Scaler state not found') if train_state is not None: if 'train_state' in self.last_state: train_state.update(self.last_state['train_state']) if 'extra_state' in self.last_state: extra_state = self.last_state['extra_state'] train_state.update({ 'epoch': extra_state['train_iterator']['epoch'], 'best_val_loss': extra_state['best'] }) if 'optimizer_history' in extra_state: train_state['step'] = (extra_state['optimizer_history'] [-1]['num_updates']), if train_loader is not None and 'extra_state' in self.last_state: state = self.last_state['extra_state']['train_iterator'] train_loader.load_state_dict(state) def last_checkpoint(self): tracked = list(self.tracked.values()) for fpath in reversed(tracked): try: torch.load(fpath, map_location='cpu') return fpath except: print_once(f'Checkpoint {fpath} appears corrupted.') return None
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/helpers.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import typing as tp def _safe_readline(fd) -> str: pos = fd.tell() while True: try: return fd.readline() except UnicodeDecodeError: pos -= 1 fd.seek(pos) # search where this character begins def find_offsets(filename: str, num_chunks: int) -> tp.List[int]: """ given a file and a number of chuncks, find the offsets in the file to be able to chunk around full lines. """ with open(filename, "r", encoding="utf-8") as f: size = os.fstat(f.fileno()).st_size chunk_size = size // num_chunks offsets = [0 for _ in range(num_chunks + 1)] for i in range(1, num_chunks): f.seek(chunk_size * i) _safe_readline(f) offsets[i] = f.tell() offsets[-1] = size return offsets class ChunkLineIterator: """ Iterator to properly iterate over lines of a file chunck. """ def __init__(self, fd, start_offset: int, end_offset: int): self._fd = fd self._start_offset = start_offset self._end_offset = end_offset def __iter__(self) -> tp.Iterable[str]: self._fd.seek(self._start_offset) # next(f) breaks f.tell(), hence readline() must be used line = _safe_readline(self._fd) while line: pos = self._fd.tell() # f.tell() does not always give the byte position in the file # sometimes it skips to a very large number # it is unlikely that through a normal read we go from # end bytes to end + 2**32 bytes (4 GB) and this makes it unlikely # that the procedure breaks by the undeterministic behavior of # f.tell() if ( self._end_offset > 0 and pos > self._end_offset and pos < self._end_offset + 2 ** 32 ): break yield line line = self._fd.readline() class Chunker: """ contextmanager to read a chunck of a file line by line. """ def __init__(self, path: str, start_offset: int, end_offset: int): self.path = path self.start_offset = start_offset self.end_offset = end_offset def __enter__(self) -> ChunkLineIterator: self.fd = open(self.path, "r", encoding="utf-8") return ChunkLineIterator(self.fd, self.start_offset, self.end_offset) def __exit__(self, exc_type, exc_val, exc_tb) -> None: self.fd.close()
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/file_chunker_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re SPACE_NORMALIZER = re.compile(r"\s+") def tokenize_line(line): line = SPACE_NORMALIZER.sub(" ", line) line = line.strip() return line.split()
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/tokenizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import uuid from typing import Dict, Optional from torch import Tensor class FairseqIncrementalState(object): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.init_incremental_state() def init_incremental_state(self): self._incremental_state_id = str(uuid.uuid4()) def _get_full_incremental_state_key(self, key: str) -> str: return "{}.{}".format(self._incremental_state_id, key) def get_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" full_key = self._get_full_incremental_state_key(key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = self._get_full_incremental_state_key(key) incremental_state[full_key] = value return incremental_state def with_incremental_state(cls): cls.__bases__ = (FairseqIncrementalState,) + tuple( b for b in cls.__bases__ if b != FairseqIncrementalState ) return cls
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/incremental_decoding_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from typing import Callable, List import torch import torch.nn.functional as F MANIFOLD_PATH_SEP = "|" def split_paths(paths: str, separator=os.pathsep) -> List[str]: return ( paths.split(separator) if "://" not in paths else paths.split(MANIFOLD_PATH_SEP) ) def get_activation_fn(activation: str) -> Callable: """Returns the activation function corresponding to `activation`""" from .modules import gelu, gelu_accurate if activation == "relu": return F.relu elif activation == "gelu": return gelu elif activation == "gelu_fast": warnings.warn( "--activation-fn=gelu_fast has been renamed to gelu_accurate" ) return gelu_accurate elif activation == "gelu_accurate": return gelu_accurate elif activation == "tanh": return torch.tanh elif activation == "linear": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def index_put(tensor, indices, value): tensor[indices] = value return tensor def item(tensor): if hasattr(tensor, "item"): return tensor.item() if hasattr(tensor, "__getitem__"): return tensor[0] return tensor def softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def multiply_grads(optimizer, c): """Multiplies grads by a constant *c*.""" for param_group in optimizer.param_groups: for p in param_group["params"]: if p.grad is not None: if torch.is_tensor(c): c = c.to(p.grad.device) p.grad.data.mul_(c) def apply_to_sample(f, sample): if hasattr(sample, "__len__") and len(sample) == 0: return {} def _apply(x): if torch.is_tensor(x): return f(x) elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) def move_to_cuda(sample, device=None): device = device or torch.cuda.current_device() def _move_to_cuda(tensor): # non_blocking is ignored if tensor is not pinned, so we can always set # to True (see github.com/PyTorchLightning/pytorch-lightning/issues/620) return tensor.to(device=device, non_blocking=True) return apply_to_sample(_move_to_cuda, sample)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil from typing import List, Optional logger = logging.getLogger(__file__) try: from iopath.common.file_io import g_pathmgr as IOPathManager try: # [FB only - for now] AWS PathHandler for PathManager from .fb_pathhandlers import S3PathHandler IOPathManager.register_handler(S3PathHandler()) except KeyError: logging.warning("S3PathHandler already registered.") except ImportError: logging.debug( "S3PathHandler couldn't be imported. Either missing fb-only files, or boto3 module." ) except ImportError: IOPathManager = None class PathManager: """ Wrapper for insulating OSS I/O (using Python builtin operations) from iopath's PathManager abstraction (for transparently handling various internal backends). """ @staticmethod def open( path: str, mode: str = "r", buffering: int = -1, encoding: Optional[str] = None, errors: Optional[str] = None, newline: Optional[str] = None, ): if IOPathManager: return IOPathManager.open( path=path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) return open( path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) @staticmethod def copy(src_path: str, dst_path: str, overwrite: bool = False) -> bool: if IOPathManager: return IOPathManager.copy( src_path=src_path, dst_path=dst_path, overwrite=overwrite ) return shutil.copyfile(src_path, dst_path) @staticmethod def get_local_path(path: str, **kwargs) -> str: if IOPathManager: return IOPathManager.get_local_path(path, **kwargs) return path @staticmethod def exists(path: str) -> bool: if IOPathManager: return IOPathManager.exists(path) return os.path.exists(path) @staticmethod def isfile(path: str) -> bool: if IOPathManager: return IOPathManager.isfile(path) return os.path.isfile(path) @staticmethod def ls(path: str) -> List[str]: if IOPathManager: return IOPathManager.ls(path) return os.listdir(path) @staticmethod def mkdirs(path: str) -> None: if IOPathManager: return IOPathManager.mkdirs(path) os.makedirs(path, exist_ok=True) @staticmethod def rm(path: str) -> None: if IOPathManager: return IOPathManager.rm(path) os.remove(path) @staticmethod def chmod(path: str, mode: int) -> None: if not PathManager.path_requires_pathmanager(path): os.chmod(path, mode) @staticmethod def register_handler(handler) -> None: if IOPathManager: return IOPathManager.register_handler(handler=handler) @staticmethod def copy_from_local( local_path: str, dst_path: str, overwrite: bool = False, **kwargs ) -> None: if IOPathManager: return IOPathManager.copy_from_local( local_path=local_path, dst_path=dst_path, overwrite=overwrite, **kwargs ) return shutil.copyfile(local_path, dst_path) @staticmethod def path_requires_pathmanager(path: str) -> bool: """Do we require PathManager to access given path?""" if IOPathManager: for p in IOPathManager._path_handlers.keys(): if path.startswith(p): return True return False @staticmethod def supports_rename(path: str) -> bool: # PathManager doesn't yet support renames return not PathManager.path_requires_pathmanager(path) @staticmethod def rename(src: str, dst: str): os.rename(src, dst) """ ioPath async PathManager methods: """ @staticmethod def opena( path: str, mode: str = "r", buffering: int = -1, encoding: Optional[str] = None, errors: Optional[str] = None, newline: Optional[str] = None, ): """ Return file descriptor with asynchronous write operations. """ global IOPathManager if not IOPathManager: logging.info("ioPath is initializing PathManager.") try: from iopath.common.file_io import PathManager IOPathManager = PathManager() except Exception: logging.exception("Failed to initialize ioPath PathManager object.") return IOPathManager.opena( path=path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) @staticmethod def async_close() -> bool: """ Wait for files to be written and clean up asynchronous PathManager. NOTE: `PathManager.async_close()` must be called at the end of any script that uses `PathManager.opena(...)`. """ global IOPathManager if IOPathManager: return IOPathManager.async_close() return False
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/file_io.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch class ModuleProxyWrapper(torch.nn.Module): """ Wrap a DistributedDataParallel module and forward requests for missing attributes to the module wrapped by DDP (the twice-wrapped module). Also forward calls to :func:`state_dict` and :func:`load_state_dict`. Usage:: module.xyz = "hello world" wrapped_module = DistributedDataParallel(module, **ddp_args) wrapped_module = ModuleProxyWrapper(wrapped_module) assert wrapped_module.xyz == "hello world" assert wrapped_module.state_dict().keys() == module.state_dict().keys() Args: module (nn.Module): module to wrap """ def __init__(self, module: torch.nn.Module): super().__init__() assert hasattr(module, "module"), \ "ModuleProxyWrapper expects input to wrap another module" self.module = module def __getattr__(self, name): """Forward missing attributes to twice-wrapped module.""" try: # defer to nn.Module's logic return super().__getattr__(name) except AttributeError: try: # forward to the once-wrapped module return getattr(self.module, name) except AttributeError: # forward to the twice-wrapped module return getattr(self.module.module, name) def state_dict(self, *args, **kwargs): """Forward to the twice-wrapped module.""" return self.module.module.state_dict(*args, **kwargs) def load_state_dict(self, *args, **kwargs): """Forward to the twice-wrapped module.""" return self.module.module.load_state_dict(*args, **kwargs) def forward(self, *args, **kwargs): return self.module(*args, **kwargs)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/dist.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import types import torch def get_fused_adam_class(): """ Look for the FusedAdam optimizer from apex. We first try to load the "contrib" interface, which is a bit faster than the main interface, but is technically deprecated. """ try: # The "deprecated" interface in recent versions of apex is a bit # faster than the main interface, since we don't use the apex # optimizer. This can be installed by passing the # `--deprecated_fused_adam` option when building apex. global fused_adam_cuda import importlib fused_adam_cuda = importlib.import_module("fused_adam_cuda") return FusedAdamV1 except ImportError: try: # fallback to the newer interface from apex.optimizers import FusedAdam as _FusedAdam # noqa from apex.multi_tensor_apply import multi_tensor_applier if multi_tensor_applier.available: return FusedAdamV2 except ImportError: pass return None class FusedAdamV1(torch.optim.Optimizer): """ Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext``. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Compared to the original version in Apex, the fairseq version casts grads and params to FP32 internally to support ``--memory-efficient-fp16``. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) .. _Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0.0, max_grad_norm=0.0, amsgrad=False, ): global fused_adam_cuda import importlib fused_adam_cuda = importlib.import_module("fused_adam_cuda") if amsgrad: raise RuntimeError("FusedAdam does not support the AMSGrad variant.") defaults = { "lr": lr, "bias_correction": bias_correction, "betas": betas, "eps": eps, "weight_decay": weight_decay, "max_grad_norm": max_grad_norm, } super().__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True @property def supports_step_with_scale(self): return True def step(self, closure=None, grads=None, scale=1.0, grad_norms=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None] * len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0]) != list: grads_group = [grads] else: grads_group = grads if grad_norms is None: grad_norms = [None] * len(self.param_groups) for group, grads_this_group, grad_norm in zip( self.param_groups, grads_group, grad_norms ): if grads_this_group is None: grads_this_group = [None] * len(group["params"]) # compute combined scale factor for this group combined_scale = scale if group.get("max_grad_norm", 0) > 0: # norm is in fact norm*scale clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"] if clip > 1: combined_scale = clip * scale bias_correction = 1 if group.get("bias_correction", 1) else 0 for p, grad in zip(group["params"], grads_this_group): # note: p.grad should not ever be set for correct # operation of mixed precision optimizer that sometimes # sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError( "FusedAdam does not support sparse gradients, " "please consider SparseAdam instead" ) p_data_fp32 = p.data.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) exp_avg = state["exp_avg"] exp_avg_sq = state["exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 out_p = p.data with torch.cuda.device(p.device): fused_adam_cuda.adam( p_data_fp32, out_p, exp_avg, exp_avg_sq, grad, group["lr"], beta1, beta2, group["eps"], combined_scale, state["step"], self.eps_mode, bias_correction, group["weight_decay"], ) return loss try: from apex.optimizers import FusedAdam from apex.multi_tensor_apply import multi_tensor_applier class FusedAdamV2(FusedAdam): """ Compared to the original version in Apex, the fairseq version casts grads and params to FP32 internally to support ``--memory-efficient-fp16``. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not hasattr(self, "multi_tensor_adam"): raise Exception( "Apex installation is outdated. Please install an updated version of apex." ) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step( self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, ): """Performs a single optimization step.""" loss = None if closure is not None: loss = closure() for group in self.param_groups: bias_correction = 1 if group["bias_correction"] else 0 beta1, beta2 = group["betas"] # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if "step" in group: group["step"] += 1 else: group["step"] = 1 # create lists for multi-tensor apply g_16, p_16, orig_p_16, m_16, v_16 = [], [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] for p in group["params"]: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError( "FusedAdam does not support sparse gradients, " "please consider SparseAdam instead" ) state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data, dtype=torch.float) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like( p.data, dtype=torch.float ) else: state["exp_avg"] = state["exp_avg"].to( device=p.data.device, dtype=torch.float ) state["exp_avg_sq"] = state["exp_avg_sq"].to( device=p.data.device, dtype=torch.float ) if p.dtype == torch.float16: g_16.append(p.grad.data.float()) p_16.append(p.data.float()) orig_p_16.append(p.data) m_16.append(state["exp_avg"]) v_16.append(state["exp_avg_sq"]) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state["exp_avg"]) v_32.append(state["exp_avg_sq"]) else: raise RuntimeError("FusedAdam only support fp16 and fp32.") with torch.cuda.device(p.device): if len(g_16) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) for orig_p, p in zip(orig_p_16, p_16): orig_p.copy_(p.data) if len(g_32) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) return loss except ImportError: pass
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/optim/fused_adam.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class DynamicLossScaler(object): def __init__( self, init_scale=2.0**15, scale_factor=2.0, scale_window=2000, tolerance=0.0, threshold=None, min_loss_scale=1e-4, ): self.loss_scale = init_scale self.scale_factor = scale_factor self.scale_window = scale_window self.tolerance = tolerance self.threshold = threshold self._iter = 0 self._last_overflow_iter = -1 self._last_rescale_iter = -1 self._overflows_since_rescale = 0 self.min_loss_scale = min_loss_scale def scale(self, outputs): return self.loss_scale * outputs def update(self): if (self._iter - self._last_overflow_iter) % self.scale_window == 0: self.loss_scale *= self.scale_factor self._last_rescale_iter = self._iter self._iter += 1 def _decrease_loss_scale(self): self.loss_scale /= self.scale_factor if self.threshold is not None: self.loss_scale = max(self.loss_scale, self.threshold) def check_overflow(self, grad_norm): # detect inf and nan if grad_norm == float("inf") or grad_norm != grad_norm: # overflow has occured prev_scale = self.loss_scale iter_since_rescale = self._iter - self._last_rescale_iter self._last_overflow_iter = self._iter self._overflows_since_rescale += 1 pct_overflow = self._overflows_since_rescale / float(iter_since_rescale) if pct_overflow >= self.tolerance: self._decrease_loss_scale() self._last_rescale_iter = self._iter self._overflows_since_rescale = 0 if self.loss_scale <= self.min_loss_scale: # Use FloatingPointError as an uncommon error that parent # functions can safely catch to stop training. self.loss_scale = prev_scale raise FloatingPointError( ( "Minimum loss scale reached ({}). Your loss is probably exploding. " "Try lowering the learning rate, using gradient clipping or " "increasing the batch size." ).format(self.min_loss_scale) ) self._iter += 1 raise OverflowError("setting loss scale to: " + str(self.loss_scale))
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/optim/dynamic_loss_scaler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from collections import defaultdict import torch from common.fairseq.optim.dynamic_loss_scaler import DynamicLossScaler @torch.no_grad() def clip_grad_norm_(params, max_norm, aggregate_norm_fn=None) -> torch.Tensor: def grad_exists(p): return p is not None and getattr(p, "grad", None) is not None if isinstance(params, torch.Tensor): params = [params] params = list(params) grads = [ p.grad.detach() for p in params if grad_exists(p) and not hasattr(p, "expert") ] expert_grads = [ p.grad.detach() for p in params if grad_exists(p) and hasattr(p, "expert") ] if len(grads) == 0: if len(params) > 0: return params[0].new_tensor(0.0) else: return torch.tensor(0.0) if len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) else: # XXX Missing imports if multi_tensor_l2norm_available: total_norm = multi_tensor_total_norm(grads) else: if torch.cuda.is_available(): warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) device = torch.cuda.current_device() elif grads[0].device.type == "xla": device = grads[0].device else: device = torch.device("cpu") total_norm = torch.norm( torch.stack( [torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads] ) ) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads + expert_grads: g.mul_(clip_coef) return total_norm class FairseqOptimizer(object): def __init__(self, cfg): super().__init__() self.cfg = cfg @classmethod def add_args(cls, parser): """Add optimizer-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) @property def optimizer(self): """Return a torch.optim.optimizer.Optimizer instance.""" if not hasattr(self, "_optimizer"): raise NotImplementedError if not isinstance(self._optimizer, torch.optim.Optimizer): raise ValueError("_optimizer must be an instance of torch.optim.Optimizer") return self._optimizer @optimizer.setter def optimizer(self, optimizer): """Reset optimizer instance.""" if not hasattr(self, "_optimizer"): raise NotImplementedError if not isinstance(self._optimizer, torch.optim.Optimizer): raise ValueError("_optimizer must be an instance of torch.optim.Optimizer") self._optimizer = optimizer @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ raise NotImplementedError @property def params(self): """Return an iterable of the parameters held by the optimizer.""" for param_group in self.param_groups: for p in param_group["params"]: yield p @property def param_groups(self): return self.optimizer.param_groups def __getstate__(self): return self._optimizer.__getstate__() def get_lr(self): """Return the current learning rate.""" return self.param_groups[0]["lr"] def set_lr(self, lr): """Set the learning rate.""" for param_group in self.param_groups: param_group["lr"] = lr def state_dict(self): """Return the optimizer's state dict.""" return self.optimizer.state_dict() def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ self.optimizer.load_state_dict(state_dict) if optimizer_overrides is not None and len(optimizer_overrides) > 0: # override learning rate, momentum, etc. with latest values for group in self.param_groups: group.update(optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves.""" loss.backward() def all_reduce_grads(self, module): """Manually all-reduce gradients (if required).""" if hasattr(module, "all_reduce_grads"): module.all_reduce_grads() def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" for p in self.params: if p.grad is not None: if torch.is_tensor(c): c = c.to(p.grad.device) p.grad.data.mul_(c) def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): """Clips gradient norm.""" return clip_grad_norm_(self.params, max_norm, aggregate_norm_fn) def step(self, closure=None, scale=1.0, groups=None): """Performs a single optimization step.""" if self.supports_step_with_scale: if self.supports_groups: self.optimizer.step(closure, scale=scale, groups=groups) else: self.optimizer.step(closure, scale=scale) else: if scale != 1.0: self.multiply_grads(1.0 / scale) if self.supports_groups: self.optimizer.step(closure, groups=groups) else: self.optimizer.step(closure) def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.params: p.grad = None self.optimizer.zero_grad() @property def supports_memory_efficient_fp16(self): if hasattr(self.optimizer, "supports_memory_efficient_fp16"): return self.optimizer.supports_memory_efficient_fp16 return False @property def supports_step_with_scale(self): if hasattr(self.optimizer, "supports_step_with_scale"): return self.optimizer.supports_step_with_scale return False @property def supports_groups(self): if hasattr(self.optimizer, "supports_groups"): return self.optimizer.supports_groups return False @property def supports_flat_params(self): """ Whether the optimizer supports collapsing of the model parameters/gradients into a single contiguous Tensor. """ if hasattr(self.optimizer, "supports_flat_params"): return self.optimizer.supports_flat_params return False def broadcast_global_state_dict(self, state_dict): """ Broadcasts a global state dict to all ranks. Useful for optimizers that shard state between ranks. """ if hasattr(self.optimizer, "broadcast_global_state_dict"): return self.optimizer.broadcast_global_state_dict(state_dict) else: return state_dict class _FP16OptimizerMixin(object): def __init__(self, *args, **kwargs): # forward __init__ call to the next class in mro(method resolution order) super().__init__(*args, **kwargs) self._multiply_factor = 1.0 @property def has_flat_params(self): return torch.is_tensor(self.fp32_params) or ( isinstance(self.fp32_params, dict) and all(torch.is_tensor(t) for t in self.fp32_params.values()) ) @classmethod def build_fp32_params(cls, args, params, flatten=True): # create FP32 copy of parameters and grads if flatten: is_pipeline_parallel = getattr( args, "pipeline_model_parallel", False ) and getattr(args, "distributed_no_spawn", False) total_param_size = sum(p.data.numel() for p in params) devices = [torch.cuda.current_device()] if is_pipeline_parallel: devices = list(set(args.pipeline_devices)) fp32_params = {} for device in devices: if is_pipeline_parallel: device_param_size = sum( p.data.numel() for p in params if p.device.index == device ) device_params = [p for p in params if p.device.index == device] else: device_param_size = total_param_size device_params = params fp32_params[device] = ( device_params[0].new(0).float().new(device_param_size) ) offset = 0 for p in device_params: numel = p.data.numel() fp32_params[device][offset : offset + numel].copy_(p.data.view(-1)) offset += numel fp32_params[device] = torch.nn.Parameter(fp32_params[device]) fp32_params[device].grad = fp32_params[device].data.new( device_param_size ) return fp32_params else: fp32_params = [] for p in params: p32 = torch.nn.Parameter(p.data.float()) if hasattr(p, 'expert'): p32.expert = True p32.grad = torch.zeros_like(p32.data) if hasattr(p, "param_group"): p32.param_group = p.param_group fp32_params.append(p32) return fp32_params def state_dict(self): """Return the optimizer's state dict.""" state_dict = self.fp32_optimizer.state_dict() if self.scaler is not None: state_dict["loss_scale"] = self.scaler.loss_scale return state_dict def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ if "loss_scale" in state_dict and self.scaler is not None: self.scaler.loss_scale = state_dict["loss_scale"] self.fp32_optimizer.load_state_dict(state_dict, optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves. Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this function additionally dynamically scales the loss to avoid gradient underflow. """ if self.scaler is not None: loss = self.scaler.scale(loss) loss.backward() self._needs_sync = True def _sync_fp16_grads_to_fp32(self): if self._needs_sync: # copy FP16 grads to FP32 if self.has_flat_params: devices = list(self.fp32_params.keys()) device_params_dict = defaultdict(list) for p in self.fp16_params: if p.requires_grad: device_params_dict[p.device.index].append(p) for device in devices: device_params = device_params_dict[device] offset = 0 for p in device_params: grad_data = ( p.grad.data if p.grad is not None else p.data.new_zeros(p.data.shape) ) numel = grad_data.numel() self.fp32_params[device].grad.data[ offset : offset + numel ].copy_(grad_data.view(-1)) offset += numel else: for p, p32 in zip(self.fp16_params, self.fp32_params): if not p.requires_grad: continue if p.grad is not None: if p32.grad is None: p32.grad = p.grad.data.float() else: p32.grad.data.copy_(p.grad.data) else: p32.grad = torch.zeros_like(p.data, dtype=torch.float) self._needs_sync = False def _sync_fp32_params_to_fp16(self): # copy FP32 params back into FP16 model if self.has_flat_params: devices = list(self.fp32_params.keys()) device_params_dict = defaultdict(list) for p in self.fp16_params: device_params_dict[p.device.index].append(p) for device in devices: device_params = device_params_dict[device] offset = 0 for p in device_params: numel = p.data.numel() p.data.copy_( self.fp32_params[device] .data[offset : offset + numel] .view_as(p.data) ) offset += numel else: for p, p32 in zip(self.fp16_params, self.fp32_params): if not p.requires_grad: continue p.data.copy_(p32.data) def _unscale_grads(self): self._sync_fp16_grads_to_fp32() if ( # Skip the multiplication if it's a no-op (i.e., if _multiply_factor # is 1.0). At the same time, we want to avoid the device-to-host # transfer by comparing it to 1.0. Since _multiply_factor starts as # a Python float, we roughly assume that if it's a tensor then it's # probably not =1.0 anymore and we do the multiplication. Otherwise # we can safely check the value without a D2H transfer. torch.is_tensor(self._multiply_factor) or self._multiply_factor != 1.0 ): self.fp32_optimizer.multiply_grads(self._multiply_factor) self._multiply_factor = 1.0 def multiply_grads(self, c): """Multiplies grads by a constant ``c``.""" self._multiply_factor *= c def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): """Clips gradient norm and updates dynamic loss scaler.""" self._sync_fp16_grads_to_fp32() grad_norm = self._multiply_factor * self.fp32_optimizer.clip_grad_norm( 0, aggregate_norm_fn ) if self.scaler is not None: if grad_norm > max_norm > 0.0: self._multiply_factor *= max_norm / grad_norm self.scaler.check_overflow(grad_norm) elif max_norm > 0.0: clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1) self._multiply_factor *= clip_coef return grad_norm def step(self, closure=None, groups=None): """Performs a single optimization step.""" self._sync_fp16_grads_to_fp32() if getattr(self, "supports_step_with_scale", False): self.fp32_optimizer.step(closure, scale=(1.0 / self._multiply_factor), groups=groups) else: self._unscale_grads() self.fp32_optimizer.step(closure, groups=groups) if self.scaler is not None: self.scaler.update() self._sync_fp32_params_to_fp16() def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.fp16_params: p.grad = None if self.has_flat_params: if torch.is_tensor(self.fp32_params): self.fp32_params.grad.zero_() elif isinstance(self.fp32_params, dict): for fp32_params in self.fp32_params.values(): fp32_params.grad.zero_() else: raise RuntimeError("self.fp32_params must be a tensor or dict") else: for p32 in self.fp32_params: if p32.grad is not None: p32.grad.zero_() self._needs_sync = False if self.scaler is not None: self._multiply_factor = 1.0 / float(self.scaler.loss_scale) class FP16Optimizer(_FP16OptimizerMixin, FairseqOptimizer): """ Wrap an *optimizer* to support FP16 (mixed precision) training. """ def __init__(self, cfg, params, fp32_optimizer, fp32_params, **kwargs): super().__init__(cfg.optimizer) self.fp16_params = params self.fp32_optimizer = fp32_optimizer self.fp32_params = fp32_params scale_window = int(2 ** 14 / cfg.world_size / cfg.update_freq) if not (cfg.bf16 and cfg.bf16_disable_loss_scaler): self.scaler = DynamicLossScaler( init_scale=cfg.fp16_init_scale, scale_window=scale_window, tolerance=0.0, threshold=None, min_loss_scale=cfg.min_loss_scale, ) else: print('Disabled loss scaler.') # disable loss scaling for bfloat16 self.scaler = None @property def optimizer(self): return self.fp32_optimizer.optimizer @optimizer.setter def optimizer(self, optimizer): self.fp32_optimizer.optimizer = optimizer @property def lr_scheduler(self): return getattr(self.fp32_optimizer, "lr_scheduler", None) @property def optimizer_config(self): return self.fp32_optimizer.optimizer_config def get_lr(self): return self.fp32_optimizer.get_lr() def set_lr(self, lr): self.fp32_optimizer.set_lr(lr) def all_reduce_grads(self, module): self.fp32_optimizer.all_reduce_grads(module) @property def supports_flat_params(self): return self.fp32_optimizer.supports_flat_params
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/optim/fp16_optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from collections.abc import Collection import torch import torch.distributed as dist import torch.optim from common.fairseq.optim.fp16_optimizer import FairseqOptimizer from common.fairseq.optim.fused_adam import get_fused_adam_class class FairseqAdam(FairseqOptimizer): """Adam optimizer for fairseq. Important note: this optimizer corresponds to the "AdamW" variant of Adam in its weight decay behavior. As such, it is most closely analogous to torch.optim.AdamW from PyTorch. """ def __init__(self, cfg, params): super().__init__(cfg) fused_adam_cls = get_fused_adam_class() use_fused_adam = ( not getattr(cfg, "use_old_adam", False) and fused_adam_cls is not None and torch.cuda.is_available() ) if use_fused_adam: self._optimizer = fused_adam_cls(params, **self.optimizer_config) else: self._optimizer = Adam(params, **self.optimizer_config) @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.cfg.lr[0] if isinstance(self.cfg.lr, Collection) else self.cfg.lr, "betas": eval(self.cfg.adam_betas) if isinstance(self.cfg.adam_betas, str) else self.cfg.adam_betas, "eps": self.cfg.adam_eps, "weight_decay": self.cfg.weight_decay, } def average_params(self): """Reduce Params is only used during BMUF distributed training.""" state_dict = self.optimizer.state_dict() total_gpus = float(dist.get_world_size()) for _, value in state_dict["state"].items(): value["exp_avg"] /= total_gpus value["exp_avg_sq"] /= total_gpus dist.all_reduce(value["exp_avg"], op=dist.ReduceOp.SUM) dist.all_reduce(value["exp_avg_sq"], op=dist.ReduceOp.SUM) class Adam(torch.optim.Optimizer): r"""Implements Adam algorithm. This implementation is modified from torch.optim.Adam based on: `Fixed Weight Decay Regularization in Adam` (see https://arxiv.org/abs/1711.05101) It has been proposed in `Adam: A Method for Stochastic Optimization`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, ): defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad ) super(Adam, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsgrad = group.get("amsgrad", False) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) if amsgrad: state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( p_data_fp32 ) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=-group["weight_decay"] * group["lr"] ) p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/optim/adam.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Any, List from collections.abc import Collection from fairseq.dataclass import FairseqDataclass from fairseq.optim import FairseqOptimizer, register_optimizer from omegaconf import II, OmegaConf @dataclass class FairseqLambConfig(FairseqDataclass): lamb_betas: Any = field( default=(0.9, 0.999), metadata={"help": "betas for lamb optimizer"} ) lamb_eps: float = field( default=1e-8, metadata={"help": "epsilon for lamb optimizer"} ) weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) lr: List[float] = II("optimization.lr") @register_optimizer("lamb", dataclass=FairseqLambConfig) class FairseqLAMB(FairseqOptimizer): """LAMB optimizer.""" def __init__(self, cfg: FairseqLambConfig, params): super().__init__(cfg) try: from apex.optimizers import FusedLAMB self._optimizer = FusedLAMB(params, **self.optimizer_config) except ImportError: raise ImportError("Please install apex to use LAMB optimizer") @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.cfg.lr[0] if isinstance(self.cfg.lr, Collection) else self.cfg.lr, "betas": eval(self.cfg.lamb_betas) if isinstance(self.cfg.lamb_betas, str) else OmegaConf.to_container(self.cfg.lamb_betas), "eps": self.cfg.lamb_eps, "weight_decay": self.cfg.weight_decay, } @property def supports_flat_params(self): return False
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/optim/fused_lamb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import Tensor, nn from torch.nn import Parameter from common.fairseq import utils from common.fairseq.incremental_decoding_utils import with_incremental_state from .fairseq_dropout import FairseqDropout from .quant_noise import quant_noise class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x, seq_dim=0): seq_len = x.shape[seq_dim] if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) freqs = torch.einsum('i,j->ij', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.cos_cached = emb.cos()[:, None, :] self.sin_cached = emb.sin()[:, None, :] return self.cos_cached, self.sin_cached def rotate_half(x): x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=x1.ndim - 1) @torch.jit.script def apply_rotary_pos_emb(x, cos, sin): return (x * cos) + (rotate_half(x) * sin) @with_incremental_state class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, rotary_embeddings=False, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.rotary_embeddings = rotary_embeddings if self.rotary_embeddings: self.rotary_freq = RotaryEmbedding(embed_dim) else: self.rotary_freq = None self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) self.k_proj = quant_noise( nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) self.out_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True is_tpu = query.device.type == "xla" tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if ( not self.rotary_embeddings and not self.onnx_trace and not is_tpu # don't use PyTorch version on TPUs and incremental_state is None and not static_kv # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: # seq_len, batch_size, dim q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) if self.rotary_freq is not None: cos, sin = self.rotary_freq(q) q = apply_rotary_pos_emb(q, cos, sin) k = apply_rotary_pos_emb(k, cos, sin) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not is_tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: if src_len > prev_key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask.float() elif key_padding_mask is not None: if src_len > key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = key_padding_mask.float() else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch class GradMultiply(torch.autograd.Function): @staticmethod def forward(ctx, x, scale): ctx.scale = scale res = x.new(x) return res @staticmethod def backward(ctx, grad): return grad * ctx.scale, None
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/grad_multiply.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ See "Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel with the corresponding GitHub repo: https://github.com/hendrycks/GELUs """ import math import torch import torch.nn as nn def gelu_accurate(x): if not hasattr(gelu_accurate, "_a"): gelu_accurate._a = math.sqrt(2 / math.pi) return ( 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) ) def gelu(x: torch.Tensor) -> torch.Tensor: return torch.nn.functional.gelu(x.float()).type_as(x)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/gelu.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """isort:skip_file""" from .fairseq_dropout import FairseqDropout from .fp32_group_norm import Fp32GroupNorm, Fp32MaskedGroupNorm, MaskedGroupNorm from .gelu import gelu, gelu_accurate from .grad_multiply import GradMultiply from .gumbel_vector_quantizer import GumbelVectorQuantizer from .layer_norm import Fp32LayerNorm, LayerNorm from .multihead_attention import MultiheadAttention from .same_pad import SamePad from .transpose_last import TransposeLast __all__ = [ "Fp32GroupNorm", "Fp32LayerNorm", "Fp32MaskedGroupNorm", "MaskedGroupNorm", "gelu", "gelu_accurate", "GradMultiply", "GumbelVectorQuantizer", "LayerNorm", "MultiheadAttention", "SamePad", "TransposeLast", ]
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn def quant_noise(module, p, block_size): """ Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product Quantization as described in "Training with Quantization Noise for Extreme Model Compression" Args: - module: nn.Module - p: amount of Quantization Noise - block_size: size of the blocks for subsequent quantization with iPQ Remarks: - Module weights must have the right sizes wrt the block size - Only Linear, Embedding and Conv2d modules are supported for the moment - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping blocks """ # if no quantization noise, don't register hook if p <= 0: return module # supported modules assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) # test whether module.weight has the right sizes wrt block_size is_conv = module.weight.ndim == 4 # 2D matrix if not is_conv: assert ( module.weight.size(1) % block_size == 0 ), "Input features must be a multiple of block sizes" # 4D matrix else: # 1x1 convolutions if module.kernel_size == (1, 1): assert ( module.in_channels % block_size == 0 ), "Input channels must be a multiple of block sizes" # regular convolutions else: k = module.kernel_size[0] * module.kernel_size[1] assert k % block_size == 0, "Kernel size must be a multiple of block size" def _forward_pre_hook(mod, input): # no noise for evaluation if mod.training: if not is_conv: # gather weight and sizes weight = mod.weight in_features = weight.size(1) out_features = weight.size(0) # split weight matrix into blocks and randomly drop selected blocks mask = torch.zeros( in_features // block_size * out_features, device=weight.device ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) else: # gather weight and sizes weight = mod.weight in_channels = mod.in_channels out_channels = mod.out_channels # split weight matrix into blocks and randomly drop selected blocks if mod.kernel_size == (1, 1): mask = torch.zeros( int(in_channels // block_size * out_channels), device=weight.device, ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) else: mask = torch.zeros( weight.size(0), weight.size(1), device=weight.device ) mask.bernoulli_(p) mask = ( mask.unsqueeze(2) .unsqueeze(3) .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) ) # scale weights and apply mask mask = mask.to( torch.bool ) # x.bool() is not currently supported in TorchScript s = 1 / (1 - p) mod.weight.data = s * weight.masked_fill(mask, 0) module.register_forward_pre_hook(_forward_pre_hook) return module
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/quant_noise.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Layer norm done in fp32 (for fp16 training).""" import torch import torch.nn as nn import torch.nn.functional as F class Fp32GroupNorm(nn.GroupNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.group_norm( input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input) class MaskedGroupNorm(nn.Module): """GroupNorm layer which skips padding. In wav2vec 2.0 encoder where batch size is small and time dimensio huge, this is nearly as fast as nn.GroupNorm. Ready for TorchScript, favors composition over inheritance. """ def __init__(self, num_groups, num_channels, eps=1e-05, affine=True, device=None, dtype=None): assert num_groups == num_channels, ( "num_groups != num_channels not yet supported in MaskedGroupNorm") super().__init__() self._group_norm = nn.GroupNorm(num_groups, num_channels, eps=eps, affine=affine, device=device, dtype=dtype) def forward(self, x, x_lens): var = torch.zeros_like(x[:, :, 0]) mean = torch.zeros_like(x[:, :, 0]) for i in range(x.size(0)): mean[i] = torch.mean(x[i, :, :x_lens[i]], dim=1) var[i] = torch.var(x[i, :, :x_lens[i]], dim=1, unbiased=False) out = (x - mean[:, :, None]) / torch.sqrt(var[:, :, None] + self._group_norm.eps) if self._group_norm.affine: return out * self._group_norm.weight[None, :, None] + self._group_norm.bias[None, :, None] else: return out class Fp32MaskedGroupNorm(nn.Module): """GroupNorm layer which skips padding. In wav2vec 2.0 encoder where batch size is small and time dimensio huge, this is nearly as fast as nn.GroupNorm. Ready for TorchScript, favors composition over inheritance. """ def __init__(self, num_groups, num_channels, eps=1e-05, affine=True, device=None, dtype=None): assert num_groups == num_channels, ( "num_groups != num_channels not yet supported in MaskedGroupNorm") super().__init__() self._group_norm = nn.GroupNorm(num_groups, num_channels, eps=eps, affine=affine, device=device, dtype=dtype) def hook(state_dict, prefix, *args, **kwargs): """Renames keys from layers which used inheritance.""" new_sd = {} for k, v in state_dict.items(): if not k.startswith(prefix): new_sd[k] = v else: *pref, param = k.split(".") new_k = ".".join(pref + ["_group_norm", param]) new_sd[new_k] = v state_dict.clear() state_dict.update(new_sd) self._register_load_state_dict_pre_hook(hook) def forward(self, x, x_lens): return self._forward( x.float(), x_lens, self._group_norm.weight.float() if self._group_norm.weight is not None else None, self._group_norm.bias.float() if self._group_norm.bias is not None else None, ).type_as(x) def _forward(self, x, x_lens, weight, bias): var = torch.zeros_like(x[:, :, 0]) mean = torch.zeros_like(x[:, :, 0]) for i in range(x.size(0)): mean[i] = torch.mean(x[i, :, :x_lens[i]], dim=1) var[i] = torch.var(x[i, :, :x_lens[i]], dim=1, unbiased=False) out = (x - mean[:, :, None]) / torch.sqrt(var[:, :, None] + self._group_norm.eps) if self._group_norm.affine: return out * weight[None, :, None] + bias[None, :, None] else: return out
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/fp32_group_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import List, Optional import torch.nn as nn import torch.nn.functional as F logger = logging.getLogger(__name__) class FairseqDropout(nn.Module): def __init__(self, p, module_name=None): super().__init__() self.p = p self.module_name = module_name self.apply_during_inference = False def forward(self, x, inplace: bool = False): if self.p > 0 and (self.training or self.apply_during_inference): return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x def make_generation_fast_( self, name: str, retain_dropout: bool = False, retain_dropout_modules: Optional[List[str]] = None, **kwargs ): if retain_dropout: if retain_dropout_modules is not None and self.module_name is None: logger.warning( "Cannot enable dropout during inference for module {} " "because module_name was not set".format(name) ) elif ( retain_dropout_modules is None # if None, apply to all modules or self.module_name in retain_dropout_modules ): logger.info( "Enabling dropout during inference for module: {}".format(name) ) self.apply_during_inference = True else: logger.info("Disabling dropout for module: {}".format(name))
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/fairseq_dropout.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class GumbelVectorQuantizer(nn.Module): def __init__( self, dim, num_vars, temp, groups, combine_groups, vq_dim, time_first, activation=nn.GELU(), weight_proj_depth=1, weight_proj_factor=1, ): """Vector quantization using gumbel softmax Args: dim: input dimension (channels) num_vars: number of quantized vectors per group temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor) groups: number of groups for vector quantization combine_groups: whether to use the vectors for all groups vq_dim: dimensionality of the resulting quantized vector time_first: if true, expect input in BxTxC format, otherwise in BxCxT activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1 weight_proj_depth: number of layers (with activation in between) to project input before computing logits weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of projections by this factor """ super().__init__() self.groups = groups self.combine_groups = combine_groups self.input_dim = dim self.num_vars = num_vars self.time_first = time_first assert ( vq_dim % groups == 0 ), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" var_dim = vq_dim // groups num_groups = groups if not combine_groups else 1 self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * num_vars, var_dim)) nn.init.uniform_(self.vars) if weight_proj_depth > 1: def block(input_dim, output_dim): return nn.Sequential(nn.Linear(input_dim, output_dim), activation) inner_dim = self.input_dim * weight_proj_factor self.weight_proj = nn.Sequential( *[ block(self.input_dim if i == 0 else inner_dim, inner_dim) for i in range(weight_proj_depth - 1) ], nn.Linear(inner_dim, groups * num_vars), ) else: self.weight_proj = nn.Linear(self.input_dim, groups * num_vars) nn.init.normal_(self.weight_proj.weight, mean=0, std=1) nn.init.zeros_(self.weight_proj.bias) if isinstance(temp, str): import ast temp = ast.literal_eval(temp) assert len(temp) == 3, f"{temp}, {len(temp)}" self.max_temp, self.min_temp, self.temp_decay = temp self.curr_temp = self.max_temp self.codebook_indices = None def set_num_updates(self, num_updates): self.curr_temp = max( self.max_temp * self.temp_decay ** num_updates, self.min_temp ) def get_codebook_indices(self): if self.codebook_indices is None: from itertools import product p = [range(self.num_vars)] * self.groups inds = list(product(*p)) self.codebook_indices = torch.tensor( inds, dtype=torch.long, device=self.vars.device ).flatten() if not self.combine_groups: self.codebook_indices = self.codebook_indices.view( self.num_vars ** self.groups, -1 ) for b in range(1, self.groups): self.codebook_indices[:, b] += self.num_vars * b self.codebook_indices = self.codebook_indices.flatten() return self.codebook_indices def codebook(self): indices = self.get_codebook_indices() return ( self.vars.squeeze(0) .index_select(0, indices) .view(self.num_vars ** self.groups, -1) ) def sample_from_codebook(self, b, n): indices = self.get_codebook_indices() indices = indices.view(-1, self.groups) cb_size = indices.size(0) assert ( n < cb_size ), f"sample size {n} is greater than size of codebook {cb_size}" sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,)) indices = indices[sample_idx] z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b, n, -1) return z def to_codebook_index(self, indices): res = indices.new_full(indices.shape[:-1], 0) for i in range(self.groups): exponent = self.groups - i - 1 res += indices[..., i] * (self.num_vars ** exponent) return res def forward_idx(self, x): res = self.forward(x, produce_targets=True) return res["x"], res["targets"] def forward(self, x, produce_targets=False): result = {"num_vars": self.num_vars * self.groups} if not self.time_first: x = x.transpose(1, 2) bsz, tsz, fsz = x.shape x = x.reshape(-1, fsz) x = self.weight_proj(x) x = x.view(bsz * tsz * self.groups, -1) _, k = x.max(-1) hard_x = ( x.new_zeros(*x.shape) .scatter_(-1, k.view(-1, 1), 1.0) .view(bsz * tsz, self.groups, -1) ) hard_probs = torch.mean(hard_x.float(), dim=0) result["code_perplexity"] = torch.exp( -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) ).sum() avg_probs = torch.softmax( x.view(bsz * tsz, self.groups, -1).float(), dim=-1 ).mean(dim=0) result["prob_perplexity"] = torch.exp( -torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1) ).sum() result["temp"] = self.curr_temp if self.training: x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=True).type_as(x) else: x = hard_x x = x.view(bsz * tsz, -1) vars = self.vars if self.combine_groups: vars = vars.repeat(1, self.groups, 1) if produce_targets: result["targets"] = ( x.view(bsz * tsz * self.groups, -1) .argmax(dim=-1) .view(bsz, tsz, self.groups) .detach() ) x = x.unsqueeze(-1) * vars x = x.view(bsz * tsz, self.groups, self.num_vars, -1) x = x.sum(-2) x = x.view(bsz, tsz, -1) if not self.time_first: x = x.transpose(1, 2) # BTC -> BCT result["x"] = x return result
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/gumbel_vector_quantizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ transpose last 2 dimensions of the input """ import torch.nn as nn class TransposeLast(nn.Module): def __init__(self, deconstruct_idx=None): super().__init__() self.deconstruct_idx = deconstruct_idx def forward(self, x): if self.deconstruct_idx is not None: x = x[self.deconstruct_idx] return x.transpose(-2, -1)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/transpose_last.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F TORCHSCRIPT = False try: from apex.normalization import FusedLayerNorm as _FusedLayerNorm has_fused_layernorm = True class FusedLayerNorm(_FusedLayerNorm): @torch.jit.unused def forward(self, x): if not x.is_cuda: return super().forward(x) else: with torch.cuda.device(x.device): return super().forward(x) except ImportError: has_fused_layernorm = False def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): if torch.jit.is_scripting() or TORCHSCRIPT: export = True if not export and torch.cuda.is_available() and has_fused_layernorm: return FusedLayerNorm(normalized_shape, eps, elementwise_affine) return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/layer_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch import nn class SamePad(nn.Module): def __init__(self, kernel_size, causal=False): super().__init__() if causal: self.remove = kernel_size - 1 else: self.remove = 1 if kernel_size % 2 == 0 else 0 def forward(self, x): if self.remove > 0: x = x[:, :, : -self.remove] return x
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/modules/same_pad.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from numba import jit @jit(nopython=True) def batch_by_size_vec(indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult): """A numba version of cython batch_by_size_vec from data_utils_fast.pyx""" indices_len = indices.shape[0] batches_ends = np.zeros(indices_len, dtype=np.int32) batches_ends_view = batches_ends num_tokens_view = num_tokens_vec pos = 0 new_batch_end = 0 new_batch_max_tokens = 0 new_batch_sentences = 0 new_batch_num_tokens = 0 overflow = False size_matches_with_bsz_mult = False batches_count = 0 batch_start = 0 tail_max_tokens = 0 batch_max_tokens = 0 for pos in range(indices_len): # At every pos we keep stats about the last complete batch [batch_start:batch_end), # and tail [batch_end:pos]. # 1) Every time when (batch + tail) forms a valid batch # (according to max_tokens, max_sentences and bsz_mult) we append tail to batch. # 2) When (batch+tail) violates max_tokens or max_sentences constraints # we finalize running batch, and tail becomes a new batch. # 3) There is a corner case when tail also violates constraints. # In that situation [batch_end:pos-1] (tail without the current pos) # gets added to the finalized batches, while [pos:pos] becomes a new tail. # # Important: For the sake of performance try to avoid using function calls within this loop. tail_max_tokens = tail_max_tokens \ if tail_max_tokens > num_tokens_view[pos] \ else num_tokens_view[pos] new_batch_end = pos + 1 new_batch_max_tokens = batch_max_tokens \ if batch_max_tokens > tail_max_tokens \ else tail_max_tokens new_batch_sentences = new_batch_end - batch_start new_batch_num_tokens = new_batch_sentences * new_batch_max_tokens overflow = (new_batch_sentences > max_sentences > 0 or new_batch_num_tokens > max_tokens > 0) size_matches_with_bsz_mult = (new_batch_sentences < bsz_mult or new_batch_sentences % bsz_mult == 0) if overflow: tail_num_tokens = tail_max_tokens * \ (new_batch_end - batches_ends_view[batches_count]) tail_overflow = tail_num_tokens > max_tokens > 0 # In case of a tail overflow finalize two batches if tail_overflow: batches_count += 1 batches_ends_view[batches_count] = pos tail_max_tokens = num_tokens_view[pos] batch_start = batches_ends_view[batches_count] batches_count += 1 new_batch_max_tokens = tail_max_tokens if overflow or size_matches_with_bsz_mult: batches_ends_view[batches_count] = new_batch_end batch_max_tokens = new_batch_max_tokens tail_max_tokens = 0 if batches_ends_view[batches_count] != indices_len: batches_count += 1 # Memory and time-efficient split return np.split(indices, batches_ends[:batches_count])
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/data/data_utils_fast.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """isort:skip_file""" from .add_target_dataset import AddTargetDataset, BaseWrapperDataset from .audio.raw_audio_dataset import FileAudioDataset from .dictionary import Dictionary __all__ = [ "AddTargetDataset", "Dictionary", "FileAudioDataset", ]
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from collections.abc import Iterable except ImportError: from collections import Iterable import contextlib import itertools import logging import os import re import warnings from typing import Optional, Tuple import numpy as np import torch from common.fairseq import utils from common.fairseq.data.data_utils_fast import batch_by_size_vec from common.fairseq.file_io import PathManager logger = logging.getLogger(__name__) def infer_language_pair(path): """Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx""" src, dst = None, None for filename in PathManager.ls(path): parts = filename.split(".") if len(parts) >= 3 and len(parts[1].split("-")) == 2: return parts[1].split("-") return src, dst def collate_tokens( values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False, pad_to_length=None, pad_to_multiple=1, pad_to_bsz=None, ): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) size = size if pad_to_length is None else max(size, pad_to_length) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) batch_size = len(values) if pad_to_bsz is None else max(len(values), pad_to_bsz) res = values[0].new(batch_size, size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: if eos_idx is None: # if no eos_idx is specified, then use the last token in src dst[0] = src[-1] else: dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)]) return res def load_indexed_dataset( path, dictionary=None, dataset_impl=None, combine=False, default="cached" ): """A helper function for loading indexed datasets. Args: path (str): path to indexed dataset (e.g., 'data-bin/train') dictionary (~fairseq.data.Dictionary): data dictionary dataset_impl (str, optional): which dataset implementation to use. If not provided, it will be inferred automatically. For legacy indexed data we use the 'cached' implementation by default. combine (bool, optional): automatically load and combine multiple datasets. For example, if *path* is 'data-bin/train', then we will combine 'data-bin/train', 'data-bin/train1', ... and return a single ConcatDataset instance. """ import fairseq.data.indexed_dataset as indexed_dataset from fairseq.data.concat_dataset import ConcatDataset datasets = [] for k in itertools.count(): path_k = path + (str(k) if k > 0 else "") try: path_k = indexed_dataset.get_indexed_dataset_to_local(path_k) except Exception as e: if "StorageException: [404] Path not found" in str(e): logger.warning(f"path_k: {e} not found") else: raise e dataset_impl_k = dataset_impl if dataset_impl_k is None: dataset_impl_k = indexed_dataset.infer_dataset_impl(path_k) dataset = indexed_dataset.make_dataset( path_k, impl=dataset_impl_k or default, fix_lua_indexing=True, dictionary=dictionary, ) if dataset is None: break logger.info("loaded {:,} examples from: {}".format(len(dataset), path_k)) datasets.append(dataset) if not combine: break if len(datasets) == 0: return None elif len(datasets) == 1: return datasets[0] else: return ConcatDataset(datasets) @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def collect_filtered(function, iterable, filtered): """ Similar to :func:`filter` but collects filtered elements in ``filtered``. Args: function (callable): function that returns ``False`` for elements that should be filtered iterable (iterable): iterable to filter filtered (list): list to store filtered elements """ for el in iterable: if function(el): yield el else: filtered.append(el) def _filter_by_size_dynamic(indices, size_fn, max_positions, raise_exception=False): def check_size(idx): if isinstance(max_positions, float) or isinstance(max_positions, int): return size_fn(idx) <= max_positions elif isinstance(max_positions, dict): idx_size = size_fn(idx) assert isinstance(idx_size, dict) intersect_keys = set(max_positions.keys()) & set(idx_size.keys()) return all( all( a is None or b is None or a <= b for a, b in zip(idx_size[key], max_positions[key]) ) for key in intersect_keys ) else: # For MultiCorpusSampledDataset, will generalize it later if not isinstance(size_fn(idx), Iterable): return all(size_fn(idx) <= b for b in max_positions) return all( a is None or b is None or a <= b for a, b in zip(size_fn(idx), max_positions) ) ignored = [] itr = collect_filtered(check_size, indices, ignored) indices = np.fromiter(itr, dtype=np.int64, count=-1) return indices, ignored def filter_by_size(indices, dataset, max_positions, raise_exception=False): """ [deprecated] Filter indices based on their size. Use `FairseqDataset::filter_indices_by_size` instead. Args: indices (List[int]): ordered list of dataset indices dataset (FairseqDataset): fairseq dataset instance max_positions (tuple): filter elements larger than this size. Comparisons are done component-wise. raise_exception (bool, optional): if ``True``, raise an exception if any elements are filtered (default: False). """ warnings.warn( "data_utils.filter_by_size is deprecated. " "Use `FairseqDataset::filter_indices_by_size` instead.", stacklevel=2, ) if isinstance(max_positions, float) or isinstance(max_positions, int): if hasattr(dataset, "sizes") and isinstance(dataset.sizes, np.ndarray): ignored = indices[dataset.sizes[indices] > max_positions].tolist() indices = indices[dataset.sizes[indices] <= max_positions] elif ( hasattr(dataset, "sizes") and isinstance(dataset.sizes, list) and len(dataset.sizes) == 1 ): ignored = indices[dataset.sizes[0][indices] > max_positions].tolist() indices = indices[dataset.sizes[0][indices] <= max_positions] else: indices, ignored = _filter_by_size_dynamic( indices, dataset.size, max_positions ) else: indices, ignored = _filter_by_size_dynamic(indices, dataset.size, max_positions) if len(ignored) > 0 and raise_exception: raise Exception( ( "Size of sample #{} is invalid (={}) since max_positions={}, " "skip this example with --skip-invalid-size-inputs-valid-test" ).format(ignored[0], dataset.size(ignored[0]), max_positions) ) if len(ignored) > 0: logger.warning( ( "{} samples have invalid sizes and will be skipped, " "max_positions={}, first few sample ids={}" ).format(len(ignored), max_positions, ignored[:10]) ) return indices def filter_paired_dataset_indices_by_size(src_sizes, tgt_sizes, indices, max_sizes): """Filter a list of sample indices. Remove those that are longer than specified in max_sizes. Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if max_sizes is None: return indices, [] if type(max_sizes) in (int, float): max_src_size, max_tgt_size = max_sizes, max_sizes else: max_src_size, max_tgt_size = max_sizes if tgt_sizes is None: ignored = indices[src_sizes[indices] > max_src_size] else: ignored = indices[ (src_sizes[indices] > max_src_size) | (tgt_sizes[indices] > max_tgt_size) ] if len(ignored) > 0: if tgt_sizes is None: indices = indices[src_sizes[indices] <= max_src_size] else: indices = indices[ (src_sizes[indices] <= max_src_size) & (tgt_sizes[indices] <= max_tgt_size) ] return indices, ignored.tolist() def batch_by_size( indices, num_tokens_fn, num_tokens_vec=None, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, num_concat_batches=1, ): """ Yield mini-batches of indices bucketed by size. Batches may contain sequences of different lengths. Args: indices (List[int]): ordered list of dataset indices num_tokens_fn (callable): function that returns the number of tokens at a given index num_tokens_vec (List[int], optional): precomputed vector of the number of tokens for each index in indices (to enable faster batch generation) max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). required_batch_size_multiple (int, optional): require batch size to be less than N or a multiple of N (default: 1). """ # added int() to avoid TypeError: an integer is required max_tokens = int(max_tokens) if max_tokens is not None else -1 max_sentences = max_sentences if max_sentences is not None else -1 bsz_mult = required_batch_size_multiple if not isinstance(indices, np.ndarray): indices = np.fromiter(indices, dtype=np.int64, count=-1) if num_tokens_vec is not None and not isinstance(num_tokens_vec, np.ndarray): num_tokens_vec = np.fromiter(num_tokens_vec, dtype=np.int64, count=-1) assert num_tokens_vec is None # XXX(Adrian) erase if redundant num_tokens_vec = np.zeros(indices.shape[0], dtype=np.int64) for pos in range(indices.shape[0]): num_tokens_vec[pos] = num_tokens_fn(indices[pos]) assert max_tokens <= 0 or np.max(num_tokens_vec) <= max_tokens, ( f"Sentences lengths should not exceed max_tokens={max_tokens}" ) if indices.shape[0] == 0: return [] batches = batch_by_size_vec(indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult) if num_concat_batches > 1: # Concatenate subsequent batches ga = num_concat_batches grouped = [batches[i*ga:(i+1)*ga] for i in range(len(batches) // ga)] grouped_batches = [np.concatenate(g) for g in grouped] return grouped_batches, batches else: return batches, batches def post_process(sentence: str, symbol: str): if symbol == "sentencepiece": sentence = sentence.replace(" ", "").replace("\u2581", " ").strip() elif symbol == "wordpiece": sentence = sentence.replace(" ", "").replace("_", " ").strip() elif symbol == "letter": sentence = sentence.replace(" ", "").replace("|", " ").strip() elif symbol == "silence": import re sentence = sentence.replace("<SIL>", "") sentence = re.sub(' +', ' ', sentence).strip() elif symbol == "_EOW": sentence = sentence.replace(" ", "").replace("_EOW", " ").strip() elif symbol in {"subword_nmt", "@@ ", "@@"}: if symbol == "subword_nmt": symbol = "@@ " sentence = (sentence + " ").replace(symbol, "").rstrip() elif symbol == "none": pass elif symbol is not None: raise NotImplementedError(f"Unknown post_process option: {symbol}") return sentence def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, require_same_masks: bool = True, mask_dropout: float = 0.0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample mask_dropout: randomly dropout this percentage of masks in each example """ assert require_same_masks assert mask_dropout == 0.0 bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) min_len = float("inf") mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask def get_lengths(num_mask): if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise ValueError("unknown mask selection " + mask_type) return lengths lengths = get_lengths(num_mask) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) mask_idc = np.unique(mask_idc[mask_idc < sz]) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len and require_same_masks: mask_idc = np.random.choice(mask_idc, min_len, replace=False) if mask_dropout > 0: num_holes = np.rint(len(mask_idc) * mask_dropout).astype(int) mask_idc = np.random.choice( mask_idc, len(mask_idc) - num_holes, replace=False ) mask[i, mask_idc] = True return mask def get_mem_usage(): try: import psutil mb = 1024 * 1024 return f"used={psutil.virtual_memory().used / mb}Mb; avail={psutil.virtual_memory().available / mb}Mb" except ImportError: return "N/A" def get_buckets(sizes, num_buckets): buckets = np.unique( np.percentile( sizes, np.linspace(0, 100, num_buckets + 1), interpolation='lower', )[1:] ) return buckets def get_bucketed_sizes(orig_sizes, buckets): sizes = np.copy(orig_sizes) assert np.min(sizes) >= 0 start_val = -1 for end_val in buckets: mask = (sizes > start_val) & (sizes <= end_val) sizes[mask] = end_val start_val = end_val return sizes def _find_extra_valid_paths(dataset_path: str) -> set: paths = utils.split_paths(dataset_path) all_valid_paths = set() for sub_dir in paths: contents = PathManager.ls(sub_dir) valid_paths = [c for c in contents if re.match("valid*[0-9].*", c) is not None] all_valid_paths |= {os.path.basename(p) for p in valid_paths} # Remove .bin, .idx etc roots = {os.path.splitext(p)[0] for p in all_valid_paths} return roots
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/data/data_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import Counter from multiprocessing import Pool import torch from common.fairseq import utils from common.fairseq.data import data_utils from common.fairseq.file_chunker_utils import Chunker, find_offsets from common.fairseq.file_io import PathManager from common.fairseq.tokenizer import tokenize_line class Dictionary: """A mapping from symbols to consecutive integers""" def __init__( self, *, # begin keyword-only arguments bos="<s>", pad="<pad>", eos="</s>", unk="<unk>", extra_special_symbols=None, ): self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos self.symbols = [] self.count = [] self.indices = {} self.bos_index = self.add_symbol(bos) self.pad_index = self.add_symbol(pad) self.eos_index = self.add_symbol(eos) self.unk_index = self.add_symbol(unk) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(s) self.nspecial = len(self.symbols) def __eq__(self, other): return self.indices == other.indices def __getitem__(self, idx): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def get_count(self, idx): return self.count[idx] def __len__(self): """Returns the number of symbols in the dictionary""" return len(self.symbols) def __contains__(self, sym): return sym in self.indices def index(self, sym): """Returns the index of the specified symbol""" assert isinstance(sym, str) if sym in self.indices: return self.indices[sym] return self.unk_index def string( self, tensor, bpe_symbol=None, escape_unk=False, extra_symbols_to_ignore=None, unk_string=None, include_eos=False, separator=" ", ): """Helper for converting a tensor of token indices to a string. Can optionally remove BPE symbols or escape <unk> words. """ if torch.is_tensor(tensor) and tensor.dim() == 2: return "\n".join( self.string( t, bpe_symbol, escape_unk, extra_symbols_to_ignore, include_eos=include_eos, ) for t in tensor ) extra_symbols_to_ignore = set(extra_symbols_to_ignore or []) extra_symbols_to_ignore.add(self.eos()) def token_string(i): if i == self.unk(): if unk_string is not None: return unk_string else: return self.unk_string(escape_unk) else: return self[i] if hasattr(self, "bos_index"): extra_symbols_to_ignore.add(self.bos()) sent = separator.join( token_string(i) for i in tensor if utils.item(i) not in extra_symbols_to_ignore ) return data_utils.post_process(sent, bpe_symbol) def unk_string(self, escape=False): """Return unknown string, optionally escaped as: <<unk>>""" if escape: return "<{}>".format(self.unk_word) else: return self.unk_word def add_symbol(self, word, n=1, overwrite=False): """Adds a word to the dictionary""" if word in self.indices and not overwrite: idx = self.indices[word] self.count[idx] = self.count[idx] + n return idx else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(n) return idx def update(self, new_dict): """Updates counts from new dictionary.""" for word in new_dict.symbols: idx2 = new_dict.indices[word] if word in self.indices: idx = self.indices[word] self.count[idx] = self.count[idx] + new_dict.count[idx2] else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(new_dict.count[idx2]) def finalize(self, threshold=-1, nwords=-1, padding_factor=8): """Sort symbols by frequency in descending order, ignoring special ones. Args: - threshold defines the minimum word count - nwords defines the total number of words in the final dictionary, including special symbols - padding_factor can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ if nwords <= 0: nwords = len(self) new_indices = dict(zip(self.symbols[: self.nspecial], range(self.nspecial))) new_symbols = self.symbols[: self.nspecial] new_count = self.count[: self.nspecial] c = Counter( dict( sorted(zip(self.symbols[self.nspecial :], self.count[self.nspecial :])) ) ) for symbol, count in c.most_common(nwords - self.nspecial): if count >= threshold: new_indices[symbol] = len(new_symbols) new_symbols.append(symbol) new_count.append(count) else: break assert len(new_symbols) == len(new_indices) self.count = list(new_count) self.symbols = list(new_symbols) self.indices = new_indices self.pad_to_multiple_(padding_factor) def pad_to_multiple_(self, padding_factor): """Pad Dictionary size to be a multiple of *padding_factor*.""" if padding_factor > 1: i = 0 while len(self) % padding_factor != 0: symbol = "madeupword{:04d}".format(i) self.add_symbol(symbol, n=0) i += 1 def bos(self): """Helper to get index of beginning-of-sentence symbol""" return self.bos_index def pad(self): """Helper to get index of pad symbol""" return self.pad_index def eos(self): """Helper to get index of end-of-sentence symbol""" return self.eos_index def unk(self): """Helper to get index of unk symbol""" return self.unk_index @classmethod def load(cls, f): """Loads the dictionary from a text file with the format: ``` <symbol0> <count0> <symbol1> <count1> ... ``` """ d = cls() d.add_from_file(f) return d def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(PathManager.get_local_path(f), "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception( "Incorrect encoding detected in {}, please " "rebuild the dataset".format(f) ) return lines = f.readlines() indices_start_line = self._load_meta(lines) for line in lines[indices_start_line:]: try: line, field = line.rstrip().rsplit(" ", 1) if field == "#fairseq:overwrite": overwrite = True line, field = line.rsplit(" ", 1) else: overwrite = False count = int(field) word = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(word) ) self.add_symbol(word, n=count, overwrite=overwrite) except ValueError: raise ValueError( "Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _save(self, f, kv_iterator): if isinstance(f, str): PathManager.mkdirs(os.path.dirname(f)) with PathManager.open(f, "w", encoding="utf-8") as fd: return self.save(fd) for k, v in kv_iterator: print("{} {}".format(k, v), file=f) def _get_meta(self): return [], [] def _load_meta(self, lines): return 0 def save(self, f): """Stores dictionary into a text file""" ex_keys, ex_vals = self._get_meta() self._save( f, zip( ex_keys + self.symbols[self.nspecial :], ex_vals + self.count[self.nspecial :], ), ) def dummy_sentence(self, length): t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long() t[-1] = self.eos() return t def encode_line( self, line, line_tokenizer=tokenize_line, add_if_not_exist=True, consumer=None, append_eos=True, reverse_order=False, ) -> torch.IntTensor: words = line_tokenizer(line) if reverse_order: words = list(reversed(words)) nwords = len(words) ids = torch.IntTensor(nwords + 1 if append_eos else nwords) for i, word in enumerate(words): if add_if_not_exist: idx = self.add_symbol(word) else: idx = self.index(word) if consumer is not None: consumer(word, idx) ids[i] = idx if append_eos: ids[nwords] = self.eos_index return ids @staticmethod def _add_file_to_dictionary_single_worker( filename, tokenize, eos_word, start_offset, end_offset, ): counter = Counter() with Chunker(filename, start_offset, end_offset) as line_iterator: for line in line_iterator: for word in tokenize(line): counter.update([word]) counter.update([eos_word]) return counter @staticmethod def add_file_to_dictionary(filename, dict, tokenize, num_workers): def merge_result(counter): for w, c in sorted(counter.items()): dict.add_symbol(w, c) local_file = PathManager.get_local_path(filename) offsets = find_offsets(local_file, num_workers) if num_workers > 1: chunks = zip(offsets, offsets[1:]) pool = Pool(processes=num_workers) results = [] for (start_offset, end_offset) in chunks: results.append( pool.apply_async( Dictionary._add_file_to_dictionary_single_worker, ( local_file, tokenize, dict.eos_word, start_offset, end_offset, ), ) ) pool.close() pool.join() for r in results: merge_result(r.get()) else: merge_result( Dictionary._add_file_to_dictionary_single_worker( local_file, tokenize, dict.eos_word, offsets[0], offsets[1] ) )
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/data/dictionary.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from . import data_utils class BaseWrapperDataset(torch.utils.data.Dataset): def __init__(self, dataset): super().__init__() self.dataset = dataset def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) @property def sizes(self): return self.dataset.sizes def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): return self.dataset.size(index) def ordered_indices(self): return self.dataset.ordered_indices() def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, num_concat_batches=1, ): return self.dataset.batch_by_size( indices, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, num_concat_batches=num_concat_batches, ) def filter_indices_by_size(self, indices, max_sizes): return self.dataset.filter_indices_by_size(indices, max_sizes) class AddTargetDataset(BaseWrapperDataset): def __init__( self, dataset, labels, pad, eos, batch_targets, process_label=None, add_to_input=False, ): super().__init__(dataset) self.labels = labels self.batch_targets = batch_targets self.pad = pad self.eos = eos self.process_label = process_label self.add_to_input = add_to_input def get_label(self, index): return ( self.labels[index] if self.process_label is None else self.process_label(self.labels[index]) ) def __getitem__(self, index): item = self.dataset[index] item["label"] = self.get_label(index) return item def size(self, index): sz = self.dataset.size(index) own_sz = len(self.get_label(index)) return (sz, own_sz) def collater(self, samples): collated = self.dataset.collater(samples) if len(collated) == 0: return collated indices = set(collated["id"].tolist()) target = [s["label"] for s in samples if s["id"] in indices] if self.batch_targets: collated["target_lengths"] = torch.LongTensor([len(t) for t in target]) target = data_utils.collate_tokens(target, pad_idx=self.pad, left_pad=False) collated["ntokens"] = collated["target_lengths"].sum().item() else: collated["ntokens"] = sum([len(t) for t in target]) collated["target"] = target if self.add_to_input: eos = target.new_full((target.size(0), 1), self.eos) collated["target"] = torch.cat([target, eos], dim=-1).long() collated["net_input"]["prev_output_tokens"] = torch.cat( [eos, target], dim=-1 ).long() collated["ntokens"] += target.size(0) return collated def __setattr__(self, attr, val): if attr == "batch_ids": self.dataset.batch_ids = val else: super().__setattr__(attr, val)
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/data/add_target_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import BinaryIO, Optional, Tuple, Union, List import numpy as np import torch SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"} FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"} def _convert_to_mono( waveform: torch.FloatTensor, sample_rate: int ) -> torch.FloatTensor: if waveform.shape[0] > 1: try: import torchaudio.sox_effects as ta_sox except ImportError: raise ImportError( "Please install torchaudio to convert multi-channel audios" ) effects = [['channels', '1']] return ta_sox.apply_effects_tensor(waveform, sample_rate, effects)[0] return waveform def convert_to_mono(waveform: np.ndarray, sample_rate: int) -> np.ndarray: if waveform.shape[0] > 1: _waveform = torch.from_numpy(waveform) return _convert_to_mono(_waveform, sample_rate).numpy() return waveform def get_waveform( path_or_fp: Union[str, BinaryIO], normalization=True, mono=True, frames=-1, start=0, always_2d=True ) -> Tuple[np.ndarray, int]: """Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio. Args: path_or_fp (str or BinaryIO): the path or file-like object normalization (bool): Normalize values to [-1, 1] (Default: True) mono (bool): convert multi-channel audio to mono-channel one frames (int): the number of frames to read. (-1 for reading all) start (int): Where to start reading. A negative value counts from the end. always_2d (bool): always return 2D array even for mono-channel audios Returns: waveform (numpy.ndarray): 1D or 2D waveform (channels x length) sample_rate (float): sample rate """ if isinstance(path_or_fp, str): ext = Path(path_or_fp).suffix if ext not in SF_AUDIO_FILE_EXTENSIONS: raise ValueError(f"Unsupported audio format: {ext}") try: import soundfile as sf except ImportError: raise ImportError( "Please install soundfile to load WAV/FLAC/OGG Vorbis audios" ) waveform, sample_rate = sf.read( path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start ) waveform = waveform.T # T x C -> C x T if mono and waveform.shape[0] > 1: waveform = convert_to_mono(waveform, sample_rate) if not normalization: waveform *= 2 ** 15 # denormalized to 16-bit signed integers if not always_2d: waveform = waveform.squeeze(axis=0) return waveform, sample_rate def _get_kaldi_fbank( waveform: np.ndarray, sample_rate: int, n_bins=80 ) -> Optional[np.ndarray]: """Get mel-filter bank features via PyKaldi.""" try: from kaldi.feat.mel import MelBanksOptions from kaldi.feat.fbank import FbankOptions, Fbank from kaldi.feat.window import FrameExtractionOptions from kaldi.matrix import Vector mel_opts = MelBanksOptions() mel_opts.num_bins = n_bins frame_opts = FrameExtractionOptions() frame_opts.samp_freq = sample_rate opts = FbankOptions() opts.mel_opts = mel_opts opts.frame_opts = frame_opts fbank = Fbank(opts=opts) features = fbank.compute(Vector(waveform.squeeze()), 1.0).numpy() return features except ImportError: return None def _get_torchaudio_fbank( waveform: np.ndarray, sample_rate, n_bins=80 ) -> Optional[np.ndarray]: """Get mel-filter bank features via TorchAudio.""" try: import torchaudio.compliance.kaldi as ta_kaldi waveform = torch.from_numpy(waveform) features = ta_kaldi.fbank( waveform, num_mel_bins=n_bins, sample_frequency=sample_rate ) return features.numpy() except ImportError: return None def get_fbank(path_or_fp: Union[str, BinaryIO], n_bins=80) -> np.ndarray: """Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi (faster CPP implementation) to TorchAudio (Python implementation). Note that Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized.""" waveform, sample_rate = get_waveform(path_or_fp, normalization=False) features = _get_kaldi_fbank(waveform, sample_rate, n_bins) if features is None: features = _get_torchaudio_fbank(waveform, sample_rate, n_bins) if features is None: raise ImportError( "Please install pyKaldi or torchaudio to enable " "online filterbank feature extraction" ) return features def is_npy_data(data: bytes) -> bool: return data[0] == 147 and data[1] == 78 def is_sf_audio_data(data: bytes) -> bool: is_wav = (data[0] == 82 and data[1] == 73 and data[2] == 70) is_flac = (data[0] == 102 and data[1] == 76 and data[2] == 97) is_ogg = (data[0] == 79 and data[1] == 103 and data[2] == 103) return is_wav or is_flac or is_ogg def read_from_stored_zip(zip_path: str, offset: int, file_size: int) -> bytes: with open(zip_path, "rb") as f: f.seek(offset) data = f.read(file_size) return data def parse_path(path: str) -> Tuple[str, List[int]]: """Parse data path which is either a path to 1. a .npy/.wav/.flac/.ogg file 2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]" Args: path (str): the data path to parse Returns: file_path (str): the file path slice_ptr (list of int): empty in case 1; byte offset and length for the slice in case 2 """ if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: _path, slice_ptr = path, [] else: _path, *slice_ptr = path.split(":") if not Path(_path).is_file(): raise FileNotFoundError(f"File not found: {_path}") assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}" slice_ptr = [int(i) for i in slice_ptr] return _path, slice_ptr
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/data/audio/audio_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import logging import os import sys from itertools import groupby import numpy as np import torch import torch.nn.functional as F import torch.utils from common.fairseq.data import data_utils from common.fairseq.data.audio.audio_utils import ( parse_path, read_from_stored_zip, is_sf_audio_data, ) from common.fairseq.data.data_utils import ( compute_mask_indices, get_bucketed_sizes, get_buckets, ) from common.utils import print_once logger = logging.getLogger(__name__) class RawAudioDataset(torch.utils.data.Dataset): def __init__( self, sample_rate, max_sample_size=None, min_sample_size=0, shuffle=True, pad=False, normalize=False, compute_mask_indices=False, **mask_compute_kwargs, ): super().__init__() self.sample_rate = sample_rate self.sizes = [] self.max_sample_size = ( max_sample_size if max_sample_size is not None else sys.maxsize ) self.min_sample_size = min_sample_size self.pad = pad self.shuffle = shuffle self.normalize = normalize self.compute_mask_indices = compute_mask_indices if self.compute_mask_indices: self.mask_compute_kwargs = mask_compute_kwargs self._features_size_map = {} self._C = mask_compute_kwargs["encoder_embed_dim"] self._conv_feature_layers = eval(mask_compute_kwargs["conv_feature_layers"]) def __getitem__(self, index): raise NotImplementedError() def __len__(self): return len(self.sizes) def postprocess(self, feats, curr_sample_rate): if feats.dim() == 2: feats = feats.mean(-1) if curr_sample_rate != self.sample_rate: raise Exception(f"sample rate: {curr_sample_rate}, need {self.sample_rate}") assert feats.dim() == 1, feats.dim() if self.normalize: with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) return feats def crop_to_max_size(self, wav, target_size): size = len(wav) diff = size - target_size if diff <= 0: return wav start = np.random.randint(0, diff + 1) end = size - diff + start return wav[start:end] def _compute_mask_indices(self, dims, padding_mask): B, T, C = dims mask_indices, mask_channel_indices = None, None if self.mask_compute_kwargs["mask_prob"] > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_compute_kwargs["mask_prob"], self.mask_compute_kwargs["mask_length"], self.mask_compute_kwargs["mask_selection"], self.mask_compute_kwargs["mask_other"], min_masks=2, no_overlap=self.mask_compute_kwargs["no_mask_overlap"], min_space=self.mask_compute_kwargs["mask_min_space"], ) mask_indices = torch.from_numpy(mask_indices) if self.mask_compute_kwargs["mask_channel_prob"] > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_compute_kwargs["mask_channel_prob"], self.mask_compute_kwargs["mask_channel_length"], self.mask_compute_kwargs["mask_channel_selection"], self.mask_compute_kwargs["mask_channel_other"], no_overlap=self.mask_compute_kwargs["no_mask_channel_overlap"], min_space=self.mask_compute_kwargs["mask_channel_min_space"], ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices).unsqueeze(1).expand(-1, T, -1) ) return mask_indices, mask_channel_indices @staticmethod def _bucket_tensor(tensor, num_pad, value): return F.pad(tensor, (0, num_pad), value=value) def collater(self, samples): samples = [s for s in samples if s["source"] is not None] if len(samples) == 0: return {} sources = [s["source"] for s in samples] sizes = [len(s) for s in sources] if self.pad: target_size = min(max(sizes), self.max_sample_size) else: target_size = min(min(sizes), self.max_sample_size) input, out = {}, {} if "batch_id" in samples[0]: # The data for wav2vec 2.0 is sorted by len and cut into batches. # We concat --num_concat_batches together to better utilize GPUs. # Yet, we split them back to calculate masking, sample negatives, # and calculate loss, as these ops are dependent on batch size. # In order to split, we need to remember original (sub)batch ids. batch_inds = [s['batch_id'] for s in samples] sub_batch_lens = [len(list(b)) for _, b in groupby(batch_inds)] starts_ends = np.cumsum([0] + sub_batch_lens) target_sizes = np.array( [min(max(sizes[s:e]), self.max_sample_size) for s, e in zip(starts_ends[:-1], starts_ends[1:])] ) out["sub_batch_sizes"] = torch.LongTensor(sub_batch_lens) out["sub_batch_lens"] = torch.LongTensor(target_sizes) collated_sources = sources[0].new_zeros(len(sources), target_size) padding_mask = ( torch.BoolTensor(collated_sources.shape).fill_(False) if self.pad else None ) for i, (source, size) in enumerate(zip(sources, sizes)): diff = size - target_size if diff == 0: collated_sources[i] = source elif diff > 0: collated_sources[i] = self.crop_to_max_size(source, target_size) else: # diff < 0: assert self.pad collated_sources[i] = torch.cat( [source, source.new_full((-diff,), 0.0)] ) padding_mask[i, diff:] = True input["source"] = collated_sources out["id"] = torch.LongTensor([s["id"] for s in samples]) if self.pad: input["padding_mask"] = padding_mask if hasattr(self, "num_buckets") and self.num_buckets > 0: assert self.pad, "Cannot bucket without padding first." bucket = max(self._bucketed_sizes[s["id"]] for s in samples) num_pad = bucket - collated_sources.size(-1) if num_pad: input["source"] = self._bucket_tensor(collated_sources, num_pad, 0) input["padding_mask"] = self._bucket_tensor(padding_mask, num_pad, True) if self.compute_mask_indices: B = input["source"].size(0) T = self._get_mask_indices_dims(input["source"].size(-1)) padding_mask_reshaped = input["padding_mask"].clone() extra = padding_mask_reshaped.size(1) % T if extra > 0: padding_mask_reshaped = padding_mask_reshaped[:, :-extra] padding_mask_reshaped = padding_mask_reshaped.view( padding_mask_reshaped.size(0), T, -1 ) padding_mask_reshaped = padding_mask_reshaped.all(-1) input["padding_count"] = padding_mask_reshaped.sum(-1).max().item() mask_indices, mask_channel_indices = self._compute_mask_indices( (B, T, self._C), padding_mask_reshaped, ) input["mask_indices"] = mask_indices input["mask_channel_indices"] = mask_channel_indices out["sample_size"] = mask_indices.sum().item() out["net_input"] = input return out def _get_mask_indices_dims(self, size, padding=0, dilation=1): if size not in self._features_size_map: L_in = size for (_, kernel_size, stride) in self._conv_feature_layers: L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1 L_out = 1 + L_out // stride L_in = L_out self._features_size_map[size] = L_out return self._features_size_map[size] def num_tokens(self, index): return self.size(index) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" if self.pad: return self.sizes[index] return min(self.sizes[index], self.max_sample_size) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: order = [np.random.permutation(len(self))] order.append( np.minimum( np.array(self.sizes), self.max_sample_size, ) ) return np.lexsort(order)[::-1] else: return np.arange(len(self)) def set_bucket_info(self, num_buckets): self.num_buckets = num_buckets if self.num_buckets > 0: self._collated_sizes = np.minimum( np.array(self.sizes), self.max_sample_size, ) self.buckets = get_buckets( self._collated_sizes, self.num_buckets, ) self._bucketed_sizes = get_bucketed_sizes( self._collated_sizes, self.buckets ) logger.info( f"{len(self.buckets)} bucket(s) for the audio dataset: " f"{self.buckets}" ) def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, num_concat_batches=1, ): """ Given an ordered set of indices, return batches according to *max_tokens*, *max_sentences* and *required_batch_size_multiple*. """ from common.fairseq.data import data_utils return data_utils.batch_by_size( indices, num_tokens_fn=self.num_tokens, num_tokens_vec=None, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, num_concat_batches=num_concat_batches, ) def filter_indices_by_size(self, indices, max_sizes): """ Filter a list of sample indices. Remove those that are longer than specified in *max_sizes*. WARNING: don't update, override method in child classes Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if isinstance(max_sizes, float) or isinstance(max_sizes, int): if hasattr(self, "sizes") and isinstance(self.sizes, np.ndarray): ignored = indices[self.sizes[indices] > max_sizes].tolist() indices = indices[self.sizes[indices] <= max_sizes] elif ( hasattr(self, "sizes") and isinstance(self.sizes, list) and len(self.sizes) == 1 ): ignored = indices[self.sizes[0][indices] > max_sizes].tolist() indices = indices[self.sizes[0][indices] <= max_sizes] else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) return indices, ignored class FileAudioDataset(RawAudioDataset): def __init__( self, manifest_path, sample_rate, max_sample_size=None, min_sample_size=0, shuffle=True, pad=False, normalize=False, num_buckets=0, compute_mask_indices=False, **mask_compute_kwargs, ): super().__init__( sample_rate=sample_rate, max_sample_size=max_sample_size, min_sample_size=min_sample_size, shuffle=shuffle, pad=pad, normalize=normalize, compute_mask_indices=compute_mask_indices, **mask_compute_kwargs, ) skipped = 0 self.fnames = [] sizes = [] self.skipped_indices = set() with open(manifest_path, "r") as f: self.root_dir = f.readline().strip() for i, line in enumerate(f): items = line.strip().split("\t") assert len(items) == 2, line sz = int(items[1]) if min_sample_size is not None and sz < min_sample_size: skipped += 1 self.skipped_indices.add(i) continue self.fnames.append(items[0]) sizes.append(sz) print_once(f"loaded {len(self.fnames)}, skipped {skipped} samples") self.sizes = np.array(sizes, dtype=np.int64) try: import pyarrow self.fnames = pyarrow.array(self.fnames) except: logger.debug("Could not create a pyarrow array. " "Please install pyarrow for better performance") pass self.set_bucket_info(num_buckets) def __getitem__(self, index): import soundfile as sf path_or_fp = os.path.join(self.root_dir, str(self.fnames[index])) _path, slice_ptr = parse_path(path_or_fp) if len(slice_ptr) == 2: byte_data = read_from_stored_zip(_path, slice_ptr[0], slice_ptr[1]) assert is_sf_audio_data(byte_data) path_or_fp = io.BytesIO(byte_data) try: wav, curr_sample_rate = sf.read(path_or_fp, dtype="float32") except RuntimeError as e: if not os.path.isfile(path_or_fp): raise FileNotFoundError(path_or_fp) else: raise e feats = torch.from_numpy(wav).float() feats = self.postprocess(feats, curr_sample_rate) ret = {"id": index, "source": feats} if hasattr(self, 'batch_ids'): ret['batch_id'] = self.batch_ids[index] return ret
DeepLearningExamples-master
PyTorch/SpeechRecognition/wav2vec2/common/fairseq/data/audio/raw_audio_dataset.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import copy import os import random import time import torch import amp_C import numpy as np import torch.distributed as dist from apex.optimizers import FusedLAMB, FusedNovoGrad from contextlib import suppress as empty_context from common import helpers from common.dali.data_loader import DaliDataLoader from common.dataset import AudioDataset, get_data_loader from common.features import BaseFeatures, FilterbankFeatures from common.helpers import (Checkpointer, greedy_wer, num_weights, print_once, process_evaluation_epoch) from common.optimizers import AdamW, lr_policy, Novograd from common.tb_dllogger import flush_log, init_log, log from common.utils import BenchmarkStats from quartznet import config from quartznet.model import CTCLossNM, GreedyCTCDecoder, QuartzNet def parse_args(): parser = argparse.ArgumentParser(description='QuartzNet') training = parser.add_argument_group('training setup') training.add_argument('--epochs', default=400, type=int, help='Number of epochs for the entire training; influences the lr schedule') training.add_argument("--warmup_epochs", default=0, type=int, help='Initial epochs of increasing learning rate') training.add_argument("--hold_epochs", default=0, type=int, help='Constant max learning rate epochs after warmup') training.add_argument('--epochs_this_job', default=0, type=int, help=('Run for a number of epochs with no effect on the lr schedule.' 'Useful for re-starting the training.')) training.add_argument('--cudnn_benchmark', action='store_true', default=True, help='Enable cudnn benchmark') training.add_argument('--amp', '--fp16', action='store_true', default=False, help='Use pytorch native mixed precision training') training.add_argument('--seed', default=None, type=int, help='Random seed') training.add_argument('--local_rank', '--local-rank', default=os.getenv('LOCAL_RANK', 0), type=int, help='GPU id used for distributed training') training.add_argument('--pre_allocate_range', default=None, type=int, nargs=2, help='Warmup with batches of length [min, max] before training') optim = parser.add_argument_group('optimization setup') optim.add_argument('--gpu_batch_size', default=32, type=int, help='Batch size for a single forward/backward pass. ' 'The Effective batch size is gpu_batch_size * grad_accumulation.') optim.add_argument('--lr', default=1e-3, type=float, help='Peak learning rate') optim.add_argument("--min_lr", default=1e-5, type=float, help='minimum learning rate') optim.add_argument("--lr_policy", default='exponential', type=str, choices=['exponential', 'legacy'], help='lr scheduler') optim.add_argument("--lr_exp_gamma", default=0.99, type=float, help='gamma factor for exponential lr scheduler') optim.add_argument('--weight_decay', default=1e-3, type=float, help='Weight decay for the optimizer') optim.add_argument('--grad_accumulation', '--update-freq', default=1, type=int, help='Number of accumulation steps') optim.add_argument('--optimizer', default='novograd', type=str, choices=['novograd', 'adamw', 'lamb98', 'fused_novograd'], help='Optimization algorithm') optim.add_argument('--ema', type=float, default=0.0, help='Discount factor for exp averaging of model weights') optim.add_argument('--multi_tensor_ema', action='store_true', help='Use multi_tensor_apply for EMA') io = parser.add_argument_group('feature and checkpointing setup') io.add_argument('--dali_device', type=str, choices=['none', 'cpu', 'gpu'], default='gpu', help='Use DALI pipeline for fast data processing') io.add_argument('--resume', action='store_true', help='Try to resume from last saved checkpoint.') io.add_argument('--ckpt', default=None, type=str, help='Path to a checkpoint for resuming training') io.add_argument('--save_frequency', default=10, type=int, help='Checkpoint saving frequency in epochs') io.add_argument('--keep_milestones', default=[100, 200, 300], type=int, nargs='+', help='Milestone checkpoints to keep from removing') io.add_argument('--save_best_from', default=380, type=int, help='Epoch on which to begin tracking best checkpoint (dev WER)') io.add_argument('--eval_frequency', default=200, type=int, help='Number of steps between evaluations on dev set') io.add_argument('--log_frequency', default=25, type=int, help='Number of steps between printing training stats') io.add_argument('--prediction_frequency', default=100, type=int, help='Number of steps between printing sample decodings') io.add_argument('--model_config', type=str, required=True, help='Path of the model configuration file') io.add_argument('--train_manifests', type=str, required=True, nargs='+', help='Paths of the training dataset manifest file') io.add_argument('--val_manifests', type=str, required=True, nargs='+', help='Paths of the evaluation datasets manifest files') io.add_argument('--dataset_dir', required=True, type=str, help='Root dir of dataset') io.add_argument('--output_dir', type=str, required=True, help='Directory for logs and checkpoints') io.add_argument('--log_file', type=str, default=None, help='Path to save the training logfile.') io.add_argument('--benchmark_epochs_num', type=int, default=1, help='Number of epochs accounted in final average throughput.') io.add_argument('--override_config', type=str, action='append', help='Overrides arbitrary config value.' ' Syntax: `--override_config nested.config.key=val`.') return parser.parse_args() def reduce_tensor(tensor, num_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) return rt.true_divide(num_gpus) def init_multi_tensor_ema(model, ema_model): model_weights = list(model.state_dict().values()) ema_model_weights = list(ema_model.state_dict().values()) ema_overflow_buf = torch.cuda.IntTensor([0]) return model_weights, ema_model_weights, ema_overflow_buf def apply_multi_tensor_ema(decay, model_weights, ema_model_weights, overflow_buf): amp_C.multi_tensor_axpby( 65536, overflow_buf, [ema_model_weights, model_weights, ema_model_weights], decay, 1-decay, -1) def apply_ema(model, ema_model, decay): if not decay: return sd = getattr(model, 'module', model).state_dict() for k, v in ema_model.state_dict().items(): v.copy_(decay * v + (1 - decay) * sd[k]) @torch.no_grad() def evaluate(epoch, step, val_loader, val_feat_proc, labels, model, ema_model, ctc_loss, greedy_decoder, use_amp, use_dali=False): for model, subset in [(model, 'dev'), (ema_model, 'dev_ema')]: if model is None: continue model.eval() torch.cuda.synchronize() start_time = time.time() agg = {'losses': [], 'preds': [], 'txts': []} for batch in val_loader: if use_dali: # with DALI, the data is already on GPU feat, feat_lens, txt, txt_lens = batch if val_feat_proc is not None: feat, feat_lens = val_feat_proc(feat, feat_lens) else: batch = [t.cuda(non_blocking=True) for t in batch] audio, audio_lens, txt, txt_lens = batch feat, feat_lens = val_feat_proc(audio, audio_lens) with torch.cuda.amp.autocast(enabled=use_amp): log_probs, enc_lens = model(feat, feat_lens) loss = ctc_loss(log_probs, txt, enc_lens, txt_lens) pred = greedy_decoder(log_probs) agg['losses'] += helpers.gather_losses([loss]) agg['preds'] += helpers.gather_predictions([pred], labels) agg['txts'] += helpers.gather_transcripts([txt], [txt_lens], labels) wer, loss = process_evaluation_epoch(agg) torch.cuda.synchronize() log(() if epoch is None else (epoch,), step, subset, {'loss': loss, 'wer': 100.0 * wer, 'took': time.time() - start_time}) model.train() return wer def main(): args = parse_args() assert(torch.cuda.is_available()) assert args.prediction_frequency % args.log_frequency == 0 torch.backends.cudnn.benchmark = args.cudnn_benchmark # set up distributed training multi_gpu = int(os.environ.get('WORLD_SIZE', 1)) > 1 if multi_gpu: torch.cuda.set_device(args.local_rank) dist.init_process_group(backend='nccl', init_method='env://') world_size = dist.get_world_size() print_once(f'Distributed training with {world_size} GPUs\n') else: world_size = 1 if args.seed is not None: torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) random.seed(args.seed + args.local_rank) init_log(args) cfg = config.load(args.model_config) config.apply_config_overrides(cfg, args) symbols = helpers.add_ctc_blank(cfg['labels']) assert args.grad_accumulation >= 1 batch_size = args.gpu_batch_size print_once('Setting up datasets...') train_dataset_kw, train_features_kw = config.input(cfg, 'train') val_dataset_kw, val_features_kw = config.input(cfg, 'val') use_dali = args.dali_device in ('cpu', 'gpu') if use_dali: assert train_dataset_kw['ignore_offline_speed_perturbation'], \ "DALI doesn't support offline speed perturbation" # pad_to_max_duration is not supported by DALI - have simple padders if train_features_kw['pad_to_max_duration']: train_feat_proc = BaseFeatures( pad_align=train_features_kw['pad_align'], pad_to_max_duration=True, max_duration=train_features_kw['max_duration'], sample_rate=train_features_kw['sample_rate'], window_size=train_features_kw['window_size'], window_stride=train_features_kw['window_stride']) train_features_kw['pad_to_max_duration'] = False else: train_feat_proc = None if val_features_kw['pad_to_max_duration']: val_feat_proc = BaseFeatures( pad_align=val_features_kw['pad_align'], pad_to_max_duration=True, max_duration=val_features_kw['max_duration'], sample_rate=val_features_kw['sample_rate'], window_size=val_features_kw['window_size'], window_stride=val_features_kw['window_stride']) val_features_kw['pad_to_max_duration'] = False else: val_feat_proc = None train_loader = DaliDataLoader(gpu_id=args.local_rank, dataset_path=args.dataset_dir, config_data=train_dataset_kw, config_features=train_features_kw, json_names=args.train_manifests, batch_size=batch_size, grad_accumulation_steps=args.grad_accumulation, pipeline_type="train", device_type=args.dali_device, symbols=symbols) val_loader = DaliDataLoader(gpu_id=args.local_rank, dataset_path=args.dataset_dir, config_data=val_dataset_kw, config_features=val_features_kw, json_names=args.val_manifests, batch_size=batch_size, pipeline_type="val", device_type=args.dali_device, symbols=symbols) else: train_dataset_kw, train_features_kw = config.input(cfg, 'train') train_dataset = AudioDataset(args.dataset_dir, args.train_manifests, symbols, **train_dataset_kw) train_loader = get_data_loader(train_dataset, batch_size, multi_gpu=multi_gpu, shuffle=True, num_workers=4) train_feat_proc = FilterbankFeatures(**train_features_kw) val_dataset_kw, val_features_kw = config.input(cfg, 'val') val_dataset = AudioDataset(args.dataset_dir, args.val_manifests, symbols, **val_dataset_kw) val_loader = get_data_loader(val_dataset, batch_size, multi_gpu=multi_gpu, shuffle=False, num_workers=4, drop_last=False) val_feat_proc = FilterbankFeatures(**val_features_kw) dur = train_dataset.duration / 3600 dur_f = train_dataset.duration_filtered / 3600 nsampl = len(train_dataset) print_once(f'Training samples: {nsampl} ({dur:.1f}h, ' f'filtered {dur_f:.1f}h)') if train_feat_proc is not None: train_feat_proc.cuda() if val_feat_proc is not None: val_feat_proc.cuda() steps_per_epoch = len(train_loader) // args.grad_accumulation # set up the model model = QuartzNet(encoder_kw=config.encoder(cfg), decoder_kw=config.decoder(cfg, n_classes=len(symbols))) model.cuda() ctc_loss = CTCLossNM(n_classes=len(symbols)) greedy_decoder = GreedyCTCDecoder() print_once(f'Model size: {num_weights(model) / 10**6:.1f}M params\n') # optimization kw = {'lr': args.lr, 'weight_decay': args.weight_decay} if args.optimizer == "novograd": optimizer = Novograd(model.parameters(), **kw) elif args.optimizer == "adamw": optimizer = AdamW(model.parameters(), **kw) elif args.optimizer == 'lamb98': optimizer = FusedLAMB(model.parameters(), betas=(0.9, 0.98), eps=1e-9, **kw) elif args.optimizer == 'fused_novograd': optimizer = FusedNovoGrad(model.parameters(), betas=(0.95, 0), bias_correction=False, reg_inside_moment=True, grad_averaging=False, **kw) else: raise ValueError(f'Invalid optimizer "{args.optimizer}"') scaler = torch.cuda.amp.GradScaler(enabled=args.amp) adjust_lr = lambda step, epoch, optimizer: lr_policy( step, epoch, args.lr, optimizer, steps_per_epoch=steps_per_epoch, warmup_epochs=args.warmup_epochs, hold_epochs=args.hold_epochs, num_epochs=args.epochs, policy=args.lr_policy, min_lr=args.min_lr, exp_gamma=args.lr_exp_gamma) if args.ema > 0: ema_model = copy.deepcopy(model) else: ema_model = None if multi_gpu: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) # load checkpoint meta = {'best_wer': 10**6, 'start_epoch': 0} checkpointer = Checkpointer(args.output_dir, 'QuartzNet', args.keep_milestones) if args.resume: args.ckpt = checkpointer.last_checkpoint() or args.ckpt if args.ckpt is not None: checkpointer.load(args.ckpt, model, ema_model, optimizer, scaler, meta) start_epoch = meta['start_epoch'] best_wer = meta['best_wer'] epoch = 1 step = start_epoch * steps_per_epoch + 1 # training loop model.train() if args.ema > 0.0: mt_ema_params = init_multi_tensor_ema(model, ema_model) # ema_model_weight_list, model_weight_list, overflow_buf_for_ema = ema_ # pre-allocate if args.pre_allocate_range is not None: n_feats = train_features_kw['n_filt'] pad_align = train_features_kw['pad_align'] a, b = args.pre_allocate_range for n_frames in range(a, b + pad_align, pad_align): print_once(f'Pre-allocation ({batch_size}x{n_feats}x{n_frames})...') feat = torch.randn(batch_size, n_feats, n_frames, device='cuda') feat_lens = torch.ones(batch_size, device='cuda').fill_(n_frames) txt = torch.randint(high=len(symbols)-1, size=(batch_size, 100), device='cuda') txt_lens = torch.ones(batch_size, device='cuda').fill_(100) with torch.cuda.amp.autocast(enabled=args.amp): log_probs, enc_lens = model(feat, feat_lens) del feat loss = ctc_loss(log_probs, txt, enc_lens, txt_lens) loss.backward() model.zero_grad() torch.cuda.empty_cache() bmark_stats = BenchmarkStats() for epoch in range(start_epoch + 1, args.epochs + 1): if multi_gpu and not use_dali: train_loader.sampler.set_epoch(epoch) torch.cuda.synchronize() epoch_start_time = time.time() epoch_utts = 0 epoch_loss = 0 accumulated_batches = 0 for batch in train_loader: if accumulated_batches == 0: step_loss = 0 step_utts = 0 step_start_time = time.time() if use_dali: # with DALI, the data is already on GPU feat, feat_lens, txt, txt_lens = batch if train_feat_proc is not None: feat, feat_lens = train_feat_proc(feat, feat_lens) else: batch = [t.cuda(non_blocking=True) for t in batch] audio, audio_lens, txt, txt_lens = batch feat, feat_lens = train_feat_proc(audio, audio_lens) # Use context manager to prevent redundant accumulation of gradients if (multi_gpu and accumulated_batches + 1 < args.grad_accumulation): ctx = model.no_sync() else: ctx = empty_context() with ctx: with torch.cuda.amp.autocast(enabled=args.amp): log_probs, enc_lens = model(feat, feat_lens) loss = ctc_loss(log_probs, txt, enc_lens, txt_lens) loss /= args.grad_accumulation if multi_gpu: reduced_loss = reduce_tensor(loss.data, world_size) else: reduced_loss = loss if torch.isnan(reduced_loss).any(): print_once(f'WARNING: loss is NaN; skipping update') continue else: step_loss += reduced_loss.item() step_utts += batch[0].size(0) * world_size epoch_utts += batch[0].size(0) * world_size accumulated_batches += 1 scaler.scale(loss).backward() if accumulated_batches % args.grad_accumulation == 0: epoch_loss += step_loss scaler.step(optimizer) scaler.update() adjust_lr(step, epoch, optimizer) optimizer.zero_grad() if args.ema > 0.0: apply_multi_tensor_ema(args.ema, *mt_ema_params) if step % args.log_frequency == 0: preds = greedy_decoder(log_probs) wer, pred_utt, ref = greedy_wer(preds, txt, txt_lens, symbols) if step % args.prediction_frequency == 0: print_once(f' Decoded: {pred_utt[:90]}') print_once(f' Reference: {ref[:90]}') step_time = time.time() - step_start_time log((epoch, step % steps_per_epoch or steps_per_epoch, steps_per_epoch), step, 'train', {'loss': step_loss, 'wer': 100.0 * wer, 'throughput': step_utts / step_time, 'took': step_time, 'lrate': optimizer.param_groups[0]['lr']}) step_start_time = time.time() if step % args.eval_frequency == 0: wer = evaluate(epoch, step, val_loader, val_feat_proc, symbols, model, ema_model, ctc_loss, greedy_decoder, args.amp, use_dali) if wer < best_wer and epoch >= args.save_best_from: checkpointer.save(model, ema_model, optimizer, scaler, epoch, step, best_wer, is_best=True) best_wer = wer step += 1 accumulated_batches = 0 # end of step # DALI iterator need to be exhausted; # if not using DALI, simulate drop_last=True with grad accumulation if not use_dali and step > steps_per_epoch * epoch: break torch.cuda.synchronize() epoch_time = time.time() - epoch_start_time epoch_loss /= steps_per_epoch log((epoch,), None, 'train_avg', {'throughput': epoch_utts / epoch_time, 'took': epoch_time, 'loss': epoch_loss}) bmark_stats.update(epoch_utts, epoch_time, epoch_loss) if epoch % args.save_frequency == 0 or epoch in args.keep_milestones: checkpointer.save(model, ema_model, optimizer, scaler, epoch, step, best_wer) if 0 < args.epochs_this_job <= epoch - start_epoch: print_once(f'Finished after {args.epochs_this_job} epochs.') break # end of epoch log((), None, 'train_avg', bmark_stats.get(args.benchmark_epochs_num)) evaluate(None, step, val_loader, val_feat_proc, symbols, model, ema_model, ctc_loss, greedy_decoder, args.amp, use_dali) if epoch == args.epochs: checkpointer.save(model, ema_model, optimizer, scaler, epoch, step, best_wer) flush_log() if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/train.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import math import os import random import time from heapq import nlargest from itertools import chain, repeat from pathlib import Path from tqdm import tqdm import dllogger import torch import numpy as np import torch.distributed as distrib from dllogger import JSONStreamBackend, StdOutBackend, Verbosity from quartznet import config from common import helpers from common.dali.data_loader import DaliDataLoader from common.dataset import (AudioDataset, FilelistDataset, get_data_loader, SingleAudioDataset) from common.features import BaseFeatures, FilterbankFeatures from common.helpers import print_once, process_evaluation_epoch from common.tb_dllogger import stdout_metric_format, unique_log_fpath from nemo_dle_model_converter import load_nemo_ckpt from quartznet.model import GreedyCTCDecoder, QuartzNet def get_parser(): parser = argparse.ArgumentParser(description='QuartzNet inference') parser.add_argument('--batch_size', default=16, type=int, help='Data batch size') parser.add_argument('--steps', default=0, type=int, help='Eval this many steps for every worker') parser.add_argument('--warmup_steps', default=0, type=int, help='Burn-in period before measuring latencies') parser.add_argument('--model_config', type=str, required=True, help='Relative model config path given dataset folder') parser.add_argument('--dataset_dir', type=str, help='Absolute path to dataset folder') parser.add_argument('--val_manifests', type=str, nargs='+', help='Relative path to evaluation dataset manifest files') parser.add_argument('--ckpt', default=None, type=str, help='Path to model checkpoint') parser.add_argument('--amp', '--fp16', action='store_true', help='Use FP16 precision') parser.add_argument('--cudnn_benchmark', action='store_true', help='Enable cudnn benchmark') parser.add_argument('--cpu', action='store_true', help='Run inference on CPU') parser.add_argument("--seed", default=None, type=int, help='Random seed') parser.add_argument('--local_rank', default=os.getenv('LOCAL_RANK', 0), type=int, help='GPU id used for distributed training') io = parser.add_argument_group('feature and checkpointing setup') io.add_argument('--dali_device', type=str, choices=['none', 'cpu', 'gpu'], default='gpu', help='Use DALI pipeline for fast data processing') io.add_argument('--save_predictions', type=str, default=None, help='Save predictions in text form at this location') io.add_argument('--save_logits', default=None, type=str, help='Save output logits under specified path') io.add_argument('--transcribe_wav', type=str, help='Path to a single .wav file (16KHz)') io.add_argument('--transcribe_filelist', type=str, help='Path to a filelist with one .wav path per line') io.add_argument('-o', '--output_dir', default='results/', help='Output folder to save audio (file per phrase)') io.add_argument('--log_file', type=str, default=None, help='Path to a DLLogger log file') io.add_argument('--ema', action='store_true', help='Load averaged model weights') io.add_argument('--torchscript', action='store_true', help='Evaluate with a TorchScripted model') io.add_argument('--torchscript_export', action='store_true', help='Export the model with torch.jit to the output_dir') io.add_argument('--override_config', type=str, action='append', help='Overrides arbitrary config value.' ' Syntax: `--override_config nested.config.key=val`.') return parser def durs_to_percentiles(durations, ratios): durations = np.asarray(durations) * 1000 # in ms latency = durations latency = latency[5:] mean_latency = np.mean(latency) latency_worst = nlargest(math.ceil((1 - min(ratios)) * len(latency)), latency) latency_ranges = get_percentile(ratios, latency_worst, len(latency)) latency_ranges[0.5] = mean_latency return latency_ranges def get_percentile(ratios, arr, nsamples): res = {} for a in ratios: idx = max(int(nsamples * (1 - a)), 0) res[a] = arr[idx] return res def torchscript_export(data_loader, audio_processor, model, greedy_decoder, output_dir, use_amp, use_conv_masks, model_config, device, save): audio_processor.to(device) for batch in data_loader: batch = [t.to(device, non_blocking=True) for t in batch] audio, audio_len, _, _ = batch feats, feat_lens = audio_processor(audio, audio_len) break print("\nExporting featurizer...") print("\nNOTE: Dithering causes warnings about non-determinism.\n") ts_feat = torch.jit.trace(audio_processor, (audio, audio_len)) print("\nExporting acoustic model...") model(feats, feat_lens) ts_acoustic = torch.jit.trace(model, (feats, feat_lens)) print("\nExporting decoder...") log_probs = model(feats, feat_lens) ts_decoder = torch.jit.script(greedy_decoder, log_probs) print("\nJIT export complete.") if save: precision = "fp16" if use_amp else "fp32" module_name = f'{os.path.basename(model_config)}_{precision}' ts_feat.save(os.path.join(output_dir, module_name + "_feat.pt")) ts_acoustic.save(os.path.join(output_dir, module_name + "_acoustic.pt")) ts_decoder.save(os.path.join(output_dir, module_name + "_decoder.pt")) return ts_feat, ts_acoustic, ts_decoder def main(): parser = get_parser() args = parser.parse_args() log_fpath = args.log_file or str(Path(args.output_dir, 'nvlog_infer.json')) dllogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, log_fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, metric_format=stdout_metric_format) ]) [dllogger.log("PARAMETER", {k: v}) for k, v in vars(args).items()] for step in ['DNN', 'data+DNN', 'data']: for c in [0.99, 0.95, 0.9, 0.5]: cs = 'avg' if c == 0.5 else f'{int(100*c)}%' dllogger.metadata(f'{step.lower()}_latency_{c}', {'name': f'{step} latency {cs}', 'format': ':>7.2f', 'unit': 'ms'}) dllogger.metadata( 'eval_wer', {'name': 'WER', 'format': ':>3.2f', 'unit': '%'}) if args.cpu: device = torch.device('cpu') else: assert torch.cuda.is_available() device = torch.device('cuda') torch.backends.cudnn.benchmark = args.cudnn_benchmark if args.seed is not None: torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) random.seed(args.seed + args.local_rank) # set up distributed training multi_gpu = not args.cpu and int(os.environ.get('WORLD_SIZE', 1)) > 1 if multi_gpu: torch.cuda.set_device(args.local_rank) distrib.init_process_group(backend='nccl', init_method='env://') print_once(f'Inference with {distrib.get_world_size()} GPUs') if args.ckpt is not None: print(f'Loading the model from {args.ckpt} ...') print(f'{args.model_config} will be overriden.') if args.ckpt.lower().endswith('.nemo'): ckpt, cfg = load_nemo_ckpt(args.ckpt) else: cfg = config.load(args.model_config) ckpt = torch.load(args.ckpt, map_location='cpu') sd_key = 'ema_state_dict' if args.ema else 'state_dict' if args.ema and 'ema_state_dict' not in ckpt: print(f'WARNING: EMA weights are unavailable in {args.ckpt}.') sd_key = 'state_dict' state_dict = ckpt[sd_key] else: cfg = config.load(args.model_config) state_dict = None config.apply_config_overrides(cfg, args) symbols = helpers.add_ctc_blank(cfg['labels']) use_dali = args.dali_device in ('cpu', 'gpu') dataset_kw, features_kw = config.input(cfg, 'val') measure_perf = args.steps > 0 # dataset if args.transcribe_wav or args.transcribe_filelist: if use_dali: print("DALI supported only with input .json files; disabling") use_dali = False assert not cfg['input_val']['audio_dataset'].get('pad_to_max_duration', False) assert not (args.transcribe_wav and args.transcribe_filelist) if args.transcribe_wav: dataset = SingleAudioDataset(args.transcribe_wav) else: dataset = FilelistDataset(args.transcribe_filelist) data_loader = get_data_loader(dataset, batch_size=1, multi_gpu=multi_gpu, shuffle=False, num_workers=0, drop_last=(True if measure_perf else False)) _, features_kw = config.input(cfg, 'val') feat_proc = FilterbankFeatures(**features_kw) elif use_dali: # pad_to_max_duration is not supported by DALI - have simple padders if features_kw['pad_to_max_duration']: feat_proc = BaseFeatures( pad_align=features_kw['pad_align'], pad_to_max_duration=True, max_duration=features_kw['max_duration'], sample_rate=features_kw['sample_rate'], window_size=features_kw['window_size'], window_stride=features_kw['window_stride']) features_kw['pad_to_max_duration'] = False else: feat_proc = None data_loader = DaliDataLoader( gpu_id=args.local_rank or 0, dataset_path=args.dataset_dir, config_data=dataset_kw, config_features=features_kw, json_names=args.val_manifests, batch_size=args.batch_size, pipeline_type=("train" if measure_perf else "val"), # no drop_last device_type=args.dali_device, symbols=symbols) else: dataset = AudioDataset(args.dataset_dir, args.val_manifests, symbols, **dataset_kw) data_loader = get_data_loader(dataset, args.batch_size, multi_gpu=multi_gpu, shuffle=False, num_workers=4, drop_last=False) feat_proc = FilterbankFeatures(**features_kw) model = QuartzNet(encoder_kw=config.encoder(cfg), decoder_kw=config.decoder(cfg, n_classes=len(symbols))) if state_dict is not None: model.load_state_dict(state_dict, strict=True) model.to(device) model.eval() if feat_proc is not None: feat_proc.to(device) feat_proc.eval() if args.amp: model = model.half() if args.torchscript: greedy_decoder = GreedyCTCDecoder() feat_proc, model, greedy_decoder = torchscript_export( data_loader, feat_proc, model, greedy_decoder, args.output_dir, use_amp=args.amp, use_conv_masks=True, model_toml=args.model_toml, device=device, save=args.torchscript_export) if multi_gpu: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) agg = {'txts': [], 'preds': [], 'logits': []} dur = {'data': [], 'dnn': [], 'data+dnn': []} looped_loader = chain.from_iterable(repeat(data_loader)) greedy_decoder = GreedyCTCDecoder() sync = lambda: torch.cuda.synchronize() if device.type == 'cuda' else None steps = args.steps + args.warmup_steps or len(data_loader) with torch.no_grad(): for it, batch in enumerate(tqdm(looped_loader, initial=1, total=steps)): if use_dali: feats, feat_lens, txt, txt_lens = batch if feat_proc is not None: feats, feat_lens = feat_proc(feats, feat_lens) else: batch = [t.to(device, non_blocking=True) for t in batch] audio, audio_lens, txt, txt_lens = batch feats, feat_lens = feat_proc(audio, audio_lens) sync() t1 = time.time() if args.amp: feats = feats.half() if model.encoder.use_conv_masks: log_probs, log_prob_lens = model(feats, feat_lens) else: log_probs = model(feats, feat_lens) preds = greedy_decoder(log_probs) sync() t2 = time.time() # burn-in period; wait for a new loader due to num_workers if it >= 1 and (args.steps == 0 or it >= args.warmup_steps): dur['data'].append(t1 - t0) dur['dnn'].append(t2 - t1) dur['data+dnn'].append(t2 - t0) if txt is not None: agg['txts'] += helpers.gather_transcripts([txt], [txt_lens], symbols) agg['preds'] += helpers.gather_predictions([preds], symbols) agg['logits'].append(log_probs) if it + 1 == steps: break sync() t0 = time.time() # communicate the results if args.transcribe_wav: for idx, p in enumerate(agg['preds']): print_once(f'Prediction {idx+1: >3}: {p}') elif args.transcribe_filelist: pass elif not multi_gpu or distrib.get_rank() == 0: wer, _ = process_evaluation_epoch(agg) dllogger.log(step=(), data={'eval_wer': 100 * wer}) if args.save_predictions: with open(args.save_predictions, 'w') as f: f.write('\n'.join(agg['preds'])) if args.save_logits: logits = torch.cat(agg['logits'], dim=0).cpu() torch.save(logits, args.save_logits) # report timings if len(dur['data']) >= 20: ratios = [0.9, 0.95, 0.99] for stage in dur: lat = durs_to_percentiles(dur[stage], ratios) for k in [0.99, 0.95, 0.9, 0.5]: kk = str(k).replace('.', '_') dllogger.log(step=(), data={f'{stage.lower()}_latency_{kk}': lat[k]}) else: print_once('Not enough samples to measure latencies.') if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/inference.py
import argparse import io import sys from copy import deepcopy from functools import reduce from pathlib import Path from subprocess import CalledProcessError, check_output import torch import yaml import quartznet.config from common import helpers from common.features import FilterbankFeatures from quartznet.config import load as load_yaml from quartznet.model import QuartzNet, MaskedConv1d # Corresponding DLE <-> NeMo config keys cfg_key_map = { ("input_val", "audio_dataset", "sample_rate"): ("preprocessor", "sample_rate"), ("input_val", "filterbank_features", "dither"): ("preprocessor", "dither"), ("input_val", "filterbank_features", "frame_splicing"): ("preprocessor", "frame_splicing"), ("input_val", "filterbank_features", "n_fft"): ("preprocessor", "n_fft"), ("input_val", "filterbank_features", "n_filt"): ("preprocessor", "features"), ("input_val", "filterbank_features", "normalize"): ("preprocessor", "normalize"), ("input_val", "filterbank_features", "sample_rate"): ("preprocessor", "sample_rate"), ("input_val", "filterbank_features", "window"): ("preprocessor", "window"), ("input_val", "filterbank_features", "window_size"): ("preprocessor", "window_size"), ("input_val", "filterbank_features", "window_stride"): ("preprocessor", "window_stride"), ("labels",): ("decoder", "vocabulary"), ("quartznet", "decoder", "in_feats"): ("decoder", "feat_in"), ("quartznet", "encoder", "activation"): ("encoder", "activation"), ("quartznet", "encoder", "blocks"): ("encoder", "jasper"), ("quartznet", "encoder", "frame_splicing"): ("preprocessor", "frame_splicing"), ("quartznet", "encoder", "in_feats"): ("encoder", "feat_in"), ("quartznet", "encoder", "use_conv_masks"): ("encoder", "conv_mask"), } def load_nemo_ckpt(fpath): """Make a DeepLearningExamples state_dict and config from a .nemo file.""" try: cmd = ['tar', 'Oxzf', fpath, './model_config.yaml'] nemo_cfg = yaml.safe_load(io.BytesIO(check_output(cmd))) cmd = ['tar', 'Oxzf', fpath, './model_weights.ckpt'] ckpt = torch.load(io.BytesIO(check_output(cmd)), map_location="cpu") except (FileNotFoundError, CalledProcessError): print('WARNING: Could not uncompress with tar. ' 'Falling back to the tarfile module (might take a few minutes).') import tarfile with tarfile.open(fpath, "r:gz") as tar: f = tar.extractfile(tar.getmember("./model_config.yaml")) nemo_cfg = yaml.safe_load(f) f = tar.extractfile(tar.getmember("./model_weights.ckpt")) ckpt = torch.load(f, map_location="cpu") remap = lambda k: (k.replace("encoder.encoder", "encoder.layers") .replace("decoder.decoder_layers", "decoder.layers") .replace("conv.weight", "weight")) dle_ckpt = {'state_dict': {remap(k): v for k, v in ckpt.items() if "preproc" not in k}} dle_cfg = config_from_nemo(nemo_cfg) return dle_ckpt, dle_cfg def save_nemo_ckpt(dle_ckpt, dle_cfg, dest_path): """Save a DeepLearningExamples model as a .nemo file.""" cfg = deepcopy(dle_cfg) dle_ckpt = torch.load(dle_ckpt, map_location="cpu")["ema_state_dict"] # Build a DLE model instance and fill with weights symbols = helpers.add_ctc_blank(cfg['labels']) enc_kw = quartznet.config.encoder(cfg) dec_kw = quartznet.config.decoder(cfg, n_classes=len(symbols)) model = QuartzNet(enc_kw, dec_kw) model.load_state_dict(dle_ckpt, strict=True) # Reaname core modules, e.g., encoder.layers -> encoder.encoder model.encoder._modules['encoder'] = model.encoder._modules.pop('layers') model.decoder._modules['decoder_layers'] = model.decoder._modules.pop('layers') # MaskedConv1d is made via composition in NeMo, and via inheritance in DLE # Params for MaskedConv1d in NeMo have an additional '.conv.' infix def rename_convs(module): for name in list(module._modules.keys()): submod = module._modules[name] if isinstance(submod, MaskedConv1d): module._modules[f'{name}.conv'] = module._modules.pop(name) else: rename_convs(submod) rename_convs(model.encoder.encoder) # Use FilterbankFeatures to calculate fbanks and store with model weights feature_processor = FilterbankFeatures( **dle_cfg['input_val']['filterbank_features']) nemo_ckpt = model.state_dict() nemo_ckpt["preprocessor.featurizer.fb"] = feature_processor.fb nemo_ckpt["preprocessor.featurizer.window"] = feature_processor.window nemo_cfg = config_to_nemo(dle_cfg) # Prepare the directory for zipping ckpt_files = dest_path / "ckpt_files" ckpt_files.mkdir(exist_ok=True, parents=False) with open(ckpt_files / "model_config.yaml", "w") as f: yaml.dump(nemo_cfg, f) torch.save(nemo_ckpt, ckpt_files / "model_weights.ckpt") with tarfile.open(dest_path / "quartznet.nemo", "w:gz") as tar: tar.add(ckpt_files, arcname="./") def save_dle_ckpt(ckpt, cfg, dest_dir): torch.save(ckpt, dest_dir / "model.pt") with open(dest_dir / "model_config.yaml", "w") as f: yaml.dump(cfg, f) def set_nested_item(tgt, src, tgt_keys, src_keys): """Assigns nested dict keys, e.g., d1[a][b][c] = d2[e][f][g][h].""" tgt_nested = reduce(lambda d, k: d[k], tgt_keys[:-1], tgt) tgt_nested[tgt_keys[-1]] = reduce(lambda d, k: d[k], src_keys, src) def config_from_nemo(nemo_cfg): """Convert a DeepLearningExamples config to a NeMo format.""" dle_cfg = { 'name': 'QuartzNet', 'input_val': { 'audio_dataset': { 'normalize_transcripts': True, }, 'filterbank_features': { 'pad_align': 16, }, }, 'quartznet': { 'decoder': {}, 'encoder': {}, }, } for dle_keys, nemo_keys in cfg_key_map.items(): try: set_nested_item(dle_cfg, nemo_cfg, dle_keys, nemo_keys) except KeyError: print(f'WARNING: Could not load config {nemo_keys} as {dle_keys}.') # mapping kernel_size is not expressable with cfg_map for block in dle_cfg["quartznet"]["encoder"]["blocks"]: block["kernel_size"] = block.pop("kernel") return dle_cfg def config_to_nemo(dle_cfg): """Convert a DeepLearningExamples config to a NeMo format.""" nemo_cfg = { "target": "nemo.collections.asr.models.ctc_models.EncDecCTCModel", "dropout": 0.0, "preprocessor": { "_target_": "nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor", "stft_conv": False, }, "encoder": { "_target_": "nemo.collections.asr.modules.ConvASREncoder", "jasper": {} }, "decoder": { "_target_": "nemo.collections.asr.modules.ConvASRDecoder", }, } for dle_keys, nemo_keys in cfg_key_map.items(): try: set_nested_item(nemo_cfg, dle_cfg, nemo_keys, dle_keys) except KeyError: print(f"WARNING: Could not load config {dle_keys} as {nemo_keys}.") nemo_cfg["sample_rate"] = nemo_cfg["preprocessor"]["sample_rate"] nemo_cfg["repeat"] = nemo_cfg["encoder"]["jasper"][1]["repeat"] nemo_cfg["separable"] = nemo_cfg["encoder"]["jasper"][1]["separable"] nemo_cfg["labels"] = nemo_cfg["decoder"]["vocabulary"] nemo_cfg["decoder"]["num_classes"] = len(nemo_cfg["decoder"]["vocabulary"]) # mapping kernel_size is not expressable with cfg_map for block in nemo_cfg["encoder"]["jasper"]: if "kernel_size" in block: block["kernel"] = block.pop("kernel_size") return nemo_cfg if __name__ == "__main__": parser = argparse.ArgumentParser(description="QuartzNet DLE <-> NeMo model converter.") parser.add_argument("source_model", type=Path, help="A DLE or NeMo QuartzNet model to be converted (.pt or .nemo, respectively)") parser.add_argument("dest_dir", type=Path, help="Destination directory") parser.add_argument("--dle_config_yaml", type=Path, help="A DLE config .yaml file, required only to convert DLE -> NeMo") args = parser.parse_args() ext = args.source_model.suffix.lower() if ext == ".nemo": ckpt, cfg = load_nemo_ckpt(args.source_model) save_dle_ckpt(ckpt, cfg, args.dest_dir) elif ext == ".pt": dle_cfg = load_yaml(args.dle_config_yaml) save_nemo_ckpt(args.source_model, dle_cfg, args.dest_dir) else: raise ValueError(f"Unknown extension {ext}.") print('Converted succesfully.')
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/nemo_dle_model_converter.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python import argparse import os import glob import multiprocessing import json import pandas as pd from preprocessing_utils import parallel_preprocess parser = argparse.ArgumentParser(description='Preprocess LibriSpeech.') parser.add_argument('--input_dir', type=str, required=True, help='LibriSpeech collection input dir') parser.add_argument('--dest_dir', type=str, required=True, help='Output dir') parser.add_argument('--output_json', type=str, default='./', help='name of the output json file.') parser.add_argument('-s','--speed', type=float, nargs='*', help='Speed perturbation ratio') parser.add_argument('--target_sr', type=int, default=None, help='Target sample rate. ' 'defaults to the input sample rate') parser.add_argument('--overwrite', action='store_true', help='Overwrite file if exists') parser.add_argument('--parallel', type=int, default=multiprocessing.cpu_count(), help='Number of threads to use when processing audio files') args = parser.parse_args() args.input_dir = args.input_dir.rstrip('/') args.dest_dir = args.dest_dir.rstrip('/') def build_input_arr(input_dir): txt_files = glob.glob(os.path.join(input_dir, '**', '*.trans.txt'), recursive=True) input_data = [] for txt_file in txt_files: rel_path = os.path.relpath(txt_file, input_dir) with open(txt_file) as fp: for line in fp: fname, _, transcript = line.partition(' ') input_data.append(dict(input_relpath=os.path.dirname(rel_path), input_fname=fname+'.flac', transcript=transcript)) return input_data print("[%s] Scaning input dir..." % args.output_json) dataset = build_input_arr(input_dir=args.input_dir) print("[%s] Converting audio files..." % args.output_json) dataset = parallel_preprocess(dataset=dataset, input_dir=args.input_dir, dest_dir=args.dest_dir, target_sr=args.target_sr, speed=args.speed, overwrite=args.overwrite, parallel=args.parallel) print("[%s] Generating json..." % args.output_json) df = pd.DataFrame(dataset, dtype=object) # Save json with python. df.to_json() produces back slashed in file paths dataset = df.to_dict(orient='records') with open(args.output_json, 'w') as fp: json.dump(dataset, fp, indent=2)
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/utils/convert_librispeech.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python import os import argparse import pandas as pd from download_utils import download_file, md5_checksum, extract parser = argparse.ArgumentParser(description='Download, verify and extract dataset files') parser.add_argument('csv', type=str, help='CSV file with urls and checksums to download.') parser.add_argument('dest', type=str, help='Download destnation folder.') parser.add_argument('-e', type=str, default=None, help='Extraction destnation folder. Defaults to download folder if not provided') parser.add_argument('--skip_download', action='store_true', help='Skip downloading the files') parser.add_argument('--skip_checksum', action='store_true', help='Skip checksum') parser.add_argument('--skip_extract', action='store_true', help='Skip extracting files') args = parser.parse_args() args.e = args.e or args.dest df = pd.read_csv(args.csv, delimiter=',') if not args.skip_download: for url in df.url: fname = url.split('/')[-1] print("Downloading %s:" % fname) download_file(url=url, dest_folder=args.dest, fname=fname) else: print("Skipping file download") if not args.skip_checksum: for index, row in df.iterrows(): url = row['url'] md5 = row['md5'] fname = url.split('/')[-1] fpath = os.path.join(args.dest, fname) print("Verifing %s: " % fname, end='') ret = md5_checksum(fpath=fpath, target_hash=md5) print("Passed" if ret else "Failed") else: print("Skipping checksum") if not args.skip_extract: for url in df.url: fname = url.split('/')[-1] fpath = os.path.join(args.dest, fname) print("Decompressing %s:" % fpath) extract(fpath=fpath, dest_folder=args.e) else: print("Skipping file extraction")
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/utils/download_librispeech.py
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/utils/__init__.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python import os import multiprocessing import functools import sox from tqdm import tqdm def preprocess(data, input_dir, dest_dir, target_sr=None, speed=None, overwrite=True): speed = speed or [] speed.append(1) speed = list(set(speed)) # Make uniqe input_fname = os.path.join(input_dir, data['input_relpath'], data['input_fname']) input_sr = sox.file_info.sample_rate(input_fname) target_sr = target_sr or input_sr os.makedirs(os.path.join(dest_dir, data['input_relpath']), exist_ok=True) output_dict = {} output_dict['transcript'] = data['transcript'].lower().strip() output_dict['files'] = [] fname = os.path.splitext(data['input_fname'])[0] for s in speed: output_fname = fname + '{}.wav'.format('' if s==1 else '-{}'.format(s)) output_fpath = os.path.join(dest_dir, data['input_relpath'], output_fname) if not os.path.exists(output_fpath) or overwrite: cbn = sox.Transformer().speed(factor=s).convert(target_sr) cbn.build(input_fname, output_fpath) file_info = sox.file_info.info(output_fpath) file_info['fname'] = os.path.join(os.path.basename(dest_dir), data['input_relpath'], output_fname) file_info['speed'] = s output_dict['files'].append(file_info) if s == 1: file_info = sox.file_info.info(output_fpath) output_dict['original_duration'] = file_info['duration'] output_dict['original_num_samples'] = file_info['num_samples'] return output_dict def parallel_preprocess(dataset, input_dir, dest_dir, target_sr, speed, overwrite, parallel): with multiprocessing.Pool(parallel) as p: func = functools.partial(preprocess, input_dir=input_dir, dest_dir=dest_dir, target_sr=target_sr, speed=speed, overwrite=overwrite) dataset = list(tqdm(p.imap(func, dataset), total=len(dataset))) return dataset
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/utils/preprocessing_utils.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python import hashlib import requests import os import tarfile import tqdm def download_file(url, dest_folder, fname, overwrite=False): fpath = os.path.join(dest_folder, fname) if os.path.isfile(fpath): if overwrite: print("Overwriting existing file") else: print("File exists, skipping download.") return tmp_fpath = fpath + '.tmp' if not os.path.exists(os.path.dirname(tmp_fpath)): os.makedirs(os.path.dirname(tmp_fpath)) r = requests.get(url, stream=True) file_size = int(r.headers['Content-Length']) chunk_size = 1024 * 1024 # 1MB total_chunks = int(file_size / chunk_size) with open(tmp_fpath, 'wb') as fp: content_iterator = r.iter_content(chunk_size=chunk_size) chunks = tqdm.tqdm(content_iterator, total=total_chunks, unit='MB', desc=fpath, leave=True) for chunk in chunks: fp.write(chunk) os.rename(tmp_fpath, fpath) def md5_checksum(fpath, target_hash): file_hash = hashlib.md5() with open(fpath, "rb") as fp: for chunk in iter(lambda: fp.read(1024*1024), b""): file_hash.update(chunk) return file_hash.hexdigest() == target_hash def extract(fpath, dest_folder): if fpath.endswith('.tar.gz'): mode = 'r:gz' elif fpath.endswith('.tar'): mode = 'r:' else: raise IOError('fpath has unknown extention: %s' % fpath) with tarfile.open(fpath, mode) as tar: members = tar.getmembers() for member in tqdm.tqdm(iterable=members, total=len(members), leave=True): tar.extract(path=dest_folder, member=member)
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/utils/download_utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import glob import os import re from pathlib import Path import numpy as np import torch from torch.utils.tensorboard import SummaryWriter import dllogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity tb_loggers = {} class TBLogger: """ xyz_dummies: stretch the screen with empty plots so the legend would always fit for other plots """ def __init__(self, enabled, log_dir, name, interval=1, dummies=True): self.enabled = enabled self.interval = interval self.cache = {} if self.enabled: self.summary_writer = SummaryWriter( log_dir=os.path.join(log_dir, name), flush_secs=120, max_queue=200) atexit.register(self.summary_writer.close) if dummies: for key in ('aaa', 'zzz'): self.summary_writer.add_scalar(key, 0.0, 1) def log(self, step, data): for k, v in data.items(): self.log_value(step, k, v.item() if type(v) is torch.Tensor else v) def log_value(self, step, key, val, stat='mean'): if self.enabled: if key not in self.cache: self.cache[key] = [] self.cache[key].append(val) if len(self.cache[key]) == self.interval: agg_val = getattr(np, stat)(self.cache[key]) self.summary_writer.add_scalar(key, agg_val, step) del self.cache[key] def log_grads(self, step, model): if self.enabled: norms = [p.grad.norm().item() for p in model.parameters() if p.grad is not None] for stat in ('max', 'min', 'mean'): self.log_value(step, f'grad_{stat}', getattr(np, stat)(norms), stat=stat) def unique_log_fpath(fpath): """Have a unique log filename for every separate run""" log_num = max([0] + [int(re.search("\.(\d+)", Path(f).suffix).group(1)) for f in glob.glob(f"{fpath}.*")]) return f"{fpath}.{log_num + 1}" def stdout_step_format(step): if isinstance(step, str): return step fields = [] if len(step) > 0: fields.append("epoch {:>4}".format(step[0])) if len(step) > 1: fields.append("iter {:>4}".format(step[1])) if len(step) > 2: fields[-1] += "/{}".format(step[2]) return " | ".join(fields) def stdout_metric_format(metric, metadata, value): name = metadata.get("name", metric + " : ") unit = metadata.get("unit", None) format = f'{{{metadata.get("format", "")}}}' fields = [name, format.format(value) if value is not None else value, unit] fields = [f for f in fields if f is not None] return "| " + " ".join(fields) def init_log(args): enabled = (args.local_rank == 0) if enabled: fpath = args.log_file or os.path.join(args.output_dir, 'nvlog.json') backends = [ JSONStreamBackend(Verbosity.DEFAULT, fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(fpath)), StdOutBackend(Verbosity.VERBOSE, step_format=stdout_step_format, metric_format=stdout_metric_format) ] else: backends = [] dllogger.init(backends=backends) dllogger.metadata("train_lrate", {"name": "lrate", "unit": None, "format": ":>3.2e"}) for id_, pref in [('train', ''), ('train_avg', 'avg train '), ('dev', ' avg dev '), ('dev_ema', ' EMA dev ')]: dllogger.metadata(f"{id_}_loss", {"name": f"{pref}loss", "unit": None, "format": ":>7.2f"}) dllogger.metadata(f"{id_}_wer", {"name": f"{pref}wer", "unit": "%", "format": ":>6.2f"}) dllogger.metadata(f"{id_}_throughput", {"name": f"{pref}utts/s", "unit": "samples/s", "format": ":>5.0f"}) dllogger.metadata(f"{id_}_took", {"name": "took", "unit": "s", "format": ":>5.2f"}) tb_subsets = ['train', 'dev', 'dev_ema'] if args.ema else ['train', 'dev'] global tb_loggers tb_loggers = {s: TBLogger(enabled, args.output_dir, name=s) for s in tb_subsets} log_parameters(vars(args), tb_subset='train') def log(step, tb_total_steps=None, subset='train', data={}): if tb_total_steps is not None: tb_loggers[subset].log(tb_total_steps, data) if subset != '': data = {f'{subset}_{key}': val for key, val in data.items()} dllogger.log(step, data=data) def log_grads_tb(tb_total_steps, grads, tb_subset='train'): tb_loggers[tb_subset].log_grads(tb_total_steps, grads) def log_parameters(data, verbosity=0, tb_subset=None): for k, v in data.items(): dllogger.log(step="PARAMETER", data={k: v}, verbosity=verbosity) if tb_subset is not None and tb_loggers[tb_subset].enabled: tb_data = {k: v for k, v in data.items() if type(v) in (str, bool, int, float)} tb_loggers[tb_subset].summary_writer.add_hparams(tb_data, {}) def flush_log(): dllogger.flush() for tbl in tb_loggers.values(): if tbl.enabled: tbl.summary_writer.flush()
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/tb_dllogger.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def __levenshtein(a, b): """Calculates the Levenshtein distance between two sequences.""" n, m = len(a), len(b) if n > m: # Make sure n <= m, to use O(min(n,m)) space a, b = b, a n, m = m, n current = list(range(n + 1)) for i in range(1, m + 1): previous, current = current, [i] + [0] * n for j in range(1, n + 1): add, delete = previous[j] + 1, current[j - 1] + 1 change = previous[j - 1] if a[j - 1] != b[i - 1]: change = change + 1 current[j] = min(add, delete, change) return current[n] def word_error_rate(hypotheses, references): """Computes average Word Error Rate (WER) between two text lists.""" scores = 0 words = 0 len_diff = len(references) - len(hypotheses) if len_diff > 0: raise ValueError("Uneqal number of hypthoses and references: " "{0} and {1}".format(len(hypotheses), len(references))) elif len_diff < 0: hypotheses = hypotheses[:len_diff] for h, r in zip(hypotheses, references): h_list = h.split() r_list = r.split() words += len(r_list) scores += __levenshtein(h_list, r_list) if words!=0: wer = 1.0*scores/words else: wer = float('inf') return wer, scores, words
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/metrics.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mutes known and unrelated PyTorch warnings. The warnings module keeps a list of filters. Importing it as late as possible prevents its filters from being overriden. """ import warnings # NGC 22.04-py3 container (PyTorch 1.12.0a0+bd13bc6) warnings.filterwarnings( "ignore", message='positional arguments and argument "destination" are deprecated.' ' nn.Module.state_dict will not accept them in the future.') # 22.08-py3 container warnings.filterwarnings( "ignore", message="is_namedtuple is deprecated, please use the python checks")
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/filter_warnings.py
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import random import librosa import torch import torch.nn as nn class BaseFeatures(nn.Module): """Base class for GPU accelerated audio preprocessing.""" __constants__ = ["pad_align", "pad_to_max_duration", "max_len"] def __init__(self, pad_align, pad_to_max_duration, max_duration, sample_rate, window_size, window_stride, spec_augment=None, cutout_augment=None): super(BaseFeatures, self).__init__() self.pad_align = pad_align self.pad_to_max_duration = pad_to_max_duration self.win_length = int(sample_rate * window_size) # frame size self.hop_length = int(sample_rate * window_stride) # Calculate maximum sequence length (# frames) if pad_to_max_duration: self.max_len = 1 + math.ceil( (max_duration * sample_rate - self.win_length) / self.hop_length ) if spec_augment is not None: self.spec_augment = SpecAugment(**spec_augment) else: self.spec_augment = None if cutout_augment is not None: self.cutout_augment = CutoutAugment(**cutout_augment) else: self.cutout_augment = None @torch.no_grad() def calculate_features(self, audio, audio_lens): return audio, audio_lens def __call__(self, audio, audio_lens): dtype = audio.dtype audio = audio.float() feat, feat_lens = self.calculate_features(audio, audio_lens) feat = self.apply_padding(feat) if self.cutout_augment is not None: feat = self.cutout_augment(feat) if self.spec_augment is not None: feat = self.spec_augment(feat) feat = feat.to(dtype) return feat, feat_lens def apply_padding(self, x): if self.pad_to_max_duration: x_size = max(x.size(-1), self.max_len) else: x_size = x.size(-1) if self.pad_align > 0: pad_amt = x_size % self.pad_align else: pad_amt = 0 padded_len = x_size + (self.pad_align - pad_amt if pad_amt > 0 else 0) return nn.functional.pad(x, (0, padded_len - x.size(-1))) class SpecAugment(nn.Module): """Spec augment. refer to https://arxiv.org/abs/1904.08779 """ def __init__(self, freq_masks=0, min_freq=0, max_freq=10, time_masks=0, min_time=0, max_time=10): super(SpecAugment, self).__init__() assert 0 <= min_freq <= max_freq assert 0 <= min_time <= max_time self.freq_masks = freq_masks self.min_freq = min_freq self.max_freq = max_freq self.time_masks = time_masks self.min_time = min_time self.max_time = max_time @torch.no_grad() def forward(self, x): sh = x.shape mask = torch.zeros(x.shape, dtype=torch.bool, device=x.device) for idx in range(sh[0]): for _ in range(self.freq_masks): w = torch.randint(self.min_freq, self.max_freq + 1, size=(1,)).item() f0 = torch.randint(0, max(1, sh[1] - w), size=(1,)) mask[idx, f0:f0+w] = 1 for _ in range(self.time_masks): w = torch.randint(self.min_time, self.max_time + 1, size=(1,)).item() t0 = torch.randint(0, max(1, sh[2] - w), size=(1,)) mask[idx, :, t0:t0+w] = 1 return x.masked_fill(mask, 0) class CutoutAugment(nn.Module): """Cutout. refer to https://arxiv.org/pdf/1708.04552.pdf """ def __init__(self, masks=0, min_freq=20, max_freq=20, min_time=5, max_time=5): super(CutoutAugment, self).__init__() assert 0 <= min_freq <= max_freq assert 0 <= min_time <= max_time self.masks = masks self.min_freq = min_freq self.max_freq = max_freq self.min_time = min_time self.max_time = max_time @torch.no_grad() def forward(self, x): sh = x.shape mask = torch.zeros(x.shape, dtype=torch.bool, device=x.device) for idx in range(sh[0]): for i in range(self.masks): w = torch.randint(self.min_freq, self.max_freq + 1, size=(1,)).item() h = torch.randint(self.min_time, self.max_time + 1, size=(1,)).item() f0 = int(random.uniform(0, sh[1] - w)) t0 = int(random.uniform(0, sh[2] - h)) mask[idx, f0:f0+w, t0:t0+h] = 1 return x.masked_fill(mask, 0) @torch.jit.script def normalize_batch(x, seq_len, normalize_type: str): # print ("normalize_batch: x, seq_len, shapes: ", x.shape, seq_len, seq_len.shape) if normalize_type == "per_feature": x_mean = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) x_std = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i, :] = x[i, :, :seq_len[i]].mean(dim=1) x_std[i, :] = x[i, :, :seq_len[i]].std(dim=1) # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2) elif normalize_type == "all_features": x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i] = x[i, :, :int(seq_len[i])].mean() x_std[i] = x[i, :, :int(seq_len[i])].std() # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1) else: return x @torch.jit.script def splice_frames(x, frame_splicing: int): """ Stacks frames together across feature dim input is batch_size, feature_dim, num_frames output is batch_size, feature_dim*frame_splicing, num_frames """ seq = [x] # TORCHSCRIPT: JIT doesnt like range(start, stop) for n in range(frame_splicing - 1): seq.append(torch.cat([x[:, :, :n + 1], x[:, :, n + 1:]], dim=2)) return torch.cat(seq, dim=1) class FilterbankFeatures(BaseFeatures): # For JIT, https://pytorch.org/docs/stable/jit.html#python-defined-constants __constants__ = ["dither", "preemph", "n_fft", "hop_length", "win_length", "log", "frame_splicing", "normalize"] # torchscript: "center" removed due to a bug def __init__(self, spec_augment=None, cutout_augment=None, sample_rate=8000, window_size=0.02, window_stride=0.01, window="hamming", normalize="per_feature", n_fft=None, preemph=0.97, n_filt=64, lowfreq=0, highfreq=None, log=True, dither=1e-5, pad_align=8, pad_to_max_duration=False, max_duration=float('inf'), frame_splicing=1): super(FilterbankFeatures, self).__init__( pad_align=pad_align, pad_to_max_duration=pad_to_max_duration, max_duration=max_duration, sample_rate=sample_rate, window_size=window_size, window_stride=window_stride, spec_augment=spec_augment, cutout_augment=cutout_augment) torch_windows = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, } self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length)) self.normalize = normalize self.log = log #TORCHSCRIPT: Check whether or not we need this self.dither = dither self.frame_splicing = frame_splicing self.n_filt = n_filt self.preemph = preemph highfreq = highfreq or sample_rate / 2 window_fn = torch_windows.get(window, None) window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None filterbanks = torch.tensor( librosa.filters.mel(sr=sample_rate, n_fft=self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq), dtype=torch.float).unsqueeze(0) # torchscript self.register_buffer("fb", filterbanks) self.register_buffer("window", window_tensor) def get_seq_len(self, seq_len): return torch.ceil(seq_len.to(dtype=torch.float) / self.hop_length).to( dtype=torch.int) # TORCHSCRIPT: center removed due to bug def stft(self, x): spec = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window.to(dtype=torch.float), return_complex=True) return torch.view_as_real(spec) @torch.no_grad() def calculate_features(self, x, seq_len): dtype = x.dtype seq_len = self.get_seq_len(seq_len) # dither if self.dither > 0: x += self.dither * torch.randn_like(x) # do preemphasis if self.preemph is not None: x = torch.cat( (x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1) x = self.stft(x) # get power spectrum x = x.pow(2).sum(-1) # dot with filterbank energies x = torch.matmul(self.fb.to(x.dtype), x) # log features if required if self.log: x = torch.log(x + 1e-20) # frame splicing if required if self.frame_splicing > 1: raise ValueError('Frame splicing not supported') # normalize if required x = normalize_batch(x, seq_len, normalize_type=self.normalize) # mask to zero any values beyond seq_len in batch, # pad to multiple of `pad_align` (for efficiency) max_len = x.size(-1) mask = torch.arange(max_len, dtype=seq_len.dtype, device=x.device) mask = mask.expand(x.size(0), max_len) >= seq_len.unsqueeze(1) x = x.masked_fill(mask.unsqueeze(1), 0) # TORCHSCRIPT: Is this del important? It breaks scripting # del mask return x.to(dtype), seq_len
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/features.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.optim import Optimizer import math def lr_policy(step, epoch, initial_lr, optimizer, steps_per_epoch, warmup_epochs, hold_epochs, num_epochs=None, policy='linear', min_lr=1e-5, exp_gamma=None): """ learning rate decay Args: initial_lr: base learning rate step: current iteration number N: total number of iterations over which learning rate is decayed lr_steps: list of steps to apply exp_gamma """ warmup_steps = warmup_epochs * steps_per_epoch hold_steps = hold_epochs * steps_per_epoch if policy == 'legacy': assert num_epochs is not None tot_steps = num_epochs * steps_per_epoch if step < warmup_steps: a = (step + 1) / (warmup_steps + 1) elif step < warmup_steps + hold_steps: a = 1.0 else: a = (((tot_steps - step) / (tot_steps - warmup_steps - hold_steps)) ** 2) elif policy == 'exponential': assert exp_gamma is not None if step < warmup_steps: a = (step + 1) / (warmup_steps + 1) elif step < warmup_steps + hold_steps: a = 1.0 else: a = exp_gamma ** (epoch - warmup_epochs - hold_epochs) else: raise ValueError new_lr = max(a * initial_lr, min_lr) for param_group in optimizer.param_groups: param_group['lr'] = new_lr class AdamW(Optimizer): """Implements AdamW algorithm. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(AdamW, self).__init__(params, defaults) def __setstate__(self, state): super(AdamW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 p.data.add_(torch.mul(p.data, group['weight_decay']).addcdiv_(1, exp_avg, denom), alpha=-step_size) return loss class Novograd(Optimizer): """ Implements Novograd algorithm. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.95, 0)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) grad_averaging: gradient averaging amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) """ def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8, weight_decay=0, grad_averaging=False, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad) super(Novograd, self).__init__(params, defaults) def __setstate__(self, state): super(Novograd, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Sparse gradients are not supported.') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 norm = torch.sum(torch.pow(grad, 2)) if exp_avg_sq == 0: exp_avg_sq.copy_(norm) else: exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) grad.div_(denom) if group['weight_decay'] != 0: grad.add_(p.data, alpha=group['weight_decay']) if group['grad_averaging']: grad.mul_(1 - beta1) exp_avg.mul_(beta1).add_(grad) p.data.add_(exp_avg, alpha=-group['lr']) return loss
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/optimizers.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from pathlib import Path import numpy as np import torch from torch.utils.data import Dataset, DataLoader from torch.utils.data.distributed import DistributedSampler from .audio import (audio_from_file, AudioSegment, GainPerturbation, ShiftPerturbation, SpeedPerturbation) from .text import _clean_text, punctuation_map def normalize_string(s, labels, punct_map): """Normalizes string. Example: 'call me at 8:00 pm!' -> 'call me at eight zero pm' """ labels = set(labels) try: text = _clean_text(s, ["english_cleaners"], punct_map).strip() return ''.join([tok for tok in text if all(t in labels for t in tok)]) except: print(f"WARNING: Normalizing failed: {s}") return None class FilelistDataset(Dataset): def __init__(self, filelist_fpath): self.samples = [line.strip() for line in open(filelist_fpath, 'r')] def __len__(self): return len(self.samples) def __getitem__(self, index): audio, audio_len = audio_from_file(self.samples[index]) return (audio.squeeze(0), audio_len, torch.LongTensor([0]), torch.LongTensor([0])) class SingleAudioDataset(FilelistDataset): def __init__(self, audio_fpath): self.samples = [audio_fpath] class AudioDataset(Dataset): def __init__(self, data_dir, manifest_fpaths, labels, sample_rate=16000, min_duration=0.1, max_duration=float("inf"), pad_to_max_duration=False, max_utts=0, normalize_transcripts=True, sort_by_duration=False, trim_silence=False, speed_perturbation=None, gain_perturbation=None, shift_perturbation=None, ignore_offline_speed_perturbation=False): """Loads audio, transcript and durations listed in a .json file. Args: data_dir: absolute path to dataset folder manifest_filepath: relative path from dataset folder to manifest json as described above. Can be coma-separated paths. labels (str): all possible output symbols min_duration (int): skip audio shorter than threshold max_duration (int): skip audio longer than threshold pad_to_max_duration (bool): pad all sequences to max_duration max_utts (int): limit number of utterances normalize_transcripts (bool): normalize transcript text sort_by_duration (bool): sort sequences by increasing duration trim_silence (bool): trim leading and trailing silence from audio ignore_offline_speed_perturbation (bool): use precomputed speed perturbation Returns: tuple of Tensors """ self.data_dir = data_dir self.labels = labels self.labels_map = dict([(labels[i], i) for i in range(len(labels))]) self.punctuation_map = punctuation_map(labels) self.blank_index = len(labels) self.pad_to_max_duration = pad_to_max_duration self.sort_by_duration = sort_by_duration self.max_utts = max_utts self.normalize_transcripts = normalize_transcripts self.ignore_offline_speed_perturbation = ignore_offline_speed_perturbation self.min_duration = min_duration self.max_duration = max_duration self.trim_silence = trim_silence self.sample_rate = sample_rate perturbations = [] if speed_perturbation is not None: perturbations.append(SpeedPerturbation(**speed_perturbation)) if gain_perturbation is not None: perturbations.append(GainPerturbation(**gain_perturbation)) if shift_perturbation is not None: perturbations.append(ShiftPerturbation(**shift_perturbation)) self.perturbations = perturbations self.max_duration = max_duration self.samples = [] self.duration = 0.0 self.duration_filtered = 0.0 for fpath in manifest_fpaths: self._load_json_manifest(fpath) if sort_by_duration: self.samples = sorted(self.samples, key=lambda s: s['duration']) def __getitem__(self, index): s = self.samples[index] rn_indx = np.random.randint(len(s['audio_filepath'])) duration = s['audio_duration'][rn_indx] if 'audio_duration' in s else 0 offset = s.get('offset', 0) segment = AudioSegment( s['audio_filepath'][rn_indx], target_sr=self.sample_rate, offset=offset, duration=duration, trim=self.trim_silence) for p in self.perturbations: p.maybe_apply(segment, self.sample_rate) segment = torch.FloatTensor(segment.samples) return (segment, torch.tensor(segment.shape[0]).int(), torch.tensor(s["transcript"]), torch.tensor(len(s["transcript"])).int()) def __len__(self): return len(self.samples) def _load_json_manifest(self, fpath): for s in json.load(open(fpath, "r", encoding="utf-8")): if self.pad_to_max_duration and not self.ignore_offline_speed_perturbation: # require all perturbed samples to be < self.max_duration s_max_duration = max(f['duration'] for f in s['files']) else: # otherwise we allow perturbances to be > self.max_duration s_max_duration = s['original_duration'] s['duration'] = s.pop('original_duration') if not (self.min_duration <= s_max_duration <= self.max_duration): self.duration_filtered += s['duration'] continue # Prune and normalize according to transcript tr = (s.get('transcript', None) or self.load_transcript(s['text_filepath'])) if not isinstance(tr, str): print(f'WARNING: Skipped sample (transcript not a str): {tr}.') self.duration_filtered += s['duration'] continue if self.normalize_transcripts: tr = normalize_string(tr, self.labels, self.punctuation_map) s["transcript"] = self.to_vocab_inds(tr) files = s.pop('files') if self.ignore_offline_speed_perturbation: files = [f for f in files if f['speed'] == 1.0] s['audio_duration'] = [f['duration'] for f in files] s['audio_filepath'] = [str(Path(self.data_dir, f['fname'])) for f in files] self.samples.append(s) self.duration += s['duration'] if self.max_utts > 0 and len(self.samples) >= self.max_utts: print(f'Reached max_utts={self.max_utts}. Finished parsing {fpath}.') break def load_transcript(self, transcript_path): with open(transcript_path, 'r', encoding="utf-8") as transcript_file: transcript = transcript_file.read().replace('\n', '') return transcript def to_vocab_inds(self, transcript): chars = [self.labels_map.get(x, self.blank_index) for x in list(transcript)] transcript = list(filter(lambda x: x != self.blank_index, chars)) return transcript def collate_fn(batch): bs = len(batch) max_len = lambda l, idx: max(el[idx].size(0) for el in l) audio = torch.zeros(bs, max_len(batch, 0)) audio_lens = torch.zeros(bs, dtype=torch.int32) transcript = torch.zeros(bs, max_len(batch, 2)) transcript_lens = torch.zeros(bs, dtype=torch.int32) for i, sample in enumerate(batch): audio[i].narrow(0, 0, sample[0].size(0)).copy_(sample[0]) audio_lens[i] = sample[1] transcript[i].narrow(0, 0, sample[2].size(0)).copy_(sample[2]) transcript_lens[i] = sample[3] return audio, audio_lens, transcript, transcript_lens def get_data_loader(dataset, batch_size, multi_gpu=True, shuffle=True, drop_last=True, num_workers=4): kw = {'dataset': dataset, 'collate_fn': collate_fn, 'num_workers': num_workers, 'pin_memory': True} if multi_gpu: loader_shuffle = False sampler = DistributedSampler(dataset, shuffle=shuffle) else: loader_shuffle = shuffle sampler = None return DataLoader(batch_size=batch_size, drop_last=drop_last, sampler=sampler, shuffle=loader_shuffle, **kw)
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/dataset.py
import numpy as np class BenchmarkStats: """ Tracks statistics used for benchmarking. """ def __init__(self): self.utts = [] self.times = [] self.losses = [] def update(self, utts, times, losses): self.utts.append(utts) self.times.append(times) self.losses.append(losses) def get(self, n_epochs): throughput = sum(self.utts[-n_epochs:]) / sum(self.times[-n_epochs:]) return {'throughput': throughput, 'benchmark_epochs_num': n_epochs, 'loss': np.mean(self.losses[-n_epochs:])}
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/utils.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import soundfile as sf import librosa import torch import numpy as np import sox def audio_from_file(file_path, offset=0, duration=0, trim=False, target_sr=16000): audio = AudioSegment(file_path, target_sr=target_sr, int_values=False, offset=offset, duration=duration, trim=trim) samples = torch.tensor(audio.samples, dtype=torch.float).cuda() num_samples = torch.tensor(samples.shape[0]).int().cuda() return (samples.unsqueeze(0), num_samples.unsqueeze(0)) class AudioSegment(object): """Monaural audio segment abstraction. :param samples: Audio samples [num_samples x num_channels]. :type samples: ndarray.float32 :param sample_rate: Audio sample rate. :type sample_rate: int :raises TypeError: If the sample data type is not float or int. """ def __init__(self, filename, target_sr=None, int_values=False, offset=0, duration=0, trim=False, trim_db=60): """Create audio segment from samples. Samples are converted to float32 internally, with int scaled to [-1, 1]. Load a file supported by librosa and return as an AudioSegment. :param filename: path of file to load :param target_sr: the desired sample rate :param int_values: if true, load samples as 32-bit integers :param offset: offset in seconds when loading audio :param duration: duration in seconds when loading audio :return: numpy array of samples """ with sf.SoundFile(filename, 'r') as f: dtype = 'int32' if int_values else 'float32' sample_rate = f.samplerate if offset > 0: f.seek(int(offset * sample_rate)) if duration > 0: samples = f.read(int(duration * sample_rate), dtype=dtype) else: samples = f.read(dtype=dtype) samples = samples.transpose() samples = self._convert_samples_to_float32(samples) if target_sr is not None and target_sr != sample_rate: samples = librosa.resample(samples, orig_sr=sample_rate, target_sr=target_sr) sample_rate = target_sr if trim: samples, _ = librosa.effects.trim(samples, top_db=trim_db) self._samples = samples self._sample_rate = sample_rate if self._samples.ndim >= 2: self._samples = np.mean(self._samples, 0) def __eq__(self, other): """Return whether two objects are equal.""" if type(other) is not type(self): return False if self._sample_rate != other._sample_rate: return False if self._samples.shape != other._samples.shape: return False if np.any(self.samples != other._samples): return False return True def __ne__(self, other): """Return whether two objects are unequal.""" return not self.__eq__(other) def __str__(self): """Return human-readable representation of segment.""" return ("%s: num_samples=%d, sample_rate=%d, duration=%.2fsec, " "rms=%.2fdB" % (type(self), self.num_samples, self.sample_rate, self.duration, self.rms_db)) @staticmethod def _convert_samples_to_float32(samples): """Convert sample type to float32. Audio sample type is usually integer or float-point. Integers will be scaled to [-1, 1] in float32. """ float32_samples = samples.astype('float32') if samples.dtype in np.sctypes['int']: bits = np.iinfo(samples.dtype).bits float32_samples *= (1. / 2 ** (bits - 1)) elif samples.dtype in np.sctypes['float']: pass else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return float32_samples @property def samples(self): return self._samples.copy() @property def sample_rate(self): return self._sample_rate @property def num_samples(self): return self._samples.shape[0] @property def duration(self): return self._samples.shape[0] / float(self._sample_rate) @property def rms_db(self): mean_square = np.mean(self._samples ** 2) return 10 * np.log10(mean_square) def gain_db(self, gain): self._samples *= 10. ** (gain / 20.) def pad(self, pad_size, symmetric=False): """Add zero padding to the sample. The pad size is given in number of samples. If symmetric=True, `pad_size` will be added to both sides. If false, `pad_size` zeros will be added only to the end. """ self._samples = np.pad(self._samples, (pad_size if symmetric else 0, pad_size), mode='constant') def subsegment(self, start_time=None, end_time=None): """Cut the AudioSegment between given boundaries. Note that this is an in-place transformation. :param start_time: Beginning of subsegment in seconds. :type start_time: float :param end_time: End of subsegment in seconds. :type end_time: float :raise ValueError: If start_time or end_time is incorrectly set, e.g. out of bounds in time. """ start_time = 0.0 if start_time is None else start_time end_time = self.duration if end_time is None else end_time if start_time < 0.0: start_time = self.duration + start_time if end_time < 0.0: end_time = self.duration + end_time if start_time < 0.0: raise ValueError("The slice start position (%f s) is out of " "bounds." % start_time) if end_time < 0.0: raise ValueError("The slice end position (%f s) is out of bounds." % end_time) if start_time > end_time: raise ValueError("The slice start position (%f s) is later than " "the end position (%f s)." % (start_time, end_time)) if end_time > self.duration: raise ValueError("The slice end position (%f s) is out of bounds " "(> %f s)" % (end_time, self.duration)) start_sample = int(round(start_time * self._sample_rate)) end_sample = int(round(end_time * self._sample_rate)) self._samples = self._samples[start_sample:end_sample] class Perturbation: def __init__(self, p=0.1, rng=None): self.p = p self._rng = random.Random() if rng is None else rng def maybe_apply(self, segment, sample_rate=None): if self._rng.random() < self.p: self(segment, sample_rate) class SpeedPerturbation(Perturbation): def __init__(self, min_rate=0.85, max_rate=1.15, discrete=False, p=0.1, rng=None): super(SpeedPerturbation, self).__init__(p, rng) assert 0 < min_rate < max_rate self.min_rate = min_rate self.max_rate = max_rate self.discrete = discrete def __call__(self, data, sample_rate): if self.discrete: rate = np.random.choice([self.min_rate, None, self.max_rate]) else: rate = self._rng.uniform(self.min_rate, self.max_rate) if rate is not None: data._samples = sox.Transformer().speed(factor=rate).build_array( input_array=data._samples, sample_rate_in=sample_rate) class GainPerturbation(Perturbation): def __init__(self, min_gain_dbfs=-10, max_gain_dbfs=10, p=0.1, rng=None): super(GainPerturbation, self).__init__(p, rng) self._rng = random.Random() if rng is None else rng self._min_gain_dbfs = min_gain_dbfs self._max_gain_dbfs = max_gain_dbfs def __call__(self, data, sample_rate=None): del sample_rate gain = self._rng.uniform(self._min_gain_dbfs, self._max_gain_dbfs) data._samples = data._samples * (10. ** (gain / 20.)) class ShiftPerturbation(Perturbation): def __init__(self, min_shift_ms=-5.0, max_shift_ms=5.0, p=0.1, rng=None): super(ShiftPerturbation, self).__init__(p, rng) self._min_shift_ms = min_shift_ms self._max_shift_ms = max_shift_ms def __call__(self, data, sample_rate): shift_ms = self._rng.uniform(self._min_shift_ms, self._max_shift_ms) if abs(shift_ms) / 1000 > data.duration: # TODO: do something smarter than just ignore this condition return shift_samples = int(shift_ms * data.sample_rate // 1000) # print("DEBUG: shift:", shift_samples) if shift_samples < 0: data._samples[-shift_samples:] = data._samples[:shift_samples] data._samples[:-shift_samples] = 0 elif shift_samples > 0: data._samples[:-shift_samples] = data._samples[shift_samples:] data._samples[-shift_samples:] = 0
DeepLearningExamples-master
PyTorch/SpeechRecognition/QuartzNet/common/audio.py