python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # #------------------------------------------------------------------------- # # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from typing import Optional, Dict from fairseq.modules import ( LearnedPositionalEmbedding, MultiheadAttention, SinusoidalPositionalEmbedding ) from . import ( FairseqIncrementalDecoder, register_model, register_model_architecture, ) from apex.normalization.fused_layer_norm import FusedLayerNorm torch.set_printoptions(threshold=500000000, linewidth=1024) @torch.jit.script def jit_dropout_add(x, residual, prob, is_training): # type: (Tensor, Tensor, float, bool) -> Tensor out = F.dropout(x, p=prob, training=is_training) out = residual + out return out @torch.jit.script def jit_relu_dropout(x, prob, is_training): # type: (Tensor, float, bool) -> Tensor out = F.threshold(x, 0., 0.) out = F.dropout(out, p=prob, training=is_training) return out @register_model('transformer') class TransformerModel(nn.Module): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--relu-dropout', type=float, metavar='D', help='dropout probability after ReLU in FFN') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') def __init__(self, encoder, decoder): super().__init__() self._is_generation_fast = False self.encoder = encoder self.decoder = decoder @classmethod def build_model(cls, args): # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, 'max_source_positions'): args.max_source_positions = 1024 if not hasattr(args, 'max_target_positions'): args.max_target_positions = 1024 if args.share_all_embeddings: if args.src_vocab_size != args.tgt_vocab_size: raise RuntimeError('--share-all-embeddings requires a joined dictionary') if args.encoder_embed_dim != args.decoder_embed_dim: raise RuntimeError( '--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path): raise RuntimeError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = Embedding(args.src_vocab_size, args.encoder_embed_dim, args.padding_idx) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = Embedding(args.src_vocab_size, args.encoder_embed_dim, args.padding_idx) decoder_embed_tokens = Embedding(args.tgt_vocab_size, args.decoder_embed_dim, args.padding_idx) encoder = TransformerEncoder(args, encoder_embed_tokens) decoder = TransformerDecoder(args, decoder_embed_tokens) return TransformerModel(encoder, decoder) def make_generation_fast_(self, **kwargs): """Optimize model for faster generation.""" if self._is_generation_fast: return # only apply once self._is_generation_fast = True # remove weight norm from all modules in the network def apply_remove_weight_norm(module): try: nn.utils.remove_weight_norm(module) except ValueError: # this module didn't have weight norm return self.apply(apply_remove_weight_norm) def apply_make_generation_fast_(module): if module != self and hasattr(module, 'make_generation_fast_'): module.make_generation_fast_(**kwargs) self.apply(apply_make_generation_fast_) def train(mode): if mode: raise RuntimeError('cannot train after make_generation_fast') # this model should no longer be used for training self.eval() self.train = train def forward(self, src_tokens, src_lengths, prev_output_tokens): encoder_out, padding_mask = self.encoder(src_tokens, src_lengths) decoder_out = self.decoder(prev_output_tokens, encoder_out, padding_mask) return decoder_out class TransformerEncoder(nn.Module): """Transformer encoder.""" def __init__(self, args, embed_tokens, left_pad=True): super().__init__() self.dropout = args.dropout self.fuse_dropout_add = args.fuse_dropout_add self.fuse_relu_dropout = args.fuse_relu_dropout embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, left_pad=left_pad, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None self.layers = nn.ModuleList([]) self.layers.extend([ TransformerEncoderLayer(args) for i in range(args.encoder_layers) ]) self.normalize = args.encoder_normalize_before if self.normalize: self.layer_norm = FusedLayerNorm(embed_dim) if args.fuse_layer_norm else nn.LayerNorm(embed_dim) def forward(self, src_tokens, src_lengths): # embed tokens and positions x = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C # The tensor needs to copy transposed because # fused dropout is not capable of handing strided data if self.fuse_dropout_add: x = x.transpose(0, 1).contiguous() else: x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) if not encoder_padding_mask.any(): _encoder_padding_mask = None else: _encoder_padding_mask = encoder_padding_mask # encoder layers for layer in self.layers: x = layer(x, _encoder_padding_mask) if self.normalize: x = self.layer_norm(x) return x, encoder_padding_mask # x.shape == T x B x C, encoder_padding_mask.shape == B x T def reorder_encoder_out(self, encoder_out, encoder_padding_mask, new_order): if encoder_out is not None: encoder_out = encoder_out.index_select(1, new_order) if encoder_padding_mask is not None: encoder_padding_mask = encoder_padding_mask.index_select(0, new_order) return encoder_out, encoder_padding_mask class TransformerDecoder(FairseqIncrementalDecoder): """Transformer decoder.""" def __init__(self, args, embed_tokens, no_encoder_attn=False, left_pad=False): super().__init__() self.dropout = args.dropout self.share_input_output_embed = args.share_decoder_input_output_embed self.fuse_dropout_add = args.fuse_dropout_add self.fuse_relu_dropout = args.fuse_relu_dropout embed_dim = embed_tokens.embedding_dim padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, left_pad=left_pad, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None self.layers = nn.ModuleList([]) self.layers.extend([ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(args.decoder_layers) ]) if not self.share_input_output_embed: self.embed_out = nn.Parameter(torch.Tensor(args.tgt_vocab_size, embed_dim)) nn.init.normal_(self.embed_out, mean=0, std=embed_dim ** -0.5) else: self.embed_out = self.embed_tokens.weight self.normalize = args.decoder_normalize_before if self.normalize: self.layer_norm = FusedLayerNorm(embed_dim) if args.fuse_layer_norm else nn.LayerNorm(embed_dim) def forward(self, prev_output_tokens: Tensor, encoder_out: Tensor, encoder_padding_mask: Tensor, incremental_state: Optional[Dict[str, Dict[str, Tensor]]]=None): # embed positions positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C # The tensor needs to copy transposed because # fused dropout is not capable of handing strided data if self.fuse_dropout_add: x = x.transpose(0, 1).contiguous() else: x = x.transpose(0, 1) attn = None # decoder layers for layer in self.layers: x, attn = layer( x, encoder_out, encoder_padding_mask if encoder_padding_mask.any() else None, incremental_state, ) if self.normalize: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) # project back to size of vocabulary x = F.linear(x, self.embed_out) return x, attn class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: dropout -> add residual -> layernorm. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: dropout -> add residual. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting `normalize_before=True`. """ def __init__(self, args): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, ) self.dropout = args.dropout self.relu_dropout = args.relu_dropout self.fuse_dropout_add = args.fuse_dropout_add self.fuse_relu_dropout = args.fuse_relu_dropout self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.maybe_ln1 = MaybeLayerNorm(self.embed_dim, self.normalize_before, fuse=args.fuse_layer_norm) self.maybe_ln2 = MaybeLayerNorm(self.embed_dim, self.normalize_before, fuse=args.fuse_layer_norm) def forward(self, x: Tensor, encoder_padding_mask: Optional[Tensor]): residual = x x = self.maybe_ln1(x, before=True) x, _ = self.self_attn(query=x, key=x, value=x, mask_future_timesteps=False, key_padding_mask=encoder_padding_mask, incremental_state=None, need_weights=False, static_kv=False) if self.fuse_dropout_add and self.training: x = jit_dropout_add(x, residual, self.dropout, self.training) else: x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_ln1(x, after=True) residual = x x = self.maybe_ln2(x, before=True) if self.fuse_relu_dropout: x = jit_relu_dropout(self.fc1(x), self.relu_dropout, self.training) else: x = F.threshold(self.fc1(x), 0.0, 0.0) x = F.dropout(x, p=self.relu_dropout, training=self.training) x = self.fc2(x) if self.fuse_dropout_add and self.training: x = jit_dropout_add(x, residual, self.dropout, self.training) else: x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_ln2(x, after=True) return x class TransformerDecoderLayer(nn.Module): """Decoder layer block.""" def __init__(self, args, no_encoder_attn=False): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, ) self.dropout = args.dropout self.relu_dropout = args.relu_dropout self.normalize_before = args.decoder_normalize_before self.fuse_dropout_add = args.fuse_dropout_add self.fuse_relu_dropout = args.fuse_relu_dropout self.self_attn_layer_norm = MaybeLayerNorm( self.embed_dim, self.normalize_before, fuse=args.fuse_layer_norm) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, ) self.encoder_attn_layer_norm = MaybeLayerNorm( self.embed_dim, self.normalize_before, fuse=args.fuse_layer_norm) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = MaybeLayerNorm( self.embed_dim, self.normalize_before, fuse=args.fuse_layer_norm) self.need_attn = True def forward(self, x: Tensor, encoder_out: Tensor, encoder_padding_mask: Optional[Tensor], incremental_state: Optional[Dict[str, Dict[str, Tensor]]]): residual = x x = self.self_attn_layer_norm(x, before=True) x, _ = self.self_attn( query=x, key=x, value=x, mask_future_timesteps=True, key_padding_mask=None, incremental_state=incremental_state, need_weights=False, static_kv=False ) if self.fuse_dropout_add and self.training: x = jit_dropout_add(x, residual, self.dropout, self.training) else: x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.self_attn_layer_norm(x, after=True) attn = None if self.encoder_attn is not None: residual = x x = self.encoder_attn_layer_norm(x, before=True) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, mask_future_timesteps=False, need_weights=(not self.training and self.need_attn), ) if self.fuse_dropout_add and self.training: x = jit_dropout_add(x, residual, self.dropout, self.training) else: x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.encoder_attn_layer_norm(x, after=True) residual = x x = self.final_layer_norm(x, before=True) if self.fuse_relu_dropout: x = jit_relu_dropout(self.fc1(x), self.relu_dropout, self.training) else: x = F.threshold(self.fc1(x), 0.0, 0.0) x = F.dropout(x, p=self.relu_dropout, training=self.training) x = self.fc2(x) if self.fuse_dropout_add and self.training: x = jit_dropout_add(x, residual, self.dropout, self.training) else: x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.final_layer_norm(x, after=True) return x, attn def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m class MaybeLayerNorm(nn.Module): def __init__(self, embed_dim, normalize_before, fuse=True): super().__init__() self.embed_dim = embed_dim self.normalize_before = normalize_before self.ln = FusedLayerNorm(embed_dim) if fuse else nn.LayerNorm(embed_dim) def forward(self, x: Tensor, before: bool = False, after: bool = False): assert before ^ after if after ^ self.normalize_before: return self.ln(x) else: return x def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0.) return m def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad, learned=False): if learned: m = LearnedPositionalEmbedding(num_embeddings + padding_idx + 1, embedding_dim, padding_idx, left_pad) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, left_pad, num_embeddings + padding_idx + 1) return m @register_model_architecture('transformer', 'transformer') def base_architecture(args): args.encoder_embed_path = getattr(args, 'encoder_embed_path', None) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 2048) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 8) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.encoder_learned_pos = getattr(args, 'encoder_learned_pos', False) args.decoder_embed_path = getattr(args, 'decoder_embed_path', None) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', args.encoder_ffn_embed_dim) args.decoder_layers = getattr(args, 'decoder_layers', 6) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 8) args.decoder_normalize_before = getattr(args, 'decoder_normalize_before', False) args.decoder_learned_pos = getattr(args, 'decoder_learned_pos', False) args.attention_dropout = getattr(args, 'attention_dropout', 0.) args.relu_dropout = getattr(args, 'relu_dropout', 0.) args.dropout = getattr(args, 'dropout', 0.1) args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) args.share_all_embeddings = getattr(args, 'share_all_embeddings', False) args.no_token_positional_embeddings = getattr(args, 'no_token_positional_embeddings', False) @register_model_architecture('transformer', 'transformer_iwslt_de_en') def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 1024) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 4) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 1024) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 4) args.decoder_layers = getattr(args, 'decoder_layers', 6) base_architecture(args) @register_model_architecture('transformer', 'transformer_wmt_en_de') def transformer_wmt_en_de(args): base_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani, et al, 2017) @register_model_architecture('transformer', 'transformer_vaswani_wmt_en_de_big') def transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) args.dropout = getattr(args, 'dropout', 0.3) base_architecture(args) @register_model_architecture('transformer', 'transformer_vaswani_wmt_en_fr_big') def transformer_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, 'dropout', 0.1) transformer_vaswani_wmt_en_de_big(args) @register_model_architecture('transformer', 'transformer_wmt_en_de_big') def transformer_wmt_en_de_big(args): args.attention_dropout = getattr(args, 'attention_dropout', 0.1) transformer_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture('transformer', 'transformer_wmt_en_de_big_t2t') def transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', True) args.decoder_normalize_before = getattr(args, 'decoder_normalize_before', True) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.relu_dropout = getattr(args, 'relu_dropout', 0.1) transformer_vaswani_wmt_en_de_big(args)
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/models/transformer.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch.nn as nn class FairseqIncrementalDecoder(nn.Module): """Base class for incremental decoders.""" def __init__(self): super().__init__() def forward(self, prev_output_tokens, encoder_out, incremental_state=None): raise NotImplementedError def reorder_incremental_state(self, incremental_state, new_order): """Reorder incremental state. This should be called when the order of the input has changed from the previous time step. A typical use case is beam search, where the input order changes between time steps based on the selection of beams. """ def apply_reorder_incremental_state(module): if module != self and hasattr(module, 'reorder_incremental_state'): module.reorder_incremental_state( incremental_state, new_order, ) self.apply(apply_reorder_incremental_state) def set_beam_size(self, beam_size): """Sets the beam size in the decoder and all children.""" if getattr(self, '_beam_size', -1) != beam_size: def apply_set_beam_size(module): if module != self and hasattr(module, 'set_beam_size'): module.set_beam_size(beam_size) self.apply(apply_set_beam_size) self._beam_size = beam_size
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/models/fairseq_incremental_decoder.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch import torch.nn as nn class BeamableMM(nn.Module): """This module provides an optimized MM for beam decoding with attention. It leverage the fact that the source-side of the input is replicated beam times and the target-side of the input is of width one. This layer speeds up inference by replacing the inputs {(bsz x 1 x nhu), (bsz x sz2 x nhu)} with smaller inputs {(bsz/beam x beam x nhu), (bsz/beam x sz2 x nhu)}. """ def __init__(self, beam_size=None): super(BeamableMM, self).__init__() self.beam_size = beam_size def forward(self, input1, input2): if ( not self.training and # test mode self.beam_size is not None and # beam size is set input1.dim() == 3 and # only support batched input input1.size(1) == 1 # single time step update ): bsz, beam = input1.size(0), self.beam_size # bsz x 1 x nhu --> bsz/beam x beam x nhu input1 = input1[:, 0, :].unfold(0, beam, beam).transpose(2, 1) # bsz x sz2 x nhu --> bsz/beam x sz2 x nhu input2 = input2.unfold(0, beam, beam)[:, :, :, 0] # use non batched operation if bsz = beam if input1.size(0) == 1: output = torch.mm(input1[0, :, :], input2[0, :, :]) else: output = input1.bmm(input2) return output.view(bsz, 1, -1) else: return input1.bmm(input2) def set_beam_size(self, beam_size): self.beam_size = beam_size
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/modules/beamable_mm.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # #------------------------------------------------------------------------- # # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import torch from torch import nn, Tensor from torch.nn import Parameter import torch.nn.functional as F from torch.cuda import amp from torch.autograd.variable import Variable import strided_batched_gemm from fairseq import utils class QueryLinear(torch.autograd.Function): @staticmethod @amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, input, weights_q, scale): s = Variable(torch.tensor([scale])) ctx.save_for_backward(input, weights_q, s) q = torch.addmm(input.view(input.size(0) * input.size(1), input.size(2)), input.view(input.size(0) * input.size(1), input.size(2)), weights_q, beta=0.0, alpha=s[0]) q = q.view(input.size(0), input.size(1), input.size(2)) return q.detach() @staticmethod @amp.custom_bwd def backward(ctx, q_grad): input, weights_q, s = ctx.saved_tensors input = input.view(input.size(0) * input.size(1), input.size(2)).transpose(0, 1) q = torch.addmm(q_grad.view(q_grad.size(0) * q_grad.size(1), q_grad.size(2)), q_grad.view(q_grad.size(0) * q_grad.size(1), q_grad.size(2)), weights_q.transpose(0, 1), beta=0.0, alpha=s[0]) q = q.view(q_grad.size(0), q_grad.size(1), q_grad.size(2)) q_grad = q_grad.view(q_grad.size(0) * q_grad.size(1), q_grad.size(2)) weights_q_grad = torch.addmm(weights_q, input, q_grad, beta=0.0, alpha=s[0]) return q, weights_q_grad, None class KeyValueLinears(torch.autograd.Function): @staticmethod @amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, input, weights_k, weights_v): ctx.save_for_backward(input, weights_k, weights_v) k = torch.addmm(input.view(input.size(0) * input.size(1), input.size(2)), input.view(input.size(0) * input.size(1), input.size(2)), weights_k, beta=0.0, alpha=1.0) k = k.view(input.size(0), input.size(1), input.size(2)) v = torch.addmm(input.view(input.size(0) * input.size(1), input.size(2)), input.view(input.size(0) * input.size(1), input.size(2)), weights_v, beta=0.0, alpha=1.0) v = v.view(input.size(0), input.size(1), input.size(2)) return k.detach(), v.detach() @staticmethod @amp.custom_bwd def backward(ctx, k_grad, v_grad): input, weights_k, weights_v = ctx.saved_tensors input = input.view(input.size(0) * input.size(1), input.size(2)).transpose(0, 1) k = torch.addmm(k_grad.view(k_grad.size(0) * k_grad.size(1), k_grad.size(2)), k_grad.view(k_grad.size(0) * k_grad.size(1), k_grad.size(2)), weights_k.transpose(0, 1), beta=0.0) k_grad = k_grad.view(k_grad.size(0) * k_grad.size(1), k_grad.size(2)) weights_k_grad = torch.mm(input, k_grad) v = k.addmm_(v_grad.view(v_grad.size(0) * v_grad.size(1), v_grad.size(2)), weights_v.transpose(0, 1), beta=1.0) v = v.view(v_grad.size(0), v_grad.size(1), v_grad.size(2)) v_grad = v_grad.view(v_grad.size(0) * v_grad.size(1), v_grad.size(2)) weights_v_grad = torch.mm(input, v_grad) return v, weights_k_grad, weights_v_grad class SelfAttentionLinears(torch.autograd.Function): @staticmethod @amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, input, weights_q, weights_k, weights_v, scale): s = Variable(torch.tensor([scale])) ctx.save_for_backward(input, weights_q, weights_k, weights_v, s) q = torch.addmm(input.view(input.size(0) * input.size(1), input.size(2)), input.view(input.size(0) * input.size(1), input.size(2)), weights_q, beta=0.0, alpha=s[0]) q = q.view(input.size(0), input.size(1), input.size(2)) k = torch.addmm(input.view(input.size(0) * input.size(1), input.size(2)), input.view(input.size(0) * input.size(1), input.size(2)), weights_k, beta=0.0, alpha=1.0) k = k.view(input.size(0), input.size(1), input.size(2)) v = torch.addmm(input.view(input.size(0) * input.size(1), input.size(2)), input.view(input.size(0) * input.size(1), input.size(2)), weights_v, beta=0.0, alpha=1.0) v = v.view(input.size(0), input.size(1), input.size(2)) return q.detach(), k.detach(), v.detach() @staticmethod @amp.custom_bwd def backward(ctx, q_grad, k_grad, v_grad): input, weights_q, weights_k, weights_v, s = ctx.saved_tensors input = input.view(input.size(0) * input.size(1), input.size(2)).transpose(0, 1) q = torch.addmm(q_grad.view(q_grad.size(0) * q_grad.size(1), q_grad.size(2)), q_grad.view(q_grad.size(0) * q_grad.size(1), q_grad.size(2)), weights_q.transpose(0, 1), beta=0.0, alpha=s[0]) q_grad = q_grad.view(q_grad.size(0) * q_grad.size(1), q_grad.size(2)) weights_q_grad = torch.addmm(weights_q, input, q_grad, beta=0.0, alpha=s[0]) k = q.addmm_(k_grad.view(k_grad.size(0) * k_grad.size(1), k_grad.size(2)), weights_k.transpose(0, 1), beta=1.0) k_grad = k_grad.view(k_grad.size(0) * k_grad.size(1), k_grad.size(2)) weights_k_grad = torch.mm(input, k_grad) v = k.addmm_(v_grad.view(v_grad.size(0) * v_grad.size(1), v_grad.size(2)), weights_v.transpose(0, 1), beta=1.0) v = v.view(v_grad.size(0), v_grad.size(1), v_grad.size(2)) v_grad = v_grad.view(v_grad.size(0) * v_grad.size(1), v_grad.size(2)) weights_v_grad = torch.mm(input, v_grad) return v, weights_q_grad, weights_k_grad, weights_v_grad, None class StridedBmm1Func(torch.autograd.Function): @staticmethod @amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, input1, input2): ctx.save_for_backward(input1, input2) output = torch.empty((input1.size(0), input1.size(1), input2.size(2)), dtype=input1.dtype, device=torch.device('cuda')) if (input1.dtype == torch.float16) and (input2.dtype == torch.float16): output = strided_batched_gemm.strided_batched_gemm(0.0, output, 1.0, input1, input2) else: output = torch.bmm(input1, input2, out=output) return output.detach() @staticmethod @amp.custom_bwd def backward(ctx, grad_output): input1, input2 = ctx.saved_tensors grad_input1 = torch.empty((input1.size(1), input2.size(0), input1.size(2)), dtype=input1.dtype, device=torch.device('cuda')).transpose(1, 0) grad_input2 = torch.empty((input2.size(2), input2.size(0), input2.size(1)), dtype=input2.dtype, device=torch.device('cuda')).transpose(1, 0) if (grad_output.dtype == torch.float16) and (input1.dtype == torch.float16) and (input2.dtype == torch.float16): grad_input1 = strided_batched_gemm.strided_batched_gemm(0.0, grad_input1, 1.0, grad_output, input2.transpose(1, 2)) grad_input2 = strided_batched_gemm.strided_batched_gemm(0.0, grad_input2, 1.0, grad_output.transpose(1, 2), input1) grad_input2 = grad_input2.transpose(1, 2) else: grad_input1 = torch.bmm(grad_output, input2.transpose(1, 2), out=grad_input1) grad_input2 = torch.bmm(grad_output.transpose(1, 2), input1, out=grad_input2).transpose(1, 2) return grad_input1, grad_input2 class StridedBmm2Func(torch.autograd.Function): @staticmethod @amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, input1, input2): ctx.save_for_backward(input1, input2) output = torch.empty((input1.size(1), input1.size(0), input2.size(2)), dtype=input1.dtype, device=torch.device('cuda')).transpose(1, 0) if (input1.dtype == torch.float16) and (input2.dtype == torch.float16): output = strided_batched_gemm.strided_batched_gemm(0.0, output, 1.0, input1, input2) else: output = torch.bmm(input1, input2, out=output) return output.detach() @staticmethod @amp.custom_bwd def backward(ctx, grad_output): input1, input2 = ctx.saved_tensors grad_input2 = torch.empty((input2.size(1), input2.size(0), input2.size(2)), dtype=input2.dtype, device=torch.device('cuda')).transpose(1, 0) grad_input1 = torch.empty((input1.size(0), input1.size(1), input1.size(2)), dtype=input2.dtype, device=torch.device('cuda')) if (grad_output.dtype == torch.float16) and (input1.dtype == torch.float16) and (input2.dtype == torch.float16): grad_input1 = strided_batched_gemm.strided_batched_gemm(0.0, grad_input1, 1.0, grad_output, input2.transpose(1, 2)) grad_input2 = strided_batched_gemm.strided_batched_gemm(0.0, grad_input2, 1.0, input1.transpose(1, 2), grad_output) else: grad_input1 = torch.bmm(grad_output, input2.transpose(1, 2)) grad_input2 = torch.bmm(input1.transpose(1, 2), grad_output, out=grad_input2) return grad_input1, grad_input2 def query_linear(input: Tensor, weights_q: Tensor, scale: float): if not torch.jit.is_scripting(): return QueryLinear.apply(input, weights_q, scale) else: q = scale * torch.einsum('ij,jk->ik', input.view(input.size(0) * input.size(1), -1), weights_q) q = q.view(input.shape) return q def key_value_linears(input: Tensor, weights_k: Tensor, weights_v: Tensor): if not torch.jit.is_scripting(): return KeyValueLinears.apply(input, weights_k, weights_v) else: k = torch.einsum('ij,jk->ik', input.view(input.size(0) * input.size(1), -1), weights_k) k = k.view(input.shape) v = torch.einsum('ij,jk->ik', input.view(input.size(0) * input.size(1), -1), weights_v) v = v.view(input.shape) return k, v def self_attn_linears(input: Tensor, weights_q: Tensor, weights_k: Tensor, weights_v: Tensor, scale: float): if not torch.jit.is_scripting(): return SelfAttentionLinears.apply(input, weights_q, weights_k, weights_v, scale) else: q = scale * torch.einsum('ij,jk->ik', input.view(input.size(0) * input.size(1), -1), weights_q) q = q.view(input.shape) k = torch.einsum('ij,jk->ik', input.view(input.size(0) * input.size(1), -1), weights_k) k = k.view(input.shape) v = torch.einsum('ij,jk->ik', input.view(input.size(0) * input.size(1), -1), weights_v) v = v.view(input.shape) return q, k, v def strided_bmm1(input1: Tensor, input2: Tensor): if not torch.jit.is_scripting(): return StridedBmm1Func.apply(input1, input2) else: return torch.einsum('ijk,ikn->ijn', input1, input2) def strided_bmm2(input1: Tensor, input2: Tensor): if not torch.jit.is_scripting(): return StridedBmm2Func.apply(input1, input2) else: return torch.einsum('ijk,ikn->ijn', input1, input2) class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, dropout=0., bias=False): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim**-0.5 self._mask = torch.empty(0) #self.in_proj_weight = Parameter(torch.Tensor(3*embed_dim, embed_dim)) self.in_proj_weight_q = Parameter(torch.Tensor(embed_dim, embed_dim)) self.in_proj_weight_k = Parameter(torch.Tensor(embed_dim, embed_dim)) self.in_proj_weight_v = Parameter(torch.Tensor(embed_dim, embed_dim)) if bias: #self.in_proj_bias = Parameter(torch.Tensor(3*embed_dim)) self.in_proj_bias_q = Parameter(torch.Tensor(embed_dim)) self.in_proj_bias_k = Parameter(torch.Tensor(embed_dim)) self.in_proj_bias_v = Parameter(torch.Tensor(embed_dim)) else: #self.register_parameter('in_proj_bias', None) self.register_parameter('in_proj_bias_k', None) self.register_parameter('in_proj_bias_q', None) self.register_parameter('in_proj_bias_v', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.cache_id = str(id(self)) self.reset_parameters() def reset_parameters(self): #nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.in_proj_weight_q) nn.init.xavier_uniform_(self.in_proj_weight_k) nn.init.xavier_uniform_(self.in_proj_weight_v) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias_k is not None: #nn.init.constant_(self.in_proj_bias, 0.) nn.init.constant_(self.in_proj_bias_q, 0.) nn.init.constant_(self.in_proj_bias_k, 0.) nn.init.constant_(self.in_proj_bias_v, 0.) nn.init.constant_(self.out_proj.bias, 0.) def forward(self, query: Tensor, key: Tensor, value: Tensor, mask_future_timesteps: bool, key_padding_mask: Optional[Tensor], incremental_state: Optional[Dict[str, Dict[str, Tensor]]], need_weights: bool, static_kv: bool): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Future timesteps can be masked with the `mask_future_timesteps` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ if torch.jit.is_scripting(): kv_same = torch.equal(key, value) qkv_same = torch.equal(query, value) and kv_same else: qkv_same, kv_same = self._fast_same_check(query, key, value) tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() k = v = query.new_empty(0) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) else: saved_state = None if qkv_same: # self-attention q, k, v = self_attn_linears(query, self.in_proj_weight_q, self.in_proj_weight_k, self.in_proj_weight_v, self.scaling) elif kv_same: # encoder-decoder attention q = query_linear(query, self.in_proj_weight_q, self.scaling) if not(saved_state is not None and 'prev_key' in saved_state and static_kv): k, v = key_value_linears(key, self.in_proj_weight_k, self.in_proj_weight_v) else: q = torch.addmm(query.view(query.size(0) * query.size(1), query.size(2)), query.view(query.size(0) * query.size(1), query.size(2)), self.in_proj_weight_q, beta=0.0, alpha=self.scaling) if not(saved_state is not None and 'prev_key' in saved_state and static_kv): k = F.linear(key, self.in_proj_weight_k, self.in_proj_bias_k) v = F.linear(value, self.in_proj_weight_v, self.in_proj_bias_v) if saved_state is not None: if 'prev_key' in saved_state: k = torch.cat((saved_state['prev_key'], k), dim=0) if 'prev_value' in saved_state: v = torch.cat((saved_state['prev_value'], v), dim=0) saved_state['prev_key'] = k saved_state['prev_value'] = v self._set_input_buffer(incremental_state, saved_state) src_len = k.size(0) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) k = k.contiguous().view(src_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) v = v.contiguous().view(src_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) attn_weights = strided_bmm1(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] # only apply masking at training time (when incremental state is None) if mask_future_timesteps and incremental_state is None: assert query.size() == key.size(), \ 'mask_future_timesteps only applies to self-attention' attn_weights += self.buffered_mask(attn_weights).unsqueeze(0) if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.float().masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ).type_as(attn_weights) # FP16 support: cast to float and back attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = F.softmax(attn_weights, dim=-1) attn_weights = F.dropout(attn_weights, p=self.dropout, training=self.training) attn = strided_bmm2(attn_weights, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: # average attention weights over heads attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.sum(dim=1) / self.num_heads else: attn_weights = attn_weights.new_empty(0) # Can't set to None because jit script reasons return attn, attn_weights def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query): return self._in_proj(query, end=self.embed_dim) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=None, end=None): weight = self.in_proj_weight bias = self.in_proj_bias if end is not None: weight = weight[:end, :] if bias is not None: bias = bias[:end] if start is not None: weight = weight[start:, :] if bias is not None: bias = bias[start:] return F.linear(input, weight, bias) def buffered_mask(self, tensor): dim = tensor.size(-1) if self._mask.size(0) == 0: #TODO: try torch.new_full instead self._mask = torch.triu(utils.fill_with_neg_inf(tensor.new_empty(dim, dim)), 1) if self._mask.size(0) < dim: self._mask = torch.triu(utils.fill_with_neg_inf(self._mask.resize_(dim, dim)), 1) return self._mask[:dim, :dim] def reorder_incremental_state(self, incremental_state, new_order): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer[k] = input_buffer[k].index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Tensor]]]): if incremental_state is None or self.cache_id not in incremental_state: return {} return incremental_state[self.cache_id] def _set_input_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Tensor]]], buffer: Dict[str, Tensor]): if incremental_state is not None: incremental_state[self.cache_id] = buffer @torch.jit.unused def _fast_same_check(self, q, k, v): qkv_same = q.data_ptr() == k.data_ptr() == v.data_ptr() kv_same = k.data_ptr() == v.data_ptr() return qkv_same, kv_same
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/modules/multihead_attention.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch.nn as nn from fairseq import utils class LearnedPositionalEmbedding(nn.Embedding): """This module learns positional embeddings up to a fixed maximum size. Padding symbols are ignored, but it is necessary to specify whether padding is added on the left side (left_pad=True) or right side (left_pad=False). """ def __init__(self, num_embeddings, embedding_dim, padding_idx, left_pad): super().__init__(num_embeddings, embedding_dim, padding_idx) self.left_pad = left_pad def forward(self, input, incremental_state=None): """Input is expected to be of size [bsz x seqlen].""" if incremental_state is not None: # positions is the same for every token when decoding a single step positions = input.data.new(1, 1).fill_(self.padding_idx + input.size(1)) else: positions = utils.make_positions(input.data, self.padding_idx, self.left_pad) return super().forward(positions)
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/modules/learned_positional_embedding.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from .beamable_mm import BeamableMM from .learned_positional_embedding import LearnedPositionalEmbedding from .multihead_attention import MultiheadAttention from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding __all__ = [ 'BeamableMM', 'LearnedPositionalEmbedding', 'MultiheadAttention', 'SinusoidalPositionalEmbedding', ]
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/modules/__init__.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import math from typing import Optional, Dict import torch import torch.nn as nn from torch import Tensor class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored, but it is necessary to specify whether padding is added on the left side (left_pad=True) or right side (left_pad=False). """ def __init__(self, embedding_dim, padding_idx, left_pad, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.left_pad = left_pad self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx, ) self.register_buffer('_float_tensor', torch.FloatTensor(1)) # JIT compliance self.register_buffer( 'positions_buffer', torch.arange(padding_idx + 1, init_size + padding_idx + 1)) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: int): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) emb[padding_idx] = torch.zeros(emb.shape[1]) # emb[padding_idx, :] = 0 return emb def forward(self, input: Tensor, incremental_state: Optional[Dict[str, Dict[str, Tensor]]]=None): """Input is expected to be of size [bsz x seqlen].""" # recompute/expand embeddings if needed bsz, seq_len = input.size() max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx, ) self.weights = self.weights.type_as(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step return self.weights[self.padding_idx + seq_len, :].expand(bsz, 1, -1) #### JIT #### mask = input.ne(self.padding_idx) positions = self.positions_buffer[:input.size(1)].expand_as(input) if self.left_pad: positions = positions - mask.size(1) + mask.long().sum(dim=1).unsqueeze(1) positions = input.clone().masked_scatter_(mask, positions[mask]) ############# return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/modules/sinusoidal_positional_embedding.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # #------------------------------------------------------------------------- # # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .dictionary import Dictionary from .indexed_dataset import IndexedDataset, IndexedInMemoryDataset, IndexedRawTextDataset # noqa: F401 from .language_pair_dataset import LanguagePairDataset, load_dataset_splits from .data_utils import EpochBatchIterator
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/data/__init__.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # #------------------------------------------------------------------------- # # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import itertools import os import numpy as np import torch import fairseq.data.batch_C import sys from .dictionary import Dictionary def infer_language_pair(path): """Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx""" src, dst = None, None for filename in os.listdir(path): parts = filename.split('.') if len(parts) >= 3 and len(parts[1].split('-')) == 2: return parts[1].split('-') return src, dst def load_dictionaries(args): if args.source_lang is None or args.target_lang is None: args.source_lang, args.target_lang = infer_language_pair(args.data) if args.source_lang is None or args.target_lang is None: raise Exception('Could not infer language pair, please provide it explicitly') # load dictionaries src_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.source_lang))) tgt_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.target_lang))) assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() args.src_vocab_size = len(src_dict) args.tgt_vocab_size = len(tgt_dict) args.padding_idx = src_dict.pad() print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict))) print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict))) return src_dict, tgt_dict class ShardedIterator(object): """A sharded wrapper around an iterable (padded to length).""" def __init__(self, iterable, num_shards, shard_id, fill_value=None): if shard_id < 0 or shard_id >= num_shards: raise ValueError('shard_id must be between 0 and num_shards') self._sharded_len = len(iterable) // num_shards if len(iterable) % num_shards > 0: self._sharded_len += 1 self.itr = itertools.zip_longest( range(self._sharded_len), itertools.islice(iterable, shard_id, len(iterable), num_shards), fillvalue=fill_value, ) def __len__(self): return self._sharded_len def __iter__(self): return self def __next__(self): return next(self.itr)[1] class CountingIterator(object): """Wrapper around an iterable that maintains the iteration count.""" def __init__(self, iterable): self.iterable = iterable self.count = 0 self.itr = iter(self) def __len__(self): return len(self.iterable) def __iter__(self): for x in self.iterable: self.count += 1 yield x def __next__(self): return next(self.itr) def has_next(self): return self.count < len(self) def skip(self, num_to_skip): next(itertools.islice(self.itr, num_to_skip, num_to_skip), None) return self def collate_tokens(values, pad_idx, eos_idx, left_pad, move_eos_to_beginning=False, pad_sequence=1): """Convert a list of 1d tensors into a padded 2d tensor.""" #size = max(v.size(0) for v in values) orig_size = max(v.size(0) for v in values) size = 0 if pad_sequence > 1: size = orig_size // pad_sequence * pad_sequence if orig_size % pad_sequence > 0: size += pad_sequence else: size = orig_size res = values[0].new(len(values), size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: assert src[-1] == eos_idx dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) return res def collate(samples, pad_idx, eos_idx, left_pad_source=True, left_pad_target=False, pad_sequence=1): if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False): return collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad, move_eos_to_beginning, pad_sequence, ) id = torch.LongTensor([s['id'] for s in samples]) src_tokens = merge('source', left_pad=left_pad_source) # sort by descending source length src_lengths = torch.LongTensor([s['source'].numel() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get('target', None) is not None: target = merge('target', left_pad=left_pad_target) # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( 'target', left_pad=left_pad_target, move_eos_to_beginning=True, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) target = target.index_select(0, sort_order) ntokens = sum(len(s['target']) for s in samples) else: ntokens = sum(len(s['source']) for s in samples) return { 'id': id, 'ntokens': ntokens, 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, 'prev_output_tokens': prev_output_tokens, }, 'target': target, } def get_dummy_batch(num_tokens, src_dict, tgt_dict, src_len=128, tgt_len=128, left_pad_source=True, left_pad_target=False, pad_sequence=1): bsz = num_tokens // max(src_len, tgt_len) dummy_samples = [ { 'id': i, 'source': src_dict.dummy_sentence(src_len), 'target': tgt_dict.dummy_sentence(tgt_len) if tgt_dict is not None else None, } for i in range(bsz) ] return collate( dummy_samples, pad_idx=src_dict.pad(), eos_idx=src_dict.eos(), left_pad_source=left_pad_source, left_pad_target=left_pad_target, pad_sequence=pad_sequence, ) class EpochBatchIterator(object): """Iterate over a FairseqDataset and yield batches bucketed by size. Batches may contain sequences of different lengths. This iterator can be reused across multiple epochs with the next_epoch_itr() method. Args: dataset: a FairseqDataset max_tokens: max number of tokens in each batch max_sentences: max number of sentences in each batch max_positions: max sentence length supported by the model required_batch_size_multiple: require batch size to be a multiple of N seed: seed for random number generator for reproducibility num_shards: shard the data iterator into N shards shard_id: which shard of the data iterator to return """ def __init__( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, epoch=0 ): self.dataset = dataset self.max_tokens = max_tokens if max_tokens is not None else float('Inf') self.max_sentences = max_sentences if max_sentences is not None else float('Inf') self.max_positions = max_positions self.bsz_mult = required_batch_size_multiple self.seed = seed self.num_shards = num_shards self.shard_id = shard_id self.epoch = epoch self._cur_epoch_itr = None self._next_epoch_itr = None with numpy_seed(self.seed): indices = self.dataset.ordered_indices(self.seed, self.epoch) #need integer, rather than float('Inf') values max_sentences = max_sentences if max_sentences is not None else sys.maxsize max_positions_num = 1024 max_tokens = max_tokens if max_tokens is not None else sys.maxsize #Following line is workaround due to the fact we cannot pass None object as argument tgt_sizes = self.dataset.tgt_sizes if self.dataset.tgt_sizes is not None else self.dataset.src_sizes batches = fairseq.data.batch_C.make_batches( self.dataset.src_sizes, tgt_sizes, indices, max_tokens, max_sentences, self.bsz_mult, max_positions_num) self.frozen_batches = tuple(batches) def __len__(self): return len(self.frozen_batches) def next_epoch_itr(self, shuffle=True): """Shuffle batches and return a new iterator over the dataset.""" if self._next_epoch_itr is not None: self._cur_epoch_itr = self._next_epoch_itr self._next_epoch_itr = None else: self.epoch += 1 self._cur_epoch_itr = self._get_iterator_for_epoch(self.epoch, shuffle) return self._cur_epoch_itr def end_of_epoch(self): return not self._cur_epoch_itr.has_next() @property def iterations_in_epoch(self): if self._cur_epoch_itr is not None: return self._cur_epoch_itr.count elif self._next_epoch_itr is not None: return self._next_epoch_itr.count return 0 def state_dict(self): return { 'epoch': self.epoch, 'iterations_in_epoch': self.iterations_in_epoch, } def load_state_dict(self, state_dict): self.epoch = state_dict['epoch'] itr_pos = state_dict.get('iterations_in_epoch', 0) if itr_pos > 0: # fast-forward epoch iterator itr = self._get_iterator_for_epoch(self.epoch, state_dict.get('shuffle', True)) if itr_pos < len(itr): self._next_epoch_itr = itr.skip(itr_pos) def _get_iterator_for_epoch(self, epoch, shuffle): if shuffle: # set seed based on the seed and epoch number so that we get # reproducible results when resuming from checkpoints with numpy_seed(self.seed + epoch): batches = list(self.frozen_batches) # copy np.random.shuffle(batches) else: batches = self.frozen_batches return CountingIterator(torch.utils.data.DataLoader( self.dataset, collate_fn=self.dataset.collater, num_workers=1, batch_sampler=ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]), )) @contextlib.contextmanager def numpy_seed(seed): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state)
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/data/data_utils.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # #------------------------------------------------------------------------- # # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from torch.utils.data import Dataset, ConcatDataset from . import data_utils import itertools import os import sys from fairseq.data import IndexedInMemoryDataset, IndexedRawTextDataset class LanguagePairDataset(Dataset): """A pair of torch.utils.data.Datasets.""" def __init__( self, src, src_sizes, src_dict, tgt=None, tgt_sizes=None, tgt_dict=None, left_pad_source=True, left_pad_target=False, max_source_positions=1024, max_target_positions=1024, pad_sequence=1, shuffle=True, ): if tgt_dict is not None: assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() self.src = src self.tgt = tgt self.src_sizes = np.array(src_sizes) self.tgt_sizes = np.array(tgt_sizes) if tgt_sizes is not None else None self.src_dict = src_dict self.tgt_dict = tgt_dict self.left_pad_source = left_pad_source self.left_pad_target = left_pad_target self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.pad_sequence = pad_sequence self.shuffle = shuffle print("| Sentences are being padded to multiples of: {}".format(self.pad_sequence), file=sys.stderr) def __getitem__(self, index): return { 'id': index, 'source': self.src[index], 'target': self.tgt[index] if self.tgt is not None else None, } def __len__(self): return len(self.src) def collater(self, samples): """Merge a list of samples to form a mini-batch.""" return data_utils.collate( samples, pad_idx=self.src_dict.pad(), eos_idx=self.src_dict.eos(), left_pad_source=self.left_pad_source, left_pad_target=self.left_pad_target, pad_sequence=self.pad_sequence, ) def num_tokens(self, index): """Return an example's length (number of tokens), used for batching.""" orig_size = max(self.src_sizes[index], self.tgt_sizes[index] if self.tgt_sizes is not None else 0) assert self.pad_sequence > 0, "Padding multiple has to be greater than 0" size = 0 if self.pad_sequence > 1: size = orig_size // self.pad_sequence * self.pad_sequence if orig_size % self.pad_sequence > 0: size += self.pad_sequence else: size = orig_size return size #return max(self.src_sizes[index], self.tgt_sizes[index] if self.tgt_sizes is not None else 0) def ordered_indices(self, seed=None, epoch=1): """Ordered indices for batching.""" if self.shuffle: indices = np.random.RandomState(seed + epoch).permutation(len(self)) else: indices = np.arange(len(self)) if self.tgt_sizes is not None: indices = indices[np.argsort(self.tgt_sizes[indices], kind='mergesort')] return indices[np.argsort(self.src_sizes[indices], kind='mergesort')] def valid_size(self, index, max_positions): """Check if an example's size is valid according to max_positions.""" max_source_positions, max_target_positions = self._get_max_positions(max_positions) return ( self.src_sizes[index] <= max_source_positions and (self.tgt_sizes is None or self.tgt_sizes[index] <= max_target_positions) ) def _get_max_positions(self, max_positions): if max_positions is None: return self.max_source_positions, self.max_target_positions assert len(max_positions) == 2 max_src_pos, max_tgt_pos = max_positions return min(self.max_source_positions, max_src_pos), min(self.max_target_positions, max_tgt_pos) def load_dataset(args, datasets, split, src_dict, tgt_dict, combine=False): """Load a dataset split.""" def split_exists(split, src, tgt, lang): filename = os.path.join(args.data, '{}.{}-{}.{}'.format(split, src, tgt, lang)) if args.raw_text and IndexedRawTextDataset.exists(filename): return True elif not args.raw_text and IndexedInMemoryDataset.exists(filename): return True return False def indexed_dataset(path, dictionary): if args.raw_text: return IndexedRawTextDataset(path, dictionary) elif IndexedInMemoryDataset.exists(path): return IndexedInMemoryDataset(path, fix_lua_indexing=True) return None src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') # infer langcode src, tgt = args.source_lang, args.target_lang if split_exists(split_k, src, tgt, src): prefix = os.path.join(args.data, '{}.{}-{}.'.format(split_k, src, tgt)) elif split_exists(split_k, tgt, src, src): prefix = os.path.join(args.data, '{}.{}-{}.'.format(split_k, tgt, src)) else: if k > 0: break else: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, args.data)) src_datasets.append(indexed_dataset(prefix + src, src_dict)) tgt_datasets.append(indexed_dataset(prefix + tgt, tgt_dict)) print('| {} {} {} examples'.format(args.data, split_k, len(src_datasets[-1]))) if not combine: break assert len(src_datasets) == len(tgt_datasets) if len(src_datasets) == 1: src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0] src_sizes = src_dataset.sizes tgt_sizes = tgt_dataset.sizes else: src_dataset = ConcatDataset(src_datasets) tgt_dataset = ConcatDataset(tgt_datasets) src_sizes = np.concatenate([ds.sizes for ds in src_datasets]) tgt_sizes = np.concatenate([ds.sizes for ds in tgt_datasets]) datasets[split] = LanguagePairDataset( src_dataset, src_sizes, src_dict, tgt_dataset, tgt_sizes, tgt_dict, left_pad_source=args.left_pad_source, left_pad_target=args.left_pad_target, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, pad_sequence=args.pad_sequence, ) def load_dataset_splits(args, splits, src_dict, tgt_dict): datasets = {} for split in splits: if split == 'train': load_dataset(args, datasets, split, src_dict, tgt_dict, combine=True) else: for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') try: load_dataset(args, datasets, split_k, src_dict, tgt_dict, combine=False) except FileNotFoundError as e: if k > 0: break raise e return datasets
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/data/language_pair_dataset.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import os import struct import numpy as np import torch from fairseq.tokenizer import Tokenizer def read_longs(f, n): a = np.empty(n, dtype=np.int64) f.readinto(a) return a def write_longs(f, a): f.write(np.array(a, dtype=np.int64)) dtypes = { 1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float, 7: np.double, } def code(dtype): for k in dtypes.keys(): if dtypes[k] == dtype: return k def index_file_path(prefix_path): return prefix_path + '.idx' def data_file_path(prefix_path): return prefix_path + '.bin' class IndexedDataset(torch.utils.data.Dataset): """Loader for TorchNet IndexedDataset""" def __init__(self, path, fix_lua_indexing=False): super().__init__() self.fix_lua_indexing = fix_lua_indexing with open(index_file_path(path), 'rb') as f: magic = f.read(8) assert magic == b'TNTIDX\x00\x00' version = f.read(8) assert struct.unpack('<Q', version) == (1,) code, self.element_size = struct.unpack('<QQ', f.read(16)) self.dtype = dtypes[code] self.size, self.s = struct.unpack('<QQ', f.read(16)) self.dim_offsets = read_longs(f, self.size + 1) self.data_offsets = read_longs(f, self.size + 1) self.sizes = read_longs(f, self.s) self.read_data(path) def read_data(self, path): self.data_file = open(data_file_path(path), 'rb', buffering=0) def check_index(self, i): if i < 0 or i >= self.size: raise IndexError('index out of range') def __del__(self): self.data_file.close() def __getitem__(self, i): self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) self.data_file.seek(self.data_offsets[i] * self.element_size) self.data_file.readinto(a) item = torch.from_numpy(a).long() if self.fix_lua_indexing: item -= 1 # subtract 1 for 0-based indexing return item def __len__(self): return self.size @staticmethod def exists(path): return ( os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path)) ) class IndexedInMemoryDataset(IndexedDataset): """Loader for TorchNet IndexedDataset, keeps all the data in memory""" def read_data(self, path): self.data_file = open(data_file_path(path), 'rb') self.buffer = np.empty(self.data_offsets[-1], dtype=self.dtype) self.data_file.readinto(self.buffer) self.data_file.close() if self.fix_lua_indexing: self.buffer -= 1 # subtract 1 for 0-based indexing def __del__(self): pass def __getitem__(self, i): self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) np.copyto(a, self.buffer[self.data_offsets[i]:self.data_offsets[i + 1]]) return torch.from_numpy(a).long() class IndexedRawTextDataset(IndexedDataset): """Takes a text file as input and binarizes it in memory at instantiation. Original lines are also kept in memory""" def __init__(self, path, dictionary, append_eos=True, reverse_order=False): self.tokens_list = [] self.lines = [] self.sizes = [] self.append_eos = append_eos self.reverse_order = reverse_order self.read_data(path, dictionary) self.size = len(self.tokens_list) def read_data(self, path, dictionary): with open(path, 'r') as f: for line in f: self.lines.append(line.strip('\n')) tokens = Tokenizer.tokenize( line, dictionary, add_if_not_exist=False, append_eos=self.append_eos, reverse_order=self.reverse_order, ).long() self.tokens_list.append(tokens) self.sizes.append(len(tokens)) self.sizes = np.array(self.sizes) def __getitem__(self, i): self.check_index(i) return self.tokens_list[i] def get_original_text(self, i): self.check_index(i) return self.lines[i] def __del__(self): pass def __len__(self): return self.size @staticmethod def exists(path): return os.path.exists(path) class IndexedDatasetBuilder(object): element_sizes = { np.uint8: 1, np.int8: 1, np.int16: 2, np.int32: 4, np.int64: 8, np.float: 4, np.double: 8 } def __init__(self, out_file, dtype=np.int32): self.out_file = open(out_file, 'wb') self.dtype = dtype self.data_offsets = [0] self.dim_offsets = [0] self.sizes = [] self.element_size = self.element_sizes[self.dtype] def add_item(self, tensor): # +1 for Lua compatibility bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype)) self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size) for s in tensor.size(): self.sizes.append(s) self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size())) def finalize(self, index_file): self.out_file.close() index = open(index_file, 'wb') index.write(b'TNTIDX\x00\x00') index.write(struct.pack('<Q', 1)) index.write(struct.pack('<QQ', code(self.dtype), self.element_size)) index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes))) write_longs(index, self.dim_offsets) write_longs(index, self.data_offsets) write_longs(index, self.sizes) index.close()
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/data/indexed_dataset.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from collections import Counter import os import torch class Dictionary(object): """A mapping from symbols to consecutive integers""" def __init__(self, pad='<pad>', eos='</s>', unk='<unk>'): self.unk_word, self.pad_word, self.eos_word = unk, pad, eos self.symbols = [] self.count = [] self.indices = {} # dictionary indexing starts at 1 for consistency with Lua self.add_symbol('<Lua heritage>') self.pad_index = self.add_symbol(pad) self.eos_index = self.add_symbol(eos) self.unk_index = self.add_symbol(unk) self.nspecial = len(self.symbols) def __eq__(self, other): return self.indices == other.indices def __getitem__(self, idx): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__(self): """Returns the number of symbols in the dictionary""" return len(self.symbols) def index(self, sym): """Returns the index of the specified symbol""" if sym in self.indices: return self.indices[sym] return self.unk_index def string(self, tensor, bpe_symbol=None, escape_unk=False): """Helper for converting a tensor of token indices to a string. Can optionally remove BPE symbols or escape <unk> words. """ if torch.is_tensor(tensor) and tensor.dim() == 2: return '\n'.join(self.string(t) for t in tensor) def token_string(i): if i == self.unk(): return self.unk_string(escape_unk) else: return self[i] sent = ' '.join(token_string(i) for i in tensor if i != self.eos()) if bpe_symbol is not None: sent = (sent + ' ').replace(bpe_symbol, '').rstrip() return sent def unk_string(self, escape=False): """Return unknown string, optionally escaped as: <<unk>>""" if escape: return '<{}>'.format(self.unk_word) else: return self.unk_word def add_symbol(self, word, n=1): """Adds a word to the dictionary""" if word in self.indices: idx = self.indices[word] self.count[idx] = self.count[idx] + n return idx else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(n) return idx def update(self, new_dict): """Updates counts from new dictionary.""" for word in new_dict.symbols: idx2 = new_dict.indices[word] if word in self.indices: idx = self.indices[word] self.count[idx] = self.count[idx] + new_dict.count[idx2] else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(new_dict.count[idx2]) def finalize(self, threshold=-1, nwords=-1, padding_factor=8): """Sort symbols by frequency in descending order, ignoring special ones. Args: - threshold defines the minimum word count - nwords defines the total number of words in the final dictionary, including special symbols - padding_factor can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ if nwords <= 0: nwords = len(self) new_indices = dict(zip(self.symbols[:self.nspecial], range(self.nspecial))) new_symbols = self.symbols[:self.nspecial] new_count = self.count[:self.nspecial] c = Counter(dict(zip(self.symbols[self.nspecial:], self.count[self.nspecial:]))) for symbol, count in c.most_common(nwords - self.nspecial): if count >= threshold: new_indices[symbol] = len(new_symbols) new_symbols.append(symbol) new_count.append(count) else: break threshold_nwords = len(new_symbols) if padding_factor > 1: i = 0 while threshold_nwords % padding_factor != 0: symbol = 'madeupword{:04d}'.format(i) new_indices[symbol] = len(new_symbols) new_symbols.append(symbol) new_count.append(0) i += 1 threshold_nwords += 1 assert len(new_symbols) % padding_factor == 0 assert len(new_symbols) == len(new_indices) self.count = list(new_count) self.symbols = list(new_symbols) self.indices = new_indices def pad(self): """Helper to get index of pad symbol""" return self.pad_index def eos(self): """Helper to get index of end-of-sentence symbol""" return self.eos_index def unk(self): """Helper to get index of unk symbol""" return self.unk_index @classmethod def loads(cls, s): lines = s.strip().split('\n') d = cls() for line in lines: idx = line.rfind(' ') word = line[:idx] count = int(line[idx + 1:]) d.indices[word] = len(d.symbols) d.symbols.append(word) d.count.append(count) return d @classmethod def load(cls, f, ignore_utf_errors=False): """Loads the dictionary from a text file with the format: ``` <symbol0> <count0> <symbol1> <count1> ... ``` """ if isinstance(f, str): try: if not ignore_utf_errors: with open(f, 'r', encoding='utf-8') as fd: return cls.load(fd) else: with open(f, 'r', encoding='utf-8', errors='ignore') as fd: return cls.load(fd) except FileNotFoundError as fnfe: raise fnfe except Exception: raise Exception("Incorrect encoding detected in {}, please " "rebuild the dataset".format(f)) cont = f.read() d = cls.loads(cont) return d def save(self, f): """Stores dictionary into a text file""" if isinstance(f, str): os.makedirs(os.path.dirname(f), exist_ok=True) with open(f, 'w', encoding='utf-8') as fd: return self.save(fd) d = self.saves() f.write(d) def saves(self): rv = '' for symbol, count in zip(self.symbols[self.nspecial:], self.count[self.nspecial:]): rv += '{} {}\n'.format(symbol, count) return rv def dummy_sentence(self, length): t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long() t[-1] = self.eos() return t def get_metadata(self): return {'len': self.__len__(), 'pad': self.pad_index, 'eos': self.eos_index, 'unk': self.unk_index, 'nspecial': self.nspecial }
DeepLearningExamples-master
PyTorch/Translation/Transformer/fairseq/data/dictionary.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # """ Use this script in order to build symmetric alignments for your translation dataset. This script depends on fast_align and mosesdecoder tools. You will need to build those before running the script. fast_align: github: http://github.com/clab/fast_align instructions: follow the instructions in README.md mosesdecoder: github: http://github.com/moses-smt/mosesdecoder instructions: http://www.statmt.org/moses/?n=Development.GetStarted The script produces the following files under --output_dir: text.joined - concatenation of lines from the source_file and the target_file. align.forward - forward pass of fast_align. align.backward - backward pass of fast_align. aligned.sym_heuristic - symmetrized alignment. """ import argparse import os from itertools import zip_longest def main(): parser = argparse.ArgumentParser(description='symmetric alignment builer') parser.add_argument('--fast_align_dir', help='path to fast_align build directory') parser.add_argument('--mosesdecoder_dir', help='path to mosesdecoder root directory') parser.add_argument('--sym_heuristic', help='heuristic to use for symmetrization', default='grow-diag-final-and') parser.add_argument('--source_file', help='path to a file with sentences ' 'in the source language') parser.add_argument('--target_file', help='path to a file with sentences ' 'in the target language') parser.add_argument('--output_dir', help='output directory') args = parser.parse_args() fast_align_bin = os.path.join(args.fast_align_dir, 'fast_align') symal_bin = os.path.join(args.mosesdecoder_dir, 'bin', 'symal') sym_fast_align_bin = os.path.join( args.mosesdecoder_dir, 'scripts', 'ems', 'support', 'symmetrize-fast-align.perl') # create joined file joined_file = os.path.join(args.output_dir, 'text.joined') with open(args.source_file, 'r') as src, open(args.target_file, 'r') as tgt: with open(joined_file, 'w') as joined: for s, t in zip_longest(src, tgt): print('{} ||| {}'.format(s.strip(), t.strip()), file=joined) bwd_align_file = os.path.join(args.output_dir, 'align.backward') # run forward alignment fwd_align_file = os.path.join(args.output_dir, 'align.forward') fwd_fast_align_cmd = '{FASTALIGN} -i {JOINED} -d -o -v > {FWD}'.format( FASTALIGN=fast_align_bin, JOINED=joined_file, FWD=fwd_align_file) assert os.system(fwd_fast_align_cmd) == 0 # run backward alignment bwd_align_file = os.path.join(args.output_dir, 'align.backward') bwd_fast_align_cmd = '{FASTALIGN} -i {JOINED} -d -o -v -r > {BWD}'.format( FASTALIGN=fast_align_bin, JOINED=joined_file, BWD=bwd_align_file) assert os.system(bwd_fast_align_cmd) == 0 # run symmetrization sym_out_file = os.path.join(args.output_dir, 'aligned') sym_cmd = '{SYMFASTALIGN} {FWD} {BWD} {SRC} {TGT} {OUT} {HEURISTIC} {SYMAL}'.format( SYMFASTALIGN=sym_fast_align_bin, FWD=fwd_align_file, BWD=bwd_align_file, SRC=args.source_file, TGT=args.target_file, OUT=sym_out_file, HEURISTIC=args.sym_heuristic, SYMAL=symal_bin ) assert os.system(sym_cmd) == 0 if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/Translation/Transformer/scripts/build_sym_alignment.py
DeepLearningExamples-master
PyTorch/Translation/Transformer/scripts/__init__.py
#!/usr/bin/env python3 import argparse import collections import torch import os import re def average_checkpoints(inputs): """Loads checkpoints from inputs and returns a model with averaged weights. Args: inputs: An iterable of string paths of checkpoints to load from. Returns: A dict of string keys mapping to various values. The 'model' key from the returned dict should correspond to an OrderedDict mapping string parameter names to torch Tensors. """ params_dict = collections.OrderedDict() params_keys = None new_state = None for f in inputs: state = torch.load( f, map_location=( lambda s, _: torch.serialization.default_restore_location(s, 'cpu') ), ) # Copies over the settings from the first checkpoint if new_state is None: new_state = state model_params = state['model'] model_params_keys = list(model_params.keys()) if params_keys is None: params_keys = model_params_keys elif params_keys != model_params_keys: raise KeyError( 'For checkpoint {}, expected list of params: {}, ' 'but found: {}'.format(f, params_keys, model_params_keys) ) for k in params_keys: if k not in params_dict: params_dict[k] = [] p = model_params[k] if isinstance(p, torch.HalfTensor): p = p.float() params_dict[k].append(p) averaged_params = collections.OrderedDict() # v should be a list of torch Tensor. for k, v in params_dict.items(): summed_v = None for x in v: summed_v = summed_v + x if summed_v is not None else x averaged_params[k] = summed_v / len(v) new_state['model'] = averaged_params return new_state def last_n_checkpoints(paths, n, update_based): assert len(paths) == 1 path = paths[0] if update_based: pt_regexp = re.compile(r'checkpoint_\d+_(\d+)\.pt') else: pt_regexp = re.compile(r'checkpoint(\d+)\.pt') files = os.listdir(path) entries = [] for f in files: m = pt_regexp.fullmatch(f) if m is not None: entries.append((int(m.group(1)), m.group(0))) if len(entries) < n: raise Exception('Found {} checkpoint files but need at least {}', len(entries), n) return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)[:n]] def main(): parser = argparse.ArgumentParser( description='Tool to average the params of input checkpoints to ' 'produce a new checkpoint', ) parser.add_argument( '--inputs', required=True, nargs='+', help='Input checkpoint file paths.', ) parser.add_argument( '--output', required=True, metavar='FILE', help='Write the new checkpoint containing the averaged weights to this ' 'path.', ) num_group = parser.add_mutually_exclusive_group() num_group.add_argument( '--num-epoch-checkpoints', type=int, help='if set, will try to find checkpoints with names checkpoint_xx.pt in the path specified by input, ' 'and average last this many of them.', ) num_group.add_argument( '--num-update-checkpoints', type=int, help='if set, will try to find checkpoints with names checkpoint_ee_xx.pt in the path specified by input, ' 'and average last this many of them.', ) args = parser.parse_args() print(args) num = None is_update_based = False if args.num_update_checkpoints is not None: num = args.num_update_checkpoints is_update_based = True elif args.num_epoch_checkpoints is not None: num = args.num_epoch_checkpoints if num is not None: args.inputs = last_n_checkpoints(args.inputs, num, is_update_based) print('averaging checkpoints: ', args.inputs) new_state = average_checkpoints(args.inputs) torch.save(new_state, args.output) print('Finished writing averaged checkpoint to {}.'.format(args.output)) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/Translation/Transformer/scripts/average_checkpoints.py
import json import argparse from collections import defaultdict, OrderedDict import matplotlib.pyplot as plt import numpy as np def smooth_moving_average(x, n): fil = np.ones(n)/n smoothed = np.convolve(x, fil, mode='valid') smoothed = np.concatenate((x[:n-1], smoothed), axis=0) return smoothed def moving_stdev(x, n): fil = np.ones(n)/n avg_sqare = np.convolve(np.power(x, 2), fil, mode='valid') squared_avg = np.power(np.convolve(x, fil, mode='valid'), 2) var = avg_sqare - squared_avg stdev = np.sqrt(var) #pad first few values stdev = np.concatenate(([0]*(n-1), stdev), axis=0) return stdev def get_plot(log): steps = [x[0] for x in log if isinstance(x[0], int)] values = [x[2] for x in log if isinstance(x[0], int)] return steps, values def highlight_max_point(plot, color): point = max(zip(*plot), key=lambda x: x[1]) plt.plot(point[0], point[1], 'bo-', color=color) plt.annotate("{:.2f}".format(point[1]), point) return point def main(args): jlog = defaultdict(list) jlog['parameters'] = {} with open(args.log_file, 'r') as f: for line in f.readlines(): line_dict = json.loads(line[5:]) if line_dict['type'] == 'LOG': if line_dict['step'] == 'PARAMETER': jlog['parameters'].update(line_dict['data']) elif line_dict['step'] == [] and 'training_summary' not in jlog: jlog['training_summary']=line_dict['data'] else: for k, v in line_dict['data'].items(): jlog[k].append((line_dict['step'], line_dict['elapsedtime'], v)) fig, ax1 = plt.subplots(figsize=(20,5)) fig.suptitle(args.title, fontsize=16) ax1.set_xlabel('steps') ax1.set_ylabel('loss') # Define colors for specific curves VAL_LOSS_COLOR = 'blue' VAL_BLEU_COLOR = 'red' TEST_BLEU_COLOR = 'pink' # Plot smoothed loss curve steps, loss = get_plot(jlog['loss']) smoothed_loss = smooth_moving_average(loss, 150) stdev = moving_stdev(loss, 150) ax1.plot(steps, smoothed_loss, label='Training loss') ax1.plot(steps, smoothed_loss + stdev, '--', color='orange', linewidth=0.3, label='Stdev') ax1.plot(steps, smoothed_loss - stdev, '--', color='orange', linewidth=0.3) # Plot validation loss curve val_steps, val_loss = get_plot(jlog['val_loss']) ax1.plot(val_steps, val_loss, color='blue', label='Validation loss') min_val_loss_step = val_steps[np.argmin(val_loss)] ax1.axvline(min_val_loss_step, linestyle='dashed', color=VAL_LOSS_COLOR, linewidth=0.5, label='Validation loss minimum') # Plot BLEU curves ax2 = ax1.twinx() ax2.set_ylabel('BLEU') val_steps, val_bleu = get_plot(jlog['val_bleu']) ax2.plot(val_steps, val_bleu, color=VAL_BLEU_COLOR, label='Validation BLEU') mvb_step, _ =highlight_max_point((val_steps,val_bleu), color=VAL_BLEU_COLOR) # values to be labeled on plot max_val_bleu_step = val_steps[np.argmax(val_bleu)] max_val_bleu = val_bleu[val_steps.index(max_val_bleu_step)] min_loss_bleu = val_bleu[val_steps.index(min_val_loss_step)] if 'test_bleu' in jlog: test_steps, test_bleu = get_plot(jlog['test_bleu']) ax2.plot(val_steps, test_bleu, color=TEST_BLEU_COLOR, label='Test BLEU') highlight_max_point((test_steps, test_bleu), color=TEST_BLEU_COLOR) ax2.tick_params(axis='y') # Annotate points with highest BLEU score as well as those for minimal validation loss ax2.plot(min_val_loss_step, min_loss_bleu, 'bo-', color=VAL_BLEU_COLOR) ax2.annotate("{:.2f}".format(min_loss_bleu), (min_val_loss_step, min_loss_bleu)) if 'test_bleu' in jlog: min_loss_test_bleu = test_bleu[val_steps.index(min_val_loss_step)] #BLEU score on test set when validation loss is minimal ax2.plot(min_val_loss_step, min_loss_test_bleu, 'bo-', color=TEST_BLEU_COLOR) ax2.annotate("{:.2f}".format(min_loss_test_bleu), (min_val_loss_step, min_loss_test_bleu)) max_val_bleu_test = test_bleu[val_steps.index(max_val_bleu_step)] #BLEU score on test set when BLEU score on dev set is maximal ax2.plot(mvb_step, max_val_bleu_test, 'bo-', color=TEST_BLEU_COLOR) ax2.annotate("{:.2f}".format(max_val_bleu_test), (max_val_bleu_step, max_val_bleu_test)) ax1.legend(loc='lower left', bbox_to_anchor=(1,0)) ax2.legend(loc='upper left', bbox_to_anchor=(1,1)) plt.grid() plt.savefig(args.output) # Produce json with training summary if args.dump_json: summary = OrderedDict() summary['args'] = OrderedDict(jlog['parameters']) summary['min_val_loss'] = min(val_loss) summary['max_val_bleu'] = max(val_bleu) summary['max_test_bleu'] = max(test_bleu) summary['final_values'] = jlog['training_summary'] summary['avg_epoch_loss'] = [x.mean() for x in np.array_split(np.array(loss), jlog['parameters']['max_epoch'])] summary['min_val_loss_step'] = min_val_loss_step json.dump(summary, open(args.dump_json, 'w')) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--title', type=str) parser.add_argument('--log-file', type=str) parser.add_argument('--output' ,'-o', type=str) parser.add_argument('--dump-json', '-j', type=str) args = parser.parse_args() main(args)
DeepLearningExamples-master
PyTorch/Translation/Transformer/scripts/draw_summary.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. #!/usr/bin/env python import glob import os import torch from setuptools import find_packages from setuptools import setup from torch.utils.cpp_extension import CUDA_HOME from torch.utils.cpp_extension import CppExtension from torch.utils.cpp_extension import CUDAExtension requirements = ["torch", "torchvision"] def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "maskrcnn_benchmark", "csrc") main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp")) source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu")) sources = main_file + source_cpu extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] if CUDA_HOME is not None: extension = CUDAExtension sources += source_cuda define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "maskrcnn_benchmark._C", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules setup( name="maskrcnn_benchmark", version="0.1", author="fmassa", url="https://github.com/facebookresearch/maskrcnn-benchmark", description="object detection in pytorch", packages=find_packages(exclude=("configs", "tests",)), # install_requires=requirements, ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, )
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import cv2 import torch from torchvision import transforms as T from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.structures.image_list import to_image_list from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker from maskrcnn_benchmark import layers as L from maskrcnn_benchmark.utils import cv2_util class COCODemo(object): # COCO categories for pretty print CATEGORIES = [ "__background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ] def __init__( self, cfg, confidence_threshold=0.7, show_mask_heatmaps=False, masks_per_dim=2, min_image_size=224, ): self.cfg = cfg.clone() self.model = build_detection_model(cfg) self.model.eval() self.device = torch.device(cfg.MODEL.DEVICE) self.model.to(self.device) self.min_image_size = min_image_size save_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) self.transforms = self.build_transform() mask_threshold = -1 if show_mask_heatmaps else 0.5 self.masker = Masker(threshold=mask_threshold, padding=1) # used to make colors for each class self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1]) self.cpu_device = torch.device("cpu") self.confidence_threshold = confidence_threshold self.show_mask_heatmaps = show_mask_heatmaps self.masks_per_dim = masks_per_dim def build_transform(self): """ Creates a basic transformation that was used to train the models """ cfg = self.cfg # we are loading images with OpenCV, so we don't need to convert them # to BGR, they are already! So all we need to do is to normalize # by 255 if we want to convert to BGR255 format, or flip the channels # if we want it to be in RGB in [0-1] range. if cfg.INPUT.TO_BGR255: to_bgr_transform = T.Lambda(lambda x: x * 255) else: to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]]) normalize_transform = T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD ) transform = T.Compose( [ T.ToPILImage(), T.Resize(self.min_image_size), T.ToTensor(), to_bgr_transform, normalize_transform, ] ) return transform def run_on_opencv_image(self, image): """ Arguments: image (np.ndarray): an image as returned by OpenCV Returns: prediction (BoxList): the detected objects. Additional information of the detection properties can be found in the fields of the BoxList via `prediction.fields()` """ predictions = self.compute_prediction(image) top_predictions = self.select_top_predictions(predictions) result = image.copy() if self.show_mask_heatmaps: return self.create_mask_montage(result, top_predictions) result = self.overlay_boxes(result, top_predictions) if self.cfg.MODEL.MASK_ON: result = self.overlay_mask(result, top_predictions) result = self.overlay_class_names(result, top_predictions) return result def compute_prediction(self, original_image): """ Arguments: original_image (np.ndarray): an image as returned by OpenCV Returns: prediction (BoxList): the detected objects. Additional information of the detection properties can be found in the fields of the BoxList via `prediction.fields()` """ # apply pre-processing to image image = self.transforms(original_image) # convert to an ImageList, padded so that it is divisible by # cfg.DATALOADER.SIZE_DIVISIBILITY image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY) image_list = image_list.to(self.device) # compute predictions with torch.no_grad(): predictions = self.model(image_list) predictions = [o.to(self.cpu_device) for o in predictions] # always single image is passed at a time prediction = predictions[0] # reshape prediction (a BoxList) into the original image size height, width = original_image.shape[:-1] prediction = prediction.resize((width, height)) if prediction.has_field("mask"): # if we have masks, paste the masks in the right position # in the image, as defined by the bounding boxes masks = prediction.get_field("mask") # always single image is passed at a time masks = self.masker([masks], [prediction])[0] prediction.add_field("mask", masks) return prediction def select_top_predictions(self, predictions): """ Select only predictions which have a `score` > self.confidence_threshold, and returns the predictions in descending order of score Arguments: predictions (BoxList): the result of the computation by the model. It should contain the field `scores`. Returns: prediction (BoxList): the detected objects. Additional information of the detection properties can be found in the fields of the BoxList via `prediction.fields()` """ scores = predictions.get_field("scores") keep = torch.nonzero(scores > self.confidence_threshold).squeeze(1) predictions = predictions[keep] scores = predictions.get_field("scores") _, idx = scores.sort(0, descending=True) return predictions[idx] def compute_colors_for_labels(self, labels): """ Simple function that adds fixed colors depending on the class """ colors = labels[:, None] * self.palette colors = (colors % 255).numpy().astype("uint8") return colors def overlay_boxes(self, image, predictions): """ Adds the predicted boxes on top of the image Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `labels`. """ labels = predictions.get_field("labels") boxes = predictions.bbox colors = self.compute_colors_for_labels(labels).tolist() for box, color in zip(boxes, colors): box = box.to(torch.int64) top_left, bottom_right = box[:2].tolist(), box[2:].tolist() image = cv2.rectangle( image, tuple(top_left), tuple(bottom_right), tuple(color), 1 ) return image def overlay_mask(self, image, predictions): """ Adds the instances contours for each predicted object. Each label has a different color. Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `mask` and `labels`. """ masks = predictions.get_field("mask").numpy() labels = predictions.get_field("labels") colors = self.compute_colors_for_labels(labels).tolist() for mask, color in zip(masks, colors): thresh = mask[0, :, :, None] contours, hierarchy = cv2_util.findContours( thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) image = cv2.drawContours(image, contours, -1, color, 3) composite = image return composite def create_mask_montage(self, image, predictions): """ Create a montage showing the probability heatmaps for each one one of the detected objects Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `mask`. """ masks = predictions.get_field("mask") masks_per_dim = self.masks_per_dim masks = L.interpolate( masks.float(), scale_factor=1 / masks_per_dim ).byte() height, width = masks.shape[-2:] max_masks = masks_per_dim ** 2 masks = masks[:max_masks] # handle case where we have less detections than max_masks if len(masks) < max_masks: masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8) masks_padded[: len(masks)] = masks masks = masks_padded masks = masks.reshape(masks_per_dim, masks_per_dim, height, width) result = torch.zeros( (masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8 ) for y in range(masks_per_dim): start_y = y * height end_y = (y + 1) * height for x in range(masks_per_dim): start_x = x * width end_x = (x + 1) * width result[start_y:end_y, start_x:end_x] = masks[y, x] return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET) def overlay_class_names(self, image, predictions): """ Adds detected class names and scores in the positions defined by the top-left corner of the predicted bounding box Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `scores` and `labels`. """ scores = predictions.get_field("scores").tolist() labels = predictions.get_field("labels").tolist() labels = [self.CATEGORIES[i] for i in labels] boxes = predictions.bbox template = "{}: {:.2f}" for box, score, label in zip(boxes, scores, labels): x, y = box[:2] s = template.format(label, score) cv2.putText( image, s, (x, y), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1 ) return image
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/demo/predictor.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import argparse import cv2 from maskrcnn_benchmark.config import cfg from predictor import COCODemo import time def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Webcam Demo") parser.add_argument( "--config-file", default="../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--confidence-threshold", type=float, default=0.7, help="Minimum score for the prediction to be shown", ) parser.add_argument( "--min-image-size", type=int, default=224, help="Smallest size of the image to feed to the model. " "Model was trained with 800, which gives best results", ) parser.add_argument( "--show-mask-heatmaps", dest="show_mask_heatmaps", help="Show a heatmap probability for the top masks-per-dim masks", action="store_true", ) parser.add_argument( "--masks-per-dim", type=int, default=2, help="Number of heatmaps per dimension to show", ) parser.add_argument( "opts", help="Modify model config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() # load config from file and command-line arguments cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() # prepare object that handles inference plus adds predictions on top of image coco_demo = COCODemo( cfg, confidence_threshold=args.confidence_threshold, show_mask_heatmaps=args.show_mask_heatmaps, masks_per_dim=args.masks_per_dim, min_image_size=args.min_image_size, ) cam = cv2.VideoCapture(0) while True: start_time = time.time() ret_val, img = cam.read() composite = coco_demo.run_on_opencv_image(img) print("Time: {:.2f} s / img".format(time.time() - start_time)) cv2.imshow("COCO detections", composite) if cv2.waitKey(1) == 27: break # esc to quit cv2.destroyAllWindows() if __name__ == "__main__": main()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/demo/webcam.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import torch from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.miscellaneous import mkdir from maskrcnn_benchmark.utils.logger import format_step import dllogger def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default="/workspace/object_detection/configs/e2e_mask_rcnn_R_50_FPN_1x.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=os.getenv('LOCAL_RANK', 0)) parser.add_argument("--json-summary", help="Out file for DLLogger", default="dllogger_inference.out", type=str) parser.add_argument( "--skip-eval", dest="skip_eval", help="Do not eval the predictions", action="store_true", ) parser.add_argument( "--fp16", help="Mixed precision training", action="store_true", ) parser.add_argument( "--amp", help="Mixed precision training", action="store_true", ) parser.add_argument( "--infer_steps", help="Total inference steps", default=-1, type=int) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() args.fp16 = args.fp16 or args.amp num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 distributed = num_gpus > 1 if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://" ) synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank()) if is_main_process(): dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.json_summary), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)]) else: dllogger.init(backends=[]) dllogger.metadata("BBOX_mAP", {"unit": None}) dllogger.metadata("MASK_mAP", {"unit": None}) dllogger.metadata("e2e_infer_time", {"unit": "s"}) dllogger.metadata("inference_perf_fps", {"unit": "images/s"}) dllogger.metadata("latency_avg", {"unit": "s"}) dllogger.metadata("latency_90", {"unit": "s"}) dllogger.metadata("latency_95", {"unit": "s"}) dllogger.metadata("latency_99", {"unit": "s"}) save_dir = "" dllogger.log(step="PARAMETER", data={"config":cfg}) dllogger.log(step="PARAMETER", data={"gpu_count": num_gpus}) # dllogger.log(step="PARAMETER", data={"env_info": collect_env_info()}) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) # Initialize mixed-precision if args.fp16: use_mixed_precision = True else: use_mixed_precision = cfg.DTYPE == "float16" output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) results = [] for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): if use_mixed_precision: with torch.cuda.amp.autocast(): result = inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, skip_eval=args.skip_eval, dllogger=dllogger, steps=args.infer_steps ) else: result = inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, skip_eval=args.skip_eval, dllogger=dllogger, steps=args.infer_steps ) synchronize() results.append(result) if is_main_process() and not args.skip_eval: map_results, raw_results = results[0] bbox_map = map_results.results["bbox"]['AP'] segm_map = map_results.results["segm"]['AP'] dllogger.log(step=tuple(), data={"BBOX_mAP": bbox_map, "MASK_mAP": segm_map}) if __name__ == "__main__": main() dllogger.log(step=tuple(), data={})
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/tools/test_net.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. r""" Basic training script for PyTorch """ # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import logging import functools import torch from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.solver import make_lr_scheduler from maskrcnn_benchmark.solver import make_optimizer from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.engine.trainer import do_train from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process from maskrcnn_benchmark.utils.imports import import_file from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.miscellaneous import mkdir from maskrcnn_benchmark.engine.tester import test from maskrcnn_benchmark.utils.logger import format_step #from dllogger import Logger, StdOutBackend, JSONStreamBackend, Verbosity #import dllogger as DLLogger import dllogger import torch.utils.tensorboard as tbx from maskrcnn_benchmark.utils.logger import format_step # See if we can use apex.DistributedDataParallel instead of the torch default, # and enable mixed-precision via apex.amp try: from apex.parallel import DistributedDataParallel as DDP use_apex_ddp = True except ImportError: print('Use APEX for better performance') use_apex_ddp = False def test_and_exchange_map(tester, model, distributed): results = tester(model=model, distributed=distributed) # main process only if is_main_process(): # Note: one indirection due to possibility of multiple test datasets, we only care about the first # tester returns (parsed results, raw results). In our case, don't care about the latter map_results, raw_results = results[0] bbox_map = map_results.results["bbox"]['AP'] segm_map = map_results.results["segm"]['AP'] else: bbox_map = 0. segm_map = 0. if distributed: map_tensor = torch.tensor([bbox_map, segm_map], dtype=torch.float32, device=torch.device("cuda")) torch.distributed.broadcast(map_tensor, 0) bbox_map = map_tensor[0].item() segm_map = map_tensor[1].item() return bbox_map, segm_map def mlperf_test_early_exit(iteration, iters_per_epoch, tester, model, distributed, min_bbox_map, min_segm_map): if iteration > 0 and iteration % iters_per_epoch == 0: epoch = iteration // iters_per_epoch dllogger.log(step="PARAMETER", data={"eval_start": True}) bbox_map, segm_map = test_and_exchange_map(tester, model, distributed) # necessary for correctness model.train() dllogger.log(step=(iteration, epoch, ), data={"BBOX_mAP": bbox_map, "MASK_mAP": segm_map}) # terminating condition if bbox_map >= min_bbox_map and segm_map >= min_segm_map: dllogger.log(step="PARAMETER", data={"target_accuracy_reached": True}) return True return False def train(cfg, local_rank, distributed, fp16, dllogger): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) use_amp = False if fp16: use_amp = True else: use_amp = cfg.DTYPE == "float16" if distributed: if cfg.USE_TORCH_DDP or not use_apex_ddp: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, ) else: model = DDP(model, delay_allreduce=True) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpointer = DetectronCheckpointer( cfg, model, optimizer, scheduler, output_dir, save_to_disk ) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) data_loader, iters_per_epoch = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD # set the callback function to evaluate and potentially # early exit each epoch if cfg.PER_EPOCH_EVAL: per_iter_callback_fn = functools.partial( mlperf_test_early_exit, iters_per_epoch=iters_per_epoch, tester=functools.partial(test, cfg=cfg, dllogger=dllogger), model=model, distributed=distributed, min_bbox_map=cfg.MIN_BBOX_MAP, min_segm_map=cfg.MIN_MASK_MAP) else: per_iter_callback_fn = None do_train( model, data_loader, optimizer, scheduler, checkpointer, device, checkpoint_period, arguments, use_amp, cfg, dllogger, per_iter_end_callback_fn=per_iter_callback_fn, nhwc=cfg.NHWC ) return model, iters_per_epoch def test_model(cfg, model, distributed, iters_per_epoch, dllogger): if distributed: model = model.module torch.cuda.empty_cache() # TODO check if it helps iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) results = [] for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): result = inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, dllogger=dllogger, ) synchronize() results.append(result) if is_main_process(): map_results, raw_results = results[0] bbox_map = map_results.results["bbox"]['AP'] segm_map = map_results.results["segm"]['AP'] dllogger.log(step=(cfg.SOLVER.MAX_ITER, cfg.SOLVER.MAX_ITER / iters_per_epoch,), data={"BBOX_mAP": bbox_map, "MASK_mAP": segm_map}) dllogger.log(step=tuple(), data={"BBOX_mAP": bbox_map, "MASK_mAP": segm_map}) def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=os.getenv('LOCAL_RANK', 0)) parser.add_argument("--max_steps", type=int, default=0, help="Override number of training steps in the config") parser.add_argument("--skip-test", dest="skip_test", help="Do not test the final model", action="store_true",) parser.add_argument("--fp16", help="Mixed precision training", action="store_true") parser.add_argument("--amp", help="Mixed precision training", action="store_true") parser.add_argument('--skip_checkpoint', default=False, action='store_true', help="Whether to save checkpoints") parser.add_argument("--json-summary", help="Out file for DLLogger", default="dllogger.out", type=str, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() args.fp16 = args.fp16 or args.amp num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://" ) synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # Redundant option - Override config parameter with command line input if args.max_steps > 0: cfg.SOLVER.MAX_ITER = args.max_steps if args.skip_checkpoint: cfg.SAVE_CHECKPOINT = False cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank()) if is_main_process(): dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.json_summary), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)]) else: dllogger.init(backends=[]) dllogger.metadata("BBOX_mAP", {"unit": None}) dllogger.metadata("MASK_mAP", {"unit": None}) dllogger.metadata("e2e_train_time", {"unit": "s"}) dllogger.metadata("train_perf_fps", {"unit": "images/s"}) dllogger.log(step="PARAMETER", data={"gpu_count":num_gpus}) # dllogger.log(step="PARAMETER", data={"environment_info": collect_env_info()}) dllogger.log(step="PARAMETER", data={"config_file": args.config_file}) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() dllogger.log(step="PARAMETER", data={"config":cfg}) if args.fp16: fp16 = True else: fp16 = False model, iters_per_epoch = train(cfg, args.local_rank, args.distributed, fp16, dllogger) if not args.skip_test: if not cfg.PER_EPOCH_EVAL: test_model(cfg, model, args.distributed, iters_per_epoch, dllogger) if __name__ == "__main__": main() dllogger.log(step=tuple(), data={}) dllogger.flush()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/tools/train_net.py
#!/usr/bin/python # # Convert instances from png files to a dictionary # This files is created according to https://github.com/facebookresearch/Detectron/issues/111 from __future__ import print_function, absolute_import, division import os, sys sys.path.append( os.path.normpath( os.path.join( os.path.dirname( __file__ ) , '..' , 'helpers' ) ) ) from csHelpers import * # Cityscapes imports from cityscapesscripts.evaluation.instance import * from cityscapesscripts.helpers.csHelpers import * import cv2 from maskrcnn_benchmark.utils import cv2_util def instances2dict_with_polygons(imageFileList, verbose=False): imgCount = 0 instanceDict = {} if not isinstance(imageFileList, list): imageFileList = [imageFileList] if verbose: print("Processing {} images...".format(len(imageFileList))) for imageFileName in imageFileList: # Load image img = Image.open(imageFileName) # Image as numpy array imgNp = np.array(img) # Initialize label categories instances = {} for label in labels: instances[label.name] = [] # Loop through all instance ids in instance image for instanceId in np.unique(imgNp): if instanceId < 1000: continue instanceObj = Instance(imgNp, instanceId) instanceObj_dict = instanceObj.toDict() #instances[id2label[instanceObj.labelID].name].append(instanceObj.toDict()) if id2label[instanceObj.labelID].hasInstances: mask = (imgNp == instanceId).astype(np.uint8) contour, hier = cv2_util.findContours( mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) polygons = [c.reshape(-1).tolist() for c in contour] instanceObj_dict['contours'] = polygons instances[id2label[instanceObj.labelID].name].append(instanceObj_dict) imgKey = os.path.abspath(imageFileName) instanceDict[imgKey] = instances imgCount += 1 if verbose: print("\rImages Processed: {}".format(imgCount), end=' ') sys.stdout.flush() if verbose: print("") return instanceDict def main(argv): fileList = [] if (len(argv) > 2): for arg in argv: if ("png" in arg): fileList.append(arg) instances2dict_with_polygons(fileList, True) if __name__ == "__main__": main(sys.argv[1:])
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/tools/cityscapes/instances2dict_with_polygons.py
#!/usr/bin/env python # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # This file is copy from https://github.com/facebookresearch/Detectron/tree/master/tools from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import h5py import json import os import scipy.misc import sys import cityscapesscripts.evaluation.instances2dict_with_polygons as cs import detectron.utils.segms as segms_util import detectron.utils.boxes as bboxs_util def parse_args(): parser = argparse.ArgumentParser(description='Convert dataset') parser.add_argument( '--dataset', help="cocostuff, cityscapes", default=None, type=str) parser.add_argument( '--outdir', help="output dir for json files", default=None, type=str) parser.add_argument( '--datadir', help="data dir for annotations to be converted", default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def convert_coco_stuff_mat(data_dir, out_dir): """Convert to png and save json with path. This currently only contains the segmentation labels for objects+stuff in cocostuff - if we need to combine with other labels from original COCO that will be a TODO.""" sets = ['train', 'val'] categories = [] json_name = 'coco_stuff_%s.json' ann_dict = {} for data_set in sets: file_list = os.path.join(data_dir, '%s.txt') images = [] with open(file_list % data_set) as f: for img_id, img_name in enumerate(f): img_name = img_name.replace('coco', 'COCO').strip('\n') image = {} mat_file = os.path.join( data_dir, 'annotations/%s.mat' % img_name) data = h5py.File(mat_file, 'r') labelMap = data.get('S') if len(categories) == 0: labelNames = data.get('names') for idx, n in enumerate(labelNames): categories.append( {"id": idx, "name": ''.join(chr(i) for i in data[ n[0]])}) ann_dict['categories'] = categories scipy.misc.imsave( os.path.join(data_dir, img_name + '.png'), labelMap) image['width'] = labelMap.shape[0] image['height'] = labelMap.shape[1] image['file_name'] = img_name image['seg_file_name'] = img_name image['id'] = img_id images.append(image) ann_dict['images'] = images print("Num images: %s" % len(images)) with open(os.path.join(out_dir, json_name % data_set), 'wb') as outfile: outfile.write(json.dumps(ann_dict)) # for Cityscapes def getLabelID(self, instID): if (instID < 1000): return instID else: return int(instID / 1000) def convert_cityscapes_instance_only( data_dir, out_dir): """Convert from cityscapes format to COCO instance seg format - polygons""" sets = [ 'gtFine_val', 'gtFine_train', 'gtFine_test', # 'gtCoarse_train', # 'gtCoarse_val', # 'gtCoarse_train_extra' ] ann_dirs = [ 'gtFine_trainvaltest/gtFine/val', 'gtFine_trainvaltest/gtFine/train', 'gtFine_trainvaltest/gtFine/test', # 'gtCoarse/train', # 'gtCoarse/train_extra', # 'gtCoarse/val' ] json_name = 'instancesonly_filtered_%s.json' ends_in = '%s_polygons.json' img_id = 0 ann_id = 0 cat_id = 1 category_dict = {} category_instancesonly = [ 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle', ] for data_set, ann_dir in zip(sets, ann_dirs): print('Starting %s' % data_set) ann_dict = {} images = [] annotations = [] ann_dir = os.path.join(data_dir, ann_dir) for root, _, files in os.walk(ann_dir): for filename in files: if filename.endswith(ends_in % data_set.split('_')[0]): if len(images) % 50 == 0: print("Processed %s images, %s annotations" % ( len(images), len(annotations))) json_ann = json.load(open(os.path.join(root, filename))) image = {} image['id'] = img_id img_id += 1 image['width'] = json_ann['imgWidth'] image['height'] = json_ann['imgHeight'] image['file_name'] = filename[:-len( ends_in % data_set.split('_')[0])] + 'leftImg8bit.png' image['seg_file_name'] = filename[:-len( ends_in % data_set.split('_')[0])] + \ '%s_instanceIds.png' % data_set.split('_')[0] images.append(image) fullname = os.path.join(root, image['seg_file_name']) objects = cs.instances2dict_with_polygons( [fullname], verbose=False)[fullname] for object_cls in objects: if object_cls not in category_instancesonly: continue # skip non-instance categories for obj in objects[object_cls]: if obj['contours'] == []: print('Warning: empty contours.') continue # skip non-instance categories len_p = [len(p) for p in obj['contours']] if min(len_p) <= 4: print('Warning: invalid contours.') continue # skip non-instance categories ann = {} ann['id'] = ann_id ann_id += 1 ann['image_id'] = image['id'] ann['segmentation'] = obj['contours'] if object_cls not in category_dict: category_dict[object_cls] = cat_id cat_id += 1 ann['category_id'] = category_dict[object_cls] ann['iscrowd'] = 0 ann['area'] = obj['pixelCount'] ann['bbox'] = bboxs_util.xyxy_to_xywh( segms_util.polys_to_boxes( [ann['segmentation']])).tolist()[0] annotations.append(ann) ann_dict['images'] = images categories = [{"id": category_dict[name], "name": name} for name in category_dict] ann_dict['categories'] = categories ann_dict['annotations'] = annotations print("Num categories: %s" % len(categories)) print("Num images: %s" % len(images)) print("Num annotations: %s" % len(annotations)) with open(os.path.join(out_dir, json_name % data_set), 'w') as outfile: outfile.write(json.dumps(ann_dict)) if __name__ == '__main__': args = parse_args() if args.dataset == "cityscapes_instance_only": convert_cityscapes_instance_only(args.datadir, args.outdir) elif args.dataset == "cocostuff": convert_coco_stuff_mat(args.datadir, args.outdir) else: print("Dataset not supported: %s" % args.dataset)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/tools/cityscapes/convert_cityscapes_to_coco.py
import os from IPython.lib import passwd #c = c # pylint:disable=undefined-variable c = get_config() c.NotebookApp.ip = '0.0.0.0' c.NotebookApp.port = int(os.getenv('PORT', 8888)) c.NotebookApp.open_browser = False # sets a password if PASSWORD is set in the environment if 'PASSWORD' in os.environ: password = os.environ['PASSWORD'] if password: c.NotebookApp.password = passwd(password) else: c.NotebookApp.password = '' c.NotebookApp.token = '' del os.environ['PASSWORD']
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/docker/docker-jupyter/jupyter_notebook_config.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import unittest from maskrcnn_benchmark.utils.metric_logger import MetricLogger class TestMetricLogger(unittest.TestCase): def test_update(self): meter = MetricLogger() for i in range(10): meter.update(metric=float(i)) m = meter.meters["metric"] self.assertEqual(m.count, 10) self.assertEqual(m.total, 45) self.assertEqual(m.median, 4) self.assertEqual(m.avg, 4.5) def test_no_attr(self): meter = MetricLogger() _ = meter.meters _ = meter.delimiter def broken(): _ = meter.not_existent self.assertRaises(AttributeError, broken) if __name__ == "__main__": unittest.main()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/tests/test_metric_logger.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from collections import OrderedDict import os from tempfile import TemporaryDirectory import unittest import torch from torch import nn from maskrcnn_benchmark.utils.model_serialization import load_state_dict from maskrcnn_benchmark.utils.checkpoint import Checkpointer class TestCheckpointer(unittest.TestCase): def create_model(self): return nn.Sequential(nn.Linear(2, 3), nn.Linear(3, 1)) def create_complex_model(self): m = nn.Module() m.block1 = nn.Module() m.block1.layer1 = nn.Linear(2, 3) m.layer2 = nn.Linear(3, 2) m.res = nn.Module() m.res.layer2 = nn.Linear(3, 2) state_dict = OrderedDict() state_dict["layer1.weight"] = torch.rand(3, 2) state_dict["layer1.bias"] = torch.rand(3) state_dict["layer2.weight"] = torch.rand(2, 3) state_dict["layer2.bias"] = torch.rand(2) state_dict["res.layer2.weight"] = torch.rand(2, 3) state_dict["res.layer2.bias"] = torch.rand(2) return m, state_dict def test_from_last_checkpoint_model(self): # test that loading works even if they differ by a prefix for trained_model, fresh_model in [ (self.create_model(), self.create_model()), (nn.DataParallel(self.create_model()), self.create_model()), (self.create_model(), nn.DataParallel(self.create_model())), ( nn.DataParallel(self.create_model()), nn.DataParallel(self.create_model()), ), ]: with TemporaryDirectory() as f: checkpointer = Checkpointer( trained_model, save_dir=f, save_to_disk=True ) checkpointer.save("checkpoint_file") # in the same folder fresh_checkpointer = Checkpointer(fresh_model, save_dir=f) self.assertTrue(fresh_checkpointer.has_checkpoint()) self.assertEqual( fresh_checkpointer.get_checkpoint_file(), os.path.join(f, "checkpoint_file.pth"), ) _ = fresh_checkpointer.load() for trained_p, loaded_p in zip( trained_model.parameters(), fresh_model.parameters() ): # different tensor references self.assertFalse(id(trained_p) == id(loaded_p)) # same content self.assertTrue(trained_p.equal(loaded_p)) def test_from_name_file_model(self): # test that loading works even if they differ by a prefix for trained_model, fresh_model in [ (self.create_model(), self.create_model()), (nn.DataParallel(self.create_model()), self.create_model()), (self.create_model(), nn.DataParallel(self.create_model())), ( nn.DataParallel(self.create_model()), nn.DataParallel(self.create_model()), ), ]: with TemporaryDirectory() as f: checkpointer = Checkpointer( trained_model, save_dir=f, save_to_disk=True ) checkpointer.save("checkpoint_file") # on different folders with TemporaryDirectory() as g: fresh_checkpointer = Checkpointer(fresh_model, save_dir=g) self.assertFalse(fresh_checkpointer.has_checkpoint()) self.assertEqual(fresh_checkpointer.get_checkpoint_file(), "") _ = fresh_checkpointer.load(os.path.join(f, "checkpoint_file.pth")) for trained_p, loaded_p in zip( trained_model.parameters(), fresh_model.parameters() ): # different tensor references self.assertFalse(id(trained_p) == id(loaded_p)) # same content self.assertTrue(trained_p.equal(loaded_p)) def test_complex_model_loaded(self): for add_data_parallel in [False, True]: model, state_dict = self.create_complex_model() if add_data_parallel: model = nn.DataParallel(model) load_state_dict(model, state_dict) for loaded, stored in zip(model.state_dict().values(), state_dict.values()): # different tensor references self.assertFalse(id(loaded) == id(stored)) # same content self.assertTrue(loaded.equal(stored)) if __name__ == "__main__": unittest.main()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/tests/checkpoint.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import itertools import random import unittest from torch.utils.data.sampler import BatchSampler from torch.utils.data.sampler import Sampler from torch.utils.data.sampler import SequentialSampler from torch.utils.data.sampler import RandomSampler from maskrcnn_benchmark.data.samplers import GroupedBatchSampler from maskrcnn_benchmark.data.samplers import IterationBasedBatchSampler class SubsetSampler(Sampler): def __init__(self, indices): self.indices = indices def __iter__(self): return iter(self.indices) def __len__(self): return len(self.indices) class TestGroupedBatchSampler(unittest.TestCase): def test_respect_order_simple(self): drop_uneven = False dataset = [i for i in range(40)] group_ids = [i // 10 for i in dataset] sampler = SequentialSampler(dataset) for batch_size in [1, 3, 5, 6]: batch_sampler = GroupedBatchSampler( sampler, group_ids, batch_size, drop_uneven ) result = list(batch_sampler) merged_result = list(itertools.chain.from_iterable(result)) self.assertEqual(merged_result, dataset) def test_respect_order(self): drop_uneven = False dataset = [i for i in range(10)] group_ids = [0, 0, 1, 0, 1, 1, 0, 1, 1, 0] sampler = SequentialSampler(dataset) expected = [ [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]], [[0, 1, 3], [2, 4, 5], [6, 9], [7, 8]], [[0, 1, 3, 6], [2, 4, 5, 7], [8], [9]], ] for idx, batch_size in enumerate([1, 3, 4]): batch_sampler = GroupedBatchSampler( sampler, group_ids, batch_size, drop_uneven ) result = list(batch_sampler) self.assertEqual(result, expected[idx]) def test_respect_order_drop_uneven(self): batch_size = 3 drop_uneven = True dataset = [i for i in range(10)] group_ids = [0, 0, 1, 0, 1, 1, 0, 1, 1, 0] sampler = SequentialSampler(dataset) batch_sampler = GroupedBatchSampler(sampler, group_ids, batch_size, drop_uneven) result = list(batch_sampler) expected = [[0, 1, 3], [2, 4, 5]] self.assertEqual(result, expected) def test_subset_sampler(self): batch_size = 3 drop_uneven = False dataset = [i for i in range(10)] group_ids = [0, 0, 1, 0, 1, 1, 0, 1, 1, 0] sampler = SubsetSampler([0, 3, 5, 6, 7, 8]) batch_sampler = GroupedBatchSampler(sampler, group_ids, batch_size, drop_uneven) result = list(batch_sampler) expected = [[0, 3, 6], [5, 7, 8]] self.assertEqual(result, expected) def test_permute_subset_sampler(self): batch_size = 3 drop_uneven = False dataset = [i for i in range(10)] group_ids = [0, 0, 1, 0, 1, 1, 0, 1, 1, 0] sampler = SubsetSampler([5, 0, 6, 1, 3, 8]) batch_sampler = GroupedBatchSampler(sampler, group_ids, batch_size, drop_uneven) result = list(batch_sampler) expected = [[5, 8], [0, 6, 1], [3]] self.assertEqual(result, expected) def test_permute_subset_sampler_drop_uneven(self): batch_size = 3 drop_uneven = True dataset = [i for i in range(10)] group_ids = [0, 0, 1, 0, 1, 1, 0, 1, 1, 0] sampler = SubsetSampler([5, 0, 6, 1, 3, 8]) batch_sampler = GroupedBatchSampler(sampler, group_ids, batch_size, drop_uneven) result = list(batch_sampler) expected = [[0, 6, 1]] self.assertEqual(result, expected) def test_len(self): batch_size = 3 drop_uneven = True dataset = [i for i in range(10)] group_ids = [random.randint(0, 1) for _ in dataset] sampler = RandomSampler(dataset) batch_sampler = GroupedBatchSampler(sampler, group_ids, batch_size, drop_uneven) result = list(batch_sampler) self.assertEqual(len(result), len(batch_sampler)) self.assertEqual(len(result), len(batch_sampler)) batch_sampler = GroupedBatchSampler(sampler, group_ids, batch_size, drop_uneven) batch_sampler_len = len(batch_sampler) result = list(batch_sampler) self.assertEqual(len(result), batch_sampler_len) self.assertEqual(len(result), len(batch_sampler)) class TestIterationBasedBatchSampler(unittest.TestCase): def test_number_of_iters_and_elements(self): for batch_size in [2, 3, 4]: for num_iterations in [4, 10, 20]: for drop_last in [False, True]: dataset = [i for i in range(10)] sampler = SequentialSampler(dataset) batch_sampler = BatchSampler( sampler, batch_size, drop_last=drop_last ) iter_sampler = IterationBasedBatchSampler( batch_sampler, num_iterations ) assert len(iter_sampler) == num_iterations for i, batch in enumerate(iter_sampler): start = (i % len(batch_sampler)) * batch_size end = min(start + batch_size, len(dataset)) expected = [x for x in range(start, end)] self.assertEqual(batch, expected) if __name__ == "__main__": unittest.main()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/tests/test_data_samplers.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """ helper class that supports empty tensors on some nn functions. Ideally, add support directly in PyTorch to empty tensors in those functions. This can be removed once https://github.com/pytorch/pytorch/issues/12013 is implemented """ import math import torch from torch.nn.modules.utils import _ntuple class _NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x, new_shape): ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad): shape = ctx.shape return _NewEmptyTensorOp.apply(grad, shape), None class Conv2d(torch.nn.Conv2d): def forward(self, x): if x.numel() > 0: return super(Conv2d, self).forward(x) # get output shape output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // d + 1 for i, p, di, k, d in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) class ConvTranspose2d(torch.nn.ConvTranspose2d): def forward(self, x): if x.numel() > 0: return super(ConvTranspose2d, self).forward(x) # get output shape output_shape = [ (i - 1) * d - 2 * p + (di * (k - 1) + 1) + op for i, p, di, k, d, op in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride, self.output_padding, ) ] output_shape = [x.shape[0], self.bias.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) def interpolate( input, size=None, scale_factor=None, mode="nearest", align_corners=None ): if input.numel() > 0: return torch.nn.functional.interpolate( input, size, scale_factor, mode, align_corners ) def _check_size_scale_factor(dim): if size is None and scale_factor is None: raise ValueError("either size or scale_factor should be defined") if size is not None and scale_factor is not None: raise ValueError("only one of size or scale_factor should be defined") if ( scale_factor is not None and isinstance(scale_factor, tuple) and len(scale_factor) != dim ): raise ValueError( "scale_factor shape must match input shape. " "Input is {}D, scale_factor size is {}".format(dim, len(scale_factor)) ) def _output_size(dim): _check_size_scale_factor(dim) if size is not None: return size scale_factors = _ntuple(dim)(scale_factor) # math.floor might return float in py2.7 return [ int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim) ] output_shape = tuple(_output_size(2)) output_shape = input.shape[:-2] + output_shape return _NewEmptyTensorOp.apply(input, output_shape) def nhwc_to_nchw_transform(x): if x.numel() == 0: return x return x.to(memory_format=torch.contiguous_format) def nchw_to_nhwc_transform(x): if x.numel() == 0: return x return x.to(memory_format=torch.channels_last)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/misc.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from maskrcnn_benchmark import _C class _ROIAlign(Function): @staticmethod def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio, is_nhwc): ctx.save_for_backward(roi) ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.sampling_ratio = sampling_ratio ctx.input_shape = input.size() ctx.is_nhwc = is_nhwc output = _C.roi_align_forward( input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio, is_nhwc ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): rois, = ctx.saved_tensors output_size = ctx.output_size spatial_scale = ctx.spatial_scale sampling_ratio = ctx.sampling_ratio bs, ch, h, w = ctx.input_shape grad_input = _C.roi_align_backward( grad_output, rois, spatial_scale, output_size[0], output_size[1], bs, ch, h, w, sampling_ratio, ctx.is_nhwc ) return grad_input, None, None, None, None, None roi_align = _ROIAlign.apply class ROIAlign(nn.Module): def __init__(self, output_size, spatial_scale, sampling_ratio, is_nhwc): super(ROIAlign, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio self.nhwc = is_nhwc @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32) def forward(self, input, rois): return roi_align( input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, self.nhwc ) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) tmpstr += ", is_nhwc=" + str(self.nhwc) tmpstr += ")" return tmpstr
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/roi_align.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # from ._utils import _C from maskrcnn_benchmark import _C from torch.cuda.amp import custom_fwd # Only valid with fp32 inputs - give AMP the hint nms = custom_fwd(_C.nms) # nms.__doc__ = """ # This function performs Non-maximum suppresion"""
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/nms.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch from .batch_norm import FrozenBatchNorm2d from .misc import Conv2d from .misc import ConvTranspose2d from .misc import interpolate from .misc import nhwc_to_nchw_transform, nchw_to_nhwc_transform from .nms import nms from .roi_align import ROIAlign from .roi_align import roi_align from .roi_pool import ROIPool from .roi_pool import roi_pool from .smooth_l1_loss import smooth_l1_loss __all__ = ["nms", "roi_align", "ROIAlign", "roi_pool", "ROIPool", "smooth_l1_loss", "Conv2d", "ConvTranspose2d", "interpolate", "FrozenBatchNorm2d", "nhwc_to_nchw_transform", "nchw_to_nhwc_transform" ]
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from maskrcnn_benchmark import _C class _ROIPool(Function): @staticmethod def forward(ctx, input, roi, output_size, spatial_scale): ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.input_shape = input.size() output, argmax = _C.roi_pool_forward( input, roi, spatial_scale, output_size[0], output_size[1] ) ctx.save_for_backward(input, roi, argmax) return output @staticmethod @once_differentiable def backward(ctx, grad_output): input, rois, argmax = ctx.saved_tensors output_size = ctx.output_size spatial_scale = ctx.spatial_scale bs, ch, h, w = ctx.input_shape grad_input = _C.roi_pool_backward( grad_output, input, rois, argmax, spatial_scale, output_size[0], output_size[1], bs, ch, h, w, ) return grad_input, None, None, None roi_pool = _ROIPool.apply class ROIPool(nn.Module): def __init__(self, output_size, spatial_scale): super(ROIPool, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32) def forward(self, input, rois): return roi_pool(input, rois, self.output_size, self.spatial_scale) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ")" return tmpstr
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/roi_pool.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn class FrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def forward(self, x): # Cast all fixed parameters to half() if necessary if x.dtype == torch.float16: self.weight = self.weight.half() self.bias = self.bias.half() self.running_mean = self.running_mean.half() self.running_var = self.running_var.half() scale = self.weight * self.running_var.rsqrt() bias = self.bias - self.running_mean * scale scale = scale.reshape(1, -1, 1, 1) bias = bias.reshape(1, -1, 1, 1) return x * scale + bias
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/batch_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import glob import os.path import torch try: from torch.utils.cpp_extension import load as load_ext from torch.utils.cpp_extension import CUDA_HOME except ImportError: raise ImportError("The cpp layer extensions requires PyTorch 0.4 or higher") def _load_C_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) this_dir = os.path.dirname(this_dir) this_dir = os.path.join(this_dir, "csrc") main_file = glob.glob(os.path.join(this_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(this_dir, "cpu", "*.cpp")) source_cuda = glob.glob(os.path.join(this_dir, "cuda", "*.cu")) source = main_file + source_cpu extra_cflags = [] if torch.cuda.is_available() and CUDA_HOME is not None: source.extend(source_cuda) extra_cflags = ["-DWITH_CUDA"] source = [os.path.join(this_dir, s) for s in source] extra_include_paths = [this_dir] return load_ext( "torchvision", source, extra_cflags=extra_cflags, extra_include_paths=extra_include_paths, ) _C = _load_C_extensions()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch # TODO maybe push this to nn? def smooth_l1_loss(input, target, beta=1. / 9, size_average=True): """ very similar to the smooth_l1_loss from pytorch, but with the extra beta parameter """ n = torch.abs(input - target) cond = n < beta loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta) if size_average: return loss.mean() return loss.sum()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers/smooth_l1_loss.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch import pycocotools.mask as mask_utils # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 class Mask(object): """ This class is unfinished and not meant for use yet It is supposed to contain the mask for an object as a 2d tensor """ def __init__(self, masks, size, mode): self.masks = masks self.size = size self.mode = mode def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) width, height = self.size if method == FLIP_LEFT_RIGHT: dim = width idx = 2 elif method == FLIP_TOP_BOTTOM: dim = height idx = 1 flip_idx = list(range(dim)[::-1]) flipped_masks = self.masks.index_select(dim, flip_idx) return Mask(flipped_masks, self.size, self.mode) def crop(self, box): w, h = box[2] - box[0], box[3] - box[1] cropped_masks = self.masks[:, box[1] : box[3], box[0] : box[2]] return Mask(cropped_masks, size=(w, h), mode=self.mode) def resize(self, size, *args, **kwargs): pass class Polygons(object): """ This class holds a set of polygons that represents a single instance of an object mask. The object can be represented as a set of polygons """ def __init__(self, polygons, size, mode, pin_memory=False): # assert isinstance(polygons, list), '{}'.format(polygons) if isinstance(polygons, list): polygons = [torch.as_tensor(p, dtype=torch.float32) for p in polygons] if pin_memory: polygons = [p.pin_memory() for p in polygons] elif isinstance(polygons, Polygons): polygons = polygons.polygons self.polygons = polygons self.size = size self.mode = mode def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) flipped_polygons = [] width, height = self.size if method == FLIP_LEFT_RIGHT: dim = width idx = 0 elif method == FLIP_TOP_BOTTOM: dim = height idx = 1 for poly in self.polygons: p = poly.clone() TO_REMOVE = 1 p[idx::2] = dim - poly[idx::2] - TO_REMOVE flipped_polygons.append(p) return Polygons(flipped_polygons, size=self.size, mode=self.mode) def crop(self, box): w, h = box[2] - box[0], box[3] - box[1] # TODO chck if necessary w = max(w, 1) h = max(h, 1) cropped_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] = p[0::2] - box[0] # .clamp(min=0, max=w) p[1::2] = p[1::2] - box[1] # .clamp(min=0, max=h) cropped_polygons.append(p) return Polygons(cropped_polygons, size=(w, h), mode=self.mode) def resize(self, size, *args, **kwargs): ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) if ratios[0] == ratios[1]: ratio = ratios[0] scaled_polys = [p * ratio for p in self.polygons] return Polygons(scaled_polys, size, mode=self.mode) ratio_w, ratio_h = ratios scaled_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] *= ratio_w p[1::2] *= ratio_h scaled_polygons.append(p) return Polygons(scaled_polygons, size=size, mode=self.mode) def convert(self, mode): width, height = self.size if mode == "mask": rles = mask_utils.frPyObjects( [p.numpy() for p in self.polygons], height, width ) rle = mask_utils.merge(rles) mask = mask_utils.decode(rle) mask = torch.from_numpy(mask) # TODO add squeeze? return mask def __repr__(self): s = self.__class__.__name__ + "(" s += "num_polygons={}, ".format(len(self.polygons)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s class SegmentationMask(object): """ This class stores the segmentations for all objects in the image """ def __init__(self, polygons, size, mode=None, pin_memory=False): """ Arguments: polygons: a list of list of lists of numbers. The first level of the list correspond to individual instances, the second level to all the polygons that compose the object, and the third level to the polygon coordinates. """ assert isinstance(polygons, list) self.polygons = [Polygons(p, size, mode, pin_memory=pin_memory) for p in polygons] self.size = size self.mode = mode def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) flipped = [] for polygon in self.polygons: flipped.append(polygon.transpose(method)) return SegmentationMask(flipped, size=self.size, mode=self.mode) def crop(self, box): w, h = box[2] - box[0], box[3] - box[1] cropped = [] for polygon in self.polygons: cropped.append(polygon.crop(box)) return SegmentationMask(cropped, size=(w, h), mode=self.mode) def resize(self, size, *args, **kwargs): scaled = [] for polygon in self.polygons: scaled.append(polygon.resize(size, *args, **kwargs)) return SegmentationMask(scaled, size=size, mode=self.mode) def to(self, *args, **kwargs): return self def __getitem__(self, item): if isinstance(item, (int, slice)): selected_polygons = [self.polygons[item]] else: # advanced indexing on a single dimension selected_polygons = [] if isinstance(item, torch.Tensor) and \ (item.dtype == torch.uint8 or item.dtype == torch.bool): item = item.nonzero() item = item.squeeze(1) if item.numel() > 0 else item item = item.tolist() for i in item: selected_polygons.append(self.polygons[i]) return SegmentationMask(selected_polygons, size=self.size, mode=self.mode) def __iter__(self): return iter(self.polygons) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self.polygons)) s += "image_width={}, ".format(self.size[0]) s += "image_height={})".format(self.size[1]) return s
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/structures/segmentation_mask.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from .bounding_box import BoxList from maskrcnn_benchmark.layers import nms as _box_nms from maskrcnn_benchmark import _C def boxlist_nms(boxlist, nms_thresh, max_proposals=-1, score_field="score"): """ Performs non-maximum suppression on a boxlist, with scores specified in a boxlist field via score_field. Arguments: boxlist(BoxList) nms_thresh (float) max_proposals (int): if > 0, then only the top max_proposals are kept after non-maxium suppression score_field (str) """ if nms_thresh <= 0: return boxlist mode = boxlist.mode boxlist = boxlist.convert("xyxy") boxes = boxlist.bbox score = boxlist.get_field(score_field) keep = _box_nms(boxes, score, nms_thresh) if max_proposals > 0: keep = keep[: max_proposals] boxlist = boxlist[keep] return boxlist.convert(mode) def remove_small_boxes(boxlist, min_size): """ Only keep boxes with both sides >= min_size Arguments: boxlist (Boxlist) min_size (int) """ # TODO maybe add an API for querying the ws / hs xywh_boxes = boxlist.convert("xywh").bbox _, _, ws, hs = xywh_boxes.unbind(dim=1) keep = ( (ws >= min_size) & (hs >= min_size) ).nonzero().squeeze(1) return boxlist[keep] # implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py # with slight modifications def boxlist_iou(boxlist1, boxlist2): """Compute the intersection over union of two set of boxes. The box order must be (xmin, ymin, xmax, ymax). Arguments: box1: (BoxList) bounding boxes, sized [N,4]. box2: (BoxList) bounding boxes, sized [M,4]. Returns: (tensor) iou, sized [N,M]. Reference: https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py """ if boxlist1.size != boxlist2.size: raise RuntimeError( "boxlists should have same image size, got {}, {}".format(boxlist1, boxlist2)) box1, box2 = boxlist1.bbox, boxlist2.bbox if (box1.is_cuda and box2.is_cuda): iou = _C.box_iou(box1,box2) else: N = len(boxlist1) M = len(boxlist2) area1 = boxlist1.area() area2 = boxlist2.area() lt = torch.max(box1[:, None, :2], box2[:, :2]) # [N,M,2] rb = torch.min(box1[:, None, 2:], box2[:, 2:]) # [N,M,2] TO_REMOVE = 1 wh = (rb - lt + TO_REMOVE).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] iou = inter / (area1[:, None] + area2 - inter) return iou # TODO redundant, remove def _cat(tensors, dim=0): """ Efficient version of torch.cat that avoids a copy if there is only a single element in a list """ assert isinstance(tensors, (list, tuple)) if len(tensors) == 1: return tensors[0] return torch.cat(tensors, dim) def cat_boxlist(bboxes): """ Concatenates a list of BoxList (having the same image size) into a single BoxList Arguments: bboxes (list[BoxList]) """ assert isinstance(bboxes, (list, tuple)) assert all(isinstance(bbox, BoxList) for bbox in bboxes) size = bboxes[0].size assert all(bbox.size == size for bbox in bboxes) mode = bboxes[0].mode assert all(bbox.mode == mode for bbox in bboxes) fields = set(bboxes[0].fields()) assert all(set(bbox.fields()) == fields for bbox in bboxes) cat_boxes = BoxList(_cat([bbox.bbox for bbox in bboxes], dim=0), size, mode) for field in fields: data = _cat([bbox.get_field(field) for bbox in bboxes], dim=0) cat_boxes.add_field(field, data) return cat_boxes
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/structures/boxlist_ops.py
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/structures/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 class BoxList(object): """ This class represents a set of bounding boxes. The bounding boxes are represented as a Nx4 Tensor. In order to uniquely determine the bounding boxes with respect to an image, we also store the corresponding image dimensions. They can contain extra information that is specific to each bounding box, such as labels. """ def __init__(self, bbox, image_size, mode="xyxy"): device = bbox.device if isinstance(bbox, torch.Tensor) else torch.device("cpu") bbox = torch.as_tensor(bbox, dtype=torch.float32, device=device) if bbox.ndimension() != 2: raise ValueError( "bbox should have 2 dimensions, got {}".format(bbox.ndimension()) ) if bbox.size(-1) != 4: raise ValueError( "last dimenion of bbox should have a " "size of 4, got {}".format(bbox.size(-1)) ) if mode not in ("xyxy", "xywh"): raise ValueError("mode should be 'xyxy' or 'xywh'") self.bbox = bbox self.size = image_size # (image_width, image_height) self.mode = mode self.extra_fields = {} def add_field(self, field, field_data): self.extra_fields[field] = field_data def get_field(self, field): return self.extra_fields[field] def has_field(self, field): return field in self.extra_fields def fields(self): return list(self.extra_fields.keys()) def _copy_extra_fields(self, bbox): for k, v in bbox.extra_fields.items(): self.extra_fields[k] = v def convert(self, mode): if mode not in ("xyxy", "xywh"): raise ValueError("mode should be 'xyxy' or 'xywh'") if mode == self.mode: return self # we only have two modes, so don't need to check # self.mode xmin, ymin, xmax, ymax = self._split_into_xyxy() if mode == "xyxy": bbox = torch.cat((xmin, ymin, xmax, ymax), dim=-1) bbox = BoxList(bbox, self.size, mode=mode) else: TO_REMOVE = 1 bbox = torch.cat( (xmin, ymin, xmax - xmin + TO_REMOVE, ymax - ymin + TO_REMOVE), dim=-1 ) bbox = BoxList(bbox, self.size, mode=mode) bbox._copy_extra_fields(self) return bbox def _split_into_xyxy(self): if self.mode == "xyxy": xmin, ymin, xmax, ymax = self.bbox.split(1, dim=-1) return xmin, ymin, xmax, ymax elif self.mode == "xywh": TO_REMOVE = 1 xmin, ymin, w, h = self.bbox.split(1, dim=-1) return ( xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0), ) else: raise RuntimeError("Should not be here") def resize(self, size, *args, **kwargs): """ Returns a resized copy of this bounding box :param size: The requested size in pixels, as a 2-tuple: (width, height). """ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) if ratios[0] == ratios[1]: ratio = ratios[0] scaled_box = self.bbox * ratio bbox = BoxList(scaled_box, size, mode=self.mode) # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.resize(size, *args, **kwargs) bbox.add_field(k, v) return bbox ratio_width, ratio_height = ratios xmin, ymin, xmax, ymax = self._split_into_xyxy() scaled_xmin = xmin * ratio_width scaled_xmax = xmax * ratio_width scaled_ymin = ymin * ratio_height scaled_ymax = ymax * ratio_height scaled_box = torch.cat( (scaled_xmin, scaled_ymin, scaled_xmax, scaled_ymax), dim=-1 ) bbox = BoxList(scaled_box, size, mode="xyxy") # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.resize(size, *args, **kwargs) bbox.add_field(k, v) return bbox.convert(self.mode) def transpose(self, method): """ Transpose bounding box (flip or rotate in 90 degree steps) :param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`, :py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`, :py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270`, :py:attr:`PIL.Image.TRANSPOSE` or :py:attr:`PIL.Image.TRANSVERSE`. """ if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) image_width, image_height = self.size xmin, ymin, xmax, ymax = self._split_into_xyxy() if method == FLIP_LEFT_RIGHT: TO_REMOVE = 1 transposed_xmin = image_width - xmax - TO_REMOVE transposed_xmax = image_width - xmin - TO_REMOVE transposed_ymin = ymin transposed_ymax = ymax elif method == FLIP_TOP_BOTTOM: transposed_xmin = xmin transposed_xmax = xmax transposed_ymin = image_height - ymax transposed_ymax = image_height - ymin transposed_boxes = torch.cat( (transposed_xmin, transposed_ymin, transposed_xmax, transposed_ymax), dim=-1 ) bbox = BoxList(transposed_boxes, self.size, mode="xyxy") # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.transpose(method) bbox.add_field(k, v) return bbox.convert(self.mode) def crop(self, box): """ Cropss a rectangular region from this bounding box. The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate. """ xmin, ymin, xmax, ymax = self._split_into_xyxy() w, h = box[2] - box[0], box[3] - box[1] cropped_xmin = (xmin - box[0]).clamp(min=0, max=w) cropped_ymin = (ymin - box[1]).clamp(min=0, max=h) cropped_xmax = (xmax - box[0]).clamp(min=0, max=w) cropped_ymax = (ymax - box[1]).clamp(min=0, max=h) # TODO should I filter empty boxes here? if False: is_empty = (cropped_xmin == cropped_xmax) | (cropped_ymin == cropped_ymax) cropped_box = torch.cat( (cropped_xmin, cropped_ymin, cropped_xmax, cropped_ymax), dim=-1 ) bbox = BoxList(cropped_box, (w, h), mode="xyxy") # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.crop(box) bbox.add_field(k, v) return bbox.convert(self.mode) # Tensor-like methods def to(self, device, **kwargs): bbox = BoxList(self.bbox.to(device, non_blocking=True), self.size, self.mode) for k, v in self.extra_fields.items(): if hasattr(v, "to"): if torch.is_tensor(v): v_tmp = torch.empty_like(v, device=device) v_tmp.copy_(v, **kwargs) v = v_tmp else: v = v.to(device, **kwargs) bbox.add_field(k, v) return bbox def pin_memory(self): bbox = BoxList(self.bbox.pin_memory(), self.size, self.mode) for k, v in self.extra_fields.items(): if hasattr(v, "pin_memory"): v = v.pin_memory() bbox.add_field(k, v) return bbox def __getitem__(self, item): bbox = BoxList(self.bbox[item], self.size, self.mode) for k, v in self.extra_fields.items(): bbox.add_field(k, v[item]) return bbox def __len__(self): return self.bbox.shape[0] def clip_to_image(self, remove_empty=True): TO_REMOVE = 1 self.bbox[:, 0].clamp_(min=0, max=self.size[0] - TO_REMOVE) self.bbox[:, 1].clamp_(min=0, max=self.size[1] - TO_REMOVE) self.bbox[:, 2].clamp_(min=0, max=self.size[0] - TO_REMOVE) self.bbox[:, 3].clamp_(min=0, max=self.size[1] - TO_REMOVE) if remove_empty: box = self.bbox keep = (box[:, 3] > box[:, 1]) & (box[:, 2] > box[:, 0]) return self[keep] return self def area(self): box = self.bbox if self.mode == "xyxy": TO_REMOVE = 1 area = (box[:, 2] - box[:, 0] + TO_REMOVE) * (box[:, 3] - box[:, 1] + TO_REMOVE) elif self.mode == "xywh": area = box[:, 2] * box[:, 3] else: raise RuntimeError("Should not be here") return area def copy_with_fields(self, fields): bbox = BoxList(self.bbox, self.size, self.mode) if not isinstance(fields, (list, tuple)): fields = [fields] for field in fields: bbox.add_field(field, self.get_field(field)) return bbox def __repr__(self): s = self.__class__.__name__ + "(" s += "num_boxes={}, ".format(len(self)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s if __name__ == "__main__": bbox = BoxList([[0, 0, 10, 10], [0, 0, 5, 5]], (10, 10)) s_bbox = bbox.resize((5, 5)) print(s_bbox) print(s_bbox.bbox) t_bbox = bbox.transpose(0) print(t_bbox) print(t_bbox.bbox)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/structures/bounding_box.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. from __future__ import division import torch class ImageList(object): """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image """ def __init__(self, tensors, image_sizes): """ Arguments: tensors (tensor) image_sizes (list[tuple[int, int]]) """ self.tensors = tensors self.image_sizes = image_sizes def to(self, *args, **kwargs): cast_tensor = self.tensors.to(*args, **kwargs) return ImageList(cast_tensor, self.image_sizes) def to_nhwc(self): nhwc_tensor = self.tensors.to(memory_format=torch.channels_last) return ImageList(nhwc_tensor, self.image_sizes) def to_image_list(tensors, size_divisible=0): """ tensors can be an ImageList, a torch.Tensor or an iterable of Tensors. It can't be a numpy array. When tensors is an iterable of Tensors, it pads the Tensors with zeros so that they have the same shape """ if isinstance(tensors, torch.Tensor) and size_divisible > 0: tensors = [tensors] if isinstance(tensors, ImageList): return tensors elif isinstance(tensors, torch.Tensor): # single tensor shape can be inferred assert tensors.dim() == 4 image_sizes = [tensor.shape[-2:] for tensor in tensors] return ImageList(tensors, image_sizes) elif isinstance(tensors, (tuple, list)): max_size = tuple(max(s) for s in zip(*[img.shape for img in tensors])) # TODO Ideally, just remove this and let me model handle arbitrary # input sizs if size_divisible > 0: import math stride = size_divisible max_size = list(max_size) max_size[1] = int(math.ceil(max_size[1] / stride) * stride) max_size[2] = int(math.ceil(max_size[2] / stride) * stride) max_size = tuple(max_size) batch_shape = (len(tensors),) + max_size batched_imgs = tensors[0].new(*batch_shape).zero_() for img, pad_img in zip(tensors, batched_imgs): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) image_sizes = [im.shape[-2:] for im in tensors] return ImageList(batched_imgs, image_sizes) else: raise TypeError("Unsupported type for to_image_list: {}".format(type(tensors)))
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/structures/image_list.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. """Centralized catalog of paths.""" import os class DatasetCatalog(object): DATA_DIR = "/data/coco/coco-2014" DATASETS = { "coco_2014_train": { "img_dir": "coco_train2014", "ann_file": "annotations/instances_train2014.json" }, "coco_2014_val": { "img_dir": "coco_val2014", "ann_file": "annotations/instances_val2014.json" }, "coco_2014_minival": { "img_dir": "coco_val2014", "ann_file": "annotations/instances_minival2014.json" }, "coco_2014_valminusminival": { "img_dir": "coco_val2014", "ann_file": "annotations/instances_valminusminival2014.json" }, } @staticmethod def get(name): if "coco" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( root=os.path.join(data_dir, attrs["img_dir"]), ann_file=os.path.join(data_dir, attrs["ann_file"]), ) return dict( factory="COCODataset", args=args, ) elif "voc" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( data_dir=os.path.join(data_dir, attrs["data_dir"]), split=attrs["split"], ) return dict( factory="PascalVOCDataset", args=args, ) raise RuntimeError("Dataset not available: {}".format(name)) class ModelCatalog(object): S3_C2_DETECTRON_URL = "https://dl.fbaipublicfiles.com/detectron" C2_IMAGENET_MODELS = { "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", "MSRA/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl", "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", "MSRA/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl", "FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", } C2_DETECTRON_SUFFIX = "output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl" C2_DETECTRON_MODELS = { "35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW", "35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I", "35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7", "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ", "35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB", "35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC", "35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT", "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI", } @staticmethod def get(name): if name.startswith("Caffe2Detectron/COCO"): return ModelCatalog.get_c2_detectron_12_2017_baselines(name) if name.startswith("ImageNetPretrained"): return ModelCatalog.get_c2_imagenet_pretrained(name) raise RuntimeError("model not present in the catalog {}".format(name)) @staticmethod def get_c2_imagenet_pretrained(name): prefix = ModelCatalog.S3_C2_DETECTRON_URL name = name[len("ImageNetPretrained/"):] name = ModelCatalog.C2_IMAGENET_MODELS[name] url = "/".join([prefix, name]) return url @staticmethod def get_c2_detectron_12_2017_baselines(name): # Detectron C2 models are stored following the structure # prefix/<model_id>/2012_2017_baselines/<model_name>.yaml.<signature>/suffix # we use as identifiers in the catalog Caffe2Detectron/COCO/<model_id>/<model_name> prefix = ModelCatalog.S3_C2_DETECTRON_URL suffix = ModelCatalog.C2_DETECTRON_SUFFIX # remove identification prefix name = name[len("Caffe2Detectron/COCO/"):] # split in <model_id> and <model_name> model_id, model_name = name.split("/") # parsing to make it match the url address from the Caffe2 models model_name = "{}.yaml".format(model_name) signature = ModelCatalog.C2_DETECTRON_MODELS[name] unique_name = ".".join([model_name, signature]) url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix]) return url
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/config/paths_catalog_dlfw_ci.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. """Centralized catalog of paths.""" import os class DatasetCatalog(object): DATA_DIR = "/data2/coco/coco-2017" DATASETS = { "coco_2017_train": { "img_dir": "train2017", "ann_file": "annotations/instances_train2017.json" }, "coco_2017_val": { "img_dir": "val2017", "ann_file": "annotations/instances_val2017.json" }, } @staticmethod def get(name): if "coco" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( root=os.path.join(data_dir, attrs["img_dir"]), ann_file=os.path.join(data_dir, attrs["ann_file"]), ) return dict( factory="COCODataset", args=args, ) elif "voc" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( data_dir=os.path.join(data_dir, attrs["data_dir"]), split=attrs["split"], ) return dict( factory="PascalVOCDataset", args=args, ) raise RuntimeError("Dataset not available: {}".format(name)) class ModelCatalog(object): S3_C2_DETECTRON_URL = "https://dl.fbaipublicfiles.com/detectron" C2_IMAGENET_MODELS = { "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", "MSRA/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl", "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", "MSRA/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl", "FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", } C2_DETECTRON_SUFFIX = "output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl" C2_DETECTRON_MODELS = { "35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW", "35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I", "35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7", "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ", "35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB", "35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC", "35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT", "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI", } @staticmethod def get(name): if name.startswith("Caffe2Detectron/COCO"): return ModelCatalog.get_c2_detectron_12_2017_baselines(name) if name.startswith("ImageNetPretrained"): return ModelCatalog.get_c2_imagenet_pretrained(name) raise RuntimeError("model not present in the catalog {}".format(name)) @staticmethod def get_c2_imagenet_pretrained(name): prefix = ModelCatalog.S3_C2_DETECTRON_URL name = name[len("ImageNetPretrained/"):] name = ModelCatalog.C2_IMAGENET_MODELS[name] url = "/".join([prefix, name]) return url @staticmethod def get_c2_detectron_12_2017_baselines(name): # Detectron C2 models are stored following the structure # prefix/<model_id>/2012_2017_baselines/<model_name>.yaml.<signature>/suffix # we use as identifiers in the catalog Caffe2Detectron/COCO/<model_id>/<model_name> prefix = ModelCatalog.S3_C2_DETECTRON_URL suffix = ModelCatalog.C2_DETECTRON_SUFFIX # remove identification prefix name = name[len("Caffe2Detectron/COCO/"):] # split in <model_id> and <model_name> model_id, model_name = name.split("/") # parsing to make it match the url address from the Caffe2 models model_name = "{}.yaml".format(model_name) signature = ModelCatalog.C2_DETECTRON_MODELS[name] unique_name = ".".join([model_name, signature]) url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix]) return url
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/config/paths_catalog_ci.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .defaults import _C as cfg
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/config/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Centralized catalog of paths.""" import os class DatasetCatalog(object): DATA_DIR = "/datasets" DATASETS = { "coco_2017_train": { "img_dir": "data/train2017", "ann_file": "data/annotations/instances_train2017.json" }, "coco_2017_val": { "img_dir": "data/val2017", "ann_file": "data/annotations/instances_val2017.json" }, "coco_2014_train": { "img_dir": "data/train2014", "ann_file": "data/annotations/instances_train2014.json" }, "coco_2014_val": { "img_dir": "data/val2014", "ann_file": "data/annotations/instances_val2014.json" }, "coco_2014_minival": { "img_dir": "data/val2014", "ann_file": "data/annotations/instances_minival2014.json" }, "coco_2014_valminusminival": { "img_dir": "data/val2014", "ann_file": "data/annotations/instances_valminusminival2014.json" }, "voc_2007_train": { "data_dir": "data/VOC2007", "split": "train" }, "voc_2007_train_cocostyle": { "img_dir": "data/VOC2007/JPEGImages", "ann_file": "data/VOC2007/Annotations/pascal_train2007.json" }, "voc_2007_val": { "data_dir": "data/VOC2007", "split": "val" }, "voc_2007_val_cocostyle": { "img_dir": "data/VOC2007/JPEGImages", "ann_file": "data/VOC2007/Annotations/pascal_val2007.json" }, "voc_2007_test": { "data_dir": "data/VOC2007", "split": "test" }, "voc_2007_test_cocostyle": { "img_dir": "data/VOC2007/JPEGImages", "ann_file": "data/VOC2007/Annotations/pascal_test2007.json" }, "voc_2012_train": { "data_dir": "data/VOC2012", "split": "train" }, "voc_2012_train_cocostyle": { "img_dir": "data/VOC2012/JPEGImages", "ann_file": "data/VOC2012/Annotations/pascal_train2012.json" }, "voc_2012_val": { "data_dir": "data/VOC2012", "split": "val" }, "voc_2012_val_cocostyle": { "img_dir": "data/VOC2012/JPEGImages", "ann_file": "data/VOC2012/Annotations/pascal_val2012.json" }, "voc_2012_test": { "data_dir": "data/VOC2012", "split": "test" # PASCAL VOC2012 doesn't made the test annotations available, so there's no json annotation }, "cityscapes_fine_instanceonly_seg_train_cocostyle": { "img_dir": "data/images", "ann_file": "data/annotations/instancesonly_filtered_gtFine_train.json" }, "cityscapes_fine_instanceonly_seg_val_cocostyle": { "img_dir": "data/images", "ann_file": "data/annotations/instancesonly_filtered_gtFine_val.json" }, "cityscapes_fine_instanceonly_seg_test_cocostyle": { "img_dir": "data/images", "ann_file": "data/annotations/instancesonly_filtered_gtFine_test.json" } } @staticmethod def get(name): if "coco" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( root=os.path.join(data_dir, attrs["img_dir"]), ann_file=os.path.join(data_dir, attrs["ann_file"]), ) return dict( factory="COCODataset", args=args, ) elif "voc" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( data_dir=os.path.join(data_dir, attrs["data_dir"]), split=attrs["split"], ) return dict( factory="PascalVOCDataset", args=args, ) raise RuntimeError("Dataset not available: {}".format(name)) class ModelCatalog(object): S3_C2_DETECTRON_URL = "https://dl.fbaipublicfiles.com/detectron" C2_IMAGENET_MODELS = { "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", "MSRA/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl", "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", "MSRA/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl", "FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", } C2_DETECTRON_SUFFIX = "output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl" C2_DETECTRON_MODELS = { "35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW", "35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I", "35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7", "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ", "35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB", "35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC", "35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT", "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI", } @staticmethod def get(name): if name.startswith("Caffe2Detectron/COCO"): return ModelCatalog.get_c2_detectron_12_2017_baselines(name) if name.startswith("ImageNetPretrained"): return ModelCatalog.get_c2_imagenet_pretrained(name) raise RuntimeError("model not present in the catalog {}".format(name)) @staticmethod def get_c2_imagenet_pretrained(name): prefix = ModelCatalog.S3_C2_DETECTRON_URL name = name[len("ImageNetPretrained/"):] name = ModelCatalog.C2_IMAGENET_MODELS[name] url = "/".join([prefix, name]) return url @staticmethod def get_c2_detectron_12_2017_baselines(name): # Detectron C2 models are stored following the structure # prefix/<model_id>/2012_2017_baselines/<model_name>.yaml.<signature>/suffix # we use as identifiers in the catalog Caffe2Detectron/COCO/<model_id>/<model_name> prefix = ModelCatalog.S3_C2_DETECTRON_URL suffix = ModelCatalog.C2_DETECTRON_SUFFIX # remove identification prefix name = name[len("Caffe2Detectron/COCO/"):] # split in <model_id> and <model_name> model_id, model_name = name.split("/") # parsing to make it match the url address from the Caffe2 models model_name = "{}.yaml".format(model_name) signature = ModelCatalog.C2_DETECTRON_MODELS[name] unique_name = ".".join([model_name, signature]) url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix]) return url
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/config/paths_catalog.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import os from yacs.config import CfgNode as CN # ----------------------------------------------------------------------------- # Convention about Training / Test specific parameters # ----------------------------------------------------------------------------- # Whenever an argument can be either used for training or for testing, the # corresponding name will be post-fixed by a _TRAIN for a training parameter, # or _TEST for a test-specific parameter. # For example, the number of images during training will be # IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be # IMAGES_PER_BATCH_TEST # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C = CN() _C.MODEL = CN() _C.MODEL.RPN_ONLY = False _C.MODEL.MASK_ON = False _C.MODEL.DEVICE = "cuda" _C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN" # If the WEIGHT starts with a catalog://, like :R-50, the code will look for # the path in paths_catalog. Else, it will use it as the specified absolute # path _C.MODEL.WEIGHT = "" # ----------------------------------------------------------------------------- # INPUT # ----------------------------------------------------------------------------- _C.INPUT = CN() # Size of the smallest side of the image during training _C.INPUT.MIN_SIZE_TRAIN = 800 # (800,) # Maximum size of the side of the image during training _C.INPUT.MAX_SIZE_TRAIN = 1333 # Size of the smallest side of the image during testing _C.INPUT.MIN_SIZE_TEST = 800 # Maximum size of the side of the image during testing _C.INPUT.MAX_SIZE_TEST = 1333 # Values to be used for image normalization _C.INPUT.PIXEL_MEAN = [102.9801, 115.9465, 122.7717] # Values to be used for image normalization _C.INPUT.PIXEL_STD = [1., 1., 1.] # Convert image to BGR format (for Caffe2 models), in range 0-255 _C.INPUT.TO_BGR255 = True # ----------------------------------------------------------------------------- # Dataset # ----------------------------------------------------------------------------- _C.DATASETS = CN() # List of the dataset names for training, as present in paths_catalog.py _C.DATASETS.TRAIN = () # List of the dataset names for testing, as present in paths_catalog.py _C.DATASETS.TEST = () # ----------------------------------------------------------------------------- # DataLoader # ----------------------------------------------------------------------------- _C.DATALOADER = CN() # Number of data loading threads _C.DATALOADER.NUM_WORKERS = 4 # If > 0, this enforces that each collated batch should have a size divisible # by SIZE_DIVISIBILITY _C.DATALOADER.SIZE_DIVISIBILITY = 0 # If True, each batch should contain only images for which the aspect ratio # is compatible. This groups portrait images together, and landscape images # are not batched with portrait images. _C.DATALOADER.ASPECT_RATIO_GROUPING = True # If True, the custom Hybrid Dataloader is used. # If not, torch.utils.data.DataLoader is used for dataloading. _C.DATALOADER.HYBRID = True # ---------------------------------------------------------------------------- # # Backbone options # ---------------------------------------------------------------------------- # _C.MODEL.BACKBONE = CN() # The backbone conv body to use # The string must match a function that is imported in modeling.model_builder # (e.g., 'FPN.add_fpn_ResNet101_conv5_body' to specify a ResNet-101-FPN # backbone) _C.MODEL.BACKBONE.CONV_BODY = "R-50-C4" # Add StopGrad at a specified stage so the bottom layers are frozen _C.MODEL.BACKBONE.FREEZE_CONV_BODY_AT = 2 _C.MODEL.BACKBONE.OUT_CHANNELS = 256 * 4 # GN for backbone _C.MODEL.BACKBONE.USE_GN = False # ---------------------------------------------------------------------------- # # FPN options # ---------------------------------------------------------------------------- # _C.MODEL.FPN = CN() _C.MODEL.FPN.USE_GN = False _C.MODEL.FPN.USE_RELU = False # ---------------------------------------------------------------------------- # # Group Norm options # ---------------------------------------------------------------------------- # _C.MODEL.GROUP_NORM = CN() # Number of dimensions per group in GroupNorm (-1 if using NUM_GROUPS) _C.MODEL.GROUP_NORM.DIM_PER_GP = -1 # Number of groups in GroupNorm (-1 if using DIM_PER_GP) _C.MODEL.GROUP_NORM.NUM_GROUPS = 32 # GroupNorm's small constant in the denominator _C.MODEL.GROUP_NORM.EPSILON = 1e-5 # ---------------------------------------------------------------------------- # # RPN options # ---------------------------------------------------------------------------- # _C.MODEL.RPN = CN() _C.MODEL.RPN.USE_FPN = False # Base RPN anchor sizes given in absolute pixels w.r.t. the scaled network input _C.MODEL.RPN.ANCHOR_SIZES = (32, 64, 128, 256, 512) # Stride of the feature map that RPN is attached. # For FPN, number of strides should match number of scales _C.MODEL.RPN.ANCHOR_STRIDE = (16,) # RPN anchor aspect ratios _C.MODEL.RPN.ASPECT_RATIOS = (0.5, 1.0, 2.0) # Remove RPN anchors that go outside the image by RPN_STRADDLE_THRESH pixels # Set to -1 or a large value, e.g. 100000, to disable pruning anchors _C.MODEL.RPN.STRADDLE_THRESH = 0 # Minimum overlap required between an anchor and ground-truth box for the # (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD # ==> positive RPN example) _C.MODEL.RPN.FG_IOU_THRESHOLD = 0.7 # Maximum overlap allowed between an anchor and ground-truth box for the # (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD # ==> negative RPN example) _C.MODEL.RPN.BG_IOU_THRESHOLD = 0.3 # Total number of RPN examples per image _C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256 # Target fraction of foreground (positive) examples per RPN minibatch _C.MODEL.RPN.POSITIVE_FRACTION = 0.5 # Number of top scoring RPN proposals to keep before applying NMS # When FPN is used, this is *per FPN level* (not total) _C.MODEL.RPN.PRE_NMS_TOP_N_TRAIN = 12000 _C.MODEL.RPN.PRE_NMS_TOP_N_TEST = 6000 # Number of top scoring RPN proposals to keep after applying NMS _C.MODEL.RPN.POST_NMS_TOP_N_TRAIN = 2000 _C.MODEL.RPN.POST_NMS_TOP_N_TEST = 1000 # NMS threshold used on RPN proposals _C.MODEL.RPN.NMS_THRESH = 0.7 # Proposal height and width both need to be greater than RPN_MIN_SIZE # (a the scale used during training or inference) _C.MODEL.RPN.MIN_SIZE = 0 # Number of top scoring RPN proposals to keep after combining proposals from # all FPN levels _C.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN = 2000 _C.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST = 2000 # Custom rpn head, empty to use default conv or separable conv _C.MODEL.RPN.RPN_HEAD = "SingleConvRPNHead" # ---------------------------------------------------------------------------- # # ROI HEADS options # ---------------------------------------------------------------------------- # _C.MODEL.ROI_HEADS = CN() _C.MODEL.ROI_HEADS.USE_FPN = False # Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD) _C.MODEL.ROI_HEADS.FG_IOU_THRESHOLD = 0.5 # Overlap threshold for an RoI to be considered background # (class = 0 if overlap in [0, BG_IOU_THRESHOLD)) _C.MODEL.ROI_HEADS.BG_IOU_THRESHOLD = 0.5 # Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets # These are empirically chosen to approximately lead to unit variance targets _C.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS = (10., 10., 5., 5.) # RoI minibatch size *per image* (number of regions of interest [ROIs]) # Total number of RoIs per training minibatch = # TRAIN.BATCH_SIZE_PER_IM * TRAIN.IMS_PER_BATCH * NUM_GPUS # E.g., a common configuration is: 512 * 2 * 8 = 8192 _C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 # Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0) _C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25 # Only used on test mode # Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to # balance obtaining high recall with not having too many low precision # detections that will slow down inference post processing steps (like NMS) _C.MODEL.ROI_HEADS.SCORE_THRESH = 0.05 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) _C.MODEL.ROI_HEADS.NMS = 0.5 # Maximum number of detections to return per image (100 is based on the limit # established for the COCO dataset) _C.MODEL.ROI_HEADS.DETECTIONS_PER_IMG = 100 _C.MODEL.ROI_BOX_HEAD = CN() _C.MODEL.ROI_BOX_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor" _C.MODEL.ROI_BOX_HEAD.PREDICTOR = "FastRCNNPredictor" _C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_BOX_HEAD.POOLER_SCALES = (1.0 / 16,) _C.MODEL.ROI_BOX_HEAD.NUM_CLASSES = 81 # Hidden layer dimension when using an MLP for the RoI box head _C.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM = 1024 # GN _C.MODEL.ROI_BOX_HEAD.USE_GN = False # Dilation _C.MODEL.ROI_BOX_HEAD.DILATION = 1 _C.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM = 256 _C.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS = 4 _C.MODEL.ROI_MASK_HEAD = CN() _C.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor" _C.MODEL.ROI_MASK_HEAD.PREDICTOR = "MaskRCNNC4Predictor" _C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_MASK_HEAD.POOLER_SCALES = (1.0 / 16,) _C.MODEL.ROI_MASK_HEAD.MLP_HEAD_DIM = 1024 _C.MODEL.ROI_MASK_HEAD.CONV_LAYERS = (256, 256, 256, 256) _C.MODEL.ROI_MASK_HEAD.RESOLUTION = 14 _C.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True # Whether or not resize and translate masks to the input image. _C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS = False _C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD = 0.5 # Dilation _C.MODEL.ROI_MASK_HEAD.DILATION = 1 # GN _C.MODEL.ROI_MASK_HEAD.USE_GN = False # ---------------------------------------------------------------------------- # # ResNe[X]t options (ResNets = {ResNet, ResNeXt} # Note that parts of a resnet may be used for both the backbone and the head # These options apply to both # ---------------------------------------------------------------------------- # _C.MODEL.RESNETS = CN() # Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt _C.MODEL.RESNETS.NUM_GROUPS = 1 # Baseline width of each group _C.MODEL.RESNETS.WIDTH_PER_GROUP = 64 # Place the stride 2 conv on the 1x1 filter # Use True only for the original MSRA ResNet; use False for C2 and Torch models _C.MODEL.RESNETS.STRIDE_IN_1X1 = True # Residual transformation function _C.MODEL.RESNETS.TRANS_FUNC = "BottleneckWithFixedBatchNorm" # ResNet's stem function (conv1 and pool1) _C.MODEL.RESNETS.STEM_FUNC = "StemWithFixedBatchNorm" # Apply dilation in stage "res5" _C.MODEL.RESNETS.RES5_DILATION = 1 _C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256 _C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64 # ---------------------------------------------------------------------------- # # Solver # ---------------------------------------------------------------------------- # _C.SOLVER = CN() _C.SOLVER.MAX_ITER = 40000 _C.SOLVER.BASE_LR = 0.001 _C.SOLVER.BIAS_LR_FACTOR = 2 _C.SOLVER.MOMENTUM = 0.9 _C.SOLVER.WEIGHT_DECAY = 0.0005 _C.SOLVER.WEIGHT_DECAY_BIAS = 0 _C.SOLVER.GAMMA = 0.1 _C.SOLVER.STEPS = (30000,) _C.SOLVER.WARMUP_FACTOR = 1.0 / 3 _C.SOLVER.WARMUP_ITERS = 500 _C.SOLVER.WARMUP_METHOD = "linear" _C.SOLVER.CHECKPOINT_PERIOD = 2500 # Number of images per batch # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.SOLVER.IMS_PER_BATCH = 16 # Parameters to accumulate gradient across steps _C.SOLVER.ACCUMULATE_STEPS = 1 _C.SOLVER.ACCUMULATE_GRAD = False # ---------------------------------------------------------------------------- # # Specific test options # ---------------------------------------------------------------------------- # _C.TEST = CN() _C.TEST.EXPECTED_RESULTS = [] _C.TEST.EXPECTED_RESULTS_SIGMA_TOL = 4 # Number of images per batch # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.TEST.IMS_PER_BATCH = 8 # ---------------------------------------------------------------------------- # # Misc options # ---------------------------------------------------------------------------- # _C.OUTPUT_DIR = "." _C.PATHS_CATALOG = os.path.join(os.path.dirname(__file__), "paths_catalog.py") _C.USE_TORCH_DDP = True # ---------------------------------------------------------------------------- # # Precision options # ---------------------------------------------------------------------------- # # Precision of input, allowable: (float32, float16) _C.DTYPE = "float32" # Use NATIVE NHWC/NCHW for eligible convolutions _C.NHWC = True # Evaluate every epoch _C.PER_EPOCH_EVAL = False _C.MIN_BBOX_MAP = 0.377 _C.MIN_MASK_MAP = 0.342 _C.SAVE_CHECKPOINT = True
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/config/defaults.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from collections import defaultdict from collections import deque import torch class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20): self.deque = deque(maxlen=window_size) self.series = [] self.total = 0.0 self.count = 0 def update(self, value): self.deque.append(value) self.series.append(value) self.count += 1 self.total += value @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque)) return d.mean().item() @property def global_avg(self): return self.total / self.count class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {:.4f} ({:.4f})".format(name, meter.median, meter.global_avg) ) return self.delimiter.join(loss_str) def get_dict(self): loss_dict = {} for name, meter in self.meters.items(): loss_dict[name] = "{:.4f} ({:.4f})".format(meter.median, meter.global_avg) return loss_dict
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/metric_logger.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import os from maskrcnn_benchmark.utils.imports import import_file def setup_environment(): """Perform environment setup work. The default setup is a no-op, but this function allows the user to specify a Python source file that performs custom setup work that may be necessary to their computing environment. """ custom_module_path = os.environ.get("TORCH_DETECTRON_ENV_MODULE") if custom_module_path: setup_custom_environment(custom_module_path) else: # The default setup is a no-op pass def setup_custom_environment(custom_module_path): """Load custom environment setup from a Python source file and run the setup function. """ module = import_file("maskrcnn_benchmark.utils.env.custom_module", custom_module_path) assert hasattr(module, "setup_environment") and callable( module.setup_environment ), ( "Custom environment module defined in {} does not have the " "required callable attribute 'setup_environment'." ).format( custom_module_path ) module.setup_environment() # Force environment setup when this module is imported setup_environment()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/env.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import logging import os import torch from maskrcnn_benchmark.utils.model_serialization import load_state_dict from maskrcnn_benchmark.utils.c2_model_loading import load_c2_format from maskrcnn_benchmark.utils.imports import import_file from maskrcnn_benchmark.utils.model_zoo import cache_url class Checkpointer(object): def __init__( self, model, optimizer=None, scheduler=None, save_dir="", save_to_disk=None, logger=None, ): self.model = model self.optimizer = optimizer self.scheduler = scheduler self.save_dir = save_dir self.save_to_disk = save_to_disk if logger is None: logger = logging.getLogger(__name__) self.logger = logger def save(self, name, **kwargs): if not self.save_dir: return if not self.save_to_disk: return data = {} data["model"] = self.model.state_dict() if self.optimizer is not None: data["optimizer"] = self.optimizer.state_dict() if self.scheduler is not None: data["scheduler"] = self.scheduler.state_dict() data.update(kwargs) save_file = os.path.join(self.save_dir, "{}.pth".format(name)) self.logger.info("Saving checkpoint to {}".format(save_file)) torch.save(data, save_file) self.tag_last_checkpoint(save_file) def load(self, f=None): if self.has_checkpoint(): # override argument with existing checkpoint f = self.get_checkpoint_file() if not f: # no checkpoint could be found self.logger.info("No checkpoint found. Initializing model from scratch") return {} self.logger.info("Loading checkpoint from {}".format(f)) checkpoint = self._load_file(f) self._load_model(checkpoint) if "optimizer" in checkpoint and self.optimizer: self.logger.info("Loading optimizer from {}".format(f)) self.optimizer.load_state_dict(checkpoint.pop("optimizer")) if "scheduler" in checkpoint and self.scheduler: self.logger.info("Loading scheduler from {}".format(f)) self.scheduler.load_state_dict(checkpoint.pop("scheduler")) # return any further checkpoint data return checkpoint def has_checkpoint(self): save_file = os.path.join(self.save_dir, "last_checkpoint") return os.path.exists(save_file) def get_checkpoint_file(self): save_file = os.path.join(self.save_dir, "last_checkpoint") try: with open(save_file, "r") as f: last_saved = f.read() last_saved = last_saved.strip() except IOError: # if file doesn't exist, maybe because it has just been # deleted by a separate process last_saved = "" return last_saved def tag_last_checkpoint(self, last_filename): save_file = os.path.join(self.save_dir, "last_checkpoint") with open(save_file, "w") as f: f.write(last_filename) def _load_file(self, f): return torch.load(f, map_location=torch.device("cpu")) def _load_model(self, checkpoint): load_state_dict(self.model, checkpoint.pop("model")) class DetectronCheckpointer(Checkpointer): def __init__( self, cfg, model, optimizer=None, scheduler=None, save_dir="", save_to_disk=None, logger=None, ): super(DetectronCheckpointer, self).__init__( model, optimizer, scheduler, save_dir, save_to_disk, logger ) self.cfg = cfg.clone() def _load_file(self, f): # catalog lookup if f.startswith("catalog://"): paths_catalog = import_file( "maskrcnn_benchmark.config.paths_catalog", self.cfg.PATHS_CATALOG, True ) catalog_f = paths_catalog.ModelCatalog.get(f[len("catalog://") :]) self.logger.info("{} points to {}".format(f, catalog_f)) f = catalog_f # download url files if f.startswith("http"): # if the file is a url path, download it and cache it cached_f = cache_url(f) self.logger.info("url {} cached in {}".format(f, cached_f)) f = cached_f # convert Caffe2 checkpoint from pkl if f.endswith(".pkl"): return load_c2_format(self.cfg, f) # load native detectron.pytorch checkpoint loaded = super(DetectronCheckpointer, self)._load_file(f) if "model" not in loaded: loaded = dict(model=loaded) return loaded
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/checkpoint.py
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. """ This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import pickle import time import torch import torch.distributed as dist def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.IntTensor([tensor.numel()]).to("cuda") size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def synchronized_timestamp(): torch.cuda.synchronize() return time.time()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/comm.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import logging import pickle from collections import OrderedDict import torch from maskrcnn_benchmark.utils.model_serialization import load_state_dict from maskrcnn_benchmark.utils.registry import Registry def _rename_basic_resnet_weights(layer_keys): layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [k.replace(".w", ".weight") for k in layer_keys] layer_keys = [k.replace(".bn", "_bn") for k in layer_keys] layer_keys = [k.replace(".b", ".bias") for k in layer_keys] layer_keys = [k.replace("_bn.s", "_bn.scale") for k in layer_keys] layer_keys = [k.replace(".biasranch", ".branch") for k in layer_keys] layer_keys = [k.replace("bbox.pred", "bbox_pred") for k in layer_keys] layer_keys = [k.replace("cls.score", "cls_score") for k in layer_keys] layer_keys = [k.replace("res.conv1_", "conv1_") for k in layer_keys] # RPN / Faster RCNN layer_keys = [k.replace(".biasbox", ".bbox") for k in layer_keys] layer_keys = [k.replace("conv.rpn", "rpn.conv") for k in layer_keys] layer_keys = [k.replace("rpn.bbox.pred", "rpn.bbox_pred") for k in layer_keys] layer_keys = [k.replace("rpn.cls.logits", "rpn.cls_logits") for k in layer_keys] # Affine-Channel -> BatchNorm enaming layer_keys = [k.replace("_bn.scale", "_bn.weight") for k in layer_keys] # Make torchvision-compatible layer_keys = [k.replace("conv1_bn.", "bn1.") for k in layer_keys] layer_keys = [k.replace("res2.", "layer1.") for k in layer_keys] layer_keys = [k.replace("res3.", "layer2.") for k in layer_keys] layer_keys = [k.replace("res4.", "layer3.") for k in layer_keys] layer_keys = [k.replace("res5.", "layer4.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2a_bn.", ".bn1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2b_bn.", ".bn2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] layer_keys = [k.replace(".branch2c_bn.", ".bn3.") for k in layer_keys] layer_keys = [k.replace(".branch1.", ".downsample.0.") for k in layer_keys] layer_keys = [k.replace(".branch1_bn.", ".downsample.1.") for k in layer_keys] # GroupNorm layer_keys = [k.replace("conv1.gn.s", "bn1.weight") for k in layer_keys] layer_keys = [k.replace("conv1.gn.bias", "bn1.bias") for k in layer_keys] layer_keys = [k.replace("conv2.gn.s", "bn2.weight") for k in layer_keys] layer_keys = [k.replace("conv2.gn.bias", "bn2.bias") for k in layer_keys] layer_keys = [k.replace("conv3.gn.s", "bn3.weight") for k in layer_keys] layer_keys = [k.replace("conv3.gn.bias", "bn3.bias") for k in layer_keys] layer_keys = [k.replace("downsample.0.gn.s", "downsample.1.weight") \ for k in layer_keys] layer_keys = [k.replace("downsample.0.gn.bias", "downsample.1.bias") \ for k in layer_keys] return layer_keys def _rename_fpn_weights(layer_keys, stage_names): for mapped_idx, stage_name in enumerate(stage_names, 1): suffix = "" if mapped_idx < 4: suffix = ".lateral" layer_keys = [ k.replace("fpn.inner.layer{}.sum{}".format(stage_name, suffix), "fpn_inner{}".format(mapped_idx)) for k in layer_keys ] layer_keys = [k.replace("fpn.layer{}.sum".format(stage_name), "fpn_layer{}".format(mapped_idx)) for k in layer_keys] layer_keys = [k.replace("rpn.conv.fpn2", "rpn.conv") for k in layer_keys] layer_keys = [k.replace("rpn.bbox_pred.fpn2", "rpn.bbox_pred") for k in layer_keys] layer_keys = [ k.replace("rpn.cls_logits.fpn2", "rpn.cls_logits") for k in layer_keys ] return layer_keys def _rename_weights_for_resnet(weights, stage_names): original_keys = sorted(weights.keys()) layer_keys = sorted(weights.keys()) # for X-101, rename output to fc1000 to avoid conflicts afterwards layer_keys = [k if k != "pred_b" else "fc1000_b" for k in layer_keys] layer_keys = [k if k != "pred_w" else "fc1000_w" for k in layer_keys] # performs basic renaming: _ -> . , etc layer_keys = _rename_basic_resnet_weights(layer_keys) # FPN layer_keys = _rename_fpn_weights(layer_keys, stage_names) # Mask R-CNN layer_keys = [k.replace("mask.fcn.logits", "mask_fcn_logits") for k in layer_keys] layer_keys = [k.replace(".[mask].fcn", "mask_fcn") for k in layer_keys] layer_keys = [k.replace("conv5.mask", "conv5_mask") for k in layer_keys] # Keypoint R-CNN layer_keys = [k.replace("kps.score.lowres", "kps_score_lowres") for k in layer_keys] layer_keys = [k.replace("kps.score", "kps_score") for k in layer_keys] layer_keys = [k.replace("conv.fcn", "conv_fcn") for k in layer_keys] # Rename for our RPN structure layer_keys = [k.replace("rpn.", "rpn.head.") for k in layer_keys] key_map = {k: v for k, v in zip(original_keys, layer_keys)} logger = logging.getLogger(__name__) logger.info("Remapping C2 weights") max_c2_key_size = max([len(k) for k in original_keys if "_momentum" not in k]) new_weights = OrderedDict() for k in original_keys: v = weights[k] if "_momentum" in k: continue # if 'fc1000' in k: # continue w = torch.from_numpy(v) # if "bn" in k: # w = w.view(1, -1, 1, 1) logger.info("C2 name: {: <{}} mapped name: {}".format(k, max_c2_key_size, key_map[k])) new_weights[key_map[k]] = w return new_weights def _load_c2_pickled_weights(file_path): with open(file_path, "rb") as f: data = pickle.load(f, encoding="latin1") if "blobs" in data: weights = data["blobs"] else: weights = data return weights _C2_STAGE_NAMES = { "R-50": ["1.2", "2.3", "3.5", "4.2"], "R-101": ["1.2", "2.3", "3.22", "4.2"], } C2_FORMAT_LOADER = Registry() @C2_FORMAT_LOADER.register("R-50-C4") @C2_FORMAT_LOADER.register("R-50-C5") @C2_FORMAT_LOADER.register("R-101-C4") @C2_FORMAT_LOADER.register("R-101-C5") @C2_FORMAT_LOADER.register("R-50-FPN") @C2_FORMAT_LOADER.register("R-101-FPN") def load_resnet_c2_format(cfg, f): state_dict = _load_c2_pickled_weights(f) conv_body = cfg.MODEL.BACKBONE.CONV_BODY arch = conv_body.replace("-C4", "").replace("-C5", "").replace("-FPN", "") stages = _C2_STAGE_NAMES[arch] state_dict = _rename_weights_for_resnet(state_dict, stages) return dict(model=state_dict) def load_c2_format(cfg, f): return C2_FORMAT_LOADER[cfg.MODEL.BACKBONE.CONV_BODY](cfg, f)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/c2_model_loading.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. def _register_generic(module_dict, module_name, module): assert module_name not in module_dict module_dict[module_name] = module class Registry(dict): ''' A helper class for managing registering modules, it extends a dictionary and provides a register functions. Eg. creeting a registry: some_registry = Registry({"default": default_module}) There're two ways of registering new modules: 1): normal way is just calling register function: def foo(): ... some_registry.register("foo_module", foo) 2): used as decorator when declaring the module: @some_registry.register("foo_module") @some_registry.register("foo_modeul_nickname") def foo(): ... Access of module is just like using a dictionary, eg: f = some_registry["foo_modeul"] ''' def __init__(self, *args, **kwargs): super(Registry, self).__init__(*args, **kwargs) def register(self, module_name, module=None): # used as function call if module is not None: _register_generic(self, module_name, module) return # used as decorator def register_fn(fn): _register_generic(self, module_name, fn) return fn return register_fn
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/registry.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import os import sys try: from torch.utils.model_zoo import _download_url_to_file from torch.utils.model_zoo import urlparse from torch.utils.model_zoo import HASH_REGEX except: from torch.hub import _download_url_to_file from torch.hub import urlparse from torch.hub import HASH_REGEX from maskrcnn_benchmark.utils.comm import is_main_process from maskrcnn_benchmark.utils.comm import synchronize # very similar to https://github.com/pytorch/pytorch/blob/master/torch/utils/model_zoo.py # but with a few improvements and modifications def cache_url(url, model_dir=None, progress=True): r"""Loads the Torch serialized object at the given URL. If the object is already present in `model_dir`, it's deserialized and returned. The filename part of the URL should follow the naming convention ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more digits of the SHA256 hash of the contents of the file. The hash is used to ensure unique names and to verify the contents of the file. The default value of `model_dir` is ``$TORCH_HOME/models`` where ``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be overridden with the ``$TORCH_MODEL_ZOO`` environment variable. Args: url (string): URL of the object to download model_dir (string, optional): directory in which to save the object progress (bool, optional): whether or not to display a progress bar to stderr Example: >>> cached_file = maskrcnn_benchmark.utils.model_zoo.cache_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth') """ if model_dir is None: torch_home = os.path.expanduser(os.getenv('TORCH_HOME', '~/.torch')) model_dir = os.getenv('TORCH_MODEL_ZOO', os.path.join(torch_home, 'models')) if not os.path.exists(model_dir) and is_main_process(): os.makedirs(model_dir) parts = urlparse(url) filename = os.path.basename(parts.path) if filename == "model_final.pkl": # workaround as pre-trained Caffe2 models from Detectron have all the same filename # so make the full path the filename by replacing / with _ filename = parts.path.replace("/", "_") cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file) and is_main_process(): sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) hash_prefix = HASH_REGEX.search(filename) if hash_prefix is not None: hash_prefix = hash_prefix.group(1) # workaround: Caffe2 models don't have a hash, but follow the R-50 convention, # which matches the hash PyTorch uses. So we skip the hash matching # if the hash_prefix is less than 6 characters if len(hash_prefix) < 6: hash_prefix = None _download_url_to_file(url, cached_file, hash_prefix, progress=progress) synchronize() return cached_file
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/model_zoo.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import PIL from torch.utils.collect_env import get_pretty_env_info def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__) def collect_env_info(): env_str = get_pretty_env_info() env_str += get_pil_version() return env_str
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/collect_env.py
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import logging import os import sys def setup_logger(name, save_dir, distributed_rank): logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # don't log results for the non-master process if distributed_rank > 0: return logger ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s: %(message)s") ch.setFormatter(formatter) logger.addHandler(ch) if save_dir: fh = logging.FileHandler(os.path.join(save_dir, "log.txt")) fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) return logger def format_step(step): if isinstance(step, str): return step s = "" if len(step) > 0: s += "Training Iteration: {} ".format(step[0]) if len(step) > 1: s += "Training Epoch: {} ".format(step[1]) if len(step) > 2: s += "Validation Iteration: {} ".format(step[2]) return s
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/logger.py
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. """ Module for cv2 utility functions and maintaining version compatibility between 3.x and 4.x """ import cv2 def findContours(*args, **kwargs): """ Wraps cv2.findContours to maintain compatiblity between versions 3 and 4 Returns: contours, hierarchy """ if cv2.__version__.startswith('4'): contours, hierarchy = cv2.findContours(*args, **kwargs) elif cv2.__version__.startswith('3'): _, contours, hierarchy = cv2.findContours(*args, **kwargs) else: raise AssertionError( 'cv2 must be either version 3 or 4 to call this method') return contours, hierarchy
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/cv2_util.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch import importlib import importlib.util import sys # from https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa def import_file(module_name, file_path, make_importable=False): spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) if make_importable: sys.modules[module_name] = module return module
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/imports.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from collections import OrderedDict import logging import torch def align_and_update_state_dicts(model_state_dict, loaded_state_dict): """ Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ current_keys = sorted(list(model_state_dict.keys())) loaded_keys = sorted(list(loaded_state_dict.keys())) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # loaded_key string, if it matches match_matrix = [ len(j) if i.endswith(j) else 0 for i in current_keys for j in loaded_keys ] match_matrix = torch.as_tensor(match_matrix).view( len(current_keys), len(loaded_keys) ) max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 # used for logging max_size = max([len(key) for key in current_keys]) if current_keys else 1 max_size_loaded = max([len(key) for key in loaded_keys]) if loaded_keys else 1 log_str_template = "{: <{}} loaded from {: <{}} of shape {}" logger = logging.getLogger(__name__) for idx_new, idx_old in enumerate(idxs.tolist()): if idx_old == -1: continue key = current_keys[idx_new] key_old = loaded_keys[idx_old] model_state_dict[key] = loaded_state_dict[key_old] logger.info( log_str_template.format( key, max_size, key_old, max_size_loaded, tuple(loaded_state_dict[key_old].shape), ) ) def strip_prefix_if_present(state_dict, prefix): keys = sorted(state_dict.keys()) if not all(key.startswith(prefix) for key in keys): return state_dict stripped_state_dict = OrderedDict() for key, value in state_dict.items(): stripped_state_dict[key.replace(prefix, "")] = value return stripped_state_dict def load_state_dict(model, loaded_state_dict): model_state_dict = model.state_dict() # if the state_dict comes from a model that was wrapped in a # DataParallel or DistributedDataParallel during serialization, # remove the "module" prefix before performing the matching loaded_state_dict = strip_prefix_if_present(loaded_state_dict, prefix="module.") align_and_update_state_dicts(model_state_dict, loaded_state_dict) # use strict loading model.load_state_dict(model_state_dict)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/model_serialization.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import errno import os def mkdir(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils/miscellaneous.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch from apex.optimizers import FusedSGD from .lr_scheduler import WarmupMultiStepLR def make_optimizer(cfg, model): params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if "bias" in key: lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] optimizer = FusedSGD(params, lr, momentum=cfg.SOLVER.MOMENTUM) return optimizer def make_lr_scheduler(cfg, optimizer): return WarmupMultiStepLR( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, )
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/solver/build.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. from bisect import bisect_right import torch # FIXME ideally this would be achieved with a CombinedLRScheduler, # separating MultiStepLR with WarmupLR # but the current LRScheduler design doesn't allow it class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer, milestones, gamma=0.1, warmup_factor=1.0 / 3, warmup_iters=500, warmup_method="linear", last_epoch=-1, ): if not list(milestones) == sorted(milestones): raise ValueError( "Milestones should be a list of" " increasing integers. Got {}", milestones, ) #adding mlperf consistent warmpup routine if warmup_method not in ("constant", "linear", "mlperf_linear"): raise ValueError( "Only 'constant' or 'linear' warmup_method accepted" "got {}".format(warmup_method) ) self.milestones = milestones self.gamma = gamma self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch) def get_lr(self): warmup_factor = 1 if self.last_epoch < self.warmup_iters: if self.warmup_method == "constant": warmup_factor = self.warmup_factor elif self.warmup_method == "linear": alpha = self.last_epoch / self.warmup_iters warmup_factor = self.warmup_factor * (1 - alpha) + alpha #define mlperf warmup routine elif self.warmup_method == "mlperf_linear": # alpha = self.last_epoch / self.warmup_iters # warmup_factor = self.warmup_factor * (1 - alpha) + alpha delta = (self.warmup_iters - self.last_epoch) * self.warmup_factor return [ (base_lr - delta) * self.gamma ** bisect_right(self.milestones, self.last_epoch) for base_lr in self.base_lrs ] return [ base_lr * warmup_factor * self.gamma ** bisect_right(self.milestones, self.last_epoch) for base_lr in self.base_lrs ]
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/solver/lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .build import make_optimizer from .build import make_lr_scheduler from .lr_scheduler import WarmupMultiStepLR
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/solver/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch import torch.nn.functional as F from torch import nn from maskrcnn_benchmark.layers import ROIAlign from .utils import cat class LevelMapper(object): """Determine which FPN level each RoI in a set of RoIs should map to based on the heuristic in the FPN paper. """ def __init__(self, k_min, k_max, canonical_scale=224, canonical_level=4, eps=1e-6): """ Arguments: k_min (int) k_max (int) canonical_scale (int) canonical_level (int) eps (float) """ self.k_min = k_min self.k_max = k_max self.s0 = canonical_scale self.lvl0 = canonical_level self.eps = eps def __call__(self, boxlists): """ Arguments: boxlists (list[BoxList]) """ # Compute level ids s = torch.sqrt(cat([boxlist.area() for boxlist in boxlists])) # Eqn.(1) in FPN paper target_lvls = torch.floor(self.lvl0 + torch.log2(s / self.s0 + self.eps)) target_lvls = torch.clamp(target_lvls, min=self.k_min, max=self.k_max) return target_lvls.to(torch.int64) - self.k_min class Pooler(nn.Module): """ Pooler for Detection with or without FPN. It currently hard-code ROIAlign in the implementation, but that can be made more generic later on. Also, the requirement of passing the scales is not strictly necessary, as they can be inferred from the size of the feature map / size of original image, which is available thanks to the BoxList. """ def __init__(self, output_size, scales, sampling_ratio, is_nhwc): """ Arguments: output_size (list[tuple[int]] or list[int]): output size for the pooled region scales (list[float]): scales for each Pooler sampling_ratio (int): sampling ratio for ROIAlign """ super(Pooler, self).__init__() poolers = [] self.is_nhwc=is_nhwc for scale in scales: poolers.append( ROIAlign( output_size, spatial_scale=scale, sampling_ratio=sampling_ratio, is_nhwc=is_nhwc ) ) self.poolers = nn.ModuleList(poolers) self.output_size = output_size # get the levels in the feature map by leveraging the fact that the network always # downsamples by a factor of 2 at each level. lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item() lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item() self.map_levels = LevelMapper(lvl_min, lvl_max) def convert_to_roi_format(self, boxes): concat_boxes = cat([b.bbox for b in boxes], dim=0) device, dtype = concat_boxes.device, concat_boxes.dtype ids = cat( [ torch.full((len(b), 1), i, dtype=dtype, device=device) for i, b in enumerate(boxes) ], dim=0, ) rois = torch.cat([ids, concat_boxes], dim=1) return rois def forward(self, x, boxes): """ Arguments: x (list[Tensor]): feature maps for each level boxes (list[BoxList]): boxes to be used to perform the pooling operation. Returns: result (Tensor) """ num_levels = len(self.poolers) rois = self.convert_to_roi_format(boxes) if num_levels == 1: return self.poolers[0](x[0], rois) levels = self.map_levels(boxes) num_rois = len(rois) num_channels = x[0].shape[1] output_size = self.output_size[0] dtype, device = x[0].dtype, x[0].device result = torch.zeros( (num_rois, num_channels, output_size, output_size), dtype=dtype, device=device, ) if not self.is_nhwc else torch.zeros( (num_rois, num_channels, output_size, output_size), dtype=dtype, device=device, ).to(memory_format=torch.channels_last) for level, (per_level_feature, pooler) in enumerate(zip(x, self.poolers)): idx_in_level = torch.nonzero(levels == level).squeeze(1) rois_per_level = rois[idx_in_level] result[idx_in_level] = pooler(per_level_feature, rois_per_level).to(dtype) return result
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/poolers.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. import torch from maskrcnn_benchmark import _C class Matcher(object): """ This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will have exactly zero or one matches; each ground-truth element may be assigned to zero or more predicted elements. Matching is based on the MxN match_quality_matrix, that characterizes how well each (ground-truth, predicted)-pair match. For example, if the elements are boxes, the matrix may contain box IoU overlap values. The matcher returns a tensor of size N containing the index of the ground-truth element m that matches to prediction n. If there is no match, a negative value is returned. """ BELOW_LOW_THRESHOLD = -1 BETWEEN_THRESHOLDS = -2 def __init__(self, high_threshold, low_threshold, allow_low_quality_matches=False): """ Args: high_threshold (float): quality values greater than or equal to this value are candidate matches. low_threshold (float): a lower quality threshold used to stratify matches into three levels: 1) matches >= high_threshold 2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold) 3) BELOW_LOW_THRESHOLD matches in [0, low_threshold) allow_low_quality_matches (bool): if True, produce additional matches for predictions that have only low-quality match candidates. See set_low_quality_matches_ for more details. """ assert low_threshold <= high_threshold self.high_threshold = high_threshold self.low_threshold = low_threshold self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, match_quality_matrix): """ Args: match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted elements. Returns: matches (Tensor[int64]): an N tensor where N[i] is a matched gt in [0, M - 1] or a negative value indicating that prediction i could not be matched. """ if match_quality_matrix.numel() == 0: # empty targets or proposals not supported during training if match_quality_matrix.shape[0] == 0: raise ValueError( "No ground-truth boxes available for one of the images " "during training") else: raise ValueError( "No proposal boxes available for one of the images " "during training") # match_quality_matrix is M (gt) x N (predicted) # Max over gt elements (dim 0) to find best gt candidate for each prediction if match_quality_matrix.is_cuda: matches = _C.match_proposals(match_quality_matrix,self.allow_low_quality_matches, self.low_threshold, self.high_threshold) else: matched_vals, matches = match_quality_matrix.max(dim=0) if self.allow_low_quality_matches: all_matches = matches.clone() # Assign candidate matches with low quality to negative (unassigned) values below_low_threshold = matched_vals < self.low_threshold between_thresholds = (matched_vals >= self.low_threshold) & ( matched_vals < self.high_threshold ) matches[below_low_threshold] = Matcher.BELOW_LOW_THRESHOLD matches[between_thresholds] = Matcher.BETWEEN_THRESHOLDS if self.allow_low_quality_matches: self.set_low_quality_matches_(matches, all_matches, match_quality_matrix) return matches def set_low_quality_matches_(self, matches, all_matches, match_quality_matrix): """ Produce additional matches for predictions that have only low-quality matches. Specifically, for each ground-truth find the set of predictions that have maximum overlap with it (including ties); for each prediction in that set, if it is unmatched, then match it to the ground-truth with which it has the highest quality value. """ # For each gt, find the prediction with which it has highest quality highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) # Find highest quality match available, even if it is low, including ties gt_pred_pairs_of_highest_quality = torch.nonzero( match_quality_matrix == highest_quality_foreach_gt[:, None] ) # Example gt_pred_pairs_of_highest_quality: # tensor([[ 0, 39796], # [ 1, 32055], # [ 1, 32070], # [ 2, 39190], # [ 2, 40255], # [ 3, 40390], # [ 3, 41455], # [ 4, 45470], # [ 5, 45325], # [ 5, 46390]]) # Each row is a (gt index, prediction index) # Note how gt items 1, 2, 3, and 5 each have two ties pred_inds_to_update = gt_pred_pairs_of_highest_quality[:, 1] matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/matcher.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from maskrcnn_benchmark.utils.registry import Registry BACKBONES = Registry() ROI_BOX_FEATURE_EXTRACTORS = Registry() RPN_HEADS = Registry()
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/registry.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. import math from maskrcnn_benchmark import _C import torch class BoxCoder(object): """ This class encodes and decodes a set of bounding boxes into the representation used for training the regressors. """ def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16)): """ Arguments: weights (4-element tuple) bbox_xform_clip (float) """ self.weights = weights self.bbox_xform_clip = bbox_xform_clip def encode(self, reference_boxes, proposals): """ Encode a set of proposals with respect to some reference boxes Arguments: reference_boxes (Tensor): reference boxes proposals (Tensor): boxes to be encoded """ wx, wy, ww, wh = self.weights if reference_boxes.is_cuda and proposals.is_cuda: targets = torch.stack(_C.box_encode(reference_boxes, proposals, wx, wy, ww, wh), dim=1) else: TO_REMOVE = 1 # TODO remove ex_widths = proposals[:, 2] - proposals[:, 0] + TO_REMOVE ex_heights = proposals[:, 3] - proposals[:, 1] + TO_REMOVE ex_ctr_x = proposals[:, 0] + 0.5 * ex_widths ex_ctr_y = proposals[:, 1] + 0.5 * ex_heights gt_widths = reference_boxes[:, 2] - reference_boxes[:, 0] + TO_REMOVE gt_heights = reference_boxes[:, 3] - reference_boxes[:, 1] + TO_REMOVE gt_ctr_x = reference_boxes[:, 0] + 0.5 * gt_widths gt_ctr_y = reference_boxes[:, 1] + 0.5 * gt_heights wx, wy, ww, wh = self.weights targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = ww * torch.log(gt_widths / ex_widths) targets_dh = wh * torch.log(gt_heights / ex_heights) targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) return targets def decode(self, rel_codes, boxes): """ From a set of original boxes and encoded relative box offsets, get the decoded boxes. Arguments: rel_codes (Tensor): encoded boxes boxes (Tensor): reference boxes. """ boxes = boxes.to(rel_codes.dtype) TO_REMOVE = 1 # TODO remove widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = self.weights dx = rel_codes[:, 0::4] / wx dy = rel_codes[:, 1::4] / wy dw = rel_codes[:, 2::4] / ww dh = rel_codes[:, 3::4] / wh # Prevent sending too large values into torch.exp() dw = torch.clamp(dw, max=self.bbox_xform_clip) dh = torch.clamp(dh, max=self.bbox_xform_clip) pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] pred_w = torch.exp(dw) * widths[:, None] pred_h = torch.exp(dh) * heights[:, None] pred_boxes = torch.zeros_like(rel_codes) # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1 # y2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1 return pred_boxes
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/box_coder.py
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ Miscellaneous utility functions """ import torch def cat(tensors, dim=0): """ Efficient version of torch.cat that avoids a copy if there is only a single element in a list """ assert isinstance(tensors, (list, tuple)) if len(tensors) == 1: return tensors[0] return torch.cat(tensors, dim)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ Miscellaneous utility functions """ import torch from torch import nn from torch.nn import functional as F from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.layers import Conv2d from maskrcnn_benchmark.modeling.poolers import Pooler def get_group_gn(dim, dim_per_gp, num_groups): """get number of groups used by GroupNorm, based on number of channels.""" assert dim_per_gp == -1 or num_groups == -1, \ "GroupNorm: can only specify G or C/G." if dim_per_gp > 0: assert dim % dim_per_gp == 0, \ "dim: {}, dim_per_gp: {}".format(dim, dim_per_gp) group_gn = dim // dim_per_gp else: assert dim % num_groups == 0, \ "dim: {}, num_groups: {}".format(dim, num_groups) group_gn = num_groups return group_gn def group_norm(out_channels, affine=True, divisor=1): out_channels = out_channels // divisor dim_per_gp = cfg.MODEL.GROUP_NORM.DIM_PER_GP // divisor num_groups = cfg.MODEL.GROUP_NORM.NUM_GROUPS // divisor eps = cfg.MODEL.GROUP_NORM.EPSILON # default: 1e-5 return torch.nn.GroupNorm( get_group_gn(out_channels, dim_per_gp, num_groups), out_channels, eps, affine ) def make_conv3x3( in_channels, out_channels, dilation=1, stride=1, use_gn=False, use_relu=False, kaiming_init=True ): conv = Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False if use_gn else True ) if kaiming_init: nn.init.kaiming_normal_( conv.weight, mode="fan_out", nonlinearity="relu" ) else: torch.nn.init.normal_(conv.weight, std=0.01) if not use_gn: nn.init.constant_(conv.bias, 0) module = [conv,] if use_gn: module.append(group_norm(out_channels)) if use_relu: module.append(nn.ReLU(inplace=True)) if len(module) > 1: return nn.Sequential(*module) return conv def make_fc(dim_in, hidden_dim, use_gn=False): ''' Caffe2 implementation uses XavierFill, which in fact corresponds to kaiming_uniform_ in PyTorch ''' if use_gn: fc = nn.Linear(dim_in, hidden_dim, bias=False) nn.init.kaiming_uniform_(fc.weight, a=1) return nn.Sequential(fc, group_norm(hidden_dim)) fc = nn.Linear(dim_in, hidden_dim) nn.init.kaiming_uniform_(fc.weight, a=1) nn.init.constant_(fc.bias, 0) return fc def conv_with_kaiming_uniform(use_gn=False, use_relu=False): def make_conv( in_channels, out_channels, kernel_size, stride=1, dilation=1 ): conv = Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=dilation * (kernel_size - 1) // 2, dilation=dilation, bias=False if use_gn else True ) # Caffe2 implementation uses XavierFill, which in fact # corresponds to kaiming_uniform_ in PyTorch nn.init.kaiming_uniform_(conv.weight, a=1) if not use_gn: nn.init.constant_(conv.bias, 0) module = [conv,] if use_gn: module.append(group_norm(out_channels)) if use_relu: module.append(nn.ReLU(inplace=True)) if len(module) > 1: return nn.Sequential(*module) return conv return make_conv
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/make_layers.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. import torch class BalancedPositiveNegativeSampler(object): """ This class samples batches, ensuring that they contain a fixed proportion of positives """ def __init__(self, batch_size_per_image, positive_fraction): """ Arguments: batch_size_per_image (int): number of elements to be selected per image positive_fraction (float): percentace of positive elements per batch """ self.batch_size_per_image = batch_size_per_image self.positive_fraction = positive_fraction def __call__(self, matched_idxs): """ Arguments: matched idxs: list of tensors containing -1, 0 or positive values. Each tensor corresponds to a specific image. -1 values are ignored, 0 are considered as negatives and > 0 as positives. Returns: pos_idx (list[tensor]) neg_idx (list[tensor]) Returns two lists of binary masks for each image. The first list contains the positive elements that were selected, and the second list the negative example. """ pos_idx = [] neg_idx = [] for matched_idxs_per_image in matched_idxs: positive = torch.nonzero(matched_idxs_per_image >= 1).squeeze(1) negative = torch.nonzero(matched_idxs_per_image == 0).squeeze(1) num_pos = int(self.batch_size_per_image * self.positive_fraction) # protect against not enough positive examples num_pos = min(positive.numel(), num_pos) num_neg = self.batch_size_per_image - num_pos # protect against not enough negative examples num_neg = min(negative.numel(), num_neg) # randomly select positive and negative examples perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] pos_idx_per_image = positive[perm1] neg_idx_per_image = negative[perm2] # create binary mask from indices pos_idx_per_image_mask = torch.zeros_like( matched_idxs_per_image, dtype=torch.bool ) neg_idx_per_image_mask = torch.zeros_like( matched_idxs_per_image, dtype=torch.bool ) pos_idx_per_image_mask[pos_idx_per_image] = 1 neg_idx_per_image_mask[neg_idx_per_image] = 1 pos_idx.append(pos_idx_per_image_mask) neg_idx.append(neg_idx_per_image_mask) return pos_idx, neg_idx
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/balanced_positive_negative_sampler.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. import torch import torch.nn.functional as F from torch import nn from maskrcnn_benchmark.modeling import registry from maskrcnn_benchmark.modeling.box_coder import BoxCoder from .loss import make_rpn_loss_evaluator from .anchor_generator import make_anchor_generator from .inference import make_rpn_postprocessor @registry.RPN_HEADS.register("SingleConvRPNHead") class RPNHead(nn.Module): """ Adds a simple RPN Head with classification and regression heads """ def __init__(self, cfg, in_channels, num_anchors): """ Arguments: cfg : config in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted """ super(RPNHead, self).__init__() self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) self.bbox_pred = nn.Conv2d( in_channels, num_anchors * 4, kernel_size=1, stride=1 ) for l in [self.conv, self.cls_logits, self.bbox_pred]: torch.nn.init.normal_(l.weight, std=0.01) torch.nn.init.constant_(l.bias, 0) def forward(self, x): logits = [] bbox_reg = [] for feature in x: t = F.relu(self.conv(feature)) logits.append(self.cls_logits(t)) bbox_reg.append(self.bbox_pred(t)) return logits, bbox_reg class RPNModule(torch.nn.Module): """ Module for RPN computation. Takes feature maps from the backbone and RPN proposals and losses. Works for both FPN and non-FPN. """ def __init__(self, cfg): super(RPNModule, self).__init__() self.cfg = cfg.clone() anchor_generator = make_anchor_generator(cfg) in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD] head = rpn_head( cfg, in_channels, anchor_generator.num_anchors_per_location()[0] ) rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True) box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False) loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder) self.anchor_generator = anchor_generator self.head = head self.box_selector_train = box_selector_train self.box_selector_test = box_selector_test self.loss_evaluator = loss_evaluator def forward(self, images, features, targets=None): """ Arguments: images (ImageList): images for which we want to compute the predictions features (list[Tensor]): features computed from the images that are used for computing the predictions. Each tensor in the list correspond to different feature levels targets (list[BoxList): ground-truth boxes present in the image (optional) Returns: boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per image. losses (dict[Tensor]): the losses for the model during training. During testing, it is an empty dict. """ objectness, rpn_box_regression = self.head(features) anchors = self.anchor_generator(images, features) if self.training: return self._forward_train(anchors, objectness, rpn_box_regression, targets) else: return self._forward_test(anchors, objectness, rpn_box_regression) def _forward_train(self, anchors, objectness, rpn_box_regression, targets): if self.cfg.MODEL.RPN_ONLY: # When training an RPN-only model, the loss is determined by the # predicted objectness and rpn_box_regression values and there is # no need to transform the anchors into predicted boxes; this is an # optimization that avoids the unnecessary transformation. boxes = anchors else: # For end-to-end models, anchors must be transformed into boxes and # sampled into a training batch. with torch.no_grad(): boxes = self.box_selector_train( anchors, objectness, rpn_box_regression, targets ) loss_objectness, loss_rpn_box_reg = self.loss_evaluator( anchors, objectness, rpn_box_regression, targets ) losses = { "loss_objectness": loss_objectness, "loss_rpn_box_reg": loss_rpn_box_reg, } return boxes, losses def _forward_test(self, anchors, objectness, rpn_box_regression): boxes = self.box_selector_test(anchors, objectness, rpn_box_regression) if self.cfg.MODEL.RPN_ONLY: # For end-to-end models, the RPN proposals are an intermediate state # and don't bother to sort them in decreasing score order. For RPN-only # models, the proposals are the final output and we return them in # high-to-low confidence order. inds = [ box.get_field("objectness").sort(descending=True)[1] for box in boxes ] boxes = [box[ind] for box, ind in zip(boxes, inds)] return boxes, {} def build_rpn(cfg): """ This gives the gist of it. Not super important because it doesn't change as much """ return RPNModule(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn/rpn.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # from .rpn import build_rpn
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ This file contains specific functions for computing losses on the RPN file """ import torch from torch.nn import functional as F from ..balanced_positive_negative_sampler import BalancedPositiveNegativeSampler from ..utils import cat from maskrcnn_benchmark.layers import smooth_l1_loss from maskrcnn_benchmark.modeling.matcher import Matcher from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist class RPNLossComputation(object): """ This class computes the RPN loss. """ def __init__(self, proposal_matcher, fg_bg_sampler, box_coder): """ Arguments: proposal_matcher (Matcher) fg_bg_sampler (BalancedPositiveNegativeSampler) box_coder (BoxCoder) """ # self.target_preparator = target_preparator self.proposal_matcher = proposal_matcher self.fg_bg_sampler = fg_bg_sampler self.box_coder = box_coder def match_targets_to_anchors(self, anchor, target): match_quality_matrix = boxlist_iou(target, anchor) matched_idxs = self.proposal_matcher(match_quality_matrix) # RPN doesn't need any fields from target # for creating the labels, so clear them all target = target.copy_with_fields([]) # get the targets corresponding GT for each anchor # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds matched_targets = target[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets def prepare_targets(self, anchors, targets): labels = [] regression_targets = [] for anchors_per_image, targets_per_image in zip(anchors, targets): matched_targets = self.match_targets_to_anchors( anchors_per_image, targets_per_image ) matched_idxs = matched_targets.get_field("matched_idxs") labels_per_image = matched_idxs >= 0 labels_per_image = labels_per_image.to(dtype=torch.float32) # discard anchors that go out of the boundaries of the image labels_per_image[~anchors_per_image.get_field("visibility")] = -1 # discard indices that are between thresholds inds_to_discard = matched_idxs == Matcher.BETWEEN_THRESHOLDS labels_per_image[inds_to_discard] = -1 # compute regression targets regression_targets_per_image = self.box_coder.encode( matched_targets.bbox, anchors_per_image.bbox ) labels.append(labels_per_image) regression_targets.append(regression_targets_per_image) return labels, regression_targets def __call__(self, anchors, objectness, box_regression, targets): """ Arguments: anchors (list[BoxList]) objectness (list[Tensor]) box_regression (list[Tensor]) targets (list[BoxList]) Returns: objectness_loss (Tensor) box_loss (Tensor """ anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors] labels, regression_targets = self.prepare_targets(anchors, targets) sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1) sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1) sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0) objectness_flattened = [] box_regression_flattened = [] # for each feature level, permute the outputs to make them be in the # same format as the labels. Note that the labels are computed for # all feature levels concatenated, so we keep the same representation # for the objectness and the box_regression for objectness_per_level, box_regression_per_level in zip( objectness, box_regression ): N, A, H, W = objectness_per_level.shape objectness_per_level = objectness_per_level.permute(0, 2, 3, 1).reshape( N, -1 ) box_regression_per_level = box_regression_per_level.view(N, -1, 4, H, W) box_regression_per_level = box_regression_per_level.permute(0, 3, 4, 1, 2) box_regression_per_level = box_regression_per_level.reshape(N, -1, 4) objectness_flattened.append(objectness_per_level) box_regression_flattened.append(box_regression_per_level) # concatenate on the first dimension (representing the feature levels), to # take into account the way the labels were generated (with all feature maps # being concatenated as well) objectness = cat(objectness_flattened, dim=1).reshape(-1) box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4) labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) box_loss = smooth_l1_loss( box_regression[sampled_pos_inds], regression_targets[sampled_pos_inds], beta=1.0 / 9, size_average=False, ) / (sampled_inds.numel()) objectness_loss = F.binary_cross_entropy_with_logits( objectness[sampled_inds], labels[sampled_inds] ) return objectness_loss, box_loss def make_rpn_loss_evaluator(cfg, box_coder): matcher = Matcher( cfg.MODEL.RPN.FG_IOU_THRESHOLD, cfg.MODEL.RPN.BG_IOU_THRESHOLD, allow_low_quality_matches=True, ) fg_bg_sampler = BalancedPositiveNegativeSampler( cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE, cfg.MODEL.RPN.POSITIVE_FRACTION ) loss_evaluator = RPNLossComputation(matcher, fg_bg_sampler, box_coder) return loss_evaluator
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn/loss.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. import math import numpy as np import torch from torch import nn from maskrcnn_benchmark.structures.bounding_box import BoxList class BufferList(nn.Module): """ Similar to nn.ParameterList, but for buffers """ def __init__(self, buffers=None): super(BufferList, self).__init__() if buffers is not None: self.extend(buffers) def extend(self, buffers): offset = len(self) for i, buffer in enumerate(buffers): self.register_buffer(str(offset + i), buffer) return self def __len__(self): return len(self._buffers) def __iter__(self): return iter(self._buffers.values()) class AnchorGenerator(nn.Module): """ For a set of image sizes and feature maps, computes a set of anchors """ def __init__( self, sizes=(128, 256, 512), aspect_ratios=(0.5, 1.0, 2.0), anchor_strides=(8, 16, 32), straddle_thresh=0, ): super(AnchorGenerator, self).__init__() if len(anchor_strides) == 1: anchor_stride = anchor_strides[0] cell_anchors = [ generate_anchors(anchor_stride, sizes, aspect_ratios).float() ] else: if len(anchor_strides) != len(sizes): raise RuntimeError("FPN should have #anchor_strides == #sizes") cell_anchors = [ generate_anchors(anchor_stride, (size,), aspect_ratios).float() for anchor_stride, size in zip(anchor_strides, sizes) ] self.strides = anchor_strides self.cell_anchors = BufferList(cell_anchors) self.straddle_thresh = straddle_thresh def num_anchors_per_location(self): return [len(cell_anchors) for cell_anchors in self.cell_anchors] def grid_anchors(self, grid_sizes): anchors = [] for size, stride, base_anchors in zip( grid_sizes, self.strides, self.cell_anchors ): grid_height, grid_width = size device = base_anchors.device shifts_x = torch.arange( 0, grid_width * stride, step=stride, dtype=torch.float32, device=device ) shifts_y = torch.arange( 0, grid_height * stride, step=stride, dtype=torch.float32, device=device ) shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) anchors.append( (shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4) ) return anchors def add_visibility_to(self, boxlist): image_width, image_height = boxlist.size anchors = boxlist.bbox if self.straddle_thresh >= 0: inds_inside = ( (anchors[..., 0] >= -self.straddle_thresh) & (anchors[..., 1] >= -self.straddle_thresh) & (anchors[..., 2] < image_width + self.straddle_thresh) & (anchors[..., 3] < image_height + self.straddle_thresh) ) else: device = anchors.device inds_inside = torch.ones(anchors.shape[0], dtype=torch.bool, device=device) boxlist.add_field("visibility", inds_inside) def forward(self, image_list, feature_maps): grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) anchors = [] for i, (image_height, image_width) in enumerate(image_list.image_sizes): anchors_in_image = [] for anchors_per_feature_map in anchors_over_all_feature_maps: boxlist = BoxList( anchors_per_feature_map, (image_width, image_height), mode="xyxy" ) self.add_visibility_to(boxlist) anchors_in_image.append(boxlist) anchors.append(anchors_in_image) return anchors def make_anchor_generator(config): anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS anchor_stride = config.MODEL.RPN.ANCHOR_STRIDE straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH if config.MODEL.RPN.USE_FPN: assert len(anchor_stride) == len( anchor_sizes ), "FPN should have len(ANCHOR_STRIDE) == len(ANCHOR_SIZES)" else: assert len(anchor_stride) == 1, "Non-FPN should have a single ANCHOR_STRIDE" anchor_generator = AnchorGenerator( anchor_sizes, aspect_ratios, anchor_stride, straddle_thresh ) return anchor_generator # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick and Sean Bell # -------------------------------------------------------- # Verify that we compute the same anchors as Shaoqing's matlab implementation: # # >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat # >> anchors # # anchors = # # -83 -39 100 56 # -175 -87 192 104 # -359 -183 376 200 # -55 -55 72 72 # -119 -119 136 136 # -247 -247 264 264 # -35 -79 52 96 # -79 -167 96 184 # -167 -343 184 360 # array([[ -83., -39., 100., 56.], # [-175., -87., 192., 104.], # [-359., -183., 376., 200.], # [ -55., -55., 72., 72.], # [-119., -119., 136., 136.], # [-247., -247., 264., 264.], # [ -35., -79., 52., 96.], # [ -79., -167., 96., 184.], # [-167., -343., 184., 360.]]) def generate_anchors( stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2) ): """Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors are centered on stride / 2, have (approximate) sqrt areas of the specified sizes, and aspect ratios as given. """ return _generate_anchors( stride, np.array(sizes, dtype=np.float) / stride, np.array(aspect_ratios, dtype=np.float), ) def _generate_anchors(base_size, scales, aspect_ratios): """Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, base_size - 1, base_size - 1) window. """ anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 1 anchors = _ratio_enum(anchor, aspect_ratios) anchors = np.vstack( [_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])] ) return torch.from_numpy(anchors) def _whctrs(anchor): """Return width, height, x center, and y center for an anchor (window).""" w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def _mkanchors(ws, hs, x_ctr, y_ctr): """Given a vector of widths (ws) and heights (hs) around a center (x_ctr, y_ctr), output a set of anchors (windows). """ ws = ws[:, np.newaxis] hs = hs[:, np.newaxis] anchors = np.hstack( ( x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1), ) ) return anchors def _ratio_enum(anchor, ratios): """Enumerate a set of anchors for each aspect ratio wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) size = w * h size_ratios = size / ratios ws = np.round(np.sqrt(size_ratios)) hs = np.round(ws * ratios) anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors def _scale_enum(anchor, scales): """Enumerate a set of anchors for each scale wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) ws = w * scales hs = h * scales anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn/anchor_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes from ..utils import cat from maskrcnn_benchmark import _C as C class RPNPostProcessor(torch.nn.Module): """ Performs post-processing on the outputs of the RPN boxes, before feeding the proposals to the heads """ def __init__( self, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, box_coder=None, fpn_post_nms_top_n=None, ): """ Arguments: pre_nms_top_n (int) post_nms_top_n (int) nms_thresh (float) min_size (int) box_coder (BoxCoder) fpn_post_nms_top_n (int) """ super(RPNPostProcessor, self).__init__() self.pre_nms_top_n = pre_nms_top_n self.post_nms_top_n = post_nms_top_n self.nms_thresh = nms_thresh self.min_size = min_size if box_coder is None: box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) self.box_coder = box_coder if fpn_post_nms_top_n is None: fpn_post_nms_top_n = post_nms_top_n self.fpn_post_nms_top_n = fpn_post_nms_top_n def add_gt_proposals(self, proposals, targets): """ Arguments: proposals: list[BoxList] targets: list[BoxList] """ # Get the device we're operating on device = proposals[0].bbox.device gt_boxes = [target.copy_with_fields([]) for target in targets] # later cat of bbox requires all fields to be present for all bbox # so we need to add a dummy for objectness that's missing for gt_box in gt_boxes: gt_box.add_field("objectness", torch.ones(len(gt_box), device=device)) proposals = [ cat_boxlist((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes) ] return proposals def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ device = objectness.device N, A, H, W = objectness.shape num_anchors = A * H * W # If inputs are on GPU, use a faster path use_fast_cuda_path = (objectness.is_cuda and box_regression.is_cuda) # Encompasses box decode, clip_to_image and remove_small_boxes calls if use_fast_cuda_path: objectness = objectness.reshape(N, -1) # Now [N, AHW] objectness = objectness.sigmoid() pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) # Get all image shapes, and cat them together image_shapes = [box.size for box in anchors] image_shapes_cat = torch.tensor([box.size for box in anchors], device=objectness.device).float() # Get a single tensor for all anchors concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) # Note: Take all anchors, we'll index accordingly inside the kernel # only take the anchors corresponding to the topk boxes concat_anchors = concat_anchors.reshape(N, -1, 4) # [batch_idx, topk_idx] # Return pre-nms boxes, associated scores and keep flag # Encompasses: # 1. Box decode # 2. Box clipping # 3. Box filtering # At the end we need to keep only the proposals & scores flagged # Note: topk_idx, objectness are sorted => proposals, objectness, keep are also # sorted -- this is important later use_nhwc_kernel = box_regression.is_contiguous(memory_format=torch.channels_last) proposals, objectness, keep = C.GeneratePreNMSUprightBoxes( N, A, H, W, topk_idx, objectness.float(), # Need to cast these as kernel doesn't support fp16 box_regression.float(), concat_anchors, image_shapes_cat, pre_nms_top_n, self.min_size, self.box_coder.bbox_xform_clip, True, use_nhwc_kernel) # view as [N, pre_nms_top_n, 4] proposals = proposals.view(N, -1, 4) objectness = objectness.view(N, -1) else: # reverse the reshape from before ready for permutation objectness = objectness.reshape(N, A, H, W) objectness = objectness.permute(0, 2, 3, 1).reshape(N, -1) objectness = objectness.sigmoid() pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) # put in the same format as anchors box_regression = box_regression.view(N, -1, 4, H, W).permute(0, 3, 4, 1, 2) box_regression = box_regression.reshape(N, -1, 4) batch_idx = torch.arange(N, device=device)[:, None] box_regression = box_regression[batch_idx, topk_idx] image_shapes = [box.size for box in anchors] concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] proposals = self.box_coder.decode( box_regression.view(-1, 4), concat_anchors.view(-1, 4) ) proposals = proposals.view(N, -1, 4) # handle non-fast path without changing the loop if not use_fast_cuda_path: keep = [None for _ in range(N)] result = [] keep = keep.to(torch.bool) for proposal, score, im_shape, k in zip(proposals, objectness, image_shapes, keep): if use_fast_cuda_path: # Note: Want k to be applied per-image instead of all-at-once in batched code earlier # clip_to_image and remove_small_boxes already done in single kernel p = proposal.masked_select(k[:, None]).view(-1, 4) score = score.masked_select(k) boxlist = BoxList(p, im_shape, mode="xyxy") else: boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) boxlist.add_field("objectness", score) boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result def forward(self, anchors, objectness, box_regression, targets=None): """ Arguments: anchors: list[list[BoxList]] objectness: list[tensor] box_regression: list[tensor] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS """ sampled_boxes = [] num_levels = len(objectness) anchors = list(zip(*anchors)) for a, o, b in zip(anchors, objectness, box_regression): sampled_boxes.append(self.forward_for_single_feature_map(a, o, b)) boxlists = list(zip(*sampled_boxes)) boxlists = [cat_boxlist(boxlist) for boxlist in boxlists] if num_levels > 1: boxlists = self.select_over_all_levels(boxlists) # append ground-truth bboxes to proposals if self.training and targets is not None: boxlists = self.add_gt_proposals(boxlists, targets) return boxlists def select_over_all_levels(self, boxlists): num_images = len(boxlists) # different behavior during training and during testing: # during training, post_nms_top_n is over *all* the proposals combined, while # during testing, it is over the proposals for each image # TODO resolve this difference and make it consistent. It should be per image, # and not per batch if self.training: objectness = torch.cat( [boxlist.get_field("objectness") for boxlist in boxlists], dim=0 ) box_sizes = [len(boxlist) for boxlist in boxlists] post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness)) _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True) inds_mask = torch.zeros_like(objectness, dtype=torch.bool) inds_mask[inds_sorted] = 1 inds_mask = inds_mask.split(box_sizes) for i in range(num_images): boxlists[i] = boxlists[i][inds_mask[i]] else: for i in range(num_images): objectness = boxlists[i].get_field("objectness") post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness)) _, inds_sorted = torch.topk( objectness, post_nms_top_n, dim=0, sorted=True ) boxlists[i] = boxlists[i][inds_sorted] return boxlists def make_rpn_postprocessor(config, rpn_box_coder, is_train): fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN if not is_train: fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TRAIN post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TRAIN if not is_train: pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TEST post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TEST nms_thresh = config.MODEL.RPN.NMS_THRESH min_size = config.MODEL.RPN.MIN_SIZE box_selector = RPNPostProcessor( pre_nms_top_n=pre_nms_top_n, post_nms_top_n=post_nms_top_n, nms_thresh=nms_thresh, min_size=min_size, box_coder=rpn_box_coder, fpn_post_nms_top_n=fpn_post_nms_top_n, ) return box_selector
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn/inference.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. """ Implements the Generalized R-CNN framework """ import torch from torch import nn from maskrcnn_benchmark.structures.image_list import to_image_list from ..backbone import build_backbone from ..rpn.rpn import build_rpn from ..roi_heads.roi_heads import build_roi_heads class GeneralizedRCNN(nn.Module): """ Main class for Generalized R-CNN. Currently supports boxes and masks. It consists of three main parts: - backbone - rpn - heads: takes the features + the proposals from the RPN and computes detections / masks from it. """ def __init__(self, cfg): super(GeneralizedRCNN, self).__init__() self.backbone = build_backbone(cfg) self.rpn = build_rpn(cfg) self.roi_heads = build_roi_heads(cfg) def forward(self, images, targets=None): """ Arguments: images (list[Tensor] or ImageList): images to be processed targets (list[BoxList]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training and targets is None: raise ValueError("In training mode, targets should be passed") images = to_image_list(images) features = self.backbone(images.tensors) proposals, proposal_losses = self.rpn(images, features, targets) if self.roi_heads: x, result, detector_losses = self.roi_heads(features, proposals, targets) else: # RPN-only models don't have roi_heads x = features result = proposals detector_losses = {} if self.training: losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses return result
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/detector/generalized_rcnn.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .detectors import build_detection_model
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/detector/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .generalized_rcnn import GeneralizedRCNN _DETECTION_META_ARCHITECTURES = {"GeneralizedRCNN": GeneralizedRCNN} def build_detection_model(cfg): meta_arch = _DETECTION_META_ARCHITECTURES[cfg.MODEL.META_ARCHITECTURE] return meta_arch(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/detector/detectors.py
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from .box_head.box_head import build_roi_box_head from .mask_head.mask_head import build_roi_mask_head class CombinedROIHeads(torch.nn.ModuleDict): """ Combines a set of individual heads (for box prediction or masks) into a single head. """ def __init__(self, cfg, heads): super(CombinedROIHeads, self).__init__(heads) self.cfg = cfg.clone() if cfg.MODEL.MASK_ON and cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR: self.mask.feature_extractor = self.box.feature_extractor def forward(self, features, proposals, targets=None): losses = {} # TODO rename x to roi_box_features, if it doesn't increase memory consumption x, detections, loss_box = self.box(features, proposals, targets) losses.update(loss_box) if self.cfg.MODEL.MASK_ON: mask_features = features # optimization: during training, if we share the feature extractor between # the box and the mask heads, then we can reuse the features already computed if ( self.training and self.cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR ): mask_features = x # During training, self.box() will return the unaltered proposals as "detections" # this makes the API consistent during training and testing x, detections, loss_mask = self.mask(mask_features, detections, targets) losses.update(loss_mask) return x, detections, losses def build_roi_heads(cfg): # individually create the heads, that will be combined together # afterwards roi_heads = [] if not cfg.MODEL.RPN_ONLY: roi_heads.append(("box", build_roi_box_head(cfg))) if cfg.MODEL.MASK_ON: roi_heads.append(("mask", build_roi_mask_head(cfg))) # combine individual heads in a single module if roi_heads: roi_heads = CombinedROIHeads(cfg, roi_heads) return roi_heads
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/roi_heads.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn from .roi_box_feature_extractors import make_roi_box_feature_extractor from .roi_box_predictors import make_roi_box_predictor from .inference import make_roi_box_post_processor from .loss import make_roi_box_loss_evaluator class ROIBoxHead(torch.nn.Module): """ Generic Box Head class. """ def __init__(self, cfg): super(ROIBoxHead, self).__init__() self.feature_extractor = make_roi_box_feature_extractor(cfg) self.predictor = make_roi_box_predictor(cfg) self.post_processor = make_roi_box_post_processor(cfg) self.loss_evaluator = make_roi_box_loss_evaluator(cfg) def forward(self, features, proposals, targets=None): """ Arguments: features (list[Tensor]): feature-maps from possibly several levels proposals (list[BoxList]): proposal boxes targets (list[BoxList], optional): the ground-truth targets. Returns: x (Tensor): the result of the feature extractor proposals (list[BoxList]): during training, the subsampled proposals are returned. During testing, the predicted boxlists are returned losses (dict[Tensor]): During training, returns the losses for the head. During testing, returns an empty dict. """ if self.training: # Faster R-CNN subsamples during training the proposals with a fixed # positive / negative ratio with torch.no_grad(): proposals = self.loss_evaluator.subsample(proposals, targets) # extract features that will be fed to the final classifier. The # feature_extractor generally corresponds to the pooler + heads x = self.feature_extractor(features, proposals) # final classifier that converts the features into predictions class_logits, box_regression = self.predictor(x) if not self.training: result = self.post_processor((class_logits, box_regression), proposals) return x, result, {} loss_classifier, loss_box_reg = self.loss_evaluator( [class_logits], [box_regression] ) return ( x, proposals, dict(loss_classifier=loss_classifier, loss_box_reg=loss_box_reg), ) def build_roi_box_head(cfg): """ Constructs a new box head. By default, uses ROIBoxHead, but if it turns out not to be enough, just register a new class and make it a parameter in the config """ return ROIBoxHead(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head/box_head.py
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch.nn import functional as F from maskrcnn_benchmark.layers import smooth_l1_loss from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.modeling.matcher import Matcher from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.modeling.balanced_positive_negative_sampler import ( BalancedPositiveNegativeSampler ) from maskrcnn_benchmark.modeling.utils import cat class FastRCNNLossComputation(object): """ Computes the loss for Faster R-CNN. Also supports FPN """ def __init__(self, proposal_matcher, fg_bg_sampler, box_coder): """ Arguments: proposal_matcher (Matcher) fg_bg_sampler (BalancedPositiveNegativeSampler) box_coder (BoxCoder) """ self.proposal_matcher = proposal_matcher self.fg_bg_sampler = fg_bg_sampler self.box_coder = box_coder def match_targets_to_proposals(self, proposal, target): match_quality_matrix = boxlist_iou(target, proposal) matched_idxs = self.proposal_matcher(match_quality_matrix) # Fast RCNN only need "labels" field for selecting the targets target = target.copy_with_fields("labels") # get the targets corresponding GT for each proposal # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds matched_targets = target[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets def prepare_targets(self, proposals, targets): labels = [] regression_targets = [] for proposals_per_image, targets_per_image in zip(proposals, targets): matched_targets = self.match_targets_to_proposals( proposals_per_image, targets_per_image ) matched_idxs = matched_targets.get_field("matched_idxs") labels_per_image = matched_targets.get_field("labels") labels_per_image = labels_per_image.to(dtype=torch.int64) # Label background (below the low threshold) bg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[bg_inds] = 0 # Label ignore proposals (between low and high thresholds) ignore_inds = matched_idxs == Matcher.BETWEEN_THRESHOLDS labels_per_image[ignore_inds] = -1 # -1 is ignored by sampler # compute regression targets regression_targets_per_image = self.box_coder.encode( matched_targets.bbox, proposals_per_image.bbox ) labels.append(labels_per_image) regression_targets.append(regression_targets_per_image) return labels, regression_targets def subsample(self, proposals, targets): """ This method performs the positive/negative sampling, and return the sampled proposals. Note: this function keeps a state. Arguments: proposals (list[BoxList]) targets (list[BoxList]) """ labels, regression_targets = self.prepare_targets(proposals, targets) sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) proposals = list(proposals) # add corresponding label and regression_targets information to the bounding boxes for labels_per_image, regression_targets_per_image, proposals_per_image in zip( labels, regression_targets, proposals ): proposals_per_image.add_field("labels", labels_per_image) proposals_per_image.add_field( "regression_targets", regression_targets_per_image ) # distributed sampled proposals, that were obtained on all feature maps # concatenated via the fg_bg_sampler, into individual feature map levels for img_idx, (pos_inds_img, neg_inds_img) in enumerate( zip(sampled_pos_inds, sampled_neg_inds) ): img_sampled_inds = torch.nonzero(pos_inds_img | neg_inds_img).squeeze(1) proposals_per_image = proposals[img_idx][img_sampled_inds] proposals[img_idx] = proposals_per_image self._proposals = proposals return proposals def __call__(self, class_logits, box_regression): """ Computes the loss for Faster R-CNN. This requires that the subsample method has been called beforehand. Arguments: class_logits (list[Tensor]) box_regression (list[Tensor]) Returns: classification_loss (Tensor) box_loss (Tensor) """ class_logits = cat(class_logits, dim=0) box_regression = cat(box_regression, dim=0) device = class_logits.device if not hasattr(self, "_proposals"): raise RuntimeError("subsample needs to be called before") proposals = self._proposals labels = cat([proposal.get_field("labels") for proposal in proposals], dim=0) regression_targets = cat( [proposal.get_field("regression_targets") for proposal in proposals], dim=0 ) classification_loss = F.cross_entropy(class_logits, labels) # get indices that correspond to the regression targets for # the corresponding ground truth labels, to be used with # advanced indexing sampled_pos_inds_subset = torch.nonzero(labels > 0).squeeze(1) labels_pos = labels[sampled_pos_inds_subset] map_inds = 4 * labels_pos[:, None] + torch.tensor([0, 1, 2, 3], device=device) box_loss = smooth_l1_loss( box_regression[sampled_pos_inds_subset[:, None], map_inds], regression_targets[sampled_pos_inds_subset], size_average=False, beta=1, ) box_loss = box_loss / labels.numel() return classification_loss, box_loss def make_roi_box_loss_evaluator(cfg): matcher = Matcher( cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD, cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD, allow_low_quality_matches=False, ) bbox_reg_weights = cfg.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS box_coder = BoxCoder(weights=bbox_reg_weights) fg_bg_sampler = BalancedPositiveNegativeSampler( cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION ) loss_evaluator = FastRCNNLossComputation(matcher, fg_bg_sampler, box_coder) return loss_evaluator
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head/loss.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch import torch.nn.functional as F from torch import nn from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist from maskrcnn_benchmark.modeling.box_coder import BoxCoder class PostProcessor(nn.Module): """ From a set of classification scores, box regression and proposals, computes the post-processed boxes, and applies NMS to obtain the final results """ def __init__( self, score_thresh=0.05, nms=0.5, detections_per_img=100, box_coder=None ): """ Arguments: score_thresh (float) nms (float) detections_per_img (int) box_coder (BoxCoder) """ super(PostProcessor, self).__init__() self.score_thresh = score_thresh self.nms = nms self.detections_per_img = detections_per_img if box_coder is None: box_coder = BoxCoder(weights=(10., 10., 5., 5.)) self.box_coder = box_coder def forward(self, x, boxes): """ Arguments: x (tuple[tensor, tensor]): x contains the class logits and the box_regression from the model. boxes (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra fields labels and scores """ class_logits, box_regression = x class_prob = F.softmax(class_logits, -1) # TODO think about a representation of batch of boxes image_shapes = [box.size for box in boxes] boxes_per_image = [len(box) for box in boxes] concat_boxes = torch.cat([a.bbox for a in boxes], dim=0) proposals = self.box_coder.decode( box_regression.view(sum(boxes_per_image), -1), concat_boxes ) num_classes = class_prob.shape[1] proposals = proposals.split(boxes_per_image, dim=0) class_prob = class_prob.split(boxes_per_image, dim=0) results = [] for prob, boxes_per_img, image_shape in zip( class_prob, proposals, image_shapes ): boxlist = self.prepare_boxlist(boxes_per_img, prob, image_shape) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = self.filter_results(boxlist, num_classes) results.append(boxlist) return results def prepare_boxlist(self, boxes, scores, image_shape): """ Returns BoxList from `boxes` and adds probability scores information as an extra field `boxes` has shape (#detections, 4 * #classes), where each row represents a list of predicted bounding boxes for each of the object classes in the dataset (including the background class). The detections in each row originate from the same object proposal. `scores` has shape (#detection, #classes), where each row represents a list of object detection confidence scores for each of the object classes in the dataset (including the background class). `scores[i, j]`` corresponds to the box at `boxes[i, j * 4:(j + 1) * 4]`. """ boxes = boxes.reshape(-1, 4) scores = scores.reshape(-1) boxlist = BoxList(boxes, image_shape, mode="xyxy") boxlist.add_field("scores", scores) return boxlist def filter_results(self, boxlist, num_classes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). """ # unwrap the boxlist to avoid additional overhead. # if we had multi-class NMS, we could perform this directly on the boxlist boxes = boxlist.bbox.reshape(-1, num_classes * 4) scores = boxlist.get_field("scores").reshape(-1, num_classes) device = scores.device result = [] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class inds_all = scores > self.score_thresh for j in range(1, num_classes): inds = inds_all[:, j].nonzero().squeeze(1) scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4 : (j + 1) * 4] boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms( boxlist_for_class, self.nms, score_field="scores" ) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels,), j, dtype=torch.int64, device=device) ) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.detections_per_img > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.detections_per_img + 1 ) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] return result def make_roi_box_post_processor(cfg): use_fpn = cfg.MODEL.ROI_HEADS.USE_FPN bbox_reg_weights = cfg.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS box_coder = BoxCoder(weights=bbox_reg_weights) score_thresh = cfg.MODEL.ROI_HEADS.SCORE_THRESH nms_thresh = cfg.MODEL.ROI_HEADS.NMS detections_per_img = cfg.MODEL.ROI_HEADS.DETECTIONS_PER_IMG postprocessor = PostProcessor( score_thresh, nms_thresh, detections_per_img, box_coder ) return postprocessor
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head/inference.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from torch import nn class FastRCNNPredictor(nn.Module): def __init__(self, config, pretrained=None): super(FastRCNNPredictor, self).__init__() stage_index = 4 stage2_relative_factor = 2 ** (stage_index - 1) res2_out_channels = config.MODEL.RESNETS.RES2_OUT_CHANNELS num_inputs = res2_out_channels * stage2_relative_factor num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES self.avgpool = nn.AvgPool2d(kernel_size=7, stride=7) self.cls_score = nn.Linear(num_inputs, num_classes) self.bbox_pred = nn.Linear(num_inputs, num_classes * 4) nn.init.normal_(self.cls_score.weight, mean=0, std=0.01) nn.init.constant_(self.cls_score.bias, 0) nn.init.normal_(self.bbox_pred.weight, mean=0, std=0.001) nn.init.constant_(self.bbox_pred.bias, 0) def forward(self, x): x = self.avgpool(x) x = x.view(x.size(0), -1) cls_logit = self.cls_score(x) bbox_pred = self.bbox_pred(x) return cls_logit, bbox_pred class FPNPredictor(nn.Module): def __init__(self, cfg): super(FPNPredictor, self).__init__() num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.cls_score = nn.Linear(representation_size, num_classes) self.bbox_pred = nn.Linear(representation_size, num_classes * 4) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for l in [self.cls_score, self.bbox_pred]: nn.init.constant_(l.bias, 0) def forward(self, x): scores = self.cls_score(x) bbox_deltas = self.bbox_pred(x) return scores, bbox_deltas _ROI_BOX_PREDICTOR = { "FastRCNNPredictor": FastRCNNPredictor, "FPNPredictor": FPNPredictor, } def make_roi_box_predictor(cfg): func = _ROI_BOX_PREDICTOR[cfg.MODEL.ROI_BOX_HEAD.PREDICTOR] return func(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head/roi_box_predictors.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch from torch import nn from torch.nn import functional as F from maskrcnn_benchmark.modeling import registry from maskrcnn_benchmark.modeling.backbone import resnet from maskrcnn_benchmark.modeling.poolers import Pooler from maskrcnn_benchmark.modeling.make_layers import group_norm from maskrcnn_benchmark.modeling.make_layers import make_fc @registry.ROI_BOX_FEATURE_EXTRACTORS.register("ResNet50Conv5ROIFeatureExtractor") class ResNet50Conv5ROIFeatureExtractor(nn.Module): def __init__(self, config): super(ResNet50Conv5ROIFeatureExtractor, self).__init__() resolution = config.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = config.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = config.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) stage = resnet.StageSpec(index=4, block_count=3, return_features=False) head = resnet.ResNetHead( block_module=config.MODEL.RESNETS.TRANS_FUNC, stages=(stage,), num_groups=config.MODEL.RESNETS.NUM_GROUPS, width_per_group=config.MODEL.RESNETS.WIDTH_PER_GROUP, stride_in_1x1=config.MODEL.RESNETS.STRIDE_IN_1X1, stride_init=None, res2_out_channels=config.MODEL.RESNETS.RES2_OUT_CHANNELS, dilation=config.MODEL.RESNETS.RES5_DILATION ) self.pooler = pooler self.head = head def forward(self, x, proposals): x = self.pooler(x, proposals) x = self.head(x) return x @registry.ROI_BOX_FEATURE_EXTRACTORS.register("FPN2MLPFeatureExtractor") class FPN2MLPFeatureExtractor(nn.Module): """ Heads for FPN for classification """ def __init__(self, cfg): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, is_nhwc=cfg.NHWC ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) def forward(self, x, proposals): x = self.pooler(x, proposals) x = torch.flatten(x, start_dim=1) x = F.relu(self.fc6(x)) x = F.relu(self.fc7(x)) return x @registry.ROI_BOX_FEATURE_EXTRACTORS.register("FPNXconv1fcFeatureExtractor") class FPNXconv1fcFeatureExtractor(nn.Module): """ Heads for FPN for classification """ def __init__(self, cfg): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) def forward(self, x, proposals): x = self.pooler(x, proposals) x = self.xconvs(x) x = x.view(x.size(0), -1) x = F.relu(self.fc6(x)) return x def make_roi_box_feature_extractor(cfg): func = registry.ROI_BOX_FEATURE_EXTRACTORS[ cfg.MODEL.ROI_BOX_HEAD.FEATURE_EXTRACTOR ] return func(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head/roi_box_feature_extractors.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn from maskrcnn_benchmark.structures.bounding_box import BoxList from .roi_mask_feature_extractors import make_roi_mask_feature_extractor from .roi_mask_predictors import make_roi_mask_predictor from .inference import make_roi_mask_post_processor from .loss import make_roi_mask_loss_evaluator def keep_only_positive_boxes(boxes): """ Given a set of BoxList containing the `labels` field, return a set of BoxList for which `labels > 0`. Arguments: boxes (list of BoxList) """ assert isinstance(boxes, (list, tuple)) assert isinstance(boxes[0], BoxList) assert boxes[0].has_field("labels") positive_boxes = [] positive_inds = [] num_boxes = 0 for boxes_per_image in boxes: labels = boxes_per_image.get_field("labels") inds_mask = labels > 0 inds = inds_mask.nonzero().squeeze(1) positive_boxes.append(boxes_per_image[inds]) positive_inds.append(inds_mask) return positive_boxes, positive_inds class ROIMaskHead(torch.nn.Module): def __init__(self, cfg): super(ROIMaskHead, self).__init__() self.cfg = cfg.clone() self.feature_extractor = make_roi_mask_feature_extractor(cfg) self.predictor = make_roi_mask_predictor(cfg) self.post_processor = make_roi_mask_post_processor(cfg) self.loss_evaluator = make_roi_mask_loss_evaluator(cfg) def forward(self, features, proposals, targets=None): """ Arguments: features (list[Tensor]): feature-maps from possibly several levels proposals (list[BoxList]): proposal boxes targets (list[BoxList], optional): the ground-truth targets. Returns: x (Tensor): the result of the feature extractor proposals (list[BoxList]): during training, the original proposals are returned. During testing, the predicted boxlists are returned with the `mask` field set losses (dict[Tensor]): During training, returns the losses for the head. During testing, returns an empty dict. """ if self.training: # during training, only focus on positive boxes all_proposals = proposals proposals, positive_inds = keep_only_positive_boxes(proposals) if self.training and self.cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR: x = features x = x[torch.cat(positive_inds, dim=0)] else: x = self.feature_extractor(features, proposals) mask_logits = self.predictor(x) if not self.training: result = self.post_processor(mask_logits, proposals) return x, result, {} loss_mask = self.loss_evaluator(proposals, mask_logits, targets) return x, all_proposals, dict(loss_mask=loss_mask) def build_roi_mask_head(cfg): return ROIMaskHead(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head/mask_head.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from torch import nn from torch.nn import functional as F from ..box_head.roi_box_feature_extractors import ResNet50Conv5ROIFeatureExtractor from maskrcnn_benchmark.modeling.poolers import Pooler from maskrcnn_benchmark.modeling.make_layers import make_conv3x3 class MaskRCNNFPNFeatureExtractor(nn.Module): """ Heads for FPN for classification """ def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, is_nhwc=cfg.NHWC ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler self.nhwc = cfg.NHWC use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) def forward(self, x, proposals): x = self.pooler(x, proposals) for layer_name in self.blocks: x = F.relu(getattr(self, layer_name)(x)) return x _ROI_MASK_FEATURE_EXTRACTORS = { "ResNet50Conv5ROIFeatureExtractor": ResNet50Conv5ROIFeatureExtractor, "MaskRCNNFPNFeatureExtractor": MaskRCNNFPNFeatureExtractor, } def make_roi_mask_feature_extractor(cfg): func = _ROI_MASK_FEATURE_EXTRACTORS[cfg.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR] return func(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head/roi_mask_feature_extractors.py
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch.nn import functional as F from maskrcnn_benchmark.layers import smooth_l1_loss from maskrcnn_benchmark.modeling.matcher import Matcher from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.modeling.utils import cat from maskrcnn_benchmark import _C import itertools def project_masks_on_boxes(segmentation_masks, proposals, discretization_size): """ Given segmentation masks and the bounding boxes corresponding to the location of the masks in the image, this function crops and resizes the masks in the position defined by the boxes. This prepares the masks for them to be fed to the loss computation as the targets. Arguments: segmentation_masks: an instance of SegmentationMask proposals: an instance of BoxList """ masks = [] M = discretization_size device = proposals.bbox.device proposals = proposals.convert("xyxy") assert segmentation_masks.size == proposals.size, "{}, {}".format( segmentation_masks, proposals ) # CUDA implementation of RLE encoding needs to be fixed to support larger M if proposals.bbox.is_cuda and M < 32: polygons_list=[] for poly_obj in segmentation_masks.polygons: polygons_per_instance=[] for poly in poly_obj.polygons: polygons_per_instance.append(poly) polygons_list.append(polygons_per_instance) dense_coordinate_vec=torch.cat(list(itertools.chain(*polygons_list))).double() if len(polygons_list) == 0: return torch.empty(0, dtype=torch.float32, device=device) if len(polygons_list)>0: masks = _C.generate_mask_targets(dense_coordinate_vec, polygons_list,proposals.bbox,M) return masks else: proposals = proposals.bbox.to(torch.device("cpu")) for segmentation_mask, proposal in zip(segmentation_masks, proposals): # crop the masks, resize them to the desired resolution and # then convert them to the tensor representation, # instead of the list representation that was used cropped_mask = segmentation_mask.crop(proposal) scaled_mask = cropped_mask.resize((M, M)) mask = scaled_mask.convert(mode="mask") masks.append(mask) if len(masks) == 0: return torch.empty(0, dtype=torch.float32, device=device) return torch.stack(masks, dim=0).to(device, dtype=torch.float32) class MaskRCNNLossComputation(object): def __init__(self, proposal_matcher, discretization_size): """ Arguments: proposal_matcher (Matcher) discretization_size (int) """ self.proposal_matcher = proposal_matcher self.discretization_size = discretization_size def match_targets_to_proposals(self, proposal, target): match_quality_matrix = boxlist_iou(target, proposal) matched_idxs = self.proposal_matcher(match_quality_matrix) # Mask RCNN needs "labels" and "masks "fields for creating the targets target = target.copy_with_fields(["labels", "masks"]) # get the targets corresponding GT for each proposal # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds matched_targets = target[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets def prepare_targets(self, proposals, targets): labels = [] masks = [] for proposals_per_image, targets_per_image in zip(proposals, targets): matched_targets = self.match_targets_to_proposals( proposals_per_image, targets_per_image ) matched_idxs = matched_targets.get_field("matched_idxs") labels_per_image = matched_targets.get_field("labels") labels_per_image = labels_per_image.to(dtype=torch.int64) # this can probably be removed, but is left here for clarity # and completeness neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[neg_inds] = 0 # mask scores are only computed on positive samples positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1) segmentation_masks = matched_targets.get_field("masks") segmentation_masks = segmentation_masks[positive_inds] positive_proposals = proposals_per_image[positive_inds] masks_per_image = project_masks_on_boxes( segmentation_masks, positive_proposals, self.discretization_size ) labels.append(labels_per_image) masks.append(masks_per_image) return labels, masks def __call__(self, proposals, mask_logits, targets): """ Arguments: proposals (list[BoxList]) mask_logits (Tensor) targets (list[BoxList]) Return: mask_loss (Tensor): scalar tensor containing the loss """ labels, mask_targets = self.prepare_targets(proposals, targets) labels = cat(labels, dim=0) mask_targets = cat(mask_targets, dim=0) positive_inds = torch.nonzero(labels > 0).squeeze(1) labels_pos = labels[positive_inds] # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it separately if mask_targets.numel() == 0: return mask_logits.sum() * 0 mask_loss = F.binary_cross_entropy_with_logits( mask_logits[positive_inds, labels_pos], mask_targets ) return mask_loss def make_roi_mask_loss_evaluator(cfg): matcher = Matcher( cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD, cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD, allow_low_quality_matches=False, ) loss_evaluator = MaskRCNNLossComputation( matcher, cfg.MODEL.ROI_MASK_HEAD.RESOLUTION ) return loss_evaluator
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head/loss.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import numpy as np import torch from torch import nn import torch.nn.functional as F from maskrcnn_benchmark.structures.bounding_box import BoxList # TODO check if want to return a single BoxList or a composite # object class MaskPostProcessor(nn.Module): """ From the results of the CNN, post process the masks by taking the mask corresponding to the class with max probability (which are of fixed size and directly output by the CNN) and return the masks in the mask field of the BoxList. If a masker object is passed, it will additionally project the masks in the image according to the locations in boxes, """ def __init__(self, masker=None): super(MaskPostProcessor, self).__init__() self.masker = masker def forward(self, x, boxes): """ Arguments: x (Tensor): the mask logits boxes (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks coresponding to the predicted classes num_masks = x.shape[0] labels = [bbox.get_field("labels") for bbox in boxes] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] boxes_per_image = [len(box) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) if self.masker: mask_prob = self.masker(mask_prob, boxes) results = [] for prob, box in zip(mask_prob, boxes): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox.add_field("mask", prob) results.append(bbox) return results class MaskPostProcessorCOCOFormat(MaskPostProcessor): """ From the results of the CNN, post process the results so that the masks are pasted in the image, and additionally convert the results to COCO format. """ def forward(self, x, boxes): import pycocotools.mask as mask_util import numpy as np results = super(MaskPostProcessorCOCOFormat, self).forward(x, boxes) for result in results: masks = result.get_field("mask").cpu() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") result.add_field("mask", rles) return results # the next two functions should be merged inside Masker # but are kept here for the moment while we need them # temporarily gor paste_mask_in_image def expand_boxes(boxes, scale): w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = torch.zeros_like(boxes) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def expand_masks(mask, padding): N = mask.shape[0] M = mask.shape[-1] pad2 = 2 * padding scale = float(M + pad2) / M padded_mask = mask.new_zeros((N, 1, M + pad2, M + pad2)) padded_mask[:, :, padding:-padding, padding:-padding] = mask return padded_mask, scale def paste_mask_in_image(mask, box, im_h, im_w, thresh=0.5, padding=1): # Need to work on the CPU, where fp16 isn't supported - cast to float to avoid this mask = mask.float() box = box.float() padded_mask, scale = expand_masks(mask[None], padding=padding) mask = padded_mask[0, 0] box = expand_boxes(box[None], scale)[0] box = box.to(dtype=torch.int32) TO_REMOVE = 1 w = int(box[2] - box[0] + TO_REMOVE) h = int(box[3] - box[1] + TO_REMOVE) w = max(w, 1) h = max(h, 1) # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, -1, -1)) # Resize mask mask = mask.to(torch.float32) mask = F.interpolate(mask, size=(h, w), mode='bilinear', align_corners=False) mask = mask[0][0] if thresh >= 0: mask = mask > thresh else: # for visualization and debugging, we also # allow it to return an unmodified mask mask = (mask * 255).to(torch.uint8) im_mask = torch.zeros((im_h, im_w), dtype=torch.uint8) x_0 = max(box[0], 0) x_1 = min(box[2] + 1, im_w) y_0 = max(box[1], 0) y_1 = min(box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[ (y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0]) ] return im_mask class Masker(object): """ Projects a set of masks in an image on the locations specified by the bounding boxes """ def __init__(self, threshold=0.5, padding=1): self.threshold = threshold self.padding = padding def forward_single_image(self, masks, boxes): boxes = boxes.convert("xyxy") im_w, im_h = boxes.size res = [ paste_mask_in_image(mask[0], box, im_h, im_w, self.threshold, self.padding) for mask, box in zip(masks, boxes.bbox) ] if len(res) > 0: res = torch.stack(res, dim=0)[:, None] else: res = masks.new_empty((0, 1, masks.shape[-2], masks.shape[-1])) return res def __call__(self, masks, boxes): if isinstance(boxes, BoxList): boxes = [boxes] # Make some sanity check assert len(boxes) == len(masks), "Masks and boxes should have the same length." # TODO: Is this JIT compatible? # If not we should make it compatible. results = [] for mask, box in zip(masks, boxes): assert mask.shape[0] == len(box), "Number of objects should be the same." result = self.forward_single_image(mask, box) results.append(result) return results def make_roi_mask_post_processor(cfg): if cfg.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS: mask_threshold = cfg.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD masker = Masker(threshold=mask_threshold, padding=1) else: masker = None mask_post_processor = MaskPostProcessor(masker) return mask_post_processor
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head/inference.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. from torch import nn from torch.nn import functional as F from maskrcnn_benchmark.layers import Conv2d from maskrcnn_benchmark.layers import ConvTranspose2d class MaskRCNNC4Predictor(nn.Module): def __init__(self, cfg): super(MaskRCNNC4Predictor, self).__init__() num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES dim_reduced = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS[-1] if cfg.MODEL.ROI_HEADS.USE_FPN: num_inputs = dim_reduced else: stage_index = 4 stage2_relative_factor = 2 ** (stage_index - 1) res2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS num_inputs = res2_out_channels * stage2_relative_factor self.conv5_mask = ConvTranspose2d(num_inputs, dim_reduced, 2, 2, 0) self.mask_fcn_logits = Conv2d(dim_reduced, num_classes, 1, 1, 0) for name, param in self.named_parameters(): if "bias" in name: nn.init.constant_(param, 0) elif "weight" in name: # Caffe2 implementation uses MSRAFill, which in fact # corresponds to kaiming_normal_ in PyTorch nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") def forward(self, x): x = F.relu(self.conv5_mask(x)) return self.mask_fcn_logits(x) _ROI_MASK_PREDICTOR = {"MaskRCNNC4Predictor": MaskRCNNC4Predictor} def make_roi_mask_predictor(cfg): func = _ROI_MASK_PREDICTOR[cfg.MODEL.ROI_MASK_HEAD.PREDICTOR] return func(cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head/roi_mask_predictors.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import torch import torch.nn.functional as F from torch import nn class FPN(nn.Module): """ Module that adds FPN on top of a list of feature maps. The feature maps are currently supposed to be in increasing depth order, and must be consecutive """ def __init__( self, in_channels_list, out_channels, conv_block, top_blocks=None, nhwc=False ): """ Arguments: in_channels_list (list[int]): number of channels for each feature map that will be fed out_channels (int): number of channels of the FPN representation top_blocks (nn.Module or None): if provided, an extra operation will be performed on the output of the last (smallest resolution) FPN output, and the result will extend the result list nhwc (bool): specify is FPN is running at nhwc mode """ super(FPN, self).__init__() self.inner_blocks = [] self.layer_blocks = [] for idx, in_channels in enumerate(in_channels_list, 1): inner_block = "fpn_inner{}".format(idx) layer_block = "fpn_layer{}".format(idx) inner_block_module = conv_block(in_channels, out_channels, 1) layer_block_module = conv_block(out_channels, out_channels, 3, 1) self.add_module(inner_block, inner_block_module) self.add_module(layer_block, layer_block_module) self.inner_blocks.append(inner_block) self.layer_blocks.append(layer_block) self.top_blocks = top_blocks def forward(self, x): """ Arguments: x (list[Tensor]): feature maps for each feature level. Returns: results (tuple[Tensor]): feature maps after FPN layers. They are ordered from highest resolution first. """ last_inner = getattr(self, self.inner_blocks[-1])(x[-1]) results = [] results.append(getattr(self, self.layer_blocks[-1])(last_inner)) for feature, inner_block, layer_block in zip( x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1] ): inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest") inner_lateral = getattr(self, inner_block)(feature) # TODO use size instead of scale to make it robust to different sizes # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:], # mode='bilinear', align_corners=False) last_inner = inner_lateral + inner_top_down results.insert(0, getattr(self, layer_block)(last_inner)) if self.top_blocks is not None: last_results = self.top_blocks(results[-1]) results.extend(last_results) return tuple(results) class LastLevelMaxPool(nn.Module): def forward(self, x): return [F.max_pool2d(x, 1, 2, 0)]
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/backbone/fpn.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. from collections import OrderedDict from torch import nn from maskrcnn_benchmark.modeling import registry from maskrcnn_benchmark.modeling.make_layers import conv_with_kaiming_uniform from . import fpn as fpn_module from . import resnet @registry.BACKBONES.register("R-50-C4") @registry.BACKBONES.register("R-50-C5") @registry.BACKBONES.register("R-101-C4") @registry.BACKBONES.register("R-101-C5") def build_resnet_backbone(cfg): body = resnet.ResNet(cfg) model = nn.Sequential(OrderedDict([("body", body)])) return model @registry.BACKBONES.register("R-50-FPN") @registry.BACKBONES.register("R-101-FPN") def build_resnet_fpn_backbone(cfg): body = resnet.ResNet(cfg) in_channels_stage2 = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS fpn = fpn_module.FPN( in_channels_list=[ in_channels_stage2, in_channels_stage2 * 2, in_channels_stage2 * 4, in_channels_stage2 * 8, ], out_channels=out_channels, conv_block=conv_with_kaiming_uniform( cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU ), top_blocks=fpn_module.LastLevelMaxPool(), nhwc=cfg.NHWC, ) model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) return model def build_backbone(cfg): assert cfg.MODEL.BACKBONE.CONV_BODY in registry.BACKBONES, \ "cfg.MODEL.BACKBONE.CONV_BODY: {} are not registered in registry".format( cfg.MODEL.BACKBONE.CONV_BODY ) return registry.BACKBONES[cfg.MODEL.BACKBONE.CONV_BODY](cfg)
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/backbone/backbone.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .backbone import build_backbone
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/backbone/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """ Variant of the resnet module that takes cfg as an argument. Example usage. Strings may be specified in the config file. model = ResNet( "StemWithFixedBatchNorm", "BottleneckWithFixedBatchNorm", "ResNet50StagesTo4", ) OR: model = ResNet( "StemWithGN", "BottleneckWithGN", "ResNet50StagesTo4", ) Custom implementations may be written in user code and hooked in via the `register_*` functions. """ from collections import namedtuple import torch import torch.nn.functional as F from torch import nn from maskrcnn_benchmark.layers import FrozenBatchNorm2d from maskrcnn_benchmark.layers import Conv2d from maskrcnn_benchmark.modeling.make_layers import group_norm from maskrcnn_benchmark.utils.registry import Registry # ResNet stage specification StageSpec = namedtuple( "StageSpec", [ "index", # Index of the stage, eg 1, 2, ..,. 5 "block_count", # Numer of residual blocks in the stage "return_features", # True => return the last feature map from this stage ], ) # ----------------------------------------------------------------------------- # Standard ResNet models # ----------------------------------------------------------------------------- # ResNet-50 (including all stages) ResNet50StagesTo5 = tuple( StageSpec(index=i, block_count=c, return_features=r) for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, False), (4, 3, True)) ) # ResNet-50 up to stage 4 (excludes stage 5) ResNet50StagesTo4 = tuple( StageSpec(index=i, block_count=c, return_features=r) for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, True)) ) # ResNet-101 (including all stages) ResNet101StagesTo5 = tuple( StageSpec(index=i, block_count=c, return_features=r) for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, False), (4, 3, True)) ) # ResNet-101 up to stage 4 (excludes stage 5) ResNet101StagesTo4 = tuple( StageSpec(index=i, block_count=c, return_features=r) for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, True)) ) # ResNet-50-FPN (including all stages) ResNet50FPNStagesTo5 = tuple( StageSpec(index=i, block_count=c, return_features=r) for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 6, True), (4, 3, True)) ) # ResNet-101-FPN (including all stages) ResNet101FPNStagesTo5 = tuple( StageSpec(index=i, block_count=c, return_features=r) for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 23, True), (4, 3, True)) ) class ResNet(nn.Module): def __init__(self, cfg): super(ResNet, self).__init__() # If we want to use the cfg in forward(), then we should make a copy # of it and store it for later use: # self.cfg = cfg.clone() # Translate string names to implementations stem_module = _STEM_MODULES[cfg.MODEL.RESNETS.STEM_FUNC] stage_specs = _STAGE_SPECS[cfg.MODEL.BACKBONE.CONV_BODY] transformation_module = _TRANSFORMATION_MODULES[cfg.MODEL.RESNETS.TRANS_FUNC] # Construct the stem module self.stem = stem_module(cfg) # Constuct the specified ResNet stages num_groups = cfg.MODEL.RESNETS.NUM_GROUPS width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS stage2_bottleneck_channels = num_groups * width_per_group stage2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS self.stages = [] self.return_features = {} for stage_spec in stage_specs: name = "layer" + str(stage_spec.index) stage2_relative_factor = 2 ** (stage_spec.index - 1) bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor out_channels = stage2_out_channels * stage2_relative_factor module = _make_stage( transformation_module, in_channels, bottleneck_channels, out_channels, stage_spec.block_count, num_groups, cfg.MODEL.RESNETS.STRIDE_IN_1X1, first_stride=int(stage_spec.index > 1) + 1, ) in_channels = out_channels self.add_module(name, module) self.stages.append(name) self.return_features[name] = stage_spec.return_features # Optionally freeze (requires_grad=False) parts of the backbone self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT) def _freeze_backbone(self, freeze_at): if freeze_at < 0: return for stage_index in range(freeze_at): if stage_index == 0: m = self.stem # stage 0 is the stem else: m = getattr(self, "layer" + str(stage_index)) for p in m.parameters(): p.requires_grad = False def forward(self, x): outputs = [] x = self.stem(x) for stage_name in self.stages: x = getattr(self, stage_name)(x) if self.return_features[stage_name]: outputs.append(x) return outputs class ResNetHead(nn.Module): def __init__( self, block_module, stages, num_groups=1, width_per_group=64, stride_in_1x1=True, stride_init=None, res2_out_channels=256, dilation=1 ): super(ResNetHead, self).__init__() stage2_relative_factor = 2 ** (stages[0].index - 1) stage2_bottleneck_channels = num_groups * width_per_group out_channels = res2_out_channels * stage2_relative_factor in_channels = out_channels // 2 bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor block_module = _TRANSFORMATION_MODULES[block_module] self.stages = [] stride = stride_init for stage in stages: name = "layer" + str(stage.index) if not stride: stride = int(stage.index > 1) + 1 module = _make_stage( block_module, in_channels, bottleneck_channels, out_channels, stage.block_count, num_groups, stride_in_1x1, first_stride=stride, dilation=dilation ) stride = None self.add_module(name, module) self.stages.append(name) def forward(self, x): for stage in self.stages: x = getattr(self, stage)(x) return x def _make_stage( transformation_module, in_channels, bottleneck_channels, out_channels, block_count, num_groups, stride_in_1x1, first_stride, dilation=1 ): blocks = [] stride = first_stride for _ in range(block_count): blocks.append( transformation_module( in_channels, bottleneck_channels, out_channels, num_groups, stride_in_1x1, stride, dilation=dilation ) ) stride = 1 in_channels = out_channels return nn.Sequential(*blocks) class Bottleneck(nn.Module): def __init__( self, in_channels, bottleneck_channels, out_channels, num_groups, stride_in_1x1, stride, dilation, norm_func ): super(Bottleneck, self).__init__() self.downsample = None if in_channels != out_channels: down_stride = stride if dilation == 1 else 1 self.downsample = nn.Sequential( Conv2d( in_channels, out_channels, kernel_size=1, stride=down_stride, bias=False ), norm_func(out_channels), ) for modules in [self.downsample,]: for l in modules.modules(): if isinstance(l, Conv2d): nn.init.kaiming_uniform_(l.weight, a=1) if dilation > 1: stride = 1 # reset to be 1 # The original MSRA ResNet models have stride in the first 1x1 conv # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have # stride in the 3x3 conv stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) self.conv1 = Conv2d( in_channels, bottleneck_channels, kernel_size=1, stride=stride_1x1, bias=False, ) self.bn1 = norm_func(bottleneck_channels) # TODO: specify init for the above self.conv2 = Conv2d( bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride_3x3, padding=dilation, bias=False, groups=num_groups, dilation=dilation ) self.bn2 = norm_func(bottleneck_channels) self.conv3 = Conv2d( bottleneck_channels, out_channels, kernel_size=1, bias=False ) self.bn3 = norm_func(out_channels) for l in [self.conv1, self.conv2, self.conv3,]: nn.init.kaiming_uniform_(l.weight, a=1) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = F.relu_(out) out = self.conv2(out) out = self.bn2(out) out = F.relu_(out) out0 = self.conv3(out) out = self.bn3(out0) if self.downsample is not None: identity = self.downsample(x) out += identity out = F.relu_(out) return out class BaseStem(nn.Module): def __init__(self, cfg, norm_func): super(BaseStem, self).__init__() out_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS self.conv1 = Conv2d( 3, out_channels, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = norm_func(out_channels) for l in [self.conv1,]: nn.init.kaiming_uniform_(l.weight, a=1) def forward(self, x): x = self.conv1(x.float()) x = self.bn1(x) x = F.relu_(x) x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) return x class BottleneckWithFixedBatchNorm(Bottleneck): def __init__( self, in_channels, bottleneck_channels, out_channels, num_groups=1, stride_in_1x1=True, stride=1, dilation=1 ): super(BottleneckWithFixedBatchNorm, self).__init__( in_channels=in_channels, bottleneck_channels=bottleneck_channels, out_channels=out_channels, num_groups=num_groups, stride_in_1x1=stride_in_1x1, stride=stride, dilation=dilation, norm_func=FrozenBatchNorm2d ) class StemWithFixedBatchNorm(BaseStem): def __init__(self, cfg): super(StemWithFixedBatchNorm, self).__init__( cfg, norm_func=FrozenBatchNorm2d ) class BottleneckWithGN(Bottleneck): def __init__( self, in_channels, bottleneck_channels, out_channels, num_groups=1, stride_in_1x1=True, stride=1, dilation=1 ): super(BottleneckWithGN, self).__init__( in_channels=in_channels, bottleneck_channels=bottleneck_channels, out_channels=out_channels, num_groups=num_groups, stride_in_1x1=stride_in_1x1, stride=stride, dilation=dilation, norm_func=group_norm ) class StemWithGN(BaseStem): def __init__(self, cfg): super(StemWithGN, self).__init__(cfg, norm_func=group_norm) _TRANSFORMATION_MODULES = Registry({ "BottleneckWithFixedBatchNorm": BottleneckWithFixedBatchNorm, "BottleneckWithGN": BottleneckWithGN, }) _STEM_MODULES = Registry({ "StemWithFixedBatchNorm": StemWithFixedBatchNorm, "StemWithGN": StemWithGN, }) _STAGE_SPECS = Registry({ "R-50-C4": ResNet50StagesTo4, "R-50-C5": ResNet50StagesTo5, "R-101-C4": ResNet101StagesTo4, "R-101-C5": ResNet101StagesTo5, "R-50-FPN": ResNet50FPNStagesTo5, "R-101-FPN": ResNet101FPNStagesTo5, })
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/backbone/resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import bisect import copy import logging import torch.utils.data from maskrcnn_benchmark.data.datasets.coco import HybridDataLoader from maskrcnn_benchmark.utils.comm import get_world_size from maskrcnn_benchmark.utils.imports import import_file from . import datasets as D from . import samplers from .collate_batch import BatchCollator from .transforms import build_transforms def build_dataset(dataset_list, transforms, dataset_catalog, is_train=True): """ Arguments: dataset_list (list[str]): Contains the names of the datasets, i.e., coco_2014_trian, coco_2014_val, etc transforms (callable): transforms to apply to each (image, target) sample dataset_catalog (DatasetCatalog): contains the information on how to construct a dataset. is_train (bool): whether to setup the dataset for training or testing """ if not isinstance(dataset_list, (list, tuple)): raise RuntimeError( "dataset_list should be a list of strings, got {}".format(dataset_list) ) datasets = [] total_datasets_size = 0 for dataset_name in dataset_list: data = dataset_catalog.get(dataset_name) factory = getattr(D, data["factory"]) args = data["args"] # for COCODataset, we want to remove images without annotations # during training if data["factory"] == "COCODataset": args["remove_images_without_annotations"] = is_train if data["factory"] == "PascalVOCDataset": args["use_difficult"] = not is_train args["transforms"] = transforms # make dataset from factory dataset = factory(**args) total_datasets_size += len(dataset) datasets.append(dataset) # for testing, return a list of datasets if not is_train: return datasets, total_datasets_size # for training, concatenate all datasets into a single one dataset = datasets[0] if len(datasets) > 1: dataset = D.ConcatDataset(datasets) return [dataset], total_datasets_size def make_data_sampler(dataset, shuffle, distributed): if distributed: return samplers.DistributedSampler(dataset, shuffle=shuffle) if shuffle: sampler = torch.utils.data.sampler.RandomSampler(dataset) else: sampler = torch.utils.data.sampler.SequentialSampler(dataset) return sampler def _quantize(x, bins): bins = copy.copy(bins) bins = sorted(bins) quantized = list(map(lambda y: bisect.bisect_right(bins, y), x)) return quantized def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): img_info = dataset.get_img_info(i) aspect_ratio = float(img_info["height"]) / float(img_info["width"]) aspect_ratios.append(aspect_ratio) return aspect_ratios def make_batch_data_sampler( dataset, sampler, aspect_grouping, images_per_batch, num_iters=None, start_iter=0 ): if aspect_grouping: if not isinstance(aspect_grouping, (list, tuple)): aspect_grouping = [aspect_grouping] aspect_ratios = _compute_aspect_ratios(dataset) group_ids = _quantize(aspect_ratios, aspect_grouping) batch_sampler = samplers.GroupedBatchSampler( sampler, group_ids, images_per_batch, drop_uneven=False ) else: batch_sampler = torch.utils.data.sampler.BatchSampler( sampler, images_per_batch, drop_last=False ) if num_iters is not None: batch_sampler = samplers.IterationBasedBatchSampler( batch_sampler, num_iters, start_iter ) return batch_sampler def make_data_loader(cfg, is_train=True, is_distributed=False, start_iter=0): num_gpus = get_world_size() if is_train: images_per_batch = cfg.SOLVER.IMS_PER_BATCH assert ( images_per_batch % num_gpus == 0 ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number " "of GPUs ({}) used.".format(images_per_batch, num_gpus) images_per_gpu = images_per_batch // num_gpus shuffle = True num_iters = cfg.SOLVER.MAX_ITER else: images_per_batch = cfg.TEST.IMS_PER_BATCH assert ( images_per_batch % num_gpus == 0 ), "TEST.IMS_PER_BATCH ({}) must be divisible by the number " "of GPUs ({}) used.".format(images_per_batch, num_gpus) images_per_gpu = images_per_batch // num_gpus shuffle = False if not is_distributed else True num_iters = None start_iter = 0 if images_per_gpu > 1: logger = logging.getLogger(__name__) logger.warning( "When using more than one image per GPU you may encounter " "an out-of-memory (OOM) error if your GPU does not have " "sufficient memory. If this happens, you can reduce " "SOLVER.IMS_PER_BATCH (for training) or " "TEST.IMS_PER_BATCH (for inference). For training, you must " "also adjust the learning rate and schedule length according " "to the linear scaling rule. See for example: " "https://github.com/facebookresearch/Detectron/blob/master/configs/getting_started/tutorial_1gpu_e2e_faster_rcnn_R-50-FPN.yaml#L14" ) # group images which have similar aspect ratio. In this case, we only # group in two cases: those with width / height > 1, and the other way around, # but the code supports more general grouping strategy aspect_grouping = [1] if cfg.DATALOADER.ASPECT_RATIO_GROUPING else [] hybrid_dataloader = cfg.DATALOADER.HYBRID paths_catalog = import_file( "maskrcnn_benchmark.config.paths_catalog", cfg.PATHS_CATALOG, True ) DatasetCatalog = paths_catalog.DatasetCatalog dataset_list = cfg.DATASETS.TRAIN if is_train else cfg.DATASETS.TEST transforms = build_transforms(cfg, is_train) if hybrid_dataloader: datasets, epoch_size = build_dataset(dataset_list, None, DatasetCatalog, is_train) else: datasets, epoch_size = build_dataset(dataset_list, transforms, DatasetCatalog, is_train) data_loaders = [] for dataset in datasets: sampler = make_data_sampler(dataset, shuffle, is_distributed) batch_sampler = make_batch_data_sampler( dataset, sampler, aspect_grouping, images_per_gpu, num_iters, start_iter ) collator = BatchCollator(cfg.DATALOADER.SIZE_DIVISIBILITY) if hybrid_dataloader: data_loader = HybridDataLoader(cfg, is_train, images_per_gpu, batch_sampler, dataset, collator, transforms, cfg.DATALOADER.SIZE_DIVISIBILITY) else: num_workers = cfg.DATALOADER.NUM_WORKERS data_loader = torch.utils.data.DataLoader( dataset, num_workers=num_workers, batch_sampler=batch_sampler, collate_fn=collator) data_loaders.append(data_loader) if is_train: # during training, a single (possibly concatenated) data_loader is returned assert len(data_loaders) == 1 iterations_per_epoch = epoch_size // images_per_batch return data_loaders[0], iterations_per_epoch return data_loaders
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/data/build.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .build import make_data_loader
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from maskrcnn_benchmark.structures.image_list import to_image_list class BatchCollator(object): """ From a list of samples from the dataset, returns the batched images and targets. This should be passed to the DataLoader """ def __init__(self, size_divisible=0): self.size_divisible = size_divisible def __call__(self, batch): transposed_batch = list(zip(*batch)) images = to_image_list(transposed_batch[0], self.size_divisible) targets = transposed_batch[1] img_ids = transposed_batch[2] return images, targets, img_ids
DeepLearningExamples-master
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/data/collate_batch.py