python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """Linear API""" import warnings from typing import Union, Optional, Callable, Tuple, List, Dict, Any import torch from torch.nn.parameter import Parameter import transformer_engine_extensions as tex from .base import ( get_workspace, _prepare_backward, get_ub, TransformerEngineBaseModule, _2X_ACC_FPROP, _2X_ACC_DGRAD, _2X_ACC_WGRAD, ) from ..fp8 import get_fp8_te_dtype from ..utils import ( divide, get_default_init_method, cast_if_needed, assert_dim_for_fp8_exec, ) from ..distributed import ( set_tensor_model_parallel_attributes, get_distributed_world_size, allreduce, initialize_affine_weight_gpu, reduce_scatter_along_first_dim, gather_along_first_dim, gather_along_last_dim, ) from ..cpp_extensions import ( fp8_gemm, gemm, fp8_cast_transpose_fused, cast_to_fp8, ) from ..constants import GemmParallelModes, dist_group_type from ..jit import no_torch_dynamo __all__ = ["Linear"] class _Linear(torch.autograd.Function): """Linear semi-top level module Calls custom cuda extensions. """ @staticmethod def forward( ctx, weight: torch.Tensor, weight_fp8: Union[torch.Tensor, None], weight_t_fp8: Union[torch.Tensor, None], inp: torch.Tensor, bias: torch.Tensor, use_bias: bool, is_first_microbatch: Union[bool, None], fp8: bool, fp8_calibration: bool, fp8_meta: Dict[str, Any], fuse_wgrad_accumulation: bool, tp_group: Union[dist_group_type, None], tp_size: int, sequence_parallel: bool, tensor_parallel: bool, activation_dtype: torch.dtype, parallel_mode: Union[str, None], is_grad_enabled: bool, ub_split_rs: bool, ub_split_ag: bool, ) -> torch.Tensor: # Make sure input dimensions are compatible in_features = weight.shape[-1] assert inp.shape[-1] == in_features, "GEMM not possible" inputmat = inp.view((-1, in_features)) if fp8: assert_dim_for_fp8_exec(inputmat) assert_dim_for_fp8_exec(weight) update_fp8_weights = is_first_microbatch is None or is_first_microbatch if ub_split_rs: tp_world_size = get_distributed_world_size(tp_group) if tp_world_size == 1: ub_split_rs = False # Cast for native AMP inputmat = cast_if_needed(inputmat, activation_dtype) inputmat_no_fp8 = inputmat if fp8: fp8_dtype_forward = get_fp8_te_dtype(fp8_meta["recipe"], fprop_tensor=True) if not fp8_meta["recipe"].override_linear_precision.wgrad: if is_grad_enabled: inputmat, inputmat_t = fp8_cast_transpose_fused( inputmat, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, ) else: inputmat = cast_to_fp8( inputmat, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, ) else: inputmat, inputmat_t = cast_to_fp8( inputmat, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, ), None # Column Parallel Linear if parallel_mode == "column" and sequence_parallel: inputmat_total, _ = gather_along_first_dim(inputmat, tp_group) else: inputmat_total = inputmat if fp8: bias_dtype = ( torch.bfloat16 if activation_dtype == torch.float32 else activation_dtype ) bias = cast_if_needed(bias, bias_dtype) if use_bias else bias if update_fp8_weights: if is_grad_enabled: fp8_cast_transpose_fused( weight, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward, cast_out=weight_fp8, transpose_out=weight_t_fp8, ) else: weight_t_fp8 = None weight_fp8 = cast_to_fp8( weight, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward, ) if ub_split_rs: ub_obj_projout = get_ub("proj_fprop") out = ub_obj_projout.get_ubuf_output(1) dim_size = list(inputmat_total.size()) dim_size[0] = dim_size[0] // tp_world_size dim_size[1] = weight.size(0) rs_out = torch.empty(dim_size, dtype=activation_dtype, device=inputmat_total.device) else: dim_size = list(inputmat_total.size()) dim_size[1] = weight.size(0) out = torch.empty(dim_size, dtype=activation_dtype, device=inputmat_total.device) _ = fp8_gemm( weight_fp8, fp8_meta["scaling_fwd"].scale_inv, tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward, inputmat_total, fp8_meta["scaling_fwd"].scale_inv, tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, activation_dtype, get_workspace(), bias=bias, use_bias=use_bias, use_split_accumulator=_2X_ACC_FPROP, out=out, ub_algo=tex.UbufOverlapAlgo.SPLIT_PIPELINED_RS if ub_split_rs else None, ub=ub_obj_projout if ub_split_rs else None, extra_output_tensor=rs_out if ub_split_rs else None, ) else: # Cast for native AMP weight = cast_if_needed(weight, activation_dtype) bias = cast_if_needed(bias, activation_dtype) if use_bias else bias if fp8_calibration: # amax of input fp8_meta["scaling_fwd"].amax_history[0][tex.FP8FwdTensors.GEMM1_INPUT] = \ torch.amax(inputmat_total).float() # amax of weight fp8_meta["scaling_fwd"].amax_history[0][tex.FP8FwdTensors.GEMM1_WEIGHT] = \ torch.amax(weight).float() if ub_split_rs: ub_obj_projout = get_ub("proj_fprop") out = ub_obj_projout.get_ubuf_output(1) dim_size = list(inputmat_total.size()) dim_size[0] = dim_size[0] // tp_world_size dim_size[1] = weight.size(0) rs_out = torch.empty(dim_size, dtype=activation_dtype, device=inputmat_total.device) else: dim_size = list(inputmat_total.size()) dim_size[1] = weight.size(0) out = torch.empty(dim_size, dtype=activation_dtype, device=inputmat_total.device) _, _, _ = gemm( weight, inputmat_total, activation_dtype, get_workspace(), bias=bias, use_bias=use_bias, out=out, ub_algo=tex.UbufOverlapAlgo.SPLIT_PIPELINED_RS if ub_split_rs else None, ub=ub_obj_projout if ub_split_rs else None, extra_output_tensor=rs_out if ub_split_rs else None, ) if is_grad_enabled: fp8_wgrad = fp8 and not fp8_meta["recipe"].override_linear_precision.wgrad ctx.save_for_backward( inputmat_no_fp8 if weight.requires_grad and not fp8_wgrad else None, inputmat_t if weight.requires_grad and fp8_wgrad else None, weight, weight_t_fp8 if fp8 else None, fp8_meta["scaling_fwd"].scale_inv.clone() if fp8 else None, ) ctx.activation_dtype = activation_dtype ctx.fp8 = fp8 ctx.fp8_meta = fp8_meta ctx.fuse_wgrad_accumulation = fuse_wgrad_accumulation ctx.is_first_microbatch = is_first_microbatch ctx.use_bias = use_bias ctx.sequence_parallel = sequence_parallel ctx.tensor_parallel = tensor_parallel ctx.inp_shape = inp.shape ctx.parallel_mode = parallel_mode ctx.tp_group = tp_group ctx.ub_split_ag = ub_split_ag ctx.tp_size = tp_size ctx.requires_dgrad = inp.requires_grad # Row Parallel Linear if ub_split_rs: out = rs_out elif parallel_mode == "row" and sequence_parallel: out, _ = reduce_scatter_along_first_dim(out, tp_group) elif parallel_mode == "row" and tensor_parallel: out, _ = allreduce(out, tp_group) # [*, in_features] -> [*, out_features] except first dimension changes for SP return out.view(-1, *inp.shape[1:-1], out.shape[-1]) @staticmethod def backward( ctx, grad_output: torch.Tensor ) -> Tuple[Union[torch.Tensor, None], ...]: with _prepare_backward( ctx.fp8, ctx.fp8_meta, ctx.tp_group, ctx.tp_size, name="_Linear" ): ( inputmat, inputmat_t, weight, weight_t_fp8, fwd_scale_inverses, ) = ctx.saved_tensors if ctx.ub_split_ag: tp_world_size = get_distributed_world_size(ctx.tp_group) if tp_world_size == 1: ctx.ub_split_ag = False if ctx.ub_split_ag: dim_size = list(grad_output.size()) dim_size[0] = dim_size[0] * tp_world_size ctx.ub_obj_gradout = get_ub("proj_dgrad") ( grad_output, grad_output_c, grad_output_t, grad_bias, ) = TransformerEngineBaseModule.grad_output_preprocess( ctx, grad_output, ctx.parallel_mode == "row" ) # Column Parallel Linear # Overlap input AG with dgrad if weight.requires_grad and ctx.parallel_mode == "column" and ctx.sequence_parallel: if ctx.fp8 and not ctx.fp8_meta["recipe"].override_linear_precision.wgrad: inputmat_t_total, handle = gather_along_last_dim( inputmat_t, ctx.tp_group, async_op=ctx.requires_dgrad ) else: inputmat_total, handle = gather_along_first_dim( inputmat, ctx.tp_group, async_op=ctx.requires_dgrad ) else: inputmat_t_total = inputmat_t inputmat_total = inputmat handle = None if ctx.is_first_microbatch is not None: accumulate_wgrad_into_param_main_grad = ( ctx.fuse_wgrad_accumulation and not ctx.is_first_microbatch ) else: accumulate_wgrad_into_param_main_grad = ctx.fuse_wgrad_accumulation if ctx.fp8: fp8_dtype_forward = get_fp8_te_dtype( ctx.fp8_meta["recipe"], fprop_tensor=True ) fp8_dtype_backward = get_fp8_te_dtype( ctx.fp8_meta["recipe"], fprop_tensor=False ) if ctx.requires_dgrad: if ctx.fp8: dgrad = fp8_gemm( weight_t_fp8, fwd_scale_inverses, tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward, grad_output_c, ctx.fp8_meta["scaling_bwd"].scale_inv, tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, ctx.activation_dtype, get_workspace(), use_split_accumulator=_2X_ACC_DGRAD, ub_algo=tex.UbufOverlapAlgo.SPLIT_PIPELINED_AG if ctx.ub_split_ag else None, ub=ctx.ub_obj_gradout if ctx.ub_split_ag else None, ) else: dgrad, _, _ = gemm( weight, grad_output, ctx.activation_dtype, get_workspace(), layout="NN", grad=True, ub_algo=tex.UbufOverlapAlgo.SPLIT_PIPELINED_AG if ctx.ub_split_ag else None, ub=ctx.ub_obj_gradout if ctx.ub_split_ag else None, ) # Overlap dgrad-RS/AR with wgrad if ctx.parallel_mode == "column" and ctx.sequence_parallel: if handle is not None: handle.wait() dgrad, handle = reduce_scatter_along_first_dim( dgrad, ctx.tp_group, async_op=True ) elif ctx.parallel_mode == "column" and ctx.tensor_parallel: dgrad, handle = allreduce(dgrad, ctx.tp_group, async_op=True) if weight.requires_grad: if ctx.fp8: # WGRAD if not ctx.fp8_meta["recipe"].override_linear_precision.wgrad: if ctx.ub_split_ag: grad_output_t = tex.fp8_transpose(grad_output_c, fp8_dtype_backward) wgrad = fp8_gemm( inputmat_t_total, fwd_scale_inverses, tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, grad_output_t, ctx.fp8_meta["scaling_bwd"].scale_inv, tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, ctx.activation_dtype, get_workspace(), accumulate=accumulate_wgrad_into_param_main_grad, out=weight.main_grad if ctx.fuse_wgrad_accumulation else None, use_split_accumulator=_2X_ACC_WGRAD, ) else: wgrad, _, _ = gemm( inputmat_total, grad_output, ctx.activation_dtype, get_workspace(), layout="NT", grad=True, accumulate=accumulate_wgrad_into_param_main_grad, out=weight.main_grad if ctx.fuse_wgrad_accumulation else None, ) else: # WGRAD wgrad, grad_bias, _ = gemm( inputmat_total, grad_output, ctx.activation_dtype, get_workspace(), layout="NT", grad=True, use_bias=ctx.use_bias, accumulate=accumulate_wgrad_into_param_main_grad, out=weight.main_grad if ctx.fuse_wgrad_accumulation else None, ) # Column Parallel Linear if ctx.parallel_mode == "column" and ctx.tensor_parallel and handle is not None: handle.wait() if not ctx.use_bias: grad_bias = None return ( wgrad if weight.requires_grad else None, None, None, dgrad.view(ctx.inp_shape) if ctx.requires_dgrad else None, grad_bias, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ) class Linear(TransformerEngineBaseModule): """ Applies a linear transformation to the incoming data :math:`y = xA^T + b` On NVIDIA GPUs it is a drop-in replacement for `torch.nn.Linear`. .. warning:: Argument :attr:`skip_weight_param_allocation` is deprecated and will be fully removed in future releases. Parameters ---------- in_features : int size of each input sample. out_features : int size of each output sample. bias : bool, default = `True` if set to `False`, the layer will not learn an additive bias. init_method : Callable, default = `None` used for initializing weights in the following way: `init_method(weight)`. When set to `None`, defaults to `torch.nn.init.normal_(mean=0.0, std=0.023)`. parameters_split : Tuple[str, ...], default = None if a tuple of strings is provided, the weight and bias parameters of the module are exposed as `N` separate `torch.nn.parameter.Parameter`s each, split along the first dimension, where `N` is the length of the argument and the strings contained are the names of the split parameters. device : Union[torch.device, str], default = "cuda" The device on which the parameters of the model will allocated. It is the user's responsibility to ensure all parameters are moved to the GPU before running the forward pass. Parallelism parameters ---------------------- sequence_parallel : bool, default = `False` if set to `True`, uses sequence parallelism. tp_group : ProcessGroup, default = `None` tensor parallel process group. tp_size : int, default = 1 used as TP (tensor parallel) world size when TP groups are not formed during initialization. In this case, users must call the `set_tensor_parallel_group(tp_group)` method on the initialized module before the forward pass to supply the tensor parallel group needed for tensor and sequence parallel collectives. parallel_mode : {None, 'Column', 'Row'}, default = `None` used to decide whether this Linear layer is Column Parallel Linear or Row Parallel Linear as described `here <https://arxiv.org/pdf/1909.08053.pdf>`_. When set to `None`, no communication is performed. Optimization parameters ----------------------- fuse_wgrad_accumulation : bool, default = 'False' if set to `True`, enables fusing of creation and accumulation of the weight gradient. When enabled, it is assumed that the weights have an additional `main_grad` attribute (used instead of the regular `grad`) which is a pre-allocated buffer of the correct size to accumulate gradients in. return_bias : bool, default = `False` when set to `True`, this module will not apply the additive bias itself, but instead return the bias value during the forward pass together with the output of the linear transformation :math:`y = xA^T`. This is useful when the bias addition can be fused to subsequent operations. params_dtype : torch.dtype, default = `torch.get_default_dtype()` it controls the type used to allocate the initial parameters. Useful when the model is trained with lower precision and the original FP32 parameters would not fit in GPU memory. """ def __init__( self, in_features: int, out_features: int, sequence_parallel: bool = False, fuse_wgrad_accumulation: bool = False, tp_group: Optional[dist_group_type] = None, tp_size: int = 1, get_rng_state_tracker: Optional[Callable] = None, init_method: Optional[Callable] = None, bias: bool = True, return_bias: bool = False, params_dtype: Optional[torch.dtype] = None, parallel_mode: Optional[str] = None, skip_weight_param_allocation: bool = False, parameters_split: Optional[Tuple[str, ...]] = None, ub_split_rs: bool = False, ub_split_ag: bool = False, device: Union[torch.device, str] = "cuda", ) -> None: super().__init__() if skip_weight_param_allocation: warnings.warn( "Argument `skip_weight_param_allocation` is deprecated and" "will be fully removed in future releases. It has ignored" "starting from v0.11.", category=DeprecationWarning, ) params_dtype = torch.get_default_dtype() if params_dtype is None else params_dtype self.in_features = in_features self.out_features = out_features self.fuse_wgrad_accumulation = fuse_wgrad_accumulation self.use_bias = bias self.return_bias = return_bias self.apply_bias = bias and not return_bias self.parameters_split = parameters_split self.ub_split_rs = ub_split_rs self.ub_split_ag = ub_split_ag if ub_split_rs or ub_split_ag: assert ( tex.userbuf_comm_available() ), "Userbuffer communication backend not available." if tp_group is None: self.tp_size = tp_size if tp_size == 1: self.set_tensor_parallel_group(tp_group) else: self.tp_size = get_distributed_world_size(tp_group) self.set_tensor_parallel_group(tp_group) self.set_nccl_overlap_warning_if_tp() self.parallel_mode = parallel_mode assert ( self.parallel_mode in GemmParallelModes ), f"parallel_mode {parallel_mode} not supported" if self.parallel_mode == "column": self.out_features = divide(self.out_features, self.tp_size) elif self.parallel_mode == "row": self.in_features = divide(self.in_features, self.tp_size) if init_method is None: init_method = get_default_init_method() self.sequence_parallel = (self.tp_size > 1) and sequence_parallel self.weight_tensor = torch.empty( self.out_features, self.in_features, device=device, dtype=params_dtype) initialize_affine_weight_gpu( self.weight_tensor, init_method, get_rng_state_tracker, partition_dim=1 if self.parallel_mode == "row" else 0, stride=1, ) if self.use_bias: self.bias_tensor = torch.empty(self.out_features, device=device, dtype=params_dtype) else: self.bias_tensor = torch.Tensor().to(dtype=params_dtype, device=device) with torch.no_grad(): self.bias_tensor.zero_() if parameters_split is None: parameters_split = ("",) assert ( self.out_features % len(parameters_split) == 0 ), f"Weight and bias params cannot be split into {len(parameters_split)} parts" split_size = self.out_features // len(parameters_split) self.weight_names = [] self.bias_names = [] for i, pname in enumerate(parameters_split): wname = pname + "weight" bname = pname + "bias" self.register_parameter( wname, Parameter(self.weight_tensor[i * split_size : (i+1) * split_size]) ) set_tensor_model_parallel_attributes( tensor=getattr(self, wname), is_parallel=True, dim=1 if parallel_mode == "row" else 0, stride=1, ) if self.use_bias: self.register_parameter( bname, Parameter(self.bias_tensor[i * split_size : (i+1) * split_size]) ) else: setattr(self, bname, torch.Tensor().to(dtype=params_dtype, device=device)) if parallel_mode == "column": set_tensor_model_parallel_attributes(getattr(self, bname), True, 0, 1) self.weight_names.append(wname) self.bias_names.append(bname) self.fp8_weight_shapes.append(torch.Size((self.out_features, self.in_features))) # For RPL, bias has to be added after TP collectives # So it cannot be fused with the GEMM if self.parallel_mode == "row" and self.apply_bias: self.gemm_bias_unfused_add = True else: self.gemm_bias_unfused_add = False def get_fp8_weights_scratchpad( self, is_first_microbatch: Union[bool, None], ) -> List[torch.Tensor]: """ Fetch the fp8 weight tensor placeholders if they exist (when `is_first_microbatch` is not `None`) or return empty fp8 weight tensors (if `is_first_microbatch is None`) """ if not self.fp8: return [None, None] if is_first_microbatch is None: # Return empty weight placeholders for each fwd/bwd pass fp8_weight_tensors = self.get_fp8_weights_empty_tensors( is_first_microbatch ) else: # These persistent weight placeholders should've been created in # `set_fp8_weights` method fp8_weight_tensors = [self.weight1_fp8, self.weight1_t_fp8] return fp8_weight_tensors @no_torch_dynamo def forward( self, inp: torch.Tensor, weight: Optional[torch.Tensor] = None, bias: Optional[torch.Tensor] = None, is_first_microbatch: Optional[bool] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: """ Apply the linear transformation to the input. .. warning:: Arguments :attr:`weight` and :attr:`bias` are deprecated and will be fully removed in future releases. Parameters ---------- inp : torch.Tensor Input tensor. is_first_microbatch : {True, False, None}, default = None During training using either gradient accumulation or pipeline parallelism a minibatch of data is further split into microbatches. Between the microbatches of the same minibatch the model weights are not updated. Setting this parameter indicates whether the current microbatch is the first in a minibatch or not. When set, this parameter enables additional optimizations: * during FP8 training, it allows caching of the FP8 versions of the weights * it also allows skipping gradient accumulation during the first microbatch (since it is the first gradient being produced) """ if weight is not None or bias is not None: raise RuntimeError( "Arguments `weight` and `bias` are deprecated and " "will be fully removed in future releases." ) with self.prepare_forward(inp, is_first_microbatch) as inp: bias_tensor = ( self.bias if self.parameters_split is None else self.bias_tensor if not torch.is_grad_enabled() else self.noop_cat("bias_tensor", self.bias_names) ) weight_tensor = ( self.weight if self.parameters_split is None else self.weight_tensor if not torch.is_grad_enabled() else self.noop_cat("weight_tensor", self.weight_names) ) # Fetch the fp8 weights placeholders (for linear/gemm) weight1_fp8, weight1_t_fp8 = self.get_fp8_weights_scratchpad( is_first_microbatch ) if torch.is_grad_enabled(): linear_fn = _Linear.apply args = [] else: linear_fn = _Linear.forward args = [None] args += ( weight_tensor, weight1_fp8, weight1_t_fp8, inp, bias_tensor, self.apply_bias and not self.gemm_bias_unfused_add, is_first_microbatch, self.fp8, self.fp8_calibration, self.fp8_meta, self.fuse_wgrad_accumulation, self.tp_group, self.tp_size, self.sequence_parallel, self.tp_size > 1, self.activation_dtype, self.parallel_mode, torch.is_grad_enabled(), self.ub_split_rs, self.ub_split_ag, ) out = linear_fn(*args) if self.gemm_bias_unfused_add: out = out + cast_if_needed(bias_tensor, self.activation_dtype) if self.return_bias: return out, cast_if_needed(bias_tensor, self.activation_dtype) return out
TransformerEngine-main
transformer_engine/pytorch/module/linear.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """Internal function used by multiple modules.""" from typing import Union, Dict, Any import torch from .. import cpp_extensions as tex from ..fp8 import get_fp8_te_dtype def _get_normalization_func(normalization: str, fp8_output: bool, is_grad_enabled: bool, forward: bool): fwd_normalization_funcs = { ('LayerNorm', True, True): tex.layernorm_fwd_fp8, ('LayerNorm', True, False): tex.layernorm_fwd_fp8_inf, ('LayerNorm', False, True): tex.layernorm_fwd_noalloc, ('LayerNorm', False, False): tex.layernorm_fwd_inf, ('RMSNorm', True, True): tex.rmsnorm_fwd_fp8, ('RMSNorm', True, False): tex.rmsnorm_fwd_fp8_inf, ('RMSNorm', False, True): tex.rmsnorm_fwd_noalloc, ('RMSNorm', False, False): tex.rmsnorm_fwd_inf, } bwd_normalization_funcs = { 'LayerNorm': tex.layernorm_bwd, 'RMSNorm': tex.rmsnorm_bwd, } if forward: return fwd_normalization_funcs[(normalization, fp8_output, is_grad_enabled)] assert not fp8_output, "FP8 output is not supported in backward normalization!" assert is_grad_enabled, "Gradient has to be enabled to call backward normalization!" return bwd_normalization_funcs[normalization] def _apply_normalization(inputmat:torch.Tensor, ln_out: torch.Tensor, ln_weight: torch.Tensor, ln_bias: Union[torch.Tensor, None], eps: float, fp8_out: bool, fp8_meta: Dict[str, Any], normalization: str, fwd_ln_sm_margin: int, zero_centered_gamma: bool, is_grad_enabled: bool): normalization_func = _get_normalization_func(normalization, fp8_out, is_grad_enabled, True) inputs = (inputmat, ln_weight) if ln_bias is None else (inputmat, ln_weight, ln_bias) if fp8_out: fp8_dtype_forward = get_fp8_te_dtype(fp8_meta["recipe"], fprop_tensor=True) if is_grad_enabled: output_key = "ln_out" if normalization == "LayerNorm" else "rmsnorm_out" output_kwarg = {output_key: ln_out} output = normalization_func( *inputs, eps, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, fwd_ln_sm_margin, zero_centered_gamma, **output_kwarg, ) else: return normalization_func( *inputs, eps, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, zero_centered_gamma, ), None, None else: if is_grad_enabled: output = normalization_func( *inputs, ln_out, eps, fwd_ln_sm_margin, zero_centered_gamma ) else: return normalization_func( *inputs, eps, zero_centered_gamma ), None, None if normalization == "RMSNorm": output = (ln_out, None, output[1]) elif normalization == "LayerNorm": output = (ln_out, output[1], output[2]) return output
TransformerEngine-main
transformer_engine/pytorch/module/_common.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """Module level PyTorch APIs""" from .layernorm_linear import LayerNormLinear from .linear import Linear from .layernorm_mlp import LayerNormMLP from .layernorm import LayerNorm from .rmsnorm import RMSNorm
TransformerEngine-main
transformer_engine/pytorch/module/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """LayerNormLinear API""" import os import warnings from typing import Union, Optional, Callable, Tuple, List, Dict, Any import torch from torch.nn.parameter import Parameter from torch.nn import init from .. import cpp_extensions as tex from .base import ( get_workspace, _prepare_backward, get_ub, TransformerEngineBaseModule, _2X_ACC_FPROP, _2X_ACC_DGRAD, _2X_ACC_WGRAD, ) from ..fp8 import get_fp8_te_dtype from ..utils import ( divide, get_default_init_method, cast_if_needed, assert_dim_for_fp8_exec, ) from ..distributed import ( set_tensor_model_parallel_attributes, get_distributed_world_size, allreduce, initialize_affine_weight_gpu, reduce_scatter_along_first_dim, gather_along_first_dim, ) from ..constants import GemmParallelModes, dist_group_type, TE_DType from ..jit import no_torch_dynamo from ._common import _apply_normalization __all__ = ["LayerNormLinear"] class _LayerNormLinear(torch.autograd.Function): """LayerNormLinear semi-top level module Calls custom cuda extensions. """ @staticmethod def forward( ctx, inp: torch.Tensor, ln_weight: torch.Tensor, ln_bias: Union[torch.Tensor, None], weight: torch.Tensor, weight_fp8: Union[torch.Tensor, None], weight_t_fp8: Union[torch.Tensor, None], bias: torch.Tensor, use_bias: bool, eps: float, is_first_microbatch: Union[bool, None], fp8: bool, fp8_calibration: bool, fp8_meta: Dict[str, Any], fuse_wgrad_accumulation: bool, tp_group: Union[dist_group_type, None], tp_size: int, sequence_parallel: bool, tensor_parallel: bool, activation_dtype: torch.dtype, parallel_mode: Union[str, None], return_layernorm_output: bool, is_grad_enabled: bool, fwd_ln_sm_margin: int, bwd_ln_sm_margin: int, zero_centered_gamma: bool, ub_bulk_wgrad: bool, ub_bulk_dgrad: bool, ub_split_ag: bool, normalization: str, ) -> Union[Tuple[torch.Tensor, ...], torch.Tensor]: # Make sure input dimensions are compatible in_features = ln_weight.numel() assert inp.shape[-1] == in_features, "GEMM not possible" inputmat = inp.view((-1, in_features)) if fp8: assert_dim_for_fp8_exec(inputmat) assert_dim_for_fp8_exec(weight) update_fp8_weights = is_first_microbatch is None or is_first_microbatch # Cast for native AMP inputmat = cast_if_needed(inputmat, activation_dtype) ln_weight = cast_if_needed(ln_weight, activation_dtype) if ln_bias is not None: ln_bias = cast_if_needed(ln_bias, activation_dtype) if ub_split_ag: tp_world_size = get_distributed_world_size(tp_group) if tp_world_size == 1 or (not is_grad_enabled) or return_layernorm_output: ub_split_ag = False if ub_split_ag: dim_size = list(inputmat.size()) dim_size[0] = dim_size[0] * tp_world_size ub_obj_lnout = get_ub("qkv_fprop") ln_out = ub_obj_lnout.get_ubuf_output(0) else: ln_out_dtype = torch.uint8 if fp8 else inputmat.dtype ln_out = torch.empty_like(inputmat, dtype=ln_out_dtype) fp8_dtype_forward = get_fp8_te_dtype(fp8_meta["recipe"], fprop_tensor=True) ln_out, mu, rsigma = _apply_normalization(inputmat, ln_out, ln_weight, ln_bias, eps, fp8 and not return_layernorm_output, fp8_meta, normalization, fwd_ln_sm_margin, zero_centered_gamma, is_grad_enabled) # If residual connection is after LN, we need `ln_out_return` # tensor in higher precision, this comes at the cost # of an extra fp8 cast. if return_layernorm_output: ln_out_return = ln_out if fp8: ln_out = tex.cast_to_fp8( ln_out, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, ) # Column Parallel Linear if ub_split_ag: ln_out_total = ub_obj_lnout.get_ubuf_output(1) ln_out = torch.empty_like(ln_out) elif parallel_mode == "column" and sequence_parallel: ln_out_total, _ = gather_along_first_dim(ln_out, tp_group) else: ln_out_total = ln_out if fp8: bias_dtype = ( torch.bfloat16 if activation_dtype == torch.float32 else activation_dtype ) bias = cast_if_needed(bias, bias_dtype) if use_bias else bias if update_fp8_weights: if is_grad_enabled: tex.fp8_cast_transpose_fused( weight, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward, cast_out=weight_fp8, transpose_out=weight_t_fp8, ) else: weight_t_fp8 = None weight_fp8 = tex.cast_to_fp8( weight, fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward) out = tex.fp8_gemm( weight_fp8, fp8_meta["scaling_fwd"].scale_inv, tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward, ln_out_total, fp8_meta["scaling_fwd"].scale_inv, tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, activation_dtype, get_workspace(), bias=bias, use_bias=use_bias, use_split_accumulator=_2X_ACC_FPROP, ub_algo=tex.UbufOverlapAlgo.SPLIT_PIPELINED_AG if ub_split_ag else None, ub=ub_obj_lnout if ub_split_ag else None, extra_output_tensor=ln_out if ub_split_ag else None, ) else: # Cast for native AMP weight = cast_if_needed(weight, activation_dtype) bias = cast_if_needed(bias, activation_dtype) if use_bias else bias if fp8_calibration: # amax of input fp8_meta["scaling_fwd"].amax_history[0][tex.FP8FwdTensors.GEMM1_INPUT] = \ torch.amax(ln_out_total).float() # amax of weight fp8_meta["scaling_fwd"].amax_history[0][tex.FP8FwdTensors.GEMM1_WEIGHT] = \ torch.amax(weight).float() out, _, _ = tex.gemm( weight, ln_out_total, activation_dtype, get_workspace(), bias=bias, use_bias=use_bias, ub_algo=tex.UbufOverlapAlgo.SPLIT_PIPELINED_AG if ub_split_ag else None, ub=ub_obj_lnout if ub_split_ag else None, extra_output_tensor=ln_out if ub_split_ag else None, ) if is_grad_enabled: ctx.save_for_backward( inputmat, ln_weight, mu, rsigma, weight, weight_t_fp8, ln_out, fp8_meta["scaling_fwd"].scale_inv.clone() if fp8 else None, ) ctx.activation_dtype = activation_dtype ctx.fp8 = fp8 ctx.fp8_meta = fp8_meta ctx.fuse_wgrad_accumulation = fuse_wgrad_accumulation ctx.is_first_microbatch = is_first_microbatch ctx.use_bias = use_bias ctx.sequence_parallel = sequence_parallel ctx.tensor_parallel = tensor_parallel ctx.inp_shape = inp.shape ctx.parallel_mode = parallel_mode ctx.tp_group = tp_group ctx.tp_size = tp_size ctx.return_layernorm_output = return_layernorm_output ctx.bwd_ln_sm_margin = bwd_ln_sm_margin ctx.zero_centered_gamma = zero_centered_gamma ctx.ub_bulk_wgrad = ub_bulk_wgrad ctx.ub_bulk_dgrad = ub_bulk_dgrad ctx.requires_dgrad = inp.requires_grad ctx.normalization = normalization # Row Parallel Linear if parallel_mode == "row" and sequence_parallel: out, _ = reduce_scatter_along_first_dim(out, tp_group) elif parallel_mode == "row" and tensor_parallel: out, _ = allreduce(out, tp_group) # [*, in_features] -> [*, out_features] except first dimension changes for SP out = out.view(-1, *inp.shape[1:-1], out.shape[-1]) if return_layernorm_output: return out, ln_out_return.view_as(inp) return out @staticmethod def backward( ctx, *grad_outputs: Tuple[torch.Tensor, ...] ) -> Tuple[Union[torch.Tensor, None], ...]: with _prepare_backward( ctx.fp8, ctx.fp8_meta, ctx.tp_group, ctx.tp_size, name="_LayerNormLinear" ): ( inputmat, ln_weight, mu, rsigma, weight, weight_t_fp8, ln_out, fwd_scale_inverses, ) = ctx.saved_tensors if ctx.ub_bulk_dgrad: tp_world_size = get_distributed_world_size(ctx.tp_group) if tp_world_size == 1: ctx.ub_bulk_dgrad = False if ctx.ub_bulk_dgrad: dim_size = list(ln_out.size()) dim_size[0] = dim_size[0] * tp_world_size ub_obj_lnout = get_ub("qkv_dgrad") ub_obj_lnout.copy_input_to_ubuf(ln_out, 1) ( grad_output, grad_output_c, grad_output_t, grad_bias, ) = TransformerEngineBaseModule.grad_output_preprocess( ctx, grad_outputs[0], ctx.parallel_mode == "row" ) if ctx.ub_bulk_wgrad: tp_world_size = get_distributed_world_size(ctx.tp_group) if tp_world_size == 1: ctx.ub_bulk_wgrad = False # Column Parallel Linear # Overlap input AG with dgrad if (weight.requires_grad and (not ctx.ub_bulk_dgrad) and ctx.parallel_mode == "column" and ctx.sequence_parallel): ln_out_total, handle = gather_along_first_dim( ln_out, ctx.tp_group, async_op=True ) else: ln_out_total = ln_out handle = None if ctx.is_first_microbatch is not None: accumulate_wgrad_into_param_main_grad = ( ctx.fuse_wgrad_accumulation and not ctx.is_first_microbatch ) else: accumulate_wgrad_into_param_main_grad = ctx.fuse_wgrad_accumulation dgrad_size = list(grad_output.size()) dgrad_size[1] = weight.size(1) if ctx.ub_bulk_wgrad: # allocate dgrad output ub_obj_dgrad = get_ub("qkv_wgrad") dgrad = ub_obj_dgrad.get_ubuf_output(1) # AllGather output else: dgrad = torch.empty (dgrad_size, dtype=ctx.activation_dtype, device=weight.device) if ctx.fp8: fp8_dtype_forward = get_fp8_te_dtype( ctx.fp8_meta["recipe"], fprop_tensor=True ) fp8_dtype_backward = get_fp8_te_dtype( ctx.fp8_meta["recipe"], fprop_tensor=False ) # DGRAD: Evaluated unconditionally to feed into Linear backward _ = tex.fp8_gemm( weight_t_fp8, fwd_scale_inverses, tex.FP8FwdTensors.GEMM1_WEIGHT, fp8_dtype_forward, grad_output_c, ctx.fp8_meta["scaling_bwd"].scale_inv, tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, ctx.activation_dtype, get_workspace(), out=dgrad, use_split_accumulator=_2X_ACC_DGRAD, ub_algo=tex.UbufOverlapAlgo.BULK_OVERLAP_AG if ctx.ub_bulk_dgrad else None, ub=ub_obj_lnout if ctx.ub_bulk_dgrad else None ) else: # DGRAD: Evaluated unconditionally to feed into Linear backward _, _, _ = tex.gemm( weight, grad_output, ctx.activation_dtype, get_workspace(), out=dgrad, layout="NN", grad=True, ub_algo=tex.UbufOverlapAlgo.BULK_OVERLAP_AG if ctx.ub_bulk_dgrad else None, ub=ub_obj_lnout if ctx.ub_bulk_dgrad else None ) if ctx.ub_bulk_dgrad: ln_out_total = ub_obj_lnout.get_ubuf_output(1) # Overlap dgrad-RS/AR with wgrad if ctx.parallel_mode == "column" and ctx.sequence_parallel: if not ctx.ub_bulk_dgrad and handle is not None: handle.wait() if not ctx.ub_bulk_wgrad: dgrad, handle = reduce_scatter_along_first_dim( dgrad, ctx.tp_group, async_op=True ) elif ctx.parallel_mode == "column" and ctx.tensor_parallel: dgrad, handle = allreduce(dgrad, ctx.tp_group, async_op=True) if weight.requires_grad: if ctx.fp8: # WGRAD if not ctx.fp8_meta["recipe"].override_linear_precision.wgrad: ln_out_total_t = tex.fp8_transpose(ln_out_total, fp8_dtype_forward) wgrad = tex.fp8_gemm( ln_out_total_t, fwd_scale_inverses, tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, grad_output_t, ctx.fp8_meta["scaling_bwd"].scale_inv, tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, ctx.activation_dtype, get_workspace(), accumulate=accumulate_wgrad_into_param_main_grad, out=weight.main_grad if ctx.fuse_wgrad_accumulation else None, use_split_accumulator=_2X_ACC_WGRAD, ub_algo=tex.UbufOverlapAlgo.BULK_OVERLAP_RS if ctx.ub_bulk_wgrad else None, ub=ub_obj_dgrad if ctx.ub_bulk_wgrad else None ) else: ln_out_total_c = tex.cast_from_fp8( ln_out_total, ctx.fp8_meta["scaling_fwd"], tex.FP8FwdTensors.GEMM1_INPUT, fp8_dtype_forward, TE_DType[ctx.activation_dtype], ) wgrad, _, _ = tex.gemm( ln_out_total_c, grad_output, ctx.activation_dtype, get_workspace(), layout="NT", grad=True, accumulate=accumulate_wgrad_into_param_main_grad, out=weight.main_grad if ctx.fuse_wgrad_accumulation else None, ub_algo=tex.UbufOverlapAlgo.BULK_OVERLAP_RS if ctx.ub_bulk_wgrad else None, ub=ub_obj_dgrad if ctx.ub_bulk_wgrad else None ) else: # WGRAD wgrad, grad_bias, _ = tex.gemm( ln_out_total, grad_output, ctx.activation_dtype, get_workspace(), layout="NT", grad=True, use_bias=ctx.use_bias, accumulate=accumulate_wgrad_into_param_main_grad, out=weight.main_grad if ctx.fuse_wgrad_accumulation else None, ub_algo=tex.UbufOverlapAlgo.BULK_OVERLAP_RS if ctx.ub_bulk_wgrad else None, ub=ub_obj_dgrad if ctx.ub_bulk_wgrad else None ) if ctx.ub_bulk_wgrad: dgrad = ub_obj_dgrad.get_ubuf_output(0) # Reduce-scatter output # Column Parallel Linear elif ctx.parallel_mode == "column" and ctx.tensor_parallel and handle is not None: handle.wait() # LayerNorm gradient d_ln_out = dgrad.view(inputmat.shape) # Residual gradient if ctx.return_layernorm_output: d_ln_out = d_ln_out + grad_outputs[1].view_as(d_ln_out) if ctx.normalization == "LayerNorm": dxmat, dgamma, dbeta = tex.layernorm_bwd( d_ln_out, inputmat, mu, rsigma, ln_weight, ctx.bwd_ln_sm_margin, ctx.zero_centered_gamma ) elif ctx.normalization == "RMSNorm": dxmat, dgamma = tex.rmsnorm_bwd( d_ln_out, inputmat, rsigma, ln_weight, ctx.bwd_ln_sm_margin, ctx.zero_centered_gamma ) dbeta = None if not ctx.use_bias: grad_bias = None return ( dxmat.view(ctx.inp_shape) if ctx.requires_dgrad else None, dgamma, dbeta, wgrad if weight.requires_grad else None, None, None, grad_bias, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ) class LayerNormLinear(TransformerEngineBaseModule): r""" Applies layer normalization followed by linear transformation to the incoming data. .. warning:: Argument :attr:`skip_weight_param_allocation` is deprecated and will be fully removed in future releases. Parameters ---------- in_features : int size of each input sample. out_features : int size of each output sample. eps : float, default = 1e-5 a value added to the denominator of layer normalization for numerical stability. bias : bool, default = `True` if set to `False`, the layer will not learn an additive bias. normalization : { 'LayerNorm', 'RMSNorm' }, default = 'LayerNorm' type of normalization applied. init_method : Callable, default = `None` used for initializing weights in the following way: `init_method(weight)`. When set to `None`, defaults to `torch.nn.init.normal_(mean=0.0, std=0.023)`. return_layernorm_output : bool, default = `False` if set to `True`, output of layernorm is returned from the forward together with the output of the linear transformation. Example use case: residual connection for transformer module is taken post layernorm. parameters_split : Tuple[str, ...], default = None if a tuple of strings is provided, the weight and bias parameters of the module are exposed as `N` separate `torch.nn.parameter.Parameter`s each, split along the first dimension, where `N` is the length of the argument and the strings contained are the names of the split parameters. zero_centered_gamma : bool, default = 'False' if set to 'True', gamma parameter in LayerNorm is initialized to 0 and the LayerNorm formula changes to .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \varepsilon}} * (1 + \gamma) + \beta device : Union[torch.device, str], default = "cuda" The device on which the parameters of the model will allocated. It is the user's responsibility to ensure all parameters are moved to the GPU before running the forward pass. Parallelism parameters ---------------------- sequence_parallel : bool, default = `False` if set to `True`, uses sequence parallelism. tp_group : ProcessGroup, default = `None` tensor parallel process group. tp_size : int, default = 1 used as TP (tensor parallel) world size when TP groups are not formed during initialization. In this case, users must call the `set_tensor_parallel_group(tp_group)` method on the initialized module before the forward pass to supply the tensor parallel group needed for tensor and sequence parallel collectives. parallel_mode : {None, 'Column', 'Row'}, default = `None` used to decide whether this Linear layer is Column Parallel Linear or Row Parallel Linear as described `here <https://arxiv.org/pdf/1909.08053.pdf>`_. When set to `None`, no communication is performed. Optimization parameters ----------------------- fuse_wgrad_accumulation : bool, default = 'False' if set to `True`, enables fusing of creation and accumulation of the weight gradient. When enabled, it is assumed that the weights have an additional `main_grad` attribute (used instead of the regular `grad`) which is a pre-allocated buffer of the correct size to accumulate gradients in. return_bias : bool, default = `False` when set to `True`, this module will not apply the additive bias itself, but instead return the bias value during the forward pass together with the output of the linear transformation :math:`y = xA^T`. This is useful when the bias addition can be fused to subsequent operations. params_dtype : torch.dtype, default = `torch.get_default_dtype()` it controls the type used to allocate the initial parameters. Useful when the model is trained with lower precision and the original FP32 parameters would not fit in GPU memory. """ def __init__( self, in_features: int, out_features: int, eps: float = 1e-5, sequence_parallel: bool = False, fuse_wgrad_accumulation: bool = False, tp_group: Optional[dist_group_type] = None, tp_size: int = 1, get_rng_state_tracker: Optional[Callable] = None, init_method: Optional[Callable] = None, bias: bool = True, normalization: str = 'LayerNorm', return_bias: bool = False, params_dtype: Optional[torch.dtype] = None, parallel_mode: Optional[str] = None, return_layernorm_output: bool = False, skip_weight_param_allocation: bool = False, parameters_split: Optional[Tuple[str, ...]] = None, zero_centered_gamma: bool = False, ub_bulk_wgrad: bool = False, ub_bulk_dgrad: bool = False, ub_split_ag: bool = False, device: Union[torch.device, str] = "cuda", ) -> None: super().__init__() if skip_weight_param_allocation: warnings.warn( "Argument `skip_weight_param_allocation` is deprecated and" "will be fully removed in future releases. It is ignored" "starting from v0.11.", category=DeprecationWarning, ) params_dtype = torch.get_default_dtype() if params_dtype is None else params_dtype self.in_features = in_features self.out_features = out_features self.fuse_wgrad_accumulation = fuse_wgrad_accumulation self.normalization = normalization assert normalization in ['LayerNorm', 'RMSNorm'], "Unsupported normalization type!" self.use_bias = bias self.return_bias = return_bias self.apply_bias = self.use_bias and not return_bias self.return_layernorm_output = return_layernorm_output self.parameters_split = parameters_split self.zero_centered_gamma = zero_centered_gamma self.ub_bulk_wgrad = ub_bulk_wgrad self.ub_bulk_dgrad = ub_bulk_dgrad self.ub_split_ag = ub_split_ag if ub_bulk_wgrad or ub_bulk_dgrad or ub_split_ag: assert ( tex.userbuf_comm_available() ), "Userbuffer communication backend not available." if tp_group is None: self.tp_size = tp_size if tp_size == 1: self.set_tensor_parallel_group(tp_group) else: self.tp_size = get_distributed_world_size(tp_group) self.set_tensor_parallel_group(tp_group) self.set_nccl_overlap_warning_if_tp() self.parallel_mode = parallel_mode assert ( self.parallel_mode in GemmParallelModes ), f"parallel_mode {parallel_mode} not supported" if self.parallel_mode == "column": self.out_features = divide(self.out_features, self.tp_size) elif self.parallel_mode == "row": self.in_features = divide(self.in_features, self.tp_size) if init_method is None: init_method = get_default_init_method() self.sequence_parallel = (self.tp_size > 1) and sequence_parallel self.eps = eps self.layer_norm_weight = Parameter( torch.empty(in_features, device=device, dtype=params_dtype) ) setattr(self.layer_norm_weight, "sequence_parallel", self.sequence_parallel) if self.normalization != "RMSNorm": self.layer_norm_bias = Parameter( torch.empty(in_features, device=device, dtype=params_dtype) ) setattr(self.layer_norm_bias, "sequence_parallel", self.sequence_parallel) else: self.layer_norm_bias = None self.reset_layer_norm_parameters() self.weight_tensor = torch.empty( self.out_features, self.in_features, device=device, dtype=params_dtype) initialize_affine_weight_gpu( self.weight_tensor, init_method, get_rng_state_tracker, partition_dim=1 if self.parallel_mode == "row" else 0, stride=1, ) if self.use_bias: self.bias_tensor = torch.empty( self.out_features, device=device, dtype=params_dtype) else: self.bias_tensor = torch.Tensor().to(dtype=params_dtype, device=device) with torch.no_grad(): self.bias_tensor.zero_() if parameters_split is None: parameters_split = ("",) assert ( self.out_features % len(parameters_split) == 0 ), f"Weight and bias params cannot be split into {len(parameters_split)} parts" split_size = self.out_features // len(parameters_split) self.weight_names = [] self.bias_names = [] for i, pname in enumerate(parameters_split): wname = pname + "weight" bname = pname + "bias" self.register_parameter( wname, Parameter(self.weight_tensor[i * split_size : (i+1) * split_size]) ) set_tensor_model_parallel_attributes( tensor=getattr(self, wname), is_parallel=True, dim=1 if parallel_mode == "row" else 0, stride=1, ) if self.use_bias: self.register_parameter( bname, Parameter(self.bias_tensor[i * split_size : (i+1) * split_size]) ) else: setattr(self, bname, torch.Tensor().to(dtype=params_dtype, device=device)) if parallel_mode == "column": set_tensor_model_parallel_attributes(getattr(self, bname), True, 0, 1) self.weight_names.append(wname) self.bias_names.append(bname) self.fp8_weight_shapes.append(torch.Size((self.out_features, self.in_features))) # For RPL, bias has to be added after TP collectives # So it cannot be fused with the GEMM if self.parallel_mode == "row" and self.apply_bias: self.gemm_bias_unfused_add = True else: self.gemm_bias_unfused_add = False # These many SMs are subtracted from the total SM count when calling forward # and backward LayerNorm C APIs. These envvars can be used to prevent the LN # kernels from using all SMs in the device. This is useful for cases such as # communication overlap with LN. self.fwd_ln_sm_margin = int(os.getenv("NVTE_FWD_LAYERNORM_SM_MARGIN", "0")) self.bwd_ln_sm_margin = int(os.getenv("NVTE_BWD_LAYERNORM_SM_MARGIN", "0")) def reset_layer_norm_parameters(self) -> None: """Init LN params""" if not self.zero_centered_gamma: init.ones_(self.layer_norm_weight) else: init.zeros_(self.layer_norm_weight) if self.layer_norm_bias is not None: init.zeros_(self.layer_norm_bias) def get_fp8_weights_scratchpad( self, is_first_microbatch: Union[bool, None], ) -> List[torch.Tensor]: """ Fetch the fp8 weight tensor placeholders if they exist (when `is_first_microbatch` is not `None`) or return empty fp8 weight tensors (if `is_first_microbatch is None`) """ if not self.fp8: return [None, None] if is_first_microbatch is None: # Return empty weight placeholders for each fwd/bwd pass fp8_weight_tensors = self.get_fp8_weights_empty_tensors( is_first_microbatch ) else: # These persistent weight placeholders should've been created in # `set_fp8_weights` method fp8_weight_tensors = [self.weight1_fp8, self.weight1_t_fp8] return fp8_weight_tensors @no_torch_dynamo def forward( self, inp: torch.Tensor, weight: Optional[torch.Tensor] = None, bias: Optional[torch.Tensor] = None, is_first_microbatch: Optional[bool] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: """ Apply layer normalization to the input followed by a linear transformation. .. warning:: Arguments :attr:`weight` and :attr:`bias` are deprecated and will be fully removed in future releases. Parameters ---------- inp : torch.Tensor Input tensor. is_first_microbatch : {True, False, None}, default = None During training using either gradient accumulation or pipeline parallelism a minibatch of data is further split into microbatches. Between the microbatches of the same minibatch the model weights are not updated. Setting this parameter indicates whether the current microbatch is the first in a minibatch or not. When set, this parameter enables additional optimizations: * during FP8 training, it allows caching of the FP8 versions of the weights * it also allows skipping gradient accumulation during the first microbatch (since it is the first gradient being produced) """ if weight is not None or bias is not None: raise RuntimeError( "Arguments `weight` and `bias` are deprecated and " "will be fully removed in future releases." ) with self.prepare_forward(inp, is_first_microbatch) as inp: bias_tensor = ( self.bias if self.parameters_split is None else self.bias_tensor if not torch.is_grad_enabled() else self.noop_cat("bias_tensor", self.bias_names) ) weight_tensor = ( self.weight if self.parameters_split is None else self.weight_tensor if not torch.is_grad_enabled() else self.noop_cat("weight_tensor", self.weight_names) ) # Fetch the fp8 weights placeholders (for linear/gemm) weight1_fp8, weight1_t_fp8 = self.get_fp8_weights_scratchpad( is_first_microbatch ) if torch.is_grad_enabled(): fwd_fn = _LayerNormLinear.apply args = [] else: fwd_fn = _LayerNormLinear.forward args = [None] args += ( inp, self.layer_norm_weight, self.layer_norm_bias, weight_tensor, weight1_fp8, weight1_t_fp8, bias_tensor, self.apply_bias and not self.gemm_bias_unfused_add, self.eps, is_first_microbatch, self.fp8, self.fp8_calibration, self.fp8_meta, self.fuse_wgrad_accumulation, self.tp_group, self.tp_size, self.sequence_parallel, self.tp_size > 1, self.activation_dtype, self.parallel_mode, self.return_layernorm_output, torch.is_grad_enabled(), self.fwd_ln_sm_margin, self.bwd_ln_sm_margin, self.zero_centered_gamma, self.ub_bulk_wgrad, self.ub_bulk_dgrad, self.ub_split_ag, self.normalization, ) out = fwd_fn(*args) if self.return_layernorm_output: out, ln_out = out if self.gemm_bias_unfused_add: out = out + cast_if_needed(bias_tensor, self.activation_dtype) if self.return_bias: if self.return_layernorm_output: return out, cast_if_needed(bias_tensor, self.activation_dtype), ln_out return out, cast_if_needed(bias_tensor, self.activation_dtype) if self.return_layernorm_output: return out, ln_out return out
TransformerEngine-main
transformer_engine/pytorch/module/layernorm_linear.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """Base modules and utilities for TransformerEngine PyTorch API""" import io import os import pickle import warnings from abc import ABC, abstractmethod from typing import Generator, Union, Optional, Tuple, Dict, Any, List from functools import partial from contextlib import contextmanager import torch import torch.nn.functional as F from torch.nn.parameter import Parameter import transformer_engine_extensions as tex from ..export import is_in_onnx_export_mode from ..fp8 import ( get_default_fp8_recipe, get_fp8_te_dtype, FP8GlobalStateManager, amax_and_scale_update, ) from ..distributed import ( gather_along_first_dim, is_fp8_activation_recompute_enabled, in_fp8_activation_recompute_phase, ) from ..cpp_extensions import ( fp8_cast_transpose_fused, fp8_cast_transpose_bgrad_fused, cast_to_fp8, ) from ..constants import dist_group_type _2X_ACC_FPROP = False _2X_ACC_DGRAD = True _2X_ACC_WGRAD = True _cublas_workspace = None _ub_communicators = None _NUM_MAX_UB_STREAMS = 3 _amax_reduce_handle_bwd = None def get_cublas_workspace_size_bytes() -> None: """Return 32 MiB if using hopper, 4 MiB for all other architectures.""" if torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 9: return 33_554_432 return 4_194_304 def get_workspace() -> torch.Tensor: """Returns workspace for cublas.""" global _cublas_workspace if _cublas_workspace is None: _cublas_workspace = torch.empty( get_cublas_workspace_size_bytes(), dtype=torch.uint8, device="cuda" ) return _cublas_workspace @contextmanager def _prepare_backward( fp8: bool, fp8_meta: Dict[str, Any], tp_group: dist_group_type, tp_size: int, name: str = "" ) -> Generator[None, None, None]: """Checks and prep for BWD.""" if fp8: global _amax_reduce_handle_bwd if _amax_reduce_handle_bwd is not None: _amax_reduce_handle_bwd.wait() _amax_reduce_handle_bwd = None # Update amax and scale; Skip all setup for global amax reduction if not fp8_meta["recipe"].reduce_amax: amax_and_scale_update(fp8_meta, False) else: # From previous iteration FP8GlobalStateManager.copy_amax_from_global_buffer(fp8_meta, forward=False) amax_and_scale_update(fp8_meta, False) FP8GlobalStateManager.set_amax_buffer_key_deletion(fp8_meta, forward=False) # Get new backward key. fp8_meta["autocast_id_bwd"] = fp8_meta["autocast_id_fwd_stack"].pop(0) FP8GlobalStateManager.add_amax_to_global_buffer(fp8_meta, forward=False) with torch.cuda.nvtx.range(name + " backward"): yield if fp8 and fp8_meta["recipe"].reduce_amax: if fp8_meta["first_module"]: _amax_reduce_handle_bwd = FP8GlobalStateManager.global_amax_reduction( fp8_meta, tp_group, tp_size, forward=False ) FP8GlobalStateManager.delete_key_from_amax_buffer(forward=False) def initialize_ub( shape: list, tp_size: int, use_fp8: bool = False, ub_cfgs: Optional[dict] = None ) -> None: """Initialize communicators for TP comm overlap using userbuffers.""" global _ub_communicators assert _ub_communicators is None, "UB communicators are already initialized." _ub_communicators = {} rank_id = torch.distributed.get_rank() # Increase the workspace by the number of maximum concurrent streams global _cublas_workspace _cublas_workspace = get_workspace().repeat(_NUM_MAX_UB_STREAMS) # Default buffer precision: AllGather buffers use fp8 when using fp8 recipe fp8_buf = [ "qkv_fprop", "qkv_dgrad", "proj_dgrad", "fc1_fprop", "fc1_dgrad", "fc2_dgrad" ] # Default overlap methods for layers methods = { "ring_exchange":["qkv_fprop", "fc1_fprop", "proj_dgrad", "fc2_dgrad"], "pipeline":["proj_fprop", "fc2_fprop"], "bulk":["qkv_dgrad", "qkv_wgrad", "fc1_dgrad", "fc1_wgrad"], } def get_method(name): for method, names in methods.items(): if name in names: return method raise KeyError(f"Given layer name {name} does not exist.") def add_ub( name: str, method: str, num_sm: int = 16, cga_size: int = 2, set_sm_margin: int = 0, num_splits: int = 4, aggregate: int = 0, ) -> None: dtype = torch.uint8 if (use_fp8 and name in fp8_buf) else torch.bfloat16 sample_buffer = torch.empty(shape, dtype=dtype, device='cuda') if method == 'ring_exchange': ub_obj = tex.UbufP2PCommOverlap( sample_buffer, # Sample userbuffer rank_id, # Rank id tp_size, # TP size aggregate, # Aggregate 2X GEMM chunks _NUM_MAX_UB_STREAMS, # Max concurrent GEMM streams ) else: ub_obj = tex.UbufCommOverlap( sample_buffer, # Sample userbuffer rank_id, # Rank id tp_size, # TP size num_sm, # Number of communication SMs cga_size, # CGA cluster size num_splits, # Number of communication splits set_sm_margin, # Set SM margin _NUM_MAX_UB_STREAMS, # Max concurrent GEMM streams ) _ub_communicators[name] = ub_obj for name in (methods["ring_exchange"]+methods["pipeline"]+methods["bulk"]): if ub_cfgs is not None and name in ub_cfgs: ub_cfg = ub_cfgs[name] method = ub_cfg["method"] if "method" in ub_cfg else get_method(name) num_sm = ub_cfg["num_sm"] if "num_sm" in ub_cfg else 16 cga_size = ub_cfg["cga_size"] if "cga_size" in ub_cfg else 2 num_splits = ub_cfg["num_splits"] if "num_splits" in ub_cfg else 0 set_sm_margin = ub_cfg["set_sm_margin"] if "set_sm_margin" in ub_cfg else 0 aggregate = ub_cfg["aggregate"] if "aggregate" in ub_cfg else 0 add_ub( name, method, num_sm, cga_size, set_sm_margin, num_splits, aggregate ) else: method = get_method(name) if method == "pipeline": add_ub(name, method) else: add_ub(name, method, num_splits=0) def get_ub(name: str): """Get userbuffer communicator corresponding to give key.""" global _ub_communicators assert _ub_communicators is not None, "UB manager is not initialized." assert name in _ub_communicators, f"UB for {name} is not registered." return _ub_communicators[name] class _NoopCat(torch.autograd.Function): """This class is a no-op replacement for `torch.cat`.""" @staticmethod def forward(ctx, full_param_buffer: torch.Tensor, *params_split: Tuple[torch.Tensor, ...], ) -> torch.Tensor: assert not full_param_buffer.requires_grad, "Buffers should not require gradient" assert ( full_param_buffer.shape[0] % len(params_split) == 0 ), "Dimensions not compatible for concatenation" param_temp = full_param_buffer.new() param_temp.set_(full_param_buffer.storage(), full_param_buffer.storage_offset(), full_param_buffer.size(), full_param_buffer.stride()) param_temp.requires_grad = True ctx.save_for_backward(full_param_buffer, *params_split) return param_temp @staticmethod def backward(ctx, grad_output: torch.Tensor) -> Tuple[Union[torch.Tensor, None], ...]: full_param_buffer, *params_split = ctx.saved_tensors split_size = full_param_buffer.shape[0] // len(params_split) grads = [] for i, _ in enumerate(params_split): grads.append(grad_output[i * split_size : (i+1) * split_size]) return None, *grads class TransformerEngineBaseModule(torch.nn.Module, ABC): """Base TE module.""" def __init__(self) -> None: super().__init__() assert torch.cuda.is_available(), "TransformerEngine needs CUDA." self.fp8_initialized = False self.fp8 = False self.fp8_calibration = False self.fp8_meta = {} self.fp8_meta["fp8_checkpoint"] = False self.fp8_meta["fp8_group"] = None self.fp8_meta["recipe"] = get_default_fp8_recipe() self.fp8_meta_tensors_initialized = False self.tp_group = None self.tp_size = 1 self.sequence_parallel = False self.fp8_weight_shapes = [] self.fp8_meta["autocast_id_fwd_stack"] = [] self.fp8_meta["async_amax_reduction"] = bool( int(os.getenv("NVTE_ASYNC_AMAX_REDUCTION", "0")) ) def set_meta_tensor(self, fwd: bool) -> None: """Init scales and amaxes for fwd | bwd.""" fp8_meta_tensor_key = "scaling_fwd" if fwd else "scaling_bwd" if self.fp8_meta_tensors_initialized: # Handle changed amax history size. curr_len = self.fp8_meta[fp8_meta_tensor_key].amax_history.shape[0] need_len = self.fp8_meta["recipe"].amax_history_len if need_len < curr_len: self.fp8_meta[fp8_meta_tensor_key].amax_history = ( self.fp8_meta[fp8_meta_tensor_key] .amax_history[: self.fp8_meta["recipe"].amax_history_len].clone() ) elif need_len > curr_len: extra_rows = need_len - curr_len self.fp8_meta[fp8_meta_tensor_key].amax_history = F.pad( self.fp8_meta[fp8_meta_tensor_key].amax_history, pad=(0, 0, 0, extra_rows) ) return # Max. number of fp8 tensors per GEMM = 3 (input, weight, output) for fwd and # 2 (grad_output and grad_input) for bwd num_fp8_tensors = ( self.fp8_meta["num_gemms"] * 3 if fwd else self.fp8_meta["num_gemms"] * 2 ) self.fp8_meta[fp8_meta_tensor_key] = tex.FP8TensorMeta() self.fp8_meta[fp8_meta_tensor_key].scale = torch.ones( num_fp8_tensors, dtype=torch.float32, device="cuda" ) self.fp8_meta[fp8_meta_tensor_key].scale_inv = torch.ones( num_fp8_tensors, dtype=torch.float32, device="cuda" ) self.fp8_meta[fp8_meta_tensor_key].amax_history = torch.zeros( self.fp8_meta["recipe"].amax_history_len, num_fp8_tensors, dtype=torch.float32, device="cuda", ) # Needed for calculation of scale inverses to # preserve scale_inv when caching FP8 weights if fwd: # [True, False, True]: -> [input, weight, output] self.fp8_meta[fp8_meta_tensor_key + "_non_weight_mask"] = torch.BoolTensor( [True, False, True] * self.fp8_meta["num_gemms"] ).cuda() else: # [True, True]: -> [grad_output, grad_input] self.fp8_meta[fp8_meta_tensor_key + "_non_weight_mask"] = torch.BoolTensor( [True, True] * self.fp8_meta["num_gemms"] ).cuda() def init_fp8_meta_tensors(self) -> None: """Init scales and amaxes.""" self.set_meta_tensor(True) self.set_meta_tensor(False) self.fp8_meta_tensors_initialized = True def get_extra_state(self) -> torch.Tensor: """Save before checkpointing.""" state = None # Maintain backward compatibility. fp8_checkpoint = "fp8_checkpoint" in self.fp8_meta and self.fp8_meta["fp8_checkpoint"] fp8_checkpoint = fp8_checkpoint or self.fp8 or self.fp8_calibration if fp8_checkpoint: state = {} state["scale_fwd"] = self.fp8_meta["scaling_fwd"].scale state["scale_inv_fwd"] = self.fp8_meta["scaling_fwd"].scale_inv state["amax_history_fwd"] = self.fp8_meta["scaling_fwd"].amax_history state["scale_bwd"] = self.fp8_meta["scaling_bwd"].scale state["scale_inv_bwd"] = self.fp8_meta["scaling_bwd"].scale_inv state["amax_history_bwd"] = self.fp8_meta["scaling_bwd"].amax_history state["global_fp8_buffer"] = FP8GlobalStateManager.get_global_fp8_buffer_checkpoint() state["global_fp8_state"] = FP8GlobalStateManager.get_global_fp8_state_checkpoint() # Store other pickelable values. extra = {} for k, v in self.fp8_meta.items(): if isinstance(v, (bool, int, float, str, list)): extra[k] = v state["extra_fp8_variables"] = extra if is_in_onnx_export_mode(): state_serialized = torch.frombuffer(pickle.dumps(state), dtype=torch.uint8) else: state_serialized = io.BytesIO() torch.save(state, state_serialized) return state_serialized def set_extra_state(self, state: torch.Tensor) -> None: """Load previous state.""" if state is None: return # Maintain backward compatibility with v0.2.0 and older. if isinstance(state, list): warnings.warn( "This checkpoint format is deprecated and will be" "removed in a future release of Transformer Engine" ) # Retrieve checkpointed items. scale_fwd = state[0] amax_history_fwd = state[1] scale_bwd = state[2] amax_history_bwd = state[3] self.fp8_meta["recipe"].amax_history_len = amax_history_fwd.shape[0] self.fp8_meta["num_gemms"] = ( amax_history_fwd.shape[1] // 2 ) # Two FWD tensors per GEMM # Initialize before loading self.init_fp8_meta_tensors() self.fp8_meta["scaling_fwd"].scale.copy_(scale_fwd) self.fp8_meta["scaling_fwd"].amax_history.copy_(amax_history_fwd) self.fp8_meta["scaling_bwd"].scale.copy_(scale_bwd) self.fp8_meta["scaling_bwd"].amax_history.copy_(amax_history_bwd) # Restore global FP8 buffer state. FP8GlobalStateManager.set_global_fp8_buffer_checkpoint(state[4]) self.fp8_meta["update_amax_and_scale_fwd"] = state[5] self.fp8_meta["global_fp8_buffer_pos_fwd"] = state[6] self.fp8_meta["global_fp8_buffer_pos_bwd"] = state[7] self.fp8_meta["autocast_id_fwd"] = state[8] self.fp8_meta["autocast_id_bwd"] = state[9] return if isinstance(state, torch.Tensor): state = pickle.loads(state.detach().cpu().numpy().tobytes()) elif isinstance(state, io.BytesIO): state.seek(0) state = torch.load(state, map_location='cuda') if state is None: return # Restore global FP8 amax buffer. FP8GlobalStateManager.set_global_fp8_buffer_checkpoint(state["global_fp8_buffer"]) # Restore global FP8 state. if "global_fp8_state" in state: FP8GlobalStateManager.set_global_fp8_state_checkpoint(state["global_fp8_state"]) else: warnings.warn( "This checkpoint format is deprecated and will be" "removed in a future release of Transformer Engine" ) # Load extra items. self.fp8_meta.update(state["extra_fp8_variables"]) self.fp8_meta["recipe"].amax_history_len = state["amax_history_fwd"].shape[0] if "global_fp8_buffer_pos_fwd_recompute" in self.fp8_meta: del self.fp8_meta["global_fp8_buffer_pos_fwd_recompute"] # Initialize before loading. self.init_fp8_meta_tensors() self.fp8_meta["scaling_fwd"].scale.copy_(state["scale_fwd"]) self.fp8_meta["scaling_fwd"].amax_history.copy_(state["amax_history_fwd"]) self.fp8_meta["scaling_bwd"].scale.copy_(state["scale_bwd"]) self.fp8_meta["scaling_bwd"].amax_history.copy_(state["amax_history_bwd"]) # Backwards compatibility: compute scale inv if it wasn't saved in the extra state. if "scale_inv_fwd" not in state or "scale_inv_bwd" not in state: assert ( "scale_inv_fwd" not in state and "scale_inv_bwd" not in state ), "Invalid state, began saving scale_inv_fwd and scale_inv_bwd at the same time" self.fp8_meta["scaling_fwd"].scale_inv.copy_(1.0/state["scale_fwd"]) self.fp8_meta["scaling_bwd"].scale_inv.copy_(1.0/state["scale_bwd"]) else: self.fp8_meta["scaling_fwd"].scale_inv.copy_(state["scale_inv_fwd"]) self.fp8_meta["scaling_bwd"].scale_inv.copy_(state["scale_inv_bwd"]) def set_activation_dtype(self, inp: torch.Tensor) -> None: """Get activation data type for AMP.""" # Native AMP (`torch.autocast`) gets highest priority if torch.is_autocast_enabled(): self.activation_dtype = torch.get_autocast_gpu_dtype() return # All checks after this have already been performed once, thus skip # We assume that user doesn't change input types across iterations if hasattr(self, "activation_dtype"): return dtype = inp.dtype for name, param in self.named_parameters(): if param is not None: assert dtype == param.dtype, ( "Data types for parameters must match when outside of autocasted region. " f" Found input dtype: {dtype} and {name!r} dtype: {param.dtype}" ) for name, buf in self.named_buffers(): if buf is not None: assert dtype == buf.dtype, ( "Data types for buffers must match when outside of autocasted region. " f" Found input dtype: {dtype} and {name!r} dtype: {buf.dtype}" ) self.activation_dtype = dtype def set_fp8_weights(self) -> None: """Initializes FP8 weights for the module as class attributes. These are not parameters or buffers since we do not want functions such as `.to(dtype)` or `.to(device)` to effect them. These also do not need to be checkpointed. During `init` phase of the module, the attribute `fp8_weight_shapes` must be populated with the tensor shapes for FP8 weights. This function will iterate over those shapes and initialize respective attributed named `weight1_fp8`, `weight2_fp8`, ... """ if not self.fp8: return for i, shape in enumerate(self.fp8_weight_shapes, start=1): weight_cast_attr = f"weight{i}_fp8" weight_transpose_attr = f"weight{i}_t_fp8" if ( hasattr(self, weight_cast_attr) and getattr(self, weight_cast_attr).shape == shape ): return setattr( self, weight_cast_attr, torch.empty( shape, device=torch.cuda.current_device(), dtype=torch.uint8, ), ) setattr( self, weight_transpose_attr, torch.empty( shape[1], shape[0], device=torch.cuda.current_device(), dtype=torch.uint8, ), ) def set_tensor_parallel_group(self, tp_group: Union[dist_group_type, None]) -> None: """Set TP group.""" self.tp_group = tp_group self.tp_group_initialized = True # This routine is shared across FP8 and FP8_calibration paths so should not actually # assume FP8 execution. def fp8_init(self, num_gemms: int = 1) -> None: """Initialize fp8 related metadata and tensors during fprop.""" self.fp8 = FP8GlobalStateManager.is_fp8_enabled() self.fp8_calibration = FP8GlobalStateManager.is_fp8_calibration() self.fp8_meta["fp8_checkpoint"] = self.fp8 or self.fp8_calibration if self.fp8 or self.fp8_calibration: # FP8 init has already been run and recipe is the same, don't do anything. if (self.fp8_initialized and FP8GlobalStateManager.get_fp8_recipe() == self.fp8_meta["recipe"]): return # Set FP8, recipe, and other FP8 metadata self.fp8_meta["recipe"] = FP8GlobalStateManager.get_fp8_recipe() self.fp8_meta["num_gemms"] = num_gemms self.fp8_meta["fp8_group"] = FP8GlobalStateManager.get_fp8_group() # Set FP8_MAX per tensor according to recipe self.fp8_meta["fp8_max_fwd"] = self.fp8_meta["recipe"].fp8_format.value.max_fwd self.fp8_meta["fp8_max_bwd"] = self.fp8_meta["recipe"].fp8_format.value.max_bwd # Allocate scales and amaxes self.init_fp8_meta_tensors() self.fp8_initialized = True else: # If fp8 isn't enabled, turn off and return. self.fp8_initialized = False return @contextmanager def prepare_forward( self, inp: torch.Tensor, is_first_microbatch: Union[bool, None], num_gemms: int = 1, ) -> Generator[torch.Tensor, None, None]: """Checks and prep for FWD. The context manager is needed because there isn't a way for a module to know if it's the last FP8 module in the forward autocast. It is useful to setup the forward aggregated amax reduction for every module just in case. The autocast exit will pick up the most recent one. """ # Activation recomputation is used and this is the second forward phase. if self.fp8 and in_fp8_activation_recompute_phase(): FP8GlobalStateManager.get_old_fp8_meta_tensors_for_recompute(self.fp8_meta) else: assert inp.is_cuda, "TransformerEngine needs CUDA." if self.tp_size > 1: assert self.tp_group_initialized, "TP group not initialized." self.set_activation_dtype(inp) self.fp8_init(num_gemms=num_gemms) # Create persistent tensors for fp8 weights and their transposes # only when fp8 weight caching is used. if is_first_microbatch is not None: self.set_fp8_weights() update_weight_scale_inv = is_first_microbatch is None or is_first_microbatch if self.fp8 and self.sequence_parallel: assert self.fp8_meta["recipe"].reduce_amax, \ "Amax reduction across tensor parallel group is " \ "necessary when using sequence parallelism with FP8." # Previous iteration was grad_enabled if self.fp8_meta.get("update_amax_and_scale_fwd", False): if self.fp8_meta["recipe"].reduce_amax: FP8GlobalStateManager.copy_amax_from_global_buffer(self.fp8_meta, forward=True) amax_and_scale_update( self.fp8_meta, True, update_weight_scale_inv=update_weight_scale_inv ) FP8GlobalStateManager.set_amax_buffer_key_deletion(self.fp8_meta, forward=True) else: amax_and_scale_update( self.fp8_meta, True, update_weight_scale_inv=update_weight_scale_inv ) if self.fp8 and self.training: # Setup for amax reduction if self.fp8_meta["recipe"].reduce_amax: self.fp8_meta["first_module"] = FP8GlobalStateManager.is_first_fp8_module() if self.fp8_meta["first_module"]: # Wait for the prior AMAX reduction to finish amax_reduce_handle_fwd = FP8GlobalStateManager.get_amax_reduce_handle_fwd() if amax_reduce_handle_fwd is not None: amax_reduce_handle_fwd.wait() self.fp8_meta["autocast_id_fwd"] = ( FP8GlobalStateManager.new_fp8_context_id()) FP8GlobalStateManager.set_fp8_context_id(self.fp8_meta["autocast_id_fwd"]) else: self.fp8_meta["autocast_id_fwd"] = ( FP8GlobalStateManager.get_fp8_context_id()) self.fp8_meta["autocast_id_fwd_stack"].append( self.fp8_meta["autocast_id_fwd"] ) FP8GlobalStateManager.add_amax_to_global_buffer(self.fp8_meta, forward=True) self.fp8_meta["update_amax_and_scale_fwd"] = True else: self.fp8_meta["update_amax_and_scale_fwd"] = False # Activation recomputation is used and this is the first forward phase. if ( self.fp8 and self.training and is_fp8_activation_recompute_enabled() and not in_fp8_activation_recompute_phase() ): FP8GlobalStateManager.copy_forward_fp8_meta_tensors_for_recompute(self.fp8_meta) with torch.cuda.nvtx.range(self.__class__.__name__ + " forward"): yield inp.contiguous() if self.fp8 and in_fp8_activation_recompute_phase(): FP8GlobalStateManager.restore_fp8_meta_tensors(self.fp8_meta) return if self.fp8 and self.training and self.fp8_meta["recipe"].reduce_amax: FP8GlobalStateManager.set_fp8_context_id(self.fp8_meta["autocast_id_fwd"]) reduce_func = partial( FP8GlobalStateManager.global_amax_reduction, self.fp8_meta, self.tp_group, self.tp_size, forward=True ) FP8GlobalStateManager.setup_amax_forward_global_reduce_func(reduce_func) def set_nccl_overlap_warning_if_tp(self) -> None: """When using TP, the NCCL communication needs to be scheduled before the GEMM for there to be a guaranteed overlap. From the host side in TE, the comm calls are always launched first, but to ensure that the GEMM isn't scheduled first, the environment variable `CUDA_DEVICE_MAX_CONNECTIONS` needs to be set to 1 to force a single channel. """ if self.tp_size == 1: return num_cuda_work_queues = int(os.getenv("CUDA_DEVICE_MAX_CONNECTIONS", "0")) if num_cuda_work_queues != 1: warnings.warn( "To guarantee overlapping TP and SP collectives with the backward" "GEMMs, set environment variable CUDA_DEVICE_MAX_CONNECTIONS = 1" ) @staticmethod def grad_output_preprocess( ctx, grad_output: torch.Tensor, row_parallel_mode: bool ) -> Tuple[Union[torch.Tensor, None], ...]: """Utility function for backward. Returns tuple in order (all optional/None based on training precion/recipe): R1: gathered `grad_output` in higher precision. R2: gathered `grad_output` in FP8. R3: R2 transposed. R4: bias gradient on R1. """ grad_output = grad_output.contiguous() grad_output_mat = grad_output.view((-1, grad_output.shape[-1])) gather_grad_output = row_parallel_mode and ctx.sequence_parallel # No-FP8 case: bgrad is fused with wgrad for this case. if not ctx.fp8: if gather_grad_output: if not ctx.ub_split_ag: grad_output_mat, _ = gather_along_first_dim( grad_output_mat, ctx.tp_group ) else: ctx.ub_obj_gradout.copy_input_to_ubuf(grad_output, True) grad_output_mat = ctx.ub_obj_gradout.get_ubuf_output(1) return grad_output_mat, None, None, None fp8_dtype_backward = get_fp8_te_dtype( ctx.fp8_meta["recipe"], fprop_tensor=False ) # FP8 case with non-FP8 wgrad if ( gather_grad_output and ctx.fp8_meta["recipe"].override_linear_precision.wgrad ): assert ( not ctx.ub_split_ag ), "override_linear_precision.wgrad not supported with ub_split_ag" grad_output_mat, _ = gather_along_first_dim(grad_output_mat, ctx.tp_group) # FP8 case with gather: unfused bgrad, cast, transpose for efficient gather elif gather_grad_output: if ctx.use_bias: grad_bias = grad_output_mat.sum(dim=0) else: grad_bias = None if ctx.ub_split_ag: grad_output_c = ctx.ub_obj_gradout.get_ubuf_output(0) else: grad_output_c = torch.empty_like(grad_output_mat, dtype=torch.uint8) cast_to_fp8( grad_output_mat, ctx.fp8_meta["scaling_bwd"], tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, out=grad_output_c, ) if not ctx.ub_split_ag: grad_output_c, _ = gather_along_first_dim(grad_output_c, ctx.tp_group) grad_output_t = tex.fp8_transpose(grad_output_c, fp8_dtype_backward) else: grad_output_c = ctx.ub_obj_gradout.get_ubuf_output(1) grad_output_t = None return grad_output_mat, grad_output_c, grad_output_t, grad_bias # FP8 case without gather: cast, transpose, bgrad fused if ctx.use_bias: grad_bias, grad_output_c, grad_output_t = fp8_cast_transpose_bgrad_fused( grad_output_mat, ctx.fp8_meta["scaling_bwd"], tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, ) else: if not ctx.fp8_meta["recipe"].override_linear_precision.wgrad: grad_output_c, grad_output_t = fp8_cast_transpose_fused( grad_output_mat, ctx.fp8_meta["scaling_bwd"], tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, ) else: grad_output_t = None grad_output_c = cast_to_fp8( grad_output_mat, ctx.fp8_meta["scaling_bwd"], tex.FP8BwdTensors.GRAD_OUTPUT1, fp8_dtype_backward, ) grad_bias = None return grad_output_mat, grad_output_c, grad_output_t, grad_bias def noop_cat(self, buffer_name: str, pnames: List[str]) -> torch.Tensor: """No-op replacement of `torch.cat`. The buffer and split parameters must occupy the same memory region. If this is not the case, then the split parameters are concatenated and the buffer is overwritten. The parameters' memory is then re-assigned to point to the buffer to avoid subsequent concatenations. """ assert hasattr(self, buffer_name), f"No buffer named {buffer_name}" full_param_buffer = getattr(self, buffer_name) split_size = full_param_buffer.shape[0] // len(pnames) params = [getattr(self, name) for name in pnames] for i, p in enumerate(params): if p.data.data_ptr() != full_param_buffer[i*split_size : (i+1)*split_size].data_ptr(): with torch.no_grad(): setattr(self, buffer_name, torch.cat(params)) for j, pname in enumerate(pnames): full_param_buffer = getattr(self, buffer_name) setattr(self, pname, Parameter(full_param_buffer[j*split_size : (j+1)*split_size])) break return _NoopCat.apply(getattr(self, buffer_name), *[getattr(self, name) for name in pnames]) def get_fp8_weights_empty_tensors( self, is_first_microbatch: Union[bool, None], ) -> List[torch.Tensor]: """ Returns empty tensors to be later used to store fp8 version of weights and their transposes (for the bwd pass) for this batch (or microbatch). When `is_first_microbatch` is `None`, this is especially useful since we then don't need to store the fp8 weights that are needed for one time only in the forward pass. Note that we still need to store the tensor for the fp8 weight transpose which is at least needed in the backward pass but that's taken care of by storing the transpose tensor in `ctx.save_for_backward`. """ assert is_first_microbatch is None, "Should only be here when "\ "`is_first_microbatch` is None!" fp8_weight_tensors = [] for shape in self.fp8_weight_shapes: fp8_weight_tensors.append( torch.empty( shape, device=torch.cuda.current_device(), dtype=torch.uint8, ) ) fp8_weight_tensors.append( torch.empty( shape[1], shape[0], device=torch.cuda.current_device(), dtype=torch.uint8, ) ) return fp8_weight_tensors @abstractmethod def forward(self): """Needs override.""" @abstractmethod def get_fp8_weights_scratchpad( self, is_first_microbatch: Union[bool, None], ) -> List[torch.Tensor]: """Needs override."""
TransformerEngine-main
transformer_engine/pytorch/module/base.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """ Sharding Meta for xmap with CustomCall """ from contextlib import contextmanager from dataclasses import dataclass from enum import Enum from itertools import repeat from typing import Union, Tuple, Dict, Callable, Sequence from jax.interpreters import pxla import jax import jax.numpy as jnp from jax.experimental.maps import xmap from jax.sharding import PartitionSpec jax.config.update('experimental_xmap_spmd_lowering', True) jax.config.update('experimental_xmap_spmd_lowering_manual', True) _PXLA_THREAD_RESOURCES = pxla.thread_resources def _get_mesh_info(resource: str): mesh = _PXLA_THREAD_RESOURCES.env.physical_mesh assert resource in mesh.axis_names, \ f"{resource} is not in the axis_names of Mesh {mesh}." return mesh.shape[resource], resource def with_sharding_constraint(x: jnp.array, pspec: PartitionSpec): """ A wrapper function to jax.lax.with_sharding_constraint to support the case that Mesh is empty. """ mesh = _PXLA_THREAD_RESOURCES.env.physical_mesh if mesh.empty: return x return jax.lax.with_sharding_constraint(x, pspec) @dataclass class ShardingResource: """ A data container to indicate which axis in Mesh for data parallelism and which for tensor parallelism. Parameters ---------- dp_resource : str, default = None The axis name in Mesh used to shard batches along. If it is None, then data parallelism is disabled. tp_resource : str, default = None The axis name in Mesh used to split the hidden dimensions along. If it is None, then tensor parallelism is disabled. """ dp_resource: str = None tp_resource: str = None fsdp_resource: str = None _GLOBAL_SHARD_RESOURCE = ShardingResource() @contextmanager def global_shard_guard(resource: ShardingResource): """ A context manager to switch the global ShardingResource """ global _GLOBAL_SHARD_RESOURCE prev_gsr = _GLOBAL_SHARD_RESOURCE try: _GLOBAL_SHARD_RESOURCE = resource yield finally: _GLOBAL_SHARD_RESOURCE = prev_gsr def global_shard_resource() -> ShardingResource: """ A getter of the global ShardingResource """ return _GLOBAL_SHARD_RESOURCE class MajorShardingType(Enum): r""" The major sharding type to indicate sharding pattern. Values ---------- SINGLE: Single process training. DP: Data parallel training. TP: Standard tensor parallel training. DPTP: Data and Standard tensor parallel training. """ SINGLE = 0 DP = 1 TP = 2 DPTP = 3 class ShardingType(Enum): """ The sharding type to indicate sharding pattern. Values ---------- SINGLE: No sharding. DP: Sharding along data parallelism. TP_COL: Sharding along column-split tensor parallelism. TP_ROW: Sharding along row-split tensor parallelism. DP_TP_COL: Sharding along data and column-split tensor parallelism. DP_TP_ROW: Sharding along data and row-split tensor parallelism. """ SINGLE = (MajorShardingType.SINGLE, "single") DP = (MajorShardingType.DP, "dp") TP_COL = (MajorShardingType.TP, "tp_col") TP_ROW = (MajorShardingType.TP, "tp_row") DP_TP_COL = (MajorShardingType.DPTP, "dp_tp_col") DP_TP_ROW = (MajorShardingType.DPTP, "dp_tp_row") def infer_major_sharding_type() -> MajorShardingType: """ Infer MajorShardingType from _GLOBAL_SHARD_RESOURCE """ gsr = global_shard_resource() resources = [gsr.dp_resource, gsr.tp_resource, gsr.fsdp_resource] for idx, rs in enumerate(resources): try: size, _ = _get_mesh_info(rs) if size <= 1: resources[idx] = None except AssertionError as _: resources[idx] = None dp_resource = resources[0] tp_resource = resources[1] fsdp_resource = resources[2] def dp_enabled(): return (fsdp_resource is not None) or (dp_resource is not None) if dp_enabled() and tp_resource is not None: return MajorShardingType.DPTP if dp_enabled(): return MajorShardingType.DP if tp_resource is not None: return MajorShardingType.TP return MajorShardingType.SINGLE def infer_sharding_type(major_st: MajorShardingType = None) -> Tuple[ShardingType, ShardingType]: """ Infer ShardingType via given MajorShardingType """ if major_st is None: major_st = infer_major_sharding_type() if major_st is MajorShardingType.DP: return ShardingType.DP, ShardingType.DP if major_st is MajorShardingType.TP: return ShardingType.TP_COL, ShardingType.TP_ROW if major_st is MajorShardingType.DPTP: return ShardingType.DP_TP_COL, ShardingType.DP_TP_ROW return ShardingType.SINGLE, ShardingType.SINGLE def is_dp_enabled(mst: MajorShardingType) -> bool: """ is_dp_enabled """ return mst in (MajorShardingType.DP, MajorShardingType.DPTP) def is_tp_enabled(mst: MajorShardingType) -> bool: """ is_tp_enabled """ return mst in (MajorShardingType.TP, MajorShardingType.DPTP) def merge_axis_resources(ars: Tuple[Dict]) -> Dict: """ merge_axis_resources """ output = {} for ar in ars: for key in ar: if key not in output: output[key] = ar[key] else: assert output[key] == ar[key] return output @dataclass class ShardingMeta: """ShardingMeta""" in_axes: Union[Dict, Tuple[str, ...], Tuple[Union[Dict, Tuple], ...]] out_axes: Union[Dict, Tuple[str, ...], Tuple[Union[Dict, Tuple], ...]] axis_resources: Dict input_shapes: Tuple[Tuple[int, ...]] output_shapes: Tuple[Tuple[int, ...]] class ShardingMetaGenerator: """ ShardingMetaGenerator """ def __init__(self): def get_single_sharding_meta(*argv, **kwargs) -> ShardingMeta: # pylint: disable=unused-argument return None self.sharding_type_meta_map = { ShardingType.SINGLE: get_single_sharding_meta, ShardingType.DP: self.get_dp_sharding_meta, ShardingType.TP_COL: self.get_tp_col_sharding_meta, ShardingType.TP_ROW: self.get_tp_row_sharding_meta, ShardingType.DP_TP_COL: self.get_dp_tp_col_sharding_meta, ShardingType.DP_TP_ROW: self.get_dp_tp_row_sharding_meta } def get_sharding_meta(self, stype: ShardingType, *argv, **kwargs) -> ShardingMeta: """get_sharding_meta""" return self.sharding_type_meta_map[stype](*argv, **kwargs) def get_dp_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_dp_sharding_meta""" raise NotImplementedError def get_tp_col_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_tp_col_sharding_meta""" raise NotImplementedError def get_tp_row_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_tp_row_sharding_meta""" raise NotImplementedError def get_dp_tp_col_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_dp_tp_col_sharding_meta""" raise NotImplementedError def get_dp_tp_row_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_dp_tp_row_sharding_meta""" raise NotImplementedError class FP8MetaShardingMetaGenerator(ShardingMetaGenerator): """ FP8MetaShardingMetaGenerator """ def get_dp_sharding_meta(self, num_of_meta: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: return FP8MetaShardingMetaGenerator._generate_sharding_meta(MajorShardingType.DP, num_of_meta, dp_axis_name, tp_axis_name) def get_tp_col_sharding_meta(self, num_of_meta: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: return FP8MetaShardingMetaGenerator._generate_sharding_meta(MajorShardingType.TP, num_of_meta, dp_axis_name, tp_axis_name) def get_tp_row_sharding_meta(self, num_of_meta: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: return FP8MetaShardingMetaGenerator._generate_sharding_meta(MajorShardingType.TP, num_of_meta, dp_axis_name, tp_axis_name) def get_dp_tp_col_sharding_meta(self, num_of_meta: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: return FP8MetaShardingMetaGenerator._generate_sharding_meta(MajorShardingType.DPTP, num_of_meta, dp_axis_name, tp_axis_name) def get_dp_tp_row_sharding_meta(self, num_of_meta: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: return FP8MetaShardingMetaGenerator._generate_sharding_meta(MajorShardingType.DPTP, num_of_meta, dp_axis_name, tp_axis_name) @staticmethod def _stack_axes_meta(num_of_meta: int, mapping: Dict) -> Tuple: return tuple(mapping for _ in range(num_of_meta)) @staticmethod def _generate_sharding_meta(type_: MajorShardingType, num_of_meta: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: axis_resource = {} if is_dp_enabled(type_): axis_resource[dp_axis_name] = global_shard_resource().dp_resource if is_tp_enabled(type_): axis_resource[tp_axis_name] = global_shard_resource().tp_resource return ShardingMeta(FP8MetaShardingMetaGenerator._stack_axes_meta(num_of_meta, {}), FP8MetaShardingMetaGenerator._stack_axes_meta(num_of_meta, {}), axis_resource, (), ()) class FusedAttnShardingMetaGenerator(ShardingMetaGenerator): """ FusedAttnShardingMetaGenerator """ def get_dp_sharding_meta( self, input_shapes: Tuple[Tuple[int, ...]], output_shapes: Tuple[Tuple[int, ...]], dp_dims: Tuple[Tuple[int, ...]], tp_dims: Tuple[Tuple[int, ...]], # pylint: disable=unused-argument dp_axis_name: str = 'data', tp_axis_name: str = 'model' # pylint: disable=unused-argument ) -> ShardingMeta: """get_dp_sharding_meta""" dummy_tp_dims = [repeat(None), repeat(None)] return FusedAttnShardingMetaGenerator._get_dptp_sharding_meta(input_shapes, output_shapes, dp_dims, dummy_tp_dims, dp_axis_name, None) def get_tp_col_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_tp_col_sharding_meta""" return FusedAttnShardingMetaGenerator._get_tp_sharding_meta(*argv, **kwargs) def get_tp_row_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_tp_row_sharding_meta""" return FusedAttnShardingMetaGenerator._get_tp_sharding_meta(*argv, **kwargs) def get_dp_tp_col_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_dp_tp_col_sharding_meta""" return FusedAttnShardingMetaGenerator._get_dptp_sharding_meta(*argv, **kwargs) def get_dp_tp_row_sharding_meta(self, *argv, **kwargs) -> ShardingMeta: """get_dp_tp_row_sharding_meta""" return FusedAttnShardingMetaGenerator._get_dptp_sharding_meta(*argv, **kwargs) @staticmethod def _get_tp_sharding_meta( input_shapes: Tuple[Tuple[int, ...]], output_shapes: Tuple[Tuple[int, ...]], dp_dims: Tuple[Tuple[int, ...]], # pylint: disable=unused-argument tp_dims: Tuple[Tuple[int, ...]], dp_axis_name: str = 'data', # pylint: disable=unused-argument tp_axis_name: str = 'model') -> ShardingMeta: """get_tp_sharding_meta""" dummy_dp_dims = [repeat(None), repeat(None)] return FusedAttnShardingMetaGenerator._get_dptp_sharding_meta(input_shapes, output_shapes, dummy_dp_dims, tp_dims, None, tp_axis_name) @staticmethod def _get_dptp_sharding_meta(input_shapes: Tuple[Tuple[int, ...]], output_shapes: Tuple[Tuple[int, ...]], dp_dims: Tuple[Tuple[int, ...]], tp_dims: Tuple[Tuple[int, ...]], dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_dp_tp_sharding_meta""" dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) input_dp_dims, output_dp_dims = dp_dims input_tp_dims, output_tp_dims = tp_dims input_new_shapes = [] in_axes = [] for input_shape, dp_dim, tp_dim in zip(input_shapes, input_dp_dims, input_tp_dims): in_axis = {} if dp_dim is not None and input_shape is not None: in_axis[dp_dim] = dp_axis_name assert input_shape[dp_dim] % dp_size == 0, \ f"The dimension of batch in input_shape should be a multiple of " \ f"data parallelism size, but got {input_shape[dp_dim]=} and {dp_size=}." input_shape = (*input_shape[:dp_dim], dp_size, input_shape[dp_dim] // dp_size, *input_shape[dp_dim + 1:]) # the input shape has been expanded for dp_dim, tp_dim should +1 if tp_dim >= dp_dim if tp_dim is not None and tp_dim >= dp_dim: tp_dim = tp_dim + 1 if tp_dim is not None and input_shape is not None: in_axis[tp_dim] = tp_axis_name assert input_shape[tp_dim] % tp_size == 0, \ f"The dimension of tensor parallel in input_shape should be a multiple of " \ f"tensor parallelism size, but got {input_shape[tp_dim]=} and {tp_size=}." input_shape = (*input_shape[:tp_dim], tp_size, input_shape[tp_dim] // tp_size, *input_shape[tp_dim + 1:]) in_axes.append(in_axis) input_new_shapes.append(input_shape) output_new_shapes = output_shapes out_axes = [] for dp_dim, tp_dim in zip(output_dp_dims, output_tp_dims): out_axis = {} if dp_dim is not None: out_axis[dp_dim] = dp_axis_name if tp_dim is not None and tp_dim >= dp_dim: tp_dim = tp_dim + 1 if tp_dim is not None: out_axis[tp_dim] = tp_axis_name out_axes.append(out_axis) assert len(out_axes) == 1, "Only allow single output at this moment." assert len(output_new_shapes) == 1, "Only allow single output at this moment." out_axes = out_axes[0] output_new_shapes = output_new_shapes[0] axis_resources = {} if dp_axis_name is not None: axis_resources[dp_axis_name] = dp_mesh_axis if tp_axis_name is not None: axis_resources[tp_axis_name] = tp_mesh_axis return ShardingMeta(tuple(in_axes), out_axes, axis_resources, input_new_shapes, output_new_shapes) class DotShardingMetaGenerator(ShardingMetaGenerator): """ DotShardingMetaGenerator """ def get_dp_sharding_meta( self, a_shape: Tuple, b_shape: Tuple, batch_dim_of_a: int, model_dim_of_a: int, # pylint: disable=unused-argument model_dim_of_b: int, # pylint: disable=unused-argument contracting_dims: Tuple[Sequence[int], Sequence[int]], dp_axis_name: str = 'data', tp_axis_name: str = 'model' # pylint: disable=unused-argument ) -> ShardingMeta: DotShardingMetaGenerator._is_supported(a_shape, b_shape, batch_dim_of_a, None, contracting_dims) out_shape = DotShardingMetaGenerator._infer_output_shape(a_shape, b_shape, contracting_dims) out_batch_dim = batch_dim_of_a dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) assert a_shape[batch_dim_of_a] % dp_size == 0, \ f"The dimension of batch in a_shape should be a multiple of data parallelism size," \ f" but got {a_shape[batch_dim_of_a]=} and {dp_size=}." a_new_shape = (*a_shape[:batch_dim_of_a], dp_size, -1, *a_shape[batch_dim_of_a + 1:]) return ShardingMeta(({ batch_dim_of_a: dp_axis_name }, {}), ({ out_batch_dim: dp_axis_name }), {dp_axis_name: dp_mesh_axis}, [a_new_shape, b_shape], [out_shape]) def get_tp_col_sharding_meta( self, a_shape: Tuple, b_shape: Tuple, batch_dim_of_a: int, model_dim_of_a: int, # pylint: disable=unused-argument model_dim_of_b: int, contracting_dims: Tuple[Sequence[int], Sequence[int]], dp_axis_name: str = 'data', # pylint: disable=unused-argument tp_axis_name: str = 'model') -> ShardingMeta: DotShardingMetaGenerator._is_supported(a_shape, b_shape, batch_dim_of_a, None, contracting_dims) out_shape = DotShardingMetaGenerator._infer_output_shape(a_shape, b_shape, contracting_dims) out_model_idx = len(out_shape) - (len(b_shape) - model_dim_of_b) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert b_shape[model_dim_of_b] % tp_size == 0, \ f"The dimension of model parallelism in b_shape should be a multiple of " \ f"tensor parallelism size,but got {b_shape[model_dim_of_b]=} and {tp_size=}." b_new_shape = (*b_shape[:model_dim_of_b], tp_size, b_shape[model_dim_of_b] // tp_size, *b_shape[model_dim_of_b + 1:]) return ShardingMeta(({}, { model_dim_of_b: tp_axis_name }), ({ out_model_idx: tp_axis_name }), {tp_axis_name: tp_mesh_axis}, [a_shape, b_new_shape], [out_shape]) def get_tp_row_sharding_meta( self, a_shape: Tuple, b_shape: Tuple, batch_dim_of_a: int, model_dim_of_a: int, model_dim_of_b: int, contracting_dims: Tuple[Sequence[int], Sequence[int]], dp_axis_name: str = 'data', # pylint: disable=unused-argument tp_axis_name: str = 'model') -> ShardingMeta: DotShardingMetaGenerator._is_supported(a_shape, b_shape, batch_dim_of_a, model_dim_of_a, contracting_dims) out_shape = DotShardingMetaGenerator._infer_output_shape(a_shape, b_shape, contracting_dims) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert a_shape[model_dim_of_a] % tp_size == 0, \ f"The dimension of model parallelism in a_shape should be a multiple of " \ f"tensor parallelism size,but got {a_shape[model_dim_of_a]=} and {tp_size=}." assert b_shape[model_dim_of_b] % tp_size == 0, \ f"The dimension of model parallelism in b_shape should be a multiple of " \ f"tensor parallelism size,but got {b_shape[model_dim_of_b]=} and {tp_size=}." a_new_shape = (*a_shape[:model_dim_of_a], tp_size, a_shape[model_dim_of_a] // tp_size, *a_shape[model_dim_of_a + 1:]) b_new_shape = (*b_shape[:model_dim_of_b], tp_size, b_shape[model_dim_of_b] // tp_size, *b_shape[model_dim_of_b + 1:]) return ShardingMeta(({ model_dim_of_a: tp_axis_name }, { model_dim_of_b: tp_axis_name }), ({}), {tp_axis_name: tp_mesh_axis}, [a_new_shape, b_new_shape], [out_shape]) def get_dp_tp_col_sharding_meta( self, a_shape: Tuple, b_shape: Tuple, batch_dim_of_a: int, model_dim_of_a: int, # pylint: disable=unused-argument model_dim_of_b: int, contracting_dims: Tuple[Sequence[int], Sequence[int]], dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: DotShardingMetaGenerator._is_supported(a_shape, b_shape, batch_dim_of_a, None, contracting_dims) out_shape = DotShardingMetaGenerator._infer_output_shape(a_shape, b_shape, contracting_dims) out_model_idx = len(out_shape) + 1 - (len(b_shape) - model_dim_of_b) dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert a_shape[batch_dim_of_a] % dp_size == 0, \ f"The dimension of batch in a_shape should be a multiple of data parallelism size," \ f" but got {a_shape[batch_dim_of_a]=} and {dp_size=}." assert b_shape[model_dim_of_b] % tp_size == 0, \ f"The dimension of model parallelism in b_shape should be a multiple of " \ f"tensor parallelism size,but got {b_shape[model_dim_of_b]=} and {tp_size=}." a_new_shape = (*a_shape[:batch_dim_of_a], dp_size, a_shape[batch_dim_of_a] // dp_size, *a_shape[batch_dim_of_a + 1:]) b_new_shape = (*b_shape[:model_dim_of_b], tp_size, b_shape[model_dim_of_b] // tp_size, *b_shape[model_dim_of_b + 1:]) return ShardingMeta(({ batch_dim_of_a: dp_axis_name }, { model_dim_of_b: tp_axis_name }), ({ batch_dim_of_a: dp_axis_name, out_model_idx: tp_axis_name }), { dp_axis_name: dp_mesh_axis, tp_axis_name: tp_mesh_axis }, [a_new_shape, b_new_shape], [out_shape]) def get_dp_tp_row_sharding_meta(self, a_shape: Tuple, b_shape: Tuple, batch_dim_of_a: int, model_dim_of_a: int, model_dim_of_b: int, contracting_dims: Tuple[Sequence[int], Sequence[int]], dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: DotShardingMetaGenerator._is_supported(a_shape, b_shape, batch_dim_of_a, model_dim_of_a, contracting_dims) out_shape = DotShardingMetaGenerator._infer_output_shape(a_shape, b_shape, contracting_dims) dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert a_shape[batch_dim_of_a] % dp_size == 0, \ f"The dimension of batch in a_shape should be a multiple of data parallelism size," \ f" but got {a_shape[batch_dim_of_a]=} and {dp_size=}." assert a_shape[model_dim_of_a] % tp_size == 0, \ f"The dimension of model parallelism in a_shape should be a multiple of " \ f"tensor parallelism size,but got {a_shape[model_dim_of_a]=} and {tp_size=}." assert b_shape[model_dim_of_b] % tp_size == 0, \ f"The dimension of model parallelism in b_shape should be a multiple of " \ f"tensor parallelism size,but {b_shape[model_dim_of_b]=} and {tp_size=}." a_new_shape = (*a_shape[:batch_dim_of_a], dp_size, a_shape[batch_dim_of_a] // dp_size, *a_shape[batch_dim_of_a + 1:model_dim_of_a], tp_size, a_shape[model_dim_of_a] // tp_size, *a_shape[model_dim_of_a + 1:]) b_new_shape = (*b_shape[:model_dim_of_b], tp_size, b_shape[model_dim_of_b] // tp_size, *b_shape[model_dim_of_b + 1:]) return ShardingMeta( ( { batch_dim_of_a: dp_axis_name, # "model_dim_of_a+1" is the index to tp_size in a_new_shape model_dim_of_a + 1: tp_axis_name }, { model_dim_of_b: tp_axis_name }), ({ batch_dim_of_a: dp_axis_name }), { dp_axis_name: dp_mesh_axis, tp_axis_name: tp_mesh_axis }, [a_new_shape, b_new_shape], [out_shape]) @staticmethod def _is_supported( a_shape: Tuple, # pylint: disable=unused-argument b_shape: Tuple, # pylint: disable=unused-argument batch_dim_of_a: int, model_dim_of_a: int, contracting_dims: Tuple[Sequence[int], Sequence[int]], ): assert batch_dim_of_a not in contracting_dims[0], \ "batch_dim_of_a should be one of contracting_dims[0]" assert batch_dim_of_a >= 0, \ "Only support non-negative value of batch_dim_of_a." if model_dim_of_a is not None: assert model_dim_of_a >= 0, \ "Only support non-negative value of model_dim_of_a" assert model_dim_of_a > batch_dim_of_a, \ "Only support the case that model_dim_of_a > batch_dim_of_a." @staticmethod def _infer_output_shape( a_shape: Tuple, b_shape: Tuple, contracting_dims: Tuple[Sequence[int], Sequence[int]], ): lhs_contracting_dims, rhs_contracting_dims = contracting_dims return (*a_shape[:min(lhs_contracting_dims)], *b_shape[max(rhs_contracting_dims) + 1:]) class ElementwiseShardingMetaGenerator(ShardingMetaGenerator): """ ElementwiseShardingMetaGenerator """ def get_dp_sharding_meta( self, input_shape: Tuple, other_shape: Tuple, batch_dim: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model' # pylint: disable=unused-argument ) -> ShardingMeta: """get_dp_sharding_meta""" ElementwiseShardingMetaGenerator._is_supported(input_shape, other_shape, batch_dim) dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) assert input_shape[batch_dim] % dp_size == 0, \ f"The dimension of batch in input_shape should be a multiple of data parallelism " \ f"size, but got {input_shape[batch_dim]=} and {dp_size=}." input_new_shape = (*input_shape[:batch_dim], dp_size, -1, *input_shape[batch_dim + 1:]) in_axes = [{batch_dim: dp_axis_name}] input_new_shapes = [input_new_shape] if other_shape is not None: input_new_shapes.append(other_shape) in_axes.append({}) return ShardingMeta(tuple(in_axes), ({ batch_dim: dp_axis_name }), {dp_axis_name: dp_mesh_axis}, input_new_shapes, [input_shape]) def get_tp_col_sharding_meta( self, input_shape: Tuple, other_shape: Tuple, batch_dim: int, # pylint: disable=unused-argument dp_axis_name: str = 'data', # pylint: disable=unused-argument tp_axis_name: str = 'model' # pylint: disable=unused-argument ) -> ShardingMeta: """get_tp_col_sharding_meta""" ElementwiseShardingMetaGenerator._is_supported(input_shape, other_shape, 0) in_axes = [{}] input_new_shapes = [input_shape] if other_shape is not None: in_axes.append({}) input_new_shapes.append(other_shape) return ShardingMeta(tuple(in_axes), ({}), {}, input_new_shapes, [input_shape]) def get_tp_row_sharding_meta( self, input_shape: Tuple, other_shape: Tuple, batch_dim: int, # pylint: disable=unused-argument dp_axis_name: str = 'data', # pylint: disable=unused-argument tp_axis_name: str = 'model') -> ShardingMeta: """get_tp_row_sharding_meta""" ElementwiseShardingMetaGenerator._is_supported(input_shape, other_shape, 0) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert input_shape[-1] % tp_size == 0, \ f"The last dimension in input_shape should be a multiple of tensor parallelism size," \ f" but got {input_shape[-1]=} and {tp_size=}." input_new_shape = (*input_shape[:-1], tp_size, -1) in_axes = [{ # "len(a_new_shape)-2" is the index to tp_size in a_new_shape len(input_new_shape) - 2: tp_axis_name }] input_new_shapes = [input_new_shape] if other_shape is not None: assert other_shape[0] % tp_size == 0, \ f"The first dimension in other_shape should be a multiple of tensor parallelism size," \ f" but got {other_shape[0]=} and {tp_size=}." other_new_shape = (tp_size, -1) in_axes.append({0: tp_axis_name}) input_new_shapes.append(other_new_shape) return ShardingMeta(tuple(in_axes), ({ len(input_new_shape) - 2: tp_axis_name }), {tp_axis_name: tp_mesh_axis}, input_new_shapes, [input_shape]) def get_dp_tp_col_sharding_meta(self, input_shape: Tuple, other_shape: Tuple, batch_dim: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_dp_tp_col_sharding_meta""" return self.get_dp_sharding_meta(input_shape, other_shape, batch_dim, dp_axis_name, tp_axis_name) def get_dp_tp_row_sharding_meta(self, input_shape: Tuple, other_shape: Tuple, batch_dim: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_dp_tp_row_sharding_meta""" ElementwiseShardingMetaGenerator._is_supported(input_shape, other_shape, batch_dim) dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert input_shape[batch_dim] % dp_size == 0, \ f"The dimension of batch in input_shape should be a multiple of data parallelism" \ f"size, but got {input_shape[batch_dim]=} and {dp_size=}." assert input_shape[-1] % tp_size == 0, \ f"The last dimension in input_shape should be a multiple of tensor parallelism size," \ f" but got {input_shape[-1]=} and {tp_size=}." input_new_shape = (*input_shape[:batch_dim], dp_size, -1, *input_shape[batch_dim + 1:-1], tp_size, input_shape[-1] // tp_size) in_axes = [{ batch_dim: dp_axis_name, # "len(a_new_shape)-2" is the index to tp_size in a_new_shape len(input_new_shape) - 2: tp_axis_name }] input_new_shapes = [input_new_shape] other_new_shape = other_shape if other_shape is not None: assert other_shape[0] % tp_size == 0, \ f"The first dimension in other_shape should be a multiple of tensor parallelism size," \ f" but got {other_shape[0]=} and {tp_size=}." other_new_shape = (tp_size, -1) in_axes.append({0: tp_axis_name}) input_new_shapes.append(other_new_shape) return ShardingMeta(tuple(in_axes), ({ batch_dim: dp_axis_name, len(input_new_shape) - 2: tp_axis_name }), { dp_axis_name: dp_mesh_axis, tp_axis_name: tp_mesh_axis }, input_new_shapes, [input_shape]) @staticmethod def _is_supported(input_shape: Tuple, other_shape: Tuple, batch_dim: int): if other_shape is not None: assert len(other_shape) == 1, "Only support 1 dimension of other_shapes currently." assert input_shape[-1] == other_shape[0], \ f"input_shape[-1] should equal to oshape[0], " \ f"but got {input_shape[-1]} and {other_shape[0]}." assert batch_dim < len(input_shape)-1, \ "batch_dim cannot be the latest dim" class SoftmaxShardingMetaGenerator(ShardingMetaGenerator): """ SoftmaxShardingMetaGenerator """ def get_dp_sharding_meta( self, input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', tp_axis_name: str = 'model' # pylint: disable=unused-argument ) -> ShardingMeta: """get_dp_sharding_meta""" SoftmaxShardingMetaGenerator._is_supported(input_shape, dp_dim, tp_dim) dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) assert input_shape[dp_dim] % dp_size == 0, \ f"The dimension of batch in input_shape should be a multiple of data parallelism " \ f"size, but got {input_shape[dp_dim]=} and {dp_size=}." input_new_shape = (*input_shape[:dp_dim], dp_size, -1, *input_shape[dp_dim + 1:]) in_axes = [{dp_dim: dp_axis_name}] input_new_shapes = [input_new_shape] out_axes = in_axes[0] return ShardingMeta(tuple(in_axes), out_axes, {dp_axis_name: dp_mesh_axis}, input_new_shapes, [input_shape]) def get_tp_col_sharding_meta(self, input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_tp_col_sharding_meta""" return SoftmaxShardingMetaGenerator._get_tp_sharding_meta(input_shape, dp_dim, tp_dim, dp_axis_name, tp_axis_name) def get_tp_row_sharding_meta(self, input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_tp_row_sharding_meta""" return SoftmaxShardingMetaGenerator._get_tp_sharding_meta(input_shape, dp_dim, tp_dim, dp_axis_name, tp_axis_name) def get_dp_tp_col_sharding_meta(self, input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_dp_tp_col_sharding_meta""" return SoftmaxShardingMetaGenerator._get_dptp_sharding_meta(input_shape, dp_dim, tp_dim, dp_axis_name, tp_axis_name) def get_dp_tp_row_sharding_meta(self, input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_dp_tp_row_sharding_meta""" return SoftmaxShardingMetaGenerator._get_dptp_sharding_meta(input_shape, dp_dim, tp_dim, dp_axis_name, tp_axis_name) @staticmethod def _is_supported(input_shape: Tuple, dp_dim: int, tp_dim: int): assert len(input_shape) == 4 assert dp_dim == 0 assert tp_dim == 1 @staticmethod def _get_tp_sharding_meta( input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', # pylint: disable=unused-argument tp_axis_name: str = 'model' # pylint: disable=unused-argument ) -> ShardingMeta: """get_tp_sharding_meta""" SoftmaxShardingMetaGenerator._is_supported(input_shape, dp_dim, tp_dim) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert input_shape[tp_dim] % tp_size == 0, \ f"The dimension of tensor parallel in input_shape should be a multiple of data " \ f"parallelism size, but got {input_shape[tp_dim]=} and {tp_size=}." input_new_shape = (*input_shape[:tp_dim], tp_size, -1, *input_shape[tp_dim + 1:]) in_axes = [{tp_dim: tp_axis_name}] input_new_shapes = [input_new_shape] out_axes = in_axes[0] return ShardingMeta(tuple(in_axes), out_axes, {tp_axis_name: tp_mesh_axis}, input_new_shapes, [input_shape]) @staticmethod def _get_dptp_sharding_meta(input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """get_dp_tp_sharding_meta""" SoftmaxShardingMetaGenerator._is_supported(input_shape, dp_dim, tp_dim) dp_size, dp_mesh_axis = _get_mesh_info(global_shard_resource().dp_resource) tp_size, tp_mesh_axis = _get_mesh_info(global_shard_resource().tp_resource) assert input_shape[dp_dim] % dp_size == 0, \ f"The dimension of batch in input_shape should be a multiple of data parallelism " \ f"size, but got {input_shape[dp_dim]=} and {dp_size=}." assert input_shape[tp_dim] % tp_size == 0, \ f"The dimension of tensor parallel in input_shape should be a multiple of data " \ f"parallelism size, but got {input_shape[tp_dim]=} and {tp_size=}." input_new_shape = (*input_shape[:dp_dim], dp_size, input_shape[dp_dim] // dp_size, *input_shape[dp_dim + 1:tp_dim], tp_size, input_shape[tp_dim] // tp_size, *input_shape[tp_dim + 1:]) in_axes = [{dp_dim: dp_axis_name, tp_dim + 1: tp_axis_name}] input_new_shapes = [input_new_shape] out_axes = in_axes[0] return ShardingMeta(tuple(in_axes), out_axes, { dp_axis_name: dp_mesh_axis, tp_axis_name: tp_mesh_axis }, input_new_shapes, [input_shape]) def get_fp8_meta_sharding_meta(stype: ShardingType, num_of_meta: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """ get_fp8_meta_sharding_meta """ return FP8MetaShardingMetaGenerator().get_sharding_meta(stype, num_of_meta, dp_axis_name, tp_axis_name) def get_dot_sharding_meta(stype: ShardingType, a_shape: Tuple, b_shape: Tuple, batch_dim_of_a: int, model_dim_of_a: int, model_dim_of_b: int, contracting_dims: Tuple[Sequence[int], Sequence[int]] = ((-1,), (0,)), dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """ get_dot_sharding_meta """ if stype in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW): assert model_dim_of_b <= max(contracting_dims[1]), \ f"The dimension of model parallelism in b_shape should be smaller than the max of" \ f" contracting_dims[1], but got {model_dim_of_b=} and {contracting_dims[1]=}." if stype in (ShardingType.TP_COL, ShardingType.DP_TP_COL): assert model_dim_of_b > max(contracting_dims[1]), \ f"The dimension of model parallelism in b_shape should be larger than the max of" \ f" contracting_dims[1], but got {model_dim_of_b=} and {contracting_dims[1]=}." return DotShardingMetaGenerator().get_sharding_meta(stype, a_shape, b_shape, batch_dim_of_a, model_dim_of_a, model_dim_of_b, contracting_dims, dp_axis_name, tp_axis_name) def get_elementwise_sharding_meta(stype: ShardingType, input_shape: Tuple, other_shape: Tuple, batch_dim: int, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """ get_elementwise_sharding_meta """ return ElementwiseShardingMetaGenerator().get_sharding_meta(stype, input_shape, other_shape, batch_dim, dp_axis_name, tp_axis_name) def get_softmax_sharding_meta(stype: ShardingType, input_shape: Tuple, dp_dim: int = 0, tp_dim: int = 1, dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """ get_softmax_sharding_meta """ return SoftmaxShardingMetaGenerator().get_sharding_meta(stype, input_shape, dp_dim, tp_dim, dp_axis_name, tp_axis_name) def get_fused_attn_sharding_meta(stype: ShardingType, input_shapes: Tuple[Tuple[int, ...]], output_shapes: Tuple[Tuple[int, ...]], dp_dims: Tuple[Tuple[int, ...]], tp_dims: Tuple[Tuple[int, ...]], dp_axis_name: str = 'data', tp_axis_name: str = 'model') -> ShardingMeta: """ get_self_fused_attn_sharding_meta """ return FusedAttnShardingMetaGenerator().get_sharding_meta(stype, input_shapes, output_shapes, dp_dims, tp_dims, dp_axis_name, tp_axis_name) def extend_fsdp_sharding_meta(sharding_meta: ShardingMeta, weight_fsdp_dim_map: Dict[int, int]) -> Tuple[ShardingMeta, str]: """ Extending the given ShardingMeta to be compatible with FSDP (ZeRO3) sharding pattern. .. note:: The extending helper assumes the first shape in sharding_meta.input_shapes corresponding to the input tensor. Please be sure that 0-idx is in `weight_fsdp_dim_map`. Parameters ---------- sharding_meta : ShardingMeta the sharding meta object to extend with FSDP. weight_fsdp_dim_map: Dict[int, int] The dict, which key is idx of sharding_meta.input_shapes and value is the dimension to extend FSDP. default is None, means no other sharding_meta.input_shapes to extend. Returns ------- updated_sharding_meta : ShardingMeta a sharding_meta with the FSDP extenstion. fsdp_axis_name: str The name of FSDP named axis for further xmap projection. """ assert 0 in weight_fsdp_dim_map, \ "0-idx is required to be in 'weight_fsdp_dim_map' for the input." mst = infer_major_sharding_type() if mst is MajorShardingType.SINGLE: return sharding_meta, "" gsr = global_shard_resource() dp_mesh_axis = gsr.dp_resource fsdp_mesh_axis = gsr.fsdp_resource if fsdp_mesh_axis == dp_mesh_axis: return sharding_meta, "" if fsdp_mesh_axis is None: return sharding_meta, "" fsdp_dim_size, _ = _get_mesh_info(fsdp_mesh_axis) fsdp_axis_name = "fsdp" def get_idx_to_extend(sharded_indices, target_idx): idx_to_extend = target_idx for i in sharded_indices: if i <= target_idx: idx_to_extend += 1 return idx_to_extend def extend_exist_sharding(idx, shape): remain_size = shape[idx] assert remain_size == -1 or remain_size % fsdp_dim_size == 0 remain_size = remain_size // fsdp_dim_size new_shape = tuple([*shape[:idx], fsdp_dim_size, remain_size, *shape[idx + 1:]]) return new_shape new_input_shapes = [] new_in_axes = [] for i, shape in enumerate(sharding_meta.input_shapes): idx_to_extend = -1 if i == 0: # Assume first shape corresponds to input input_dp_dim = weight_fsdp_dim_map[i] # idx_to_extend = input_dp_dim + 1 if is_dp_enabled(mst) else input_dp_dim idx_to_extend = get_idx_to_extend(list(sharding_meta.in_axes[i].keys()), input_dp_dim) new_shape = extend_exist_sharding(idx_to_extend, shape) # assume one output only and have the same batch sharding like input assert isinstance(sharding_meta.out_axes, dict) new_out_axes = {} for key in sharding_meta.out_axes: if key < idx_to_extend: new_out_axes[key] = sharding_meta.out_axes[key] else: new_out_axes[key + 1] = sharding_meta.out_axes[key] new_out_axes[idx_to_extend] = fsdp_axis_name sharding_meta.out_axes = new_out_axes else: new_shape = shape if i in weight_fsdp_dim_map: idx_to_extend = get_idx_to_extend(list(sharding_meta.in_axes[i].keys()), weight_fsdp_dim_map[i]) if weight_fsdp_dim_map[i] in sharding_meta.in_axes[i]: new_shape = extend_exist_sharding(idx_to_extend, shape) else: assert shape[idx_to_extend] % fsdp_dim_size == 0 remain_dim_size = shape[idx_to_extend] // fsdp_dim_size new_shape = tuple([ *shape[:idx_to_extend], fsdp_dim_size, remain_dim_size, *shape[idx_to_extend + 1:] ]) if idx_to_extend >= 0: new_ia = {} for key in sharding_meta.in_axes[i]: if key < idx_to_extend: new_ia[key] = sharding_meta.in_axes[i][key] else: new_ia[key + 1] = sharding_meta.in_axes[i][key] new_ia[idx_to_extend] = fsdp_axis_name else: new_ia = sharding_meta.in_axes[i] new_input_shapes.append(new_shape) new_in_axes.append(new_ia) sharding_meta.input_shapes = tuple(new_input_shapes) sharding_meta.in_axes = tuple(new_in_axes) sharding_meta.axis_resources[fsdp_axis_name] = fsdp_mesh_axis return sharding_meta, fsdp_axis_name def xmap_runner(func: Callable, in_axes: Tuple[Dict, ...], out_axes: Union[Dict, Tuple[str, ...], Tuple[Union[Dict, Tuple], ...]], axis_resources: Dict, inputs: Tuple): """ xmap_runner """ assert isinstance(inputs, tuple) assert isinstance(in_axes, tuple) mesh = _PXLA_THREAD_RESOURCES.env.physical_mesh fake_in_axes = {} fake_axis_resource = {} # Fake related setup is a workaround to "NotImplementedError: # Collectives in manually partitioned computations are only supported # when all mesh axes are partitioned manually (no partial automatic # sharding). Make sure that you mention all mesh axes in axis_resources!" fake_idx_counter = 0 for mesh_axis_names in mesh.axis_names: if mesh_axis_names not in axis_resources.values(): fake_idx_counter += 1 fake_axis_name = f"{mesh_axis_names}_fake_{fake_idx_counter}" fake_in_axes[fake_idx_counter] = fake_axis_name fake_axis_resource[fake_axis_name] = mesh_axis_names fake_input = jnp.zeros(tuple(64 for _ in range(len(fake_in_axes) + 1))) xmapped = xmap(lambda func_input, _: func(*func_input), in_axes=(in_axes, fake_in_axes), out_axes=out_axes, axis_resources={ **axis_resources, **fake_axis_resource }) output = xmapped(inputs, fake_input) return output
TransformerEngine-main
transformer_engine/jax/sharding.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """JAX layernorm modules""" from typing import Tuple, Sequence from functools import partial, reduce import operator import jax import jax.numpy as jnp from transformer_engine_jax import DType as TEDType from .cpp_extensions import cast_transpose, gemm, jax_dtype_to_te_dtype from .cpp_extensions import transpose from .cpp_extensions import rmsnorm_fwd, rmsnorm_fwd_fp8, rmsnorm_bwd from .cpp_extensions import layernorm_fwd, layernorm_fwd_fp8, layernorm_bwd from .fp8 import FP8Helper, FP8GemmPackage from .sharding import ShardingType, get_elementwise_sharding_meta from .sharding import get_dot_sharding_meta, get_fp8_meta_sharding_meta from .sharding import is_dp_enabled, is_tp_enabled, merge_axis_resources from .sharding import xmap_runner, extend_fsdp_sharding_meta jax.config.update('experimental_xmap_spmd_lowering', True) jax.config.update('experimental_xmap_spmd_lowering_manual', True) def canonicalize_layernorm_type(x): ''' Canonicalize the layernorm type ''' canonicalized = x.lower().strip().replace('-', '').replace('_', '') assert canonicalized in ['layernorm', 'rmsnorm'] return canonicalized def layernorm(inputs: jnp.ndarray, gamma: jnp.ndarray, beta: jnp.ndarray, layernorm_type: str, zero_centered_gamma: bool = False, epsilon: float = 1e-6, sharding_type: ShardingType = ShardingType.SINGLE, dp_dim_index: int = 0): """ Layernorm wrapper """ assert sharding_type not in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW), \ "layernorm does not support row-split tensor parallelism currently." layernorm_type = canonicalize_layernorm_type(layernorm_type) if layernorm_type == 'rmsnorm': assert beta is None, "beta should be None if layernorm_type is 'rmsnorm'" assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" if sharding_type is ShardingType.SINGLE: output = _layernorm(inputs, gamma, beta, layernorm_type=layernorm_type, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon, sharding_type=sharding_type, dp_axis_name="", fsdp_axis_name="") else: dp_axis_name = "batch" tp_axis_name = "model" sharding_meta = get_elementwise_sharding_meta(sharding_type, inputs.shape, gamma.shape, dp_dim_index, dp_axis_name, tp_axis_name) sharding_meta, fsdp_axis_name = extend_fsdp_sharding_meta(sharding_meta, {0: dp_dim_index}) inputs_ = jnp.reshape(inputs, sharding_meta.input_shapes[0]) # 0 for input gamma_ = jnp.reshape(gamma, sharding_meta.input_shapes[1]) # 1 for gamma beta_ = beta beta_in_axis = {} if beta_ is not None: beta_ = jnp.reshape(beta_, sharding_meta.input_shapes[1]) # 1 for beta beta_in_axis = sharding_meta.in_axes[1] in_axes = (*sharding_meta.in_axes, beta_in_axis) partial_ln = partial(_layernorm, layernorm_type=layernorm_type, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon, sharding_type=sharding_type, dp_axis_name=dp_axis_name, fsdp_axis_name=fsdp_axis_name) output = xmap_runner(partial_ln, in_axes, sharding_meta.out_axes, sharding_meta.axis_resources, (inputs_, gamma_, beta_)) output = jnp.reshape(output, sharding_meta.output_shapes[0]) return output @partial(jax.custom_vjp, nondiff_argnums=(3, 4, 5, 6, 7, 8)) def _layernorm(x, gamma, beta, layernorm_type, zero_centered_gamma, epsilon, sharding_type, dp_axis_name, fsdp_axis_name): output, _ = _layernorm_fwd(x, gamma, beta, layernorm_type, zero_centered_gamma, epsilon, sharding_type, dp_axis_name, fsdp_axis_name) return output def _layernorm_fwd( x, gamma, beta, layernorm_type, zero_centered_gamma, epsilon, sharding_type, # pylint: disable=unused-argument dp_axis_name, # pylint: disable=unused-argument fsdp_axis_name # pylint: disable=unused-argument ): if layernorm_type == 'layernorm': output, mu, rsigma = layernorm_fwd(x, gamma, beta, zero_centered_gamma, epsilon) else: assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" output, rsigma = rmsnorm_fwd(x, gamma, epsilon) mu = None return output, (mu, rsigma, x, gamma) def _layernorm_bwd(layernorm_type, zero_centered_gamma, epsilon, sharding_type, dp_axis_name, fsdp_axis_name, ctx, g): mu, rsigma, x, gamma = ctx if layernorm_type == 'layernorm': grad_input, grad_gamma, grad_beta = layernorm_bwd(g, mu, rsigma, x, gamma, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) else: assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" grad_input, grad_gamma = rmsnorm_bwd(g, rsigma, x, gamma, epsilon=epsilon) grad_beta = None if is_dp_enabled(sharding_type.value[0]): grad_gamma = jax.lax.psum(grad_gamma, dp_axis_name) if grad_beta is not None: grad_beta = jax.lax.psum(grad_beta, dp_axis_name) if len(fsdp_axis_name) > 0: grad_gamma = jax.lax.psum(grad_gamma, fsdp_axis_name) if grad_beta is not None: grad_beta = jax.lax.psum(grad_beta, fsdp_axis_name) return grad_input, grad_gamma, grad_beta _layernorm.defvjp(_layernorm_fwd, _layernorm_bwd) def layernorm_fp8_dot(fp8_gemm_pkg: FP8GemmPackage, gamma: jnp.ndarray, beta: jnp.ndarray, layernorm_type: str, fwd_dtype: TEDType, bwd_dtype: TEDType, contracting_dims: Tuple[Sequence[int], Sequence[int]] = ((-1,), (0,)), zero_centered_gamma: bool = False, epsilon: float = 1e-6, sharding_type: ShardingType = ShardingType.SINGLE, dp_dim_index: int = 0) -> jnp.ndarray: """ LN + fp8 dot fusion wrapper """ assert sharding_type not in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW), \ "layernorm_fp8_dot does not support row-split tensor parallelism currently." layernorm_type = canonicalize_layernorm_type(layernorm_type) if layernorm_type == 'rmsnorm': assert beta is None, "beta should be None if layernorm_type is 'rmsnorm'" assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" assert fp8_gemm_pkg.num_of_gemm == 1 inputs = fp8_gemm_pkg.inputs kernel = fp8_gemm_pkg.kernels[0] fp8_max = fp8_gemm_pkg.fp8_max amax = fp8_gemm_pkg.amax scale = fp8_gemm_pkg.scale scale_inv = fp8_gemm_pkg.scale_inv if sharding_type is ShardingType.SINGLE: output = _layernorm_fp8_dot(inputs, kernel, gamma, beta, fp8_max, amax, scale, scale_inv, layernorm_type, fwd_dtype, bwd_dtype, contracting_dims, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon, sharding_type=sharding_type, dp_axis_name="", tp_axis_name="", fsdp_axis_name="") else: dp_axis_name = "batch" tp_axis_name = "model" ln_sharding_meta = get_elementwise_sharding_meta(sharding_type, inputs.shape, gamma.shape, dp_dim_index, dp_axis_name, tp_axis_name) ln_sharding_meta, _ = extend_fsdp_sharding_meta(ln_sharding_meta, {0: dp_dim_index}) inputs_ = jnp.reshape(inputs, ln_sharding_meta.input_shapes[0]) # 0 for input gamma_ = jnp.reshape(gamma, ln_sharding_meta.input_shapes[1]) # 1 for gamma beta_ = beta beta_in_axis = {} if beta_ is not None: beta_ = jnp.reshape(beta_, ln_sharding_meta.input_shapes[1]) # 1 for beta beta_in_axis = ln_sharding_meta.in_axes[1] kernel_tp_index = None # TODO (Ming Huang): Should we add a new argument to support general sharding to kernel? # pylint: disable=fixme if sharding_type in (ShardingType.TP_COL, ShardingType.DP_TP_COL): kernel_tp_index = len(kernel.shape) - 1 elif sharding_type in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW): kernel_tp_index = 0 input_tp_index = len(inputs.shape) - 1 dot_sharding_meta = get_dot_sharding_meta(sharding_type, inputs.shape, kernel.shape, dp_dim_index, input_tp_index, kernel_tp_index, contracting_dims, dp_axis_name, tp_axis_name) dot_sharding_meta, fsdp_axis_name = extend_fsdp_sharding_meta(dot_sharding_meta, {0: dp_dim_index}) kernel_ = jnp.reshape(kernel, dot_sharding_meta.input_shapes[1]) # 1 for kernel num_of_fp8_meta_kind = 4 # fp8_max, amax, scale, scale_inv fp8_sharding_meta = get_fp8_meta_sharding_meta(sharding_type, num_of_fp8_meta_kind, dp_axis_name, tp_axis_name) axis_resource = merge_axis_resources([ ln_sharding_meta.axis_resources, dot_sharding_meta.axis_resources, fp8_sharding_meta.axis_resources ]) partial_ln_fp8_dot = partial(_layernorm_fp8_dot, layernorm_type=layernorm_type, fwd_dtype=fwd_dtype, bwd_dtype=bwd_dtype, contracting_dims=contracting_dims, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon, sharding_type=sharding_type, dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name, fsdp_axis_name=fsdp_axis_name) # input, kernel, gamma, beta, fp8_metas in_axes = (ln_sharding_meta.in_axes[0], dot_sharding_meta.in_axes[1], ln_sharding_meta.in_axes[1], beta_in_axis, *fp8_sharding_meta.in_axes) output = xmap_runner(partial_ln_fp8_dot, in_axes, dot_sharding_meta.out_axes, axis_resource, (inputs_, kernel_, gamma_, beta_, fp8_max, amax, scale, scale_inv)) output = jnp.reshape(output, dot_sharding_meta.output_shapes[0]) return output @partial(jax.custom_vjp, nondiff_argnums=(8, 9, 10, 11, 12, 13, 14, 15, 16, 17)) def _layernorm_fp8_dot(inputs: jnp.ndarray, kernel: jnp.ndarray, gamma: jnp.ndarray, beta: jnp.ndarray, fp8_maxs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, layernorm_type: str, fwd_dtype: TEDType, bwd_dtype: TEDType, contracting_dims: Tuple[Sequence[int], Sequence[int]], zero_centered_gamma: bool, epsilon: float, sharding_type: ShardingType, dp_axis_name: str, tp_axis_name: str, fsdp_axis_name: str) -> jnp.ndarray: output, _ = _layernorm_fp8_dot_fwd(inputs, kernel, gamma, beta, fp8_maxs, amax, scale, scale_inv, layernorm_type, fwd_dtype, bwd_dtype, contracting_dims, zero_centered_gamma, epsilon, sharding_type, dp_axis_name, tp_axis_name, fsdp_axis_name) return output def _layernorm_fp8_dot_fwd( inputs, kernel, gamma, beta, fp8_maxs, amax, scale, scale_inv, layernorm_type, fwd_dtype, bwd_dtype, # pylint: disable=unused-argument contracting_dims, zero_centered_gamma, epsilon, sharding_type, dp_axis_name, # pylint: disable=unused-argument tp_axis_name, fsdp_axis_name): # pylint: disable=unused-argument lhs_contracting_dims, rhs_contracting_dims = contracting_dims input_shape_pre = inputs.shape[:min(lhs_contracting_dims)] input_shape_suf = inputs.shape[min(lhs_contracting_dims):] kernel_shape_pre = kernel.shape[:max(rhs_contracting_dims) + 1] kernel_shape_suf = kernel.shape[max(rhs_contracting_dims) + 1:] input_contracting_size = reduce(operator.mul, input_shape_suf) kernel_contracting_size = reduce(operator.mul, kernel_shape_pre) assert input_contracting_size == kernel_contracting_size amax = FP8Helper.update_amax_history(amax) gemm_input_idx, gemm_kernel_idx, _ = FP8Helper.get_fp8_meta_indices(0) input_amax = amax[gemm_input_idx, 0:1] input_scale = scale[gemm_input_idx] input_scale_inv = scale_inv[gemm_input_idx] if layernorm_type == 'layernorm': ln_out, mu, rsigma, input_amax = layernorm_fwd_fp8(inputs, gamma, beta, input_amax, input_scale, input_scale_inv, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) else: assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" ln_out, rsigma, input_amax = rmsnorm_fwd_fp8(inputs, gamma, input_amax, input_scale, input_scale_inv, epsilon=epsilon) mu = None assert inputs.shape == ln_out.shape ln_out_ = jnp.reshape(ln_out, (-1, input_contracting_size)) kernel_ = jnp.reshape(kernel, (kernel_contracting_size, -1)) kernel_amax = amax[gemm_kernel_idx, 0:1] kernel_scale = scale[gemm_kernel_idx] kernel_scale_inv = scale_inv[gemm_kernel_idx] kernel_cast, kernel_cast_trans, kernel_amax = cast_transpose(kernel_, kernel_amax, kernel_scale, kernel_scale_inv, fwd_dtype) output = gemm(kernel_cast_trans, kernel_scale_inv, fwd_dtype, True, ln_out_, input_scale_inv, fwd_dtype, False, jax_dtype_to_te_dtype(inputs.dtype), FP8Helper.FP8_2X_ACC_FPROP) if sharding_type in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW): output = jax.lax.psum(output, tp_axis_name) # (input_shape_pre, input_shape_suf) # x (kernel_shape_pre, kernel_shape_suf) # = (input_shape_pre, kernel_shape_suf) output_shape = input_shape_pre + kernel_shape_suf output = jnp.reshape(output, output_shape) ctx = (ln_out_, kernel_cast, fp8_maxs, amax, scale, scale_inv, input_amax, kernel_amax, inputs.shape, kernel.shape, mu, rsigma, inputs, gamma) return output, ctx def _layernorm_fp8_dot_bwd( layernorm_type, fwd_dtype, bwd_dtype, contracting_dims, # pylint: disable=unused-argument zero_centered_gamma, epsilon, sharding_type, dp_axis_name, tp_axis_name, fsdp_axis_name, ctx, g): ln_out_, kernel_cast, \ fp8_maxs, amax, scale, scale_inv, \ input_amax, kernel_amax, \ inputs_shape, kernel_shape, \ mu, rsigma, inputs, gamma = ctx gemm_input_idx, gemm_kernel_idx, gemm_grad_idx = \ FP8Helper.get_fp8_meta_indices(0) grad_amax = amax[gemm_grad_idx, 0:1] grad_scale = scale[gemm_grad_idx] grad_scale_inv = scale_inv[gemm_grad_idx] ln_out_trans = transpose(ln_out_, fwd_dtype) g = jnp.reshape(g, (ln_out_trans.shape[1], -1)) # cast and transpose the grad_output grad_cast, grad_cast_trans, grad_amax = cast_transpose(g, grad_amax, grad_scale, grad_scale_inv, bwd_dtype) input_scale_inv = scale_inv[gemm_input_idx] wgrad = gemm(grad_cast_trans, grad_scale_inv, bwd_dtype, True, ln_out_trans, input_scale_inv, fwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_WGRAD) kernel_scale_inv = scale_inv[gemm_kernel_idx] dgrad = gemm(kernel_cast, kernel_scale_inv, fwd_dtype, True, grad_cast, grad_scale_inv, bwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_DGRAD) dgrad = jnp.reshape(dgrad, inputs_shape) if sharding_type in (ShardingType.TP_COL, ShardingType.DP_TP_COL): dgrad = jax.lax.psum(dgrad, tp_axis_name) if layernorm_type == 'layernorm': grad_input, grad_gamma, grad_beta = layernorm_bwd(dgrad, mu, rsigma, inputs, gamma, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) else: assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" grad_input, grad_gamma = rmsnorm_bwd(dgrad, rsigma, inputs, gamma, epsilon=epsilon) grad_beta = None amax = amax.at[gemm_input_idx, 0].set(input_amax[0]) amax = amax.at[gemm_kernel_idx, 0].set(kernel_amax[0]) amax = amax.at[gemm_grad_idx, 0].set(grad_amax[0]) if is_dp_enabled(sharding_type.value[0]): wgrad = jax.lax.psum(wgrad, dp_axis_name) grad_gamma = jax.lax.psum(grad_gamma, dp_axis_name) if grad_beta is not None: grad_beta = jax.lax.psum(grad_beta, dp_axis_name) amax = jax.lax.pmax(amax, dp_axis_name) if len(fsdp_axis_name) > 0: wgrad = jax.lax.psum(wgrad, fsdp_axis_name) grad_gamma = jax.lax.psum(grad_gamma, fsdp_axis_name) if grad_beta is not None: grad_beta = jax.lax.psum(grad_beta, fsdp_axis_name) amax = jax.lax.pmax(amax, fsdp_axis_name) if is_tp_enabled(sharding_type.value[0]): amax = jax.lax.pmax(amax, tp_axis_name) wgrad = jnp.reshape(wgrad, kernel_shape) return grad_input, wgrad, \ grad_gamma, grad_beta, \ fp8_maxs, amax, scale, scale_inv _layernorm_fp8_dot.defvjp(_layernorm_fp8_dot_fwd, _layernorm_fp8_dot_bwd)
TransformerEngine-main
transformer_engine/jax/layernorm.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """ Helper module for fp8 meta management """ from contextlib import contextmanager from enum import Enum from typing import Dict, List, Optional, Tuple, Union import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from transformer_engine_jax import DType from transformer_engine_jax import get_cublasLt_version from transformer_engine_jax import get_cuda_version, get_device_compute_capability from transformer_engine.common.recipe import DelayedScaling, Format from transformer_engine.jax.sharding import global_shard_guard from transformer_engine.jax.sharding import ShardingResource _is_fp8_available = None _reason_for_no_fp8 = "" Collection = Union[Dict, FrozenDict] def _check_fp8_support(gpu_id) -> Tuple[bool, str]: """Return if fp8 support is available""" gpu_arch = get_device_compute_capability(gpu_id) if gpu_arch >= 90: # hopper and above return True, "" if gpu_arch < 89: # pre-ada return False, "Device compute capability 8.9 or higher required for FP8 execution." if get_cublasLt_version() < 120103: return False, "CublasLt version 12.1.3.x or higher required for FP8 execution on Ada." if get_cuda_version() < 12010: return False, "Cuda version 12.1 or higher required for FP8 execution on Ada." return True, "" def is_fp8_available(gpu_id=None) -> Tuple[bool, str]: """Return if fp8 support is available""" if gpu_id is not None: return _check_fp8_support(gpu_id) global _is_fp8_available, _reason_for_no_fp8 if _is_fp8_available is None: _is_fp8_available = True # JAX doesn't provide the local GPU id. for local_gpu_id in range(len(jax.local_devices())): ret, msg = _check_fp8_support(local_gpu_id) if ret is False: _is_fp8_available = ret _reason_for_no_fp8 = msg break return _is_fp8_available, _reason_for_no_fp8 def _format2dtypes(format_: Format): if format_ == Format.E4M3: return DType.kFloat8E4M3, DType.kFloat8E4M3 if format_ == Format.E5M2: return DType.kFloat8E5M2, DType.kFloat8E5M2 if format_ == Format.HYBRID: return DType.kFloat8E4M3, DType.kFloat8E5M2 return DType.kBFloat16, DType.kBFloat16 class FP8GemmPackage: """ A container that contains all required data for FP8 GEMM """ def __init__( self, num_of_gemm: int, inputs: jnp.ndarray, kernels: List[jnp.ndarray], fp8_max: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, ) -> None: self._num_of_gemm = num_of_gemm self._inputs = inputs assert len(kernels) == self._num_of_gemm self._kernels = kernels total_num_of_meta = self._num_of_gemm * FP8Helper.NUM_META_PER_GEMM assert fp8_max.shape[0] == total_num_of_meta self._fp8_max = fp8_max assert amax.shape[0] == total_num_of_meta self._amax = amax assert scale.shape[0] == total_num_of_meta self._scale = scale assert scale_inv.shape[0] == total_num_of_meta self._scale_inv = scale_inv @property def num_of_gemm(self) -> int: """ num_of_gemm of this package """ return self._num_of_gemm @property def inputs(self) -> jnp.ndarray: """ inputs of this package """ return self._inputs @property def kernels(self) -> List[jnp.ndarray]: """ kernels of this package """ return self._kernels @property def fp8_max(self) -> jnp.ndarray: """ fp8_max of this package """ return self._fp8_max @property def amax(self) -> jnp.ndarray: """ amax of this package """ return self._amax @property def scale(self) -> jnp.ndarray: """ scale of this package """ return self._scale @property def scale_inv(self) -> jnp.ndarray: """ scale_inv of this package """ return self._scale_inv class AmaxComputeAlgo(Enum): """AmaxComputeAlgo.""" MAX = "max" MOST_RECENT = "most_recent" class FP8Helper: """ FP8 helper to manage the FP8 meta """ INITIALIZED = False MARGIN: float = 0.0 FP8_FORMAT: Format = Format.HYBRID FWD_DTYPE: DType = DType.kFloat8E4M3 BWD_DTYPE: DType = DType.kFloat8E5M2 UPDATE_FP8META_INTERVAL: int = 1 AMAX_HISTORY_LEN: int = 1024 AMAX_COMPUTE_ALGO: AmaxComputeAlgo = AmaxComputeAlgo.MAX NUM_META_PER_GEMM: int = 3 INPUT_META_IDX_PER_GEMM: int = 0 KERNEL_META_IDX_PER_GEMM: int = 1 GRAD_META_IDX_PER_GEMM: int = 2 FP8_COLLECTION_NAME: str = "fp8_meta_collection" FP8_AMAX_NAME: str = "fp8_meta_amax" FP8_SCALE_NAME: str = "fp8_meta_scale" FP8_SCALE_INV_NAME: str = "fp8_meta_scale_inv" FP8_MAX_NAME: str = "fp8_max" FP8_2X_ACC_FPROP: bool = False FP8_2X_ACC_DGRAD: bool = True FP8_2X_ACC_WGRAD: bool = True @staticmethod def is_fp8_enabled(): """ Indicate if fp8 training is enable or not. """ return FP8Helper.INITIALIZED @staticmethod def initialize(margin: float = 0.0, fp8_format: Format = Format.HYBRID, update_fp8meta_interval: int = 1, amax_history_len: int = 1, amax_compute_algo: AmaxComputeAlgo = AmaxComputeAlgo.MAX) -> None: """ Initialize the FP8 meta """ FP8Helper.INITIALIZED = True FP8Helper.MARGIN = margin FP8Helper.FP8_FORMAT = fp8_format FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE = \ _format2dtypes(FP8Helper.FP8_FORMAT) FP8Helper.UPDATE_FP8META_INTERVAL = update_fp8meta_interval FP8Helper.AMAX_HISTORY_LEN = amax_history_len FP8Helper.AMAX_COMPUTE_ALGO = amax_compute_algo FP8Helper.FP8_2X_ACC_FPROP = False FP8Helper.FP8_2X_ACC_DGRAD = True FP8Helper.FP8_2X_ACC_WGRAD = True @staticmethod def finalize() -> None: """ FP8 helper finalize """ FP8Helper.INITIALIZED = False FP8Helper.MARGIN = 0.0 FP8Helper.FP8_FORMAT = Format.HYBRID FP8Helper.FWD_DTYPE = DType.kFloat8E4M3 FP8Helper.BWD_DTYPE = DType.kFloat8E5M2 FP8Helper.UPDATE_FP8META_INTERVAL = 1 FP8Helper.AMAX_HISTORY_LEN = 1024 FP8Helper.AMAX_COMPUTE_ALGO = AmaxComputeAlgo.MAX @staticmethod def update_amax_history(amax_buffers: jnp.ndarray) -> jnp.ndarray: """ Update the amax history """ updated_amax_buffers = jnp.roll(amax_buffers, -1, 1) updated_amax_buffers = updated_amax_buffers.at[:, 0].set(0) return updated_amax_buffers @staticmethod def update_collections(new: Collection, original: Collection) -> Collection: """ Update the collections """ assert isinstance(original, (dict, FrozenDict)) assert isinstance(new, (dict, FrozenDict)) frozen_original = FrozenDict(original) if not isinstance(original, FrozenDict) else original for key in new: if key in frozen_original: frozen_original, _ = frozen_original.pop(key) new_coll = FrozenDict({**new, **frozen_original}) if not isinstance(original, FrozenDict): new_coll = new_coll.unfreeze() return new_coll @staticmethod def update_fp8_metas(state: Collection) -> Collection: """ Update the FP8 metas """ assert isinstance(state, (dict, FrozenDict)) if FP8Helper.FP8_COLLECTION_NAME in state: frozen_state = FrozenDict(state) if not isinstance(state, FrozenDict) else state others, fp8_metas = frozen_state.pop(FP8Helper.FP8_COLLECTION_NAME) fp8_metas = FP8Helper._update_fp8_metas_impl(fp8_metas) new_state = FrozenDict({**others, FP8Helper.FP8_COLLECTION_NAME: fp8_metas}) if not isinstance(state, FrozenDict): new_state = new_state.unfreeze() return new_state return state @staticmethod def generate_fp8_max_array(num_of_meta): """ Generate the FP8 max array """ num_of_gemm = num_of_meta // FP8Helper.NUM_META_PER_GEMM fp8_max_fwd = FP8Helper.FP8_FORMAT.value.max_fwd fp8_max_bwd = FP8Helper.FP8_FORMAT.value.max_bwd fp8_max_per_gemm = [] for i in range(FP8Helper.NUM_META_PER_GEMM): val = fp8_max_bwd if i == FP8Helper.GRAD_META_IDX_PER_GEMM \ else fp8_max_fwd fp8_max_per_gemm.append([val]) fp8_max_per_gemm = jnp.asarray(fp8_max_per_gemm, dtype=jnp.float32) return jnp.vstack([fp8_max_per_gemm] * num_of_gemm) @staticmethod def get_fp8_meta_indices(gemm_idx: int) -> Tuple[int, int, int]: """ Obtain the index about FP8 metas by the given GEMM index. """ input_idx = FP8Helper.NUM_META_PER_GEMM * gemm_idx + FP8Helper.INPUT_META_IDX_PER_GEMM kernel_idx = FP8Helper.NUM_META_PER_GEMM * gemm_idx + FP8Helper.KERNEL_META_IDX_PER_GEMM grad_idx = FP8Helper.NUM_META_PER_GEMM * gemm_idx + FP8Helper.GRAD_META_IDX_PER_GEMM return input_idx, kernel_idx, grad_idx @staticmethod @jax.jit def _update_fp8_metas_impl(fp8_metas: Collection) -> Collection: fp8_meta_arrays, treedef = jax.tree_util.tree_flatten(fp8_metas) num_of_meta_with_max = FP8Helper.NUM_META_PER_GEMM + 1 num_of_gemm = len(fp8_meta_arrays) // num_of_meta_with_max for i in range(num_of_gemm): # flattern array is ordered in alphabetical order of collection names fp8_max_idx = i * num_of_meta_with_max fp8_amax_idx = fp8_max_idx + 1 fp8_scale_idx = fp8_amax_idx + 1 fp8_scale_inv_idx = fp8_scale_idx + 1 fp8_max = fp8_meta_arrays[fp8_max_idx] if FP8Helper.AMAX_COMPUTE_ALGO is AmaxComputeAlgo.MAX: amax = jnp.max(fp8_meta_arrays[fp8_amax_idx], axis=-1, keepdims=True) else: amax = fp8_meta_arrays[fp8_amax_idx][..., 0:1] scale = fp8_meta_arrays[fp8_scale_idx] exp = jnp.floor(jnp.log2(fp8_max / amax)) - FP8Helper.MARGIN sf = jnp.round(jnp.power(2, jnp.abs(exp))) sf = jnp.where(amax > 0.0, sf, scale) sf = jnp.where(jnp.isfinite(amax), sf, scale) scale = jnp.where(exp < 0, 1 / sf, sf) fp8_meta_arrays[fp8_scale_idx] = scale fp8_meta_arrays[fp8_scale_inv_idx] = 1 / scale return jax.tree_util.tree_unflatten(treedef, fp8_meta_arrays) @contextmanager def fp8_autocast(enabled: bool = False, fp8_recipe: Optional[DelayedScaling] = None, sharding_resource: Optional[ShardingResource] = None) -> None: r""" Context manager for FP8 usage. .. code-block:: python mesh_shape = (4, 2) dp_mesh_axis_name = 'data_parallel' tp_mesh_axis_name = 'tensor_parallel' devices = np.asarray(jax.devices()).reshape(*mesh_shape) with maps.Mesh(devices, (dp_mesh_axis_name, tp_mesh_axis_name)): sharding_resource=ShardingResource(dp_mesh_axis_name, tp_mesh_axis_name) with fp8_autocast(enabled=True, sharding_resource=sharding_resource): rules = extend_logical_axis_rules(tuple()) transformer = TransformerLayer() with partitioning.axis_rules(rules): pjit(transformer.init, ...)(...) .. note:: We only support :attr:`margin`, :attr:`fp8_format`, :attr:`interval`, :attr:`amax_history_len` and :attr:`amax_compute_algo`(with value 'max' and 'most_recent') in recipe.DelayedScaling currently. Other parameters in recipe.DelayedScaling will trigger an assertion. Parameters ---------- enabled: bool, default = False Whether or not to enable fp8 fp8_recipe: recipe.DelayedScaling, default = None Recipe used for FP8 training. sharding_resource: ShardingResource, default = None Specify the mesh axes for data and tensor parallelism to shard along. If set to None, then no data or tensor parallelism will be used. """ if fp8_recipe is None: fp8_recipe = DelayedScaling() assert fp8_recipe.amax_compute_algo in [ "max", "most_recent" ], ("DelayedScaling amax_compute_algo only supports max and most_recent with TE/JAX.") assert fp8_recipe.scaling_factor_compute_algo is None, ( "DelayedScaling scaling_factor_compute_algo isn't supported by TE/JAX.") assert fp8_recipe.override_linear_precision == (False, False, False), ( "DelayedScaling override_linear_precision isn't supported by TE/JAX.") assert fp8_recipe.reduce_amax, ("DelayedScaling reduce_amax should be enabled for TE/JAX.") if sharding_resource is None: sharding_resource = ShardingResource() try: with global_shard_guard(sharding_resource): if enabled: fp8_available, reason_for_no_fp8 = is_fp8_available() assert fp8_available, reason_for_no_fp8 amax_compute_algo = AmaxComputeAlgo.MOST_RECENT if fp8_recipe.amax_compute_algo == 'max': amax_compute_algo = AmaxComputeAlgo.MAX FP8Helper.initialize(margin=fp8_recipe.margin, fp8_format=fp8_recipe.fp8_format, update_fp8meta_interval=fp8_recipe.interval, amax_history_len=fp8_recipe.amax_history_len, amax_compute_algo=amax_compute_algo) yield finally: FP8Helper.finalize() # Function Wrappers def update_collections(new: Collection, original: Collection) -> FrozenDict: r""" A helper to update Flax's Collection. Collection = [dict, flax.core.frozen_dict.FrozenDict] Parameters ---------- new: Collection A collection that includes new data. original: Collection The base collection. Returns ------- outputs : Collection The updated collection. """ return FP8Helper.update_collections(new, original) def update_fp8_metas(state: Collection) -> Collection: r""" Calculate new fp8 scales and its inverse via the followed formula .. code-block:: python exp = floor(log2(fp8_max / amax)) - margin sf = round(power(2, abs(exp))) sf = sf if amax > 0.0, else original_scale sf = sf if isfinite(amax), else original_scale) updated_scale = 1/sf if exp < 0, else sf updated_scale_inv = 1/updated_scale Collection = [dict, flax.core.frozen_dict.FrozenDict] Parameters ---------- state: Collection A collection that includes FP8 metas. Returns ------- outputs : Collection The collection with updated FP8 metas. """ return FP8Helper.update_fp8_metas(state) def get_delayed_scaling(): r""" Obtain an instance of DelayedScaling which is set via fp8_autocast. .. note:: We only store :attr:`margin`, :attr:`fp8_format`, :attr:`interval`, :attr:`amax_history_len` and :attr:`amax_compute_algo` via fp8_autocast. Other parameters in recipe.DelayedScaling would be returned as the default values. Returns ------- delay_scaling : DelayedScaling an instance of DelayedScaling which is set via fp8_autocast. """ amax_compute_algo = "max" if FP8Helper.AMAX_COMPUTE_ALGO is AmaxComputeAlgo.MAX \ else "most_recent" return DelayedScaling(margin=int(FP8Helper.MARGIN), interval=FP8Helper.UPDATE_FP8META_INTERVAL, fp8_format=FP8Helper.FP8_FORMAT, amax_history_len=FP8Helper.AMAX_HISTORY_LEN, amax_compute_algo=amax_compute_algo)
TransformerEngine-main
transformer_engine/jax/fp8.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """Transformer Engine bindings for JAX""" from . import flax from .fp8 import fp8_autocast, update_collections, update_fp8_metas, get_delayed_scaling from .sharding import MajorShardingType, ShardingResource, ShardingType from ..common.utils import deprecate_wrapper extend_logical_axis_rules = deprecate_wrapper( flax.extend_logical_axis_rules, "extend_logical_axis_rules is moving to transformer_engine.jax.flax module") DenseGeneral = deprecate_wrapper(flax.DenseGeneral, "DenseGeneral is moving to transformer_engine.jax.flax module") LayerNorm = deprecate_wrapper(flax.LayerNorm, "LayerNorm is moving to transformer_engine.jax.flax module") LayerNormDenseGeneral = deprecate_wrapper( flax.LayerNormDenseGeneral, "LayerNormDenseGeneral is moving to transformer_engine.jax.flax module") LayerNormMLP = deprecate_wrapper(flax.LayerNormMLP, "LayerNormMLP is moving to transformer_engine.jax.flax module") TransformerEngineBase = deprecate_wrapper( flax.TransformerEngineBase, "TransformerEngineBase is moving to transformer_engine.jax.flax module") MultiHeadAttention = deprecate_wrapper( flax.MultiHeadAttention, "MultiHeadAttention is moving to transformer_engine.jax.flax module") RelativePositionBiases = deprecate_wrapper( flax.RelativePositionBiases, "RelativePositionBiases is moving to transformer_engine.jax.flax module") TransformerLayer = deprecate_wrapper( flax.TransformerLayer, "TransformerLayer is moving to transformer_engine.jax.flax module") TransformerLayerType = deprecate_wrapper( flax.TransformerLayerType, "TransformerLayerType is moving to transformer_engine.jax.flax module") __all__ = [ 'fp8_autocast', 'update_collections', 'update_fp8_metas', 'get_delayed_scaling', 'MajorShardingType', 'ShardingResource', 'ShardingType', 'flax', 'praxis', 'DenseGeneral', 'LayerNorm', 'LayerNormDenseGeneral', 'LayerNormMLP', 'TransformerEngineBase', 'MultiHeadAttention', 'RelativePositionBiases', 'TransformerLayer', 'TransformerLayerType' ]
TransformerEngine-main
transformer_engine/jax/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """JAX multi-head attention modules""" from enum import Enum from functools import partial import jax import jax.numpy as jnp from transformer_engine_jax import NVTE_Bias_Type from transformer_engine_jax import NVTE_Mask_Type from .cpp_extensions import FusedAttnHelper from .cpp_extensions import cross_fused_attn_fwd, cross_fused_attn_bwd from .cpp_extensions import self_fused_attn_fwd, self_fused_attn_bwd from .sharding import get_fused_attn_sharding_meta from .sharding import ShardingType from .sharding import xmap_runner, extend_fsdp_sharding_meta jax.config.update('experimental_xmap_spmd_lowering', True) jax.config.update('experimental_xmap_spmd_lowering_manual', True) class AttnBiasType(Enum): """Attention Bias Type.""" NO_BIAS = NVTE_Bias_Type.NVTE_NO_BIAS PRE_SCALE_BIAS = NVTE_Bias_Type.NVTE_PRE_SCALE_BIAS POST_SCALE_BIAS = NVTE_Bias_Type.NVTE_POST_SCALE_BIAS class AttnMaskType(Enum): """Attention Mask Type.""" NO_MASK = NVTE_Mask_Type.NVTE_NO_MASK PADDING_MASK = NVTE_Mask_Type.NVTE_PADDING_MASK CAUSAL_MASK = NVTE_Mask_Type.NVTE_CAUSAL_MASK def is_fused_attn_kernel_available(q_type, kv_type, attn_bias_type, attn_mask_type, dropout_probability, max_seqlen_q, max_seqlen_kv, head_dim): """ To check whether the fused attention kernel is available """ return FusedAttnHelper(q_type, kv_type, attn_bias_type.value, attn_mask_type.value, dropout_probability, max_seqlen_q, max_seqlen_kv, head_dim).is_fused_attn_kernel_available() def self_fused_attn(qkv: jnp.ndarray, bias: jnp.ndarray, mask: jnp.ndarray, seed: jnp.ndarray, attn_bias_type: AttnBiasType, attn_mask_type: AttnMaskType, scaling_factor: float, dropout_probability: float, is_training: bool, sharding_type: ShardingType = ShardingType.SINGLE): """ Self fused attention wrapper """ assert sharding_type not in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW), \ "self_fused_attn does not support row-split tensor parallelism currently." if sharding_type is ShardingType.SINGLE: output = _self_fused_attn(qkv, bias, mask, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) else: dp_axis_name = "batch" tp_axis_name = "model" inputs = [qkv, bias, mask, seed] batch, seqlen, _, num_head, head_dim = qkv.shape output_shape = [batch, seqlen, num_head, head_dim] sharding_meta = get_fused_attn_sharding_meta( sharding_type, [x.shape if x is not None else None for x in inputs], [output_shape], dp_dims=([0, None, 0, 0], [0]), tp_dims=([3, 1, None, 0], [2]), dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name) sharding_meta, _ = extend_fsdp_sharding_meta(sharding_meta, {0: 0, 2: 0}) inputs_ = tuple( jnp.reshape(x, new_shape) if x is not None else None for x, new_shape in zip(inputs, sharding_meta.input_shapes)) partial_self_fused_attn = partial(_self_fused_attn, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) output_ = xmap_runner(partial_self_fused_attn, sharding_meta.in_axes, sharding_meta.out_axes, sharding_meta.axis_resources, inputs_) output = jnp.reshape(output_, sharding_meta.output_shapes) return output @partial(jax.custom_vjp, nondiff_argnums=(4, 5, 6, 7, 8)) def _self_fused_attn(qkv: jnp.ndarray, bias: jnp.ndarray, mask: jnp.ndarray, seed: jnp.ndarray, attn_bias_type: AttnBiasType, attn_mask_type: AttnMaskType, scaling_factor: float, dropout_probability: float, is_training: bool): output, _ = _self_fused_attn_fwd(qkv, bias, mask, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) return output def _self_fused_attn_fwd(qkv, bias, mask, seed, attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training): seqlen = jnp.sum(mask[:, :, :, 0] == 0, axis=(-1, -2), dtype=jnp.int32) cu_seqlen = jnp.cumsum(seqlen) cu_seqlen = jnp.hstack((0, cu_seqlen)) output, softmax_aux, rng_state = self_fused_attn_fwd(qkv, bias, cu_seqlen, seed, attn_bias_type=attn_bias_type.value, attn_mask_type=attn_mask_type.value, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) return output, (qkv, softmax_aux, rng_state, output, cu_seqlen) def _self_fused_attn_bwd(attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training, ctx, grad): qkv, softmax_aux, rng_state, output, cu_seqlen = ctx doutput = grad grad_qkv, grad_bias = self_fused_attn_bwd(qkv, softmax_aux, rng_state, output, doutput, cu_seqlen, attn_bias_type=attn_bias_type.value, attn_mask_type=attn_mask_type.value, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) if attn_bias_type == NVTE_Bias_Type.NVTE_NO_BIAS: grad_bias = None return grad_qkv, grad_bias, None, None _self_fused_attn.defvjp(_self_fused_attn_fwd, _self_fused_attn_bwd) def cross_fused_attn(q: jnp.ndarray, kv: jnp.ndarray, mask: jnp.ndarray, seed: jnp.ndarray, attn_bias_type: AttnBiasType, attn_mask_type: AttnMaskType, scaling_factor: float, dropout_probability: float, is_training: bool, sharding_type: ShardingType = ShardingType.SINGLE): """ Cross multi-head attention wrapper """ assert sharding_type not in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW), \ "cross_fused_attn does not support row-split tensor parallelism currently." if sharding_type is ShardingType.SINGLE: output = _cross_fused_attn(q, kv, mask, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) else: dp_axis_name = "batch" tp_axis_name = "model" inputs = [q, kv, mask, seed] output_shape = q.shape sharding_meta = get_fused_attn_sharding_meta( sharding_type, [x.shape if x is not None else None for x in inputs], [output_shape], dp_dims=([0, 0, 0, None], [0]), tp_dims=([2, 3, None, None], [2]), dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name) sharding_meta = extend_fsdp_sharding_meta(sharding_meta, {0: 0, 2: 0}) inputs_ = tuple( jnp.reshape(x, new_shape) if x is not None else None for x, new_shape in zip(inputs, sharding_meta.input_shapes)) partial_cross_fused_attn = partial(_cross_fused_attn, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) output_ = xmap_runner(partial_cross_fused_attn, sharding_meta.in_axes, sharding_meta.out_axes, sharding_meta.axis_resources, inputs_) output = jnp.reshape(output_, sharding_meta.output_shapes) return output @partial(jax.custom_vjp, nondiff_argnums=(4, 5, 6, 7, 8)) def _cross_fused_attn(q: jnp.ndarray, kv: jnp.ndarray, mask: jnp.ndarray, seed: jnp.ndarray, attn_bias_type: AttnBiasType, attn_mask_type: AttnMaskType, scaling_factor: float, dropout_probability: float, is_training: bool): output, _ = _cross_fused_attn_fwd(q, kv, mask, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) return output def _cross_fused_attn_fwd(q, kv, mask, seed, attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training): q_seqlen = jnp.sum(mask[:, :, :, 0] == 0, axis=(-1, -2), dtype=jnp.int32) q_cu_seqlen = jnp.cumsum(q_seqlen) q_cu_seqlen = jnp.hstack((0, q_cu_seqlen)) kv_seqlen = jnp.sum(mask[:, :, 0, :] == 0, axis=(-1, -2), dtype=jnp.int32) kv_cu_seqlen = jnp.cumsum(kv_seqlen) kv_cu_seqlen = jnp.hstack((0, kv_cu_seqlen)) output, softmax_aux = cross_fused_attn_fwd(q, kv, q_cu_seqlen, kv_cu_seqlen, seed, attn_bias_type=attn_bias_type.value, attn_mask_type=attn_mask_type.value, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) return output, (softmax_aux, q, kv, q_cu_seqlen, kv_cu_seqlen) def _cross_fused_attn_bwd(attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training, ctx, grad): softmax_aux, q, kv, q_cu_seqlen, kv_cu_seqlen = ctx doutput = grad grad_q, grad_kv = cross_fused_attn_bwd(q, kv, softmax_aux, doutput, q_cu_seqlen, kv_cu_seqlen, attn_bias_type=attn_bias_type.value, attn_mask_type=attn_mask_type.value, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) return grad_q, grad_kv, None, None _cross_fused_attn.defvjp(_cross_fused_attn_fwd, _cross_fused_attn_bwd)
TransformerEngine-main
transformer_engine/jax/fused_attn.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """JAX MLP modules""" from typing import Tuple, Sequence, Union, Callable from functools import partial, reduce import operator import jax import jax.numpy as jnp from jax.interpreters import pxla from transformer_engine_jax import DType as TEDType from .cpp_extensions import jax_dtype_to_te_dtype from .cpp_extensions import transpose, cast_transpose from .cpp_extensions import gated_gelu, gated_gelu_fp8 from .cpp_extensions import dgated_gelu, dgated_gelu_cast_transpose from .cpp_extensions import rmsnorm_fwd_fp8, rmsnorm_bwd from .cpp_extensions import layernorm_fwd_fp8, layernorm_bwd from .cpp_extensions import gemm from .sharding import MajorShardingType, ShardingType from .sharding import get_elementwise_sharding_meta from .sharding import get_dot_sharding_meta, get_fp8_meta_sharding_meta from .sharding import merge_axis_resources, infer_sharding_type from .sharding import xmap_runner, extend_fsdp_sharding_meta from .layernorm import canonicalize_layernorm_type from .fp8 import FP8Helper, FP8GemmPackage jax.config.update('experimental_xmap_spmd_lowering', True) jax.config.update('experimental_xmap_spmd_lowering_manual', True) thread_resources = pxla.thread_resources def geglu( inputs: jnp.ndarray, contracting_dims: Sequence[int] = (-1,), sharding_type: ShardingType = ShardingType.SINGLE, dp_dim_index: int = 0, # pylint: disable=unused-argument ): """ Gated gelu """ input_shape_suf_size = reduce(operator.mul, inputs.shape[min(contracting_dims):]) assert input_shape_suf_size % 2 == 0 output_shape = (*inputs.shape[:min(contracting_dims)], input_shape_suf_size // 2) if sharding_type is ShardingType.SINGLE: output = _geglu(inputs, contracting_dims) else: dp_axis_name = "batch" tp_axis_name = "model" sharding_meta = get_elementwise_sharding_meta(sharding_type, inputs.shape, None, dp_dim_index, dp_axis_name, tp_axis_name) sharding_meta, _ = extend_fsdp_sharding_meta(sharding_meta, {0: dp_dim_index}) inputs_ = jnp.reshape(inputs, sharding_meta.input_shapes[0]) # 0 for input partial_geglu = partial(_geglu, contracting_dims=contracting_dims) output = xmap_runner(partial_geglu, sharding_meta.in_axes, sharding_meta.out_axes, sharding_meta.axis_resources, (inputs_,)) output = jnp.reshape(output, output_shape) return output @partial(jax.custom_vjp, nondiff_argnums=(1,)) def _geglu(inputs: jnp.ndarray, contracting_dims: Sequence[int] = (-1,)): geglu_output, _ = _geglu_fwd(inputs, contracting_dims) return geglu_output def _geglu_fwd(inputs, contracting_dims): inputs_real_shape = (*inputs.shape[:min(contracting_dims)], reduce(operator.mul, inputs.shape[min(contracting_dims):])) inputs_ = jnp.reshape(inputs, inputs_real_shape) geglu_output = gated_gelu(inputs_) geglu_output = jnp.expand_dims(geglu_output, min(contracting_dims)) return geglu_output, (inputs_, inputs.shape) def _geglu_bwd(contracting_dims, ctx, g): inputs_, inputs_shape = ctx g = jnp.squeeze(g, min(contracting_dims)) assert inputs_.dtype == g.dtype dgelu = dgated_gelu(g, inputs_) dgelu = jnp.reshape(dgelu, inputs_shape) return (dgelu,) _geglu.defvjp(_geglu_fwd, _geglu_bwd) def fp8_ln_mlp( fp8_gemm_pkg: FP8GemmPackage, ln_scale: jnp.ndarray, ln_bias: jnp.ndarray, layernorm_type: str, fwd_dtype: TEDType, bwd_dtype: TEDType, zero_centered_gamma: bool = False, epsilon: float = 1e-6, contracting_dims: Tuple[Sequence[int], Sequence[int]] = ((-1,), (0,)), major_sharding_type: MajorShardingType = MajorShardingType.SINGLE, dp_dim_index: int = 0, # pylint: disable=unused-argument activations: Sequence[Union[str, Callable]] = ('gelu', 'linear') ) -> jnp.ndarray: """ FP8 layernorm MLP wrapper (LN + Dense + act + Dense) """ assert fp8_gemm_pkg.num_of_gemm == 2 inputs = fp8_gemm_pkg.inputs kernel_1 = fp8_gemm_pkg.kernels[0] kernel_2 = fp8_gemm_pkg.kernels[1] fp8_max = fp8_gemm_pkg.fp8_max amax = fp8_gemm_pkg.amax scale = fp8_gemm_pkg.scale scale_inv = fp8_gemm_pkg.scale_inv layernorm_type = canonicalize_layernorm_type(layernorm_type) if layernorm_type == 'rmsnorm': assert ln_bias is None, "ln_bias should be None if layernorm_type is 'rmsnorm'" assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" assert activations == ('gelu', 'linear') if major_sharding_type is MajorShardingType.SINGLE: res = _fp8_mlp(inputs, ln_scale, ln_bias, kernel_1, kernel_2, fp8_max, amax, scale, scale_inv, layernorm_type, activations, zero_centered_gamma, epsilon, fwd_dtype, bwd_dtype, contracting_dims, major_sharding_type, "", "", "") else: dp_axis_name = "batch" tp_axis_name = "model" first_part_st, second_part_st = infer_sharding_type(major_sharding_type) ln_sharding_meta = get_elementwise_sharding_meta(first_part_st, inputs.shape, ln_scale.shape, dp_dim_index, dp_axis_name, tp_axis_name) ln_sharding_meta, _ = extend_fsdp_sharding_meta(ln_sharding_meta, {0: dp_dim_index}) input_tp_index = len(inputs.shape) - 1 first_dot_sharding_meta = get_dot_sharding_meta(first_part_st, inputs.shape, kernel_1.shape, dp_dim_index, input_tp_index, 2, contracting_dims, dp_axis_name, tp_axis_name) first_dot_sharding_meta, fsdp_axis_name = extend_fsdp_sharding_meta( first_dot_sharding_meta, {0: dp_dim_index}) second_input_shape = (*first_dot_sharding_meta.output_shapes[0][:-2], first_dot_sharding_meta.output_shapes[0][-1]) second_dot_sharding_meta = get_dot_sharding_meta(second_part_st, second_input_shape, kernel_2.shape, dp_dim_index, len(second_input_shape) - 1, 0, contracting_dims, dp_axis_name, tp_axis_name) second_dot_sharding_meta, _ = extend_fsdp_sharding_meta(second_dot_sharding_meta, {0: dp_dim_index}) num_of_fp8_meta_kind = 4 # fp8_max, amax, scale, scale_inv fp8_sharding_meta = get_fp8_meta_sharding_meta(first_part_st, num_of_fp8_meta_kind, dp_axis_name, tp_axis_name) inputs_ = jnp.reshape(inputs, ln_sharding_meta.input_shapes[0]) # 0 for input ln_scale_ = jnp.reshape(ln_scale, ln_sharding_meta.input_shapes[1]) # 1 for gamma ln_bias_ = ln_bias ln_bias_in_axis = {} if ln_bias_ is not None: ln_bias_ = jnp.reshape(ln_bias_, ln_sharding_meta.input_shapes[1]) # 1 for beta ln_bias_in_axis = ln_sharding_meta.in_axes[1] kernel_1_ = jnp.reshape(kernel_1, first_dot_sharding_meta.input_shapes[1]) # 1 for kernel kernel_2_ = jnp.reshape(kernel_2, second_dot_sharding_meta.input_shapes[1]) # 1 for kernel axis_resource = merge_axis_resources([ ln_sharding_meta.axis_resources, first_dot_sharding_meta.axis_resources, second_dot_sharding_meta.axis_resources, fp8_sharding_meta.axis_resources ]) partial_fp8_mlp = partial(_fp8_mlp, layernorm_type=layernorm_type, activations=activations, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon, fwd_dtype=fwd_dtype, bwd_dtype=bwd_dtype, contracting_dims=contracting_dims, major_sharding_type=major_sharding_type, dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name, fsdp_axis_name=fsdp_axis_name) in_axes = (ln_sharding_meta.in_axes[0], ln_sharding_meta.in_axes[1], ln_bias_in_axis, first_dot_sharding_meta.in_axes[1], second_dot_sharding_meta.in_axes[1], *fp8_sharding_meta.in_axes) res = xmap_runner( partial_fp8_mlp, in_axes, second_dot_sharding_meta.out_axes, axis_resource, (inputs_, ln_scale_, ln_bias_, kernel_1_, kernel_2_, fp8_max, amax, scale, scale_inv)) res = jnp.reshape(res, second_dot_sharding_meta.output_shapes[0]) return res @partial(jax.custom_vjp, nondiff_argnums=(9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)) def _fp8_mlp(inputs: jnp.ndarray, ln_scale: jnp.ndarray, ln_bias: jnp.ndarray, kernel_1: jnp.ndarray, kernel_2: jnp.ndarray, fp8_maxs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, layernorm_type: str, activations: Sequence[Union[str, Callable]], zero_centered_gamma: bool, epsilon: float, fwd_dtype: TEDType, bwd_dtype: TEDType, contracting_dims: Tuple[Sequence[int], Sequence[int]], major_sharding_type: MajorShardingType, dp_axis_name: str, tp_axis_name: str, fsdp_axis_name: str): res, _ = _fp8_mlp_fwd(inputs, ln_scale, ln_bias, kernel_1, kernel_2, fp8_maxs, amax, scale, scale_inv, layernorm_type, activations, zero_centered_gamma, epsilon, fwd_dtype, bwd_dtype, contracting_dims=contracting_dims, major_sharding_type=major_sharding_type, dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name, fsdp_axis_name=fsdp_axis_name) return res def _fp8_mlp_fwd( inputs, gamma, beta, kernel_1, kernel_2, fp8_maxs, amax, scale, scale_inv, layernorm_type, activations, zero_centered_gamma, epsilon, fwd_dtype, bwd_dtype, # pylint: disable=unused-argument contracting_dims, major_sharding_type, dp_axis_name, # pylint: disable=unused-argument tp_axis_name, fsdp_axis_name): # pylint: disable=unused-argument if activations != ('gelu', 'linear'): raise NotImplementedError("activations only support ('gelu', 'linear') for now.") lhs_contracting_dims, rhs_contracting_dims = contracting_dims input_shape_pre = inputs.shape[:min(lhs_contracting_dims)] input_shape_suf = inputs.shape[min(lhs_contracting_dims):] kernel_1_shape_pre = kernel_1.shape[:max(rhs_contracting_dims) + 1] kernel_1_shape_suf = kernel_1.shape[max(rhs_contracting_dims) + 1:] kernel_2_shape_pre = kernel_2.shape[:max(rhs_contracting_dims) + 1] kernel_2_shape_suf = kernel_2.shape[max(rhs_contracting_dims) + 1:] input_contracting_size = reduce(operator.mul, input_shape_suf) kernel_1_pre_size = reduce(operator.mul, kernel_1_shape_pre) kernel_1_suf_size = reduce(operator.mul, kernel_1_shape_suf) kernel_2_pre_size = reduce(operator.mul, kernel_2_shape_pre) assert input_contracting_size == kernel_1_pre_size assert kernel_1_suf_size == kernel_2_pre_size * len(activations) inputs_ = jnp.reshape(inputs, (-1, input_contracting_size)) kernel_1_ = jnp.reshape(kernel_1, (kernel_1_pre_size, -1)) kernel_2_ = jnp.reshape(kernel_2, (kernel_2_pre_size, -1)) amax = FP8Helper.update_amax_history(amax) gemm1_input_idx, gemm1_kernel_idx, _ = FP8Helper.get_fp8_meta_indices(0) input_amax = amax[gemm1_input_idx, 0:1] input_scale = scale[gemm1_input_idx] input_scale_inv = scale_inv[gemm1_input_idx] if layernorm_type == 'layernorm': ln_out, mu, rsigma, ln_out_amax = layernorm_fwd_fp8(inputs_, gamma, beta, input_amax, input_scale, input_scale_inv, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) else: assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" ln_out, rsigma, ln_out_amax = rmsnorm_fwd_fp8(inputs_, gamma, input_amax, input_scale, input_scale_inv, epsilon=epsilon) mu = None kernel_1_amax = amax[gemm1_kernel_idx, 0:1] kernel_1_scale = scale[gemm1_kernel_idx] kernel_1_scale_inv = scale_inv[gemm1_kernel_idx] kernel_1_cast, kernel_1_cast_trans, kernel_1_amax = cast_transpose( kernel_1_, kernel_1_amax, kernel_1_scale, kernel_1_scale_inv, fwd_dtype) dense_1_output = gemm(kernel_1_cast_trans, kernel_1_scale_inv, fwd_dtype, True, ln_out, scale_inv[gemm1_input_idx], fwd_dtype, False, jax_dtype_to_te_dtype(inputs.dtype), FP8Helper.FP8_2X_ACC_FPROP) gemm2_input_idx, gemm2_kernel_idx, _ = FP8Helper.get_fp8_meta_indices(1) kernel_2_amax = amax[gemm2_kernel_idx, 0:1] kernel_2_scale = scale[gemm2_kernel_idx] kernel_2_scale_inv = scale_inv[gemm2_kernel_idx] kernel_2_cast, kernel_2_cast_trans, kernel_2_amax = cast_transpose( kernel_2_, kernel_2_amax, kernel_2_scale, kernel_2_scale_inv, fwd_dtype) dense_1_out_amax = amax[gemm2_input_idx, 0:1] dense_1_out_scale = scale[gemm2_input_idx] dense_1_out_scale_inv = scale_inv[gemm2_input_idx] gated_gelu_output_cast, gated_gelu_amax = gated_gelu_fp8(dense_1_output, dense_1_out_amax, dense_1_out_scale, dense_1_out_scale_inv, fwd_dtype) res = gemm(kernel_2_cast_trans, kernel_2_scale_inv, fwd_dtype, True, gated_gelu_output_cast, dense_1_out_scale_inv, fwd_dtype, False, jax_dtype_to_te_dtype(inputs.dtype), FP8Helper.FP8_2X_ACC_FPROP) if major_sharding_type in (MajorShardingType.TP, MajorShardingType.DPTP): res = jax.lax.psum(res, tp_axis_name) # (input_shape_pre, input_shape_suf) # x (kernel_1_shape_pre, kernel_1_shape_suf) # x (kernel_2_shape_pre, kernel_2_shape_suf) # = (input_shape_pre, kernel_2_shape_suf) output_shape = input_shape_pre + kernel_2_shape_suf res = jnp.reshape(res, output_shape) ctx = (inputs_, ln_out, mu, rsigma, gamma, dense_1_output, gated_gelu_output_cast, kernel_1_cast, kernel_2_cast, fp8_maxs, amax, scale, scale_inv, ln_out_amax, gated_gelu_amax, kernel_1_amax, kernel_2_amax, inputs.shape, kernel_1.shape, kernel_2.shape) return res, ctx def _fp8_mlp_bwd( layernorm_type, activations, # pylint: disable=unused-argument zero_centered_gamma, epsilon, fwd_dtype, bwd_dtype, contracting_dims, # pylint: disable=unused-argument major_sharding_type, dp_axis_name, tp_axis_name, fsdp_axis_name, ctx, g): inputs_, ln_out, mu, rsigma, gamma, \ dense_1_output, gated_gelu_output_cast, \ kernel_1_cast, kernel_2_cast, \ fp8_maxs, amax, scale, scale_inv, \ ln_out_amax, gated_gelu_amax, kernel_1_amax, kernel_2_amax, \ input_shape, kernel_1_shape, kernel_2_shape = ctx g = jnp.reshape(g, (ln_out.shape[0], -1)) gemm2_input_idx, gemm2_kernel_idx, gemm2_grad_idx = FP8Helper.get_fp8_meta_indices(1) grad_amax = amax[gemm2_grad_idx, 0:1] grad_scale = scale[gemm2_grad_idx] grad_scale_inv = scale_inv[gemm2_grad_idx] grad_cast, grad_cast_trans, grad_amax = cast_transpose(g, grad_amax, grad_scale, grad_scale_inv, bwd_dtype) gated_gelu_output_cast_trans = transpose(gated_gelu_output_cast, fwd_dtype) gemm2_input_scale_inv = scale_inv[gemm2_input_idx] wgrad_2 = gemm(grad_cast_trans, grad_scale_inv, bwd_dtype, True, gated_gelu_output_cast_trans, gemm2_input_scale_inv, fwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_WGRAD) kernel_2_scale_inv = scale_inv[gemm2_kernel_idx] dgrad_2 = gemm(kernel_2_cast, kernel_2_scale_inv, fwd_dtype, True, grad_cast, grad_scale_inv, bwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_DGRAD) gemm1_input_idx, gemm1_kernel_idx, gemm1_grad_idx = FP8Helper.get_fp8_meta_indices(0) dgrad_2_amax = amax[gemm1_grad_idx, 0:1] dgrad_2_scale = scale[gemm1_grad_idx] dgrad_2_scale_inv = scale_inv[gemm1_grad_idx] dgelu, dgelu_trans, dgelu_amax = dgated_gelu_cast_transpose(dgrad_2, dense_1_output, dgrad_2_amax, dgrad_2_scale, dgrad_2_scale_inv, bwd_dtype) ln_out_trans = transpose(ln_out, fwd_dtype) gemm1_input_scale_inv = scale_inv[gemm1_input_idx] wgrad_1 = gemm(dgelu_trans, dgrad_2_scale_inv, bwd_dtype, True, ln_out_trans, gemm1_input_scale_inv, fwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_WGRAD) kernel_1_scale_inv = scale_inv[gemm1_kernel_idx] dgrad_1 = gemm(kernel_1_cast, kernel_1_scale_inv, fwd_dtype, True, dgelu, dgrad_2_scale_inv, bwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_DGRAD) if major_sharding_type in (MajorShardingType.TP, MajorShardingType.DPTP): dgrad_1 = jax.lax.psum(dgrad_1, tp_axis_name) if layernorm_type == 'layernorm': grad_input, grad_gamma, grad_beta = layernorm_bwd(dgrad_1, mu, rsigma, inputs_, gamma, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) else: assert not zero_centered_gamma, "zero_centered_gamma is not supported " \ "if layernorm_type is 'rmsnorm'" grad_input, grad_gamma = rmsnorm_bwd(dgrad_1, rsigma, inputs_, gamma, epsilon=epsilon) grad_beta = None amax = amax.at[gemm1_input_idx, 0].set(ln_out_amax[0]) amax = amax.at[gemm1_kernel_idx, 0].set(kernel_1_amax[0]) amax = amax.at[gemm1_grad_idx, 0].set(dgelu_amax[0]) amax = amax.at[gemm2_input_idx, 0].set(gated_gelu_amax[0]) amax = amax.at[gemm2_kernel_idx, 0].set(kernel_2_amax[0]) amax = amax.at[gemm2_grad_idx, 0].set(grad_amax[0]) if major_sharding_type in (MajorShardingType.DP, MajorShardingType.DPTP): wgrad_1 = jax.lax.psum(wgrad_1, dp_axis_name) wgrad_2 = jax.lax.psum(wgrad_2, dp_axis_name) grad_gamma = jax.lax.psum(grad_gamma, dp_axis_name) if grad_beta is not None: grad_beta = jax.lax.psum(grad_beta, dp_axis_name) amax = jax.lax.pmax(amax, dp_axis_name) if len(fsdp_axis_name) > 0: wgrad_1 = jax.lax.psum(wgrad_1, fsdp_axis_name) wgrad_2 = jax.lax.psum(wgrad_2, fsdp_axis_name) grad_gamma = jax.lax.psum(grad_gamma, fsdp_axis_name) if grad_beta is not None: grad_beta = jax.lax.psum(grad_beta, fsdp_axis_name) amax = jax.lax.pmax(amax, fsdp_axis_name) if major_sharding_type in (MajorShardingType.TP, MajorShardingType.DPTP): amax = jax.lax.pmax(amax, tp_axis_name) grad_input = jnp.reshape(grad_input, input_shape) wgrad_1 = jnp.reshape(wgrad_1, kernel_1_shape) wgrad_2 = jnp.reshape(wgrad_2, kernel_2_shape) return grad_input, grad_gamma, grad_beta, \ wgrad_1, wgrad_2, \ fp8_maxs, amax, scale, scale_inv _fp8_mlp.defvjp(_fp8_mlp_fwd, _fp8_mlp_bwd)
TransformerEngine-main
transformer_engine/jax/mlp.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """JAX te custom call""" from abc import ABCMeta, abstractmethod from dataclasses import dataclass from typing import Tuple from functools import partial, reduce import operator import warnings import numpy as np from jaxlib.hlo_helpers import custom_call import jax.numpy as jnp from jax.lib import xla_client from jax import core, dtypes from jax.core import ShapedArray from jax.interpreters import xla, mlir from jax.interpreters.mlir import ir, dtype_to_ir_type import transformer_engine_jax from transformer_engine_jax import DType as TEDType from transformer_engine_jax import NVTE_Bias_Type from transformer_engine_jax import NVTE_Mask_Type from transformer_engine_jax import NVTE_QKV_Layout from transformer_engine_jax import NVTE_Fused_Attn_Backend for _name, _value in transformer_engine_jax.registrations().items(): xla_client.register_custom_call_target(_name, _value, platform="CUDA") def te_dtype_to_jax_dtype(te_dtype): """ convert TE dtype to jax dtype """ assert isinstance(te_dtype, TEDType) if te_dtype == TEDType.kFloat32: return jnp.float32 if te_dtype == TEDType.kFloat16: return jnp.float16 if te_dtype == TEDType.kBFloat16: return jnp.bfloat16 if te_dtype == TEDType.kInt32: return jnp.int32 if te_dtype == TEDType.kInt64: return jnp.int64 return jnp.int8 def te_dtype_to_ir_dtype(te_dtype): """ convert TE dtype to MLIR dtype """ return dtype_to_ir_type(np.dtype(te_dtype_to_jax_dtype(te_dtype))) def jax_dtype_to_te_dtype(jax_dtype): """ convert jax dtype to TE dtype """ if jax_dtype == jnp.float32: return TEDType.kFloat32 if jax_dtype == jnp.float16: return TEDType.kFloat16 if jax_dtype == jnp.bfloat16: return TEDType.kBFloat16 raise ValueError(f"Not support the {jax_dtype=}") @dataclass(frozen=True) class FusedAttnHelper: """ Helper for the fused attention backend """ q_type: jnp.dtype kv_type: jnp.dtype attn_bias_type: NVTE_Bias_Type attn_mask_type: NVTE_Mask_Type dropout_probability: float max_seqlen_q: int max_seqlen_kv: int head_dim: int def is_fused_attn_kernel_available(self): """Check if there is available fused attention kernel""" return self.get_fused_attn_backend() != NVTE_Fused_Attn_Backend.NVTE_No_Backend def get_fused_attn_backend(self): """Get the fused attention kernel backend""" return transformer_engine_jax.get_fused_attn_backend( jax_dtype_to_te_dtype(self.q_type), jax_dtype_to_te_dtype(self.kv_type), NVTE_QKV_Layout.NVTE_QKV_INTERLEAVED, self.attn_bias_type, self.attn_mask_type, self.dropout_probability, self.max_seqlen_q, self.max_seqlen_kv, self.head_dim) def merge_named_shape(base, new): """ merge named shape(ie, dict), no key conflict """ output_named_shape = {**base} for key in new: if key in output_named_shape: assert output_named_shape[key] == new[key], \ f"The value of named shape with a same name should be equal between" \ f" base and new in merge_named_shape, but got base[{key}]=" \ f"{output_named_shape[key]} and {new[key]=}" else: output_named_shape[key] = new[key] return output_named_shape class BasePrimitive(metaclass=ABCMeta): """ jax premitive """ @staticmethod @abstractmethod def abstract(): """ to describe computing graph """ return NotImplemented @staticmethod @abstractmethod def lowering(): """ to describe MLIR """ return NotImplemented def register_primitive(cls): """ register jax primitive """ p = core.Primitive(cls.name) p.multiple_results = cls.multiple_results p.def_impl(partial(xla.apply_primitive, p)) p.def_abstract_eval(cls.abstract) mlir.register_lowering(p, cls.lowering, platform='cuda') return p @dataclass class CustomCallArgsWrapper: """ wrapper of XLA custom call args """ def __init__(self, output_types, operands, operand_shapes, operand_specific_layouts=None, output_specific_layouts=None): self.output_types = output_types self.operands = operands self.operand_layouts = CustomCallArgsWrapper.generate_layouts(operand_shapes, operand_specific_layouts) output_shapes = [x.shape for x in output_types] self.output_layouts = CustomCallArgsWrapper.generate_layouts(output_shapes, output_specific_layouts) @staticmethod def generate_layouts(shapes, specific_layouts): """ setup layouts for XLA custom call """ def default_layout(shape): return range(len(shape) - 1, -1, -1) if specific_layouts is None: specific_layouts = {} layouts = [] for idx, shape in enumerate(shapes): if idx in specific_layouts: layouts.append(specific_layouts[idx]) else: layouts.append(default_layout(shape)) return layouts def custom_caller(name, args, opaque, has_side_effect, **kwargs): """ XLA custom call warpper """ if hasattr(mlir, "custom_call"): out = mlir.custom_call(name, result_types=args.output_types, operands=args.operands, operand_layouts=args.operand_layouts, result_layouts=args.output_layouts, backend_config=opaque, has_side_effect=has_side_effect, **kwargs).results else: # Need to disable one pylint error as the second function # parameter name recenctly in JAX. Otherwise we won't be # compatible with multiple JAX version. out = custom_call(name, # pylint: disable=too-many-function-args args.output_types, operands=args.operands, operand_layouts=args.operand_layouts, result_layouts=args.output_layouts, backend_config=opaque, has_side_effect=has_side_effect, **kwargs) return out class TransposePrimitive(BasePrimitive): """ Transpose Primitive """ name = "te_transpose" multiple_results = False @staticmethod def abstract(inputs, *, dtype): """ _transpose abstract """ in_dtype = dtypes.canonicalize_dtype(inputs.dtype) out_dtype = te_dtype_to_jax_dtype(dtype) assert len(inputs.shape) == 2 assert isinstance(dtype, TEDType) assert in_dtype == out_dtype return ShapedArray((inputs.shape[1], inputs.shape[0]), in_dtype, named_shape=inputs.named_shape) @staticmethod def lowering(ctx, inputs, *, dtype): """ _transpose cuda lowering """ in_aval = ctx.avals_in[0] assert in_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16, jnp.int8] ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape ir_out_dtype = te_dtype_to_ir_dtype(dtype) out_types = [ir.RankedTensorType.get([ir_in_shape[1], ir_in_shape[0]], ir_out_dtype)] operands = [inputs] operand_shapes = [ir_in_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) assert len(ir_in_shape) == 2 opaque = transformer_engine_jax.pack_common_descriptor(ir_in_shape, dtype, dtype) out = custom_caller(TransposePrimitive.name, args, opaque, False) return [out] _transpose_p = register_primitive(TransposePrimitive) def transpose(inputs: jnp.ndarray, dtype: TEDType) -> jnp.ndarray: """ transpose wrapper Assume input has two dimension shape """ return _transpose_p.bind(inputs, dtype=dtype) class CastTransposePrimitive(BasePrimitive): """ Cast Transpose Primitive """ name = "te_cast_transpose" multiple_results = True @staticmethod def abstract(inputs, amax, scale, scale_inv, *, out_dtype): """ te_cast_transpose_p abstract """ dtype = dtypes.canonicalize_dtype(inputs.dtype) assert len(inputs.shape) == 2 assert dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax.dtype == jnp.float32 assert scale.dtype == jnp.float32 assert scale_inv.dtype == jnp.float32 out_dtype = te_dtype_to_jax_dtype(out_dtype) # input_cast, input_cast_trans, amax return (ShapedArray((inputs.shape[0], inputs.shape[1]), out_dtype, named_shape=inputs.named_shape), ShapedArray((inputs.shape[1], inputs.shape[0]), out_dtype, named_shape=inputs.named_shape), ShapedArray((1,), amax.dtype, named_shape=amax.named_shape)) @staticmethod def lowering(ctx, inputs, amax, scale, scale_inv, *, out_dtype): """ te_cast_transpose_p lowering rules """ in_aval, amax_aval, scale_aval, scale_inv_aval = ctx.avals_in assert in_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax_aval.dtype == jnp.float32 assert scale_aval.dtype == jnp.float32 assert scale_inv_aval.dtype == jnp.float32 ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape ir_out_dtype = te_dtype_to_ir_dtype(out_dtype) ir_amax_type = ir.RankedTensorType(amax.type) ir_amax_dtype = ir_amax_type.element_type ir_amax_shape = ir_amax_type.shape ir_scale_shape = ir_amax_shape ir_scale_inv_shape = ir_amax_shape out_types = [ ir.RankedTensorType.get([ir_in_shape[0], ir_in_shape[1]], ir_out_dtype), ir.RankedTensorType.get([ir_in_shape[1], ir_in_shape[0]], ir_out_dtype), ir.RankedTensorType.get(ir_amax_shape, ir_amax_dtype), ] operands = [inputs, amax, scale, scale_inv] operand_shapes = [ir_in_shape, ir_amax_shape, ir_scale_shape, ir_scale_inv_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) assert len(ir_in_shape) == 2 opaque = transformer_engine_jax.pack_common_descriptor(ir_in_shape, jax_dtype_to_te_dtype(in_aval.dtype), out_dtype) out = custom_caller(CastTransposePrimitive.name, args, opaque, False, operand_output_aliases={1: 2}) return out _cast_transpose_p = register_primitive(CastTransposePrimitive) def cast_transpose(inputs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, out_dtype: TEDType) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: """ cast transpose wrapper Return two tensors, FP8(inputs) and FP8(inputs.T), which are scaled by `scale` """ return _cast_transpose_p.bind(inputs, amax, scale, scale_inv, out_dtype=out_dtype) class GatedGeluPrimitive(BasePrimitive): """ Gated Gelu Primitive """ name = "te_gated_gelu" multiple_results = False @staticmethod def abstract(inputs): """ te_gated_gelu_p abstract """ dtype = dtypes.canonicalize_dtype(inputs.dtype) assert dtype in [jnp.float32, jnp.float16, jnp.bfloat16] inputs_shape = inputs.shape hidden_size = inputs_shape[-1] # In Transformer, batch_shape = (batch, seqlen, ) batch_shapes = inputs_shape[:-1] assert hidden_size % 2 == 0 inputs_shape = inputs.shape out_shape = (batch_shapes) + (hidden_size // 2,) return ShapedArray(out_shape, dtype, named_shape=inputs.named_shape) @staticmethod def lowering(ctx, inputs): """ te_gated_gelu_p lowering rules """ (in_aval,) = ctx.avals_in assert in_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape out_shape = ir_in_shape[:-1] + [ir_in_shape[-1] // 2] out_types = [ ir.RankedTensorType.get(out_shape, ir_in_type.element_type), ] operands = [inputs] operand_shapes = [ir_in_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) hidden_size = ir_in_shape[-1] # In Transformer, batch_size = batch x seqlen batch_size = reduce(operator.mul, ir_in_shape[:-1]) in_dtype = jax_dtype_to_te_dtype(in_aval.dtype) opaque = transformer_engine_jax.pack_common_descriptor((batch_size, hidden_size // 2), in_dtype, in_dtype) out = custom_caller(GatedGeluPrimitive.name, args, opaque, False) return [out] _gated_gelu_p = register_primitive(GatedGeluPrimitive) def gated_gelu(inputs: jnp.ndarray) -> jnp.ndarray: """ gated gelu wrapper Return FP8(geglu(inputs)) Assume inputs has two dimensions shape and the memory layout is (N, 2, H) """ return _gated_gelu_p.bind(inputs) class GatedGeluFp8Primitive(BasePrimitive): """ Gated Gelu FP8 Primitive """ name = "te_gated_gelu_fp8" multiple_results = True @staticmethod def abstract(inputs, amax, scale, scale_inv, *, out_dtype): """ te_gated_gelu_p abstract """ dtype = dtypes.canonicalize_dtype(inputs.dtype) assert dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax.dtype == jnp.float32 assert scale.dtype == jnp.float32 assert scale_inv.dtype == jnp.float32 out_dtype = te_dtype_to_jax_dtype(out_dtype) assert len(inputs.shape) == 2 hidden_size = inputs.shape[1] batch_size = inputs.shape[0] # In Transformer, batch_size = batch x seqlen # input_cast, input_cast_trans, amax return (ShapedArray((batch_size, hidden_size // 2), out_dtype, named_shape=inputs.named_shape), ShapedArray((1,), amax.dtype, named_shape=amax.named_shape)) @staticmethod def lowering(ctx, inputs, amax, scale, scale_inv, *, out_dtype): """ te_gated_gelu_p lowering rules """ in_aval, amax_aval, scale_aval, scale_inv_aval = ctx.avals_in assert in_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax_aval.dtype == jnp.float32 assert scale_aval.dtype == jnp.float32 assert scale_inv_aval.dtype == jnp.float32 ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape ir_out_dtype = te_dtype_to_ir_dtype(out_dtype) ir_amax_type = ir.RankedTensorType(amax.type) ir_amax_dtype = ir_amax_type.element_type ir_amax_shape = ir_amax_type.shape ir_scale_shape = ir_amax_shape ir_scale_inv_shape = ir_amax_shape hidden_size = ir_in_shape[1] batch_size = ir_in_shape[0] # In Transformer, batch_size = batch x seqlen out_types = [ ir.RankedTensorType.get([batch_size, hidden_size // 2], ir_out_dtype), ir.RankedTensorType.get(ir_amax_shape, ir_amax_dtype), ] operands = [inputs, amax, scale, scale_inv] operand_shapes = [ir_in_shape, ir_amax_shape, ir_scale_shape, ir_scale_inv_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_common_descriptor( (ir_in_shape[0], ir_in_shape[1] // 2), jax_dtype_to_te_dtype(in_aval.dtype), out_dtype) out = custom_caller(GatedGeluFp8Primitive.name, args, opaque, False, operand_output_aliases={1: 1}) return out _gated_gelu_fp8_p = register_primitive(GatedGeluFp8Primitive) def gated_gelu_fp8(inputs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, out_dtype: TEDType) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: """ cast gated gelu wrapper Return FP8(geglu(inputs)) Assume inputs has two dimensions shape and the memory layout is (N, 2, H) """ return _gated_gelu_fp8_p.bind(inputs, amax, scale, scale_inv, out_dtype=out_dtype) class DgatedGeluPrimitive(BasePrimitive): """ Dgated Gelu Primitive """ name = "te_dgated_gelu" multiple_results = False @staticmethod def abstract(inputs, gelu_inputs): """ te_dgated_gelu_p abstract """ dtype = dtypes.canonicalize_dtype(inputs.dtype) assert dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert gelu_inputs.dtype == dtype for axis in range(len(inputs.shape) - 1): assert inputs.shape[axis] == gelu_inputs.shape[axis] i_hidden_size = inputs.shape[-1] g_hidden_szie = gelu_inputs.shape[-1] assert i_hidden_size * 2 == g_hidden_szie return ShapedArray(gelu_inputs.shape, dtype, named_shape=inputs.named_shape) @staticmethod def lowering(ctx, inputs, gelu_inputs): """ te_dgated_gelu_p lowering rules """ in_aval, gi_aval = ctx.avals_in assert in_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert gi_aval.dtype == in_aval.dtype ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape gi_type = ir.RankedTensorType(gelu_inputs.type) gi_shape = gi_type.shape for axis in range(len(ir_in_shape) - 1): assert ir_in_shape[axis] == gi_shape[axis] # In Transformer, batch_size = batch x seqlen ir_batch_szie = reduce(operator.mul, ir_in_shape[:-1]) i_hidden_size = ir_in_shape[-1] g_hidden_szie = gi_shape[-1] assert i_hidden_size * 2 == g_hidden_szie out_dtype = ir_in_type.element_type out_shape = gi_shape out_types = [ ir.RankedTensorType.get(out_shape, out_dtype), ] operands = [inputs, gelu_inputs] operand_shapes = [ir_in_shape, gi_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) in_dtype = jax_dtype_to_te_dtype(in_aval.dtype) opaque = transformer_engine_jax.pack_common_descriptor((ir_batch_szie, i_hidden_size), in_dtype, in_dtype) out = custom_caller(DgatedGeluPrimitive.name, args, opaque, False) return [out] _dgated_gelu_p = register_primitive(DgatedGeluPrimitive) def dgated_gelu(inputs: jnp.ndarray, gelu_inputs: jnp.ndarray) -> jnp.ndarray: """ dgated_gelu fusion wrapper Return dgeglu(inputs) """ return _dgated_gelu_p.bind(inputs, gelu_inputs) class DgatedGeluCastTransposePrimitive(BasePrimitive): """ Dgated Gelu Cast Transpose Primitive """ name = "te_dgated_gelu_cast_transpose" multiple_results = True @staticmethod def abstract(inputs, gelu_inputs, amax, scale, scale_inv, *, out_dtype): """ te_dgated_gelu_cast_transpose_p abstract """ dtype = dtypes.canonicalize_dtype(inputs.dtype) assert dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert gelu_inputs.dtype == dtype assert len(inputs.shape) == 2 assert len(gelu_inputs.shape) == 2 ir_batch_szie = inputs.shape[0] gi_batch_size = gelu_inputs.shape[0] assert ir_batch_szie == gi_batch_size ir_hidden_szie = inputs.shape[1] gi_hidden_size = gelu_inputs.shape[1] assert ir_hidden_szie * 2 == gi_hidden_size assert amax.dtype == jnp.float32 assert scale.dtype == jnp.float32 assert scale_inv.dtype == jnp.float32 out_dtype = te_dtype_to_jax_dtype(out_dtype) # input_cast, input_cast_trans, amax return (ShapedArray((gi_batch_size, gi_hidden_size), out_dtype, named_shape=inputs.named_shape), ShapedArray((gi_hidden_size, gi_batch_size), out_dtype, named_shape=inputs.named_shape), ShapedArray((1,), amax.dtype, named_shape=amax.named_shape)) @staticmethod def lowering(ctx, inputs, gelu_inputs, amax, scale, scale_inv, *, out_dtype): """ te_dgated_gelu_cast_transpose_p lowering rules """ in_aval, gi_aval, amax_aval, scale_aval, scale_inv_aval = ctx.avals_in assert in_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert gi_aval.dtype == in_aval.dtype assert amax_aval.dtype == jnp.float32 assert scale_aval.dtype == jnp.float32 assert scale_inv_aval.dtype == jnp.float32 ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape gi_type = ir.RankedTensorType(gelu_inputs.type) gi_shape = gi_type.shape ir_batch_szie = ir_in_shape[0] gi_batch_size = gi_shape[0] assert ir_batch_szie == gi_batch_size ir_hidden_szie = ir_in_shape[1] gi_hidden_size = gi_shape[1] assert ir_hidden_szie * 2 == gi_hidden_size ir_out_dtype = te_dtype_to_ir_dtype(out_dtype) ir_amax_type = ir.RankedTensorType(amax.type) ir_amax_dtype = ir_amax_type.element_type ir_amax_shape = ir_amax_type.shape ir_scale_shape = ir_amax_shape ir_scale_inv_shape = ir_amax_shape out_types = [ ir.RankedTensorType.get([gi_batch_size, gi_hidden_size], ir_out_dtype), ir.RankedTensorType.get([gi_hidden_size, gi_batch_size], ir_out_dtype), ir.RankedTensorType.get(ir_amax_shape, ir_amax_dtype), ] operands = [inputs, gelu_inputs, amax, scale, scale_inv] operand_shapes = [ir_in_shape, gi_shape, ir_amax_shape, ir_scale_shape, ir_scale_inv_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_common_descriptor((ir_batch_szie, ir_hidden_szie), jax_dtype_to_te_dtype(in_aval.dtype), out_dtype) out = custom_caller(DgatedGeluCastTransposePrimitive.name, args, opaque, False, operand_output_aliases={2: 2}) return out _dgated_gelu_cast_transpose_p = register_primitive(DgatedGeluCastTransposePrimitive) def dgated_gelu_cast_transpose(inputs: jnp.ndarray, gelu_inputs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, out_dtype: TEDType) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: """ cast transpose d_gated_gelu fusion wrapper Return FP8(dgeglu(inputs)) """ return _dgated_gelu_cast_transpose_p.bind(inputs, gelu_inputs, amax, scale, scale_inv, out_dtype=out_dtype) class GemmPrimitive(BasePrimitive): """ Gemm Primitive """ name = "te_gemm" multiple_results = False @staticmethod def abstract(A, B, A_scale_inv, B_scale_inv, *, A_dtype, B_dtype, D_dtype, transa, transb, use_split_accumulator): # pylint: disable=unused-argument """ te_gemm_p abstract """ atype = dtypes.canonicalize_dtype(A.dtype) btype = dtypes.canonicalize_dtype(B.dtype) assert atype == te_dtype_to_jax_dtype(A_dtype) assert btype == te_dtype_to_jax_dtype(B_dtype) assert A_scale_inv.dtype == jnp.float32 assert B_scale_inv.dtype == jnp.float32 m = A.shape[0] if transa else A.shape[1] k = A.shape[1] if transa else A.shape[0] n = B.shape[1] if transb else B.shape[0] assert (transb and k == B.shape[0]) or k == B.shape[1] out_dtype = te_dtype_to_jax_dtype(D_dtype) return ShapedArray((n, m), out_dtype, named_shape=merge_named_shape(A.named_shape, B.named_shape)) @staticmethod def lowering(ctx, A, B, A_scale_inv, B_scale_inv, *, A_dtype, B_dtype, D_dtype, transa, transb, use_split_accumulator): """ te_gemm_p lowering rules """ A_aval, B_aval, A_scale_inv_aval, B_scale_inv_aval = ctx.avals_in assert A_aval.dtype == te_dtype_to_jax_dtype(A_dtype) assert B_aval.dtype == te_dtype_to_jax_dtype(B_dtype) assert A_scale_inv_aval.dtype == jnp.float32 assert B_scale_inv_aval.dtype == jnp.float32 A_type = ir.RankedTensorType(A.type) B_type = ir.RankedTensorType(B.type) A_shape = A_type.shape B_shape = B_type.shape A_scale_inv_shape = ir.RankedTensorType(A_scale_inv.type).shape B_scale_inv_shape = ir.RankedTensorType(B_scale_inv.type).shape m = A_shape[0] if transa else A_shape[1] k = A_shape[1] if transa else A_shape[0] n = B_shape[1] if transb else B_shape[0] assert (transb and k == B_shape[0]) or k == B_shape[1] ir_out_dtype = dtype_to_ir_type(np.dtype(te_dtype_to_jax_dtype(D_dtype))) out_types = [ ir.RankedTensorType.get([n, m], ir_out_dtype), ] operands = [A, B, A_scale_inv, B_scale_inv] operand_shapes = [A_shape, B_shape, A_scale_inv_shape, B_scale_inv_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) # m, n, k here should be equal to transa=False and transb=False, # due to te_gemm's implementation. # Therefore, m=A_shape[1], n=B_shape[0], k=A_shape[0] opaque = transformer_engine_jax.pack_gemm_descriptor(A_shape[1], B_shape[0], A_shape[0], A_dtype, B_dtype, D_dtype, transa, transb, use_split_accumulator) out = custom_caller(GemmPrimitive.name, args, opaque, False) return [out] _gemm_p = register_primitive(GemmPrimitive) def gemm(A: jnp.ndarray, A_scale_inv: jnp.ndarray, A_type: TEDType, transa: bool, B: jnp.ndarray, B_scale_inv: jnp.ndarray, B_type: TEDType, transb: bool, D_type: TEDType, use_split_accumulator: bool = False) -> jnp.ndarray: """ gemm wrapper """ return _gemm_p.bind(A, B, A_scale_inv, B_scale_inv, A_dtype=A_type, B_dtype=B_type, D_dtype=D_type, transa=transa, transb=transb, use_split_accumulator=use_split_accumulator) class LayerNormFwdPrimitive(BasePrimitive): """ Layer Normalization Forward Primitive """ name = "te_layernorm_forward" multiple_results = True @staticmethod def abstract(x, gamma, beta, **kwargs): # pylint: disable=unused-argument """ LayerNorm fwd abstract """ x_dtype = dtypes.canonicalize_dtype(x.dtype) assert x_dtype in [jnp.float32, jnp.float16, jnp.bfloat16] mu_dtype = jnp.float32 rsigma_dtype = jnp.float32 assert gamma.size == beta.size hidden_size = gamma.size assert x.size % hidden_size == 0 # In Transformer, batch_size = batch x seqlen batch_size = x.size // hidden_size return ( ShapedArray(x.shape, x_dtype, named_shape=x.named_shape), # output ShapedArray((batch_size,), mu_dtype, named_shape=x.named_shape), # mu ShapedArray((batch_size,), rsigma_dtype, named_shape=x.named_shape), # rsigma ) @staticmethod def lowering(ctx, x, gamma, beta, *, zero_centered_gamma, epsilon): """ LayerNorm fwd lowering rules """ x_aval, gamma_aval, beta_aval = ctx.avals_in assert gamma_aval.dtype == beta_aval.dtype x_type = ir.RankedTensorType(x.type) x_shape = x_type.shape w_type = ir.RankedTensorType(gamma.type) w_shape = w_type.shape b_type = ir.RankedTensorType(beta.type) b_shape = b_type.shape assert w_type == b_type assert w_shape == b_shape # Output shape is same as the input shape, but the output type is same as the weight type. # See ln_api.cpp out_shape = x_shape output_type = w_type.element_type ir_mu_dtype = ir.F32Type.get() ir_rsigma_dtype = ir.F32Type.get() hidden_size = reduce(operator.mul, w_shape) # In Transformer, batch_size = batch x seqlen batch_size = reduce(operator.mul, x_shape) // hidden_size out_types = [ ir.RankedTensorType.get(out_shape, output_type), ir.RankedTensorType.get((batch_size,), ir_mu_dtype), ir.RankedTensorType.get((batch_size,), ir_rsigma_dtype), ] operands = [x, gamma, beta] operand_shapes = [x_shape, w_shape, b_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_norm_descriptor( batch_size, hidden_size, jax_dtype_to_te_dtype(x_aval.dtype), jax_dtype_to_te_dtype(gamma_aval.dtype), zero_centered_gamma, epsilon, ) out = custom_caller(LayerNormFwdPrimitive.name, args, opaque, False) return out _layernorm_fwd_p = register_primitive(LayerNormFwdPrimitive) def layernorm_fwd(x: jnp.ndarray, gamma: jnp.ndarray, beta: jnp.ndarray, zero_centered_gamma: bool, epsilon: float): """ Wrapper for TE layernorm fwd """ return _layernorm_fwd_p.bind(x, gamma, beta, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) class LayerNormFwdFp8Primitive(BasePrimitive): """ Layer Normalization Forward FP8 Primitive """ name = "te_layernorm_forward_fp8" multiple_results = True @staticmethod def abstract( x, gamma, beta, amax, scale, scale_inv, **kwargs # pylint: disable=unused-argument ): """ LayerNorm fwd (fp8 out) abstract """ x_dtype = dtypes.canonicalize_dtype(x.dtype) assert x_dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax.dtype == jnp.float32 assert scale.dtype == jnp.float32 assert scale_inv.dtype == jnp.float32 out_dtype = jnp.int8 mu_dtype = jnp.float32 rsigma_dtype = jnp.float32 assert gamma.size == beta.size hidden_szie = gamma.size # In Transformer, batch_size = batch x seqlen batch_size = x.size // hidden_szie return ( ShapedArray(x.shape, out_dtype, named_shape=x.named_shape), # output ShapedArray((batch_size,), mu_dtype, named_shape=x.named_shape), # mu ShapedArray((batch_size,), rsigma_dtype, named_shape=x.named_shape), # rsigma ShapedArray((1,), amax.dtype, named_shape=amax.named_shape), # amax ) @staticmethod def lowering(ctx, x, gamma, beta, amax, scale, scale_inv, *, zero_centered_gamma, epsilon): """ LayerNorm fwd (fp8 out) lowering rules """ x_aval, gamma_aval, beta_aval, amax_aval, scale_aval, scale_inv_aval = ctx.avals_in assert x_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert gamma_aval.dtype == beta_aval.dtype assert amax_aval.dtype == jnp.float32 assert scale_aval.dtype == jnp.float32 assert scale_inv_aval.dtype == jnp.float32 x_type = ir.RankedTensorType(x.type) x_shape = x_type.shape w_type = ir.RankedTensorType(gamma.type) w_shape = w_type.shape b_type = ir.RankedTensorType(beta.type) b_shape = b_type.shape ir_out_dtype = dtype_to_ir_type(np.dtype(np.int8)) ir_mu_dtype = ir.F32Type.get() ir_rsigma_dtype = ir.F32Type.get() ir_amax_type = ir.RankedTensorType(amax.type) ir_amax_dtype = ir_amax_type.element_type ir_amax_shape = ir_amax_type.shape ir_scale_shape = ir_amax_shape ir_scale_inv_shape = ir_amax_shape hidden_size = reduce(operator.mul, w_shape) # In Transformer, batch_size = batch x seqlen batch_size = reduce(operator.mul, x_shape) // hidden_size out_types = [ ir.RankedTensorType.get(x_shape, ir_out_dtype), ir.RankedTensorType.get((batch_size,), ir_mu_dtype), ir.RankedTensorType.get((batch_size,), ir_rsigma_dtype), ir.RankedTensorType.get(ir_amax_shape, ir_amax_dtype), ] operands = [x, gamma, beta, amax, scale, scale_inv] operand_shapes = [ x_shape, w_shape, b_shape, ir_amax_shape, ir_scale_shape, ir_scale_inv_shape ] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_norm_descriptor( batch_size, hidden_size, jax_dtype_to_te_dtype(x_aval.dtype), jax_dtype_to_te_dtype(gamma_aval.dtype), zero_centered_gamma, epsilon, ) out = custom_caller(LayerNormFwdFp8Primitive.name, args, opaque, False, operand_output_aliases={3: 3}) return out _layernorm_fwd_fp8_p = register_primitive(LayerNormFwdFp8Primitive) def layernorm_fwd_fp8(x: jnp.ndarray, gamma: jnp.ndarray, beta: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, zero_centered_gamma: bool, epsilon: float): """ Wrapper for TE layernorm fwd (fp8 out) """ return _layernorm_fwd_fp8_p.bind(x, gamma, beta, amax, scale, scale_inv, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) class LayerNormBwdPrimitive(BasePrimitive): """ Layer Normalization Backward Primitive """ name = "te_layernorm_backward" multiple_results = True @staticmethod def abstract(grad_output, mu, rsigma, x, gamma, **kwargs): # pylint: disable=unused-argument """ Layernorm bwd abstract """ x_dtype = dtypes.canonicalize_dtype(x.dtype) w_dtype = dtypes.canonicalize_dtype(gamma.dtype) mu_dtype = dtypes.canonicalize_dtype(mu.dtype) rsigma_dtype = dtypes.canonicalize_dtype(rsigma.dtype) hidden_size = gamma.size # In Transformer, batch_size = batch x seqlen batch_size = x.size // hidden_size assert dtypes.canonicalize_dtype(grad_output.dtype) == w_dtype assert grad_output.shape == x.shape assert mu.shape == rsigma.shape == (batch_size,) assert mu_dtype == rsigma_dtype == jnp.float32 assert grad_output.named_shape == x.named_shape return ( ShapedArray(x.shape, x_dtype, named_shape=grad_output.named_shape), # grad input ShapedArray(gamma.shape, w_dtype, named_shape=gamma.named_shape), # grad gamma ShapedArray(gamma.shape, w_dtype, named_shape=gamma.named_shape), # grad beta ) @staticmethod def lowering(ctx, grad_output, mu, rsigma, x, gamma, *, zero_centered_gamma, epsilon): """ Layernorm bwd lowering rules """ _, _, _, x_aval, gamma_aval = ctx.avals_in x_type = ir.RankedTensorType(x.type) x_shape = x_type.shape w_type = ir.RankedTensorType(gamma.type) w_shape = w_type.shape b_type = ir.RankedTensorType(gamma.type) b_shape = b_type.shape assert w_type == b_type assert w_shape == b_shape go_shape = ir.RankedTensorType(grad_output.type).shape mu_shape = ir.RankedTensorType(mu.type).shape rsigma_shape = ir.RankedTensorType(rsigma.type).shape hidden_size = reduce(operator.mul, w_shape) # In Transformer, batch_size = batch x seqlen batch_size = reduce(operator.mul, x_shape) // hidden_size out_types = [ ir.RankedTensorType.get(x_shape, x_type.element_type), ir.RankedTensorType.get(w_shape, w_type.element_type), ir.RankedTensorType.get(b_shape, b_type.element_type), ] operands = [grad_output, mu, rsigma, x, gamma] operand_shapes = [go_shape, mu_shape, rsigma_shape, x_shape, w_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_norm_descriptor( batch_size, hidden_size, jax_dtype_to_te_dtype(x_aval.dtype), jax_dtype_to_te_dtype(gamma_aval.dtype), zero_centered_gamma, epsilon, ) out = custom_caller(LayerNormBwdPrimitive.name, args, opaque, False) return out _layernorm_bwd_p = register_primitive(LayerNormBwdPrimitive) def layernorm_bwd(g: jnp.ndarray, mu: jnp.ndarray, rsigma: jnp.ndarray, x: jnp.ndarray, gamma: jnp.ndarray, zero_centered_gamma: bool, epsilon: float): """ Wrapper for TE layernorm bwd """ return _layernorm_bwd_p.bind(g, mu, rsigma, x, gamma, zero_centered_gamma=zero_centered_gamma, epsilon=epsilon) class RmsNormFwdPrimitive(BasePrimitive): """ RMS Normalization Forward Primitive """ name = "te_rmsnorm_forward" multiple_results = True @staticmethod def abstract(x, gamma, **kwargs): # pylint: disable=unused-argument """ RMSNorm fwd abstract """ x_dtype = dtypes.canonicalize_dtype(x.dtype) rsigma_dtype = jnp.float32 hidden_size = gamma.size # In Transformer, batch_size = batch x seqlen batch_size = x.size // hidden_size return ( ShapedArray(x.shape, x_dtype, named_shape=x.named_shape), # output ShapedArray((batch_size,), rsigma_dtype, named_shape=x.named_shape), # rsigma ) @staticmethod def lowering(ctx, x, gamma, *, epsilon): """ RMSNorm fwd lowering rules """ x_aval, gamma_aval = ctx.avals_in x_type = ir.RankedTensorType(x.type) x_shape = x_type.shape w_type = ir.RankedTensorType(gamma.type) w_shape = w_type.shape iv_element_type = ir.F32Type.get() hidden_size = reduce(operator.mul, w_shape) # In Transformer, batch_size = batch x seqlen batch_size = reduce(operator.mul, x_shape) // hidden_size out_types = [ ir.RankedTensorType.get(x_shape, w_type.element_type), ir.RankedTensorType.get((batch_size,), iv_element_type), ] operands = [x, gamma] operand_shapes = [x_shape, w_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_norm_descriptor( batch_size, hidden_size, jax_dtype_to_te_dtype(x_aval.dtype), jax_dtype_to_te_dtype(gamma_aval.dtype), False, # RMSNorm doesn't support zero_centered_gamma epsilon, ) out = custom_caller(RmsNormFwdPrimitive.name, args, opaque, False) return out _rmsnorm_fwd_p = register_primitive(RmsNormFwdPrimitive) def rmsnorm_fwd(x: jnp.ndarray, gamma: jnp.ndarray, epsilon: float): """ Wrapper for TE rmsnorm fwd """ return _rmsnorm_fwd_p.bind(x, gamma, epsilon=epsilon) class RmsNormFwdFp8Primitive(BasePrimitive): """ RMS Normalization Forward FP8 Primitive """ name = "te_rmsnorm_forward_fp8" multiple_results = True @staticmethod def abstract( x, gamma, amax, scale, scale_inv, **kwargs # pylint: disable=unused-argument ): """ RMSNorm fwd (fp8 out) abstract """ x_dtype = dtypes.canonicalize_dtype(x.dtype) assert x_dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax.dtype == jnp.float32 assert scale.dtype == jnp.float32 assert scale_inv.dtype == jnp.float32 out_dtype = jnp.int8 rsigma_dtype = jnp.float32 hidden_size = gamma.size # In Transformer, batch_size = batch x seqlen batch_size = x.size // hidden_size return ( ShapedArray(x.shape, out_dtype, named_shape=x.named_shape), # output ShapedArray((batch_size,), rsigma_dtype, named_shape=x.named_shape), # rsigma ShapedArray((1,), amax.dtype, named_shape=amax.named_shape), # amax ) @staticmethod def lowering(ctx, x, gamma, amax, scale, scale_inv, *, epsilon): """ RMSNorm fwd (fp8 out) lowering rules """ x_aval, gamma_aval, amax_aval, scale_aval, scale_inv_aval = ctx.avals_in assert x_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax_aval.dtype == jnp.float32 assert scale_aval.dtype == jnp.float32 assert scale_inv_aval.dtype == jnp.float32 x_type = ir.RankedTensorType(x.type) x_shape = x_type.shape w_type = ir.RankedTensorType(gamma.type) w_shape = w_type.shape ir_out_dtype = dtype_to_ir_type(np.dtype(np.int8)) ir_rsigma_dtype = ir.F32Type.get() ir_amax_type = ir.RankedTensorType(amax.type) ir_amax_dtype = ir_amax_type.element_type ir_amax_shape = ir_amax_type.shape ir_scale_shape = ir_amax_shape ir_scale_inv_shape = ir_amax_shape hidden_size = reduce(operator.mul, w_shape) # In Transformer, batch_size = batch x seqlen batch_size = reduce(operator.mul, x_shape) // hidden_size out_types = [ ir.RankedTensorType.get(x_shape, ir_out_dtype), ir.RankedTensorType.get((batch_size,), ir_rsigma_dtype), ir.RankedTensorType.get(ir_amax_shape, ir_amax_dtype), ] operands = [x, gamma, amax, scale, scale_inv] operand_shapes = [x_shape, w_shape, ir_amax_shape, ir_scale_shape, ir_scale_inv_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_norm_descriptor( batch_size, hidden_size, jax_dtype_to_te_dtype(x_aval.dtype), jax_dtype_to_te_dtype(gamma_aval.dtype), False, # RMSNorm doesn't support zero_centered_gamma epsilon, ) out = custom_caller(RmsNormFwdFp8Primitive.name, args, opaque, False, operand_output_aliases={2: 2}) return out _rmsnorm_fwd_fp8_p = register_primitive(RmsNormFwdFp8Primitive) def rmsnorm_fwd_fp8(x: jnp.ndarray, gamma: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, epsilon: float): """ Wrapper for TE rmsnorm fwd (fp8 out) """ return _rmsnorm_fwd_fp8_p.bind(x, gamma, amax, scale, scale_inv, epsilon=epsilon) class RmsNormBwdPrimitive(BasePrimitive): """ RMS Normalization Backward Primitive """ name = "te_rmsnorm_backward" multiple_results = True @staticmethod def abstract( grad_output, rsigma, x, gamma, **kwargs # pylint: disable=unused-argument ): """ RMSNorm bwd abstract """ w_dtype = dtypes.canonicalize_dtype(gamma.dtype) x_dtype = dtypes.canonicalize_dtype(x.dtype) rsigma_dtype = dtypes.canonicalize_dtype(rsigma.dtype) hidden_size = gamma.size # In Transformer, batch_size = batch x seqlen batch_size = x.size // hidden_size assert dtypes.canonicalize_dtype(grad_output.dtype) == w_dtype assert grad_output.shape == x.shape assert rsigma.shape == (batch_size,) assert rsigma_dtype == jnp.float32 assert grad_output.named_shape == x.named_shape return ( ShapedArray(x.shape, x_dtype, named_shape=grad_output.named_shape), # grad input ShapedArray(gamma.shape, w_dtype, named_shape=gamma.named_shape), # grad gamma ) @staticmethod def lowering(ctx, grad_output, inv_var, x, gamma, *, epsilon): """ RMSNorm bwd lowering rules """ _, _, x_aval, gamma_aval = ctx.avals_in x_type = ir.RankedTensorType(x.type) x_shape = x_type.shape w_type = ir.RankedTensorType(gamma.type) w_shape = w_type.shape go_shape = ir.RankedTensorType(grad_output.type).shape inv_var_shape = ir.RankedTensorType(inv_var.type).shape hidden_size = reduce(operator.mul, w_shape) # In Transformer, batch_size = batch x seqlen batch_size = reduce(operator.mul, x_shape) // hidden_size out_types = [ ir.RankedTensorType.get(x_shape, x_type.element_type), ir.RankedTensorType.get(w_shape, w_type.element_type), ] operands = [grad_output, inv_var, x, gamma] operand_shapes = [go_shape, inv_var_shape, x_shape, w_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_norm_descriptor( batch_size, hidden_size, jax_dtype_to_te_dtype(x_aval.dtype), jax_dtype_to_te_dtype(gamma_aval.dtype), False, # RMSNorm doesn't support zero_centered_gamma epsilon, ) out = custom_caller(RmsNormBwdPrimitive.name, args, opaque, False) return out _rmsnorm_bwd_p = register_primitive(RmsNormBwdPrimitive) def rmsnorm_bwd(grad: jnp.ndarray, inv_var: jnp.ndarray, x: jnp.ndarray, gamma: jnp.ndarray, epsilon: float): """ Wrapper for TE rmsnorm bwd """ return _rmsnorm_bwd_p.bind(grad, inv_var, x, gamma, epsilon=epsilon) class QuantizePrimitive(BasePrimitive): """ Quantize Primitive """ name = "te_quantize" multiple_results = True @staticmethod def abstract(inputs, amax, scale, scale_inv, *, out_dtype): """ te_quantize abstract """ in_dtype = dtypes.canonicalize_dtype(inputs.dtype) assert in_dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert isinstance(out_dtype, TEDType) out_dtype = te_dtype_to_jax_dtype(out_dtype) assert amax.dtype == jnp.float32 assert scale.dtype == jnp.float32 assert scale_inv.dtype == jnp.float32 return (ShapedArray(inputs.shape, out_dtype, named_shape=inputs.named_shape), ShapedArray((1,), amax.dtype, named_shape=amax.named_shape)) @staticmethod def lowering(ctx, inputs, amax, scale, scale_inv, *, out_dtype): """ te_quantize lowering rules """ in_aval, amax_aval, scale_aval, scale_inv_aval = ctx.avals_in assert in_aval.dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax_aval.dtype == jnp.float32 assert scale_aval.dtype == jnp.float32 assert scale_inv_aval.dtype == jnp.float32 ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape ir_out_dtype = te_dtype_to_ir_dtype(out_dtype) ir_out_shape = ir_in_shape ir_amax_type = ir.RankedTensorType(amax.type) ir_amax_shape = ir_amax_type.shape ir_amax_dtype = ir_amax_type.element_type ir_scale_shape = ir_amax_shape ir_scale_inv_shape = ir_amax_shape out_types = [ ir.RankedTensorType.get(ir_out_shape, ir_out_dtype), ir.RankedTensorType.get(ir_amax_shape, ir_amax_dtype), ] operands = [inputs, amax, scale, scale_inv] operand_shapes = [ir_in_shape, ir_amax_shape, ir_scale_shape, ir_scale_inv_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_common_descriptor(in_aval.shape, jax_dtype_to_te_dtype(in_aval.dtype), out_dtype) out = custom_caller(QuantizePrimitive.name, args, opaque, False, operand_output_aliases={1: 1}) return out _quantize_p = register_primitive(QuantizePrimitive) def quantize(inputs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, out_dtype: TEDType) -> Tuple[jnp.ndarray, jnp.ndarray]: """ quantize wrapper Return FP8 tensor """ return _quantize_p.bind(inputs, amax, scale, scale_inv, out_dtype=out_dtype) class DequantizePrimitive(BasePrimitive): """ Dequantize Primitive """ name = "te_dequantize" multiple_results = False @staticmethod def abstract(inputs, amax, scale, scale_inv, *, fp8_dtype, out_dtype): """ te_dquantize abstract """ in_dtype = dtypes.canonicalize_dtype(inputs.dtype) assert in_dtype == jnp.int8 assert isinstance(fp8_dtype, TEDType) assert isinstance(out_dtype, TEDType) out_dtype = te_dtype_to_jax_dtype(out_dtype) assert out_dtype in [jnp.float32, jnp.float16, jnp.bfloat16] assert amax.dtype == jnp.float32 assert scale.dtype == jnp.float32 assert scale_inv.dtype == jnp.float32 return ShapedArray(inputs.shape, out_dtype, named_shape=inputs.named_shape) @staticmethod def lowering(ctx, inputs, amax, scale, scale_inv, *, fp8_dtype, out_dtype): """ te_dquantize lowering rules """ in_aval, amax_aval, scale_aval, scale_inv_aval = ctx.avals_in assert in_aval.dtype == jnp.int8 assert amax_aval.dtype == jnp.float32 assert scale_aval.dtype == jnp.float32 assert scale_inv_aval.dtype == jnp.float32 ir_in_type = ir.RankedTensorType(inputs.type) ir_in_shape = ir_in_type.shape ir_out_dtype = te_dtype_to_ir_dtype(out_dtype) ir_out_shape = ir_in_shape ir_amax_type = ir.RankedTensorType(amax.type) ir_amax_shape = ir_amax_type.shape ir_scale_shape = ir_amax_shape ir_scale_inv_shape = ir_amax_shape out_types = [ir.RankedTensorType.get(ir_out_shape, ir_out_dtype)] operands = [inputs, amax, scale, scale_inv] operand_shapes = [ir_in_shape, ir_amax_shape, ir_scale_shape, ir_scale_inv_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_common_descriptor(in_aval.shape, fp8_dtype, out_dtype) out = custom_caller(DequantizePrimitive.name, args, opaque, False) return [out] _dequantize_p = register_primitive(DequantizePrimitive) def dequantize(inputs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, fp8_dtype: TEDType, out_dtype: TEDType) -> jnp.ndarray: """ dequantize wrapper Return FP16/BF16/FP32 tensor """ return _dequantize_p.bind(inputs, amax, scale, scale_inv, fp8_dtype=fp8_dtype, out_dtype=out_dtype) class SoftmaxPrimitive(BasePrimitive): """ Softmax Primitive """ max_k_seqlen_supported = 4096 @staticmethod def get_batch_per_block(k_seqlen: int) -> int: """Get batch per CTA in Softmax kernels""" threads_per_warp = 32 threads_per_block = 128 # Depends on the kernel implmentation pow2 = 1 << (k_seqlen - 1).bit_length() warp_size = pow2 if pow2 < threads_per_warp else threads_per_warp batches_per_warp = 2 if pow2 <= 128 else 1 warps_per_block = threads_per_block // warp_size batches_per_block = warps_per_block * batches_per_warp return batches_per_block @staticmethod def is_kernel_available(batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype) -> bool: """Check Softmax kernel availability based on size""" raise NotImplementedError @staticmethod def softmax_backward_abstract(grad_outputs, softmax_outputs, scale_factor=None): # pylint: disable=unused-argument """ MLIR abstract """ grad_outputs_dtype = dtypes.canonicalize_dtype(grad_outputs.dtype) softmax_outputs_dtype = dtypes.canonicalize_dtype(softmax_outputs.dtype) assert grad_outputs_dtype == softmax_outputs_dtype assert grad_outputs_dtype in [jnp.float16, jnp.bfloat16] assert softmax_outputs_dtype in [jnp.float16, jnp.bfloat16] assert grad_outputs.shape == softmax_outputs.shape return ShapedArray(softmax_outputs.shape, softmax_outputs_dtype, named_shape=softmax_outputs.named_shape) @staticmethod def softmax_backward_lowering(name, ctx, grad_outputs, softmax_outputs, scale_factor): """ MLIR abstract """ grad_outputs_aval, _ = ctx.avals_in grad_outputs_type = ir.RankedTensorType(grad_outputs.type) grad_outputs_shape = grad_outputs_type.shape batch = grad_outputs_shape[0] pad_batch = batch # unused heads = grad_outputs_shape[1] q_seqlen = grad_outputs_shape[2] k_seqlen = grad_outputs_shape[3] softmax_outputs_type = ir.RankedTensorType(softmax_outputs.type) softmax_outputs_shape = softmax_outputs_type.shape out_types = [ ir.RankedTensorType.get(softmax_outputs_shape, softmax_outputs_type.element_type) ] operands = [grad_outputs, softmax_outputs] operand_shapes = [grad_outputs_shape, softmax_outputs_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_softmax_descriptor( batch, pad_batch, heads, q_seqlen, k_seqlen, jax_dtype_to_te_dtype(grad_outputs_aval.dtype), scale_factor) out = custom_caller(name, args, opaque, False) return [out] class ScaledSoftmaxFwdPrimitive(SoftmaxPrimitive): """ Scaled Softmax Fwd Primitive """ name = "te_scaled_softmax_forward" multiple_results = False @staticmethod def is_kernel_available(batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype) -> bool: """Check Softmax kernel availability based on size""" attn_batches = batch * heads if (dtype in [jnp.float16, jnp.bfloat16] and 16 < k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported # k_seqlen must be 16 ~ 4096 and q_seqlen % 4 == 0 # q_seqlen must be divisor of 4 and attn_batches % 4 == 0 # batch * heads must be divisor of 4 ): if 0 <= k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported: batch_per_block = SoftmaxPrimitive.get_batch_per_block(k_seqlen) return q_seqlen % batch_per_block == 0 return False @staticmethod def abstract(inputs, *, scale_factor): # pylint: disable=unused-argument """ te_scaled_softmax_forward abstract """ shape_rank = 4 # batch, heads, q_seqlen and k_seqlen i_dtype = dtypes.canonicalize_dtype(inputs.dtype) assert i_dtype in [jnp.float16, jnp.bfloat16] i_shape = inputs.shape assert len(i_shape) == shape_rank q_seqlen = i_shape[2] k_seqlen = i_shape[3] assert k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported assert q_seqlen > 1 return ShapedArray(inputs.shape, i_dtype, named_shape=inputs.named_shape) @staticmethod def lowering(ctx, inputs, *, scale_factor): """ te_scaled_softmax_forward lowering rules """ shape_rank = 4 # batch, heads, q_seqlen and k_seqlen i_aval, = ctx.avals_in i_type = ir.RankedTensorType(inputs.type) i_shape = i_type.shape assert len(i_shape) == shape_rank batch = i_shape[0] pad_batch = batch heads = i_shape[1] q_seqlen = i_shape[2] k_seqlen = i_shape[3] out_types = [ir.RankedTensorType.get(i_shape, i_type.element_type)] operands = [inputs] operand_shapes = [i_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_softmax_descriptor(batch, pad_batch, heads, q_seqlen, k_seqlen, jax_dtype_to_te_dtype(i_aval.dtype), scale_factor) out = custom_caller(ScaledSoftmaxFwdPrimitive.name, args, opaque, False) return [out] _scaled_softmax_fwd_p = register_primitive(ScaledSoftmaxFwdPrimitive) def scaled_softmax_fwd(inputs: jnp.ndarray, scale_factor: float) -> jnp.ndarray: """ scaled_softmax_forward wrapper Return FP16/BF16 tensor """ return _scaled_softmax_fwd_p.bind(inputs, scale_factor=scale_factor) class ScaledSoftmaxBwdPrimitive(SoftmaxPrimitive): """ Scaled Softmax Bwd Primitive """ name = "te_scaled_softmax_backward" multiple_results = False @staticmethod def is_kernel_available(batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype) -> bool: """Check Softmax kernel availability based on size""" return ScaledSoftmaxFwdPrimitive.is_kernel_available(batch, heads, q_seqlen, k_seqlen, dtype) @staticmethod def abstract(grad_outputs, softmax_outputs, *, scale_factor): """ te_scaled_softmax_backward abstract """ return SoftmaxPrimitive.softmax_backward_abstract(grad_outputs, softmax_outputs, scale_factor) @staticmethod def lowering(ctx, grad_outputs, softmax_outputs, *, scale_factor): """ te_scaled_softmax_backward lowering rules """ out = SoftmaxPrimitive.softmax_backward_lowering(ScaledSoftmaxBwdPrimitive.name, ctx, grad_outputs, softmax_outputs, scale_factor) return out # out is iterable already _scaled_softmax_bwd_p = register_primitive(ScaledSoftmaxBwdPrimitive) def scaled_softmax_bwd(grad_outputs: jnp.ndarray, softmax_outputs: jnp.ndarray, scale_factor: float) -> jnp.ndarray: """ scaled_softmax_backward wrapper Return FP16/BF16 tensor """ return _scaled_softmax_bwd_p.bind(grad_outputs, softmax_outputs, scale_factor=scale_factor) class ScaledMaskedSoftmaxFwdPrimitive(SoftmaxPrimitive): """ Scaled Masked Softmax Fwd Primitive """ name = "te_scaled_masked_softmax_forward" multiple_results = False @staticmethod def is_kernel_available(batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype) -> bool: """Check Softmax kernel availability based on size""" attn_batches = batch * heads if (dtype in [jnp.float16, jnp.bfloat16] and 16 < k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported # k_seqlen must be 16 ~ 4096 and q_seqlen % 4 == 0 # q_seqlen must be divisor of 4 and attn_batches % 4 == 0 # batch * heads must be divisor of 4 ): if 0 <= k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported: batch_per_block = SoftmaxPrimitive.get_batch_per_block(k_seqlen) return q_seqlen % batch_per_block == 0 return False @staticmethod def abstract(inputs, mask, *, scale_factor): # pylint: disable=unused-argument """ te_scaled_masked_softmax_forward abstract """ shape_rank = 4 # batch, heads, q_seqlen and k_seqlen i_dtype = dtypes.canonicalize_dtype(inputs.dtype) assert i_dtype in [jnp.float16, jnp.bfloat16] i_shape = inputs.shape assert len(i_shape) == shape_rank batch = i_shape[0] q_seqlen = i_shape[2] k_seqlen = i_shape[3] assert k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported assert q_seqlen > 1 mask_dtype = dtypes.canonicalize_dtype(mask.dtype) assert mask_dtype in [ jnp.uint8, ] mask_shape = mask.shape assert len(mask_shape) == shape_rank pad_batch = mask_shape[0] assert pad_batch in (1, batch) # 1 means broadcast assert mask_shape[1] == 1 # 1 means broadcast assert mask_shape[2] == q_seqlen assert mask_shape[3] == k_seqlen return ShapedArray(inputs.shape, i_dtype, named_shape=inputs.named_shape) @staticmethod def lowering(ctx, inputs, mask, *, scale_factor): """ te_scaled_masked_softmax_forward lowering rules """ shape_rank = 4 # batch, heads, q_seqlen and k_seqlen i_aval, _ = ctx.avals_in i_type = ir.RankedTensorType(inputs.type) i_shape = i_type.shape assert len(i_shape) == shape_rank batch = i_shape[0] heads = i_shape[1] q_seqlen = i_shape[2] k_seqlen = i_shape[3] mask_type = ir.RankedTensorType(mask.type) mask_shape = mask_type.shape assert len(mask_shape) == shape_rank pad_batch = mask_shape[0] out_types = [ir.RankedTensorType.get(i_shape, i_type.element_type)] operands = [inputs, mask] operand_shapes = [i_shape, mask_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_softmax_descriptor(batch, pad_batch, heads, q_seqlen, k_seqlen, jax_dtype_to_te_dtype(i_aval.dtype), scale_factor) out = custom_caller(ScaledMaskedSoftmaxFwdPrimitive.name, args, opaque, False) return [out] _scaled_masked_softmax_fwd_p = register_primitive(ScaledMaskedSoftmaxFwdPrimitive) def scaled_masked_softmax_fwd(inputs: jnp.ndarray, mask: jnp.ndarray, scale_factor: float) -> jnp.ndarray: """ scaled_masked_softmax_forward wrapper Return FP16/BF16 tensor """ return _scaled_masked_softmax_fwd_p.bind(inputs, mask, scale_factor=scale_factor) class ScaledMaskedSoftmaxBwdPrimitive(SoftmaxPrimitive): """ Scaled Masked Softmax Bwd Primitive """ name = "te_scaled_masked_softmax_backward" multiple_results = False @staticmethod def is_kernel_available(batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype) -> bool: """Check Softmax kernel availability based on size""" return ScaledSoftmaxFwdPrimitive.is_kernel_available(batch, heads, q_seqlen, k_seqlen, dtype) @staticmethod def abstract(grad_outputs, softmax_outputs, *, scale_factor): """ te_scaled_masked_softmax_backward abstract """ return SoftmaxPrimitive.softmax_backward_abstract(grad_outputs, softmax_outputs, scale_factor) @staticmethod def lowering(ctx, grad_outputs, softmax_outputs, *, scale_factor): """ te_scaled_masked_softmax_backward lowering rules """ out = SoftmaxPrimitive.softmax_backward_lowering(ScaledMaskedSoftmaxBwdPrimitive.name, ctx, grad_outputs, softmax_outputs, scale_factor) return out # out is iterable already _scaled_masked_softmax_bwd_p = register_primitive(ScaledMaskedSoftmaxBwdPrimitive) def scaled_masked_softmax_bwd(grad_outputs: jnp.ndarray, softmax_outputs: jnp.ndarray, scale_factor: float) -> jnp.ndarray: """ scaled_masked_softmax_backward wrapper Return FP16/BF16 tensor """ return _scaled_masked_softmax_bwd_p.bind(grad_outputs, softmax_outputs, scale_factor=scale_factor) class ScaledUpperTriangMaskedSoftmaxFwdPrimitive(SoftmaxPrimitive): """ Scaled Upper Triang Masked Softmax Fwd Primitive """ name = "te_scaled_upper_triang_masked_softmax_forward" multiple_results = False @staticmethod def is_kernel_available(batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype) -> bool: """Check Softmax kernel availability based on size""" attn_batches = batch * heads if (dtype in [jnp.float16, jnp.bfloat16] and 16 < k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported # k_seqlen must be 16 ~ 4096 and q_seqlen % 4 == 0 # q_seqlen must be divisor of 4 and attn_batches % 4 == 0 # batch * heads must be divisor of 4 ): if 0 <= k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported: batch_per_block = SoftmaxPrimitive.get_batch_per_block(k_seqlen) return attn_batches % batch_per_block == 0 return False @staticmethod def abstract(inputs, *, scale_factor): # pylint: disable=unused-argument """ te_scaled_upper_triang_masked_softmax_forward abstract """ shape_rank = 4 # batch, heads, q_seqlen and k_seqlen i_dtype = dtypes.canonicalize_dtype(inputs.dtype) assert i_dtype in [jnp.float16, jnp.bfloat16] i_shape = inputs.shape assert len(i_shape) == shape_rank q_seqlen = i_shape[2] k_seqlen = i_shape[3] assert q_seqlen == k_seqlen assert k_seqlen <= SoftmaxPrimitive.max_k_seqlen_supported assert q_seqlen > 1 return ShapedArray(inputs.shape, i_dtype, named_shape=inputs.named_shape) @staticmethod def lowering(ctx, inputs, *, scale_factor): """ te_scaled_upper_triang_masked_softmax_forward lowering rules """ shape_rank = 4 # batch, heads, q_seqlen and k_seqlen i_aval, = ctx.avals_in i_type = ir.RankedTensorType(inputs.type) i_shape = i_type.shape assert len(i_shape) == shape_rank batch = i_shape[0] pad_batch = batch heads = i_shape[1] q_seqlen = i_shape[2] k_seqlen = i_shape[3] out_types = [ir.RankedTensorType.get(i_shape, i_type.element_type)] operands = [inputs] operand_shapes = [i_shape] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_softmax_descriptor(batch, pad_batch, heads, q_seqlen, k_seqlen, jax_dtype_to_te_dtype(i_aval.dtype), scale_factor) out = custom_caller(ScaledUpperTriangMaskedSoftmaxFwdPrimitive.name, args, opaque, False) return [out] _scaled_upper_triang_masked_softmax_fwd_p = \ register_primitive(ScaledUpperTriangMaskedSoftmaxFwdPrimitive) def scaled_upper_triang_masked_softmax_fwd(inputs: jnp.ndarray, scale_factor: float) -> jnp.ndarray: """ scaled_upper_triang_masked_softmax_forward wrapper Return FP16/BF16 tensor """ return _scaled_upper_triang_masked_softmax_fwd_p.bind(inputs, scale_factor=scale_factor) class ScaledUpperTriangMaskedSoftmaxBwdPrimitive(SoftmaxPrimitive): """ Scaled Upper Triang Masked Softmax Bwd Primitive """ name = "te_scaled_upper_triang_masked_softmax_backward" multiple_results = False @staticmethod def is_kernel_available(batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype) -> bool: """Check Softmax kernel availability based on size""" return ScaledUpperTriangMaskedSoftmaxFwdPrimitive.is_kernel_available( batch, heads, q_seqlen, k_seqlen, dtype) @staticmethod def abstract(grad_outputs, softmax_outputs, *, scale_factor): """ te_scaled_upper_triang_masked_softmax_backward abstract """ return SoftmaxPrimitive.softmax_backward_abstract(grad_outputs, softmax_outputs, scale_factor) @staticmethod def lowering(ctx, grad_outputs, softmax_outputs, *, scale_factor): """ te_scaled_upper_triang_masked_softmax_backward lowering rules """ out = SoftmaxPrimitive.softmax_backward_lowering( ScaledUpperTriangMaskedSoftmaxBwdPrimitive.name, ctx, grad_outputs, softmax_outputs, scale_factor) return out # out is iterable already _scaled_upper_triang_masked_softmax_bwd_p = \ register_primitive(ScaledUpperTriangMaskedSoftmaxBwdPrimitive) def scaled_upper_triang_masked_softmax_bwd(grad_outputs: jnp.ndarray, softmax_outputs: jnp.ndarray, scale_factor: float) -> jnp.ndarray: """ scaled_upper_triang_masked_softmax_backward wrapper Return FP16/BF16 tensor """ return _scaled_upper_triang_masked_softmax_bwd_p.bind(grad_outputs, softmax_outputs, scale_factor=scale_factor) @dataclass(frozen=True) class _FusedAttnRNGStateChecker: """ Checker for guarding the fused attention rng state. The fused attention backend requires a 64 bits seed and a 64 bits offset. However, JAX doesn't enable 64 bits by default, so we have to emulate seed as two 32 bits array. The offset calculation is maintained in the backend. """ rng_state_dtype: jnp.dtype = jnp.uint32 # (seed,) with internal dtype int64 seed_size: int = 2 # (seed, offset) with internal dtype int64 rng_state_size: int = 2 * 2 def check_seed(self, seed, dropout_probability, is_training): """ Check the seed and convert the data type of seed if possible. """ # Jax can't bind None, create a dummy tensor for None if seed is None: dropout_enabled = dropout_probability > 0 and is_training assert not dropout_enabled, "seed is not allowed to be None when dropout is enabled." seed = jnp.zeros(2, dtype=self.rng_state_dtype) if seed.dtype != self.rng_state_dtype: warnings.warn( f"Requested {seed.dtype=} is not available, and will be " f"casted to dtype {self.rng_state_dtype}. " f"Please use threefry/rbg/unsafe_rbg PRNG implementations to remove this warning.") seed = seed.astype(self.rng_state_dtype) assert seed.dtype == self.rng_state_dtype # Backend takes an int64_t seed, so only the first two u32 elements are taken assert seed.size >= self.seed_size return seed class SelfFusedAttnFwdPrimitive(BasePrimitive): """ Self Fused Attention Forward Primitive """ name = "te_self_fused_attn_forward" multiple_results = True @staticmethod def abstract( qkv, bias, cu_seqlen, # pylint: disable=unused-argument seed, # pylint: disable=unused-argument *, attn_bias_type, # pylint: disable=unused-argument attn_mask_type, # pylint: disable=unused-argument scaling_factor, # pylint: disable=unused-argument dropout_probability, # pylint: disable=unused-argument is_training # pylint: disable=unused-argument ): """ Self fused attention fwd abstract """ qkv_dtype = dtypes.canonicalize_dtype(qkv.dtype) batch, max_seqlen, nqkv, num_head, head_dim = qkv.shape assert nqkv == 3 assert qkv.dtype == bias.dtype output_shape = (batch, max_seqlen, num_head, head_dim) output_dtype = qkv_dtype backend = FusedAttnHelper(qkv_dtype, qkv_dtype, attn_bias_type, attn_mask_type, dropout_probability, max_seqlen, max_seqlen, head_dim).get_fused_attn_backend() if backend == NVTE_Fused_Attn_Backend.NVTE_F16_max512_seqlen: softmax_aux_shape = (batch, num_head, max_seqlen, max_seqlen) softmax_dtype = qkv_dtype elif backend == NVTE_Fused_Attn_Backend.NVTE_F16_arbitrary_seqlen: softmax_aux_shape = (batch, num_head, max_seqlen, 1) softmax_dtype = dtypes.canonicalize_dtype(jnp.float32) else: raise ValueError(f'Not supported {backend=}') checker = _FusedAttnRNGStateChecker() seed_dtype = dtypes.canonicalize_dtype(seed.dtype) assert seed_dtype == checker.rng_state_dtype rng_state_shape = (checker.rng_state_size,) rng_state_dtype = seed_dtype return ( ShapedArray(output_shape, output_dtype, named_shape=qkv.named_shape), # output ShapedArray(softmax_aux_shape, softmax_dtype, named_shape=qkv.named_shape), # softmax_aux ShapedArray(rng_state_shape, rng_state_dtype, named_shape=seed.named_shape), # rng_state ) @staticmethod def lowering(ctx, qkv, bias, cu_seqlen, seed, *, attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training): """ Self fused attention fwd lowering rules """ qkv_aval, _, _, _ = ctx.avals_in batch, max_seqlen, _, num_head, head_dim = qkv_aval.shape operands = [qkv, bias, cu_seqlen, seed] operand_shapes = map(lambda x: x.type.shape, operands) out_types = [ ir.RankedTensorType.get(output.shape, mlir.dtype_to_ir_type(output.dtype)) for output in ctx.avals_out ] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_fused_attn_descriptor( batch, num_head, max_seqlen, max_seqlen, head_dim, scaling_factor, dropout_probability, attn_bias_type, attn_mask_type, jax_dtype_to_te_dtype(qkv_aval.dtype), is_training) out = custom_caller(SelfFusedAttnFwdPrimitive.name, args, opaque, has_side_effect=False) return out _self_fused_attn_fwd_p = register_primitive(SelfFusedAttnFwdPrimitive) def self_fused_attn_fwd(qkv: jnp.ndarray, bias: jnp.ndarray, cu_seqlen: jnp.ndarray, seed: jnp.ndarray, attn_bias_type: NVTE_Bias_Type, attn_mask_type: NVTE_Mask_Type, scaling_factor: float, dropout_probability: float, is_training: bool): """ Wrapper for TE self fused attention fwd Return BMM1 -> (PreBias) -> ScaleMaskSoftmax -> (PostBias) -> (Dropout) -> BMM2 """ checker = _FusedAttnRNGStateChecker() seed = checker.check_seed(seed, dropout_probability, is_training) if attn_bias_type == NVTE_Bias_Type.NVTE_NO_BIAS: assert bias is None bias = jnp.zeros(0, dtype=qkv.dtype) return _self_fused_attn_fwd_p.bind(qkv, bias, cu_seqlen, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) class SelfFusedAttnBwdPrimitive(BasePrimitive): """ Self Fused Attention Backward Primitive """ name = "te_self_fused_attn_backward" multiple_results = True @staticmethod def abstract( qkv, softmax_aux, # pylint: disable=unused-argument rng_state, # pylint: disable=unused-argument output, # pylint: disable=unused-argument doutput, cu_seqlen, # pylint: disable=unused-argument *, attn_bias_type, # pylint: disable=unused-argument attn_mask_type, # pylint: disable=unused-argument scaling_factor, # pylint: disable=unused-argument dropout_probability, # pylint: disable=unused-argument is_training # pylint: disable=unused-argument ): """ Self fused attention bwd abstract """ qkv_dtype = dtypes.canonicalize_dtype(qkv.dtype) assert qkv.dtype == doutput.dtype _, seqlen, _, num_head, _ = qkv.shape if attn_bias_type == NVTE_Bias_Type.NVTE_NO_BIAS: bias_shape = (0,) else: bias_shape = (1, num_head, seqlen, seqlen) bias_dtype = qkv_dtype return ( ShapedArray(qkv.shape, qkv_dtype, named_shape=qkv.named_shape), # dqkv ShapedArray(bias_shape, bias_dtype, named_shape=qkv.named_shape)) @staticmethod def lowering(ctx, qkv, softmax_aux, rng_state, output, doutput, cu_seqlen, *, attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training): """ Self fused attention bwd lowering rules """ qkv_aval, _, _, _, _, _ = ctx.avals_in batch, max_seqlen, _, num_head, head_dim = qkv_aval.shape operands = [qkv, softmax_aux, rng_state, output, doutput, cu_seqlen] operand_shapes = map(lambda x: x.type.shape, operands) out_types = [ ir.RankedTensorType.get(output.shape, mlir.dtype_to_ir_type(output.dtype)) for output in ctx.avals_out ] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_fused_attn_descriptor( batch, num_head, max_seqlen, max_seqlen, head_dim, scaling_factor, dropout_probability, attn_bias_type, attn_mask_type, jax_dtype_to_te_dtype(qkv_aval.dtype), is_training) out = custom_caller(SelfFusedAttnBwdPrimitive.name, args, opaque, has_side_effect=False) return out _self_fused_attn_bwd_p = register_primitive(SelfFusedAttnBwdPrimitive) def self_fused_attn_bwd(qkv: jnp.ndarray, softmax_aux: jnp.ndarray, rng_state: jnp.ndarray, output: jnp.ndarray, doutput: jnp.ndarray, cu_seqlen: jnp.ndarray, attn_bias_type: NVTE_Bias_Type, attn_mask_type: NVTE_Mask_Type, scaling_factor: float, dropout_probability: float, is_training: bool): """ Wrapper for TE self fused attention bwd Return the gradients of self fused attention with packed qkv input """ return _self_fused_attn_bwd_p.bind(qkv, softmax_aux, rng_state, output, doutput, cu_seqlen, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) class CrossFusedAttnFwdPrimitive(BasePrimitive): """ Cross Fused Attention Forward Primitive """ name = "te_cross_fused_attn_forward" multiple_results = True @staticmethod def abstract( q, kv, q_cu_seqlen, kv_cu_seqlen, seed, # pylint: disable=unused-argument *, attn_bias_type, # pylint: disable=unused-argument attn_mask_type, # pylint: disable=unused-argument scaling_factor, # pylint: disable=unused-argument dropout_probability, # pylint: disable=unused-argument is_training # pylint: disable=unused-argument ): """ Cross fused attention fwd abstract """ q_dtype = dtypes.canonicalize_dtype(q.dtype) batch_q, q_max_seqlen, num_head_q, head_dim_q = q.shape kv_dtype = dtypes.canonicalize_dtype(kv.dtype) batch_kv, kv_max_seqlen, nkv, num_head_kv, head_dim_kv = kv.shape assert q_dtype == kv_dtype assert batch_q == batch_kv assert num_head_q == num_head_kv assert head_dim_q == head_dim_kv assert nkv == 2 assert q_cu_seqlen.dtype == kv_cu_seqlen.dtype output_shape = q.shape output_dtype = q_dtype softmax_aux_shape = (batch_q, num_head_q, q_max_seqlen, kv_max_seqlen) softmax_aux_dtype = q_dtype return ( ShapedArray(output_shape, output_dtype, named_shape=q.named_shape), # output ShapedArray(softmax_aux_shape, softmax_aux_dtype, named_shape=q.named_shape), # softmax_aux ) @staticmethod def lowering(ctx, q, kv, q_cu_seqlen, kv_cu_seqlen, seed, *, attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training): """ Cross fused attention fwd lowering rules """ q_aval, kv_aval, _, _, _ = ctx.avals_in assert q_aval.dtype == kv_aval.dtype batch, q_max_seqlen, num_head, head_dim = q_aval.shape kv_max_seqlen = kv_aval.shape[1] operands = [q, kv, q_cu_seqlen, kv_cu_seqlen, seed] operand_shapes = map(lambda x: x.type.shape, operands) out_types = [ ir.RankedTensorType.get(output.shape, mlir.dtype_to_ir_type(output.dtype)) for output in ctx.avals_out ] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) opaque = transformer_engine_jax.pack_fused_attn_descriptor( batch, num_head, q_max_seqlen, kv_max_seqlen, head_dim, scaling_factor, dropout_probability, attn_bias_type, attn_mask_type, jax_dtype_to_te_dtype(q_aval.dtype), is_training) out = custom_caller(CrossFusedAttnFwdPrimitive.name, args, opaque, has_side_effect=False) return out _cross_fused_attn_fwd_p = register_primitive(CrossFusedAttnFwdPrimitive) def cross_fused_attn_fwd(q: jnp.ndarray, kv: jnp.ndarray, q_cu_seqlen: jnp.ndarray, kv_cu_seqlen: jnp.ndarray, seed: jnp.ndarray, attn_bias_type: NVTE_Bias_Type, attn_mask_type: NVTE_Mask_Type, scaling_factor: float, dropout_probability: float, is_training: bool): """ Wrapper for TE cross fused attention fwd Return BMM1 -> (PreBias) -> ScaleMaskSoftmax -> (PostBias) -> (Dropout) -> BMM2 """ checker = _FusedAttnRNGStateChecker() seed = checker.check_seed(seed, dropout_probability, is_training) return _cross_fused_attn_fwd_p.bind(q, kv, q_cu_seqlen, kv_cu_seqlen, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training) class CrossFusedAttnBwdPrimitive(BasePrimitive): """ Cross Fused Attention Backward Primitive """ name = "te_cross_fused_attn_backward" multiple_results = True @staticmethod def abstract( q, kv, softmax_aux, doutput, q_cu_seqlen, kv_cu_seqlen, *, attn_bias_type, # pylint: disable=unused-argument attn_mask_type, # pylint: disable=unused-argument scaling_factor, # pylint: disable=unused-argument dropout_probability, # pylint: disable=unused-argument is_training # pylint: disable=unused-argument ): """ Cross fused attention bwd abstract """ q_dtype = dtypes.canonicalize_dtype(q.dtype) kv_dtype = dtypes.canonicalize_dtype(kv.dtype) softmax_aux_dtype = dtypes.canonicalize_dtype(softmax_aux.dtype) doutput_dtype = dtypes.canonicalize_dtype(doutput.dtype) assert q_dtype == kv_dtype == softmax_aux_dtype == doutput_dtype assert q_cu_seqlen.dtype == kv_cu_seqlen.dtype return ( ShapedArray(q.shape, q_dtype, named_shape=q.named_shape), # dq ShapedArray(kv.shape, kv_dtype, named_shape=kv.named_shape), # dkv ) @staticmethod def lowering(ctx, q, kv, softmax_aux, doutput, q_cu_seqlen, kv_cu_seqlen, *, attn_bias_type, attn_mask_type, scaling_factor, dropout_probability, is_training): """ Cross fused attention bwd lowering rules """ q_aval, kv_aval, _, _, _, _ = ctx.avals_in assert q_aval.dtype == kv_aval.dtype batch, q_max_seqlen, num_head, head_dim = q_aval.shape kv_max_seqlen = kv_aval.shape[1] operands = [q, kv, softmax_aux, doutput, q_cu_seqlen, kv_cu_seqlen] operand_shapes = map(lambda x: x.type.shape, operands) out_types = [ ir.RankedTensorType.get(output.shape, mlir.dtype_to_ir_type(output.dtype)) for output in ctx.avals_out ] args = CustomCallArgsWrapper(out_types, operands, operand_shapes) # the dropout elements are encoded in the forward auxiliary tensor # so seed is not needed in backward opaque = transformer_engine_jax.pack_fused_attn_descriptor( batch, num_head, q_max_seqlen, kv_max_seqlen, head_dim, scaling_factor, dropout_probability, attn_bias_type, attn_mask_type, jax_dtype_to_te_dtype(q_aval.dtype), is_training) out = custom_caller(CrossFusedAttnBwdPrimitive.name, args, opaque, has_side_effect=False) return out _cross_fused_attn_bwd_p = register_primitive(CrossFusedAttnBwdPrimitive) def cross_fused_attn_bwd(q: jnp.ndarray, kv: jnp.ndarray, softmax_aux: jnp.ndarray, doutput: jnp.ndarray, q_cu_seqlen: jnp.ndarray, kv_cu_seqlen: jnp.ndarray, attn_bias_type: NVTE_Bias_Type, attn_mask_type: NVTE_Mask_Type, scaling_factor: float, dropout_probability: float, is_training: bool): """ Wrapper for TE cross fused attention bwd Return the gradients of cross fused attention with packed kv input """ return _cross_fused_attn_bwd_p.bind(q, kv, softmax_aux, doutput, q_cu_seqlen, kv_cu_seqlen, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scaling_factor, dropout_probability=dropout_probability, is_training=is_training)
TransformerEngine-main
transformer_engine/jax/cpp_extensions.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """JAX te modules""" from typing import Tuple, Sequence from functools import partial, reduce import operator import jax import jax.numpy as jnp from transformer_engine_jax import DType as TEDType from .cpp_extensions import cast_transpose, gemm, jax_dtype_to_te_dtype from .fp8 import FP8Helper, FP8GemmPackage from .sharding import ShardingType, get_dot_sharding_meta, get_fp8_meta_sharding_meta from .sharding import is_dp_enabled, is_tp_enabled, merge_axis_resources from .sharding import xmap_runner, extend_fsdp_sharding_meta jax.config.update('experimental_xmap_spmd_lowering', True) jax.config.update('experimental_xmap_spmd_lowering_manual', True) def fp8_dot(fp8_gemm_pkg: FP8GemmPackage, fwd_dtype: TEDType, bwd_dtype: TEDType, contracting_dims: Tuple[Sequence[int], Sequence[int]] = ((-1,), (0,)), sharding_type: ShardingType = ShardingType.SINGLE, dp_dim_index: int = 0) -> jnp.ndarray: """ FP8 dot wrapper """ assert fp8_gemm_pkg.num_of_gemm == 1 inputs = fp8_gemm_pkg.inputs kernel = fp8_gemm_pkg.kernels[0] fp8_max = fp8_gemm_pkg.fp8_max amax = fp8_gemm_pkg.amax scale = fp8_gemm_pkg.scale scale_inv = fp8_gemm_pkg.scale_inv if sharding_type is ShardingType.SINGLE: res = _fp8_dot(inputs, kernel, fp8_max, amax, scale, scale_inv, fwd_dtype=fwd_dtype, bwd_dtype=bwd_dtype, contracting_dims=contracting_dims, sharding_type=sharding_type, dp_axis_name="", tp_axis_name="", fsdp_axis_name="") else: dp_axis_name = "batch" tp_axis_name = "model" kernel_tp_index = None # TODO (Ming Huang): Should we add a new argument to support general sharding to kernel? # pylint: disable=fixme if sharding_type in (ShardingType.TP_COL, ShardingType.DP_TP_COL): kernel_tp_index = len(kernel.shape) - 1 elif sharding_type in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW): kernel_tp_index = 0 input_tp_index = len(inputs.shape) - 1 sharding_meta = get_dot_sharding_meta(sharding_type, inputs.shape, kernel.shape, dp_dim_index, input_tp_index, kernel_tp_index, contracting_dims, dp_axis_name, tp_axis_name) sharding_meta, fsdp_axis_name = extend_fsdp_sharding_meta(sharding_meta, {0: dp_dim_index}) inputs_ = jnp.reshape(inputs, sharding_meta.input_shapes[0]) # 0 for input kernel_ = jnp.reshape(kernel, sharding_meta.input_shapes[1]) # 1 for kernel num_of_fp8_meta_kind = 4 # fp8_max, amax, scale, scale_inv fp8_sharding_meta = get_fp8_meta_sharding_meta(sharding_type, num_of_fp8_meta_kind, dp_axis_name, tp_axis_name) axis_resources = merge_axis_resources( [sharding_meta.axis_resources, fp8_sharding_meta.axis_resources]) partial_fp8_dot = partial(_fp8_dot, fwd_dtype=fwd_dtype, bwd_dtype=bwd_dtype, contracting_dims=contracting_dims, sharding_type=sharding_type, dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name, fsdp_axis_name=fsdp_axis_name) res = xmap_runner(partial_fp8_dot, (*sharding_meta.in_axes, *fp8_sharding_meta.in_axes), sharding_meta.out_axes, axis_resources, (inputs_, kernel_, fp8_max, amax, scale, scale_inv)) res = jnp.reshape(res, sharding_meta.output_shapes[0]) return res @partial(jax.custom_vjp, nondiff_argnums=(6, 7, 8, 9, 10, 11, 12)) def _fp8_dot(inputs: jnp.ndarray, kernel: jnp.ndarray, fp8_maxs: jnp.ndarray, amax: jnp.ndarray, scale: jnp.ndarray, scale_inv: jnp.ndarray, fwd_dtype: TEDType, bwd_dtype: TEDType, contracting_dims: Tuple[Sequence[int], Sequence[int]], sharding_type: ShardingType, dp_axis_name: str, tp_axis_name: str, fsdp_axis_name: str): res, _ = _fp8_dot_fwd(inputs, kernel, fp8_maxs, amax, scale, scale_inv, fwd_dtype, bwd_dtype, contracting_dims=contracting_dims, sharding_type=sharding_type, dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name, fsdp_axis_name=fsdp_axis_name) return res def _fp8_dot_fwd( inputs, kernel, fp8_maxs, amax, scale, scale_inv, fwd_dtype, bwd_dtype, # pylint: disable=unused-argument contracting_dims, sharding_type, dp_axis_name, # pylint: disable=unused-argument tp_axis_name, fsdp_axis_name): # pylint: disable=unused-argument lhs_contracting_dims, rhs_contracting_dims = contracting_dims input_shape_pre = inputs.shape[:min(lhs_contracting_dims)] input_shape_suf = inputs.shape[min(lhs_contracting_dims):] kernel_shape_pre = kernel.shape[:max(rhs_contracting_dims) + 1] kernel_shape_suf = kernel.shape[max(rhs_contracting_dims) + 1:] input_contracting_size = reduce(operator.mul, input_shape_suf) kernel_contracting_size = reduce(operator.mul, kernel_shape_pre) assert input_contracting_size == kernel_contracting_size inputs_ = jnp.reshape(inputs, (-1, input_contracting_size)) kernel_ = jnp.reshape(kernel, (kernel_contracting_size, -1)) amax = FP8Helper.update_amax_history(amax) gemm_input_idx, gemm_kernel_idx, _ = FP8Helper.get_fp8_meta_indices(0) input_amax = amax[gemm_input_idx, 0:1] input_scale = scale[gemm_input_idx] input_scale_inv = scale_inv[gemm_input_idx] input_cast, input_cast_trans, input_amax = cast_transpose(inputs_, input_amax, input_scale, input_scale_inv, fwd_dtype) kernel_amax = amax[gemm_kernel_idx, 0:1] kernel_scale = scale[gemm_kernel_idx] kernel_scale_inv = scale_inv[gemm_kernel_idx] kernel_cast, kernel_cast_trans, kernel_amax = cast_transpose(kernel_, kernel_amax, kernel_scale, kernel_scale_inv, fwd_dtype) res = gemm(kernel_cast_trans, kernel_scale_inv, fwd_dtype, True, input_cast, input_scale_inv, fwd_dtype, False, jax_dtype_to_te_dtype(inputs.dtype), FP8Helper.FP8_2X_ACC_FPROP) if sharding_type in (ShardingType.TP_ROW, ShardingType.DP_TP_ROW): res = jax.lax.psum(res, tp_axis_name) # (input_shape_pre, input_shape_suf) # x (kernel_shape_pre, kernel_shape_suf) # = (input_shape_pre, kernel_shape_suf) output_shape = input_shape_pre + kernel_shape_suf res = jnp.reshape(res, output_shape) ctx = (input_cast_trans, kernel_cast, fp8_maxs, amax, scale, scale_inv, input_amax, kernel_amax, inputs.shape, kernel.shape) return res, ctx def _fp8_dot_bwd( fwd_dtype, bwd_dtype, contracting_dims, # pylint: disable=unused-argument sharding_type, dp_axis_name, tp_axis_name, fsdp_axis_name, ctx, g): input_cast_trans, kernel_cast, \ fp8_maxs, amax, scale, scale_inv, \ input_amax, kernel_amax, \ inputs_shape, kernel_shape = ctx gemm_input_idx, gemm_kernel_idx, gemm_grad_idx = FP8Helper.get_fp8_meta_indices(0) grad_amax = amax[gemm_grad_idx, 0:1] grad_scale = scale[gemm_grad_idx] grad_scale_inv = scale_inv[gemm_grad_idx] g = jnp.reshape(g, (input_cast_trans.shape[1], -1)) grad_cast, grad_cast_trans, grad_amax = cast_transpose(g, grad_amax, grad_scale, grad_scale_inv, bwd_dtype) input_scale_inv = scale_inv[gemm_input_idx] wgrad = gemm(grad_cast_trans, grad_scale_inv, bwd_dtype, True, input_cast_trans, input_scale_inv, fwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_WGRAD) kernel_scale_inv = scale_inv[gemm_kernel_idx] dgrad = gemm(kernel_cast, kernel_scale_inv, fwd_dtype, True, grad_cast, grad_scale_inv, bwd_dtype, False, jax_dtype_to_te_dtype(g.dtype), FP8Helper.FP8_2X_ACC_DGRAD) amax = amax.at[gemm_input_idx, 0].set(input_amax[0]) amax = amax.at[gemm_kernel_idx, 0].set(kernel_amax[0]) amax = amax.at[gemm_grad_idx, 0].set(grad_amax[0]) if is_dp_enabled(sharding_type.value[0]): wgrad = jax.lax.psum(wgrad, dp_axis_name) amax = jax.lax.pmax(amax, dp_axis_name) if len(fsdp_axis_name) > 0: wgrad = jax.lax.psum(wgrad, fsdp_axis_name) amax = jax.lax.pmax(amax, fsdp_axis_name) if is_tp_enabled(sharding_type.value[0]): amax = jax.lax.pmax(amax, tp_axis_name) if sharding_type in (ShardingType.TP_COL, ShardingType.DP_TP_COL): dgrad = jax.lax.psum(dgrad, tp_axis_name) dgrad = jnp.reshape(dgrad, inputs_shape) wgrad = jnp.reshape(wgrad, kernel_shape) return dgrad, wgrad, fp8_maxs, amax, scale, scale_inv _fp8_dot.defvjp(_fp8_dot_fwd, _fp8_dot_bwd)
TransformerEngine-main
transformer_engine/jax/dot.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """JAX softmax modules""" from enum import Enum from functools import partial from typing import Optional import jax import jax.numpy as jnp from .cpp_extensions import scaled_softmax_fwd from .cpp_extensions import scaled_softmax_bwd from .cpp_extensions import scaled_masked_softmax_fwd from .cpp_extensions import scaled_masked_softmax_bwd from .cpp_extensions import scaled_upper_triang_masked_softmax_fwd from .cpp_extensions import scaled_upper_triang_masked_softmax_bwd from .cpp_extensions import ScaledSoftmaxFwdPrimitive from .cpp_extensions import ScaledMaskedSoftmaxFwdPrimitive from .cpp_extensions import ScaledUpperTriangMaskedSoftmaxFwdPrimitive from .sharding import get_softmax_sharding_meta, ShardingType, ShardingMeta from .sharding import xmap_runner, extend_fsdp_sharding_meta jax.config.update('experimental_xmap_spmd_lowering', True) jax.config.update('experimental_xmap_spmd_lowering_manual', True) class SoftmaxType(Enum): """SoftmaxType.""" SCALED = "scaled" SCALED_MASKED = "scaled_masked" SCALED_UPPER_TRIANG_MASKED = "scaled_upper_triang_masked" def is_softmax_kernel_available(softmax_type: SoftmaxType, batch: int, heads: int, q_seqlen: int, k_seqlen: int, dtype: jnp.dtype): """check softmax available""" if softmax_type is SoftmaxType.SCALED: return ScaledSoftmaxFwdPrimitive.is_kernel_available(batch, heads, q_seqlen, k_seqlen, dtype) if softmax_type is SoftmaxType.SCALED_MASKED: return ScaledMaskedSoftmaxFwdPrimitive.is_kernel_available(batch, heads, q_seqlen, k_seqlen, dtype) if softmax_type is SoftmaxType.SCALED_UPPER_TRIANG_MASKED: return ScaledUpperTriangMaskedSoftmaxFwdPrimitive.is_kernel_available( batch, heads, q_seqlen, k_seqlen, dtype) raise NotImplementedError def softmax(inputs: jnp.ndarray, mask: Optional[jnp.ndarray] = None, scale_factor: Optional[float] = 1.0, softmax_type: Optional[SoftmaxType] = SoftmaxType.SCALED, sharding_type: ShardingType = ShardingType.SINGLE, dp_dim_index: int = 0, tp_dim_index: int = 1): """ Softmax wrapper """ assert dp_dim_index == 0, \ "Only softmax support batch dim in the first place currently." assert tp_dim_index == 1, \ "Only softmax support head dim in the second place currently." assert mask is None or mask.shape[tp_dim_index] == 1 if sharding_type is ShardingType.SINGLE: outputs = _softmax(inputs, mask, scale_factor, softmax_type) else: dp_axis_name = "batch" tp_axis_name = "model" sharding_meta = get_softmax_sharding_meta(sharding_type, inputs.shape, dp_dim=dp_dim_index, tp_dim=tp_dim_index, dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name) sharding_meta, _ = extend_fsdp_sharding_meta(sharding_meta, {0: dp_dim_index}) inputs_ = jnp.reshape(inputs, sharding_meta.input_shapes[0]) # 0 for input mask_ = mask mask_in_axis = {} if mask_ is not None: if sharding_type in (ShardingType.DP, ShardingType.DP_TP_COL, ShardingType.DP_TP_ROW): # If mask is head broadcastable (heads == 1), # then it equals to DP sharding. mask_sharding_meta = get_softmax_sharding_meta(ShardingType.DP, mask_.shape, dp_dim=dp_dim_index, tp_dim=tp_dim_index, dp_axis_name=dp_axis_name, tp_axis_name=tp_axis_name) else: mask_sharding_meta = ShardingMeta([{}], {}, {}, [mask_.shape], mask_.shape) mask_sharding_meta, _ = extend_fsdp_sharding_meta(mask_sharding_meta, {0: dp_dim_index}) mask_ = jnp.reshape(mask_, mask_sharding_meta.input_shapes[0]) mask_in_axis = mask_sharding_meta.in_axes[0] partial_softmax = partial(_softmax, scale_factor=scale_factor, softmax_type=softmax_type) in_axes = (sharding_meta.in_axes[0], mask_in_axis) outputs = xmap_runner(partial_softmax, in_axes, sharding_meta.out_axes, sharding_meta.axis_resources, (inputs_, mask_)) outputs = jnp.reshape(outputs, sharding_meta.output_shapes[0]) return outputs @partial(jax.custom_vjp, nondiff_argnums=(2, 3)) def _softmax(inputs, mask, scale_factor, softmax_type): output, _ = _softmax_fwd(inputs, mask, scale_factor, softmax_type) return output def _softmax_fwd(inputs, mask, scale_factor, softmax_type): if softmax_type is SoftmaxType.SCALED_MASKED: assert mask is not None outputs = scaled_masked_softmax_fwd(inputs, mask, scale_factor) elif softmax_type is SoftmaxType.SCALED_UPPER_TRIANG_MASKED: outputs = scaled_upper_triang_masked_softmax_fwd(inputs, scale_factor) else: outputs = scaled_softmax_fwd(inputs, scale_factor) return outputs, (outputs, mask) def _softmax_bwd(scale_factor, softmax_type, ctx, grad_outputs): softmax_outputs, mask = ctx if softmax_type is SoftmaxType.SCALED_MASKED: assert mask is not None dgrad = scaled_masked_softmax_bwd(grad_outputs, softmax_outputs, scale_factor) elif softmax_type is SoftmaxType.SCALED_UPPER_TRIANG_MASKED: dgrad = scaled_upper_triang_masked_softmax_bwd(grad_outputs, softmax_outputs, scale_factor) else: dgrad = scaled_softmax_bwd(grad_outputs, softmax_outputs, scale_factor) return (dgrad, None) _softmax.defvjp(_softmax_fwd, _softmax_bwd)
TransformerEngine-main
transformer_engine/jax/softmax.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """Praxis related Modules""" from .module import FusedSoftmax, LayerNorm from .module import LayerNormLinear, LayerNormMLP, Linear, TransformerEngineBaseLayer from .transformer import MultiHeadAttention, RelativePositionBiases, TransformerLayer from ..flax.transformer import TransformerLayerType
TransformerEngine-main
transformer_engine/jax/praxis/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """ Praxis Modules related Transformer """ from functools import partial from typing import Optional, Sequence, Tuple from praxis import pax_fiddle from praxis.base_layer import WeightInit from praxis.pytypes import JTensor from .module import TransformerEngineBaseLayer from ..flax.transformer import TransformerLayerType from ..flax.transformer import MultiHeadAttention as flax_MultiHeadAttention from ..flax.transformer import RelativePositionBiases as flax_RelativePositionBiases from ..flax.transformer import TransformerLayer as flax_TransformerLayer class RelativePositionBiases(TransformerEngineBaseLayer): """RelativePositionBiases""" num_buckets: int = 32 max_distance: int = 128 num_attention_heads: int = 64 embedding_init: WeightInit = None embedding_axes: Tuple[str, ...] = () @staticmethod def generate_embedding_init(init, num_attention_heads, num_buckets): """generate_embedding_init""" embedding_init = init if embedding_init is None: rb_stddev = (num_attention_heads * num_buckets)**-0.5 embedding_init = WeightInit.Gaussian(rb_stddev) return embedding_init def setup(self) -> None: """setup""" super().setup() embedding_init = RelativePositionBiases.generate_embedding_init( self.embedding_init, self.num_attention_heads, self.num_buckets) rpb_cls = partial(flax_RelativePositionBiases, num_buckets=self.num_buckets, max_distance=self.max_distance, num_attention_heads=self.num_attention_heads, embedding_init=TransformerEngineBaseLayer.generate_params_init( "rel_embedding", embedding_init), embedding_axes=self.embedding_axes, dtype=self.dtype) self.create_layer("relative_position_bias", rpb_cls) def __call__(self, q_seqlen: JTensor, k_seqlen: JTensor, bidirectional: bool = True) -> JTensor: """__call__""" return self.relative_position_bias(q_seqlen, k_seqlen, bidirectional) class MultiHeadAttention(TransformerEngineBaseLayer): """MultiHeadAttention""" head_dim: int = 64 num_heads: int = 16 dropout_rate: float = 0. dropout_rng_name: str = 'dropout' layernorm_type: str = "layernorm" layernorm_epsilon: float = 1e-6 zero_centered_gamma: bool = False use_bias: bool = False bias_init: WeightInit = WeightInit.Constant(0.0) apply_residual_connection_post_layernorm: bool = False output_layernorm: bool = False attn_mask_type: str = 'causal' fuse_qkv: bool = True transpose_batch_sequence: bool = True scale_attn_logits: bool = False scaled_query_init: bool = True float32_logits: bool = False def setup(self) -> None: """setup""" super().setup() mha_cls = partial( flax_MultiHeadAttention, dtype=self.dtype, head_dim=self.head_dim, num_heads=self.num_heads, dropout_rate=self.dropout_rate, dropout_rng_name=self.dropout_rng_name, layernorm_type=self.layernorm_type, layernorm_epsilon=self.layernorm_epsilon, zero_centered_gamma=self.zero_centered_gamma, kernel_init=TransformerEngineBaseLayer.generate_params_init("kernel", self.params_init), use_bias=self.use_bias, bias_init=TransformerEngineBaseLayer.generate_params_init("bias", self.bias_init), apply_residual_connection_post_layernorm=self.apply_residual_connection_post_layernorm, output_layernorm=self.output_layernorm, attn_mask_type=self.attn_mask_type, fuse_qkv=self.fuse_qkv, transpose_batch_sequence=self.transpose_batch_sequence, scale_attn_logits=self.scale_attn_logits, scaled_query_init=self.scaled_query_init, float32_logits=self.float32_logits) self.create_layer("multi_head_attn", mha_cls) def __call__(self, inputs_q: JTensor, inputs_kv: JTensor, mask: Optional[JTensor] = None, bias: Optional[JTensor] = None, *, decode: bool = False, deterministic: bool = False) -> JTensor: """__call__""" return self.multi_head_attn(inputs_q, inputs_kv, mask, bias, decode=decode, deterministic=deterministic) class TransformerLayer(TransformerEngineBaseLayer): """TransformerLayer""" hidden_size: int = 512 mlp_hidden_size: int = 2048 num_attention_heads: int = 8 layernorm_type: str = 'layernorm' layernorm_epsilon: float = 1e-6 zero_centered_gamma: bool = False hidden_dropout: float = 0.1 hidden_dropout_dims: Sequence[int] = () attention_dropout: float = 0.1 dropout_rng_name: str = 'dropout' mlp_activations: Sequence[str] = ('relu',) use_bias: bool = False bias_init: WeightInit = WeightInit.Constant(0.0) apply_residual_connection_post_layernorm: bool = False output_layernorm: bool = False float32_attention_logits: bool = False layer_type: TransformerLayerType = TransformerLayerType.ENCODER self_attn_mask_type: str = 'causal' enable_relative_embedding: bool = True relative_embedding: pax_fiddle.Config[RelativePositionBiases] = pax_fiddle.template_field(None) drop_path: float = 0.0 fuse_qkv_params: bool = True transpose_batch_sequence: bool = False scale_attn_logits: bool = False scaled_query_init: bool = True def setup(self) -> None: """setup""" super().setup() relative_embedding_flax_module = None if self.enable_relative_embedding and self.relative_embedding is not None: assert self.relative_embedding.num_attention_heads == \ self.num_attention_heads, \ "TransformerLayer.relative_embedding.num_attention_heads shoule be" \ "the same as TransformerLayer.num_attention_heads." embedding_init = RelativePositionBiases.generate_embedding_init( self.relative_embedding.embedding_init, self.relative_embedding.num_attention_heads, self.relative_embedding.num_buckets) relative_embedding_flax_module = flax_RelativePositionBiases( num_buckets=self.relative_embedding.num_buckets, max_distance=self.relative_embedding.max_distance, num_attention_heads=self.relative_embedding.num_attention_heads, embedding_init=TransformerEngineBaseLayer.generate_params_init( "rel_embedding", embedding_init), embedding_axes=self.relative_embedding.embedding_axes, dtype=self.relative_embedding.dtype) transformerlayer_cls = partial( flax_TransformerLayer, dtype=self.dtype, hidden_size=self.hidden_size, mlp_hidden_size=self.mlp_hidden_size, num_attention_heads=self.num_attention_heads, layernorm_type=self.layernorm_type, layernorm_epsilon=self.layernorm_epsilon, zero_centered_gamma=self.zero_centered_gamma, hidden_dropout=self.hidden_dropout, hidden_dropout_dims=self.hidden_dropout_dims, attention_dropout=self.attention_dropout, dropout_rng_name=self.dropout_rng_name, mha_kernel_init=TransformerEngineBaseLayer.generate_params_init( "mha_kernel", self.params_init), mlp_kernel_init=TransformerEngineBaseLayer.generate_params_init( "mlp_kernel", self.params_init), mlp_activations=self.mlp_activations, use_bias=self.use_bias, bias_init=TransformerEngineBaseLayer.generate_params_init("bias", self.bias_init), apply_residual_connection_post_layernorm=self.apply_residual_connection_post_layernorm, output_layernorm=self.output_layernorm, float32_attention_logits=self.float32_attention_logits, layer_type=self.layer_type, self_attn_mask_type=self.self_attn_mask_type, enable_relative_embedding=self.enable_relative_embedding, relative_embedding=relative_embedding_flax_module, drop_path=self.drop_path, fuse_qkv_params=self.fuse_qkv_params, transpose_batch_sequence=self.transpose_batch_sequence, scale_attn_logits=self.scale_attn_logits, scaled_query_init=self.scaled_query_init) self.create_layer("transformerlayer", transformerlayer_cls) def __call__(self, inputs: JTensor, encoded: JTensor = None, attention_mask: JTensor = None, encoder_decoder_mask: JTensor = None, deterministic: bool = False, decode: bool = False, max_decode_length: bool = None) -> JTensor: """__call__""" return self.transformerlayer(inputs, encoded, attention_mask, encoder_decoder_mask, deterministic, decode, max_decode_length)
TransformerEngine-main
transformer_engine/jax/praxis/transformer.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """ Praxis Modules """ from functools import partial from typing import Callable, Iterable, Sequence, Tuple, Union from praxis import pax_fiddle from praxis.base_layer import init_var from praxis.base_layer import BaseLayer, WeightInit, WeightHParams, WeightHParamsCollection from praxis.layers import flax_adapter from praxis.pytypes import JTensor from ..fp8 import FP8Helper from ..flax.module import DenseGeneral, LayerNormDenseGeneral from ..flax.module import LayerNorm as flax_LayerNorm from ..flax.module import LayerNormMLP as flax_LayerNormMLP from ..flax.module import Softmax from ..softmax import SoftmaxType from ..sharding import MajorShardingType, ShardingType def _generate_ln_scale_init(scale_init): if scale_init is not None: return TransformerEngineBaseLayer.generate_params_init("scale", scale_init) return scale_init class TransformerEngineBaseLayer(BaseLayer): """TransformerEngineBaseLayer""" logical_axes_rules: Tuple[Tuple, ...] = None @staticmethod def generate_params_init(name: str, initializer: WeightInit): """generate_params_init""" def kernel_init(key, shape, dtype): wp = WeightHParams(shape=shape, init=initializer, dtype=dtype) return init_var(wp, key, name) return kernel_init def create_layer(self, name, flax_module_cls): """create_layer""" fp8_collection_map = { FP8Helper.FP8_COLLECTION_NAME: [ WeightHParamsCollection.SKIP_LP_REGULARIZATION, WeightHParamsCollection.NON_TRAINABLE, WeightHParamsCollection.DISALLOW_BFLOAT16_CONVERSION ] } flax_module_p = pax_fiddle.Config(flax_adapter.FlaxModuleAdapter, module_factory_method=flax_module_cls, logical_axes_rules=self.logical_axes_rules, var_collection_map=fp8_collection_map, ici_mesh_shape=self.ici_mesh_shape, dcn_mesh_shape=self.dcn_mesh_shape, mesh_axis_names=self.mesh_axis_names) self.create_child(name, flax_module_p.clone()) class LayerNorm(TransformerEngineBaseLayer): """LayerNorm""" epsilon: float = 1e-6 layernorm_type: str = 'layernorm' zero_centered_gamma: bool = False scale_init: WeightInit = None scale_axes: Tuple[str, ...] = () bias_init: WeightInit = WeightInit.Constant(0.0) bias_axes: Tuple[str, ...] = () transpose_batch_sequence: bool = False sharding_type: ShardingType = ShardingType.SINGLE def setup(self) -> None: """setup""" super().setup() ln_cls = partial(flax_LayerNorm, epsilon=self.epsilon, layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, scale_init=_generate_ln_scale_init(self.scale_init), scale_axes=self.scale_axes, bias_init=TransformerEngineBaseLayer.generate_params_init( "ln_bias", self.bias_init), bias_axes=self.bias_axes, dtype=self.dtype, transpose_batch_sequence=self.transpose_batch_sequence, sharding_type=self.sharding_type) self.create_layer("layer_norm", ln_cls) def __call__(self, x: JTensor) -> JTensor: """__call__""" return self.layer_norm(x) class FusedSoftmax(TransformerEngineBaseLayer): """FusedSoftmax""" scale_factor: float = 1.0 softmax_type: SoftmaxType = SoftmaxType.SCALED sharding_type: ShardingType = ShardingType.SINGLE def setup(self) -> None: """setup""" super().setup() fused_softmax_cls = partial(Softmax, scale_factor=self.scale_factor, softmax_type=self.softmax_type, sharding_type=self.sharding_type) self.create_layer("fused_softmax", fused_softmax_cls) def __call__(self, x: JTensor, mask: JTensor = None, bias: JTensor = None) -> JTensor: """__call__""" return self.fused_softmax(x, mask, bias) class Linear(TransformerEngineBaseLayer): """Linear""" out_features: int = 512 kernel_axes: Tuple[str, ...] = () use_bias: bool = True bias_init: WeightInit = WeightInit.Constant(0.0) bias_axes: Tuple[str, ...] = () axis: Union[Iterable[int], int] = -1 transpose_batch_sequence: bool = False sharding_type: ShardingType = ShardingType.SINGLE def setup(self) -> None: """setup""" super().setup() dense_general_cls = partial( DenseGeneral, features=self.out_features, kernel_init=TransformerEngineBaseLayer.generate_params_init("kernel", self.params_init), kernel_axes=self.kernel_axes, use_bias=self.use_bias, bias_init=TransformerEngineBaseLayer.generate_params_init("bias", self.bias_init), bias_axes=self.bias_axes, axis=self.axis, dtype=self.dtype, transpose_batch_sequence=self.transpose_batch_sequence, sharding_type=self.sharding_type) self.create_layer("linear", dense_general_cls) def __call__(self, x: JTensor) -> JTensor: """__call__""" return self.linear(x) class LayerNormLinear(TransformerEngineBaseLayer): """LayerNormLinear""" out_features: int = 512 enable_layernorm: bool = True layernorm_type: str = 'layernorm' epsilon: float = 1e-6 zero_centered_gamma: bool = False scale_init: WeightInit = None scale_axes: Tuple[str, ...] = () ln_bias_init: WeightInit = WeightInit.Constant(1.0) ln_bias_axes: Tuple[str, ...] = () kernel_axes: Tuple[str, ...] = () use_bias: bool = False bias_init: WeightInit = WeightInit.Constant(0.0) bias_axes: Tuple[str, ...] = () return_layernorm_output: bool = True axis: Union[Iterable[int], int] = -1 transpose_batch_sequence: bool = False depth_scaling: float = None sharding_type: ShardingType = ShardingType.SINGLE def setup(self) -> None: """setup""" super().setup() ln_dense_general_cls = partial( LayerNormDenseGeneral, features=self.out_features, enable_layernorm=self.enable_layernorm, layernorm_type=self.layernorm_type, epsilon=self.epsilon, zero_centered_gamma=self.zero_centered_gamma, scale_init=_generate_ln_scale_init(self.scale_init), scale_axes=self.scale_axes, ln_bias_init=TransformerEngineBaseLayer.generate_params_init( "ln_bias", self.ln_bias_init), ln_bias_axes=self.ln_bias_axes, kernel_init=TransformerEngineBaseLayer.generate_params_init("kernel", self.params_init), kernel_axes=self.kernel_axes, use_bias=self.use_bias, bias_init=TransformerEngineBaseLayer.generate_params_init("bias", self.bias_init), bias_axes=self.bias_axes, return_layernorm_output=self.return_layernorm_output, axis=self.axis, dtype=self.dtype, transpose_batch_sequence=self.transpose_batch_sequence, depth_scaling=self.depth_scaling, sharding_type=self.sharding_type) self.create_layer("ln_linear", ln_dense_general_cls) def __call__(self, x: JTensor) -> JTensor: """__call__""" return self.ln_linear(x) class LayerNormMLP(TransformerEngineBaseLayer): """LayerNormMLP""" intermediate_dim: int = 2048 enable_layernorm: bool = True layernorm_type: str = 'layernorm' epsilon: float = 1e-6 zero_centered_gamma: bool = False scale_init: WeightInit = None scale_axes: Tuple[str, ...] = () ln_bias_init: WeightInit = WeightInit.Constant(1.0) ln_bias_axes: Tuple[str, ...] = () kernel_axes_1: Tuple[str, ...] = () kernel_axes_2: Tuple[str, ...] = () use_bias: bool = False bias_init: WeightInit = WeightInit.Constant(0.0) bias_axes_1: Tuple[str, ...] = () bias_axes_2: Tuple[str, ...] = () return_layernorm_output: bool = True activations: Sequence[Union[str, Callable]] = ('relu',) intermediate_dropout_rate: float = 0.1 intermediate_hidden_dropout_dims: Sequence[int] = () axis: Union[Iterable[int], int] = -1 transpose_batch_sequence: bool = False major_sharding_type: MajorShardingType = MajorShardingType.SINGLE def setup(self) -> None: """setup""" super().setup() ln_mlp_cls = partial( flax_LayerNormMLP, intermediate_dim=self.intermediate_dim, enable_layernorm=self.enable_layernorm, layernorm_type=self.layernorm_type, epsilon=self.epsilon, zero_centered_gamma=self.zero_centered_gamma, scale_init=_generate_ln_scale_init(self.scale_init), scale_axes=self.scale_axes, ln_bias_init=TransformerEngineBaseLayer.generate_params_init( "ln_bias", self.ln_bias_init), ln_bias_axes=self.ln_bias_axes, kernel_init=TransformerEngineBaseLayer.generate_params_init("kernel", self.params_init), kernel_axes_1=self.kernel_axes_1, kernel_axes_2=self.kernel_axes_2, use_bias=self.use_bias, bias_init=TransformerEngineBaseLayer.generate_params_init("bias", self.bias_init), bias_axes_1=self.bias_axes_1, bias_axes_2=self.bias_axes_2, return_layernorm_output=self.return_layernorm_output, activations=self.activations, intermediate_dropout_rate=self.intermediate_dropout_rate, intermediate_hidden_dropout_dims=self.intermediate_hidden_dropout_dims, axis=self.axis, dtype=self.dtype, transpose_batch_sequence=self.transpose_batch_sequence, major_sharding_type=self.major_sharding_type) self.create_layer("ln_mlp", ln_mlp_cls) def __call__(self, x: JTensor, deterministic: bool = False) -> JTensor: """__call__""" return self.ln_mlp(x, deterministic)
TransformerEngine-main
transformer_engine/jax/praxis/module.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """Transformer Engine bindings for JAX""" from .module import DenseGeneral, LayerNorm from .module import LayerNormDenseGeneral, LayerNormMLP, TransformerEngineBase from .transformer import extend_logical_axis_rules from .transformer import MultiHeadAttention, RelativePositionBiases from .transformer import TransformerLayer, TransformerLayerType
TransformerEngine-main
transformer_engine/jax/flax/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """ Wrapper module for Transformer related layers with FP8 support. """ import functools from enum import Enum from math import sqrt import os from typing import Any, Callable, Optional, Sequence, Tuple, Union import warnings import jax import jax.numpy as jnp import numpy as np from flax import linen as nn from flax.linen import partitioning as nn_partitioning from jax import dtypes from jax import nn as jax_nn from jax import random as jax_random from jax import lax, vmap from .module import DenseGeneral, LayerNormDenseGeneral, LayerNormMLP from .module import LayerNorm, Softmax from ..fused_attn import AttnBiasType, AttnMaskType from ..fused_attn import is_fused_attn_kernel_available from ..fused_attn import self_fused_attn, cross_fused_attn from ..softmax import SoftmaxType from ..sharding import infer_major_sharding_type, infer_sharding_type from ..sharding import global_shard_resource, with_sharding_constraint from ..sharding import ShardingType PRNGKey = Any Shape = Tuple[int, ...] DType = jnp.dtype Array = jnp.ndarray PrecisionLike = Union[None, str, lax.Precision, Tuple[str, str], Tuple[lax.Precision, lax.Precision]] Initializer = Callable[[PRNGKey, Shape, DType], Array] LogicalRules = Sequence[Tuple[str, Union[str, None]]] BATCH_AXES = 'nvte_batch' SEQLEN_AXES = 'nvte_seqlen' HEAD_AXES = 'nvte_head' HIDDEN_AXES = 'nvte_hidden' HIDDEN_TP_AXES = 'nvte_hidden_tp' JOINED_AXES = 'nvte_joined' W_NO_SHARD_AXES = 'nvte_w_no_shard' W_FSDP_AXES = 'nvte_w_fsdp' W_TP_AXES = 'nvte_w_tp' W_JOINED_AXES = 'nvte_w_joined' def _generate_drop_path_shape(shape: Sequence[int], batch_dim: int) -> Sequence[int]: # Generate broadcast dims for drop_path. drop_path_shape = list(range(0, len(shape))) drop_path_shape.pop(batch_dim) return drop_path_shape def extend_logical_axis_rules(rules: LogicalRules) -> LogicalRules: """ Extend the given Flax logical axis rules with the predefined TransformerLayer's logical axis rules. .. note:: We currently only support logical axis rules for single GPU training, data parallel training and 1D-sharding tensor parallel training. Refer to `Figure 3 in` `Megatron-LM tensor parallel <https://arxiv.org/pdf/1909.08053.pdf>`_ for 1D-sharding tensor parallelism. .. warning:: Please make sure ShardingResource is set via fp8_autocast before calling this function. .. note:: This function is only needed when using TransformerLayer. For other modules, such as DenseGeneral, please properly set axes of kernels and bias. Parameters ---------- rules : Sequence[Tuple[str, Union[str, None]]] the base Flax logical axis rules to extend. Returns ------- extended_rules : Sequence[Tuple[str, Union[str, None]]] the extended Flax logical axis rules. """ rules_map = {} for item in rules: assert len(item) == 2, \ "The logical axis rule should be like (axis_name, mesh_axis_name)." key = item[0] val = item[1] assert isinstance(key, str), \ f"Thie axis_name should be str, but got {type(key)}." assert isinstance(val, str) or (val is None), \ f"Thie mesh_axis_name should be str or None, but got {type(val)}." if key in rules_map: rules_map[key].append(val) else: rules_map[key] = [val] gsr = global_shard_resource() batch_dim_rule = [] if gsr.dp_resource is not None: batch_dim_rule.append(gsr.dp_resource) if gsr.fsdp_resource is not None and gsr.dp_resource != gsr.fsdp_resource: batch_dim_rule.append(gsr.fsdp_resource) if len(batch_dim_rule) <= 0: batch_dim_rule = None elif len(batch_dim_rule) == 1: batch_dim_rule = batch_dim_rule[0] else: batch_dim_rule = tuple(batch_dim_rule) te_logical_axis_rules = ( (BATCH_AXES, batch_dim_rule), (SEQLEN_AXES, None), (HEAD_AXES, gsr.tp_resource), (HIDDEN_AXES, None), (HIDDEN_TP_AXES, gsr.tp_resource), (JOINED_AXES, None), (W_NO_SHARD_AXES, None), (W_FSDP_AXES, gsr.fsdp_resource), (W_TP_AXES, gsr.tp_resource), (W_JOINED_AXES, None), ) extended_rules = [*rules] for item in te_logical_axis_rules: key = item[0] val = item[1] if key in rules_map: assert len(rules_map[key]) == 1 and rules_map[key][0] == val, \ f"The rule diverged between TE and given rule." \ f"Axis:{key} map to {rules_map[key]} in the given" \ f" rules, but {val} in TE's rules." else: extended_rules.append(item) return tuple(extended_rules) def _with_sharding_constraint(x: Array, logical_axis_names: Shape): assert len(x.shape) == len(logical_axis_names) rules = extend_logical_axis_rules(tuple()) rules_dict = {} for key, value in rules: rules_dict[key] = value mesh_axis_names = [rules_dict[name] for name in logical_axis_names] pspec = jax.sharding.PartitionSpec(*mesh_axis_names) return with_sharding_constraint(x, pspec) def _merge_mask(func, *masks: Optional[Array]): masks = [m for m in masks if m is not None] if not masks: return None assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), (f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}') mask, *other_masks = masks for other_mask in other_masks: mask = func(mask, other_mask) return mask def combine_masks(*masks: Optional[Array], dtype: DType = jnp.float32): """Combine attention masks.""" func = jnp.logical_and return _merge_mask(func, *masks).astype(dtype) def combine_biases(*masks: Optional[Array]): """Combine attention biases.""" func = lambda a, b: a + b return _merge_mask(func, *masks) def core_attention(query: Array, key: Array, value: Array, scale_factor: float, transpose_batch_sequence: bool, softmax_type: SoftmaxType = SoftmaxType.SCALED, softmax_sharding_type: ShardingType = ShardingType.SINGLE, mask: Optional[Array] = None, bias: Optional[Array] = None, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0., deterministic: bool = False, dtype: DType = jnp.float32, float32_logits: bool = False): """Core attention""" assert key.ndim == query.ndim == value.ndim, 'q, k, v must have same rank.' batch_dim = 1 if transpose_batch_sequence else 0 assert query.shape[batch_dim] == key.shape[batch_dim] == value.shape[batch_dim], ( 'q, k, v batch dims must match.') assert query.shape[-2] == key.shape[-2] == value.shape[-2], ('q, k, v num_heads must match.') sequence_dim = 0 if transpose_batch_sequence else 1 assert key.shape[sequence_dim] == value.shape[sequence_dim], 'k, v lengths must match.' assert query.shape[-1] == key.shape[-1], 'q, k depths must match.' if float32_logits: query = query.astype(jnp.float32) key = key.astype(jnp.float32) if transpose_batch_sequence: attn_weights = jnp.einsum('qbhd,kbhd->bhqk', query, key) else: attn_weights = jnp.einsum('bqhd,bkhd->bhqk', query, key) attn_weights = _with_sharding_constraint(attn_weights, (BATCH_AXES, HEAD_AXES, SEQLEN_AXES, SEQLEN_AXES)) # When a bias is present, the computation is performed as Softmax(attn_weights * scale + bias). # In this case, the scale can not fused into the Softmax module. if bias is not None: attn_weights = attn_weights * scale_factor fused_scale_factor = 1. else: # If no bias, the scale can be fused into Softmax module fused_scale_factor = scale_factor attn_weights = Softmax(softmax_type=softmax_type, scale_factor=fused_scale_factor, sharding_type=softmax_sharding_type)(attn_weights, mask, bias).astype(dtype) if not deterministic and dropout_rate > 0.: keep_prob = 1.0 - dropout_rate dropout_shape = list(attn_weights.shape) # TODO(rewang): add attention dropout broadcast dimension arguments for users keep = jax_random.bernoulli(dropout_rng, keep_prob, dropout_shape) multiplier = (keep.astype(attn_weights.dtype) / jnp.asarray(keep_prob, dtype=dtype)) attn_weights = attn_weights * multiplier if transpose_batch_sequence: return jnp.einsum('bhqk,kbhd->qbhd', attn_weights, value) return jnp.einsum('bhqk,bkhd->bqhd', attn_weights, value) dynamic_vector_slice_in_dim = vmap(lax.dynamic_slice_in_dim, in_axes=(None, 0, None, None)) class MultiHeadAttention(nn.Module): r""" Multi-head Attention (MHA), including Query, Key, Value and Output projection. .. note:: Argument :attr:`mask` will be ignored when :attr:`attn_mask_type` is set to `"causal"`. Parameters ---------- head_dim : int The hidden dimension of each attention head. num_heads : int The number of attention heads dropout_rate : float, default = 0.0 Dropout probability for the dropout op during multi-head attention. dropout_rng_name: str, default = 'dropout' The key in given RNGs via flax.linen.Module.apply that is used to generate Dropout masks in the core attention. layernorm_type : {'layernorm', 'rmsnorm'}, default = 'layernorm' Indicate the type of layer normalization. layernorm_epsilon: float, default = 1e-6 A value added to the denominator of layer normalization for numerical stability. zero_centered_gamma : bool, default = False If set to `True`, the LayerNorm formula changes to .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * (1 + \gamma) + \beta This parameter is only applicable for 'layernorm'. kernel_init: Initializer, default = flax.linen.initializers.variance_scaling(1.0, 'fan_in', 'normal') Used for initializing the QKV and Output projection weights. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). use_bias: bool, default = False Indicate whether or not to enable bias shifting for QKVO projections. If set to False, the layer will not learn additive biases. bias_init: Initializer, default = flax.linen.initializers.zeros Used for initializing bias of QKVO projections, only used when :attr:`use_bias=True`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). apply_residual_connection_post_layernorm : bool, default = False Indicate if apply residual connection with the output of layer normalization. output_layernorm : bool, default = False Indicate if apply a layer normalization at the end of MHA. attn_mask_type: {'causal', 'padding'}, default = 'causal' Type of attention mask passed into softmax operation. Introduced in v0.10.0. Optimization parameters ----------------------- dtype :jax.numpy.dtype, default = jax.numpy.float32 The data type used to allocate the initial parameters. fuse_qkv: bool, default = True If set to True, this module exposes a single fused parameter for query-key-value for self-attention and key-value for cross-attention. transpose_batch_sequence : bool, default = True Indicate whether the input tensors were switched axis of batch and sequence length dimension. if set to True, the input tensors should be in (seqlen, batch, hidden), otherwise (batch, seqlen, hidden). scale_attn_logits: bool, default = False Indicate whether to scale attention logits. If set to True, :math:`\frac{Q}{\sqrt{head_dim}*K}`, else :math:`Q*K` scaled_query_init: bool, default = `True` Whether to scale WQ on initialization by :math:`\sqrt{head_dim}` float32_logits : bool, default = False Whether to compute attention logits in float32. """ head_dim: int num_heads: int dropout_rate: float = 0. dropout_rng_name: str = 'dropout' layernorm_type: str = "layernorm" layernorm_epsilon: float = 1e-6 zero_centered_gamma: bool = False kernel_init: Initializer = None use_bias: bool = False bias_init: Initializer = nn.initializers.zeros apply_residual_connection_post_layernorm: bool = False output_layernorm: bool = False attn_mask_type: str = 'causal' dtype: DType = jnp.float32 fuse_qkv: bool = True transpose_batch_sequence: bool = True scale_attn_logits: bool = False scaled_query_init: bool = True float32_logits: bool = False # computes logits in float32 for stability. def __post_init__(self): if self.kernel_init is None: self.kernel_init = nn.initializers.variance_scaling(1.0, 'fan_in', 'normal') super().__post_init__() @nn.compact def __call__(self, inputs_q: Array, inputs_kv: Array, mask: Optional[Array] = None, bias: Optional[Array] = None, *, decode: bool = False, deterministic: bool = False) -> Array: """ MultiHeadAttention Layer: [Query, Key, Value projection] -> Dot Product Attention -> Output projection. Parameters ---------- inputs_q : jax.numpy.ndarray Input tensor for query projection. inputs_kv : jax.numpy.ndarray Input tensor for key/value projection. mask : jax.numpy.ndarray, default = None Boolean tensor used to mask out self-attention softmax input. bias : jax.numpy.ndarray, default = None A tensor used to shift self-attention softmax input. * decode : bool,default = False Indicate whether to prepare and use an autoregressive cache. deterministic : bool,default = False Disable dropout layers if set to True. Returns ------- outputs : jax.numpy.ndarray Output tensors. """ def query_init(*args): depth_scaling = jnp.sqrt(self.head_dim).astype(self.dtype) return self.kernel_init(*args) / (depth_scaling if self.scaled_query_init else 1.0) def qkv_init(key, shape, dtype): assert len(shape) == 3 assert shape[-2] == 3 q_key, k_key, v_key = jax_random.split(key, num=3) q_shape = (shape[0], shape[-1]) k_shape = (shape[0], shape[-1]) v_shape = (shape[0], shape[-1]) q_kernel = query_init(q_key, q_shape, dtype) k_kernel = self.kernel_init(k_key, k_shape, dtype) v_kernel = self.kernel_init(v_key, v_shape, dtype) return jnp.stack([q_kernel, k_kernel, v_kernel], axis=-2, dtype=dtype) def kv_init(key, shape, dtype): assert len(shape) == 3 assert shape[-2] == 2 k_key, v_key = jax_random.split(key) k_shape = (shape[0], shape[-1]) v_shape = (shape[0], shape[-1]) k_kernel = self.kernel_init(k_key, k_shape, dtype) v_kernel = self.kernel_init(v_key, v_shape, dtype) return jnp.stack([k_kernel, v_kernel], axis=-2, dtype=dtype) # TODO(rewang): make it configurable for pre_scale_bias attn_bias_type = AttnBiasType.NO_BIAS if bias is None else AttnBiasType.POST_SCALE_BIAS def canonicalize_attn_mask_type(attn_mask_type): """ Convert the string to AttnMaskType """ if attn_mask_type == 'causal': return AttnMaskType.CAUSAL_MASK if attn_mask_type == 'padding': return AttnMaskType.PADDING_MASK raise ValueError(f"Unsupported {attn_mask_type=}, " "supported attn_mask_type = {'causal', 'padding'}") attn_mask_type = canonicalize_attn_mask_type(self.attn_mask_type) canonicalize_dtype = dtypes.canonicalize_dtype(self.dtype) q_seqlen = inputs_q.shape[0] if self.transpose_batch_sequence else inputs_q.shape[1] kv_seqlen = inputs_kv.shape[0] if self.transpose_batch_sequence else inputs_kv.shape[1] enable_fused_attn = int(os.getenv("NVTE_FUSED_ATTN", "0")) def _check_seqlen(seqlen): return seqlen % 64 == 0 def _check_head_dim(head_dim): return head_dim in [64, 128] has_fused_attn_kernel = is_fused_attn_kernel_available(self.dtype, self.dtype, attn_bias_type, attn_mask_type, self.dropout_rate, q_seqlen, kv_seqlen, self.head_dim) use_fused_attn = not decode and not self.transpose_batch_sequence and self.fuse_qkv and \ canonicalize_dtype in [jnp.bfloat16, jnp.float16] and \ _check_seqlen(q_seqlen) and _check_seqlen(kv_seqlen) and \ _check_head_dim(self.head_dim) and \ has_fused_attn_kernel and \ enable_fused_attn if enable_fused_attn and not use_fused_attn: reason = "" if decode: reason += f"decode=False is required but got {decode}, " if self.transpose_batch_sequence: reason += f"transpose_batch_sequence=False is required " \ f"but got {self.transpose_batch_sequence}, " if not self.fuse_qkv: reason += f"fuse_qkv=True is required but got {self.fuse_qkv}, " if canonicalize_dtype not in [jnp.bfloat16, jnp.float16]: reason += f"dtype in [BF16, FP16] is required " \ f"but got dtype={canonicalize_dtype}, " if not _check_seqlen(q_seqlen): reason += f"q_seqlen % 64 == 0 is required " \ f"but got {q_seqlen=}, " if not _check_seqlen(kv_seqlen): reason += f"kv_seqlen % 64 == 0 is required " \ f"but got {kv_seqlen=}, " if not _check_head_dim(self.head_dim): reason += f"head_dim should be 64 or 128 but got {self.head_dim}, " if not has_fused_attn_kernel: reason += "no fused attention kernel is available, " warnings.warn( f"Fused attention is not enabled. Because " \ f"{reason}fall back to unfused attention.") first_sharding_type, second_sharding_type = infer_sharding_type() residual = inputs_q if self.fuse_qkv: if inputs_q is inputs_kv: qkv_proj, ln_out = LayerNormDenseGeneral( enable_layernorm=not self.output_layernorm, layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.layernorm_epsilon, axis=-1, features=(3, self.num_heads * self.head_dim), sharding_type=first_sharding_type, transpose_batch_sequence=self.transpose_batch_sequence, return_layernorm_output=self.apply_residual_connection_post_layernorm, scale_axes=(W_NO_SHARD_AXES,), ln_bias_axes=(W_NO_SHARD_AXES,), kernel_axes=(W_FSDP_AXES, W_JOINED_AXES, W_TP_AXES), kernel_init=qkv_init, use_bias=self.use_bias, bias_init=self.bias_init, bias_axes=(W_JOINED_AXES, W_TP_AXES), name='qkv', dtype=self.dtype)(inputs_q) if not use_fused_attn: query, key, value = jnp.split(qkv_proj, [1, 2], axis=-2) else: query, ln_out = LayerNormDenseGeneral( enable_layernorm=not self.output_layernorm, layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.layernorm_epsilon, axis=-1, features=self.num_heads * self.head_dim, sharding_type=first_sharding_type, transpose_batch_sequence=self.transpose_batch_sequence, return_layernorm_output=self.apply_residual_connection_post_layernorm, scale_axes=(W_NO_SHARD_AXES,), ln_bias_axes=(W_NO_SHARD_AXES,), kernel_axes=(W_FSDP_AXES, W_TP_AXES), use_bias=self.use_bias, bias_init=self.bias_init, bias_axes=(W_TP_AXES,), dtype=self.dtype, kernel_init=query_init, name='query')(inputs_q) kv_proj = DenseGeneral(axis=-1, features=(2, self.num_heads * self.head_dim), sharding_type=first_sharding_type, transpose_batch_sequence=self.transpose_batch_sequence, kernel_axes=(W_FSDP_AXES, W_JOINED_AXES, W_TP_AXES), kernel_init=kv_init, use_bias=self.use_bias, bias_init=self.bias_init, bias_axes=(W_JOINED_AXES, W_TP_AXES), name='kv', dtype=self.dtype)(inputs_kv) if not use_fused_attn: key, value = jnp.split(kv_proj, [1], axis=-2) else: kv_projection = functools.partial( DenseGeneral, axis=-1, features=self.num_heads * self.head_dim, sharding_type=first_sharding_type, transpose_batch_sequence=self.transpose_batch_sequence, kernel_axes=(W_FSDP_AXES, W_TP_AXES), use_bias=self.use_bias, bias_init=self.bias_init, bias_axes=(W_TP_AXES,), dtype=self.dtype) query, ln_out = LayerNormDenseGeneral( enable_layernorm=not self.output_layernorm, layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.layernorm_epsilon, axis=-1, features=self.num_heads * self.head_dim, sharding_type=first_sharding_type, transpose_batch_sequence=self.transpose_batch_sequence, return_layernorm_output=True, scale_axes=(W_NO_SHARD_AXES,), ln_bias_axes=(W_NO_SHARD_AXES,), kernel_axes=(W_FSDP_AXES, W_TP_AXES), use_bias=self.use_bias, bias_init=self.bias_init, bias_axes=(W_TP_AXES,), dtype=self.dtype, kernel_init=query_init, name='query')(inputs_q) if inputs_q is inputs_kv: assert ln_out is not None inputs_kv = ln_out key = kv_projection(kernel_init=self.kernel_init, name='key')(inputs_kv) value = kv_projection(kernel_init=self.kernel_init, name='value')(inputs_kv) if self.apply_residual_connection_post_layernorm: assert ln_out is not None residual = ln_out if not use_fused_attn: query = query.reshape((query.shape[0], query.shape[1], self.num_heads, self.head_dim)) key = key.reshape((key.shape[0], key.shape[1], self.num_heads, self.head_dim)) value = value.reshape((value.shape[0], value.shape[1], self.num_heads, self.head_dim)) qkv_sharding_constraint = \ (SEQLEN_AXES, BATCH_AXES, HEAD_AXES, HIDDEN_AXES) \ if self.transpose_batch_sequence \ else (BATCH_AXES, SEQLEN_AXES, HEAD_AXES, HIDDEN_AXES) query = _with_sharding_constraint(query, qkv_sharding_constraint) key = _with_sharding_constraint(key, qkv_sharding_constraint) value = _with_sharding_constraint(value, qkv_sharding_constraint) if decode: is_initialized = self.has_variable('cache', 'cached_key') cached_key = self.variable('cache', 'cached_key', jnp.zeros, key.shape, key.dtype) cached_value = self.variable('cache', 'cached_value', jnp.zeros, value.shape, value.dtype) cache_index = self.variable('cache', 'cache_index', lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: if self.transpose_batch_sequence: length, batch, num_heads, head_dim = cached_key.value.shape expected_shape = (1, batch, num_heads, head_dim) one_hot_indices_shape = (length, 1, 1, 1) else: batch, length, num_heads, head_dim = cached_key.value.shape expected_shape = (batch, 1, num_heads, head_dim) one_hot_indices_shape = (1, length, 1, 1) # Sanity shape check of cached key against input query. if expected_shape != query.shape: raise ValueError( 'Autoregressive cache shape error, ' f"expected query shape {expected_shape} instead got {query.shape}.") cur_index = cache_index.value one_hot_indices = jax_nn.one_hot(cur_index, length, dtype=key.dtype) one_hot_indices = jnp.reshape(one_hot_indices, one_hot_indices_shape) key = cached_key.value + key * one_hot_indices value = cached_value.value + value * one_hot_indices cached_key.value = key cached_value.value = value cache_index.value = cache_index.value + 1 mask = combine_masks( mask, jnp.broadcast_to(jnp.arange(length) > cur_index, (batch, 1, 1, length))) if bias is not None: bias = dynamic_vector_slice_in_dim(jnp.squeeze(bias, axis=0), jnp.reshape(cur_index, (-1)), 1, -2) scale_factor = 1.0 / sqrt(self.head_dim) if self.scale_attn_logits else 1.0 dropout_rng = None if not deterministic and self.dropout_rate > 0.: dropout_rng = self.make_rng(self.dropout_rng_name) if use_fused_attn: assert mask is not None and mask.ndim == 4 # (b, 1, s_q, s_kv) assert not self.transpose_batch_sequence seed = None if dropout_rng is not None: seed = jax.random.split(dropout_rng, len(jax.devices())) # ensure the old key never used del dropout_rng if inputs_q is inputs_kv: qkv_proj = qkv_proj.reshape((*qkv_proj.shape[:-1], self.num_heads, self.head_dim)) qkv_sharding_constraint = (BATCH_AXES, SEQLEN_AXES, JOINED_AXES, HEAD_AXES, HIDDEN_AXES) qkv_proj = _with_sharding_constraint(qkv_proj, qkv_sharding_constraint) x = self_fused_attn(qkv_proj, bias, mask, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scale_factor, dropout_probability=self.dropout_rate, is_training=not deterministic, sharding_type=first_sharding_type) else: assert bias is None query = query.reshape((*query.shape[:-1], self.num_heads, self.head_dim)) kv_proj = kv_proj.reshape((*kv_proj.shape[:-1], self.num_heads, self.head_dim)) q_sharding_constraint = (BATCH_AXES, SEQLEN_AXES, HEAD_AXES, HIDDEN_AXES) kv_sharding_constraint = (BATCH_AXES, SEQLEN_AXES, JOINED_AXES, HEAD_AXES, HIDDEN_AXES) query = _with_sharding_constraint(query, q_sharding_constraint) kv_proj = _with_sharding_constraint(kv_proj, kv_sharding_constraint) x = cross_fused_attn(query, kv_proj, mask, seed, attn_bias_type=attn_bias_type, attn_mask_type=attn_mask_type, scaling_factor=scale_factor, dropout_probability=self.dropout_rate, is_training=not deterministic, sharding_type=first_sharding_type) else: def convert_to_softmax_type(attn_mask_type, mask): """ Convert the string to SoftmaxType """ if attn_mask_type == 'causal': return SoftmaxType.SCALED_UPPER_TRIANG_MASKED if attn_mask_type == 'padding': if mask is not None: return SoftmaxType.SCALED_MASKED return SoftmaxType.SCALED raise ValueError(f"Unsupported {attn_mask_type=}, " "supported attn_mask_type = {'causal', 'padding'}") softmax_type = convert_to_softmax_type(self.attn_mask_type, mask) x = core_attention(query, key, value, scale_factor=scale_factor, transpose_batch_sequence=self.transpose_batch_sequence, softmax_type=softmax_type, softmax_sharding_type=first_sharding_type, mask=mask, bias=bias, dropout_rng=dropout_rng, dropout_rate=self.dropout_rate, deterministic=deterministic, dtype=self.dtype, float32_logits=self.float32_logits) x = x.reshape((x.shape[0], x.shape[1], x.shape[2] * x.shape[3])) attn_context_sharding_constraint = \ (SEQLEN_AXES, BATCH_AXES, HIDDEN_TP_AXES) \ if self.transpose_batch_sequence \ else (BATCH_AXES, SEQLEN_AXES, HIDDEN_TP_AXES) x = _with_sharding_constraint(x, attn_context_sharding_constraint) out = DenseGeneral(features=inputs_q.shape[-1], sharding_type=second_sharding_type, transpose_batch_sequence=self.transpose_batch_sequence, axis=-1, kernel_init=self.kernel_init, kernel_axes=(W_TP_AXES, W_FSDP_AXES), use_bias=self.use_bias, bias_init=self.bias_init, bias_axes=(W_NO_SHARD_AXES,), dtype=self.dtype, name='out')(x) return out, residual class RelativePositionBiases(nn.Module): """ T5-style relative positional embeddings to the attention logits. Parameters ---------- num_buckets : int The number of buckets to bucket distances between key and query positions into. max_distance : int The maximum distance before everything is lumped into the last distance bucket. num_attention_heads : int Number of attention heads in the transformer layer. embedding_init : Initializer, default = flax.linen.linear.default_embed_init Used for initializing relative embedding tables. embedding_axes : Tuple[str, ...], default = ('heads', 'relpos_buckets') The name of axes used to shard embedding attention bias with a corresponding mesh. Optimization parameters ----------------------- dtype : jax.numpy.dtype, default = jax.numpy.float32 The data type used to allocate the initial parameters. """ num_buckets: int max_distance: int num_attention_heads: int embedding_init: Callable[..., Array] = nn.linear.default_embed_init embedding_axes: Tuple[str, ...] = ('heads', 'relpos_buckets') dtype: DType = jnp.float32 @nn.compact def __call__(self, q_seqlen, k_seqlen, bidirectional=True): """ Generate relative position embedding attention biases. Parameters ---------- q_seqlen : int The sequence length of query. k_seqlen : int The sequence length of key. bidirectional : bool, default = True Indicate whether to allow positive memory-query relative position embeddings. Returns ------- output: jax.numpy.ndarray An attention bias with shape `(1, num_attention_heads, q_seqlen, k_seqlen)`. """ context_position = np.arange(q_seqlen, dtype=jnp.int32)[:, None] memory_position = np.arange(k_seqlen, dtype=jnp.int32)[None, :] relative_position = memory_position - context_position # Compute relative position bucket rp_bucket = 0 negative_rp = -relative_position rpb_num_buckets = self.num_buckets if bidirectional: rpb_num_buckets //= 2 rp_bucket += (negative_rp < 0).astype(np.int32) * rpb_num_buckets negative_rp = np.abs(negative_rp) else: negative_rp = np.maximum(negative_rp, 0) rpb_max_exact = rpb_num_buckets // 2 rpb_is_small = negative_rp < rpb_max_exact rpb_val_if_large = rpb_max_exact + ( np.log(negative_rp.astype(np.float32) / rpb_max_exact + np.finfo(np.float32).eps) / np.log(self.max_distance / rpb_max_exact) * (rpb_num_buckets - rpb_max_exact)).astype(np.int32) rpb_val_if_large = np.minimum(rpb_val_if_large, rpb_num_buckets - 1) rp_bucket += np.where(rpb_is_small, negative_rp, rpb_val_if_large) # Compute relative attention bias relative_attention_bias = nn_partitioning.param_with_axes( 'rel_embedding', self.embedding_init, (self.num_attention_heads, self.num_buckets), jnp.float32, axes=self.embedding_axes) relative_attention_bias = jnp.asarray(relative_attention_bias, self.dtype) bcast_iota = lax.broadcasted_iota(jnp.int32, (self.num_buckets, 1, 1), 0) rp_bucket_one_hot = jnp.array(rp_bucket[jnp.newaxis, ...] == bcast_iota, dtype=self.dtype) values = lax.dot_general(relative_attention_bias, rp_bucket_one_hot, (((1,), (0,)), ((), ()))) return values[jnp.newaxis, ...] class TransformerLayerType(Enum): r""" TransformerLayerType is an Enum class to specify a type of TransformerLayer Values ---------- ENCODER: Encoder type of TransformerLayer. DECODER: Decoder type of TransformerLayer. """ ENCODER = "encoder" DECODER = "decoder" class TransformerLayer(nn.Module): r""" TransformerLayer is made up of a relative embedding, an attention block and a feedforward network (MLP). This standard layer is based on the paper “Attention Is All You Need”. .. note:: Argument :attr:`attention_mask` will be ignored when :attr:`self_attn_mask_type` is set to `"causal"`. Parameters ---------- hidden_size: int, default = 512 The hidden size of each input sample. mlp_hidden_size: int, default = 2048 Intermediate size to which input samples are projected. num_attention_heads: int, default = 8 Number of attention heads in the transformer layer. layernorm_type : {'layernorm', 'rmsnorm'}, default = 'layernorm' Indicate the type of layer normalization. layernorm_epsilon: float, default = 1e-6 A value added to the denominator of layer normalization for numerical stability. zero_centered_gamma : bool, default = False If set to `True`, the LayerNorm formula changes to .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * (1 + \gamma) + \beta This parameter is only applicable for 'layernorm'. hidden_dropout: float, default = 0.1 Dropout probability for the dropout op after FC2 layer. hidden_dropout_dims: Sequence[int], default = () Dimensions that will share the same dropout mask for hidden attention_dropout: float, default = 0.1 Dropout probability for the dropout op during multi-head attention. dropout_rng_name: str, default = 'dropout' The key in given RNGs via flax.linen.Module.apply that for generating Dropout masks in the Multi-Head Attention. mha_kernel_init: Initializer, default = flax.linen.initializers.variance_scaling(1.0, 'fan_in', 'normal') Used for initializing weights of QKV and Output projection weights. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). mlp_kernel_init: Initializer, default = flax.linen.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') Used for initializing weights of FC1 and FC2 layers. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). mlp_activations: Sequence[str], default = ('relu', ) The sequence of activation functions to apply after the first linear transformation. Each activation has its own transformation layer. use_bias: bool, default = False Indicate whether to enable bias shifting for QKVO projections, FC1 and FC2. If set to False, the layer will not learn additive biases. bias_init: Initializer, default = flax.linen.initializers.zeros Used for initializing bias of QKVO projections, FC1 and FC2. It is only used when :attr:`use_bias=True`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). apply_residual_connection_post_layernorm: bool, default = False If set to True, residual connections are taken from the output of layer norm (default is taken from input of layer norm) output_layernorm: bool, default = False If set to True, layer normalization is applied on the output side, after the final dropout-add. default behavior is to apply layer normalization on the input side, before the QKV transformation. float32_attention_logits: bool, default = False If set to True, attention logits are executed in jax.numpy.float32. layer_type: TransformerLayerType, default = TransformerLayerType.ENCODER If set to TransformerLayerType.DECODER, an additional cross-attention block is added after self-attention.this can be used for structures like `T5` Transformer in conjunction with the TransformerLayerType.ENCODER option. self_attn_mask_type: {'causal', 'padding'}, default = 'causal' Type of attention mask passed into softmax operation. Introduced in v0.10.0. enable_relative_embedding: bool, default = True Whether to enable relative embedding as shifting of attention logits. relative_embedding: flax.linen.Module, default = None The module for relative embedding execution, only used when :attr:`enable_relative_embedding=True`. Default is None, which will create an instance of RelativePositionBiases if :attr:`enable_relative_embedding=True`. Default: RelativePositionBiases( num_buckets=32, max_distance=128, num_attention_heads=self.num_attention_heads, dtype=self.dtype, embedding_init=flax.linen.initializers.variance_scaling(1.0, 'fan_avg', 'uniform'), name='relpos_bias') Optimization parameters ----------------------- dtype :jax.numpy.dtype, default = jax.numpy.float32 The data type used to allocate the initial parameters. drop_path: float, default = 0.0 When > 0.0, applies stochastic depth per sample in the main path of the residual block. fuse_qkv_params: bool, default = True If set to True, `TransformerLayer` module exposes a single fused parameter for query-key-value for self-attention and key-value for cross-attention. transpose_batch_sequence : bool, default = False Indicate whether the input tensors were switched axis of batch and sequence length dimension. if set to True, the input tensors should be in (seqlen, batch, hidden), otherwise (batch, seqlen, hidden). scale_attn_logits: bool, default = False Indicate whether to scale attention logits. if set to True, :math:`\frac{Q}{\sqrt{head_dim}*K}`, else :math:`Q*K` scaled_query_init: bool, default = `True` Whether to scale WQ on initialization by :math:`\sqrt{head_dim}` """ hidden_size: int = 512 mlp_hidden_size: int = 2048 num_attention_heads: int = 8 layernorm_type: str = 'layernorm' layernorm_epsilon: float = 1e-6 zero_centered_gamma: bool = False hidden_dropout: float = 0.1 hidden_dropout_dims: Sequence[int] = () attention_dropout: float = 0.1 dropout_rng_name: str = 'dropout' mha_kernel_init: Initializer = None mlp_kernel_init: Initializer = None mlp_activations: Sequence[str] = ('relu',) use_bias: bool = False bias_init: Initializer = nn.initializers.zeros apply_residual_connection_post_layernorm: bool = False output_layernorm: bool = False float32_attention_logits: bool = False layer_type: TransformerLayerType = TransformerLayerType.ENCODER self_attn_mask_type: str = 'causal' enable_relative_embedding: bool = True relative_embedding: nn.Module = None dtype: DType = jnp.float32 drop_path: float = 0.0 fuse_qkv_params: bool = True transpose_batch_sequence: bool = False scale_attn_logits: bool = False scaled_query_init: bool = True def __post_init__(self): if self.mha_kernel_init is None: self.mha_kernel_init = nn.initializers.variance_scaling(1.0, 'fan_in', 'normal') if self.mlp_kernel_init is None: self.mlp_kernel_init = nn.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') super().__post_init__() @nn.compact def __call__(self, inputs: Array, encoded: Array = None, attention_mask: Array = None, encoder_decoder_mask: Array = None, deterministic: bool = False, decode: bool = False, max_decode_length: bool = None): """ Transformer Layer: attention block and a feedforward network (MLP) Parameters ---------- inputs : jax.numpy.ndarray Input tensor. encoded : jax.numpy.ndarray, default = None Output tensors of the encoder block to be fed into the decoder block if using :attr:`layer_type=TransformerLayerType.DECODER`. attention_mask : jax.numpy.ndarray, default = None Boolean tensor used to mask out self-attention softmax input. encoder_decoder_mask : jax.numpy.ndarray, default = None Boolean tensor used to mask out cross-attention softmax input when :attr:`layer_type=TransformerLayerType.DECODER`. deterministic: bool, default = False Disable dropout layers if set to True. decode: bool,default = False Indicate whether to prepare and use an autoregressive cache in Multi-head attention (MHA). max_decode_length : bool, default = None The maximum length to generate relative embedding biases when :attr:`layer_type=TransformerLayerType.DECODER` and :attr:`enable_relative_embedding=True`. Returns ------- outputs : jax.numpy.ndarray Output tensors. """ assert self.layer_type in TransformerLayerType, \ "layer_type should be one of TransformerLayerType" \ f", but got {self.layer_type}." assert self.hidden_size % self.num_attention_heads == 0, \ "hidden_size should be multiples of num_attention_heads" \ f", but got {self.hidden_size=} and {self.num_attention_heads=}." assert self.layer_type == TransformerLayerType.DECODER or \ (self.layer_type == TransformerLayerType.ENCODER and decode is False), \ "decode should be False when layer_type == TransformerLayerType.ENCODER." head_dim = self.hidden_size // self.num_attention_heads sequence_dim = 0 if self.transpose_batch_sequence else 1 batch_dim = 1 - sequence_dim attn_bias = None if self.enable_relative_embedding: if self.relative_embedding is None: rel_emb = RelativePositionBiases(num_buckets=32, max_distance=128, num_attention_heads=self.num_attention_heads, dtype=self.dtype, embedding_init=nn.initializers.variance_scaling( 1.0, 'fan_avg', 'uniform'), name='relpos_bias') else: rel_emb = self.relative_embedding if self.layer_type == TransformerLayerType.ENCODER: attn_bias = rel_emb(inputs.shape[sequence_dim], inputs.shape[sequence_dim], True) else: if decode and max_decode_length: l = max_decode_length else: l = inputs.shape[sequence_dim] attn_bias = rel_emb(l, l, False) assert inputs.ndim == 3 # Make name be the exactly same as T5X, since names would affect # RNGKey during init and apply. Myabe no need in the feature. if self.layer_type == TransformerLayerType.ENCODER: mha_name = 'attention' else: mha_name = 'self_attention' # [batch, length, emb_dim] -> [batch, length, emb_dim] x, residual = MultiHeadAttention( num_heads=self.num_attention_heads, dtype=self.dtype, head_dim=head_dim, transpose_batch_sequence=self.transpose_batch_sequence, dropout_rate=self.attention_dropout, dropout_rng_name=self.dropout_rng_name, float32_logits=self.float32_attention_logits, scale_attn_logits=self.scale_attn_logits, scaled_query_init=self.scaled_query_init, layernorm_type=self.layernorm_type, layernorm_epsilon=self.layernorm_epsilon, zero_centered_gamma=self.zero_centered_gamma, apply_residual_connection_post_layernorm=self.apply_residual_connection_post_layernorm, output_layernorm=self.output_layernorm, attn_mask_type=self.self_attn_mask_type, fuse_qkv=self.fuse_qkv_params, kernel_init=self.mha_kernel_init, use_bias=self.use_bias, bias_init=self.bias_init, name=mha_name)(inputs, inputs, attention_mask, attn_bias, deterministic=deterministic, decode=decode) def hidden_dropout(x, deterministic): assert isinstance(self.hidden_dropout_dims, Sequence) x_shape_len = len(x.shape) for dims in self.hidden_dropout_dims: assert -x_shape_len <= dims < x_shape_len return nn.Dropout(rate=self.hidden_dropout, broadcast_dims=self.hidden_dropout_dims)(x, deterministic=deterministic) x = hidden_dropout(x, deterministic) if self.drop_path > 0.0: drop_path_shape = _generate_drop_path_shape(x.shape, batch_dim) x = nn.Dropout(rate=self.drop_path, broadcast_dims=drop_path_shape)(x, deterministic=deterministic) x = x + residual mlp_input = x if self.layer_type == TransformerLayerType.DECODER: assert encoded is not None, \ "encoded is required when layer_type == TransformerLayerType.DECODER." y, residual = MultiHeadAttention( num_heads=self.num_attention_heads, dtype=self.dtype, head_dim=head_dim, transpose_batch_sequence=self.transpose_batch_sequence, dropout_rate=self.attention_dropout, dropout_rng_name=self.dropout_rng_name, layernorm_type=self.layernorm_type, layernorm_epsilon=self.layernorm_epsilon, zero_centered_gamma=self.zero_centered_gamma, apply_residual_connection_post_layernorm=self. apply_residual_connection_post_layernorm, output_layernorm=False, # Must do LayerNorm before MHA. attn_mask_type='padding', float32_logits=self.float32_attention_logits, scale_attn_logits=self.scale_attn_logits, scaled_query_init=self.scaled_query_init, fuse_qkv=self.fuse_qkv_params, kernel_init=self.mha_kernel_init, use_bias=self.use_bias, bias_init=self.bias_init, name='encoder_decoder_attention')(x, encoded, encoder_decoder_mask, deterministic=deterministic) y = hidden_dropout(y, deterministic) mlp_input = y + residual # MlpBlock residual = mlp_input z, ln_out = LayerNormMLP( layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.layernorm_epsilon, major_sharding_type=infer_major_sharding_type(), transpose_batch_sequence=self.transpose_batch_sequence, return_layernorm_output=self.apply_residual_connection_post_layernorm, intermediate_dim=self.mlp_hidden_size, activations=self.mlp_activations, intermediate_dropout_rate=self.hidden_dropout, intermediate_hidden_dropout_dims=self.hidden_dropout_dims, dtype=self.dtype, scale_axes=(W_NO_SHARD_AXES,), ln_bias_axes=(W_NO_SHARD_AXES,), kernel_init=self.mlp_kernel_init, kernel_axes_1=(W_FSDP_AXES, W_JOINED_AXES, W_TP_AXES), kernel_axes_2=(W_TP_AXES, W_FSDP_AXES), use_bias=self.use_bias, bias_init=self.bias_init, bias_axes_1=(W_JOINED_AXES, W_TP_AXES), bias_axes_2=(W_NO_SHARD_AXES,), name='mlp', )(mlp_input, deterministic=deterministic) if self.apply_residual_connection_post_layernorm: assert ln_out is not None residual = ln_out z = hidden_dropout(z, deterministic) if self.drop_path > 0.0: drop_path_shape = _generate_drop_path_shape(z.shape, batch_dim) z = nn.Dropout(rate=self.drop_path, broadcast_dims=drop_path_shape)(z, deterministic=deterministic) z = z + residual if self.output_layernorm: ln_sharding_type, _ = infer_sharding_type() z = LayerNorm(layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.layernorm_epsilon, scale_axes=(W_NO_SHARD_AXES,), bias_axes=(W_NO_SHARD_AXES,), transpose_batch_sequence=self.transpose_batch_sequence, dtype=self.dtype, sharding_type=ln_sharding_type, name="output_layer_norm")(z) return z
TransformerEngine-main
transformer_engine/jax/flax/transformer.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # See LICENSE for license information. """ Wrapper module for Transformer related layers with FP8 support. """ import functools import operator from typing import Any, Callable, Iterable, List, Sequence, Tuple, Union import jax.numpy as jnp import numpy as np from flax import linen as nn from flax.linen import partitioning as nn_partitioning from jax import lax from jax import nn as jax_nn from jax import random as jax_random from ..dot import fp8_dot from ..fp8 import FP8GemmPackage, FP8Helper from ..layernorm import canonicalize_layernorm_type from ..layernorm import layernorm, layernorm_fp8_dot from ..mlp import fp8_ln_mlp, geglu from ..sharding import infer_sharding_type from ..softmax import is_softmax_kernel_available from ..sharding import MajorShardingType, ShardingType from ..softmax import softmax, SoftmaxType PRNGKey = Any Shape = Tuple[int, ...] DType = jnp.dtype Array = jnp.ndarray PrecisionLike = Union[None, str, lax.Precision, Tuple[str, str], Tuple[lax.Precision, lax.Precision]] Initializer = Callable[[PRNGKey, Shape, DType], Array] def _normalize_axes(axes: Iterable[int], ndim: int) -> Tuple[int]: # A tuple by convention. len(axes_tuple) then also gives the rank efficiently. return tuple(ax if ax >= 0 else ndim + ax for ax in axes) def _canonicalize_tuple(x): if isinstance(x, Iterable): return tuple(x) return (x,) def _obtain_default_layernorm_scale_init_if_need(original_init, zero_centered_gamma): if original_init is None: if not zero_centered_gamma: return nn.initializers.ones return nn.initializers.zeros def _create_layernorm_parameters(layernorm_type, shape, scale_init, scale_axes, bias_init, bias_axes, dtype): scale = nn_partitioning.param_with_axes('scale', scale_init, shape, jnp.float32, axes=scale_axes) scale = jnp.asarray(scale, dtype) layernorm_type = canonicalize_layernorm_type(layernorm_type) if layernorm_type == 'layernorm': bias = nn_partitioning.param_with_axes('ln_bias', bias_init, shape, jnp.float32, axes=bias_axes) bias = jnp.asarray(bias, dtype) else: assert layernorm_type == 'rmsnorm' bias = None return scale, bias def _convert_to_activation_function(fn_or_string: Union[str, Callable]) -> Callable: """Convert a string to an activation function.""" if fn_or_string == 'linear': return lambda x: x if isinstance(fn_or_string, str): return getattr(nn, fn_or_string) if callable(fn_or_string): return fn_or_string raise ValueError(f"don't know how to convert {fn_or_string} to an activation function") def _combine_biases(*masks: List[Array]): """Combine attention biases.""" masks = [m for m in masks if m is not None] if not masks: return None assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), (f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}') mask, *other_masks = masks for other_mask in other_masks: mask = mask + other_mask return mask class Softmax(nn.Module): r""" Applies softmax over a mini-batch of inputs. The input's shape should be [batch, heads, q_seqlen, k_seqlen]. .. code-block:: python shifted_input = input + bias masked_scaled = (1 - mask)*(shifted_input * scale_factor) softmax_mask = mask * -1e-10 output = softmax(masked_scaled + softmax_mask) Parameters ---------- scale_factor : float, default = 1.0 Scalar for the input to softmax. softmax_type : SoftmaxType, default = SoftmaxType.SCALED Indicate the type of softmax. Optimization parameters ----------------------- sharding_type : ShardingType, default = ShardingType.SINGLE Indicate the sharding pattern. """ scale_factor: float = 1.0 softmax_type: SoftmaxType = SoftmaxType.SCALED sharding_type: ShardingType = ShardingType.SINGLE @nn.compact def __call__(self, inputs: Array, mask: Array = None, bias: Array = None) -> jnp.ndarray: batch = inputs.shape[0] heads = inputs.shape[1] q_seqlen = inputs.shape[2] k_seqlen = inputs.shape[3] dtype = inputs.dtype logits = inputs if (self.softmax_type is not SoftmaxType.SCALED and is_softmax_kernel_available( self.softmax_type, batch, heads, q_seqlen, k_seqlen, inputs.dtype)): if bias is not None: logits = logits + bias.astype(dtype) mask_ = mask if self.softmax_type is not SoftmaxType.SCALED_MASKED: mask_ = None outputs = softmax(logits, mask_, self.scale_factor, self.softmax_type, self.sharding_type) else: attention_bias = None if mask is not None: attention_bias = lax.select(mask > 0, jnp.full(mask.shape, -1e10).astype(dtype), jnp.full(mask.shape, 0.).astype(dtype)) if bias is not None: attention_bias = _combine_biases(attention_bias, bias) if attention_bias is not None: logits = logits + attention_bias.astype(dtype) # For the case that self.softmax == SoftmaxType.SCALED_UPPER_TRIANG_MASKED # and kernel is unavailable, then try on pure scaled softmax custom calls. if is_softmax_kernel_available(SoftmaxType.SCALED, batch, heads, q_seqlen, k_seqlen, dtype): outputs = softmax(logits, None, self.scale_factor, SoftmaxType.SCALED, self.sharding_type) else: outputs = jax_nn.softmax(logits * self.scale_factor) return outputs class LayerNorm(nn.Module): r""" Applies layer normalization over a mini-batch of inputs. There are two types of normalization supported by this module, regular and root mean square layer Normalization. The regular layer normalization is as described in the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`__ .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta :math:`\gamma` and :math:`\beta` are learnable affine transform parameters of size of each input sample. The root mean square layer normalization (RMSNorm) is as described in the paper `Root Mean Square Layer Normalization <https://arxiv.org/abs/1910.07467>`__ .. math:: y = \frac{x}{ \mathrm{RMS}[x] + \epsilon} * \gamma .. math:: RMS = \sqrt{\mathrm{E}[x^2]} :math:`\gamma` is learnable affine transform parameters of size of each input sample. Parameters ---------- epsilon : float, default = 1e-6 A value added to the denominator of layer normalization for numerical stability. layernorm_type : {'layernorm', 'rmsnorm'}, default = 'layernorm' Indicate the type of layer normalization. zero_centered_gamma : bool, default = False If set to `True`, the LayerNorm formula changes to .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * (1 + \gamma) + \beta This parameter is only applicable for 'layernorm'. The default of `scale_init` will also be changed. See `scale_init`. scale_init : Initializer, default = None Used for initializing scale factors :math:`\gamma`. If `None` is provided, scale_init is set according to the value of zero_centered_gamma. If zero_centered_gamma is set to `True`, then scale_init is `flax.linen.initializers.zeros`. Otherwise, scale_init is `flax.linen.initializers.ones`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). scale_axes : Tuple[str, ...], default = ('embed', ) The name of axes used to shard the scale factors :math:`\gamma` with a corresponding mesh. bias_init : Initializer, default = flax.linen.initializers.zeros Used for initializing shift factors :math:`\beta`, only used when :attr:`layernorm_type='layernorm'`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). bias_axes : Tuple[str, ...], default = ('embed', ) The name of axes used to shard the shift factors :math:`\beta` with a corresponding mesh. only used when :attr:`layernorm_type='layernorm'`. Optimization parameters ----------------------- dtype : jax.numpy.dtype, default = jax.numpy.float32 the data type used to allocate the initial parameters. transpose_batch_sequence : bool, default = False Indicate whether the input tensors were switched axis of batch and sequence length dimension. If set to True, the input tensors should be in (seqlen, batch, hidden), otherwise (batch, seqlen, hidden). sharding_type : ShardingType, default = ShardingType.SINGLE Indicate the sharding pattern. """ epsilon: float = 1e-6 layernorm_type: str = 'layernorm' zero_centered_gamma: bool = False scale_init: Initializer = None scale_axes: Tuple[str, ...] = ('embed',) bias_init: Initializer = nn.initializers.zeros bias_axes: Tuple[str, ...] = ('embed',) dtype: DType = jnp.float32 transpose_batch_sequence: bool = False sharding_type: ShardingType = ShardingType.SINGLE def __post_init__(self): self.scale_init = _obtain_default_layernorm_scale_init_if_need( self.scale_init, self.zero_centered_gamma) super().__post_init__() @nn.compact def __call__(self, x: jnp.ndarray) -> jnp.ndarray: """ Applies layer normalization to the input :attr:`inputs`. Parameters ---------- inputs : jax.numpy.ndarray Input tensors. Returns ------- outputs : jax.numpy.ndarray Output tensors. """ features = x.shape[-1] scale, ln_bias = _create_layernorm_parameters(self.layernorm_type, (features,), self.scale_init, self.scale_axes, self.bias_init, self.bias_axes, self.dtype) return layernorm(x, scale, ln_bias, layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.epsilon, sharding_type=self.sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) class TransformerEngineBase(nn.Module): """ Base class of transformer engine """ @staticmethod def get_fp8_metas(num_of_gemm: int) -> List[jnp.ndarray]: """ Get the FP8 metas """ num_of_meta = num_of_gemm * FP8Helper.NUM_META_PER_GEMM axes = ('fp8_meta_axis', 'fp8_meta_history') fp8_max = nn_partitioning.variable_with_axes(FP8Helper.FP8_COLLECTION_NAME, FP8Helper.FP8_MAX_NAME, FP8Helper.generate_fp8_max_array, num_of_meta, axes=axes) fp8_metas_amax = nn_partitioning.variable_with_axes( FP8Helper.FP8_COLLECTION_NAME, FP8Helper.FP8_AMAX_NAME, jnp.zeros, (num_of_meta, FP8Helper.AMAX_HISTORY_LEN), jnp.float32, axes=axes) fp8_metas_scale = nn_partitioning.variable_with_axes(FP8Helper.FP8_COLLECTION_NAME, FP8Helper.FP8_SCALE_NAME, jnp.ones, (num_of_meta, 1), jnp.float32, axes=axes) fp8_metas_scale_inv = nn_partitioning.variable_with_axes(FP8Helper.FP8_COLLECTION_NAME, FP8Helper.FP8_SCALE_INV_NAME, jnp.ones, (num_of_meta, 1), jnp.float32, axes=axes) return fp8_max.value, fp8_metas_amax.value, fp8_metas_scale.value, fp8_metas_scale_inv.value @staticmethod def get_fp8_gemm_package(num_of_gemm: int, inputs: jnp.ndarray, kernels: List[jnp.ndarray]) -> FP8GemmPackage: """ Get the FP8 metas """ assert num_of_gemm == len(kernels) fp8_max, fp8_metas_amax, fp8_metas_scale, fp8_metas_scale_inv = \ TransformerEngineBase.get_fp8_metas(num_of_gemm) return FP8GemmPackage(num_of_gemm, inputs, kernels, fp8_max, fp8_metas_amax, fp8_metas_scale, fp8_metas_scale_inv) class DenseGeneral(TransformerEngineBase): """ Applies a linear transformation to the incoming data :math:`y = xA^T + b` Parameters ---------- features : Union[Iterable[int], int] The hidden size of each output sample. kernel_init : Initializer, default = flax.linen.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') Used for initializing weights. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). kernel_axes : Tuple[str, ...], default = () The name of axes used to shard the weights with a corresponding mesh. use_bias: bool, default = False Indicate whether to enable bias shifting. If set to False, the layer will not learn an additive bias. bias_init: Initializer, default = flax.linen.initializers.zeros Used for initializing bias, only used when :attr:`use_bias=True`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). bias_axes: Tuple[str, ...], default = () The name of axes used to shard bias with a corresponding mesh, only used when :attr:`use_bias=True`. axis: Union[Iterable[int], int], default = -1 An integer tuple with axes to apply the transformation on. Optimization parameters ----------------------- dtype : jax.numpy.dtype, default = jax.numpy.float32 The data type used to allocate the initial parameters. transpose_batch_sequence : bool, default = True Indicate whether the input tensors were switched axis of batch and sequence length dimension. If set to True, the input tensors should be in (seqlen, batch, hidden), otherwise (batch, seqlen, hidden). sharding_type : ShardingType, default = ShardingType.SINGLE Indicate the sharding pattern. """ features: Union[Iterable[int], int] kernel_init: Initializer = None kernel_axes: Tuple[str, ...] = () use_bias: bool = True bias_init: Initializer = nn.initializers.zeros bias_axes: Tuple[str, ...] = () axis: Union[Iterable[int], int] = -1 dtype: DType = jnp.float32 transpose_batch_sequence: bool = False sharding_type: ShardingType = ShardingType.SINGLE def __post_init__(self): if self.kernel_init is None: self.kernel_init = nn.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') super().__post_init__() @nn.compact def __call__(self, inputs: Array) -> Array: """ Apply the linear transformation to the input. Parameters ---------- inputs : jax.numpy.ndarray Input tensors. Returns ------- outputs : jax.numpy.ndarray Output tensors. """ features = _canonicalize_tuple(self.features) axis = _canonicalize_tuple(self.axis) inputs = jnp.asarray(inputs, self.dtype) axis = _normalize_axes(axis, inputs.ndim) kernel_shape = tuple(inputs.shape[ax] for ax in axis) + features kernel_param_shape = (np.prod([inputs.shape[ax] for ax in axis]),) + features kernel = nn_partitioning.param_with_axes('kernel', self.kernel_init, kernel_param_shape, jnp.float32, axes=self.kernel_axes) kernel = jnp.reshape(kernel, kernel_shape) if self.use_bias: bias = nn_partitioning.param_with_axes('bias', self.bias_init, features, self.dtype, axes=self.bias_axes) else: bias = None contract_ind = tuple(range(0, len(axis))) if FP8Helper.is_fp8_enabled(): fp8_gemm_package = \ TransformerEngineBase.get_fp8_gemm_package(1, inputs, [kernel]) y = fp8_dot(fp8_gemm_package, FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE, (axis, contract_ind), sharding_type=self.sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: kernel = jnp.asarray(kernel, self.dtype) y = lax.dot_general(inputs, kernel, ((axis, contract_ind), ((), ()))) if bias is not None: bias_shape = (1,) * (y.ndim - bias.ndim) + bias.shape y += jnp.reshape(bias, bias_shape) return y class LayerNormDenseGeneral(TransformerEngineBase): r""" Applies layer normalization followed by linear transformation to the incoming data. Parameters ---------- features : Union[Iterable[int], int] The hidden size of each output sample. enable_layernorm: bool, default = True Indicate whether to enable layer normalization before linear transformation. layernorm_type : {'layernorm', 'rmsnorm'}, default = 'layernorm' Indicate the type of layer normalization. epsilon : float, default = 1e-6 A value added to the denominator of layer normalization for numerical stability. zero_centered_gamma : bool, default = False If set to `True`, the LayerNorm formula changes to .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * (1 + \gamma) + \beta This parameter is only applicable for 'layernorm'. The default of `scale_init` will also be changed. See `scale_init` scale_init : Initializer, default = None Used for initializing scale factors :math:`\gamma`. If `None` is provided, scale_init is set according to the value of zero_centered_gamma. If zero_centered_gamma is set to `True`, then scale_init is `flax.linen.initializers.zeros`. Otherwise, scale_init is `flax.linen.initializers.ones`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). scale_axes : Tuple[str, ...], default = ('embed', ) The name of axes used to shard the scale factors :math:`\gamma` with a corresponding mesh, only used when :attr:`enable_layernorm=True`. ln_bias_init: Initializer, default = flax.linen.initializers.zeros Used for initializing shift factors :math:`\beta`, only used when :attr:`enable_layernorm=True` and :attr:`layernorm_type='layernorm'`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). ln_bias_axes: Tuple[str, ...], default = ('embed', ) The name of axes used to shard the shift factors :math:`\beta` with a corresponding mesh. It is only used when :attr:`enable_layernorm=True` and :attr:`layernorm_type='layernorm'`. kernel_init : Initializer, default = flax.linen.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') Used for initializing weights. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). kernel_axes : Tuple[str, ...], default = () The name of axes used to shard the weights with a corresponding mesh. use_bias: bool, default = False Indicate whether to enable bias shifting. If set to False, the layer will not learn an additive bias. bias_init: Initializer, default = flax.linen.initializers.zeros Used for initializing bias, only used when :attr:`use_bias=True`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). bias_axes: Tuple[str, ...], default = () The name of axes used to shard bias with a corresponding mesh, only used when :attr:`use_bias=True`. return_layernorm_output: bool, default = True Indicate whether to return the output of layer normalization. If set False, return None as the second tensor in outputs. axis: Union[Iterable[int], int], default = -1 An integer tuple with axes to apply the transformation on. Optimization parameters ----------------------- dtype : jax.numpy.dtype, default = jax.numpy.float32 The data type used to allocate the initial parameters. transpose_batch_sequence : bool, default = True Indicate whether the input tensors were switched axis of batch and sequence length dimension. If set to True, the input tensors should be in (seqlen, batch, hidden), otherwise (batch, seqlen, hidden). depth_scaling: float, default = None The factor to scale the output from `DenseGeneral`. It should be a float value or None. When None is set, then no scaling is applied. sharding_type : ShardingType, default = ShardingType.SINGLE Indicate the sharding pattern. """ features: Union[Iterable[int], int] enable_layernorm: bool = True layernorm_type: str = 'layernorm' epsilon: float = 1e-6 zero_centered_gamma: bool = False scale_init: Initializer = None scale_axes: Tuple[str, ...] = ('embed',) ln_bias_init: Initializer = nn.initializers.zeros ln_bias_axes: Tuple[str, ...] = ('embed',) kernel_init: Initializer = None kernel_axes: Tuple[str, ...] = () use_bias: bool = False bias_init: Initializer = nn.initializers.zeros bias_axes: Tuple[str, ...] = () return_layernorm_output: bool = True axis: Union[Iterable[int], int] = -1 dtype: DType = jnp.float32 transpose_batch_sequence: bool = True depth_scaling: float = None sharding_type: ShardingType = ShardingType.SINGLE def __post_init__(self): if self.kernel_init is None: self.kernel_init = nn.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') self.scale_init = _obtain_default_layernorm_scale_init_if_need( self.scale_init, self.zero_centered_gamma) super().__post_init__() @nn.compact def __call__(self, inputs: Array) -> Array: """ Apply layer normalization to the input followed by a linear transformation. Parameters ---------- inputs: jax.numpy.ndarray Input tensor. Returns ------- outputs : jax.numpy.ndarray Output tensors. ln_outputs: jax.numpy.ndarray The output tensors of layer normalization. If :attr:`return_layernorm_output=False`, then this would be None. """ ln_output = None fuse_layernorm = FP8Helper.is_fp8_enabled( ) and not self.return_layernorm_output and self.enable_layernorm if self.enable_layernorm: features = inputs.shape[-1] scale, ln_bias = _create_layernorm_parameters(self.layernorm_type, (features,), self.scale_init, self.scale_axes, self.ln_bias_init, self.ln_bias_axes, self.dtype) if not fuse_layernorm: y = layernorm(inputs, scale, ln_bias, layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.epsilon, sharding_type=self.sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: assert not self.return_layernorm_output y = inputs else: y = inputs if self.return_layernorm_output: ln_output = y # DenseGeneral features = _canonicalize_tuple(self.features) axis = _canonicalize_tuple(self.axis) axis = _normalize_axes(axis, y.ndim) kernel_shape = tuple(y.shape[ax] for ax in axis) + features kernel_param_shape = (np.prod([inputs.shape[ax] for ax in axis]),) + features kernel = nn_partitioning.param_with_axes('kernel', self.kernel_init, kernel_param_shape, jnp.float32, axes=self.kernel_axes) kernel = jnp.reshape(kernel, kernel_shape) contract_ind = tuple(range(0, len(axis))) if FP8Helper.is_fp8_enabled(): fp8_gemm_package = \ TransformerEngineBase.get_fp8_gemm_package(1, y, [kernel]) if not fuse_layernorm: z = fp8_dot(fp8_gemm_package, FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE, (axis, contract_ind), sharding_type=self.sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: z = layernorm_fp8_dot(fp8_gemm_package, scale, ln_bias, self.layernorm_type, FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE, (axis, contract_ind), zero_centered_gamma=self.zero_centered_gamma, epsilon=self.epsilon, sharding_type=self.sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: kernel = jnp.asarray(kernel, self.dtype) z = lax.dot_general(y, kernel, ((axis, contract_ind), ((), ()))) bias = None if self.use_bias: bias = nn_partitioning.param_with_axes('bias', self.bias_init, features, self.dtype, axes=self.bias_axes) if bias is not None: bias_shape = (1,) * (z.ndim - bias.ndim) + bias.shape z += jnp.reshape(bias, bias_shape) if self.depth_scaling is not None: z = z / self.depth_scaling return z, ln_output # dense_output, layer_norm_output class LayerNormMLP(TransformerEngineBase): r""" Applies layer normalization on the input followed by the MLP module, consisting of 2 successive linear transformations, separated by given activations. Parameters ---------- intermediate_dim: int, default = 2048 Intermediate size to which input samples are projected. enable_layernorm: bool, default = True Indicate whether to enable layer normalization before linear transformation. layernorm_type : {'layernorm', 'rmsnorm'}, default = 'layernorm' Indicate the type of layer normalization. epsilon : float, default = 1e-6 A value added to the denominator of layer normalization for numerical stability. zero_centered_gamma : bool, default = False If set to `True`, the LayerNorm formula changes to .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * (1 + \gamma) + \beta This parameter is only applicable for 'layernorm'. The default of `scale_init` will also be changed. See `scale_init`. scale_init : Initializer, default = None Used for initializing scale factors :math:`\gamma`. If `None` is provided, scale_init is set according to the value of zero_centered_gamma. If zero_centered_gamma is set to `True`, then scale_init is `flax.linen.initializers.zeros`. Otherwise, scale_init is `flax.linen.initializers.ones`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). scale_axes : Tuple[str, ...], default = ('embed', ) The name of axes used to shard the scale factors :math:`\gamma` with a corresponding mesh, only used when :attr:`enable_layernorm=True`. ln_bias_init: Initializer, default = flax.linen.initializers.zeros Used for initializing shift factors :math:`\beta`, only used when :attr:`enable_layernorm=True` and :attr:`layernorm_type='layernorm'`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). ln_bias_axes: Tuple[str, ...], default = ('embed', ) The name of axes used to shard the shift factors :math:`\beta` with a corresponding mesh. Only used when :attr:`enable_layernorm=True` and :attr:`layernorm_type='layernorm'`. kernel_init : Initializer, default = flax.linen.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') Used for initializing the weights of both linear transformations. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). kernel_axes_1 : Tuple[str, ...], default = ('embed', 'act', 'mlp') The name of axes used to shard the weights with a corresponding mesh for the weight of the first linear transformations. kernel_axes_2 : Tuple[str, ...], default = ('mlp', 'embed') The name of axes used to shard the weights with a corresponding mesh for the weight of the second linear transformations. use_bias: bool, default = False Indicate whether to enable bias shifting. If set to False, the layer will not learn an additive bias. bias_init: Initializer, default = flax.linen.initializers.zeros Used for initializing bias, only used when :attr:`use_bias=True`. It should be a callable object with three arguments (jax.random.PRNGKey, shape, dtype). bias_axes_1: Tuple[str, ...], default = ('mlp',) The name of axes used to shard bias with a corresponding mesh for the weight of the first linear transformations. Only used when :attr:`use_bias=True`. bias_axes_2: Tuple[str, ...], default = ('embed',) The name of axes used to shard bias with a corresponding mesh for the weight of the second linear transformations. Only used when :attr:`use_bias=True`. return_layernorm_output: bool, default = True Indicate whether to return the output of layer normalization. If set False, return None as the second tensor in outputs. activations: Sequence[Union[str, Callable]], default = ('relu',) The sequence of activation functions to apply after the first linear transformation. Each activation has its own transformation layer. intermediate_dropout_rate: float, default = 0.1 Dropout probability for the dropout op after the :attr:`activations`. intermediate_hidden_dropout_dims: Sequence[int], default = () Dimensions that will share the same dropout mask for hidden axis: Union[Iterable[int], int], default = -1 An integer tuple with axes to apply the transformation on. Optimization parameters ----------------------- dtype : jax.numpy.dtype, default = jax.numpy.float32 The data type used to allocate the initial parameters. transpose_batch_sequence : bool, default = True Indicate whether the input tensors were switched axis of batch and sequence length dimension. If set to True, the input tensors should be in (seqlen, batch, hidden), otherwise (batch, seqlen, hidden). major_sharding_type : MajorShardingType, default = MajorShardingType.SINGLE Indicate the sharding pattern. """ intermediate_dim: int = 2048 enable_layernorm: bool = True layernorm_type: str = 'layernorm' epsilon: float = 1e-6 zero_centered_gamma: bool = False scale_init: Initializer = None scale_axes: Tuple[str, ...] = ('embed',) ln_bias_init: Initializer = nn.initializers.zeros ln_bias_axes: Tuple[str, ...] = ('embed',) kernel_init: Initializer = None kernel_axes_1: Tuple[str, ...] = ('embed', 'act', 'mlp') kernel_axes_2: Tuple[str, ...] = ('mlp', 'embed') use_bias: bool = False bias_init: Initializer = nn.initializers.zeros bias_axes_1: Tuple[str, ...] = ( 'act', 'mlp', ) bias_axes_2: Tuple[str, ...] = ('embed',) return_layernorm_output: bool = True activations: Sequence[Union[str, Callable]] = ('relu',) intermediate_dropout_rate: float = 0.1 intermediate_hidden_dropout_dims: Sequence[int] = () axis: Union[Iterable[int], int] = -1 dtype: DType = jnp.float32 transpose_batch_sequence: bool = True major_sharding_type: MajorShardingType = MajorShardingType.SINGLE def __post_init__(self): if self.kernel_init is None: self.kernel_init = nn.initializers.variance_scaling(1.0, 'fan_in', 'truncated_normal') self.scale_init = _obtain_default_layernorm_scale_init_if_need( self.scale_init, self.zero_centered_gamma) super().__post_init__() @nn.compact def __call__(self, inputs: Array, deterministic: bool = False) -> Array: """ Apply layer normalization to the input followed by a feedforward network (MLP Block). Parameters ---------- inputs: jax.numpy.ndarray Input tensor. deterministic: bool, default = False Disable dropout ops if set to True. Returns ------- outputs : jax.numpy.ndarray Output tensors. ln_outputs: jax.numpy.ndarray The output tensors of layer normalization. If :attr:`return_layernorm_output=False`, then this would be None. """ ln_output = None fuse_layernorm = FP8Helper.is_fp8_enabled( ) and not self.return_layernorm_output and self.enable_layernorm use_fused_ln_mlp = fuse_layernorm \ and (not self.use_bias) and self.activations == ('gelu', 'linear') \ and (self.intermediate_dropout_rate < 1e-3) first_sharding_type, second_sharding_type = infer_sharding_type(self.major_sharding_type) # LayerNorm if self.enable_layernorm: features = inputs.shape[-1] scale, ln_bias = _create_layernorm_parameters(self.layernorm_type, (features,), self.scale_init, self.scale_axes, self.ln_bias_init, self.ln_bias_axes, self.dtype) if not fuse_layernorm: y = layernorm(inputs, scale, ln_bias, layernorm_type=self.layernorm_type, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.epsilon, sharding_type=first_sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: assert not self.return_layernorm_output y = inputs else: y = inputs if self.return_layernorm_output: ln_output = y def kernel_1_init(key, num_kernels, stack_axis, *init_args): kernels = [] for _ in range(num_kernels): key, init_key = jax_random.split(key) kernels.append(self.kernel_init(init_key, *init_args)) return jnp.stack(kernels, axis=stack_axis, dtype=jnp.float32) num_of_gemm = 2 if use_fused_ln_mlp: num_activations = len(self.activations) axis = _canonicalize_tuple(self.axis) axis = _normalize_axes(axis, inputs.ndim) intermediate_dim = _canonicalize_tuple((num_activations, self.intermediate_dim)) kernel_1_shape = tuple(inputs.shape[ax] for ax in axis) + intermediate_dim kernel_1_each_shape = (np.prod([y.shape[ax] for ax in axis]), self.intermediate_dim) kernel_1 = nn_partitioning.param_with_axes('wi_kernel', kernel_1_init, num_activations, -2, kernel_1_each_shape, jnp.float32, axes=self.kernel_axes_1) kernel_1 = jnp.reshape(kernel_1, kernel_1_shape) hidden_size = inputs.shape[-1] hidden_size_tuple = _canonicalize_tuple(hidden_size) kernel_2_shape = (self.intermediate_dim,) + hidden_size_tuple kernel_2_param_shape = (self.intermediate_dim, np.prod(hidden_size_tuple)) kernel_2 = nn_partitioning.param_with_axes('wo_kernel', self.kernel_init, kernel_2_param_shape, jnp.float32, axes=self.kernel_axes_2) kernel_2 = jnp.reshape(kernel_2, kernel_2_shape) contract_ind = tuple(range(0, len(axis))) fp8_gemm_package = \ TransformerEngineBase.get_fp8_gemm_package(num_of_gemm, y, [kernel_1, kernel_2]) out = fp8_ln_mlp(fp8_gemm_package, scale, ln_bias, self.layernorm_type, FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE, zero_centered_gamma=self.zero_centered_gamma, epsilon=self.epsilon, contracting_dims=(axis, contract_ind), major_sharding_type=self.major_sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0, activations=self.activations) else: # not use_fused_ln_mlp def fp8_meta_generator(): fp8_max, fp8_metas_amax, fp8_metas_scale, fp8_metas_scale_inv = (None, None, None, None) if FP8Helper.is_fp8_enabled(): fp8_max, fp8_metas_amax, fp8_metas_scale, fp8_metas_scale_inv = \ TransformerEngineBase.get_fp8_metas(num_of_gemm) return fp8_max, fp8_metas_amax, fp8_metas_scale, fp8_metas_scale_inv fp8_max, fp8_metas_amax, fp8_metas_scale, fp8_metas_scale_inv = \ fp8_meta_generator() # DenseGeneral 1 activations = [] num_activations = len(self.activations) axis = _canonicalize_tuple(self.axis) axis = _normalize_axes(axis, y.ndim) intermediate_dim = _canonicalize_tuple((num_activations, self.intermediate_dim)) kernel_shape = tuple(y.shape[ax] for ax in axis) + intermediate_dim kernel_1_each_shape = (np.prod([y.shape[ax] for ax in axis]), self.intermediate_dim) kernel = nn_partitioning.param_with_axes('wi_kernel', kernel_1_init, num_activations, -2, kernel_1_each_shape, jnp.float32, axes=self.kernel_axes_1) kernel = jnp.reshape(kernel, kernel_shape) contract_ind = tuple(range(0, len(axis))) if FP8Helper.is_fp8_enabled(): fp8_gemm_package = FP8GemmPackage( 1, y, [kernel], fp8_max[:FP8Helper.NUM_META_PER_GEMM, :], fp8_metas_amax[:FP8Helper.NUM_META_PER_GEMM, :], fp8_metas_scale[:FP8Helper.NUM_META_PER_GEMM, :], fp8_metas_scale_inv[:FP8Helper.NUM_META_PER_GEMM, :]) if not fuse_layernorm: x = fp8_dot(fp8_gemm_package, FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE, (axis, contract_ind), sharding_type=first_sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: x = layernorm_fp8_dot(fp8_gemm_package, scale, ln_bias, self.layernorm_type, FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE, (axis, contract_ind), zero_centered_gamma=self.zero_centered_gamma, epsilon=self.epsilon, sharding_type=first_sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: # not enable fp8 kernel = jnp.asarray(kernel, self.dtype) x = lax.dot_general(y, kernel, ((axis, contract_ind), ((), ()))) bias = None if self.use_bias: bias = nn_partitioning.param_with_axes('wi_bias', self.bias_init, intermediate_dim, self.dtype, axes=self.bias_axes_1) bias_shape = (1,) * (x.ndim - bias.ndim) + bias.shape x += jnp.reshape(bias, bias_shape) if self.activations == ('gelu', 'linear'): z = geglu(x, contracting_dims=(-2, -1), sharding_type=second_sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: x = jnp.split(x, num_activations, axis=-2) for idx, act_fn in enumerate(self.activations): x_i = _convert_to_activation_function(act_fn)(x[idx]) activations.append(x_i) z = functools.reduce(operator.mul, activations) z = jnp.reshape(z, (*z.shape[:-2], -1)) z = nn.Dropout(rate=self.intermediate_dropout_rate, broadcast_dims=self.intermediate_hidden_dropout_dims)( z, deterministic=deterministic) # DenseGeneral 2 hidden_size = inputs.shape[-1] hidden_size_tuple = _canonicalize_tuple(hidden_size) axis = _canonicalize_tuple(self.axis) axis = _normalize_axes(axis, z.ndim) kernel_shape = tuple(z.shape[ax] for ax in axis) + hidden_size_tuple kernel_param_shape = (np.prod([z.shape[ax] for ax in axis]), np.prod(hidden_size_tuple)) kernel = nn_partitioning.param_with_axes('wo_kernel', self.kernel_init, kernel_param_shape, jnp.float32, axes=self.kernel_axes_2) kernel = jnp.reshape(kernel, kernel_shape) contract_ind = tuple(range(0, len(axis))) if FP8Helper.is_fp8_enabled(): fp8_gemm_package = FP8GemmPackage( 1, z, [kernel], fp8_max[FP8Helper.NUM_META_PER_GEMM:, :], fp8_metas_amax[FP8Helper.NUM_META_PER_GEMM:, :], fp8_metas_scale[FP8Helper.NUM_META_PER_GEMM:, :], fp8_metas_scale_inv[FP8Helper.NUM_META_PER_GEMM:, :]) out = fp8_dot(fp8_gemm_package, FP8Helper.FWD_DTYPE, FP8Helper.BWD_DTYPE, (axis, contract_ind), sharding_type=second_sharding_type, dp_dim_index=1 if self.transpose_batch_sequence else 0) else: kernel = jnp.asarray(kernel, self.dtype) out = lax.dot_general(z, kernel, ((axis, contract_ind), ((), ()))) bias = None if self.use_bias: bias = nn_partitioning.param_with_axes('wo_bias', self.bias_init, (hidden_size,), self.dtype, axes=self.bias_axes_2) out += jnp.reshape(bias, (1,) * (out.ndim - 1) + (-1,)) return out, ln_output # Output, layner_norm_output
TransformerEngine-main
transformer_engine/jax/flax/module.py
#!/usr/bin/env python2 # Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import os.path import setuptools LOCAL_DIR = os.path.dirname(os.path.abspath(__file__)) # Get current __version__ version_locals = {} execfile(os.path.join(LOCAL_DIR, 'digits', 'version.py'), {}, version_locals) # Get requirements requirements = [] with open(os.path.join(LOCAL_DIR, 'requirements.txt'), 'r') as infile: for line in infile: line = line.strip() if line and not line[0] == '#': # ignore comments requirements.append(line) # Get test requirements test_requirements = [] with open(os.path.join(LOCAL_DIR, 'requirements_test.txt'), 'r') as infile: for line in infile: line = line.strip() if line and not line[0] == '#': # ignore comments test_requirements.append(line) setuptools.setup( name='digits', version=version_locals['__version__'], description="NVIDIA's Deep Learning GPU Training System", url='https://developer.nvidia.com/digits', author='DIGITS Development Team', author_email='[email protected]', license='BSD', classifiers=[ 'Framework :: Flask', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 2 :: Only', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], keywords='nvidia digits', packages=setuptools.find_packages(), include_package_data=True, zip_safe=False, install_requires=requirements, extras_require={'test': test_requirements}, scripts=['digits-devserver'], )
DIGITS-master
setup.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. import os from setuptools import setup, find_packages from digits.extensions.view import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_gan_view_plugin", version="0.0.1", author="Greg Heinrich", description=("A view plugin for GANs"), long_description=read('README'), license="Apache", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsViewPluginGan:Visualization', ] }, include_package_data=True, install_requires=['imageio>=2.1.2'], )
DIGITS-master
plugins/view/gan/setup.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .view import Visualization __all__ = ['Visualization']
DIGITS-master
plugins/view/gan/digitsViewPluginGan/__init__.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits import utils from digits.utils import subclass from flask_wtf import Form import wtforms.validators @subclass class ConfigForm(Form): """ A form used to configure gradient visualization """ def validate_file_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) and not os.path.isdir(field.data): raise wtforms.validators.ValidationError('File does not exist or is not reachable') else: return True gan_view_task_id = utils.forms.SelectField( 'Task', choices=[ ('grid', 'Grid'), ('mnist_encoder', 'MNIST Encoder'), ('celeba_encoder', 'CelebA Encoder'), ('animation', 'Animation'), ('attributes', 'CelebA get attributes'), ], default='grid', tooltip="Select a task." ) attributes_file = utils.forms.StringField( u'Attributes vector file', validators=[ validate_file_path, ], tooltip="Specify the path to a file that contains attributes vectors." ) pass
DIGITS-master
plugins/view/gan/digitsViewPluginGan/forms.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os # Find the best implementation available try: from cStringIO import StringIO except ImportError: from StringIO import StringIO import pickle import imageio import numpy as np import PIL.Image import PIL.ImageDraw import digits from digits.utils import subclass, override from digits.extensions.view.interface import VisualizationInterface from .forms import ConfigForm CONFIG_TEMPLATE = "templates/config_template.html" HEADER_TEMPLATE = "templates/header_template.html" VIEW_TEMPLATE = "templates/view_template.html" CELEBA_ATTRIBUTES = """ 5_o_Clock_Shadow Arched_Eyebrows Attractive Bags_Under_Eyes Bald Bangs Big_Lips Big_Nose Black_Hair Blond_Hair Blurry Brown_Hair Bushy_Eyebrows Chubby Double_Chin Eyeglasses Goatee Gray_Hair Heavy_Makeup High_Cheekbones Male Mouth_Slightly_Open Mustache Narrow_Eyes No_Beard Oval_Face Pale_Skin Pointy_Nose Receding_Hairline Rosy_Cheeks Sideburns Smiling Straight_Hair Wavy_Hair Wearing_Earrings Wearing_Hat Wearing_Lipstick Wearing_Necklace Wearing_Necktie Young """.split() @subclass class Visualization(VisualizationInterface): """ A visualization extension to display the output of a GAN """ def __init__(self, dataset, **kwargs): """ Init """ # memorize view template for later use extension_dir = os.path.dirname(os.path.abspath(__file__)) self.view_template = open( os.path.join(extension_dir, VIEW_TEMPLATE), "r").read() self.normalize = True self.grid_size = 10 # view options self.task_id = kwargs['gan_view_task_id'] self.attributes_file = kwargs['attributes_file'] @staticmethod def get_config_form(): return ConfigForm() @staticmethod def get_config_template(form): """ parameters: - form: form returned by get_config_form(). This may be populated with values if the job was cloned returns: - (template, context) tuple - template is a Jinja template to use for rendering config options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open( os.path.join(extension_dir, CONFIG_TEMPLATE), "r").read() context = {'form': form} return (template, context) @override def get_header_template(self): """ Implements get_header_template() method from view extension interface """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open( os.path.join(extension_dir, HEADER_TEMPLATE), "r").read() context = {'task_id': self.task_id, 'cols': range(self.grid_size), 'rows': range(self.grid_size), 'animated_image': None} if hasattr(self, 'animated_images'): # create animated gif string_buf = StringIO() fmt = "gif" imageio.mimsave(string_buf, self.animated_images, format=fmt) data = string_buf.getvalue().encode('base64').replace('\n', '') animated_image_html = 'data:image/%s;base64,%s' % (fmt, data) context['animated_image'] = animated_image_html return template, context @staticmethod def get_id(): return "image-gan" @staticmethod def get_title(): return "GAN" def get_image_html(self, image): # assume 8-bit if self.normalize: image -= image.min() if image.max() > 0: image /= image.max() image *= 255 else: # clip image = image.clip(0, 255) # convert to uint8 image = image.astype('uint8') # convert to PIL image channels = image.shape[2] if channels == 1: # drop channel axis image = PIL.Image.fromarray(image[:, :, 0]) elif channels == 3: image = PIL.Image.fromarray(image) else: raise ValueError("Unhandled number of channels: %d" % channels) # image.save(fname) image_html = digits.utils.image.embed_image_html(image) return image_html @override def get_view_template(self, data): """ parameters: - data: data returned by process_data() returns: - (template, context) tuple - template is a Jinja template to use for rendering config options - context is a dictionary of context variables to use for rendering the form """ context = {'task_id': self.task_id} context.update(data) if self.task_id in ['celeba_encoder', 'mnist_encoder']: context.update({'task_id': 'encoder'}) return self.view_template, context @override def process_data(self, input_id, input_data, output_data): """ Process one inference and return data to visualize """ data = output_data[output_data.keys()[0]].astype('float32') if self.task_id == 'grid': col_id = int(input_id) // self.grid_size row_id = int(input_id) % self.grid_size image_html = self.get_image_html(data) img_size = data.shape[0] if img_size == 28: # MNIST if not hasattr(self, 'animated_images'): self.animated_images = [None] * (self.grid_size ** 2) self.animated_images[row_id * self.grid_size + col_id] = data.astype('uint8') elif img_size == 64: # CelebA if not hasattr(self, 'animated_images'): self.animated_images = [None] * (4 * self.grid_size - 4) print("animated: %s" % repr(self.animated_images)) if (col_id == 0 or row_id == 0 or col_id == (self.grid_size - 1) or row_id == (self.grid_size - 1)): if row_id == 0: idx = col_id elif col_id == (self.grid_size - 1): idx = self.grid_size - 1 + row_id elif row_id == (self.grid_size - 1): idx = 3 * self.grid_size - 3 - col_id else: idx = 4 * self.grid_size - 4 - row_id self.animated_images[idx] = data.astype('uint8') print("set idx %d " % idx) else: raise ValueError("Unhandled image size: %d" % img_size) return {'image': image_html, 'col_id': col_id, 'row_id': row_id, 'key': input_id} elif self.task_id == 'mnist_encoder': self.z_dim = 100 z = data[:self.z_dim] image = data[self.z_dim:].reshape(28, 28) input_data = input_data.astype('float32') input_data = input_data[:, :, np.newaxis] image = image[:, :, np.newaxis] image_input_html = self.get_image_html(input_data) image_output_html = self.get_image_html(image) return {'z': z, 'image_input': image_input_html, 'image_output': image_output_html, 'key': input_id} elif self.task_id == 'celeba_encoder': self.z_dim = 100 z = data[:self.z_dim] image = data[self.z_dim:].reshape(64, 64, 3) input_data = input_data.astype('float32') image_input_html = self.get_image_html(input_data) image_output_html = self.get_image_html(image) return {'z': z, 'image_input': image_input_html, 'image_output': image_output_html, 'key': input_id} elif self.task_id == 'animation': image_html = self.get_image_html(data) if not hasattr(self, 'animated_images'): self.animated_images = [] self.animated_images.append(data.astype('uint8')) return {'image': image_html, 'key': input_id} elif self.task_id == 'attributes': self.z_dim = 100 z = data[:self.z_dim] input_data = input_data.astype('float32') image_input_html = self.get_image_html(input_data) image = data[self.z_dim:].reshape(64, 64, 3) image_output_html = self.get_image_html(image) with open(self.attributes_file, 'rb') as f: attributes_z = pickle.load(f) # inner_products = np.inner(z, attributes_z) inner_products = np.empty((40)) for i in range(40): if True: attr = attributes_z[i] inner_products[i] = np.inner(z, attr) / np.linalg.norm(attr) else: inner_products[i] = 0 top_5_indices = np.argsort(inner_products)[::-1][:5] top_5 = [(CELEBA_ATTRIBUTES[idx], "%.2f" % inner_products[idx]) for idx in top_5_indices] return {'image_input': image_input_html, 'image_output': image_output_html, 'top5': top_5} else: raise ValueError("Unknown task: %s" % self.task_id)
DIGITS-master
plugins/view/gan/digitsViewPluginGan/view.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import os from setuptools import setup, find_packages from digits.extensions.view import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_image_gradients_view_plugin", version="0.0.1", author="Greg Heinrich", description=("A view plugin for image gradients"), long_description=read('README'), license="Apache", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsViewPluginImageGradients:Visualization', ] }, include_package_data=True, )
DIGITS-master
plugins/view/imageGradients/setup.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .view import Visualization __all__ = ['Visualization']
DIGITS-master
plugins/view/imageGradients/digitsViewPluginImageGradients/__init__.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from digits import utils from digits.utils import subclass from flask_wtf import Form import wtforms from wtforms import validators @subclass class ConfigForm(Form): """ A form used to configure gradient visualization """ arrow_color = wtforms.SelectField( 'Arrow color', choices=[ ('red', 'Red'), ('green', 'Green'), ('blue', 'Blue'), ], default='red', ) arrow_size = utils.forms.IntegerField( 'Arrow size (%)', validators=[ validators.DataRequired(), validators.NumberRange(min=1), ], default=80, tooltip="Expressed as percentage of input image" )
DIGITS-master
plugins/view/imageGradients/digitsViewPluginImageGradients/forms.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import numpy as np import os import PIL.Image import PIL.ImageDraw import digits from digits.utils import subclass, override from digits.extensions.view.interface import VisualizationInterface from .forms import ConfigForm CONFIG_TEMPLATE = "templates/config_template.html" VIEW_TEMPLATE = "templates/view_template.html" @subclass class Visualization(VisualizationInterface): """ A visualization extension to display image gradient magnitude and direction """ def __init__(self, dataset, **kwargs): """ Init """ # arrow config arrow_color = kwargs['arrow_color'] if arrow_color == "red": self.color = (255, 0, 0) elif arrow_color == "green": self.color = (0, 255, 0) elif arrow_color == "blue": self.color = (0, 0, 255) else: raise ValueError("unknown color: %s" % arrow_color) self.arrow_size = float(kwargs['arrow_size']) # image dimensions (HWC) image_shape = dataset.get_feature_dims() self.height = image_shape[0] self.width = image_shape[1] # memorize view template for later use extension_dir = os.path.dirname(os.path.abspath(__file__)) self.view_template = open( os.path.join(extension_dir, VIEW_TEMPLATE), "r").read() @staticmethod def get_config_form(): return ConfigForm() @staticmethod def get_config_template(form): """ parameters: - form: form returned by get_config_form(). This may be populated with values if the job was cloned returns: - (template, context) tuple - template is a Jinja template to use for rendering config options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open( os.path.join(extension_dir, CONFIG_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod def get_id(): return "image-gradients" @staticmethod def get_title(): return "Gradients" @override def get_view_template(self, data): """ parameters: - data: data returned by process_data() returns: - (template, context) tuple - template is a Jinja template to use for rendering config options - context is a dictionary of context variables to use for rendering the form """ return self.view_template, {'gradients': data['gradients'], 'image': data['image']} @override def process_data(self, input_id, input_data, output_data): """ Process one inference and return data to visualize """ # assume only one output and grayscale input output_vector = output_data[output_data.keys()[0]] grad = np.array([ output_vector[0] * self.width, output_vector[1] * self.height]) grad_rotated_90 = np.array([-grad[1], grad[0]]) center = np.array([self.width / 2, self.height / 2]) arrow = grad * (self.arrow_size / 100.) arrow_tip = center + arrow / 2 arrow_tail = center - arrow / 2 # arrow tail (anticlockwise) at_acw = arrow_tail + 0.1 * grad_rotated_90 # arrow tail (clockwise) at_cw = arrow_tail - 0.1 * grad_rotated_90 # draw an oriented caret image = PIL.Image.fromarray(input_data).convert('RGB') draw = PIL.ImageDraw.Draw(image) draw.line( (at_acw[0], at_acw[1], arrow_tip[0], arrow_tip[1]), fill=self.color) draw.line( (at_cw[0], at_cw[1], arrow_tip[0], arrow_tip[1]), fill=self.color) draw.line( (at_acw[0], at_acw[1], at_cw[0], at_cw[1]), fill=self.color) image_html = digits.utils.image.embed_image_html(image) return {'image': image_html, 'gradients': [output_vector[0], output_vector[1]]}
DIGITS-master
plugins/view/imageGradients/digitsViewPluginImageGradients/view.py
import os from setuptools import setup, find_packages # Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from digits.extensions.view import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_text_classification_view_plugin", version="0.0.1", author="Greg Heinrich", description=("A view plugin for text classification"), long_description=read('README'), license="BSD", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsViewPluginTextClassification:Visualization', ]}, include_package_data=True, )
DIGITS-master
plugins/view/textClassification/setup.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .view import Visualization __all__ = ['Visualization']
DIGITS-master
plugins/view/textClassification/digitsViewPluginTextClassification/__init__.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from digits import utils from digits.utils import subclass from flask_wtf import Form from wtforms import validators @subclass class ConfigForm(Form): """ A form used to configure text classification visualization """ max_classes = utils.forms.IntegerField( u'Number of Top classes to show', default=5, validators=[ validators.DataRequired(), validators.NumberRange(min=1), ], tooltip='Specify how many classes to show in classification' )
DIGITS-master
plugins/view/textClassification/digitsViewPluginTextClassification/forms.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os import numpy as np from digits.utils import subclass, override from digits.extensions.view.interface import VisualizationInterface from .forms import ConfigForm CONFIG_TEMPLATE = "templates/config_template.html" VIEW_TEMPLATE = "templates/view_template.html" @subclass class Visualization(VisualizationInterface): """ A visualization extension to display the output of a text classification network """ def __init__(self, dataset, **kwargs): """ Init """ # memorize view template for later use extension_dir = os.path.dirname(os.path.abspath(__file__)) self.view_template = open( os.path.join(extension_dir, VIEW_TEMPLATE), "r").read() # memorize class labels if 'class_labels' in dataset.extension_userdata: self.class_labels = dataset.extension_userdata['class_labels'] else: self.class_labels = None # memorize alphabet if 'alphabet' in dataset.extension_userdata: self.alphabet = dataset.extension_userdata['alphabet'] self.alphabet_len = len(self.alphabet) else: raise RuntimeError("No alphabet found in dataset") # view options self.max_classes = kwargs['max_classes'] @staticmethod def get_config_form(): return ConfigForm() @staticmethod def get_config_template(form): """ parameters: - form: form returned by get_config_form(). This may be populated with values if the job was cloned returns: - (template, context) tuple - template is a Jinja template to use for rendering config options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open( os.path.join(extension_dir, CONFIG_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod def get_id(): return "text-classification" @staticmethod def get_title(): return "Text Classification" @override def get_view_template(self, data): """ parameters: - data: data returned by process_data() returns: - (template, context) tuple - template is a Jinja template to use for rendering config options - context is a dictionary of context variables to use for rendering the form """ return self.view_template, {'input': data['input'], 'predictions': data['predictions']} @override def process_data(self, input_id, input_data, output_data): """ Process one inference and return data to visualize """ # convert input data to a string of characters input_characters = [] for idx in input_data[0]: c = self.alphabet[idx - 1] if idx < self.alphabet_len else '.' input_characters.append(c) input_string = ''.join(input_characters) # assume the only output is from a probability distribution scores = output_data[output_data.keys()[0]].astype('float32') if np.max(scores) < 0: # terminal layer is a logsoftmax scores = np.exp(scores) indices = (-scores).argsort() predictions = [(self.class_labels[i] if self.class_labels else '#%d' % i, round(100.0 * scores[i], 2)) for i in indices[:self.max_classes]] return {'input': input_string, 'predictions': predictions}
DIGITS-master
plugins/view/textClassification/digitsViewPluginTextClassification/view.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. import os from setuptools import setup, find_packages from digits.extensions.data import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_gan_data_plugin", version="0.0.1", author="Greg Heinrich", description=("A data ingestion plugin for GANs"), long_description=read('README'), license="Apache", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsDataPluginGan:DataIngestion', ]}, include_package_data=True, )
DIGITS-master
plugins/data/gan/setup.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .data import DataIngestion __all__ = ['DataIngestion']
DIGITS-master
plugins/data/gan/digitsDataPluginGan/__init__.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from flask_wtf import Form from wtforms import HiddenField, TextAreaField, validators from digits import utils from digits.utils import subclass @subclass class DatasetForm(Form): """ A form used to create a Sunnybrook dataset """ def validate_file_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) and not os.path.isdir(field.data): raise validators.ValidationError( 'File does not exist or is not reachable') else: return True def validate_folder_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) or not os.path.isdir(field.data): raise validators.ValidationError( 'Folder does not exist or is not reachable') else: return True file_list = utils.forms.StringField( u'File list (with attributes) in CelebA format', validators=[ validate_file_path, ], tooltip="Provide file list in CelebA format" ) image_folder = utils.forms.StringField( u'Image folder', validators=[ validators.DataRequired(), validate_folder_path, ], tooltip="Specify the path to a folder of images." ) center_crop_size = utils.forms.IntegerField( u'Center crop size', default=108, validators=[ validators.NumberRange(min=0) ], tooltip="Specify center crop." ) resize = utils.forms.IntegerField( u'Resize after crop', default=64, tooltip="Resize after crop." ) @subclass class InferenceForm(Form): """ A form used to perform inference on a text classification dataset """ def __init__(self, attributes, editable_attribute_ids, **kwargs): super(InferenceForm, self).__init__(**kwargs) self.attributes = attributes self.editable_attribute_ids = editable_attribute_ids def validate_file_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) and not os.path.isdir(field.data): raise validators.ValidationError( 'File does not exist or is not reachable') else: return True def validate_folder_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) or not os.path.isdir(field.data): raise validators.ValidationError( 'Folder does not exist or is not reachable') else: return True row_count = utils.forms.IntegerField( u'Rows', default=10, validators=[ validators.NumberRange(min=1) ], tooltip="Rows to generate in output grid." ) dataset_type = utils.forms.SelectField( 'Dataset', choices=[ ('mnist', 'MNIST'), ('celeba', 'CelebA'), ], default='celeba', tooltip="Select a dataset." ) task_id = utils.forms.SelectField( 'Task ID', choices=[ ('class', 'MNIST - Class sweep'), ('style', 'MNIST - Style sweep'), ('genimg', 'Generate single image'), ('attributes', 'CelebA - add/remove attributes'), ('enclist', 'CelebA - Encode list of images'), ('analogy', 'CelebA - Analogy'), ('animation', 'CelebA - Animation'), ], default='class', tooltip="Select a task to execute." ) class_z_vector = utils.forms.StringField( u'Z vector (leave blank for random)', ) style_z1_vector = utils.forms.StringField( u'Z1 vector (leave blank for random)', ) style_z2_vector = utils.forms.StringField( u'Z2 vector (leave blank for random)', ) genimg_z_vector = utils.forms.StringField( u'Z vector (leave blank for random)', ) genimg_class_id = utils.forms.IntegerField( u'Class ID', default=0, validators=[ validators.NumberRange(min=0, max=9) ], tooltip="Class of image to generate (leave blank for CelebA)." ) attributes_z_vector = utils.forms.StringField( u'Z vector (leave blank for random)', ) attributes_file = utils.forms.StringField( u'Attributes vector file', validators=[ validate_file_path, ], tooltip="Specify the path to a file that contains attributes vectors." ) attributes_params = HiddenField() enc_file_list = utils.forms.StringField( u'File list', validators=[ validate_file_path, ], tooltip="Specify the path to a file that contains a list of files." ) enc_image_folder = utils.forms.StringField( u'Image folder', validators=[ validate_folder_path, ], tooltip="Specify the path to a folder of images." ) enc_num_images = utils.forms.IntegerField( u'Number of images to encode', default=100, validators=[ validators.NumberRange(min=0) ], tooltip="Max number of images to encode." ) attributes_z1_vector = utils.forms.StringField( u'Source Z vector (leave blank for random)', ) attributes_z2_vector = utils.forms.StringField( u'First Sink Z vector (leave blank for random)', ) attributes_z3_vector = utils.forms.StringField( u'Second Sink Z vector (leave blank for random)', ) animation_num_transitions = utils.forms.IntegerField( u'Number of transitions per image', default=10, validators=[ validators.NumberRange(min=1, max=100) ], tooltip="Number of transitions between each of the specified images" ) animation_z_vectors = TextAreaField( u'z vectors (one per line)', )
DIGITS-master
plugins/data/gan/digitsDataPluginGan/forms.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os import pickle import numpy as np from digits.utils import constants, override, image, subclass from digits.extensions.data.interface import DataIngestionInterface from .forms import DatasetForm, InferenceForm DATASET_TEMPLATE = "templates/dataset_template.html" INFERENCE_TEMPLATE = "templates/inference_template.html" CELEBA_ALL_ATTRIBUTES = """ 5_o_Clock_Shadow Arched_Eyebrows Attractive Bags_Under_Eyes Bald Bangs Big_Lips Big_Nose Black_Hair Blond_Hair Blurry Brown_Hair Bushy_Eyebrows Chubby Double_Chin Eyeglasses Goatee Gray_Hair Heavy_Makeup High_Cheekbones Male Mouth_Slightly_Open Mustache Narrow_Eyes No_Beard Oval_Face Pale_Skin Pointy_Nose Receding_Hairline Rosy_Cheeks Sideburns Smiling Straight_Hair Wavy_Hair Wearing_Earrings Wearing_Hat Wearing_Lipstick Wearing_Necklace Wearing_Necktie Young """.split() CELEBA_EDITABLE_ATTRIBUTES = [ 'Bald', 'Black_Hair', 'Blond_Hair', 'Male', 'Smiling', 'Wearing_Lipstick', 'Young' ] CELEBA_EDITABLE_ATTRIBUTES_IDS = [CELEBA_ALL_ATTRIBUTES.index(attr) for attr in CELEBA_EDITABLE_ATTRIBUTES] def one_hot(val, depth): x = np.zeros(depth) x[val] = 1 return x def slerp(val, low, high): """Spherical interpolation. val has a range of 0 to 1.""" if val <= 0: return low elif val >= 1: return high omega = np.arccos(np.dot(low/np.linalg.norm(low), high/np.linalg.norm(high))) so = np.sin(omega) return np.sin((1.0-val)*omega) / so * low + np.sin(val*omega)/so * high def parse_lines_of_floats(s): return [[float(val) for val in line.split()] for line in s.splitlines()] @subclass class DataIngestion(DataIngestionInterface): """ A data ingestion extension for GANs """ # CONFIG = "mnist" CONFIG = "celeba" # CONFIG = "celeba_cond" def __init__(self, is_inference_db=False, **kwargs): super(DataIngestion, self).__init__(**kwargs) if 'dataset_type' in self.userdata: self.CONFIG = self.userdata['dataset_type'] self.z_dim = 100 if self.CONFIG == "mnist": self.y_dim = 10 elif self.CONFIG == "celeba": self.y_dim = 0 elif self.CONFIG == "celeba_cond": self.y_dim = 40 self.userdata['is_inference_db'] = is_inference_db self.input_dim = self.z_dim + self.y_dim @override def encode_entry(self, entry): if not self.userdata['is_inference_db']: filename = entry[0] label = entry[1] feature = self.scale_image(filename) label = np.array(label).reshape(1, 1, len(label)) else: if self.userdata['task_id'] in ['style', 'class', 'genimg', 'attributes', 'analogy', 'animation']: feature = entry label = np.array([0]) elif self.userdata['task_id'] == 'enclist': filename = entry[0] label = entry[1] feature = self.scale_image(filename) label = np.array(label).reshape(1, 1, len(label)) else: raise NotImplementedError return feature, label def encode_PIL_Image(self, image): # convert to numpy array image = np.array(image) # add channel axis if input is grayscale image if image.ndim == 2: image = image[..., np.newaxis] elif image.ndim != 3: raise ValueError("Unhandled number of channels: %d" % image.ndim) # transpose to CHW image = image.transpose(2, 0, 1) return image @staticmethod @override def get_category(): return "Images" @staticmethod @override def get_id(): return "image-gan" @staticmethod @override def get_dataset_form(): return DatasetForm() @staticmethod @override def get_dataset_template(form): """ parameters: - form: form returned by get_dataset_form(). This may be populated with values if the job was cloned return: - (template, context) tuple - template is a Jinja template to use for rendering dataset creation options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, DATASET_TEMPLATE), "r").read() context = {'form': form} return (template, context) @override def get_inference_form(self): return InferenceForm(CELEBA_ALL_ATTRIBUTES, CELEBA_EDITABLE_ATTRIBUTES_IDS) @staticmethod @override def get_inference_template(form): extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, INFERENCE_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod @override def get_title(): return "GAN" @override def itemize_entries(self, stage): entries = [] if not self.userdata['is_inference_db']: if stage == constants.TRAIN_DB: # read file list with open(self.userdata['file_list']) as f: lines = f.read().splitlines() # skip first 2 lines (header) for line in lines[2:]: fields = line.split() filename = fields[0] # add full path filename = os.path.join(self.userdata['image_folder'], filename) label = [int(field) for field in fields[1:]] entries.append((filename, label)) elif stage == constants.TEST_DB: if self.userdata['task_id'] == 'style': if self.userdata['style_z1_vector']: z1 = np.array([float(v) for v in self.userdata['style_z1_vector'].split()]) else: z1 = np.random.normal(size=(100,)) if self.userdata['style_z2_vector']: z2 = np.array([float(v) for v in self.userdata['style_z2_vector'].split()]) else: z2 = np.random.normal(size=(100,)) for val in np.linspace(0, 1, self.userdata['row_count']): for c in range(10): z_ = slerp(val, z1, z2) feature = np.append(z_, one_hot(c, self.y_dim)).reshape((1, 1, self.input_dim)) entries.append(feature) elif self.userdata['task_id'] == 'class': if self.userdata['class_z_vector']: z = np.array([float(v) for v in self.userdata['class_z_vector'].split()]) else: z = np.random.normal(size=(100,)) for val in np.linspace(0, 1, self.userdata['row_count']): for i in range(10): c_0 = i c_1 = (i + 1) % 10 feature_0 = np.append(z, one_hot(c_0, self.y_dim)) feature_1 = np.append(z, one_hot(c_1, self.y_dim)) feature = slerp(val, feature_0, feature_1).reshape((1, 1, self.input_dim)) entries.append(feature) elif self.userdata['task_id'] == 'genimg': c = int(self.userdata['genimg_class_id']) if self.userdata['genimg_z_vector']: z = np.array([float(v) for v in self.userdata['genimg_z_vector'].split()]) else: z = np.random.normal(size=(100,)) if self.y_dim > 0: z = np.append(z, one_hot(c, self.y_dim)) feature = z.reshape((1, 1, self.input_dim)) entries.append(feature) elif self.userdata['task_id'] == 'attributes': if self.userdata['attributes_z_vector']: z = np.array([float(v) for v in self.userdata['attributes_z_vector'].split()]) else: z = np.random.normal(size=(100,)) with open(self.userdata['attributes_file'], 'rb') as f: attributes_z = pickle.load(f) params = parse_lines_of_floats(self.userdata['attributes_params']) for img_params in params: z_img = np.copy(z) for i, coeff in enumerate(img_params): z_img += coeff * attributes_z[CELEBA_EDITABLE_ATTRIBUTES_IDS[i]] entries.append(z_img.reshape((1, 1, self.input_dim))) elif self.userdata['task_id'] == 'enclist': with open(self.userdata['enc_file_list']) as f: lines = f.read().splitlines() # skip first 2 lines (header) max_images = self.userdata['enc_num_images'] for line in lines[2:max_images + 2]: fields = line.split() filename = fields[0] # add full path filename = os.path.join(self.userdata['enc_image_folder'], filename) label = [int(field) for field in fields[1:]] entries.append((filename, label)) elif self.userdata['task_id'] == 'analogy': if self.userdata['attributes_z1_vector']: z1 = np.array([float(v) for v in self.userdata['attributes_z1_vector'].split()]) else: z1 = np.random.normal(size=(100,)) if self.userdata['attributes_z2_vector']: z2 = np.array([float(v) for v in self.userdata['attributes_z2_vector'].split()]) else: z2 = np.random.normal(size=(100,)) if self.userdata['attributes_z3_vector']: z3 = np.array([float(v) for v in self.userdata['attributes_z3_vector'].split()]) else: z3 = np.random.normal(size=(100,)) # create analogy vector z4 = z2 + z3 - z1 grid_size = self.userdata['row_count'] # now interpolate across columns for row in xrange(grid_size): row_k = row / float(grid_size - 1) z_left = slerp(row_k, z1, z3) z_right = slerp(row_k, z2, z4) entries.append(z_left.reshape((1, 1, self.input_dim))) for col in xrange(1, grid_size - 1): col_k = col / float(grid_size - 1) z = slerp(col_k, z_left, z_right) entries.append(z.reshape((1, 1, self.input_dim))) entries.append(z_right.reshape((1, 1, self.input_dim))) elif self.userdata['task_id'] == 'animation': zs = parse_lines_of_floats(self.userdata['animation_z_vectors']) zs = [np.array(z) for z in zs] num_transitions = self.userdata['animation_num_transitions'] for i, z in enumerate(zs): z_next = zs[(i + 1) % len(zs)] for k in xrange(num_transitions): z_ = slerp(float(k) / num_transitions, z, z_next) entries.append(z_.reshape((1, 1, self.input_dim))) else: raise ValueError("Unknown task: %s" % self.userdata['task_id']) return entries def scale_image(self, filename): im = np.array(image.load_image(filename)) # center crop if self.userdata['center_crop_size']: crop_size = int(self.userdata['center_crop_size']) width, height = im.shape[0:2] i = (width // 2) - crop_size // 2 j = (height // 2) - crop_size // 2 im = im[i:i + crop_size, j:j + crop_size, :] # resize if self.userdata['resize']: resize = int(self.userdata['resize']) im = image.resize_image(im, resize, resize, resize_mode='squash') # transpose to CHW feature = im.transpose(2, 0, 1) return feature
DIGITS-master
plugins/data/gan/digitsDataPluginGan/data.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import os from setuptools import setup, find_packages from digits.extensions.data import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_sunnybrook_data_plugin", version="0.0.1", author="Greg Heinrich", description=("A data ingestion plugin for the Sunnybrook cardiac dataset"), long_description=read('README'), license="Apache", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsDataPluginSunnybrook:DataIngestion', ] }, include_package_data=True, install_requires=['pydicom'], )
DIGITS-master
plugins/data/sunnybrook/setup.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .data import DataIngestion __all__ = ['DataIngestion']
DIGITS-master
plugins/data/sunnybrook/digitsDataPluginSunnybrook/__init__.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits import utils from digits.utils import subclass from flask_wtf import Form from wtforms import validators @subclass class DatasetForm(Form): """ A form used to create a Sunnybrook dataset """ def validate_folder_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) or not os.path.isdir(field.data): raise validators.ValidationError( 'Folder does not exist or is not reachable') else: return True image_folder = utils.forms.StringField( u'Image folder', validators=[ validators.DataRequired(), validate_folder_path, ], tooltip="Specify the path to the image folder" ) contour_folder = utils.forms.StringField( u'Contour folder', validators=[ validators.DataRequired(), validate_folder_path, ], tooltip="Specify the path to the contour folder" ) channel_conversion = utils.forms.SelectField( 'Channel conversion', choices=[ ('RGB', 'RGB'), ('L', 'Grayscale'), ], default='L', tooltip="Perform selected channel conversion." ) folder_pct_val = utils.forms.IntegerField( u'% for validation', default=10, validators=[ validators.NumberRange(min=0, max=100) ], tooltip="You can choose to set apart a certain percentage of images " "from the training images for the validation set." ) @subclass class InferenceForm(Form): def validate_file_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) and not os.path.isdir(field.data): raise validators.ValidationError( 'File does not exist or is not reachable') else: return True """ A form used to perform inference on a text classification dataset """ test_image_file = utils.forms.StringField( u'Image file', validators=[ validate_file_path, ], tooltip="Provide the (server) path to an image." ) validation_record = utils.forms.SelectField( 'Record from validation set', choices=[ ('none', '- select record -'), ], default='none', tooltip="Test a record from the validation set." )
DIGITS-master
plugins/data/sunnybrook/digitsDataPluginSunnybrook/forms.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import cv2 import fnmatch import math import os import random import re import pydicom import numpy as np from digits.utils import subclass, override, constants from digits.utils.constants import COLOR_PALETTE_ATTRIBUTE from digits.extensions.data.interface import DataIngestionInterface from .forms import DatasetForm, InferenceForm DATASET_TEMPLATE = "templates/dataset_template.html" INFERENCE_TEMPLATE = "templates/inference_template.html" # This is the subset of SAX series to use for Left Ventricle segmentation # in the challenge training dataset SAX_SERIES = { "SC-HF-I-1": "0004", "SC-HF-I-2": "0106", "SC-HF-I-4": "0116", "SC-HF-I-40": "0134", "SC-HF-NI-3": "0379", "SC-HF-NI-4": "0501", "SC-HF-NI-34": "0446", "SC-HF-NI-36": "0474", "SC-HYP-1": "0550", "SC-HYP-3": "0650", "SC-HYP-38": "0734", "SC-HYP-40": "0755", "SC-N-2": "0898", "SC-N-3": "0915", "SC-N-40": "0944", } # # Utility functions # def shrink_case(case): toks = case.split("-") def shrink_if_number(x): try: cvt = int(x) return str(cvt) except ValueError: return x return "-".join([shrink_if_number(t) for t in toks]) class Contour(object): def __init__(self, ctr_path): self.ctr_path = ctr_path match = re.search(r"/([^/]*)/contours-manual/IRCCI-expert/IM-0001-(\d{4})-icontour-manual.txt", ctr_path) self.case = shrink_case(match.group(1)) self.img_no = int(match.group(2)) def __str__(self): return "<Contour for case %s, image %d>" % (self.case, self.img_no) __repr__ = __str__ def get_all_contours(contour_path): # walk the directory structure for all the contour files contours = [ os.path.join(dirpath, f) for dirpath, dirnames, files in os.walk(contour_path) for f in fnmatch.filter(files, 'IM-0001-*-icontour-manual.txt') ] extracted = map(Contour, contours) return extracted def load_contour(contour, img_path): filename = "IM-%s-%04d.dcm" % (SAX_SERIES[contour.case], contour.img_no) full_path = os.path.join(img_path, contour.case, filename) img = load_image(full_path) ctrs = np.loadtxt(contour.ctr_path, delimiter=" ").astype(np.int) label = np.zeros_like(img, dtype="uint8") cv2.fillPoly(label, [ctrs], 1) return img, label def load_image(full_path): f = pydicom.dcmread(full_path) return f.pixel_array.astype(np.int) @subclass class DataIngestion(DataIngestionInterface): """ A data ingestion extension for the Sunnybrook dataset """ def __init__(self, is_inference_db=False, **kwargs): super(DataIngestion, self).__init__(**kwargs) self.userdata['is_inference_db'] = is_inference_db self.userdata['class_labels'] = ['background', 'left ventricle'] # get list of contours if 'contours' not in self.userdata: contours = get_all_contours(self.contour_folder) random.shuffle(contours) self.userdata['contours'] = contours else: contours = self.userdata['contours'] # get number of validation entries pct_val = int(self.folder_pct_val) self.userdata['n_val_entries'] = int(math.floor(len(contours) * pct_val / 100)) # label palette (0->black (background), 1->white (foreground), others->black) palette = [0, 0, 0, 255, 255, 255] + [0] * (254 * 3) self.userdata[COLOR_PALETTE_ATTRIBUTE] = palette @override def encode_entry(self, entry): if isinstance(entry, basestring): img = load_image(entry) label = np.array([0]) else: img, label = load_contour(entry, self.image_folder) label = label[np.newaxis, ...] if self.userdata['channel_conversion'] == 'L': feature = img[np.newaxis, ...] elif self.userdata['channel_conversion'] == 'RGB': feature = np.empty(shape=(3, img.shape[0], img.shape[1]), dtype=img.dtype) # just copy the same data over the three color channels feature[0] = img feature[1] = img feature[2] = img return feature, label @staticmethod @override def get_category(): return "Images" @staticmethod @override def get_id(): return "image-sunnybrook" @staticmethod @override def get_dataset_form(): return DatasetForm() @staticmethod @override def get_dataset_template(form): """ parameters: - form: form returned by get_dataset_form(). This may be populated with values if the job was cloned return: - (template, context) tuple - template is a Jinja template to use for rendering dataset creation options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, DATASET_TEMPLATE), "r").read() context = {'form': form} return (template, context) @override def get_inference_form(self): n_val_entries = self.userdata['n_val_entries'] form = InferenceForm() for idx, ctr in enumerate(self.userdata['contours'][:n_val_entries]): form.validation_record.choices.append((str(idx), ctr.case)) return form @staticmethod @override def get_inference_template(form): extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, INFERENCE_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod @override def get_title(): return "Sunnybrook LV Segmentation" @override def itemize_entries(self, stage): ctrs = self.userdata['contours'] n_val_entries = self.userdata['n_val_entries'] entries = [] if not self.userdata['is_inference_db']: if stage == constants.TRAIN_DB: entries = ctrs[n_val_entries:] elif stage == constants.VAL_DB: entries = ctrs[:n_val_entries] elif stage == constants.TEST_DB: if self.userdata['validation_record'] != 'none': if self.userdata['test_image_file']: raise ValueError("Specify either an image or a record " "from the validation set.") # test record from validation set entries = [ctrs[int(self.validation_record)]] else: # test image file entries = [self.userdata['test_image_file']] return entries
DIGITS-master
plugins/data/sunnybrook/digitsDataPluginSunnybrook/data.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import os from setuptools import setup, find_packages from digits.extensions.data import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_image_gradients_data_plugin", version="0.0.1", author="Greg Heinrich", description=("A data ingestion plugin for image gradients"), long_description=read('README'), license="Apache", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsDataPluginImageGradients:DataIngestion', ] }, include_package_data=True, )
DIGITS-master
plugins/data/imageGradients/setup.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .data import DataIngestion __all__ = ['DataIngestion']
DIGITS-master
plugins/data/imageGradients/digitsDataPluginImageGradients/__init__.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from digits import utils from digits.utils import subclass from digits.utils.forms import validate_required_iff from flask_wtf import Form import wtforms from wtforms import validators @subclass class DatasetForm(Form): """ A form used to create an image gradient dataset """ train_image_count = utils.forms.IntegerField( 'Train Image count', validators=[ validators.DataRequired(), validators.NumberRange(min=1), ], default=1000, tooltip="Number of images to create in training set" ) val_image_count = utils.forms.IntegerField( 'Validation Image count', validators=[ validators.Optional(), validators.NumberRange(min=0), ], default=250, tooltip="Number of images to create in validation set" ) test_image_count = utils.forms.IntegerField( 'Test Image count', validators=[ validators.Optional(), validators.NumberRange(min=0), ], default=0, tooltip="Number of images to create in validation set" ) image_width = wtforms.IntegerField( u'Image Width', default=50, validators=[validators.DataRequired()] ) image_height = wtforms.IntegerField( u'Image Height', default=50, validators=[validators.DataRequired()] ) @subclass class InferenceForm(Form): """ A form used to perform inference on a gradient regression model """ gradient_x = utils.forms.FloatField( 'Gradient (x)', validators=[ validate_required_iff(test_image_count=None), validators.NumberRange(min=-0.5, max=0.5), ], tooltip="Specify a number between -0.5 and 0.5" ) gradient_y = utils.forms.FloatField( 'Gradient (y)', validators=[ validate_required_iff(test_image_count=None), validators.NumberRange(min=-0.5, max=0.5), ], tooltip="Specify a number between -0.5 and 0.5" ) test_image_count = utils.forms.IntegerField( 'Test Image count', validators=[ validators.Optional(), validators.NumberRange(min=0), ], tooltip="Number of images to create in test set" )
DIGITS-master
plugins/data/imageGradients/digitsDataPluginImageGradients/forms.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from digits.utils import subclass, override, constants from digits.extensions.data.interface import DataIngestionInterface from .forms import DatasetForm, InferenceForm import numpy as np import os TEMPLATE = "templates/template.html" INFERENCE_TEMPLATE = "templates/inference_template.html" @subclass class DataIngestion(DataIngestionInterface): """ A data ingestion extension for an image gradient dataset """ def __init__(self, is_inference_db=False, **kwargs): super(DataIngestion, self).__init__(**kwargs) self.userdata['is_inference_db'] = is_inference_db # Used to calculate the gradients later self.yy, self.xx = np.mgrid[:self.image_height, :self.image_width].astype('float') @override def encode_entry(self, entry): xslope, yslope = entry label = np.array([xslope, yslope]) a = xslope * 255 / self.image_width b = yslope * 255 / self.image_height image = a * (self.xx - self.image_width / 2) + b * (self.yy - self.image_height / 2) + 127.5 image = image.astype('uint8') # convert to 3D tensors image = image[np.newaxis, ...] label = label[np.newaxis, np.newaxis, ...] return image, label @staticmethod @override def get_category(): return "Images" @staticmethod @override def get_id(): return "image-gradients" @staticmethod @override def get_dataset_form(): return DatasetForm() @staticmethod @override def get_dataset_template(form): """ parameters: - form: form returned by get_dataset_form(). This may be populated with values if the job was cloned return: - (template, context) tuple - template is a Jinja template to use for rendering dataset creation options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, TEMPLATE), "r").read() context = {'form': form} return (template, context) @override def get_inference_form(self): return InferenceForm() @staticmethod @override def get_inference_template(form): extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, INFERENCE_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod @override def get_title(): return "Gradients" @override def itemize_entries(self, stage): count = 0 if self.userdata['is_inference_db']: if stage == constants.TEST_DB: if self.test_image_count: count = self.test_image_count else: return [(self.gradient_x, self.gradient_y)] else: if stage == constants.TRAIN_DB: count = self.train_image_count elif stage == constants.VAL_DB: count = self.val_image_count elif stage == constants.TEST_DB: count = self.test_image_count return [np.random.random_sample(2) - 0.5 for i in xrange(count)] if count > 0 else []
DIGITS-master
plugins/data/imageGradients/digitsDataPluginImageGradients/data.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. import os from setuptools import setup, find_packages from digits.extensions.data import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_bAbI_data_plugin", version="0.0.1", author="Greg Heinrich", description=("A data ingestion plugin for the bAbI dataset"), long_description=read('README'), license="Apache", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsDataPluginBAbI:DataIngestion', ]}, include_package_data=True, )
DIGITS-master
plugins/data/bAbI/setup.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .data import DataIngestion __all__ = ['DataIngestion']
DIGITS-master
plugins/data/bAbI/digitsDataPluginBAbI/__init__.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits import utils from digits.utils import subclass from flask_wtf import Form from wtforms import validators @subclass class DatasetForm(Form): """ A form used to create a Sunnybrook dataset """ def validate_folder_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) or not os.path.isdir(field.data): raise validators.ValidationError( 'Folder does not exist or is not reachable') else: return True story_folder = utils.forms.StringField( u'Story folder', validators=[ validators.DataRequired(), validate_folder_path, ], tooltip="Specify the path to a folder of stories - filenames are " "expected to have this format: qa[1-N]*[train|test].txt" ) task_id = utils.forms.SelectField( 'Task ID', choices=[ ('all', 'All'), ('1', '1'), ('2', '2'), ('3', '3'), ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9', '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), ('20', '20'), ], default='1', tooltip="Select a task to train on or 'all' to train a joint model " "on all tasks." ) pct_val = utils.forms.IntegerField( u'% for validation', default=10, validators=[ validators.NumberRange(min=0, max=100) ], tooltip="You can choose to set apart a certain percentage of images " "from the training images for the validation set." ) @subclass class InferenceForm(Form): def validate_file_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) and not os.path.isdir(field.data): raise validators.ValidationError( 'File does not exist or is not reachable') else: return True """ A form used to perform inference on a text classification dataset """ snippet = utils.forms.TextAreaField( u'Story/Question', tooltip="Write all sentences there and end with a question" )
DIGITS-master
plugins/data/bAbI/digitsDataPluginBAbI/forms.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import copy import os import string import numpy as np def encode_field(field, word_map, sentence_size, story_size): """ return a 2-D array with shape (story_size, sentence_size) """ x = np.zeros((story_size, sentence_size)) for i, sentence in enumerate(field): if i >= story_size: raise ValueError("Field '%s' is longer than max (%d)" % (field, story_size)) for j, word in enumerate(sentence): if j >= sentence_size: raise ValueError("Sentence '%s' is longer than max (%d)" % (field, sentence_size)) try: idx = word_map[word] except: # assign to last index idx = len(word_map) + 1 x[i, j] = idx return x def encode_sample(sample, word_map, sentence_size, story_size): """ return an encoded (feature, label) tuple """ story = encode_field(sample['story'], word_map, sentence_size, story_size) question = encode_field(sample['question'], word_map, sentence_size, story_size) answer = encode_field(sample['answer'], word_map, sentence_size, story_size) feature = np.zeros((2, story_size, sentence_size)) feature[0] = story feature[1] = question label = answer[np.newaxis, :] return feature, label def find_files(path, task_id, train): """ Find files in specified path with filenames that match {task}*{phase}.txt where: task="qa{task_id}_" or "" if task_id==None phase="train" if train==True or "test" otherwise """ task = "qa{}_".format(task_id) if task_id else "" phase = "train" if train else "test" files = [] for dirpath, dirnames, filenames in os.walk(path, followlinks=True): for filename in filenames: if task in filename and phase in filename: files.append(os.path.join(dirpath, filename)) return files def get_stats(dataset): """ return dataset statistics """ fields = [field for sample in dataset for field in sample.values()] sentences = [sentence for field in fields for sentence in field] words = sorted(set([word for sentence in sentences for word in sentence])) return {'word_map': dict((word, i) for i, word in enumerate(words, start=1)), 'sentence_size': max([len(sentence) for sentence in sentences]), 'story_size': max([len(story) for story in fields])} def parse_folder_phase(path, task_id, train): """ Returns a list of samples for a phase by aggregating all samples from matching files """ phase_data = [] files = find_files(path, task_id, train) for file in files: phase_data.extend(parse_file(file)) return phase_data def parse_file(filename): with open(filename) as f: return parse_lines(f.readlines()) def parse_lines(lines): """ Returns a list of samples from a collection of lines where each sample is a dictionary with 'story', 'question', 'answer' keys. Every key value is a list of words without punctuation. """ data = [] print "lines are %s" % lines story = None for line in lines: # convert to lower case line = line.lower() # find line ID (new stories start with line ID = 1) line_id, line = line.split(' ', 1) try: if int(line_id) == 1: # new story story = [] except: if not story: story = [] # this isn't a like id, re-integrate into line line = "%s %s" % (line_id, line) # is this a question? if '?' in line: items = remove_punctuation(line).split('\t') question = items[0] if len(items) > 1: answer = items[1] else: answer = '' # add to data data.append({ 'story': copy.copy(story), 'question': [question.split()], 'answer': [answer.split()], }) else: story.append(remove_punctuation(line).split()) return data def remove_punctuation(s): return s.translate(string.maketrans("", ""), string.punctuation)
DIGITS-master
plugins/data/bAbI/digitsDataPluginBAbI/utils.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits.utils import subclass, override, constants from digits.extensions.data.interface import DataIngestionInterface from .forms import DatasetForm, InferenceForm from . import utils DATASET_TEMPLATE = "templates/dataset_template.html" INFERENCE_TEMPLATE = "templates/inference_template.html" @subclass class DataIngestion(DataIngestionInterface): """ A data ingestion extension for the bAbI dataset """ def __init__(self, is_inference_db=False, **kwargs): super(DataIngestion, self).__init__(**kwargs) self.userdata['is_inference_db'] = is_inference_db if 'train_text_data' not in self.userdata: # get task ID try: task_id = int(self.task_id) except: task_id = None self.userdata['task_id'] = task_id # get data - this doesn't scale well to huge datasets but this makes it # straightforard to create a mapping of words to indices and figure out max # dimensions of stories and sentences self.userdata['train_text_data'] = utils.parse_folder_phase( self.story_folder, task_id, train=True) self.userdata['stats'] = utils.get_stats(self.userdata['train_text_data']) @override def encode_entry(self, entry): stats = self.userdata['stats'] return utils.encode_sample(entry, stats['word_map'], stats['sentence_size'], stats['story_size']) @staticmethod @override def get_category(): return "Text" @staticmethod @override def get_id(): return "text-babi" @staticmethod @override def get_dataset_form(): return DatasetForm() @staticmethod @override def get_dataset_template(form): """ parameters: - form: form returned by get_dataset_form(). This may be populated with values if the job was cloned return: - (template, context) tuple - template is a Jinja template to use for rendering dataset creation options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, DATASET_TEMPLATE), "r").read() context = {'form': form} return (template, context) @override def get_inference_form(self): return InferenceForm() @staticmethod @override def get_inference_template(form): extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, INFERENCE_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod @override def get_title(): return "bAbI" @override def itemize_entries(self, stage): entries = [] if not self.userdata['is_inference_db']: data = self.userdata['train_text_data'] n_val_entries = int(len(data)*self.pct_val/100) if stage == constants.TRAIN_DB: entries = data[n_val_entries:] elif stage == constants.VAL_DB: entries = data[:n_val_entries] elif stage == constants.TEST_DB: if not bool(self.snippet): raise ValueError("You must write a story and a question") entries = utils.parse_lines(str(self.snippet).splitlines()) return entries
DIGITS-master
plugins/data/bAbI/digitsDataPluginBAbI/data.py
import os from setuptools import setup, find_packages # Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from digits.extensions.data import GROUP as DIGITS_PLUGIN_GROUP # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="digits_text_classification_data_plugin", version="0.0.1", author="Greg Heinrich", description=("A data ingestion plugin for text classification"), long_description=read('README'), license="BSD", packages=find_packages(), entry_points={ DIGITS_PLUGIN_GROUP: [ 'class=digitsDataPluginTextClassification:DataIngestion', ]}, include_package_data=True, )
DIGITS-master
plugins/data/textClassification/setup.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .data import DataIngestion __all__ = ['DataIngestion']
DIGITS-master
plugins/data/textClassification/digitsDataPluginTextClassification/__init__.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits import utils from digits.utils import subclass from flask_wtf import Form from wtforms import validators def validate_file_path(form, field): if not field.data: pass else: # make sure the filesystem path exists if not os.path.exists(field.data) and not os.path.isdir(field.data): raise validators.ValidationError( 'File does not exist or is not reachable') else: return True @subclass class DatasetForm(Form): """ A form used to create a text classification dataset """ train_data_file = utils.forms.StringField( u'Training data (.csv)', validators=[ validators.DataRequired(), validate_file_path, ], tooltip="Data file in .csv format. There should be one sample " "per line. On each line, the first field should be the " "numerical class label. All subsequent fields will be " "concatenated to produce a single string of characters, " "up to the specified limit" ) val_data_file = utils.forms.StringField( u'Validation data (.csv)', validators=[ validate_file_path, ], tooltip="Data file in .csv format. There should be one sample " "per line. On each line, the first field should be the " "numerical class label. All subsequent fields will be " "concatenated to produce a single string of characters, " "up to the specified limit." ) alphabet = utils.forms.StringField( u'Dictionary', default="abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+ =<>()[]{}", tooltip="Alphabet to use when converting characters to IDs " "(1-based indexing). Unknown characters will be all be " "assigned the same next available ID. " ) class_labels_file = utils.forms.StringField( u'Class labels', validators=[ validate_file_path, ], tooltip="The 'i'th line of the file should give the string label " "associated with the '(i-1)'th numeric label. (E.g. the " "string label for the numeric label 0 is supposed to be " "on line 1.)" ) max_chars_per_sample = utils.forms.IntegerField( u'Number of characters per sample', default=1024, validators=[ validators.Optional(), validators.NumberRange(min=1), ], tooltip="Specify how many characters to retain per sample. " "Shorter samples will be padded. Longer samples will " "be truncated. Leave blank and disable 'Enforce same " "shape' below to use sample size in data file " ) @subclass class InferenceForm(Form): """ A form used to perform inference on a text classification dataset """ snippet = utils.forms.TextAreaField( u'Snippet', tooltip="Test a single snippet" ) test_data_file = utils.forms.StringField( u'Test data (.csv)', validators=[ validate_file_path, ], tooltip="Data file in .csv format. There should be one sample " "per line. On each line, the first field should be the " "numerical class label. All subsequent fields will be " "concatenated to produce a single string of characters, " "up to the specified limit" )
DIGITS-master
plugins/data/textClassification/digitsDataPluginTextClassification/forms.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import csv import os import random import numpy as np from digits.utils import subclass, override, constants from digits.extensions.data.interface import DataIngestionInterface from .forms import DatasetForm, InferenceForm DATASET_TEMPLATE = "templates/dataset_template.html" INFERENCE_TEMPLATE = "templates/inference_template.html" @subclass class DataIngestion(DataIngestionInterface): """ A data ingestion extension for text classification """ def __init__(self, is_inference_db=False, **kwargs): super(DataIngestion, self).__init__(**kwargs) self.userdata['is_inference_db'] = is_inference_db # create character dict self.userdata['cdict'] = {} for i, c in enumerate(self.alphabet): self.userdata['cdict'][c] = i + 1 # indices start at 1 # assign unknown characters to the same next available ID self.userdata['unknown_char_id'] = len(self.alphabet) + 1 if self.class_labels_file: with open(self.class_labels_file) as f: self.userdata['class_labels'] = f.read().splitlines() @override def encode_entry(self, entry): label = np.array([int(entry['class'])]) # convert characters to numbers sample = [] count = 0 max_chars = self.max_chars_per_sample for field in entry['fields']: for char in field.lower(): if max_chars and count < self.max_chars_per_sample: if char in self.userdata['cdict']: num = self.userdata['cdict'][char] else: num = self.userdata['unknown_char_id'] sample.append(num) count += 1 else: break # convert to numpy array sample = np.array(sample, dtype='uint8') # pad if necessary if max_chars and count < max_chars: sample = np.append(sample, np.full( (max_chars - count), fill_value=self.userdata['unknown_char_id'], dtype='uint8')) # make it a 3-D array sample = sample[np.newaxis, np.newaxis, :] return sample, label @staticmethod @override def get_category(): return "Text" @staticmethod @override def get_id(): return "text-classification" @staticmethod @override def get_dataset_form(): return DatasetForm() @staticmethod @override def get_dataset_template(form): """ parameters: - form: form returned by get_dataset_form(). This may be populated with values if the job was cloned return: - (template, context) tuple - template is a Jinja template to use for rendering dataset creation options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, DATASET_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod @override def get_inference_form(): return InferenceForm() @staticmethod @override def get_inference_template(form): extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, INFERENCE_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod @override def get_title(): return "Classification" @override def itemize_entries(self, stage): if not self.userdata['is_inference_db']: if stage == constants.TRAIN_DB: entries = self.read_csv(self.train_data_file) elif stage == constants.VAL_DB: if self.val_data_file: entries = self.read_csv(self.val_data_file) else: entries = [] else: entries = [] else: if stage == constants.TEST_DB: if not (bool(self.test_data_file) ^ bool(self.snippet)): raise ValueError("You must provide either a data file or a snippet") if self.test_data_file: entries = self.read_csv(self.test_data_file, False) elif self.snippet: entries = [{'class': '0', 'fields': [self.snippet]}] else: entries = [] return entries def read_csv(self, filename, shuffle=True): entries = [] with open(filename) as f: reader = csv.DictReader(f, fieldnames=['class'], restkey='fields') for row in reader: entries.append(row) random.shuffle(entries) return entries
DIGITS-master
plugins/data/textClassification/digitsDataPluginTextClassification/data.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os.path import re from digits import test_utils test_utils.skipIfNotFramework('none') class TestVersion(): DEV_REGEX = re.compile('^(0|[1-9]\d*)\.(0|[1-9]\d*)-dev$') # Copyright (c) Sindre Sorhus <[email protected]> (sindresorhus.com) # The MIT License (MIT) # https://github.com/sindresorhus/semver-regex/blob/v1.0.0/index.js STANDARD_SEMVER_REGEX = re.compile( '^(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)' '(-[\da-z\-]+(\.[\da-z\-]+)*)?(\+[\da-z\-]+(\.[\da-z\-]+)*)?$') def check_version(self, version): standard_match = re.match(self.STANDARD_SEMVER_REGEX, version) dev_match = re.match(self.DEV_REGEX, version) assert (standard_match is not None or dev_match is not None), \ 'Version string "%s" is ill-formatted' % version def test_package_version(self): import digits self.check_version(digits.__version__) def test_import_version(self): import digits.version self.check_version(digits.version.__version__) # Test a programmatic and reliable way to check the version # python -c "execfile('digits/version.py'); print __version__" def test_execfile_version(self): import digits filename = os.path.join(os.path.dirname(digits.__file__), 'version.py') file_locals = {} execfile(filename, {}, file_locals) assert file_locals.keys() == ['__version__'], \ 'version.py should only declare a single variable' self.check_version(file_locals['__version__']) # Make sure somebody doesn't overwrite the version in __init__.py def test_package_version_matches_import_version(self): import digits import digits.version assert digits.__version__ == digits.version.__version__
DIGITS-master
digits/test_version.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import logging import os.path import platform import re import signal import subprocess import time import flask import gevent.event from . import utils from .config import config_value from .status import Status, StatusCls import digits.log # NOTE: Increment this every time the pickled version changes PICKLE_VERSION = 1 class Task(StatusCls): """ Base class for Tasks A Task is a compute-heavy operation that runs in a separate executable Communication is done by processing the stdout of the executable """ def __init__(self, job_dir, parents=None): super(Task, self).__init__() self.pickver_task = PICKLE_VERSION self.job_dir = job_dir self.job_id = os.path.basename(job_dir) if parents is None: self.parents = None elif isinstance(parents, (list, tuple)): self.parents = parents elif isinstance(parents, Task): self.parents = [parents] else: raise TypeError('parents is %s' % type(parents)) self.exception = None self.traceback = None self.aborted = gevent.event.Event() self.set_logger() self.p = None # Subprocess object for training def __getstate__(self): d = self.__dict__.copy() if 'aborted' in d: del d['aborted'] if 'logger' in d: del d['logger'] if 'p' in d: # Subprocess object for training is not pickleable del d['p'] return d def __setstate__(self, state): self.__dict__ = state self.aborted = gevent.event.Event() self.set_logger() def set_logger(self): self.logger = digits.log.JobIdLoggerAdapter( logging.getLogger('digits.webapp'), {'job_id': self.job_id}, ) def name(self): """ Returns a string """ raise NotImplementedError def html_id(self): """ Returns a string """ return 'task-%s' % id(self) def on_status_update(self): """ Called when StatusCls.status.setter is used """ from digits.webapp import app, socketio # Send socketio updates message = { 'task': self.html_id(), 'update': 'status', 'status': self.status.name, 'css': self.status.css, 'show': (self.status in [Status.RUN, Status.ERROR]), 'running': self.status.is_running(), } with app.app_context(): message['html'] = flask.render_template('status_updates.html', updates=self.status_history, exception=self.exception, traceback=self.traceback, ) socketio.emit('task update', message, namespace='/jobs', room=self.job_id, ) from digits.webapp import scheduler job = scheduler.get_job(self.job_id) if job: job.on_status_update() def path(self, filename, relative=False): """ Returns a path to the given file Arguments: filename -- the requested file Keyword arguments: relative -- If False, return an absolute path to the file If True, return a path relative to the jobs directory """ if not filename: return None if os.path.isabs(filename): path = filename else: path = os.path.join(self.job_dir, filename) if relative: path = os.path.relpath(path, config_value('jobs_dir')) return str(path).replace("\\", "/") def ready_to_queue(self): """ Returns True if all parents are done """ if not self.parents: return True for parent in self.parents: if parent.status != Status.DONE: return False return True def offer_resources(self, resources): """ Check the available resources and return a set of requested resources Arguments: resources -- a copy of scheduler.resources """ raise NotImplementedError def task_arguments(self, resources, env): """ Returns args used by subprocess.Popen to execute the task Returns False if the args cannot be set properly Arguments: resources -- the resources assigned by the scheduler for this task environ -- os.environ instance to run process in """ raise NotImplementedError def before_run(self): """ Called before run() executes Raises exceptions """ pass def run(self, resources): """ Execute the task Arguments: resources -- the resources assigned by the scheduler for this task """ self.before_run() env = os.environ.copy() args = self.task_arguments(resources, env) if not args: self.logger.error('Could not create the arguments for Popen') self.status = Status.ERROR return False # Convert them all to strings args = [str(x) for x in args] self.logger.info('%s task started.' % self.name()) self.status = Status.RUN unrecognized_output = [] import sys env['PYTHONPATH'] = os.pathsep.join(['.', self.job_dir, env.get('PYTHONPATH', '')] + sys.path) # https://docs.python.org/2/library/subprocess.html#converting-argument-sequence if platform.system() == 'Windows': args = ' '.join(args) self.logger.info('Task subprocess args: "{}"'.format(args)) else: self.logger.info('Task subprocess args: "%s"' % ' '.join(args)) self.p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=self.job_dir, close_fds=False if platform.system() == 'Windows' else True, env=env, ) try: sigterm_time = None # When was the SIGTERM signal sent sigterm_timeout = 2 # When should the SIGKILL signal be sent while self.p.poll() is None: for line in utils.nonblocking_readlines(self.p.stdout): if self.aborted.is_set(): if sigterm_time is None: # Attempt graceful shutdown self.p.send_signal(signal.SIGTERM) sigterm_time = time.time() self.status = Status.ABORT break if line is not None: # Remove whitespace line = line.strip() if line: if not self.process_output(line): self.logger.warning('%s unrecognized output: %s' % (self.name(), line.strip())) unrecognized_output.append(line) else: time.sleep(0.05) if sigterm_time is not None and (time.time() - sigterm_time > sigterm_timeout): self.p.send_signal(signal.SIGKILL) self.logger.warning('Sent SIGKILL to task "%s"' % self.name()) time.sleep(0.1) time.sleep(0.01) except: self.p.terminate() self.after_run() raise self.after_run() if self.status != Status.RUN: return False elif self.p.returncode != 0: self.logger.error('%s task failed with error code %d' % (self.name(), self.p.returncode)) if self.exception is None: self.exception = 'error code %d' % self.p.returncode if unrecognized_output: if self.traceback is None: self.traceback = '\n'.join(unrecognized_output) else: self.traceback = self.traceback + ('\n'.join(unrecognized_output)) self.after_runtime_error() self.status = Status.ERROR return False else: self.logger.info('%s task completed.' % self.name()) self.status = Status.DONE return True def abort(self): """ Abort the Task """ if self.status.is_running(): self.aborted.set() def preprocess_output_digits(self, line): """ Takes line of output and parses it according to DIGITS's log format Returns (timestamp, level, message) or (None, None, None) """ # NOTE: This must change when the logging format changes # YYYY-MM-DD HH:MM:SS [LEVEL] message match = re.match(r'(\S{10} \S{8}) \[(\w+)\s*\] (.*)$', line) if match: timestr = match.group(1) timestamp = time.mktime(time.strptime(timestr, digits.log.DATE_FORMAT)) level = match.group(2) message = match.group(3) if level.startswith('DEB'): level = 'debug' elif level.startswith('INF'): level = 'info' elif level.startswith('WAR'): level = 'warning' elif level.startswith('ERR'): level = 'error' elif level.startswith('CRI'): level = 'critical' return (timestamp, level, message) else: return (None, None, None) def process_output(self, line): """ Process a line of output from the task Returns True if the output was able to be processed Arguments: line -- a line of output """ raise NotImplementedError def est_done(self): """ Returns the estimated time in seconds until the task is done """ if self.status != Status.RUN or self.progress == 0: return None elapsed = time.time() - self.status_history[-1][1] return (1 - self.progress) * elapsed // self.progress def after_run(self): """ Called after run() executes """ pass def after_runtime_error(self): """ Called after a runtime error during run() """ pass def emit_progress_update(self): """ Call socketio.emit for task progress update, and trigger job progress update. """ from digits.webapp import socketio socketio.emit('task update', { 'task': self.html_id(), 'update': 'progress', 'percentage': int(round(100 * self.progress)), 'eta': utils.time_filters.print_time_diff(self.est_done()), }, namespace='/jobs', room=self.job_id, ) from digits.webapp import scheduler job = scheduler.get_job(self.job_id) if job: job.emit_progress_update()
DIGITS-master
digits/task.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. """ Utility functions used in other test files """ from __future__ import absolute_import import os import unittest from digits.config import config_value def skipTest(message): raise unittest.SkipTest(message) def skipIfNotFramework(framework): """ Raises SkipTest if DIGITS_TEST_FRAMEWORK is set to something other than framework """ key = 'DIGITS_TEST_FRAMEWORK' if (key in os.environ and os.environ[key] != framework): raise unittest.SkipTest( 'Skipping because %s is "%s" and not "%s"' % (key, os.environ[key], framework)) class DatasetMixin(object): """ Mixin for dataset tests - skip if framework is not "none" """ @classmethod def setUpClass(cls): skipIfNotFramework('none') # Call super.setUpClass() unless we're the last in the class hierarchy supercls = super(DatasetMixin, cls) if hasattr(supercls, 'setUpClass'): supercls.setUpClass() class CaffeMixin(object): """ Mixin for caffe tests """ FRAMEWORK = 'caffe' @classmethod def setUpClass(cls): skipIfNotFramework('caffe') # Call super.setUpClass() unless we're the last in the class hierarchy supercls = super(CaffeMixin, cls) if hasattr(supercls, 'setUpClass'): supercls.setUpClass() class TorchMixin(object): """ Mixin for torch tests """ FRAMEWORK = 'torch' @classmethod def setUpClass(cls): skipIfNotFramework('torch') if cls.FRAMEWORK == 'torch' and not config_value('torch')['enabled']: raise unittest.SkipTest('Torch not found') # Call super.setUpClass() unless we're the last in the class hierarchy supercls = super(TorchMixin, cls) if hasattr(supercls, 'setUpClass'): supercls.setUpClass() class TensorflowMixin(object): """ Mixin for tensorflow tests """ FRAMEWORK = 'tensorflow' @classmethod def setUpClass(cls): skipIfNotFramework('tensorflow') if cls.FRAMEWORK == 'tensorflow' and not config_value('tensorflow')['enabled']: raise unittest.SkipTest('Tensorflow not found') # Call super.setUpClass() unless we're the last in the class hierarchy supercls = super(TensorflowMixin, cls) if hasattr(supercls, 'setUpClass'): supercls.setUpClass()
DIGITS-master
digits/test_utils.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. __version__ = '6.1.1'
DIGITS-master
digits/version.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import logging import logging.handlers import sys from digits.config import config_value DATE_FORMAT = '%Y-%m-%d %H:%M:%S' class JobIdLogger(logging.Logger): def makeRecord(self, name, level, fn, lno, msg, args, exc_info, func=None, extra=None): """ Customizing it to set a default value for extra['job_id'] """ rv = logging.LogRecord(name, level, fn, lno, msg, args, exc_info, func) if extra is not None: for key in extra: if (key in ["message", "asctime"]) or (key in rv.__dict__): raise KeyError("Attempt to overwrite %r in LogRecord" % key) rv.__dict__[key] = extra[key] if 'job_id' not in rv.__dict__: rv.__dict__['job_id'] = '' return rv class JobIdLoggerAdapter(logging.LoggerAdapter): """ Accepts an optional keyword argument: 'job_id' You can use this in 2 ways: 1. On class initialization adapter = JobIdLoggerAdapter(logger, {'job_id': job_id}) adapter.debug(msg) 2. On method invocation adapter = JobIdLoggerAdapter(logger, {}) adapter.debug(msg, job_id=id) """ def process(self, msg, kwargs): if 'job_id' in kwargs: if 'extra' not in kwargs: kwargs['extra'] = {} kwargs['extra']['job_id'] = ' [%s]' % kwargs['job_id'] del kwargs['job_id'] elif 'job_id' in self.extra: if 'extra' not in kwargs: kwargs['extra'] = {} kwargs['extra']['job_id'] = ' [%s]' % self.extra['job_id'] return msg, kwargs def setup_logging(): # Set custom logger logging.setLoggerClass(JobIdLogger) formatter = logging.Formatter( fmt="%(asctime)s%(job_id)s [%(levelname)-5s] %(message)s", datefmt=DATE_FORMAT, ) # digits logger main_logger = logging.getLogger('digits') main_logger.setLevel(logging.DEBUG) # Log to stdout stdoutHandler = logging.StreamHandler(sys.stdout) stdoutHandler.setFormatter(formatter) stdoutHandler.setLevel(logging.DEBUG) main_logger.addHandler(stdoutHandler) # digits.webapp logger logfile_filename = config_value('log_file')['filename'] logfile_level = config_value('log_file')['level'] if logfile_filename is not None: webapp_logger = logging.getLogger('digits.webapp') webapp_logger.setLevel(logging.DEBUG) # Log to file fileHandler = logging.handlers.RotatingFileHandler( logfile_filename, maxBytes=(1024 * 1024 * 10), # 10 MB backupCount=10, ) fileHandler.setFormatter(formatter) fileHandler.setLevel(logfile_level) webapp_logger.addHandler(fileHandler) # Useful shortcut for the webapp, which may set job_id return JobIdLoggerAdapter(webapp_logger, {}) else: print 'WARNING: log_file config option not found - no log file is being saved' return JobIdLoggerAdapter(main_logger, {}) # Do it when this module is loaded logger = setup_logging()
DIGITS-master
digits/log.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os import os.path import pickle import shutil import threading import time import flask from .status import Status, StatusCls from digits.config import config_value from digits.utils import sizeof_fmt, filesystem as fs # NOTE: Increment this every time the pickled object changes PICKLE_VERSION = 2 class Job(StatusCls): """ Base class """ SAVE_FILE = 'status.pickle' @classmethod def load(cls, job_id): """ Loads a Job in the given job_id Returns the Job or throws an exception """ from digits.model.tasks import TrainTask job_dir = os.path.join(config_value('jobs_dir'), job_id) filename = os.path.join(job_dir, cls.SAVE_FILE) with open(filename, 'rb') as savefile: job = pickle.load(savefile) # Reset this on load job._dir = job_dir for task in job.tasks: task.job_dir = job_dir if isinstance(task, TrainTask): # can't call this until the job_dir is set task.detect_snapshots() task.detect_timeline_traces() return job def __init__(self, name, username, group='', persistent=True): """ Arguments: name -- name of this job username -- creator of this job """ super(Job, self).__init__() # create a unique ID self._id = '%s-%s' % (time.strftime('%Y%m%d-%H%M%S'), os.urandom(2).encode('hex')) self._dir = os.path.join(config_value('jobs_dir'), self._id) self._name = name self.group = group self.username = username self.pickver_job = PICKLE_VERSION self.tasks = [] self.exception = None self._notes = None self.event = threading.Event() self.persistent = persistent os.mkdir(self._dir) def __getstate__(self): """ Used when saving a pickle file """ d = self.__dict__.copy() # Isn't linked to state if '_dir' in d: del d['_dir'] if 'event' in d: del d['event'] return d def __setstate__(self, state): """ Used when loading a pickle file """ if 'username' not in state: state['username'] = None if 'group' not in state: state['group'] = '' self.__dict__ = state self.persistent = True def json_dict(self, detailed=False): """ Returns a dict used for a JSON representation """ d = { 'id': self.id(), 'name': self.name(), 'status': self.status.name, } if detailed: d.update({ 'directory': self.dir(), }) return d def id(self): """getter for _id""" return self._id def dir(self): """getter for _dir""" return self._dir def path(self, filename, relative=False): """ Returns a path to the given file Arguments: filename -- the requested file Keyword arguments: relative -- If False, return an absolute path to the file If True, return a path relative to the jobs directory """ if not filename: return None if os.path.isabs(filename): path = filename else: path = os.path.join(self._dir, filename) if relative: path = os.path.relpath(path, config_value('jobs_dir')) return str(path).replace("\\", "/") def path_is_local(self, path): """assert that a path is local to _dir""" p = os.path.normpath(path) if os.path.isabs(p): return False if p.startswith('..'): return False return True def name(self): return self._name def notes(self): if hasattr(self, '_notes'): return self._notes else: return None def job_type(self): """ String representation for this class virtual function """ raise NotImplementedError('Implement me!') def status_of_tasks(self): """ Returns the status of the job's tasks """ job_status = self.status if job_status in [Status.ABORT, Status.ERROR]: return job_status task_statuses = [t.status for t in self.tasks] important_statuses = [ Status(s) for s in [ # Sorted by importance Status.ERROR, Status.ABORT, Status.RUN, Status.WAIT, Status.INIT, Status.DONE, ] ] for s in important_statuses: # Return if any task matches if s in task_statuses: return s return Status(Status.DONE) def runtime_of_tasks(self): """ Returns the time (in sec) between when the first task started and when the last task stopped NOTE: this may not be what you're expecting if there was some WAIT time in-between """ starts = [] stops = [] for task in self.tasks: for start_status, start_timestamp in task.status_history: if start_status == Status.RUN: starts.append(start_timestamp) # Only search for stops if the task was started at some point for stop_status, stop_timestamp in task.status_history: if stop_status in [Status.DONE, Status.ABORT, Status.ERROR]: stops.append(stop_timestamp) break if len(starts): min_start = min(starts) if len(stops): max_stop = max(stops) return max_stop - min_start else: return time.time() - min_start else: return 0 def on_status_update(self): """ Called when StatusCls.status.setter is used """ from digits.webapp import app, socketio message = { 'update': 'status', 'status': self.status_of_tasks().name, 'css': self.status_of_tasks().css, 'running': self.status.is_running(), 'job_id': self.id(), } with app.app_context(): message['html'] = flask.render_template('status_updates.html', updates=self.status_history) socketio.emit('job update', message, namespace='/jobs', room=self.id(), ) # send message to job_management room as well socketio.emit('job update', message, namespace='/jobs', room='job_management', ) if not self.status.is_running(): if hasattr(self, 'event'): # release threads that are waiting for job to complete self.event.set() def abort(self): """ Abort a job and stop all running tasks """ if self.status.is_running(): self.status = Status.ABORT for task in self.tasks: task.abort() def save(self): """ Saves the job to disk as a pickle file Suppresses errors, but returns False if something goes wrong """ try: # use tmpfile so we don't abort during pickle dump (leading to EOFErrors) tmpfile_path = self.path(self.SAVE_FILE + '.tmp') with open(tmpfile_path, 'wb') as tmpfile: pickle.dump(self, tmpfile) shutil.move(tmpfile_path, self.path(self.SAVE_FILE)) return True except KeyboardInterrupt: pass except Exception as e: print 'Caught %s while saving job %s: %s' % (type(e).__name__, self.id(), e) return False def disk_size_fmt(self): """ return string representing job disk size """ size = fs.get_tree_size(self._dir) return sizeof_fmt(size) def get_progress(self): """ Return job progress computed from task progress """ if len(self.tasks) == 0: return 0.0 progress = 0.0 for task in self.tasks: progress += task.progress progress /= len(self.tasks) return progress def emit_progress_update(self): """ Call socketio.emit for task job update, by considering task progress. """ progress = self.get_progress() from digits.webapp import socketio socketio.emit('job update', { 'job_id': self.id(), 'update': 'progress', 'percentage': int(round(100 * progress)), }, namespace='/jobs', room='job_management' ) def emit_attribute_changed(self, attribute, value): """ Call socketio.emit for task job update """ from digits.webapp import socketio socketio.emit('job update', { 'job_id': self.id(), 'update': 'attribute', 'attribute': attribute, 'value': value, }, namespace='/jobs', room='job_management' ) def wait_completion(self): """ Wait for the job to complete """ # if job was loaded from disk (which is the only case # when the 'event' attribute should be missing) then # assume it has completed already (done, errored or interrupted) if hasattr(self, 'event'): self.event.wait() def is_persistent(self): """ Returns whether job is persistent """ return self.persistent def is_read_only(self): """ Returns False if this job can be edited """ return not self.is_persistent()
DIGITS-master
digits/job.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os import flask from flask_socketio import SocketIO from gevent import monkey monkey.patch_all() from .config import config_value # noqa from digits import utils # noqa from digits.utils import filesystem as fs # noqa from digits.utils.store import StoreCache # noqa import digits.scheduler # noqa # Create Flask, Scheduler and SocketIO objects url_prefix = config_value('url_prefix') app = flask.Flask(__name__, static_url_path=url_prefix+'/static') app.config['DEBUG'] = True # Disable CSRF checking in WTForms app.config['WTF_CSRF_ENABLED'] = False # This is still necessary for SocketIO app.config['SECRET_KEY'] = os.urandom(12).encode('hex') app.url_map.redirect_defaults = False app.config['URL_PREFIX'] = url_prefix socketio = SocketIO(app, async_mode='gevent', path=url_prefix+'/socket.io') app.config['store_cache'] = StoreCache() app.config['store_url_list'] = config_value('model_store')['url_list'] scheduler = digits.scheduler.Scheduler(config_value('gpu_list'), True) # Register filters and views app.jinja_env.globals['server_name'] = config_value('server_name') app.jinja_env.globals['server_version'] = digits.__version__ app.jinja_env.globals['caffe_version'] = config_value('caffe')['version'] app.jinja_env.globals['caffe_flavor'] = config_value('caffe')['flavor'] app.jinja_env.globals['dir_hash'] = fs.dir_hash( os.path.join(os.path.dirname(digits.__file__), 'static')) app.jinja_env.filters['print_time'] = utils.time_filters.print_time app.jinja_env.filters['print_time_diff'] = utils.time_filters.print_time_diff app.jinja_env.filters['print_time_since'] = utils.time_filters.print_time_since app.jinja_env.filters['sizeof_fmt'] = utils.sizeof_fmt app.jinja_env.filters['has_permission'] = utils.auth.has_permission app.jinja_env.trim_blocks = True app.jinja_env.lstrip_blocks = True import digits.views # noqa app.register_blueprint(digits.views.blueprint, url_prefix=url_prefix) import digits.dataset.views # noqa app.register_blueprint(digits.dataset.views.blueprint, url_prefix=url_prefix+'/datasets') import digits.dataset.generic.views # noqa app.register_blueprint(digits.dataset.generic.views.blueprint, url_prefix=url_prefix+'/datasets/generic') import digits.dataset.images.views # noqa app.register_blueprint(digits.dataset.images.views.blueprint, url_prefix=url_prefix+'/datasets/images') import digits.dataset.images.classification.views # noqa app.register_blueprint(digits.dataset.images.classification.views.blueprint, url_prefix=url_prefix+'/datasets/images/classification') import digits.dataset.images.generic.views # noqa app.register_blueprint(digits.dataset.images.generic.views.blueprint, url_prefix=url_prefix+'/datasets/images/generic') import digits.model.views # noqa app.register_blueprint(digits.model.views.blueprint, url_prefix=url_prefix+'/models') import digits.model.images.views # noqa app.register_blueprint(digits.model.images.views.blueprint, url_prefix=url_prefix+'/models/images') import digits.model.images.classification.views # noqa app.register_blueprint(digits.model.images.classification.views.blueprint, url_prefix=url_prefix+'/models/images/classification') import digits.model.images.generic.views # noqa app.register_blueprint(digits.model.images.generic.views.blueprint, url_prefix=url_prefix+'/models/images/generic') import digits.pretrained_model.views # noqa app.register_blueprint(digits.pretrained_model.views.blueprint, url_prefix=url_prefix+'/pretrained_models') import digits.store.views # noqa app.register_blueprint(digits.store.views.blueprint, url_prefix=url_prefix+'/store') def username_decorator(f): from functools import wraps @wraps(f) def decorated(*args, **kwargs): this_username = flask.request.cookies.get('username', None) app.jinja_env.globals['username'] = this_username return f(*args, **kwargs) return decorated for endpoint, function in app.view_functions.iteritems(): app.view_functions[endpoint] = username_decorator(function) # Setup the environment scheduler.load_past_jobs()
DIGITS-master
digits/webapp.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .version import __version__ __all__ = ['__version__']
DIGITS-master
digits/__init__.py
#!/usr/bin/env python2 # Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import argparse import ctypes import platform class c_cudaDeviceProp(ctypes.Structure): """ Passed to cudart.cudaGetDeviceProperties() """ _fields_ = [ ('name', ctypes.c_char * 256), ('totalGlobalMem', ctypes.c_size_t), ('sharedMemPerBlock', ctypes.c_size_t), ('regsPerBlock', ctypes.c_int), ('warpSize', ctypes.c_int), ('memPitch', ctypes.c_size_t), ('maxThreadsPerBlock', ctypes.c_int), ('maxThreadsDim', ctypes.c_int * 3), ('maxGridSize', ctypes.c_int * 3), ('clockRate', ctypes.c_int), ('totalConstMem', ctypes.c_size_t), ('major', ctypes.c_int), ('minor', ctypes.c_int), ('textureAlignment', ctypes.c_size_t), ('texturePitchAlignment', ctypes.c_size_t), ('deviceOverlap', ctypes.c_int), ('multiProcessorCount', ctypes.c_int), ('kernelExecTimeoutEnabled', ctypes.c_int), ('integrated', ctypes.c_int), ('canMapHostMemory', ctypes.c_int), ('computeMode', ctypes.c_int), ('maxTexture1D', ctypes.c_int), ('maxTexture1DMipmap', ctypes.c_int), ('maxTexture1DLinear', ctypes.c_int), ('maxTexture2D', ctypes.c_int * 2), ('maxTexture2DMipmap', ctypes.c_int * 2), ('maxTexture2DLinear', ctypes.c_int * 3), ('maxTexture2DGather', ctypes.c_int * 2), ('maxTexture3D', ctypes.c_int * 3), ('maxTexture3DAlt', ctypes.c_int * 3), ('maxTextureCubemap', ctypes.c_int), ('maxTexture1DLayered', ctypes.c_int * 2), ('maxTexture2DLayered', ctypes.c_int * 3), ('maxTextureCubemapLayered', ctypes.c_int * 2), ('maxSurface1D', ctypes.c_int), ('maxSurface2D', ctypes.c_int * 2), ('maxSurface3D', ctypes.c_int * 3), ('maxSurface1DLayered', ctypes.c_int * 2), ('maxSurface2DLayered', ctypes.c_int * 3), ('maxSurfaceCubemap', ctypes.c_int), ('maxSurfaceCubemapLayered', ctypes.c_int * 2), ('surfaceAlignment', ctypes.c_size_t), ('concurrentKernels', ctypes.c_int), ('ECCEnabled', ctypes.c_int), ('pciBusID', ctypes.c_int), ('pciDeviceID', ctypes.c_int), ('pciDomainID', ctypes.c_int), ('tccDriver', ctypes.c_int), ('asyncEngineCount', ctypes.c_int), ('unifiedAddressing', ctypes.c_int), ('memoryClockRate', ctypes.c_int), ('memoryBusWidth', ctypes.c_int), ('l2CacheSize', ctypes.c_int), ('maxThreadsPerMultiProcessor', ctypes.c_int), ('streamPrioritiesSupported', ctypes.c_int), ('globalL1CacheSupported', ctypes.c_int), ('localL1CacheSupported', ctypes.c_int), ('sharedMemPerMultiprocessor', ctypes.c_size_t), ('regsPerMultiprocessor', ctypes.c_int), ('managedMemSupported', ctypes.c_int), ('isMultiGpuBoard', ctypes.c_int), ('multiGpuBoardGroupID', ctypes.c_int), # Extra space for new fields in future toolkits ('__future_buffer', ctypes.c_int * 128), # added later with cudart.cudaDeviceGetPCIBusId # (needed by NVML) ('pciBusID_str', ctypes.c_char * 16), ] class struct_c_nvmlDevice_t(ctypes.Structure): """ Handle to a device in NVML """ pass # opaque handle c_nvmlDevice_t = ctypes.POINTER(struct_c_nvmlDevice_t) class c_nvmlMemory_t(ctypes.Structure): """ Passed to nvml.nvmlDeviceGetMemoryInfo() """ _fields_ = [ ('total', ctypes.c_ulonglong), ('free', ctypes.c_ulonglong), ('used', ctypes.c_ulonglong), # Extra space for new fields in future toolkits ('__future_buffer', ctypes.c_ulonglong * 8), ] class c_nvmlUtilization_t(ctypes.Structure): """ Passed to nvml.nvmlDeviceGetUtilizationRates() """ _fields_ = [ ('gpu', ctypes.c_uint), ('memory', ctypes.c_uint), # Extra space for new fields in future toolkits ('__future_buffer', ctypes.c_uint * 8), ] def get_library(name): """ Returns a ctypes.CDLL or None """ try: if platform.system() == 'Windows': return ctypes.windll.LoadLibrary(name) else: return ctypes.cdll.LoadLibrary(name) except OSError: pass return None def get_cudart(): """ Return the ctypes.DLL object for cudart or None """ if platform.system() == 'Windows': arch = platform.architecture()[0] for ver in range(90, 50, -5): cudart = get_library('cudart%s_%d.dll' % (arch[:2], ver)) if cudart is not None: return cudart elif platform.system() == 'Darwin': for major in xrange(9, 5, -1): for minor in (5, 0): cudart = get_library('libcudart.%d.%d.dylib' % (major, minor)) if cudart is not None: return cudart return get_library('libcudart.dylib') else: for major in xrange(9, 5, -1): for minor in (5, 0): cudart = get_library('libcudart.so.%d.%d' % (major, minor)) if cudart is not None: return cudart return get_library('libcudart.so') return None def get_nvml(): """ Return the ctypes.DLL object for cudart or None """ if platform.system() == 'Windows': return get_library('nvml.dll') else: for name in ( 'libnvidia-ml.so.1', 'libnvidia-ml.so', 'nvml.so'): nvml = get_library(name) if nvml is not None: return nvml return None devices = None def get_devices(force_reload=False): """ Returns a list of c_cudaDeviceProp's Prints an error and returns None if something goes wrong Keyword arguments: force_reload -- if False, return the previously loaded list of devices """ global devices if not force_reload and devices is not None: # Only query CUDA once return devices devices = [] cudart = get_cudart() if cudart is None: return [] # check CUDA version cuda_version = ctypes.c_int() rc = cudart.cudaRuntimeGetVersion(ctypes.byref(cuda_version)) if rc != 0: print 'cudaRuntimeGetVersion() failed with error #%s' % rc return [] if cuda_version.value < 6050: print 'ERROR: Cuda version must be >= 6.5, not "%s"' % cuda_version.value return [] # get number of devices num_devices = ctypes.c_int() rc = cudart.cudaGetDeviceCount(ctypes.byref(num_devices)) if rc != 0: print 'cudaGetDeviceCount() failed with error #%s' % rc return [] # query devices for x in xrange(num_devices.value): properties = c_cudaDeviceProp() rc = cudart.cudaGetDeviceProperties(ctypes.byref(properties), x) if rc == 0: pciBusID_str = ' ' * 16 # also save the string representation of the PCI bus ID rc = cudart.cudaDeviceGetPCIBusId(ctypes.c_char_p(pciBusID_str), 16, x) if rc == 0: properties.pciBusID_str = pciBusID_str devices.append(properties) else: print 'cudaGetDeviceProperties() failed with error #%s' % rc del properties return devices def get_device(device_id): """ Returns a c_cudaDeviceProp """ return get_devices()[int(device_id)] def get_nvml_info(device_id): """ Gets info from NVML for the given device Returns a dict of dicts from different NVML functions """ device = get_device(device_id) if device is None: return None nvml = get_nvml() if nvml is None: return None rc = nvml.nvmlInit() if rc != 0: raise RuntimeError('nvmlInit() failed with error #%s' % rc) try: # get device handle handle = c_nvmlDevice_t() rc = nvml.nvmlDeviceGetHandleByPciBusId(ctypes.c_char_p(device.pciBusID_str), ctypes.byref(handle)) if rc != 0: raise RuntimeError('nvmlDeviceGetHandleByPciBusId() failed with error #%s' % rc) # Grab info for this device from NVML info = {} memory = c_nvmlMemory_t() rc = nvml.nvmlDeviceGetMemoryInfo(handle, ctypes.byref(memory)) if rc == 0: info['memory'] = { 'total': memory.total, 'used': memory.used, 'free': memory.free, } utilization = c_nvmlUtilization_t() rc = nvml.nvmlDeviceGetUtilizationRates(handle, ctypes.byref(utilization)) if rc == 0: info['utilization'] = { 'gpu': utilization.gpu, 'memory': utilization.memory, # redundant } temperature = ctypes.c_int() rc = nvml.nvmlDeviceGetTemperature(handle, 0, ctypes.byref(temperature)) if rc == 0: info['temperature'] = temperature.value return info finally: rc = nvml.nvmlShutdown() if rc != 0: pass if __name__ == '__main__': parser = argparse.ArgumentParser(description='DIGITS Device Query') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() if not len(get_devices()): print 'No devices found.' for i, device in enumerate(get_devices()): print 'Device #%d:' % i print '>>> CUDA attributes:' for name, t in device._fields_: if name in ['__future_buffer']: continue if not args.verbose and name not in [ 'name', 'totalGlobalMem', 'clockRate', 'major', 'minor', ]: continue if 'c_int_Array' in t.__name__: val = ','.join(str(v) for v in getattr(device, name)) else: val = getattr(device, name) print ' %-28s %s' % (name, val) info = get_nvml_info(i) if info is not None: print '>>> NVML attributes:' nvml_fmt = ' %-28s %s' if 'memory' in info: print nvml_fmt % ('Total memory', '%s MB' % (info['memory']['total'] / 2**20,)) print nvml_fmt % ('Used memory', '%s MB' % (info['memory']['used'] / 2**20,)) if args.verbose: print nvml_fmt % ('Free memory', '%s MB' % (info['memory']['free'] / 2**20,)) if 'utilization' in info: print nvml_fmt % ('Memory utilization', '%s%%' % info['utilization']['memory']) print nvml_fmt % ('GPU utilization', '%s%%' % info['utilization']['gpu']) if 'temperature' in info: print nvml_fmt % ('Temperature', '%s C' % info['temperature']) print
DIGITS-master
digits/device_query.py
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os import pickle import tempfile from .job import Job from .status import Status from digits import test_utils test_utils.skipIfNotFramework('none') class TestStatus(): def test_run_too_soon(self): job = Job(name='testsuite-job', username='digits-testsuite') job.status = Status.WAIT job.status = Status.RUN # Status.WAIT should be removed so the len should be 2 rather # than 3. assert len(job.status_history) == 2, 'history length should be 2' def test_empty_history(self): job = Job(name='testsuite-job', username='digits-testsuite') job.status = Status.WAIT job.status = Status.RUN job.status_history = [] # An empty history should not happen, but if it did, the value # should be Status.INIT. assert job.status == Status.INIT, 'status should be Status.INIT' def test_set_dict(self): job = Job(name='testsuite-job', username='digits-testsuite') # Testing some untested cases in set_dict() job.status = Status.ERROR assert job.status.css == 'danger', 'status.css should be "danger".' job.status = '404' assert job.status.css == 'default', 'status.css should be "default".' def test_equality(self): s = Status(Status.INIT) # Testing __eq__ assert (s == Status.INIT), 'should be true.' assert (s == 'I'), 'should be true.' assert not (s == 7), 'should be false.' assert not (s != Status.INIT), 'should be false.' assert not (s != 'I'), 'should be false.' assert (s != 7), 'should be true.' def test_pickle(self): # Testing __setstate__ and __getstate__ s = Status(Status.INIT) s = Status.WAIT loaded_status = None tmpfile_fd, tmpfile_path = tempfile.mkstemp(suffix='.p') with open(tmpfile_path, 'wb') as tmpfile: pickle.dump(s, tmpfile) with open(tmpfile_path, 'rb') as tmpfile: loaded_status = pickle.load(tmpfile) os.close(tmpfile_fd) os.remove(tmpfile_path) assert loaded_status == Status.WAIT, 'status should be WAIT' def test_str(self): # Testing __str__ s = Status(Status.INIT) s = Status.WAIT assert str(s) == 'W', 'should be W'
DIGITS-master
digits/test_status.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from . import scheduler from .config import config_value from .job import Job from .webapp import app from digits import test_utils from digits.utils import subclass, override test_utils.skipIfNotFramework('none') class TestScheduler(): def get_scheduler(self): return scheduler.Scheduler(config_value('gpu_list')) def test_add_before_start(self): s = self.get_scheduler() assert not s.add_job(None), 'add_job should fail' def test_start_twice(self): s = self.get_scheduler() assert s.start(), 'failed to start' assert s.start(), 'failed to start the second time' assert s.stop(), 'failed to stop' def test_stop_before_start(self): s = self.get_scheduler() assert s.stop(), 'failed to stop' @subclass class JobForTesting(Job): @override def job_type(self): return 'Job For Testing' class TestSchedulerFlow(): @classmethod def setUpClass(cls): cls.s = scheduler.Scheduler(config_value('gpu_list')) assert cls.s.start(), 'failed to start' @classmethod def tearDownClass(cls): assert cls.s.stop(), 'failed to stop' def test_add_remove_job(self): with app.test_request_context(): job = JobForTesting(name='testsuite-job', username='digits-testsuite') assert self.s.add_job(job), 'failed to add job' assert len(self.s.jobs) == 1, 'scheduler has %d jobs' % len(self.s.jobs) assert self.s.delete_job(job), 'failed to delete job' assert len(self.s.jobs) == 0, 'scheduler has %d jobs' % len(self.s.jobs)
DIGITS-master
digits/test_scheduler.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import json import time import urllib from urlparse import urlparse from . import test_utils from . import webapp ################################################################################ # Base classes (they don't start with "Test" so nose won't run them) ################################################################################ class BaseViewsTest(object): """ Abstract class with a Flask context and a Scheduler Provides some other useful functions to children who inherit this """ @classmethod def setUpClass(cls): # Call super.setUpClass() unless we're the last in the class hierarchy supercls = super(BaseViewsTest, cls) if hasattr(supercls, 'setUpClass'): supercls.setUpClass() # Start up the server assert webapp.scheduler.start(), "scheduler wouldn't start" webapp.app.config['WTF_CSRF_ENABLED'] = False webapp.app.config['TESTING'] = True cls.app = webapp.app.test_client() cls.created_datasets = [] cls.created_models = [] rv = cls.app.post('/login', data={ 'username': 'digits-testsuite'}) assert rv.status_code == 302, 'Login failed with %s' % rv.status_code @classmethod def tearDownClass(cls): # Remove all created jobs for job_id in cls.created_models: cls.delete_model(job_id) for job_id in cls.created_datasets: cls.delete_dataset(job_id) rv = cls.app.post('/logout') assert rv.status_code == 302, 'Logout failed with %s' % rv.status_code @classmethod def job_id_from_response(cls, rv): """ Extract the job_id from an HTTP response """ job_url = rv.headers['Location'] parsed_url = urlparse(job_url) return parsed_url.path.split('/')[-1] @classmethod def job_exists(cls, job_id, job_type='jobs'): """ Test whether a job exists """ url = '/%s/%s' % (job_type, job_id) rv = cls.app.get(url, follow_redirects=True) assert rv.status_code in [200, 404], 'got status code "%s" from "%s"\n%s' % (rv.status_code, url, rv.data) return rv.status_code == 200 @classmethod def job_status(cls, job_id, job_type='jobs'): """ Get the status of a job """ url = '/%s/%s/status' % (job_type, job_id) rv = cls.app.get(url) assert rv.status_code == 200, 'Cannot get status of job %s. "%s" returned %s' % (job_id, url, rv.status_code) status = json.loads(rv.data) return status['status'] @classmethod def job_info(cls, job_id, job_type='jobs'): """ Get job information (full JSON response) """ url = '/%s/%s/json' % (job_type, job_id) rv = cls.app.get(url) assert rv.status_code == 200, 'Cannot get info from job %s. "%s" returned %s' % (job_id, url, rv.status_code) info = json.loads(rv.data) return info @classmethod def job_info_html(cls, job_id, job_type='jobs'): """ Get job information (full HTML response) """ url = '/%s/%s' % (job_type, job_id) rv = cls.app.get(url) assert rv.status_code == 200, 'Cannot get info from job %s. "%s" returned %s' % (job_id, url, rv.status_code) return rv.data @classmethod def abort_job(cls, job_id, job_type='jobs'): """ Abort a job Returns the HTTP status code """ rv = cls.app.post('/%s/%s/abort' % (job_type, job_id)) return rv.status_code @classmethod def job_wait_completion(cls, job_id, timeout=10, polling_period=0.5, job_type='jobs'): """ Poll the job status until it completes Returns the final status Arguments: job_id -- the job to wait for Keyword arguments: timeout -- maximum wait time (seconds) polling_period -- how often to poll (seconds) job_type -- [datasets|models] """ while True: status = cls.job_status(job_id, job_type=job_type) if status in ['Done', 'Abort', 'Error']: # make sure job appears in completed jobs url = '/completed_jobs/json' rv = cls.app.get(url) assert rv.status_code == 200, 'Cannot get info from job %s. "%s" returned %s' % ( job_id, url, rv.status_code) info = json.loads(rv.data) dataset_ids = [job['id'] for job in info['datasets']] model_ids = [job['id'] for job in info['models']] assert job_id in dataset_ids or job_id in model_ids, "job %s not found in completed jobs" % job_id # make sure job can be shown without error url = '/jobs/%s' % job_id rv = cls.app.get(url, follow_redirects=True) assert rv.status_code == 200, 'Cannot get info from job %s. "%s" returned %s' % ( job_id, url, rv.status_code) assert job_id in rv.data return status time.sleep(polling_period) @classmethod def edit_job(cls, job_id, name=None, notes=None): """ Edit the name of a job """ data = {} if name: data['job_name'] = name if notes: data['job_notes'] = notes rv = cls.app.put('/jobs/%s' % job_id, data=data) return rv.status_code @classmethod def delete_job(cls, job_id, job_type='jobs'): """ Delete a job Returns the HTTP status code """ rv = cls.app.delete('/%s/%s' % (job_type, job_id)) return rv.status_code ################################################################################ # Test classes ################################################################################ class TestViews(BaseViewsTest): @classmethod def setUpClass(cls): test_utils.skipIfNotFramework('none') super(TestViews, cls).setUpClass() def test_homepage(self): rv = self.app.get('/') assert rv.status_code == 200, 'page load failed with %s' % rv.status_code for text in ['Home', 'Datasets', 'Models']: assert text in rv.data, 'unexpected page format' def test_invalid_page(self): rv = self.app.get('/foo') assert rv.status_code == 404, 'should return 404' def test_autocomplete(self): for absolute_path in (True, False): yield self.check_autocomplete, absolute_path def check_autocomplete(self, absolute_path): path = '/' if absolute_path else './' url = '/autocomplete/path?query=%s' % (urllib.quote(path, safe='')) rv = self.app.get(url) assert rv.status_code == 200 status = json.loads(rv.data) assert 'suggestions' in status
DIGITS-master
digits/test_views.py
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import mock import platform import unittest from . import device_query from digits import test_utils test_utils.skipIfNotFramework('none') class TestGetDevices(): """ tests for device_query.get_devices() """ @classmethod def tearDownClass(cls): # Reload the normal list of devices device_query.get_devices(True) @unittest.skipIf(platform.system() not in ['Linux', 'Darwin'], 'Platform not supported') @mock.patch('digits.device_query.ctypes.cdll') def test_no_cudart(self, mock_cdll): mock_cdll.LoadLibrary.return_value = None assert device_query.get_devices(True) == [], 'Devices found even when CUDA disabled!' class TestGetNvmlInfo(): """ tests for device_query.get_nvml_info() """ @classmethod def setUpClass(cls): if device_query.get_nvml() is None: raise unittest.SkipTest('NVML not found') @unittest.skipIf(len(device_query.get_devices(True)) == 0, 'No GPUs on system') def test_memory_info_exists(self): for index, device in enumerate(device_query.get_devices(True)): assert 'memory' in device_query.get_nvml_info( index), 'NVML should have memory information for "%s"' % device.name
DIGITS-master
digits/test_device_query.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from collections import OrderedDict import os import shutil import signal import time import traceback import gevent import gevent.event import gevent.queue from . import utils from .config import config_value from .dataset import DatasetJob from .job import Job from .log import logger from .model import ModelJob from .pretrained_model import PretrainedModelJob from .status import Status from digits.utils import errors """ This constant configures how long to wait before automatically deleting completed non-persistent jobs """ NON_PERSISTENT_JOB_DELETE_TIMEOUT_SECONDS = 3600 class Resource(object): """ Stores information about which tasks are using a resource """ class ResourceAllocation(object): """ Marks that a task is using [part of] a resource """ def __init__(self, task, value): """ Arguments: task -- which task is using the resource value -- how much of the resource is being used """ self.task = task self.value = value def __init__(self, identifier=None, max_value=1): """ Keyword arguments: identifier -- some way to identify this resource max_value -- a numeric representation of the capacity of this resource """ if identifier is None: self.identifier = id(self) else: self.identifier = identifier self.max_value = max_value self.allocations = [] def remaining(self): """ Returns the amount of this resource that is not being used """ return self.max_value - sum(a.value for a in self.allocations) def allocate(self, task, value): """ A task is requesting to use this resource """ if self.remaining() - value < 0: raise RuntimeError('Resource is already maxed out at %s/%s' % ( self.remaining(), self.max_value) ) self.allocations.append(self.ResourceAllocation(task, value)) def deallocate(self, task): """ The task has finished using this resource """ for i, a in enumerate(self.allocations): if id(task) == id(a.task): self.allocations.pop(i) return True return False class Scheduler: """ Coordinates execution of Jobs """ def __init__(self, gpu_list=None, verbose=False): """ Keyword arguments: gpu_list -- a comma-separated string which is a list of GPU id's verbose -- if True, print more errors """ self.jobs = OrderedDict() self.verbose = verbose # Keeps track of resource usage self.resources = { # TODO: break this into CPU cores, memory usage, IO usage, etc. 'parse_folder_task_pool': [Resource()], 'create_db_task_pool': [Resource(max_value=4)], 'analyze_db_task_pool': [Resource(max_value=4)], 'inference_task_pool': [Resource(max_value=4)], 'gpus': [Resource(identifier=index) for index in gpu_list.split(',')] if gpu_list else [], } self.running = False self.shutdown = gevent.event.Event() def load_past_jobs(self): """ Look in the jobs directory and load all valid jobs """ loaded_jobs = [] failed_jobs = [] for dir_name in sorted(os.listdir(config_value('jobs_dir'))): if os.path.isdir(os.path.join(config_value('jobs_dir'), dir_name)): # Make sure it hasn't already been loaded if dir_name in self.jobs: continue try: job = Job.load(dir_name) # The server might have crashed if job.status.is_running(): job.status = Status.ABORT for task in job.tasks: if task.status.is_running(): task.status = Status.ABORT # We might have changed some attributes here or in __setstate__ job.save() loaded_jobs.append(job) except Exception as e: failed_jobs.append((dir_name, e)) # add DatasetJobs or PretrainedModelJobs for job in loaded_jobs: if isinstance(job, DatasetJob) or isinstance(job, PretrainedModelJob): self.jobs[job.id()] = job # add ModelJobs for job in loaded_jobs: if isinstance(job, ModelJob): try: # load the DatasetJob job.load_dataset() self.jobs[job.id()] = job except Exception as e: failed_jobs.append((dir_name, e)) logger.info('Loaded %d jobs.' % len(self.jobs)) if len(failed_jobs): logger.warning('Failed to load %d jobs.' % len(failed_jobs)) if self.verbose: for job_id, e in failed_jobs: logger.debug('%s - %s: %s' % (job_id, type(e).__name__, str(e))) def add_job(self, job): """ Add a job to self.jobs """ if not self.running: logger.error('Scheduler not running. Cannot add job.') return False else: self.jobs[job.id()] = job # Need to fix this properly # if True or flask._app_ctx_stack.top is not None: from digits.webapp import app, socketio with app.app_context(): # send message to job_management room that the job is added socketio.emit('job update', { 'update': 'added', 'job_id': job.id(), }, namespace='/jobs', room='job_management', ) if 'DIGITS_MODE_TEST' not in os.environ: # Let the scheduler do a little work before returning time.sleep(utils.wait_time()) return True def get_job(self, job_id): """ Look through self.jobs to try to find the Job Returns None if not found """ if job_id is None: return None return self.jobs.get(job_id, None) def get_related_jobs(self, job): """ Look through self.jobs to try to find the Jobs whose parent contains job """ related_jobs = [] if isinstance(job, ModelJob): datajob = job.dataset related_jobs.append(datajob) elif isinstance(job, DatasetJob): datajob = job else: raise ValueError("Unhandled job type %s" % job.job_type()) for j in self.jobs.values(): # Any model that shares (this/the same) dataset should be added too: if isinstance(j, ModelJob): if datajob == j.train_task().dataset and j.id() != job.id(): related_jobs.append(j) return related_jobs def abort_job(self, job_id): """ Aborts a running Job Returns True if the job was found and aborted """ job = self.get_job(job_id) if job is None or not job.status.is_running(): return False job.abort() logger.info('Job aborted.', job_id=job_id) return True def delete_job(self, job): """ Deletes an entire job folder from disk Returns True if the Job was found and deleted """ if isinstance(job, str) or isinstance(job, unicode): job_id = str(job) elif isinstance(job, Job): job_id = job.id() else: raise ValueError('called delete_job with a %s' % type(job)) dependent_jobs = [] # try to find the job job = self.jobs.get(job_id, None) if job: if isinstance(job, DatasetJob): # check for dependencies for j in self.jobs.values(): if isinstance(j, ModelJob) and j.dataset_id == job.id(): logger.error('Cannot delete "%s" (%s) because "%s" (%s) depends on it.' % (job.name(), job.id(), j.name(), j.id())) dependent_jobs.append(j.name()) if len(dependent_jobs) > 0: error_message = 'Cannot delete "%s" because %d model%s depend%s on it: %s' % ( job.name(), len(dependent_jobs), ('s' if len(dependent_jobs) != 1 else ''), ('s' if len(dependent_jobs) == 1 else ''), ', '.join(['"%s"' % j for j in dependent_jobs])) raise errors.DeleteError(error_message) self.jobs.pop(job_id, None) job.abort() if os.path.exists(job.dir()): shutil.rmtree(job.dir()) logger.info('Job deleted.', job_id=job_id) from digits.webapp import socketio socketio.emit('job update', { 'update': 'deleted', 'job_id': job.id() }, namespace='/jobs', room='job_management', ) return True # see if the folder exists on disk path = os.path.join(config_value('jobs_dir'), job_id) path = os.path.normpath(path) if os.path.dirname(path) == config_value('jobs_dir') and os.path.exists(path): shutil.rmtree(path) return True return False def running_dataset_jobs(self): """a query utility""" return sorted( [j for j in self.jobs.values() if isinstance(j, DatasetJob) and j.status.is_running()], cmp=lambda x, y: cmp(y.id(), x.id()) ) def completed_dataset_jobs(self): """a query utility""" return sorted( [j for j in self.jobs.values() if isinstance(j, DatasetJob) and not j.status.is_running()], cmp=lambda x, y: cmp(y.id(), x.id()) ) def running_model_jobs(self): """a query utility""" return sorted( [j for j in self.jobs.values() if isinstance(j, ModelJob) and j.status.is_running()], cmp=lambda x, y: cmp(y.id(), x.id()) ) def completed_model_jobs(self): """a query utility""" return sorted( [j for j in self.jobs.values() if isinstance(j, ModelJob) and not j.status.is_running()], cmp=lambda x, y: cmp(y.id(), x.id()) ) def start(self): """ Start the Scheduler Returns True on success """ if self.running: return True gevent.spawn(self.main_thread) self.running = True return True def stop(self): """ Stop the Scheduler Returns True if the shutdown was graceful """ self.shutdown.set() wait_limit = 5 start = time.time() while self.running: if time.time() - start > wait_limit: return False time.sleep(0.1) return True def main_thread(self): """ Monitors the jobs in current_jobs, updates their statuses, and puts their tasks in queues to be processed by other threads """ signal.signal(signal.SIGTERM, self.sigterm_handler) try: last_saved = None while not self.shutdown.is_set(): # Iterate backwards so we can delete jobs for job in self.jobs.values(): if job.status == Status.INIT: def start_this_job(job): if isinstance(job, ModelJob): if job.dataset.status == Status.DONE: job.status = Status.RUN elif job.dataset.status in [Status.ABORT, Status.ERROR]: job.abort() else: job.status = Status.WAIT else: job.status = Status.RUN if 'DIGITS_MODE_TEST' in os.environ: start_this_job(job) else: # Delay start by one second for initial page load gevent.spawn_later(1, start_this_job, job) if job.status == Status.WAIT: if isinstance(job, ModelJob): if job.dataset.status == Status.DONE: job.status = Status.RUN elif job.dataset.status in [Status.ABORT, Status.ERROR]: job.abort() else: job.status = Status.RUN if job.status == Status.RUN: alldone = True for task in job.tasks: if task.status in [Status.INIT, Status.WAIT]: alldone = False # try to start the task if task.ready_to_queue(): requested_resources = task.offer_resources(self.resources) if requested_resources is None: task.status = Status.WAIT else: if self.reserve_resources(task, requested_resources): gevent.spawn(self.run_task, task, requested_resources) elif task.status == Status.RUN: # job is not done alldone = False elif task.status in [Status.DONE, Status.ABORT]: # job is done pass elif task.status == Status.ERROR: # propagate error status up to job job.status = Status.ERROR alldone = False break else: logger.warning('Unrecognized task status: "%s"', task.status, job_id=job.id()) if alldone: job.status = Status.DONE logger.info('Job complete.', job_id=job.id()) job.save() # save running jobs every 15 seconds if not last_saved or time.time() - last_saved > 15: for job in self.jobs.values(): if job.status.is_running(): if job.is_persistent(): job.save() elif (not job.is_persistent() and (time.time() - job.status_history[-1][1] > NON_PERSISTENT_JOB_DELETE_TIMEOUT_SECONDS)): # job has been unclaimed for far too long => proceed to garbage collection self.delete_job(job) last_saved = time.time() if 'DIGITS_MODE_TEST' not in os.environ: time.sleep(utils.wait_time()) else: time.sleep(0.05) except KeyboardInterrupt: pass # Shutdown for job in self.jobs.values(): job.abort() job.save() self.running = False def sigterm_handler(self, signal, frame): """ Catch SIGTERM in addition to SIGINT """ self.shutdown.set() def task_error(self, task, error): """ Handle an error while executing a task """ logger.error('%s: %s' % (type(error).__name__, error), job_id=task.job_id) task.exception = error task.traceback = traceback.format_exc() task.status = Status.ERROR def reserve_resources(self, task, resources): """ Reserve resources for a task """ try: # reserve resources for resource_type, requests in resources.iteritems(): for identifier, value in requests: found = False for resource in self.resources[resource_type]: if resource.identifier == identifier: resource.allocate(task, value) self.emit_gpus_available() found = True break if not found: raise RuntimeError('Resource "%s" with identifier="%s" not found' % ( resource_type, identifier)) task.current_resources = resources return True except Exception as e: self.task_error(task, e) self.release_resources(task, resources) return False def release_resources(self, task, resources): """ Release resources previously reserved for a task """ # release resources for resource_type, requests in resources.iteritems(): for identifier, value in requests: for resource in self.resources[resource_type]: if resource.identifier == identifier: resource.deallocate(task) self.emit_gpus_available() task.current_resources = None def run_task(self, task, resources): """ Executes a task Arguments: task -- the task to run resources -- the resources allocated for this task a dict mapping resource_type to lists of (identifier, value) tuples """ try: task.run(resources) except Exception as e: self.task_error(task, e) finally: self.release_resources(task, resources) def emit_gpus_available(self): """ Call socketio.emit gpu availability """ from digits.webapp import scheduler, socketio socketio.emit('server update', { 'update': 'gpus_available', 'total_gpu_count': len(self.resources['gpus']), 'remaining_gpu_count': sum(r.remaining() for r in scheduler.resources['gpus']), }, namespace='/jobs', room='job_management' )
DIGITS-master
digits/scheduler.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import argparse import os.path import sys # Update PATH to include the local DIGITS directory PARENT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) found_parent_dir = False for p in sys.path: if os.path.abspath(p) == PARENT_DIR: found_parent_dir = True break if not found_parent_dir: sys.path.insert(0, PARENT_DIR) def main(): parser = argparse.ArgumentParser(description='DIGITS server') parser.add_argument( '-p', '--port', type=int, default=5000, help='Port to run app on (default 5000)' ) parser.add_argument( '-d', '--debug', action='store_true', help=('Run the application in debug mode (reloads when the source ' 'changes and gives more detailed error messages)') ) parser.add_argument( '--version', action='store_true', help='Print the version number and exit' ) args = vars(parser.parse_args()) import digits if args['version']: print digits.__version__ sys.exit() print ' ___ ___ ___ ___ _____ ___' print ' | \_ _/ __|_ _|_ _/ __|' print ' | |) | | (_ || | | | \__ \\' print ' |___/___\___|___| |_| |___/', digits.__version__ print import digits.config import digits.log import digits.webapp try: if not digits.webapp.scheduler.start(): print 'ERROR: Scheduler would not start' else: digits.webapp.app.debug = args['debug'] digits.webapp.socketio.run(digits.webapp.app, '0.0.0.0', args['port']) except KeyboardInterrupt: pass finally: digits.webapp.scheduler.stop() if __name__ == '__main__': main()
DIGITS-master
digits/__main__.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import glob import json import platform import traceback import os import flask from flask_socketio import join_room, leave_room import werkzeug.exceptions from .config import config_value from .webapp import app, socketio, scheduler import digits from digits import dataset, extensions, model, utils, pretrained_model from digits.log import logger from digits.utils.routing import request_wants_json blueprint = flask.Blueprint(__name__, __name__) @blueprint.route('/index/json', methods=['GET']) @blueprint.route('/', methods=['GET']) def home(tab=2): """ DIGITS home page Returns information about each job on the server Returns JSON when requested: { datasets: [{id, name, status},...], models: [{id, name, status},...] } """ running_datasets = get_job_list(dataset.DatasetJob, True) completed_datasets = get_job_list(dataset.DatasetJob, False) running_models = get_job_list(model.ModelJob, True) completed_models = get_job_list(model.ModelJob, False) if request_wants_json(): data = { 'version': digits.__version__, 'jobs_dir': config_value('jobs_dir'), 'datasets': [j.json_dict() for j in running_datasets + completed_datasets], 'models': [j.json_dict() for j in running_models + completed_models], } if config_value('server_name'): data['server_name'] = config_value('server_name') return flask.jsonify(data) else: new_dataset_options = { 'Images': { 'image-classification': { 'title': 'Classification', 'url': flask.url_for( 'digits.dataset.images.classification.views.new'), }, 'image-other': { 'title': 'Other', 'url': flask.url_for( 'digits.dataset.images.generic.views.new'), }, }, } new_model_options = { 'Images': { 'image-classification': { 'title': 'Classification', 'url': flask.url_for( 'digits.model.images.classification.views.new'), }, 'image-other': { 'title': 'Other', 'url': flask.url_for( 'digits.model.images.generic.views.new'), }, }, } load_model_options = { 'Images': { 'pretrained-model': { 'title': 'Upload Pretrained Model', 'id': 'uploadPretrainedModel', 'url': flask.url_for( 'digits.pretrained_model.views.new'), }, 'access-model-store': { 'title': 'Retrieve from Model Store', 'id': 'retrieveModelStore', 'url': flask.url_for('digits.store.views.store'), } }, } # add dataset options for known dataset extensions data_extensions = extensions.data.get_extensions() for extension in data_extensions: ext_category = extension.get_category() ext_title = extension.get_title() ext_title = ext_title[:21] + ' ..' if len(ext_title) > 21 else ext_title ext_id = extension.get_id() if ext_category not in new_dataset_options: new_dataset_options[ext_category] = {} new_dataset_options[ext_category][ext_id] = { 'title': ext_title, 'url': flask.url_for( 'digits.dataset.generic.views.new', extension_id=ext_id), } if ext_category not in new_model_options: new_model_options[ext_category] = {} new_model_options[ext_category][ext_id] = { 'title': ext_title, 'url': flask.url_for( 'digits.model.images.generic.views.new', extension_id=ext_id), } return flask.render_template( 'home.html', tab=tab, new_dataset_options=new_dataset_options, running_datasets=running_datasets, completed_datasets=completed_datasets, new_model_options=new_model_options, running_models=running_models, completed_models=completed_models, load_model_options=load_model_options, total_gpu_count=len(scheduler.resources['gpus']), remaining_gpu_count=sum(r.remaining() for r in scheduler.resources['gpus']), ) def json_dict(job, model_output_fields): d = { 'id': job.id(), 'name': job.name(), 'group': job.group, 'status': job.status_of_tasks().name, 'status_css': job.status_of_tasks().css, 'submitted': job.status_history[0][1], 'elapsed': job.runtime_of_tasks(), } if 'train_db_task' in dir(job): d.update({ 'backend': job.train_db_task().backend, }) if 'train_task' in dir(job): d.update({ 'framework': job.train_task().get_framework_id(), }) for prefix, outputs in (('train', job.train_task().train_outputs), ('val', job.train_task().val_outputs)): for key in outputs.keys(): data = outputs[key].data if len(data) > 0: key = '%s (%s) ' % (key, prefix) model_output_fields.add(key + 'last') model_output_fields.add(key + 'min') model_output_fields.add(key + 'max') d.update({key + 'last': data[-1]}) d.update({key + 'min': min(data)}) d.update({key + 'max': max(data)}) if (job.train_task().combined_graph_data() and 'columns' in job.train_task().combined_graph_data()): d.update({ 'sparkline': job.train_task().combined_graph_data()['columns'][0][1:], }) if 'get_progress' in dir(job): d.update({ 'progress': int(round(100 * job.get_progress())), }) if hasattr(job, 'dataset_id'): d.update({ 'dataset_id': job.dataset_id, }) if hasattr(job, 'extension_id'): d.update({ 'extension': job.extension_id, }) else: if hasattr(job, 'dataset_id'): ds = scheduler.get_job(job.dataset_id) if ds and hasattr(ds, 'extension_id'): d.update({ 'extension': ds.extension_id, }) if isinstance(job, dataset.DatasetJob): d.update({'type': 'dataset'}) if isinstance(job, model.ModelJob): d.update({'type': 'model'}) if isinstance(job, pretrained_model.PretrainedModelJob): model_output_fields.add("has_labels") model_output_fields.add("username") d.update({ 'type': 'pretrained_model', 'framework': job.framework, 'username': job.username, 'has_labels': job.has_labels_file() }) return d @blueprint.route('/completed_jobs/json', methods=['GET']) def completed_jobs(): """ Returns JSON { datasets: [{id, name, group, status, status_css, submitted, elapsed, badge}], models: [{id, name, group, status, status_css, submitted, elapsed, badge}], } """ completed_datasets = get_job_list(dataset.DatasetJob, False) completed_models = get_job_list(model.ModelJob, False) running_datasets = get_job_list(dataset.DatasetJob, True) running_models = get_job_list(model.ModelJob, True) pretrained_models = get_job_list(pretrained_model.PretrainedModelJob, False) model_output_fields = set() data = { 'running': [json_dict(j, model_output_fields) for j in running_datasets + running_models], 'datasets': [json_dict(j, model_output_fields) for j in completed_datasets], 'models': [json_dict(j, model_output_fields) for j in completed_models], 'pretrained_models': [json_dict(j, model_output_fields) for j in pretrained_models], 'model_output_fields': sorted(list(model_output_fields)), } return flask.jsonify(data) @blueprint.route('/jobs/<job_id>/table_data/json', methods=['GET']) def job_table_data(job_id): """ Get the job data for the front page tables """ job = scheduler.get_job(job_id) if job is None: raise werkzeug.exceptions.NotFound('Job not found') model_output_fields = set() return flask.jsonify({'job': json_dict(job, model_output_fields)}) def get_job_list(cls, running): return sorted( [j for j in scheduler.jobs.values() if isinstance(j, cls) and j.status.is_running() == running], key=lambda j: j.status_history[0][1], reverse=True, ) @blueprint.route('/group', methods=['GET', 'POST']) def group(): """ Assign the group for the listed jobs """ not_found = 0 forbidden = 0 group_name = utils.routing.get_request_arg('group_name').strip() job_ids = flask.request.form.getlist('job_ids[]') error = [] for job_id in job_ids: try: job = scheduler.get_job(job_id) if job is None: logger.warning('Job %s not found for group assignment.' % job_id) not_found += 1 continue if not utils.auth.has_permission(job, 'edit'): logger.warning('Group assignment not permitted for job %s' % job_id) forbidden += 1 continue job.group = group_name # update form data so updated name gets used when cloning job if hasattr(job, 'form_data'): job.form_data['form.group_name.data'] = job.group job.emit_attribute_changed('group', job.group) except Exception as e: error.append(e) pass for job_id in job_ids: job = scheduler.get_job(job_id) error = [] if not_found: error.append('%d job%s not found.' % (not_found, '' if not_found == 1 else 's')) if forbidden: error.append('%d job%s not permitted to be regrouped.' % (forbidden, '' if forbidden == 1 else 's')) if len(error) > 0: error = ' '.join(error) raise werkzeug.exceptions.BadRequest(error) return 'Jobs regrouped.' # Authentication/login @blueprint.route('/login', methods=['GET', 'POST']) def login(): """ Ask for a username (no password required) Sets a cookie """ # Get the URL to redirect to after logging in next_url = utils.routing.get_request_arg('next') or \ flask.request.referrer or flask.url_for('.home') if flask.request.method == 'GET': return flask.render_template('login.html', next=next_url) # Validate username username = utils.routing.get_request_arg('username').strip() try: utils.auth.validate_username(username) except ValueError as e: # Invalid username flask.flash(e.message, 'danger') return flask.render_template('login.html', next=next_url) # Valid username response = flask.make_response(flask.redirect(next_url)) response.set_cookie('username', username) return response @blueprint.route('/logout', methods=['GET', 'POST']) def logout(): """ Unset the username cookie """ next_url = utils.routing.get_request_arg('next') or \ flask.request.referrer or flask.url_for('.home') response = flask.make_response(flask.redirect(next_url)) response.set_cookie('username', '', expires=0) return response # Jobs routes @blueprint.route('/jobs/<job_id>', methods=['GET']) def show_job(job_id): """ Redirects to the appropriate /datasets/ or /models/ page """ job = scheduler.get_job(job_id) if job is None: raise werkzeug.exceptions.NotFound('Job not found') if isinstance(job, dataset.DatasetJob): return flask.redirect(flask.url_for('digits.dataset.views.show', job_id=job_id)) if isinstance(job, model.ModelJob): return flask.redirect(flask.url_for('digits.model.views.show', job_id=job_id)) if isinstance(job, pretrained_model.PretrainedModelJob): return flask.redirect(flask.url_for('digits.pretrained_model.views.show', job_id=job_id)) else: raise werkzeug.exceptions.BadRequest('Invalid job type') @blueprint.route('/jobs/<job_id>', methods=['PUT']) @utils.auth.requires_login(redirect=False) def edit_job(job_id): """ Edit a job's name and/or notes """ job = scheduler.get_job(job_id) if job is None: raise werkzeug.exceptions.NotFound('Job not found') if not utils.auth.has_permission(job, 'edit'): raise werkzeug.exceptions.Forbidden() # Edit name if 'job_name' in flask.request.form: name = flask.request.form['job_name'].strip() if not name: raise werkzeug.exceptions.BadRequest('name cannot be blank') job._name = name job.emit_attribute_changed('name', job.name()) # update form data so updated name gets used when cloning job if 'form.dataset_name.data' in job.form_data: job.form_data['form.dataset_name.data'] = name elif 'form.model_name.data' in job.form_data: job.form_data['form.model_name.data'] = name else: # we are utterly confused raise werkzeug.exceptions.BadRequest('Unable to edit job type %s' % job.job_type()) logger.info('Set name to "%s".' % job.name(), job_id=job.id()) # Edit notes if 'job_notes' in flask.request.form: notes = flask.request.form['job_notes'].strip() if not notes: notes = None job._notes = notes logger.info('Updated notes.', job_id=job.id()) return '%s updated.' % job.job_type() @blueprint.route('/datasets/<job_id>/status', methods=['GET']) @blueprint.route('/models/<job_id>/status', methods=['GET']) @blueprint.route('/jobs/<job_id>/status', methods=['GET']) def job_status(job_id): """ Returns a JSON objecting representing the status of a job """ job = scheduler.get_job(job_id) result = {} if job is None: result['error'] = 'Job not found.' else: result['error'] = None result['status'] = job.status.name result['name'] = job.name() result['type'] = job.job_type() return json.dumps(result) @blueprint.route('/pretrained_models/<job_id>', methods=['DELETE']) @blueprint.route('/datasets/<job_id>', methods=['DELETE']) @blueprint.route('/models/<job_id>', methods=['DELETE']) @blueprint.route('/jobs/<job_id>', methods=['DELETE']) @utils.auth.requires_login(redirect=False) def delete_job(job_id): """ Deletes a job """ job = scheduler.get_job(job_id) if job is None: raise werkzeug.exceptions.NotFound('Job not found') if not utils.auth.has_permission(job, 'delete'): raise werkzeug.exceptions.Forbidden() try: if scheduler.delete_job(job_id): return 'Job deleted.' else: raise werkzeug.exceptions.Forbidden('Job not deleted') except utils.errors.DeleteError as e: raise werkzeug.exceptions.Forbidden(str(e)) @blueprint.route('/jobs', methods=['DELETE']) @utils.auth.requires_login(redirect=False) def delete_jobs(): """ Deletes a list of jobs """ not_found = 0 forbidden = 0 failed = 0 job_ids = flask.request.form.getlist('job_ids[]') error = [] for job_id in job_ids: try: job = scheduler.get_job(job_id) if job is None: not_found += 1 continue if not utils.auth.has_permission(job, 'delete'): forbidden += 1 continue if not scheduler.delete_job(job_id): failed += 1 continue except Exception as e: error.append(str(e)) pass if not_found: error.append('%d job%s not found.' % (not_found, '' if not_found == 1 else 's')) if forbidden: error.append('%d job%s not permitted to be deleted.' % (forbidden, '' if forbidden == 1 else 's')) if failed: error.append('%d job%s failed to delete.' % (failed, '' if failed == 1 else 's')) if len(error) > 0: error = ' '.join(error) raise werkzeug.exceptions.BadRequest(error) return 'Jobs deleted.' @blueprint.route('/abort_jobs', methods=['POST']) @utils.auth.requires_login(redirect=False) def abort_jobs(): """ Aborts a list of jobs """ not_found = 0 forbidden = 0 failed = 0 errors = [] job_ids = flask.request.form.getlist('job_ids[]') for job_id in job_ids: try: job = scheduler.get_job(job_id) if job is None: not_found += 1 continue if not utils.auth.has_permission(job, 'abort'): forbidden += 1 continue if not scheduler.abort_job(job_id): failed += 1 continue except Exception as e: errors.append(e) pass if not_found: errors.append('%d job%s not found.' % (not_found, '' if not_found == 1 else 's')) if forbidden: errors.append('%d job%s not permitted to be aborted.' % (forbidden, '' if forbidden == 1 else 's')) if failed: errors.append('%d job%s failed to abort.' % (failed, '' if failed == 1 else 's')) if len(errors) > 0: raise werkzeug.exceptions.BadRequest(' '.join(errors)) return 'Jobs aborted.' @blueprint.route('/datasets/<job_id>/abort', methods=['POST']) @blueprint.route('/models/<job_id>/abort', methods=['POST']) @blueprint.route('/jobs/<job_id>/abort', methods=['POST']) @utils.auth.requires_login(redirect=False) def abort_job(job_id): """ Aborts a running job """ job = scheduler.get_job(job_id) if job is None: raise werkzeug.exceptions.NotFound('Job not found') if scheduler.abort_job(job_id): return 'Job aborted.' else: raise werkzeug.exceptions.Forbidden('Job not aborted') @blueprint.route('/clone/<clone>', methods=['POST', 'GET']) @utils.auth.requires_login def clone_job(clone): """ Clones a job with the id <clone>, populating the creation page with data saved in <clone> """ # <clone> is the job_id to clone job = scheduler.get_job(clone) if job is None: raise werkzeug.exceptions.NotFound('Job not found') if isinstance(job, dataset.GenericDatasetJob): return flask.redirect( flask.url_for('digits.dataset.generic.views.new', extension_id=job.extension_id) + '?clone=' + clone) if isinstance(job, dataset.ImageClassificationDatasetJob): return flask.redirect(flask.url_for('digits.dataset.images.classification.views.new') + '?clone=' + clone) if isinstance(job, dataset.GenericImageDatasetJob): return flask.redirect(flask.url_for('digits.dataset.images.generic.views.new') + '?clone=' + clone) if isinstance(job, model.ImageClassificationModelJob): return flask.redirect(flask.url_for('digits.model.images.classification.views.new') + '?clone=' + clone) if isinstance(job, model.GenericImageModelJob): return flask.redirect(flask.url_for('digits.model.images.generic.views.new') + '?clone=' + clone) else: raise werkzeug.exceptions.BadRequest('Invalid job type') # Error handling @app.errorhandler(Exception) def handle_error(e): """ Handle errors, formatting them as JSON if requested """ error_type = type(e).__name__ message = str(e) trace = None description = None status_code = 500 if isinstance(e, werkzeug.exceptions.HTTPException): status_code = e.code description = e.description if app.debug: trace = traceback.format_exc() if request_wants_json(): details = { 'message': message, 'type': error_type, } if description is not None: details['description'] = description if trace is not None: details['trace'] = trace.split('\n') return flask.jsonify({'error': details}), status_code else: message = message.replace('\\n', '<br />') if isinstance(e, digits.frameworks.errors.NetworkVisualizationError): trace = message message = '' return flask.render_template('error.html', title=error_type, message=message, description=description, trace=trace, ), status_code # Register this handler for all error codes # Necessary for flask<=0.10.1 # for code in HTTP_STATUS_CODES: # if code not in [301]: # app.register_error_handler(code, handle_error) # File serving @blueprint.route('/files/<path:path>', methods=['GET']) def serve_file(path): """ Return a file in the jobs directory If you install the nginx.site file, nginx will serve files instead and this path will never be used """ jobs_dir = config_value('jobs_dir') return flask.send_from_directory(jobs_dir, path) # Path Completion @blueprint.route('/autocomplete/path', methods=['GET']) def path_autocomplete(): """ Return a list of paths matching the specified preamble """ path = flask.request.args.get('query', '') if not os.path.isabs(path): # Only allow absolute paths by prepending forward slash path = os.path.sep + path suggestions = [os.path.abspath(p) for p in glob.glob(path + "*")] if platform.system() == 'Windows': # on windows, convert backslashes with forward slashes suggestions = [p.replace('\\', '/') for p in suggestions] result = { "suggestions": sorted(suggestions) } return json.dumps(result) @blueprint.route('/extension-static/<extension_type>/<extension_id>/<path:filename>') def extension_static(extension_type, extension_id, filename): """ Returns static files from an extension's static directory. '/extension-static/view/image-segmentation/js/app.js' would send the file 'digits/extensions/view/imageSegmentation/static/js/app.js' """ extension = None if (extension_type == 'view'): extension = extensions.view.get_extension(extension_id) elif (extension_type == 'data'): extension = extensions.data.get_extension(extension_id) if extension is None: raise ValueError("Unknown extension '%s'" % extension_id) digits_root = os.path.dirname(os.path.abspath(digits.__file__)) rootdir = os.path.join(digits_root, *['extensions', 'view', extension.get_dirname(), 'static']) return flask.send_from_directory(rootdir, filename) # SocketIO functions # /home @socketio.on('connect', namespace='/home') def on_connect_home(): """ Somebody connected to the homepage """ pass @socketio.on('disconnect', namespace='/home') def on_disconnect_home(): """ Somebody disconnected from the homepage """ pass # /jobs @socketio.on('connect', namespace='/jobs') def on_connect_jobs(): """ Somebody connected to a jobs page """ pass @socketio.on('disconnect', namespace='/jobs') def on_disconnect_jobs(): """ Somebody disconnected from a jobs page """ pass @socketio.on('join', namespace='/jobs') def on_join_jobs(data): """ Somebody joined a room """ room = data['room'] join_room(room) flask.session['room'] = room @socketio.on('leave', namespace='/jobs') def on_leave_jobs(): """ Somebody left a room """ if 'room' in flask.session: room = flask.session['room'] del flask.session['room'] # print '>>> Somebody left room %s' % room leave_room(room)
DIGITS-master
digits/views.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import time class Status(): """ A little class to store the state of Jobs and Tasks It's pickle-able! """ # Enum-like attributes INIT = 'I' WAIT = 'W' RUN = 'R' DONE = 'D' ABORT = 'A' ERROR = 'E' def __init__(self, val): self.set_dict(val) def __str__(self): return self.val # Pickling def __getstate__(self): return self.val def __setstate__(self, state): self.set_dict(state) # Operators def __eq__(self, other): if type(other) == type(self): return self.val == other.val elif type(other) == str: return self.val == other else: return False def __ne__(self, other): if type(other) == type(self): return self.val != other.val elif type(other) == str: return self.val != other else: return True # Member functions def set_dict(self, val): self.val = val if val == self.INIT: self.name = 'Initialized' self.css = 'warning' elif val == self.WAIT: self.name = 'Waiting' self.css = 'warning' elif val == self.RUN: self.name = 'Running' self.css = 'info' elif val == self.DONE: self.name = 'Done' self.css = 'success' elif val == self.ABORT: self.name = 'Aborted' self.css = 'warning' elif val == self.ERROR: self.name = 'Error' self.css = 'danger' else: self.name = '?' self.css = 'default' def is_running(self): return self.val in (self.INIT, self.WAIT, self.RUN) class StatusCls(object): """ A class that stores a history of Status updates Child classes can declare the on_status_update() callback """ def __init__(self): self.progress = 0 self.status_history = [] self.status = Status.INIT @property def status(self): if len(self.status_history) > 0: return self.status_history[-1][0] else: return Status.INIT @status.setter def status(self, value): if isinstance(value, str): value = Status(value) assert isinstance(value, Status) if self.status_history and value == self.status_history[-1][0]: return self.status_history.append((value, time.time())) # Remove WAIT status if waited for less than 1 second if value == Status.RUN and len(self.status_history) >= 2: curr = self.status_history[-1] prev = self.status_history[-2] if prev[0] == Status.WAIT and (curr[1] - prev[1]) < 1: self.status_history.pop(-2) # If the status is Done, then force the progress to 100% if value == Status.DONE: self.progress = 1.0 if hasattr(self, 'emit_progress_update'): self.emit_progress_update() # Don't invoke callback for INIT if value != Status.INIT: if hasattr(self, 'on_status_update'): self.on_status_update()
DIGITS-master
digits/status.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits.job import Job from digits.utils import subclass, override from digits.pretrained_model.tasks import CaffeUploadTask, TorchUploadTask, TensorflowUploadTask @subclass class PretrainedModelJob(Job): """ A Job that uploads a pretrained model """ def __init__(self, weights_path, model_def_path, labels_path=None, framework="caffe", image_type="3", resize_mode="Squash", width=224, height=224, **kwargs): super(PretrainedModelJob, self).__init__(persistent=False, **kwargs) self.framework = framework self.image_info = { "image_type": image_type, "resize_mode": resize_mode, "width": width, "height": height } self.tasks = [] taskKwargs = { "weights_path": weights_path, "model_def_path": model_def_path, "image_info": self.image_info, "labels_path": labels_path, "job_dir": self.dir() } if self.framework == "caffe": self.tasks.append(CaffeUploadTask(**taskKwargs)) elif self.framework == "torch": self.tasks.append(TorchUploadTask(**taskKwargs)) elif self.framework == "tensorflow": self.tasks.append(TensorflowUploadTask(**taskKwargs)) else: raise Exception("framework of type " + self.framework + " is not supported") def get_weights_path(self): return self.tasks[0].get_weights_path() def get_model_def_path(self): return self.tasks[0].get_model_def_path() def get_python_layer_path(self): tmp_dir = os.path.dirname(self.tasks[0].get_model_def_path()) python_layer_file_name = 'digits_python_layers.py' if os.path.exists(os.path.join(tmp_dir, python_layer_file_name)): return os.path.join(tmp_dir, python_layer_file_name) elif os.path.exists(os.path.join(tmp_dir, python_layer_file_name + 'c')): return os.path.join(tmp_dir, python_layer_file_name + 'c') else: return None def has_labels_file(self): return os.path.isfile(self.tasks[0].get_labels_path()) @override def is_persistent(self): return True @override def job_type(self): return "Pretrained Model" @override def __getstate__(self): fields_to_save = ['_id', '_name', 'username', 'tasks', 'status_history', 'framework', 'image_info'] full_state = super(PretrainedModelJob, self).__getstate__() state_to_save = {} for field in fields_to_save: state_to_save[field] = full_state[field] return state_to_save @override def __setstate__(self, state): super(PretrainedModelJob, self).__setstate__(state)
DIGITS-master
digits/pretrained_model/job.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .job import PretrainedModelJob __all__ = ['PretrainedModelJob']
DIGITS-master
digits/pretrained_model/__init__.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import json import os import tempfile import io import tarfile from bs4 import BeautifulSoup import digits.webapp import digits.dataset.images.classification.test_views import digits.model.images.classification.test_views from digits import test_utils import digits.test_views # May be too short on a slow system TIMEOUT_DATASET = 45 TIMEOUT_MODEL = 60 class BaseTestUpload(digits.model.images.classification.test_views.BaseViewsTestWithModel): """ Tests uploading Pretrained Models """ def test_upload_manual(self): # job = digits.webapp.scheduler.get_job(self.model_id) job = digits.webapp.scheduler.get_job(self.model_id) if job is None: raise AssertionError('Failed To Create Job') # Write the stats of the job to json, # and store in tempfile (for archive) info = job.json_dict(verbose=False, epoch=-1) task = job.train_task() snapshot_filename = task.get_snapshot(-1) weights_file = open(snapshot_filename, 'r') model_def_file = open(os.path.join(job.dir(), task.model_file), 'r') labels_file = open(os.path.join(task.dataset.dir(), info["labels file"]), 'r') rv = self.app.post( '/pretrained_models/new', data={ 'weights_file': weights_file, 'model_def_file': model_def_file, 'labels_file': labels_file, 'framework': info['framework'], 'image_type': info["image dimensions"][2], 'resize_mode': info["image resize mode"], 'width': info["image dimensions"][0], 'height': info["image dimensions"][1], 'job_name': 'test_create_pretrained_model_job' } ) s = BeautifulSoup(rv.data, 'html.parser') body = s.select('body') assert rv.status_code == 302, 'POST failed with %s\n\n%s' % (rv.status_code, body) def test_upload_archive(self): job = digits.webapp.scheduler.get_job(self.model_id) if job is None: raise AssertionError('Failed To Create Job') info = json.dumps(job.json_dict(verbose=False, epoch=-1), sort_keys=True, indent=4, separators=(',', ': ')) info_io = io.BytesIO() info_io.write(info) tmp = tempfile.NamedTemporaryFile() tf = tarfile.open(fileobj=tmp, mode='w:') for path, name in job.download_files(-1): tf.add(path, arcname=name) tf_info = tarfile.TarInfo("info.json") tf_info.size = len(info_io.getvalue()) info_io.seek(0) tf.addfile(tf_info, info_io) tmp.flush() tmp.seek(0) rv = self.app.post( '/pretrained_models/upload_archive', data={ 'archive': tmp } ) s = BeautifulSoup(rv.data, 'html.parser') body = s.select('body') tmp.close() assert rv.status_code == 200, 'POST failed with %s\n\n%s' % (rv.status_code, body) class TestCaffeUpload(BaseTestUpload, test_utils.CaffeMixin): pass class TestTorchUpload(BaseTestUpload, test_utils.TorchMixin): pass
DIGITS-master
digits/pretrained_model/test_views.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import flask import tempfile import tarfile import zipfile import json import os import shutil from digits import utils from digits.webapp import scheduler from digits.pretrained_model import PretrainedModelJob import werkzeug.exceptions blueprint = flask.Blueprint(__name__, __name__) def get_tempfile(f, suffix): temp = tempfile.mkstemp(suffix=suffix) f.save(temp[1]) path = temp[1] os.close(temp[0]) return path def validate_caffe_files(files): """ Upload a caffemodel """ # Validate model weights: if str(files['weights_file'].filename) is '': raise werkzeug.exceptions.BadRequest('Missing weights file') elif files['weights_file'].filename.rsplit('.', 1)[1] != "caffemodel": raise werkzeug.exceptions.BadRequest('Weights must be a .caffemodel file') # Validate model definition: if str(files['model_def_file'].filename) is '': raise werkzeug.exceptions.BadRequest('Missing model definition file') elif files['model_def_file'].filename.rsplit('.', 1)[1] != "prototxt": raise werkzeug.exceptions.BadRequest('Model definition must be .prototxt file') weights_path = get_tempfile(flask.request.files['weights_file'], ".caffemodel") model_def_path = get_tempfile(flask.request.files['model_def_file'], ".prototxt") return (weights_path, model_def_path) def validate_torch_files(files): """ Upload a torch model """ # Validate model weights: if str(files['weights_file'].filename) is '': raise werkzeug.exceptions.BadRequest('Missing weights file') elif files['weights_file'].filename.rsplit('.', 1)[1] != "t7": raise werkzeug.exceptions.BadRequest('Weights must be a .t7 file') # Validate model definition: if str(files['model_def_file'].filename) is '': raise werkzeug.exceptions.BadRequest('Missing model definition file') elif files['model_def_file'].filename.rsplit('.', 1)[1] != "lua": raise werkzeug.exceptions.BadRequest('Model definition must be .lua file') weights_path = get_tempfile(flask.request.files['weights_file'], ".t7") model_def_path = get_tempfile(flask.request.files['model_def_file'], ".lua") return (weights_path, model_def_path) def validate_archive_keys(info): """ Validate keys stored in the info.json file """ keys = ["snapshot file", "framework", "name"] for key in keys: if key not in info: return (False, key) return (True, 0) @utils.auth.requires_login @blueprint.route('/upload_archive', methods=['POST']) def upload_archive(): """ Upload archive """ files = flask.request.files archive_file = get_tempfile(files["archive"], ".archive") if tarfile.is_tarfile(archive_file): archive = tarfile.open(archive_file, 'r') names = archive.getnames() elif zipfile.is_zipfile(archive_file): archive = zipfile.ZipFile(archive_file, 'r') names = archive.namelist() else: return flask.jsonify({"status": "Incorrect Archive Type"}), 500 if "info.json" in names: # Create a temp directory to storce archive tempdir = tempfile.mkdtemp() labels_file = None archive.extractall(path=tempdir) with open(os.path.join(tempdir, "info.json")) as data_file: info = json.load(data_file) valid, key = validate_archive_keys(info) if valid is False: return flask.jsonify({"status": "Missing Key '" + key + "' in info.json"}), 500 # Get path to files needed to be uploaded in directory weights_file = os.path.join(tempdir, info["snapshot file"]) if "model file" in info: model_file = os.path.join(tempdir, info["model file"]) elif "network file" in info: model_file = os.path.join(tempdir, info["network file"]) else: return flask.jsonify({"status": "Missing model definition in info.json"}), 500 if "labels file" in info: labels_file = os.path.join(tempdir, info["labels file"]) # Upload the Model: job = PretrainedModelJob( weights_file, model_file, labels_file, info["framework"], username=utils.auth.get_username(), name=info["name"] ) scheduler.add_job(job) job.wait_completion() # Delete temp directory shutil.rmtree(tempdir, ignore_errors=True) return flask.jsonify({"status": "success"}), 200 else: return flask.jsonify({"status": "Missing or Incorrect json file"}), 500 @utils.auth.requires_login @blueprint.route('/new', methods=['POST']) def new(): """ Upload a pretrained model """ labels_path = None framework = None form = flask.request.form files = flask.request.files if 'framework' not in form: framework = "caffe" else: framework = form['framework'] if 'job_name' not in flask.request.form: raise werkzeug.exceptions.BadRequest('Missing job name') elif str(flask.request.form['job_name']) is '': raise werkzeug.exceptions.BadRequest('Missing job name') if framework == "caffe": weights_path, model_def_path = validate_caffe_files(files) else: weights_path, model_def_path = validate_torch_files(files) if str(flask.request.files['labels_file'].filename) is not '': labels_path = get_tempfile(flask.request.files['labels_file'], ".txt") job = PretrainedModelJob( weights_path, model_def_path, labels_path, framework, form["image_type"], form["resize_mode"], form["width"], form["height"], username=utils.auth.get_username(), name=flask.request.form['job_name'] ) scheduler.add_job(job) return flask.redirect(flask.url_for('digits.views.home', tab=3)), 302
DIGITS-master
digits/pretrained_model/views.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .upload_pretrained import UploadPretrainedModelTask from .caffe_upload import CaffeUploadTask from .torch_upload import TorchUploadTask from .tensorflow_upload import TensorflowUploadTask __all__ = [ 'UploadPretrainedModelTask', 'CaffeUploadTask', 'TorchUploadTask', 'TensorflowUploadTask' ]
DIGITS-master
digits/pretrained_model/tasks/__init__.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits.utils import subclass, override from digits.status import Status from digits.pretrained_model.tasks import UploadPretrainedModelTask @subclass class CaffeUploadTask(UploadPretrainedModelTask): def __init__(self, **kwargs): super(CaffeUploadTask, self).__init__(**kwargs) @override def name(self): return 'Upload Pretrained Caffe Model' @override def get_model_def_path(self): """ Get path to model definition """ return os.path.join(self.job_dir, "original.prototxt") @override def get_weights_path(self): """ Get path to model weights """ return os.path.join(self.job_dir, "model.caffemodel") @override def __setstate__(self, state): super(CaffeUploadTask, self).__setstate__(state) @override def run(self, resources): self.move_file(self.weights_path, "model.caffemodel") self.move_file(self.model_def_path, "original.prototxt") if self.labels_path is not None: self.move_file(self.labels_path, "labels.txt") tmp_dir = os.path.dirname(self.weights_path) python_layer_file_name = 'digits_python_layers.py' if os.path.exists(os.path.join(tmp_dir, python_layer_file_name)): self.move_file(os.path.join(tmp_dir, python_layer_file_name), python_layer_file_name) elif os.path.exists(os.path.join(tmp_dir, python_layer_file_name + 'c')): self.move_file(os.path.join(tmp_dir, python_layer_file_name + 'c'), python_layer_file_name + 'c') self.status = Status.DONE
DIGITS-master
digits/pretrained_model/tasks/caffe_upload.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits.utils import subclass, override from digits.status import Status from digits.pretrained_model.tasks import UploadPretrainedModelTask @subclass class TensorflowUploadTask(UploadPretrainedModelTask): def __init__(self, **kwargs): super(TensorflowUploadTask, self).__init__(**kwargs) @override def name(self): return 'Upload Pretrained Tensorflow Model' @override def get_model_def_path(self): """ Get path to model definition """ return os.path.join(self.job_dir, "network.py") @override def get_weights_path(self): """ Get path to model weights """ return os.path.join(self.job_dir, "snapshot.ckpt") @override def __setstate__(self, state): super(TensorflowUploadTask, self).__setstate__(state) @override def run(self, resources): self.move_file(self.weights_path + ".data-00000-of-00001", "snapshot.ckpt.data-00000-of-00001") self.move_file(self.weights_path + ".index", "snapshot.ckpt.index") self.move_file(self.weights_path + ".meta", "snapshot.ckpt.meta") self.move_file(self.model_def_path, "network.py") if self.labels_path is not None: self.move_file(self.labels_path, "labels.txt") self.status = Status.DONE
DIGITS-master
digits/pretrained_model/tasks/tensorflow_upload.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os import shutil from digits.task import Task from digits.utils import subclass, override @subclass class UploadPretrainedModelTask(Task): """ A task for uploading pretrained models """ def __init__(self, **kwargs): """ Arguments: weights_path -- path to model weights (**.caffemodel or ***.t7) model_def_path -- path to model definition (**.prototxt or ***.lua) image_info -- a dictionary containing image_type, resize_mode, width, and height labels_path -- path to text file containing list of labels framework -- framework of this job (ie caffe or torch) """ self.weights_path = kwargs.pop('weights_path', None) self.model_def_path = kwargs.pop('model_def_path', None) self.image_info = kwargs.pop('image_info', None) self.labels_path = kwargs.pop('labels_path', None) self.framework = kwargs.pop('framework', None) # resources self.gpu = None super(UploadPretrainedModelTask, self).__init__(**kwargs) @override def name(self): return 'Upload Pretrained Model' @override def __setstate__(self, state): super(UploadPretrainedModelTask, self).__setstate__(state) @override def process_output(self, line): return True @override def offer_resources(self, resources): reserved_resources = {} # we need one CPU resource from inference_task_pool cpu_key = 'inference_task_pool' if cpu_key not in resources: return None for resource in resources[cpu_key]: if resource.remaining() >= 1: reserved_resources[cpu_key] = [(resource.identifier, 1)] return reserved_resources return None def move_file(self, input_file, output): shutil.copy(input_file, os.path.join(self.job_dir, output)) def get_labels_path(self): """ Get path to label file """ return os.path.join(self.job_dir, "labels.txt") def get_model_def_path(self): """ Get path to model definition """ raise NotImplementedError('Please implement me') def get_weights_path(self): """ Get path to model weights """ raise NotImplementedError('Please implement me')
DIGITS-master
digits/pretrained_model/tasks/upload_pretrained.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import os from digits.utils import subclass, override from digits.status import Status from digits.pretrained_model.tasks import UploadPretrainedModelTask @subclass class TorchUploadTask(UploadPretrainedModelTask): def __init__(self, **kwargs): super(TorchUploadTask, self).__init__(**kwargs) @override def name(self): return 'Upload Pretrained Torch Model' @override def get_model_def_path(self): """ Get path to model definition """ return os.path.join(self.job_dir, "original.lua") @override def get_weights_path(self): """ Get path to model weights """ return os.path.join(self.job_dir, "_Model.t7") @override def __setstate__(self, state): super(TorchUploadTask, self).__setstate__(state) @override def run(self, resources): self.move_file(self.weights_path, "_Model.t7") self.move_file(self.model_def_path, "original.lua") if self.labels_path is not None: self.move_file(self.labels_path, "labels.txt") self.status = Status.DONE
DIGITS-master
digits/pretrained_model/tasks/torch_upload.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import itertools import os import shutil import tempfile import mock from nose.tools import raises, assert_raises import numpy as np import PIL.Image from . import parse_folder from digits import test_utils test_utils.skipIfNotFramework('none') class TestUnescape(): def test_hello(self): assert parse_folder.unescape('hello') == 'hello' def test_space(self): assert parse_folder.unescape('%20') == ' ' class TestValidateFolder(): @classmethod def setUpClass(cls): cls.tmpdir = tempfile.mkdtemp() _handle, cls.tmpfile = tempfile.mkstemp(dir=cls.tmpdir) @classmethod def tearDownClass(cls): try: shutil.rmtree(cls.tmpdir) except: pass def test_dir(self): assert parse_folder.validate_folder(self.tmpdir) is True def test_file(self): assert parse_folder.validate_folder(self.tmpfile) is False def test_nonexistent_dir(self): assert parse_folder.validate_folder(os.path.abspath('not-a-directory')) is False def test_nonexistent_url(self): assert parse_folder.validate_folder('http://localhost/not-a-url') is False class TestValidateOutputFile(): @classmethod def setUpClass(cls): cls.tmpdir = tempfile.mkdtemp() _handle, cls.tmpfile = tempfile.mkstemp(dir=cls.tmpdir) @classmethod def tearDownClass(cls): try: shutil.rmtree(cls.tmpdir) except: pass def test_missing_file(self): assert parse_folder.validate_output_file(None) is True, 'all new files should be valid' def test_file(self): assert parse_folder.validate_output_file(os.path.join(self.tmpdir, 'output.txt')) is True @mock.patch('os.access') def test_local_file(self, mock_access): mock_access.return_value = True assert parse_folder.validate_output_file('not-a-file.txt') is True, 'relative paths should be accepted' @mock.patch('os.access') def test_not_writeable(self, mock_access): mock_access.return_value = False assert parse_folder.validate_output_file(self.tmpfile) is False, 'should not succeed without write permission' def test_existing_file(self): assert parse_folder.validate_output_file(self.tmpfile) is False def test_nonexistent_dir(self): assert parse_folder.validate_output_file( os.path.join( os.path.abspath('not-a-dir'), 'output.txt' ) ) is False class TestValidateInputFile(): @classmethod def setUpClass(cls): _handle, cls.tmpfile = tempfile.mkstemp() os.close(_handle) @classmethod def tearDownClass(cls): os.remove(cls.tmpfile) def test_missing_file(self): assert parse_folder.validate_input_file('not-a-file.txt') is False, 'should not pass on missing file' @mock.patch('os.access') def test_not_readable(self, mock_access): mock_access.return_value = False assert parse_folder.validate_input_file(self.tmpfile) is False, 'should not succeed without read permission' class TestValidateRange(): def test_no_range(self): assert parse_folder.validate_range(0) is True def test_min_less(self): assert parse_folder.validate_range(-1, min_value=0) is False def test_min_equal(self): assert parse_folder.validate_range(0, min_value=0) is True def test_min_more(self): assert parse_folder.validate_range(1, min_value=0) is True def test_max_less(self): assert parse_folder.validate_range(9, max_value=10) is True def test_max_equal(self): assert parse_folder.validate_range(10, max_value=10) is True def test_max_more(self): assert parse_folder.validate_range(11, max_value=10) is False def test_allow_none_true(self): assert parse_folder.validate_range(None, allow_none=True) is True def test_allow_none_false(self): assert parse_folder.validate_range(None, allow_none=False) is False def test_string(self): assert parse_folder.validate_range('foo') is False @mock.patch('digits.tools.parse_folder.validate_output_file') @mock.patch('digits.tools.parse_folder.validate_input_file') class TestCalculatePercentages(): @raises(AssertionError) def test_making_0(self, mock_input, mock_output): parse_folder.calculate_percentages(None, None, None, None, None, None, None) def test_making_1(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True expected_outputs = [ ('train_file', (100, 0, 0)), ('val_file', (0, 100, 0)), ('test_file', (0, 0, 100)) ] for supplied, expected in expected_outputs: args = {k: None for k in ['labels_file', 'train_file', 'percent_train', 'val_file', 'percent_val', 'test_file', 'percent_test']} args.update({supplied: ''}) output = parse_folder.calculate_percentages(**args) assert output == expected, 'expected output of {}, got {}'.format(output, expected) def test_making_2(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True permutes = itertools.combinations(['train', 'val', 'test'], 2) expected_outputs = itertools.izip(permutes, itertools.repeat((32, 68))) for supplied, expected in expected_outputs: args = {k: None for k in ['labels_file', 'train_file', 'percent_train', 'val_file', 'percent_val', 'test_file', 'percent_test']} args.update({k + '_file': '' for k in supplied}) args.update({'percent_' + k: v for k, v in itertools.izip(supplied, expected)}) # Tricky line. itertools returns combinations in sorted order, always. # The order of the returned non-zero values should always be correct. output = [x for x in parse_folder.calculate_percentages(**args) if x != 0] assert output == list(expected), 'expected output of {}, got {}'.format(output, expected) def test_making_3_all_given(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True expected = (25, 30, 45) assert parse_folder.calculate_percentages( labels_file='not-a-file.txt', train_file='not-a-file.txt', percent_train=25, val_file='not-a-file.txt', percent_val=30, test_file='not-a-file.txt', percent_test=45 ) == expected, 'Calculate percentages should return identical values of {}'.format(expected) def test_making_3_2_given(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True expected = 45 assert parse_folder.calculate_percentages( labels_file='not-a-file.txt', train_file='not-a-file.txt', percent_train=25, val_file='not-a-file.txt', percent_val=30, test_file='not-a-file.txt', percent_test=None )[2] == expected, 'Calculate percentages should calculate third value of {}'.format(expected) @raises(AssertionError) def test_making_out_of_range(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True # should raise AssertionError because percentages not between 0-100 are invalid parse_folder.calculate_percentages( labels_file='not-a-file.txt', train_file='not-a-file.txt', percent_train=-1, val_file=None, percent_val=None, test_file=None, percent_test=None ) class TestParseWebListing(): def test_non_url(self): for url in ['not-a-url', 'http://not-a-url', 'https://not-a-url']: yield self.check_url_raises, url def check_url_raises(self, url): assert_raises(Exception, parse_folder.parse_web_listing, url) def test_mock_url(self): for content, dirs, files in [ # Nothing ('', [], []), # Apache 2.2.22 ( '<head></head><body><table>\n \ <tr><td><a href="/home/">Parent</a></td></tr>\n \ <tr><td><a href="cat1/">cat1/</a></td><td>01-Jan-2015 12:34</td><td> - </td></tr>\n \ <tr><td><a href="cat2/">cat2/</a></td><td>02-Feb-2015 23:45</td><td> - </td></tr>\n \ <tr><td><a href="cat.jpg">cat.jpg</a></td><td>03-Mar-2015 1:23</td><td> 1 </td></tr>\n \ </table</body>\n', ['cat1/', 'cat2/'], ['cat.jpg'], ), # Apache 2.4.7 ( '<html><head></head><body><table>\n \ <tr><td><a href="/home/">Parent</a></td></tr>\n \ <tr><td><a href="dog/">dog/</a></td><td>01-01-2015 12:34</td><td> - </td></tr>\n \ <tr><td><a href="dog1.jpeg">dog1.jpeg</a></td><td>02-02-2015 23:45</td><td> 1 </td></tr>\n \ <tr><td><a href="dog2.png">dog2.png</a></td><td>03-03-2015 1:23</td><td> 2 </td></tr>\n \ </table</body></html>\n', ['dog/'], ['dog1.jpeg', 'dog2.png'], ), # Nginx ( '<html><head></head><body>\n \ <a href="bird.jpg">bird.jpg</a> 01-Jan-1999 01:23 1\n \ <a href="birds/">birds/</a> 02-Feb-1999 12:34 -', ['birds/'], ['bird.jpg'], ), ]: with mock.patch('digits.tools.parse_folder.requests') as mock_requests: response = mock.Mock() response.status_code = mock_requests.codes.ok response.content = content mock_requests.get.return_value = response yield self.check_listing, (dirs, files) def check_listing(self, rc): assert parse_folder.parse_web_listing('any_url') == rc class TestSplitIndices(): def test_indices(self): for size in [5, 22, 32]: for percent_b in range(0, 100, 31): for percent_c in range(0, 100 - percent_b, 41): yield self.check_split, size, percent_b, percent_c def check_split(self, size, pct_b, pct_c): ideala = size * float(100 - pct_b - pct_c) / 100.0 idealb = size * float(100 - pct_c) / 100.0 idxa, idxb = parse_folder.three_way_split_indices(size, pct_b, pct_c) assert abs(ideala - idxa) <= 2, 'split should be close to {}, is {}'.format(ideala, idxa) assert abs(idealb - idxb) <= 2, 'split should be close to {}, is {}'.format(idealb, idxb) class TestParseFolder(): def test_all_train(self): tmpdir = tempfile.mkdtemp() img = PIL.Image.fromarray(np.zeros((10, 10, 3), dtype='uint8')) classes = ['A', 'B', 'C'] for cls in classes: os.makedirs(os.path.join(tmpdir, cls)) img.save(os.path.join(tmpdir, cls, 'image1.png')) img.save(os.path.join(tmpdir, cls, 'image2.jpg')) labels_file = os.path.join(tmpdir, 'labels.txt') train_file = os.path.join(tmpdir, 'train.txt') parse_folder.parse_folder(tmpdir, labels_file, train_file=train_file, percent_train=100, percent_val=0, percent_test=0) with open(labels_file) as infile: parsed_classes = [line.strip() for line in infile] assert parsed_classes == classes, '%s != %s' % (parsed_classes, classes) shutil.rmtree(tmpdir)
DIGITS-master
digits/tools/test_parse_folder.py
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved. import os.path import shutil import tempfile import lmdb import numpy as np from . import analyze_db from digits import test_utils # Must import after importing digits.config import caffe.io test_utils.skipIfNotFramework('none') class BaseTestWithDB(object): SAME_SHAPE = True PASS_DEFAULTS = True PASS_FORCE = True PASS_COUNT = True @classmethod def setUpClass(cls): cls._data_dir = tempfile.mkdtemp() cls.db = lmdb.open(os.path.join(cls._data_dir, 'db')) for i in xrange(2): if cls.SAME_SHAPE: width = 10 else: width = 10 + i datum = cls.create_datum(10, width, 3) with cls.db.begin(write=True) as txn: txn.put(str(i), datum.SerializeToString()) @classmethod def tearDownClass(cls): cls.db.close() shutil.rmtree(cls._data_dir) @staticmethod def create_datum(*shape): """ Creates a datum with an image of the given shape """ image = np.ones(shape, dtype='uint8') return caffe.io.array_to_datum(image) def test_defaults(self): assert analyze_db.analyze_db(self.db.path()) == self.PASS_DEFAULTS def test_force_shape(self): assert analyze_db.analyze_db(self.db.path(), force_same_shape=True) == self.PASS_FORCE class TestSameShape(BaseTestWithDB): pass class TestDifferentShape(BaseTestWithDB): SAME_SHAPE = False PASS_FORCE = False
DIGITS-master
digits/tools/test_analyze_db.py
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved. import mock import tempfile from . import resize_image from digits import test_utils test_utils.skipIfNotFramework('none') class TestOutputValidation(): def test_no_filename(self): assert resize_image.validate_output_file(None), 'All new files should be valid' @mock.patch('os.access') def test_not_writable(self, mock_access): mock_access.return_value = False with tempfile.NamedTemporaryFile('r') as f: assert not resize_image.validate_output_file(f.name), 'validation should not pass on unwritable file' def test_normal(self): with tempfile.NamedTemporaryFile('r') as f: assert resize_image.validate_output_file(f.name), 'validation should pass on temporary file' class TestInputValidation(): def test_does_not_exist(self): assert not resize_image.validate_input_file(''), 'validation should not pass on missing file' @mock.patch('os.access') def test_unreadable_file(self, mock_access): mock_access.return_value = False with tempfile.NamedTemporaryFile('r') as f: assert not resize_image.validate_input_file(f.name), 'validation should not pass on unreadable file' class TestRangeValidation(): def test_number_none_and_not_allowed(self): assert not resize_image.validate_range( None, allow_none=False), 'number=None should not be allowed with allow_none=False' def test_number_not_float_compatible(self): value = 'a' assert not resize_image.validate_range(value), 'number=%s should not be accepted' % value def test_number_below_min(self): assert not resize_image.validate_range(0, min_value=1), 'validation should not pass with number < min_value' def test_number_above_max(self): assert not resize_image.validate_range(2, max_value=1), 'validation should not pass with number > max_value' def test_range(self): assert resize_image.validate_range( 5, min_value=0, max_value=255), 'validation should pass with 5 in range (0, 255)'
DIGITS-master
digits/tools/test_resize_image.py
#!/usr/bin/env python2 # Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import argparse import logging import os import random import requests import re import sys import time import urllib from s3_walker import S3Walker # Add path for DIGITS package sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from digits import utils, log # noqa logger = logging.getLogger('digits.tools.parse_s3') local_prefix = 's3_tmp' def unescape(s): return urllib.unquote(s) def validate_s3(walker, bucket, path): try: walker.connect() if not path.endswith('/'): path = path + '/' walker.head(bucket, path) digits = walker.listbucket(bucket, prefix=path, with_prefix=True) for digit in digits: walker.listbucket(bucket, prefix=digit, max_size=10) except Exception: logger.exception('failed to validate s3: %s', str(sys.exc_info()[0])) return False return True def validate_output_file(filename): if filename is None: return True if os.path.exists(filename): logger.error('output file "%s" already exists!' % filename) return False output_dir = os.path.dirname(filename) if not output_dir: output_dir = '.' if not os.path.exists(output_dir): logger.error('output directory "%s" does not exist!' % output_dir) return False if not os.access(output_dir, os.W_OK): logger.error('you do not have write access to output directory "%s"!' % output_dir) return False return True def validate_input_file(filename): if not os.path.exists(filename) or not os.path.isfile(filename): logger.error('input file "%s" does not exist!' % filename) return False if not os.access(filename, os.R_OK): logger.error('you do not have read access to "%s"!' % filename) return False return True def validate_range(number, min_value=None, max_value=None, allow_none=False): if number is None: if allow_none: return True else: logger.error('invalid value %s' % number) return False try: float(number) except ValueError: logger.error('invalid value %s' % number) return False if min_value is not None and number < min_value: logger.error('invalid value %s' % number) return False if max_value is not None and number > max_value: logger.error('invalid value %s' % number) return False return True def calculate_percentages(labels_file, train_file, percent_train, val_file, percent_val, test_file, percent_test, **kwargs): """ Returns (percent_train, percent_val, percent_test) Throws exception on errors """ # reject any percentages not between 0-100 assert all(x is None or 0 <= x <= 100 for x in [percent_train, percent_val, percent_test]), \ 'all percentages must be 0-100 inclusive or not specified' # return values pt = None pv = None ps = None # making these sets mt = False mv = False ms = False if train_file is not None: pt = percent_train mt = True if val_file is not None: pv = percent_val mv = True if test_file is not None: ps = percent_test ms = True making = sum([mt, mv, ms]) assert making > 0, 'must specify at least one of train_file, val_file and test_file' if train_file is not None: assert validate_output_file(labels_file) else: assert validate_input_file(labels_file) if making == 1: if mt: return (100, 0, 0) elif mv: return (0, 100, 0) else: return (0, 0, 100) elif making == 2: if mt and mv: assert not (pt is None and pv is None), 'must give percent_train or percent_val' if pt is not None and pv is not None: assert (pt + pv) == 100, 'percentages do not sum to 100' return (pt, pv, 0) elif pt is not None: return (pt, 100 - pt, 0) else: return (100 - pv, pv, 0) elif mt and ms: assert not (pt is None and ps is None), 'must give percent_train or percent_test' if pt is not None and ps is not None: assert (pt + ps) == 100, 'percentages do not sum to 100' return (pt, 0, ps) elif pt is not None: return (pt, 0, 100 - pt) else: return (100 - ps, 0, ps) elif mv and ms: assert not (pv is None and ps is None), 'must give percent_val or percent_test' if pv is not None and ps is not None: assert (pv + ps) == 100, 'percentages do not sum to 100' return (0, pv, ps) elif pv is not None: return (0, pv, 100 - pv) else: return (0, 100 - ps, ps) elif making == 3: specified = sum([pt is not None, pv is not None, ps is not None]) assert specified >= 2, 'must specify two of percent_train, percent_val, and percent_test' if specified == 3: assert (pt + pv + ps) == 100, 'percentages do not sum to 100' return (pt, pv, ps) elif specified == 2: if pt is None: assert (pv + ps) <= 100, 'percentages cannot exceed 100' return (100 - (pv + ps), pv, ps) elif pv is None: assert (pt + ps) <= 100, 'percentages cannot exceed 100' return (pt, 100 - (pt + ps), ps) elif ps is None: assert (pt + pv) <= 100, 'percentages cannot exceed 100' return (pt, pv, 100 - (pt + pv)) def parse_web_listing(url): """Utility for parse_folder() Parses an autoindexed folder into directories and files Returns (dirs, files) """ dirs = [] files = [] r = requests.get(url, timeout=3.05) if r.status_code != requests.codes.ok: raise Exception('HTTP Status Code %s' % r.status_code) for line in r.content.split('\n'): line = line.strip() # Matches nginx and apache's autoindex formats match = re.match( r'^.*\<a.+href\=[\'\"]([^\'\"]+)[\'\"].*\>.*(\w{1,4}-\w{1,4}-\w{1,4})', line, flags=re.IGNORECASE) if match: if match.group(1).endswith('/'): dirs.append(match.group(1)) elif match.group(1).lower().endswith(utils.image.SUPPORTED_EXTENSIONS): files.append(match.group(1)) return (dirs, files) def web_listing_all_files(url, count=0, max_count=None): """Utility for parse_folder() Gets all files from a url by parsing the directory and all subdirectories looking for image files Returns (urls, count) (recursive) """ urls = [] dirs, files = parse_web_listing(url) for f in files: urls.append(url + f) count += 1 if max_count is not None and count >= max_count: logger.warning('Reached maximum limit for this category') return urls, count for d in dirs: new_urls, count = web_listing_all_files(url + d, count, max_count) urls += new_urls if max_count is not None and count >= max_count: break return urls, count def three_way_split_indices(size, pct_b, pct_c): """ Utility for splitting an array Returns (a, b) where a and b are indices for splitting the array into 3 pieces Arguments: size -- the size of the array pct_b -- the percent of the array that should be used for group b pct_c -- the percent of the array that should be used for group c """ assert 0 <= pct_b <= 100 assert 0 <= pct_c <= 100 pct_a = 100 - (pct_b + pct_c) assert 0 <= pct_a <= 100 if pct_a >= 100: return size, size elif pct_b >= 100: return 0, size elif pct_c >= 100: return 0, 0 else: a = int(round(float(size) * pct_a / 100)) if pct_a and not a: a = 1 b = int(round(float(size) * pct_b / 100)) if a + b > size: b = size - a if pct_b and not b: if a > 1: a -= 1 b = 1 elif a != size: b = 1 c = size - (a + b) if pct_c and not c: if b > 1: b -= 1 c = 1 elif a > 1: a -= 1 c = 1 assert a + b + c == size return a, a + b def parse_s3(walker, bucket, path, labels_file, train_file=None, percent_train=None, val_file=None, percent_val=None, test_file=None, percent_test=None, min_per_category=2, max_per_category=None): """ Parses a folder of images into three textfiles Returns True on success Arguments: walker -- S3Walker object bucket -- bucekt name path -- a path to images labels_file -- file for labels Keyword Arguments: train_file -- output file for training images percent_test -- percentage of images to use in the training set val_file -- output file for validation images percent_val -- percentage of images to use in the validation set test_file -- output file for test images percent_test -- percentage of images to use in the test set min_per_category -- minimum number of images per category max_per_category -- maximum number of images per category """ create_labels = (percent_train > 0) labels = [] # Read the labels from labels_file if not create_labels: with open(labels_file) as infile: for line in infile: line = line.strip() if line: labels.append(line) # Verify that at least two category folders exist walker.connect() if not path.endswith('/'): path = path + '/' subdirs = [] digits = walker.listbucket(bucket, prefix=path, with_prefix=True) for digit in digits: subdirs.append(digit[len(path):]) subdirs.sort() if len(subdirs) < 2: logger.error('folder must contain at least two subdirectories') return False # Parse the folder train_count = 0 val_count = 0 test_count = 0 if percent_train: train_outfile = open(train_file, 'w') if percent_val: val_outfile = open(val_file, 'w') if percent_test: test_outfile = open(test_file, 'w') subdir_index = 0 label_index = 0 for subdir in subdirs: # Use the directory name as the label label_name = subdir if label_name.endswith('/'): # Remove trailing slash label_name = label_name[0:-1] if create_labels: labels.append(label_name) label_index = len(labels) - 1 else: found = False for i, l in enumerate(labels): if label_name == l: found = True label_index = i break if not found: logger.warning('Category "%s" not found in labels_file. Skipping.' % label_name) continue logger.debug('Category - %s' % label_name) lines = [] # Read all images under the path max_size = 100 files = walker.listbucket(bucket, prefix=path+subdir, max_size=max_size) for file in files: if file.lower().endswith(utils.image.SUPPORTED_EXTENSIONS): parent_folder = os.path.join(local_prefix, path, subdir) if not os.path.exists(parent_folder): os.makedirs(parent_folder) localfile = os.path.join(parent_folder, file[file.rindex('/')+1:]) walker.get(bucket, file, localfile) lines.append('%s %d' % (localfile, label_index)) if max_per_category is not None and len(lines) >= max_per_category: break if max_per_category is not None and len(lines) >= max_per_category: logger.warning('Reached maximum limit for this category') break # Split up the lines train_lines = [] val_lines = [] test_lines = [] required_categories = 0 if percent_train > 0: required_categories += 1 if percent_val > 0: required_categories += 1 if percent_test > 0: required_categories += 1 if not lines or len(lines) < required_categories or len(lines) < min_per_category: logger.warning('Not enough images for this category') labels.pop() else: random.shuffle(lines) a, b = three_way_split_indices(len(lines), percent_val, percent_test) train_lines = lines[:a] val_lines = lines[a:b] test_lines = lines[b:] if train_lines: train_outfile.write('\n'.join(train_lines) + '\n') train_count += len(train_lines) if val_lines: val_outfile.write('\n'.join(val_lines) + '\n') val_count += len(val_lines) if test_lines: test_outfile.write('\n'.join(test_lines) + '\n') test_count += len(test_lines) subdir_index += 1 logger.debug('Progress: %0.2f' % (float(subdir_index) / len(subdirs))) if percent_train: train_outfile.close() if percent_val: val_outfile.close() if percent_test: test_outfile.close() if create_labels: if len(labels) < 2: logger.error('Did not find two valid categories') return False else: with open(labels_file, 'w') as labels_outfile: labels_outfile.write('\n'.join(labels) + '\n') logger.info('Found %d images in %d categories.' % (train_count + val_count + test_count, len(labels))) logger.info('Selected %d for training.' % train_count) logger.info('Selected %d for validation.' % val_count) logger.info('Selected %d for testing.' % test_count) return True if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parse-S3 tool - DIGITS') # Positional arguments parser.add_argument( 'endpoint', help='An S3 Endpoint URL' ) parser.add_argument( 'bucket', help='A Bucket Name' ) parser.add_argument( 'path', help='A Path To Images' ) parser.add_argument( 'accesskey', help='An Access Key' ) parser.add_argument( 'secretkey', help='A Secret Key' ) parser.add_argument( 'labels_file', help=('The file containing labels. If train_file is set, this file ' 'will be generated (output). Otherwise, this file will be read (input).') ) # Optional arguments parser.add_argument( '-t', '--train_file', help='The output file for training images' ) parser.add_argument( '-T', '--percent_train', type=float, help='Percent of images used for the training set (constant across all categories)' ) parser.add_argument( '-v', '--val_file', help='The output file for validation images' ) parser.add_argument( '-V', '--percent_val', type=float, help='Percent of images used for the validation set (constant across all categories)' ) parser.add_argument( '-s', '--test_file', help='The output file for test images' ) parser.add_argument( '-S', '--percent_test', type=float, help='Percent of images used for the test set (constant across all categories)' ) parser.add_argument( '--min', type=int, metavar='MIN_PER_CATEGORY', default=1, help=("What is the minimum allowable number of images per category? " "(categories which don't meet this criteria will be ignored) [default=2]") ) parser.add_argument( '--max', type=int, metavar='MAX_PER_CATEGORY', help=("What is the maximum limit of images per category? " "(categories which exceed this limit will be trimmed down) [default=None]") ) args = vars(parser.parse_args()) walker = S3Walker(args['endpoint'], args['accesskey'], args['secretkey']) for valid in [ validate_s3(walker, args['bucket'], args['path']), validate_range(args['percent_train'], min_value=0, max_value=100, allow_none=True), validate_output_file(args['train_file']), validate_range(args['percent_val'], min_value=0, max_value=100, allow_none=True), validate_output_file(args['val_file']), validate_range(args['percent_test'], min_value=0, max_value=100, allow_none=True), validate_output_file(args['test_file']), validate_range(args['min'], min_value=1), validate_range(args['max'], min_value=1, allow_none=True), ]: if not valid: sys.exit(1) try: percent_train, percent_val, percent_test = calculate_percentages(**args) except Exception as e: logger.error('%s: %s' % (type(e).__name__, e)) sys.exit(1) start_time = time.time() if parse_s3(walker, args['bucket'], args['path'], args['labels_file'], train_file=args['train_file'], percent_train=percent_train, val_file=args['val_file'], percent_val=percent_val, test_file=args['test_file'], percent_test=percent_test, min_per_category=args['min'], max_per_category=args['max']): logger.info('Done after %d seconds.' % (time.time() - start_time)) sys.exit(0) else: sys.exit(1)
DIGITS-master
digits/tools/parse_s3.py
#!/usr/bin/env python # -*- coding: utf-8 -*- from boto.s3.connection import S3Connection from boto.s3.key import Key from boto.s3.prefix import Prefix import logging from digits import utils, log # noqa logger = logging.getLogger('digits.tools.s3_walker') class S3Walker(object): def __init__(self, endpoint, accesskey, secretkey): self.is_secure = endpoint.find('https://') > -1 self.host = endpoint[endpoint.index('://')+3:] has_port = self.host.find(':') > -1 if has_port: self.port = int(self.host[self.host.index(':')+1:]) self.host = self.host[:self.host.index(':')] else: if self.is_secure: self.port = 443 else: self.port = 80 self.accesskey = accesskey self.secretkey = secretkey self.conn = None logger.info('Host %s is secure: %s port: %s.' % (self.host, str(self.is_secure), str(self.port))) def connect(self): self.conn = S3Connection(aws_access_key_id=self.accesskey, aws_secret_access_key=self.secretkey, is_secure=self.is_secure, host=self.host, port=self.port) def head(self, bucket, key): b = self.conn.get_bucket(bucket) return b.get_key(key) def get(self, bucket, key, filename): k = self.head(bucket, key) k.get_contents_to_filename(filename) def get_as_string(self, bucket, key): k = self.head(bucket, key) return k.get_contents_as_string() def get_meta(self, bucket, key, meta): value = None k = self.head(bucket, key) if k is not None: value = k.get_metadata(meta) return value def put(self, bucket, key, filename): b = self.conn.get_bucket(bucket) k = Key(b) k.key = key k.set_contents_from_filename(filename) def listbucket(self, bucket, prefix='', max_size=1000, marker='', with_prefix=False): logger.info('listing bucket with prefix = ' + prefix + ', with_prefix = ' + str(with_prefix)) b = self.conn.get_bucket(bucket) resultset = b.list(prefix=prefix, delimiter='/', marker=marker) keys = [] for key in resultset: # returns only Keys if isinstance(key, Key): keys.append(key.key) elif isinstance(key, Prefix) and with_prefix: keys.append(key.name) if len(keys) >= max_size: break if len(keys) > 0: logger.info('retrieved ' + str(len(keys)) + ' keys from ' + keys[0] + ' to ' + keys[-1]) return keys def create_bucket(self, bucket): return self.conn.create_bucket(bucket)
DIGITS-master
digits/tools/s3_walker.py
#!/usr/bin/env python2 # Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import argparse # Find the best implementation available try: from cStringIO import StringIO except ImportError: from StringIO import StringIO import lmdb import logging import numpy as np import os import PIL.Image import Queue import sys import threading # Add path for DIGITS package sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import digits.config # noqa from digits import extensions, log # noqa from digits.job import Job # noqa # Import digits.config first to set the path to Caffe import caffe.io # noqa import caffe_pb2 # noqa logger = logging.getLogger('digits.tools.create_dataset') class DbWriter(threading.Thread): """ Abstract class for writing to databases """ def __init__(self, output_dir, total_batches): self._dir = output_dir self.write_queue = Queue.Queue(10) # sequence number self.seqn = 0 self.total_batches = total_batches self.processed_batches = 0 self.done = False threading.Thread.__init__(self) def write_batch_threadsafe(self, batch): """ This function writes a batch of data into the database This may be called from multiple threads """ self.write_queue.put(batch) def set_done(self): """ Instructs writer thread to complete after queue becomes empty """ self.done = True def run(self): """ DB Writer thread entry point """ while True: try: batch = self.write_queue.get(timeout=0.1) except Queue.Empty: if self.done: # break out of main loop and terminate break else: # just keep looping continue self.write_batch_threadunsafe(batch) class LmdbWriter(DbWriter): def __init__(self, dataset_dir, stage, feature_encoding, label_encoding, **kwargs): self.stage = stage db_dir = os.path.join(dataset_dir, stage) if not os.path.exists(db_dir): os.makedirs(db_dir) super(LmdbWriter, self).__init__(dataset_dir, **kwargs) # create LMDB for features self.feature_db = self.create_lmdb("features") # will create LMDB for labels later if necessary self.label_db = None # encoding self.feature_encoding = feature_encoding self.label_encoding = label_encoding def create_lmdb(self, db_type): sub_dir = os.path.join(self.stage, db_type) db_dir = os.path.join(self._dir, sub_dir) db = lmdb.open( db_dir, map_async=True, max_dbs=0) logger.info('Created %s db for stage %s in %s' % (db_type, self.stage, sub_dir)) return db def array_to_datum(self, data, scalar_label, encoding): if data.ndim != 3: raise ValueError('Invalid number of dimensions: %d' % data.ndim) if encoding == 'none': if data.shape[0] == 3: # RGB to BGR # XXX see issue #59 data = data[[2, 1, 0], ...] datum = caffe.io.array_to_datum(data, scalar_label) else: # Transpose to (height, width, channel) data = data.transpose((1, 2, 0)) datum = caffe_pb2.Datum() datum.height = data.shape[0] datum.width = data.shape[1] datum.channels = data.shape[2] datum.label = scalar_label if data.shape[2] == 1: # grayscale data = data[:, :, 0] s = StringIO() if encoding == 'png': PIL.Image.fromarray(data).save(s, format='PNG') elif encoding == 'jpg': PIL.Image.fromarray(data).save(s, format='JPEG', quality=90) else: raise ValueError('Invalid encoding type') datum.data = s.getvalue() datum.encoded = True return datum def write_batch(self, batch): """ encode data into datum objects this may be called from multiple encoder threads """ datums = [] for (feature, label) in batch: # restrict features to 3D data (Caffe Datum objects) if feature.ndim != 3: raise ValueError("LMDB/Caffe expect 3D data - ndim=%d" % feature.ndim) # restrict labels to 3D data (Caffe Datum objects) or scalars if not (label.ndim == 3 or label.size == 1): raise ValueError("LMDB/Caffe expect 3D or scalar label - ndim=%d" % label.ndim) if label.size > 1: label_datum = self.array_to_datum( label, 0, self.label_encoding) # setting label to 0 - it will be unused as there is # a dedicated label DB label = 0 else: label = label[0] label_datum = None feature_datum = self.array_to_datum( feature, label, self.feature_encoding) datums.append( (feature_datum.SerializeToString(), label_datum.SerializeToString() if label_datum else None)) self.write_batch_threadsafe(datums) def write_batch_threadunsafe(self, batch): """ Write batch do DB, this must only be called from the writer thread """ feature_datums = [] label_datums = [] for (feature, label) in batch: key = "%09d" % self.seqn if label is not None: if self.label_db is None: self.label_db = self.create_lmdb("labels") label_datums.append((key, label)) feature_datums.append((key, feature)) self.seqn += 1 self.write_datums(self.feature_db, feature_datums) if len(label_datums) > 0: self.write_datums(self.label_db, label_datums) self.processed_batches += 1 logger.info('Processed %d/%d' % (self.processed_batches, self.total_batches)) def write_datums(self, db, batch): try: with db.begin(write=True) as lmdb_txn: for key, datum in batch: lmdb_txn.put(key, datum) except lmdb.MapFullError: # double the map_size curr_limit = db.info()['map_size'] new_limit = curr_limit * 2 try: db.set_mapsize(new_limit) # double it except AttributeError as e: version = tuple(int(x) for x in lmdb.__version__.split('.')) if version < (0, 87): raise ValueError('py-lmdb is out of date (%s vs 0.87)' % lmdb.__version__) else: raise e # try again self.write_datums(db, batch) class Encoder(threading.Thread): def __init__(self, queue, writer, extension, error_queue, force_same_shape): self.extension = extension self.queue = queue self.writer = writer self.label_shape = None self.feature_shape = None self.feature_sum = None self.processed_count = 0 self.sample_count = 0 self.error_queue = error_queue self.force_same_shape = force_same_shape threading.Thread.__init__(self) def run(self): data = [] while True: # get entry ID # don't block- if the queue is empty then we're done try: batch = self.queue.get_nowait() except Queue.Empty: # break out of main loop and terminate break try: data = [] for entry_id in batch: # call into extension to format entry into number arrays entry_value = self.extension.encode_entry(entry_id) # entry_value is either a list of (feature, label) tuples # or a single tuple if not isinstance(entry_value, list): entry_value = [entry_value] # convert to list for feature, label in entry_value: # check feature and label shapes if self.feature_shape is None: self.feature_shape = feature.shape if self.label_shape is None: self.label_shape = label.shape if self.force_same_shape: if self.feature_shape != feature.shape: raise ValueError("Feature shape mismatch (last:%s, previous:%s)" % (repr(feature.shape), repr(self.feature_shape))) if self.label_shape != label.shape: raise ValueError("Label shape mismatch (last:%s, previous:%s)" % (repr(label.shape), repr(self.label_shape))) if self.feature_sum is None: self.feature_sum = np.zeros(self.feature_shape, dtype=np.float64) # accumulate sum for mean file calculation self.feature_sum += feature # aggregate data data.append((feature, label)) self.sample_count += 1 self.processed_count += 1 if len(data) >= 0: # write data self.writer.write_batch(data) except Exception as e: self.error_queue.put('%s: %s' % (type(e).__name__, e.message)) raise class DbCreator(object): def create_db(self, extension, stage, dataset_dir, batch_size, num_threads, feature_encoding, label_encoding, force_same_shape): # retrieve itemized list of entries entry_ids = extension.itemize_entries(stage) entry_count = len(entry_ids) if entry_count > 0: # create a queue to write errors to error_queue = Queue.Queue() # create and fill encoder queue encoder_queue = Queue.Queue() batch_indices = xrange(0, len(entry_ids), batch_size) for batch in [entry_ids[start:start+batch_size] for start in batch_indices]: # queue this batch encoder_queue.put(batch) # create db writer writer = LmdbWriter( dataset_dir, stage, total_batches=len(batch_indices), feature_encoding=feature_encoding, label_encoding=label_encoding) writer.daemon = True writer.start() # create encoder threads encoders = [] for _ in xrange(num_threads): encoder = Encoder(encoder_queue, writer, extension, error_queue, force_same_shape) encoder.daemon = True encoder.start() encoders.append(encoder) # wait for all encoder threads to complete and aggregate data feature_sum = None processed_count = 0 sample_count = 0 feature_shape = None label_shape = None for encoder in encoders: encoder.join() # catch errors that may have occurred in reader thread if not error_queue.empty(): while not error_queue.empty(): err = error_queue.get() logger.error(err) raise Exception(err) if feature_shape is None: feature_shape = encoder.feature_shape logger.info('Feature shape for stage %s: %s' % (stage, repr(feature_shape))) if label_shape is None: label_shape = encoder.label_shape logger.info('Label shape for stage %s: %s' % (stage, repr(label_shape))) if force_same_shape: if encoder.feature_shape and feature_shape != encoder.feature_shape: raise ValueError("Feature shape mismatch (last:%s, previous:%s)" % (repr(feature_shape), repr(encoder.feature_shape))) if encoder.label_shape and label_shape != encoder.label_shape: raise ValueError("Label shape mismatch (last:%s, previous:%s)" % (repr(label_shape), repr(encoder.label_shape))) if feature_sum is None: feature_sum = encoder.feature_sum elif encoder.feature_sum is not None: feature_sum += encoder.feature_sum processed_count += encoder.processed_count sample_count += encoder.sample_count # write mean file if feature_sum is not None: self.save_mean(feature_sum, sample_count, dataset_dir, stage) # wait for writer thread to complete writer.set_done() writer.join() if processed_count != entry_count: # TODO: handle this more gracefully raise ValueError('Number of processed entries (%d) does not match entry count (%d)' % (processed_count, entry_count)) logger.info('Found %d entries for stage %s' % (sample_count, stage)) def save_mean(self, feature_sum, entry_count, dataset_dir, stage): """ Save mean to file """ data = np.around(feature_sum / entry_count).astype(np.uint8) mean_file = os.path.join(stage, 'mean.binaryproto') # Transform to caffe's format requirements if data.ndim == 3: if data.shape[0] == 3: # channel swap # XXX see issue #59 data = data[[2, 1, 0], ...] elif data.ndim == 2: # Add a channels axis data = data[np.newaxis, :, :] blob = caffe_pb2.BlobProto() blob.num = 1 blob.channels, blob.height, blob.width = data.shape blob.data.extend(data.astype(float).flat) with open(os.path.join(dataset_dir, mean_file), 'wb') as outfile: outfile.write(blob.SerializeToString()) logger.info('Created mean file for stage %s in %s' % (stage, mean_file)) def create_generic_db(jobs_dir, dataset_id, stage): """ Create a generic DB """ # job directory defaults to that defined in DIGITS config if jobs_dir == 'none': jobs_dir = digits.config.config_value('jobs_dir') # load dataset job dataset_dir = os.path.join(jobs_dir, dataset_id) if not os.path.isdir(dataset_dir): raise IOError("Dataset dir %s does not exist" % dataset_dir) dataset = Job.load(dataset_dir) # create instance of extension extension_id = dataset.extension_id extension_class = extensions.data.get_extension(extension_id) extension = extension_class(**dataset.extension_userdata) # encoding feature_encoding = dataset.feature_encoding label_encoding = dataset.label_encoding batch_size = dataset.batch_size num_threads = dataset.num_threads force_same_shape = dataset.force_same_shape # create main DB creator object and execute main method db_creator = DbCreator() db_creator.create_db( extension, stage, dataset_dir, batch_size, num_threads, feature_encoding, label_encoding, force_same_shape) logger.info('Generic DB creation Done') if __name__ == '__main__': parser = argparse.ArgumentParser(description='DB creation tool - DIGITS') # Positional arguments parser.add_argument( 'dataset', help='Dataset Job ID') # Optional arguments parser.add_argument( '-j', '--jobs_dir', default='none', help='Jobs directory (default: from DIGITS config)', ) parser.add_argument( '-s', '--stage', default='train', help='Stage (train, val, test)', ) args = vars(parser.parse_args()) try: create_generic_db( args['jobs_dir'], args['dataset'], args['stage'] ) except Exception as e: logger.error('%s: %s' % (type(e).__name__, e.message)) raise
DIGITS-master
digits/tools/create_generic_db.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from collections import Counter import os.path import shutil import tempfile import Queue import nose.tools import numpy as np import PIL.Image from . import create_db from digits import test_utils test_utils.skipIfNotFramework('none') class BaseTest(): """ Provides some helpful files and utilities """ @classmethod def setUpClass(cls): cls.empty_file = tempfile.mkstemp() cls.empty_dir = tempfile.mkdtemp() # Create one good textfile cls.good_file = tempfile.mkstemp() # Create a color image cls.color_image_file = tempfile.mkstemp(suffix='.png') cls.numpy_image_color = np.ones((8, 10, 3), dtype='uint8') cls.pil_image_color = PIL.Image.fromarray(cls.numpy_image_color) cls.pil_image_color.save(cls.color_image_file[1]) # Create a grayscale image cls.gray_image_file = tempfile.mkstemp(suffix='.png') cls.numpy_image_gray = np.ones((8, 10), dtype='uint8') cls.pil_image_gray = PIL.Image.fromarray(cls.numpy_image_gray) cls.pil_image_gray.save(cls.gray_image_file[1]) cls.image_count = 0 for i in xrange(3): for j in xrange(3): os.write(cls.good_file[0], '%s %s\n' % (cls.color_image_file[1], i)) os.write(cls.good_file[0], '%s %s\n' % (cls.gray_image_file[1], i)) cls.image_count += 2 @classmethod def tearDownClass(cls): for f in cls.empty_file, cls.good_file, cls.color_image_file, cls.gray_image_file: try: os.close(f[0]) os.remove(f[1]) except OSError: pass try: shutil.rmtree(cls.empty_dir) except OSError: raise class TestFillLoadQueue(BaseTest): def test_valid_file(self): for shuffle in True, False: yield self.check_valid_file, shuffle def check_valid_file(self, shuffle): queue = Queue.Queue() result = create_db._fill_load_queue(self.good_file[1], queue, shuffle) assert result == self.image_count, 'lines not added' assert queue.qsize() == self.image_count, 'queue not full' def test_empty_file(self): for shuffle in True, False: yield self.check_empty_file, shuffle def check_empty_file(self, shuffle): queue = Queue.Queue() nose.tools.assert_raises( create_db.BadInputFileError, create_db._fill_load_queue, self.empty_file[1], queue, shuffle) class TestParseLine(): def test_good_lines(self): for label, line in [ (0, '/path/image.jpg 0'), (1, 'image.jpg 1'), (2, 'image.jpg 2\n'), (3, 'image.jpg 3'), (4, 'spaces in filename.jpg 4'), ]: yield self.check_good_line, line, label def check_good_line(self, line, label): c = Counter() p, l = create_db._parse_line(line, c) assert l == label, 'parsed label wrong' assert c[l] == 1, 'distribution is wrong' def test_bad_lines(self): for line in [ 'nolabel.jpg', 'non-number.jpg five', 'negative.jpg -1', ]: yield self.check_bad_line, line def check_bad_line(self, line): nose.tools.assert_raises( create_db.ParseLineError, create_db._parse_line, line, Counter() ) class TestCalculateBatchSize(): def test(self): for count, batch_size in [ (1, 1), (50, 50), (100, 100), (200, 100), ]: yield self.check, count, batch_size def check(self, count, batch_size): assert create_db._calculate_batch_size(count) == batch_size class TestCalculateNumThreads(): def test(self): for batch_size, shuffle, num in [ (1000, True, 10), (1000, False, 1), (100, True, 10), (100, False, 1), (50, True, 7), (4, True, 2), (1, True, 1), ]: yield self.check, batch_size, shuffle, num def check(self, batch_size, shuffle, num): assert create_db._calculate_num_threads( batch_size, shuffle) == num class TestInitialImageSum(): def test_color(self): s = create_db._initial_image_sum(10, 10, 3) assert s.shape == (10, 10, 3) assert s.dtype == 'float64' def test_grayscale(self): s = create_db._initial_image_sum(10, 10, 1) assert s.shape == (10, 10) assert s.dtype == 'float64' class TestImageToDatum(BaseTest): def test(self): for compression in None, 'png', 'jpg': yield self.check_color, compression yield self.check_grayscale, compression def check_color(self, compression): d = create_db._array_to_datum(self.numpy_image_color, 1, compression) assert d.height == self.numpy_image_color.shape[0] assert d.width == self.numpy_image_color.shape[1] assert d.channels == 3 assert d.encoded == bool(compression) def check_grayscale(self, compression): d = create_db._array_to_datum(self.numpy_image_gray, 1, compression) assert d.height == self.numpy_image_gray.shape[0] assert d.width == self.numpy_image_gray.shape[1] assert d.channels == 1 assert d.encoded == bool(compression) class TestSaveMeans(): def test(self): for color in True, False: d = tempfile.mkdtemp() for filename in 'mean.jpg', 'mean.png', 'mean.npy', 'mean.binaryproto': yield self.check, d, filename, color shutil.rmtree(d) def check(self, directory, filename, color): filename = os.path.join(directory, filename) if color: s = np.ones((8, 10, 3), dtype='float64') else: s = np.ones((8, 10), dtype='float64') create_db._save_means(s, 2, [filename]) assert os.path.exists(filename) class BaseCreationTest(BaseTest): def test_image_sizes(self): for width in 8, 12: for channels in 1, 3: yield self.check_image_sizes, width, channels, False def check_image_sizes(self, width, channels, shuffle): create_db.create_db(self.good_file[1], os.path.join(self.empty_dir, 'db'), width, 10, channels, self.BACKEND) def test_no_shuffle(self): create_db.create_db(self.good_file[1], os.path.join(self.empty_dir, 'db'), 10, 10, 1, self.BACKEND, shuffle=False) def test_means(self): mean_files = [] for suffix in 'jpg', 'npy', 'png', 'binaryproto': mean_files.append(os.path.join(self.empty_dir, 'mean.%s' % suffix)) create_db.create_db(self.good_file[1], os.path.join(self.empty_dir, 'db'), 10, 10, 1, self.BACKEND, mean_files=mean_files) class TestLmdbCreation(BaseCreationTest): BACKEND = 'lmdb' class TestHdf5Creation(BaseCreationTest): BACKEND = 'hdf5' def test_dset_limit(self): db_dir = os.path.join(self.empty_dir, 'db') create_db.create_db(self.good_file[1], db_dir, 10, 10, 1, 'hdf5', hdf5_dset_limit=10 * 10) with open(os.path.join(db_dir, 'list.txt')) as infile: lines = infile.readlines() assert len(lines) == self.image_count, '%d != %d' % (len(lines), self.image_count)
DIGITS-master
digits/tools/test_create_db.py
DIGITS-master
digits/tools/__init__.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import itertools import os import shutil import tempfile import mock from nose.tools import raises, assert_raises try: from . import parse_s3 from digits.tools.mock_s3_walker import MockS3Walker import_failed = False except ImportError: import_failed = True from digits import test_utils test_utils.skipIfNotFramework('none') class TestUnescape(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') def test_hello(self): assert parse_s3.unescape('hello') == 'hello' def test_space(self): assert parse_s3.unescape('%20') == ' ' class TestValidateS3(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') cls.mock_walker = MockS3Walker() def test_non_existent_bucket(self): result = parse_s3.validate_s3(self.mock_walker, 'nonexistentbucket', '') assert not result def test_empty_bucket(self): result = parse_s3.validate_s3(self.mock_walker, 'emptybucket', '') assert not result def test_valid_endpoint(self): result = parse_s3.validate_s3(self.mock_walker, 'validbucket', '') assert result class TestValidateOutputFile(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') cls.tmpdir = tempfile.mkdtemp() _handle, cls.tmpfile = tempfile.mkstemp(dir=cls.tmpdir) @classmethod def tearDownClass(cls): try: shutil.rmtree(cls.tmpdir) except IOError: pass def test_missing_file(self): assert parse_s3.validate_output_file(None) is True, 'all new files should be valid' def test_file(self): assert parse_s3.validate_output_file(os.path.join(self.tmpdir, 'output.txt')) is True @mock.patch('os.access') def test_local_file(self, mock_access): mock_access.return_value = True assert parse_s3.validate_output_file('not-a-file.txt') is True, 'relative paths should be accepted' @mock.patch('os.access') def test_not_writeable(self, mock_access): mock_access.return_value = False assert parse_s3.validate_output_file(self.tmpfile) is False, 'should not succeed without write permission' def test_existing_file(self): assert parse_s3.validate_output_file(self.tmpfile) is False def test_nonexistent_dir(self): assert parse_s3.validate_output_file( os.path.join( os.path.abspath('not-a-dir'), 'output.txt' ) ) is False class TestValidateInputFile(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') _handle, cls.tmpfile = tempfile.mkstemp() os.close(_handle) @classmethod def tearDownClass(cls): os.remove(cls.tmpfile) def test_missing_file(self): assert parse_s3.validate_input_file('not-a-file.txt') is False, 'should not pass on missing file' @mock.patch('os.access') def test_not_readable(self, mock_access): mock_access.return_value = False assert parse_s3.validate_input_file(self.tmpfile) is False, 'should not succeed without read permission' class TestValidateRange(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') def test_no_range(self): assert parse_s3.validate_range(0) is True def test_min_less(self): assert parse_s3.validate_range(-1, min_value=0) is False def test_min_equal(self): assert parse_s3.validate_range(0, min_value=0) is True def test_min_more(self): assert parse_s3.validate_range(1, min_value=0) is True def test_max_less(self): assert parse_s3.validate_range(9, max_value=10) is True def test_max_equal(self): assert parse_s3.validate_range(10, max_value=10) is True def test_max_more(self): assert parse_s3.validate_range(11, max_value=10) is False def test_allow_none_true(self): assert parse_s3.validate_range(None, allow_none=True) is True def test_allow_none_false(self): assert parse_s3.validate_range(None, allow_none=False) is False def test_string(self): assert parse_s3.validate_range('foo') is False @mock.patch('digits.tools.parse_s3.validate_output_file') @mock.patch('digits.tools.parse_s3.validate_input_file') class TestCalculatePercentages(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') @raises(AssertionError) def test_making_0(self, mock_input, mock_output): parse_s3.calculate_percentages(None, None, None, None, None, None, None) def test_making_1(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True expected_outputs = [ ('train_file', (100, 0, 0)), ('val_file', (0, 100, 0)), ('test_file', (0, 0, 100)) ] for supplied, expected in expected_outputs: args = {k: None for k in ['labels_file', 'train_file', 'percent_train', 'val_file', 'percent_val', 'test_file', 'percent_test']} args.update({supplied: ''}) output = parse_s3.calculate_percentages(**args) assert output == expected, 'expected output of {}, got {}'.format(output, expected) def test_making_2(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True permutes = itertools.combinations(['train', 'val', 'test'], 2) expected_outputs = itertools.izip(permutes, itertools.repeat((32, 68))) for supplied, expected in expected_outputs: args = {k: None for k in ['labels_file', 'train_file', 'percent_train', 'val_file', 'percent_val', 'test_file', 'percent_test']} args.update({k + '_file': '' for k in supplied}) args.update({'percent_' + k: v for k, v in itertools.izip(supplied, expected)}) # Tricky line. itertools returns combinations in sorted order, always. # The order of the returned non-zero values should always be correct. output = [x for x in parse_s3.calculate_percentages(**args) if x != 0] assert output == list(expected), 'expected output of {}, got {}'.format(output, expected) def test_making_3_all_given(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True expected = (25, 30, 45) assert parse_s3.calculate_percentages( labels_file='not-a-file.txt', train_file='not-a-file.txt', percent_train=25, val_file='not-a-file.txt', percent_val=30, test_file='not-a-file.txt', percent_test=45 ) == expected, 'Calculate percentages should return identical values of {}'.format(expected) def test_making_3_2_given(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True expected = 45 assert parse_s3.calculate_percentages( labels_file='not-a-file.txt', train_file='not-a-file.txt', percent_train=25, val_file='not-a-file.txt', percent_val=30, test_file='not-a-file.txt', percent_test=None )[2] == expected, 'Calculate percentages should calculate third value of {}'.format(expected) @raises(AssertionError) def test_making_out_of_range(self, mock_input, mock_output): mock_input.return_value = True mock_output.return_value = True # should raise AssertionError because percentages not between 0-100 are invalid parse_s3.calculate_percentages( labels_file='not-a-file.txt', train_file='not-a-file.txt', percent_train=-1, val_file=None, percent_val=None, test_file=None, percent_test=None ) class TestParseWebListing(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') def test_non_url(self): for url in ['not-a-url', 'http://not-a-url', 'https://not-a-url']: yield self.check_url_raises, url def check_url_raises(self, url): assert_raises(Exception, parse_s3.parse_web_listing, url) def test_mock_url(self): for content, dirs, files in [ # Nothing ('', [], []), # Apache 2.2.22 ( '<head></head><body><table>\n \ <tr><td><a href="/home/">Parent</a></td></tr>\n \ <tr><td><a href="cat1/">cat1/</a></td><td>01-Jan-2015 12:34</td><td> - </td></tr>\n \ <tr><td><a href="cat2/">cat2/</a></td><td>02-Feb-2015 23:45</td><td> - </td></tr>\n \ <tr><td><a href="cat.jpg">cat.jpg</a></td><td>03-Mar-2015 1:23</td><td> 1 </td></tr>\n \ </table</body>\n', ['cat1/', 'cat2/'], ['cat.jpg'], ), # Apache 2.4.7 ( '<html><head></head><body><table>\n \ <tr><td><a href="/home/">Parent</a></td></tr>\n \ <tr><td><a href="dog/">dog/</a></td><td>01-01-2015 12:34</td><td> - </td></tr>\n \ <tr><td><a href="dog1.jpeg">dog1.jpeg</a></td><td>02-02-2015 23:45</td><td> 1 </td></tr>\n \ <tr><td><a href="dog2.png">dog2.png</a></td><td>03-03-2015 1:23</td><td> 2 </td></tr>\n \ </table</body></html>\n', ['dog/'], ['dog1.jpeg', 'dog2.png'], ), # Nginx ( '<html><head></head><body>\n \ <a href="bird.jpg">bird.jpg</a> 01-Jan-1999 01:23 1\n \ <a href="birds/">birds/</a> 02-Feb-1999 12:34 -', ['birds/'], ['bird.jpg'], ), ]: with mock.patch('digits.tools.parse_s3.requests') as mock_requests: response = mock.Mock() response.status_code = mock_requests.codes.ok response.content = content mock_requests.get.return_value = response yield self.check_listing, (dirs, files) def check_listing(self, rc): assert parse_s3.parse_web_listing('any_url') == rc class TestSplitIndices(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') def test_indices(self): for size in [5, 22, 32]: for percent_b in range(0, 100, 31): for percent_c in range(0, 100 - percent_b, 41): yield self.check_split, size, percent_b, percent_c def check_split(self, size, pct_b, pct_c): ideala = size * float(100 - pct_b - pct_c) / 100.0 idealb = size * float(100 - pct_c) / 100.0 idxa, idxb = parse_s3.three_way_split_indices(size, pct_b, pct_c) assert abs(ideala - idxa) <= 2, 'split should be close to {}, is {}'.format(ideala, idxa) assert abs(idealb - idxb) <= 2, 'split should be close to {}, is {}'.format(idealb, idxb) class TestParseS3(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import parse_s3, most likely cause is Boto not installed') def test_all_train(self): classes = range(10) mock_walker = MockS3Walker(classes) try: tmpdir = tempfile.mkdtemp() labels_file = tempfile.mkstemp(dir=tmpdir) train_file = tempfile.mkstemp(dir=tmpdir) parse_s3.parse_s3(mock_walker, 'validbucket', 'train/', labels_file[1], percent_train=100, train_file=train_file[1], percent_val=0, percent_test=0) with open(labels_file[1]) as infile: parsed_classes = [line.strip() for line in infile] expected_classes = [str(i) for i in classes] assert parsed_classes == expected_classes, '%s != %s' % (parsed_classes, classes) finally: shutil.rmtree(tmpdir) def test_neg_all_train(self): try: classes = range(1) mock_walker = MockS3Walker(classes) tmpdir = tempfile.mkdtemp() labels_file = tempfile.mkstemp(dir=tmpdir) train_file = tempfile.mkstemp(dir=tmpdir) assert not parse_s3.parse_s3(mock_walker, 'invalidbucket', 'train/', labels_file[1], percent_train=100, train_file=train_file[1], percent_val=0, percent_test=0) finally: shutil.rmtree(tmpdir)
DIGITS-master
digits/tools/test_parse_s3.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import ConfigParser from s3_walker import S3Walker config = ConfigParser.RawConfigParser() config.read('upload_config.cfg') endpoint = config.get('S3 Config', 'endpoint') accesskey = config.get('S3 Config', 'accesskey') secretkey = config.get('S3 Config', 'secretkey') bucket_name = config.get('S3 Config', 'bucket') path_prefix = config.get('S3 Config', 'prefix') if not (path_prefix.endswith('/')): path_prefix += '/' # mnist # - train # -- 0 ... 9 # --- XXX.png try: mnist_folder = sys.argv[1] except IndexError: print('mnist folder should be passed') sys.exit(1) walker = S3Walker(endpoint, accesskey, secretkey) walker.connect() # Create bucket print('Creating bucket') walker.create_bucket(bucket_name) mnist_train_folder = os.path.join(mnist_folder, 'train') digits = os.listdir(mnist_train_folder) for digit in digits: digit_folder = os.path.join(mnist_train_folder, digit) if os.path.isfile(digit_folder): continue files = os.listdir(digit_folder) for f in files: if not f.endswith('.png'): continue file = os.path.join(digit_folder, f) key = path_prefix + file[file.index('train'):] walker.put(bucket_name, key, file) print('uploaded ' + file + ' ==> ' + key)
DIGITS-master
digits/tools/upload_s3_data.py
#!/usr/bin/env python2 # Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import argparse import base64 import h5py import logging import numpy as np import PIL.Image import os import sys try: from cStringIO import StringIO except ImportError: from StringIO import StringIO # Add path for DIGITS package sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import digits.config # noqa from digits import utils, log # noqa from digits.inference.errors import InferenceError # noqa from digits.job import Job # noqa from digits.utils.lmdbreader import DbReader # noqa # Import digits.config before caffe to set the path import caffe_pb2 # noqa logger = logging.getLogger('digits.tools.inference') """ Perform inference on a list of images using the specified model """ def infer(input_list, output_dir, jobs_dir, model_id, epoch, batch_size, layers, gpu, input_is_db, resize): """ Perform inference on a list of images using the specified model """ # job directory defaults to that defined in DIGITS config if jobs_dir == 'none': jobs_dir = digits.config.config_value('jobs_dir') # load model job model_dir = os.path.join(jobs_dir, model_id) assert os.path.isdir(model_dir), "Model dir %s does not exist" % model_dir model = Job.load(model_dir) # load dataset job dataset_dir = os.path.join(jobs_dir, model.dataset_id) assert os.path.isdir(dataset_dir), "Dataset dir %s does not exist" % dataset_dir dataset = Job.load(dataset_dir) for task in model.tasks: task.dataset = dataset # retrieve snapshot file task = model.train_task() snapshot_filename = None epoch = float(epoch) if epoch == -1 and len(task.snapshots): # use last epoch epoch = task.snapshots[-1][1] snapshot_filename = task.snapshots[-1][0] else: for f, e in task.snapshots: if e == epoch: snapshot_filename = f break if not snapshot_filename: raise InferenceError("Unable to find snapshot for epoch=%s" % repr(epoch)) # retrieve image dimensions and resize mode image_dims = dataset.get_feature_dims() height = image_dims[0] width = image_dims[1] channels = image_dims[2] resize_mode = dataset.resize_mode if hasattr(dataset, 'resize_mode') else 'squash' n_input_samples = 0 # number of samples we were able to load input_ids = [] # indices of samples within file list input_data = [] # sample data if input_is_db: # load images from database reader = DbReader(input_list) for key, value in reader.entries(): datum = caffe_pb2.Datum() datum.ParseFromString(value) if datum.encoded: s = StringIO() s.write(datum.data) s.seek(0) img = PIL.Image.open(s) img = np.array(img) else: import caffe.io arr = caffe.io.datum_to_array(datum) # CHW -> HWC arr = arr.transpose((1, 2, 0)) if arr.shape[2] == 1: # HWC -> HW arr = arr[:, :, 0] elif arr.shape[2] == 3: # BGR -> RGB # XXX see issue #59 arr = arr[:, :, [2, 1, 0]] img = arr input_ids.append(key) input_data.append(img) n_input_samples = n_input_samples + 1 else: # load paths from file paths = None with open(input_list) as infile: paths = infile.readlines() # load and resize images for idx, path in enumerate(paths): path = path.strip() try: image = utils.image.load_image(path.strip()) if resize: image = utils.image.resize_image( image, height, width, channels=channels, resize_mode=resize_mode) else: image = utils.image.image_to_array( image, channels=channels) input_ids.append(idx) input_data.append(image) n_input_samples = n_input_samples + 1 except utils.errors.LoadImageError as e: print e # perform inference visualizations = None if n_input_samples == 0: raise InferenceError("Unable to load any image from file '%s'" % repr(input_list)) elif n_input_samples == 1: # single image inference outputs, visualizations = model.train_task().infer_one( input_data[0], snapshot_epoch=epoch, layers=layers, gpu=gpu, resize=resize) else: if layers != 'none': raise InferenceError("Layer visualization is not supported for multiple inference") outputs = model.train_task().infer_many( input_data, snapshot_epoch=epoch, gpu=gpu, resize=resize) # write to hdf5 file db_path = os.path.join(output_dir, 'inference.hdf5') db = h5py.File(db_path, 'w') # write input paths and images to database db.create_dataset("input_ids", data=input_ids) db.create_dataset("input_data", data=input_data) # write outputs to database db_outputs = db.create_group("outputs") for output_id, output_name in enumerate(outputs.keys()): output_data = outputs[output_name] output_key = base64.urlsafe_b64encode(str(output_name)) dset = db_outputs.create_dataset(output_key, data=output_data) # add ID attribute so outputs can be sorted in # the order they appear in here dset.attrs['id'] = output_id # write visualization data if visualizations is not None and len(visualizations) > 0: db_layers = db.create_group("layers") for idx, layer in enumerate(visualizations): vis = layer['vis'] if layer['vis'] is not None else np.empty(0) dset = db_layers.create_dataset(str(idx), data=vis) dset.attrs['name'] = layer['name'] dset.attrs['vis_type'] = layer['vis_type'] if 'param_count' in layer: dset.attrs['param_count'] = layer['param_count'] if 'layer_type' in layer: dset.attrs['layer_type'] = layer['layer_type'] dset.attrs['shape'] = layer['data_stats']['shape'] dset.attrs['mean'] = layer['data_stats']['mean'] dset.attrs['stddev'] = layer['data_stats']['stddev'] dset.attrs['histogram_y'] = layer['data_stats']['histogram'][0] dset.attrs['histogram_x'] = layer['data_stats']['histogram'][1] dset.attrs['histogram_ticks'] = layer['data_stats']['histogram'][2] db.close() logger.info('Saved data to %s', db_path) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Inference tool - DIGITS') # Positional arguments parser.add_argument( 'input_list', help='An input file containing paths to input data') parser.add_argument( 'output_dir', help='Directory to write outputs to') parser.add_argument( 'model', help='Model ID') # Optional arguments parser.add_argument( '-e', '--epoch', default='-1', help="Epoch (-1 for last)" ) parser.add_argument( '-j', '--jobs_dir', default='none', help='Jobs directory (default: from DIGITS config)', ) parser.add_argument( '-l', '--layers', default='none', help='Which layers to write to output ("none" [default] or "all")', ) parser.add_argument( '-b', '--batch_size', type=int, default=1, help='Batch size', ) parser.add_argument( '-g', '--gpu', type=int, default=None, help='GPU to use (as in nvidia-smi output, default: None)', ) parser.add_argument( '--db', action='store_true', help='Input file is a database', ) parser.add_argument( '--resize', dest='resize', action='store_true') parser.add_argument( '--no-resize', dest='resize', action='store_false') parser.set_defaults(resize=True) args = vars(parser.parse_args()) try: infer( args['input_list'], args['output_dir'], args['jobs_dir'], args['model'], args['epoch'], args['batch_size'], args['layers'], args['gpu'], args['db'], args['resize'] ) except Exception as e: logger.error('%s: %s' % (type(e).__name__, e.message)) raise
DIGITS-master
digits/tools/inference.py
from s3_walker import S3Walker class MockS3Walker(S3Walker): def __init__(self, classes=range(10)): # endpoint, accesskey, secretkey): self.s3_dict = {} self.s3_dict['emptybucket'] = [] data = [] for prefix in ['train/', 'test/']: for i in classes: for j in range(1, 10): data.append(prefix+str(i)+'/image'+str(j)+'.png') self.s3_dict['validbucket'] = data invalid_data = [] for i in classes: for j in range(1, 10): invalid_data.append('train/'+str(i)+'/image'+str(j)+'.png') self.s3_dict['invalidbucket'] = invalid_data # not needed # def connect(self): pass # not needed # def head(self, bucket, key): pass # not needed # def get(self, bucket, key, filename): pass # not needed # def get_as_string(self, bucket, key): pass # not needed # def get_meta(self, bucket, key, meta): pass # not needed # def put(self, bucket, key, filename): pass # not needed # def listbucket(self, bucket, prefix='', max_size=1000, marker='', with_prefix=False): if len(self.s3_dict[bucket]) == 0: raise Exception('No keys in specified bucket') prefix_filtered_list = [k for k in self.s3_dict[bucket] if k.startswith(prefix)] if not with_prefix: return prefix_filtered_list result = [] for full_name in prefix_filtered_list: # train/1/image1.zip file_name = full_name[len(prefix):] # 1/image1.zip label = file_name.split('/')[0] # 1 candidate_result = prefix + label # train/1 if candidate_result not in result: result.append(candidate_result) return result
DIGITS-master
digits/tools/mock_s3_walker.py
#!/usr/bin/env python2 # Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved. import argparse from collections import Counter import logging import operator import os.path import sys import time # Find the best implementation available try: from cStringIO import StringIO except ImportError: from StringIO import StringIO import lmdb import numpy as np import PIL.Image # Add path for DIGITS package sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import digits.config # noqa from digits import log # noqa # Import digits.config first to set path to Caffe import caffe.io # noqa import caffe_pb2 # noqa logger = logging.getLogger('digits.tools.analyze_db') np.set_printoptions(suppress=True, precision=3) class DbReader(object): """ Reads a database """ def __init__(self, location): """ Arguments: location -- where is the database """ self._db = lmdb.open(location, map_size=1024**3, # 1MB readonly=True, lock=False) with self._db.begin() as txn: self.total_entries = txn.stat()['entries'] def entries(self): """ Generator returning all entries in the DB """ with self._db.begin() as txn: cursor = txn.cursor() for item in cursor: yield item def validate_database_path(database): """ Returns a valid database path Throws ValueErrors """ p = os.path.abspath(database) if not os.path.exists(p): raise ValueError('No such file or directory') if os.path.isfile(p): p = os.path.dirname(p) if not os.path.isdir(p): raise ValueError('Not a directory') return p def print_datum(datum): """ Utility for printing a datum """ logger.debug('\tWxHxC: %sx%sx%s' % (datum.width, datum.height, datum.channels)) logger.debug('\tLabel: %s' % (datum.label if datum.HasField('label') else 'None',)) logger.debug('\tEncoded: %s' % datum.encoded) def analyze_db(database, only_count=False, force_same_shape=False, print_data=False, ): """ Looks at the data in a prebuilt database and verifies it Also prints out some information about it Returns True if all entries are valid Arguments: database -- path to the database Keyword arguments: only_count -- only count the entries, don't inspect them force_same_shape -- throw an error if not all images have the same shape print_data -- print the array for each datum """ start_time = time.time() # Open database try: database = validate_database_path(database) except ValueError as e: logger.error(e.message) return False reader = DbReader(database) logger.info('Total entries: %s' % reader.total_entries) unique_shapes = Counter() count = 0 update_time = None for key, value in reader.entries(): datum = caffe_pb2.Datum() datum.ParseFromString(value) if print_data: array = caffe.io.datum_to_array(datum) print '>>> Datum #%d (shape=%s)' % (count, array.shape) print array if (not datum.HasField('height') or datum.height == 0 or not datum.HasField('width') or datum.width == 0): if datum.encoded: if force_same_shape or not len(unique_shapes.keys()): # Decode datum to learn the shape s = StringIO() s.write(datum.data) s.seek(0) img = PIL.Image.open(s) width, height = img.size channels = len(img.split()) else: # We've already decoded one image, don't bother reading the rest width = '?' height = '?' channels = '?' else: errstr = 'Shape is not set and datum is not encoded' logger.error(errstr) raise ValueError(errstr) else: width, height, channels = datum.width, datum.height, datum.channels shape = '%sx%sx%s' % (width, height, channels) unique_shapes[shape] += 1 if force_same_shape and len(unique_shapes.keys()) > 1: logger.error("Images with different shapes found: %s and %s" % tuple(unique_shapes.keys())) return False count += 1 # Send update every 2 seconds if update_time is None or (time.time() - update_time) > 2: logger.debug('>>> Key %s' % key) print_datum(datum) logger.debug('Progress: %s/%s' % (count, reader.total_entries)) update_time = time.time() if only_count: # quit after reading one count = reader.total_entries logger.info('Assuming all entries have same shape ...') unique_shapes[unique_shapes.keys()[0]] = count break if count != reader.total_entries: logger.warning('LMDB reported %s total entries, but only read %s' % (reader.total_entries, count)) for key, val in sorted(unique_shapes.items(), key=operator.itemgetter(1), reverse=True): logger.info('%s entries found with shape %s (WxHxC)' % (val, key)) logger.info('Completed in %s seconds.' % (time.time() - start_time,)) return True if __name__ == '__main__': parser = argparse.ArgumentParser(description='Analyze-Db tool - DIGITS') # Positional arguments parser.add_argument('database', help='Path to the database') # Optional arguments parser.add_argument('--only-count', action="store_true", help="Only print the number of entries, don't analyze the data") parser.add_argument('--force-same-shape', action="store_true", help='Throw an error if not all entries have the same shape') parser.add_argument('--print-data', action="store_true", help='Print the array for each datum (best used with --only-count)') args = vars(parser.parse_args()) if analyze_db(args['database'], only_count=args['only_count'], force_same_shape=args['force_same_shape'], print_data=args['print_data'], ): sys.exit(0) else: sys.exit(1)
DIGITS-master
digits/tools/analyze_db.py
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import shutil import tempfile import unittest from . import create_generic_db from digits import extensions from digits import test_utils from digits.utils import constants test_utils.skipIfNotFramework('none') class BaseTest(object): FEATURE_ENCODING = "png" LABEL_ENCODING = "none" BATCH_SIZE = 256 NUM_THREADS = 2 """ Provides some helpful files and utilities """ @classmethod def setUpClass(cls): if extensions.data.get_extension(cls.EXTENSION_ID) is None: raise unittest.SkipTest('Extension "%s" is not installed' % cls.EXTENSION_ID) cls.dataset_dir = tempfile.mkdtemp() cls.extension_class = extensions.data.get_extension(cls.EXTENSION_ID) cls.extension = cls.extension_class(**cls.EXTENSION_PARAMS) @classmethod def tearDownClass(cls): try: shutil.rmtree(cls.dataset_dir) except OSError: raise class BaseTestGradientsExtension(BaseTest): """ Create databases for the gradient extension """ EXTENSION_ID = "image-gradients" EXTENSION_PARAMS = { "train_image_count": 10000, "val_image_count": 50, "test_image_count": 10, "image_width": 256, "image_height": 128 } FORCE_SAME_SHAPE = True def create_db(self, stage): # create main DB creator object and execute main method db_creator = create_generic_db.DbCreator() db_creator.create_db( self.extension, stage, self.dataset_dir, self.BATCH_SIZE, self.NUM_THREADS, self.FEATURE_ENCODING, self.LABEL_ENCODING, force_same_shape=self.FORCE_SAME_SHAPE) def test_create_stages(self): for stage in (constants.TRAIN_DB, constants.VAL_DB, constants.TEST_DB): yield self.create_db, stage class TestGradientsExtension(BaseTestGradientsExtension): FORCE_SAME_SHAPE = True class TestGradientsExtensionDontForceSameShape(BaseTestGradientsExtension): FORCE_SAME_SHAPE = False
DIGITS-master
digits/tools/test_create_generic_db.py
#!/usr/bin/env python2 # Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import argparse import logging import os import random import requests import re import sys import time import urllib # Add path for DIGITS package sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import digits.config # noqa from digits import utils, log # noqa logger = logging.getLogger('digits.tools.parse_folder') def unescape(s): return urllib.unquote(s) def validate_folder(folder): if utils.is_url(folder): try: r = requests.head(folder, timeout=utils.HTTP_TIMEOUT) if r.status_code not in [requests.codes.ok, requests.codes.moved, requests.codes.found]: logger.error('"%s" returned status_code %s' % (folder, r.status_code)) return False except Exception as e: logger.error('%s: %s' % (type(e).__name__, e)) return False return True if not os.path.exists(folder): logger.error('folder "%s" does not exist' % folder) return False if not os.path.isdir(folder): logger.error('"%s" is not a directory' % folder) return False if not os.access(folder, os.R_OK): logger.error('you do not have read access to folder "%s"' % folder) return False return True def validate_output_file(filename): if filename is None: return True if os.path.exists(filename): logger.error('output file "%s" already exists!' % filename) return False output_dir = os.path.dirname(filename) if not output_dir: output_dir = '.' if not os.path.exists(output_dir): logger.error('output directory "%s" does not exist!' % output_dir) return False if not os.access(output_dir, os.W_OK): logger.error('you do not have write access to output directory "%s"!' % output_dir) return False return True def validate_input_file(filename): if not os.path.exists(filename) or not os.path.isfile(filename): logger.error('input file "%s" does not exist!' % filename) return False if not os.access(filename, os.R_OK): logger.error('you do not have read access to "%s"!' % filename) return False return True def validate_range(number, min_value=None, max_value=None, allow_none=False): if number is None: if allow_none: return True else: logger.error('invalid value %s' % number) return False try: float(number) except ValueError: logger.error('invalid value %s' % number) return False if min_value is not None and number < min_value: logger.error('invalid value %s' % number) return False if max_value is not None and number > max_value: logger.error('invalid value %s' % number) return False return True def calculate_percentages(labels_file, train_file, percent_train, val_file, percent_val, test_file, percent_test, **kwargs): """ Returns (percent_train, percent_val, percent_test) Throws exception on errors """ # reject any percentages not between 0-100 assert all(x is None or 0 <= x <= 100 for x in [percent_train, percent_val, percent_test]), \ 'all percentages must be 0-100 inclusive or not specified' # return values pt = None pv = None ps = None # making these sets mt = False mv = False ms = False if train_file is not None: pt = percent_train mt = True if val_file is not None: pv = percent_val mv = True if test_file is not None: ps = percent_test ms = True making = sum([mt, mv, ms]) assert making > 0, 'must specify at least one of train_file, val_file and test_file' if train_file is not None: assert validate_output_file(labels_file) else: assert validate_input_file(labels_file) if making == 1: if mt: return (100, 0, 0) elif mv: return (0, 100, 0) else: return (0, 0, 100) elif making == 2: if mt and mv: assert not (pt is None and pv is None), 'must give percent_train or percent_val' if pt is not None and pv is not None: assert (pt + pv) == 100, 'percentages do not sum to 100' return (pt, pv, 0) elif pt is not None: return (pt, 100 - pt, 0) else: return (100 - pv, pv, 0) elif mt and ms: assert not (pt is None and ps is None), 'must give percent_train or percent_test' if pt is not None and ps is not None: assert (pt + ps) == 100, 'percentages do not sum to 100' return (pt, 0, ps) elif pt is not None: return (pt, 0, 100 - pt) else: return (100 - ps, 0, ps) elif mv and ms: assert not (pv is None and ps is None), 'must give percent_val or percent_test' if pv is not None and ps is not None: assert (pv + ps) == 100, 'percentages do not sum to 100' return (0, pv, ps) elif pv is not None: return (0, pv, 100 - pv) else: return (0, 100 - ps, ps) elif making == 3: specified = sum([pt is not None, pv is not None, ps is not None]) assert specified >= 2, 'must specify two of percent_train, percent_val, and percent_test' if specified == 3: assert (pt + pv + ps) == 100, 'percentages do not sum to 100' return (pt, pv, ps) elif specified == 2: if pt is None: assert (pv + ps) <= 100, 'percentages cannot exceed 100' return (100 - (pv + ps), pv, ps) elif pv is None: assert (pt + ps) <= 100, 'percentages cannot exceed 100' return (pt, 100 - (pt + ps), ps) elif ps is None: assert (pt + pv) <= 100, 'percentages cannot exceed 100' return (pt, pv, 100 - (pt + pv)) def parse_web_listing(url): """Utility for parse_folder() Parses an autoindexed folder into directories and files Returns (dirs, files) """ dirs = [] files = [] r = requests.get(url, timeout=3.05) if r.status_code != requests.codes.ok: raise Exception('HTTP Status Code %s' % r.status_code) for line in r.content.split('\n'): line = line.strip() # Matches nginx and apache's autoindex formats match = re.match( r'^.*\<a.+href\=[\'\"]([^\'\"]+)[\'\"].*\>.*(\w{1,4}-\w{1,4}-\w{1,4})', line, flags=re.IGNORECASE) if match: if match.group(1).endswith('/'): dirs.append(match.group(1)) elif match.group(1).lower().endswith(utils.image.SUPPORTED_EXTENSIONS): files.append(match.group(1)) return (dirs, files) def web_listing_all_files(url, count=0, max_count=None): """Utility for parse_folder() Gets all files from a url by parsing the directory and all subdirectories looking for image files Returns (urls, count) (recursive) """ urls = [] dirs, files = parse_web_listing(url) for f in files: urls.append(url + f) count += 1 if max_count is not None and count >= max_count: logger.warning('Reached maximum limit for this category') return urls, count for d in dirs: new_urls, count = web_listing_all_files(url + d, count, max_count) urls += new_urls if max_count is not None and count >= max_count: break return urls, count def three_way_split_indices(size, pct_b, pct_c): """ Utility for splitting an array Returns (a, b) where a and b are indices for splitting the array into 3 pieces Arguments: size -- the size of the array pct_b -- the percent of the array that should be used for group b pct_c -- the percent of the array that should be used for group c """ assert 0 <= pct_b <= 100 assert 0 <= pct_c <= 100 pct_a = 100 - (pct_b + pct_c) assert 0 <= pct_a <= 100 if pct_a >= 100: return size, size elif pct_b >= 100: return 0, size elif pct_c >= 100: return 0, 0 else: a = int(round(float(size) * pct_a / 100)) if pct_a and not a: a = 1 b = int(round(float(size) * pct_b / 100)) if a + b > size: b = size - a if pct_b and not b: if a > 1: a -= 1 b = 1 elif a != size: b = 1 c = size - (a + b) if pct_c and not c: if b > 1: b -= 1 c = 1 elif a > 1: a -= 1 c = 1 assert a + b + c == size return a, a + b def parse_folder(folder, labels_file, train_file=None, percent_train=None, val_file=None, percent_val=None, test_file=None, percent_test=None, min_per_category=2, max_per_category=None, ): """ Parses a folder of images into three textfiles Returns True on success Arguments: folder -- a folder containing folders of images (can be a filesystem path or a url) labels_file -- file for labels Keyword Arguments: train_file -- output file for training images percent_test -- percentage of images to use in the training set val_file -- output file for validation images percent_val -- percentage of images to use in the validation set test_file -- output file for test images percent_test -- percentage of images to use in the test set min_per_category -- minimum number of images per category max_per_category -- maximum number of images per category """ create_labels = (percent_train > 0) labels = [] # Read the labels from labels_file if not create_labels: with open(labels_file) as infile: for line in infile: line = line.strip() if line: labels.append(line) # Verify that at least two category folders exist folder_is_url = utils.is_url(folder) if folder_is_url: if not folder.endswith('/'): folder += '/' subdirs, _ = parse_web_listing(folder) else: if os.path.exists(folder) and os.path.isdir(folder): subdirs = [] for filename in os.listdir(folder): subdir = os.path.join(folder, filename) if os.path.isdir(subdir): subdirs.append(subdir) else: logger.error('folder does not exist') return False subdirs.sort() if len(subdirs) < 2: logger.error('folder must contain at least two subdirectories') return False # Parse the folder train_count = 0 val_count = 0 test_count = 0 if percent_train: train_outfile = open(train_file, 'w') if percent_val: val_outfile = open(val_file, 'w') if percent_test: test_outfile = open(test_file, 'w') subdir_index = 0 label_index = 0 for subdir in subdirs: # Use the directory name as the label label_name = subdir if folder_is_url: label_name = unescape(label_name) else: label_name = os.path.basename(label_name) label_name = label_name.replace('_', ' ') if label_name.endswith('/'): # Remove trailing slash label_name = label_name[0:-1] if create_labels: labels.append(label_name) label_index = len(labels) - 1 else: found = False for i, l in enumerate(labels): if label_name == l: found = True label_index = i break if not found: logger.warning('Category "%s" not found in labels_file. Skipping.' % label_name) continue logger.debug('Category - %s' % label_name) lines = [] # Read all images in the folder if folder_is_url: urls, _ = web_listing_all_files(folder + subdir, max_count=max_per_category) for url in urls: lines.append('%s %d' % (url, label_index)) else: for dirpath, dirnames, filenames in os.walk(os.path.join(folder, subdir), followlinks=True): for filename in filenames: if filename.lower().endswith(utils.image.SUPPORTED_EXTENSIONS): lines.append('%s %d' % (os.path.join(folder, subdir, dirpath, filename), label_index)) if max_per_category is not None and len(lines) >= max_per_category: break if max_per_category is not None and len(lines) >= max_per_category: logger.warning('Reached maximum limit for this category') break # Split up the lines train_lines = [] val_lines = [] test_lines = [] required_categories = 0 if percent_train > 0: required_categories += 1 if percent_val > 0: required_categories += 1 if percent_test > 0: required_categories += 1 if not lines or len(lines) < required_categories or len(lines) < min_per_category: logger.warning('Not enough images for this category') labels.pop() else: random.shuffle(lines) a, b = three_way_split_indices(len(lines), percent_val, percent_test) train_lines = lines[:a] val_lines = lines[a:b] test_lines = lines[b:] if train_lines: train_outfile.write('\n'.join(train_lines) + '\n') train_count += len(train_lines) if val_lines: val_outfile.write('\n'.join(val_lines) + '\n') val_count += len(val_lines) if test_lines: test_outfile.write('\n'.join(test_lines) + '\n') test_count += len(test_lines) subdir_index += 1 logger.debug('Progress: %0.2f' % (float(subdir_index) / len(subdirs))) if percent_train: train_outfile.close() if percent_val: val_outfile.close() if percent_test: test_outfile.close() if create_labels: if len(labels) < 2: logger.error('Did not find two valid categories') return False else: with open(labels_file, 'w') as labels_outfile: labels_outfile.write('\n'.join(labels) + '\n') logger.info('Found %d images in %d categories.' % (train_count + val_count + test_count, len(labels))) logger.info('Selected %d for training.' % train_count) logger.info('Selected %d for validation.' % val_count) logger.info('Selected %d for testing.' % test_count) return True if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parse-Folder tool - DIGITS') # Positional arguments parser.add_argument( 'folder', help='A filesystem path or url to the folder of images' ) parser.add_argument( 'labels_file', help=('The file containing labels. If train_file is set, this file ' 'will be generated (output). Otherwise, this file will be read (input).') ) # Optional arguments parser.add_argument( '-t', '--train_file', help='The output file for training images' ) parser.add_argument( '-T', '--percent_train', type=float, help='Percent of images used for the training set (constant across all categories)' ) parser.add_argument( '-v', '--val_file', help='The output file for validation images' ) parser.add_argument( '-V', '--percent_val', type=float, help='Percent of images used for the validation set (constant across all categories)' ) parser.add_argument( '-s', '--test_file', help='The output file for test images' ) parser.add_argument( '-S', '--percent_test', type=float, help='Percent of images used for the test set (constant across all categories)' ) parser.add_argument( '--min', type=int, metavar='MIN_PER_CATEGORY', default=1, help=("What is the minimum allowable number of images per category? " "(categories which don't meet this criteria will be ignored) [default=2]") ) parser.add_argument( '--max', type=int, metavar='MAX_PER_CATEGORY', help=("What is the maximum limit of images per category? " "(categories which exceed this limit will be trimmed down) [default=None]") ) args = vars(parser.parse_args()) for valid in [ validate_folder(args['folder']), validate_range(args['percent_train'], min_value=0, max_value=100, allow_none=True), validate_output_file(args['train_file']), validate_range(args['percent_val'], min_value=0, max_value=100, allow_none=True), validate_output_file(args['val_file']), validate_range(args['percent_test'], min_value=0, max_value=100, allow_none=True), validate_output_file(args['test_file']), validate_range(args['min'], min_value=1), validate_range(args['max'], min_value=1, allow_none=True), ]: if not valid: sys.exit(1) try: percent_train, percent_val, percent_test = calculate_percentages(**args) except Exception as e: logger.error('%s: %s' % (type(e).__name__, e)) sys.exit(1) start_time = time.time() if parse_folder(args['folder'], args['labels_file'], train_file=args['train_file'], percent_train=percent_train, val_file=args['val_file'], percent_val=percent_val, test_file=args['test_file'], percent_test=percent_test, min_per_category=args['min'], max_per_category=args['max'], ): logger.info('Done after %d seconds.' % (time.time() - start_time)) sys.exit(0) else: sys.exit(1)
DIGITS-master
digits/tools/parse_folder.py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from digits import test_utils import os.path import tempfile try: from s3_walker import S3Walker from boto.s3.bucket import Bucket from boto.s3.key import Key import_failed = False except ImportError: import_failed = True global data, bucketData data = 'content' put_content = '' if not import_failed: bucketData = [Key(name='key0'), Key(name='key1'), Key(name='key2')] def mock_get_bucket(bucketname): bucket = Bucket(bucketname) bucket.get_key = mock_get_key bucket.list = mock_list_bucket return bucket def mock_get_key(keyname): key = Key(name=keyname) key.set_contents_from_string('content') key.set_metadata('metadata_name', 'metadata_val') return key def mock_set_contents_from_string(self, content): global data data = content def mock_get_contents_as_string(self): return data def mock_list_bucket(prefix='', delimiter='', marker=''): return bucketData def mock_set_contents_from_filename(self, filename): file = open(filename, 'r') read = file.read() global put_content put_content = read file.close() if not import_failed: Key.set_contents_from_string = mock_set_contents_from_string Key.get_contents_as_string = mock_get_contents_as_string Key.set_contents_from_filename = mock_set_contents_from_filename Bucket.list = mock_list_bucket test_utils.skipIfNotFramework('none') class TestInit(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import s3_walker, most likely cause is Boto not installed') def test_valid_endpoint(self): walker = S3Walker('http://endpoint.com', 'accesskey', 'secretkey') assert walker.host == 'endpoint.com' assert walker.accesskey == 'accesskey' assert walker.secretkey == 'secretkey' def test_http_https_endpoint(self): # Test that HTTP endpoint is parsed properly and defaults to port 80 http_walker = S3Walker('http://endpoint.com', 'accesskey', 'secretkey') assert http_walker.host == 'endpoint.com' assert http_walker.port == 80 # Test that HTTPS endpoint is parsed properly and defaults to port 443 https_walker = S3Walker('https://endpoint.com', 'accesskey', 'secretkey') assert https_walker.host == 'endpoint.com' assert https_walker.port == 443 def test_port(self): # Validate port is parsed properly walker = S3Walker('http://endpoint.com:81', 'accesskey', 'secretkey') assert walker.port == 81 def test_invalid_endpoint(self): # Validate exception is thrown for invalid endpoint (no http:// or https://) try: S3Walker('endpoint.com', 'accesskey', 'secretkey') except ValueError: return assert False class TestGetMethods(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import s3_walker, most likely cause is Boto not installed') cls.walker = S3Walker('http://endpoint.com', 'accesskey', 'secretkey') cls.walker.connect() cls.walker.conn.get_bucket = mock_get_bucket def test_head(self): # test head operation to confirm S3Walker requests correct key to S3 endpoint key = self.walker.head('bucket', 'key') assert key.name == 'key' def test_get_to_filename(self): # test get operation to confirm that key is properly stored to file filename = tempfile.mkstemp() self.walker.get('bucket', 'key', filename[1]) assert os.path.isfile(filename[1]) os.remove(filename[1]) def test_get_as_string(self): # test get as string operation to confirm key is properly returned as string assert self.walker.get_as_string('bucket', 'key') == 'content' def test_get_meta(self): # test get metadata operation to confirm metadata is properly returned from key assert self.walker.get_meta('bucket', 'key', 'metadata_name') == 'metadata_val' def test_list_bucket(self): # test list bucket to confirm list of keys is returned from bucket keys = self.walker.listbucket('bucket') assert len(keys) == 3 count = 0 for key in keys: assert key == 'key' + str(count) count += 1 class TestPut(): @classmethod def setUpClass(cls): if import_failed: test_utils.skipTest('Could not import s3_walker, most likely cause is Boto not installed') cls.walker = S3Walker('http://endpoint.com', 'accesskey', 'secretkey') cls.walker.connect() cls.walker.conn.get_bucket = mock_get_bucket def test_put(self): putData = tempfile.mkstemp() file = open(putData[1], 'w') expected_data = 'this the data for test put' file.write(expected_data) file.close() self.walker.put('bucket', 'key', putData[1]) assert put_content == expected_data os.remove(putData[1])
DIGITS-master
digits/tools/test_s3_walker.py
#!/usr/bin/env python2 # Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import argparse from collections import Counter import logging import math import os import Queue import random import re import shutil import sys import threading import time # Find the best implementation available try: from cStringIO import StringIO except ImportError: from StringIO import StringIO import h5py import lmdb import numpy as np import PIL.Image # Add path for DIGITS package sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import digits.config # noqa from digits import utils, log # noqa # Import digits.config first to set the path to Caffe import caffe.io # noqa import caffe_pb2 # noqa if digits.config.config_value('tensorflow')['enabled']: import tensorflow as tf else: tf = None logger = logging.getLogger('digits.tools.create_db') class Error(Exception): pass class BadInputFileError(Error): """Input file is empty""" pass class ParseLineError(Error): """Failed to parse a line in the input file""" pass class LoadError(Error): """Failed to load image[s]""" pass class WriteError(Error): """Failed to write image[s]""" pass class Hdf5DatasetExtendError(Error): """Failed to extend an hdf5 dataset""" pass class DbWriter(object): """ Abstract class for writing to databases """ def __init__(self, output_dir, image_height, image_width, image_channels): self._dir = output_dir os.makedirs(output_dir) self._image_height = image_height self._image_width = image_width self._image_channels = image_channels self._count = 0 def write_batch(self, batch): raise NotImplementedError def count(self): return self._count class LmdbWriter(DbWriter): # TODO pass class Hdf5Writer(DbWriter): """ A class for writing to HDF5 files """ LIST_FILENAME = 'list.txt' DTYPE = 'float32' def __init__(self, **kwargs): """ Keyword arguments: compression -- the type of dataset compression dset_limit -- the dataset size limit """ self._compression = kwargs.pop('compression', None) self._dset_limit = kwargs.pop('dset_limit', None) super(Hdf5Writer, self).__init__(**kwargs) self._db = None if self._dset_limit is not None: self._max_count = self._dset_limit / ( self._image_height * self._image_width * self._image_channels) else: self._max_count = None def write_batch(self, batch): # convert batch to numpy arrays if batch[0][0].ndim == 2: # add channel axis for grayscale images data_batch = np.array([i[0][..., np.newaxis] for i in batch]) else: data_batch = np.array([i[0] for i in batch]) # Transpose to (channels, height, width) data_batch = data_batch.transpose((0, 3, 1, 2)) label_batch = np.array([i[1] for i in batch]) # first batch if self._db is None: self._create_new_file(len(batch)) self._db['data'][:] = data_batch self._db['label'][:] = label_batch self._count += len(batch) return current_count = self._db['data'].len() # will fit in current dataset if current_count + len(batch) <= self._max_count: self._db['data'].resize(current_count + len(batch), axis=0) self._db['label'].resize(current_count + len(batch), axis=0) self._db['data'][-len(batch):] = data_batch self._db['label'][-len(batch):] = label_batch self._count += len(batch) return # calculate how many will fit in current dataset split = self._max_count - current_count if split > 0: # put what we can into the current dataset self._db['data'].resize(self._max_count, axis=0) self._db['label'].resize(self._max_count, axis=0) self._db['data'][-split:] = data_batch[:split] self._db['label'][-split:] = label_batch[:split] self._count += split self._create_new_file(len(batch) - split) self._db['data'][:] = data_batch[split:] self._db['label'][:] = label_batch[split:] self._count += len(batch) - split def _create_new_file(self, initial_count): assert self._max_count is None or initial_count <= self._max_count, \ 'Your batch size is too large for your dataset limit - %d vs %d' % \ (initial_count, self._max_count) # close the old file if self._db is not None: self._db.close() mode = 'a' else: mode = 'w' # get the filename filename = self._new_filename() logger.info('Creating HDF5 database at "%s" ...' % os.path.join(*filename.split(os.sep)[-2:])) # update the list with open(self._list_filename(), mode) as outfile: outfile.write('%s\n' % filename) # create the new file self._db = h5py.File(os.path.join(self._dir, filename), 'w') # initialize the datasets self._db.create_dataset('data', (initial_count, self._image_channels, self._image_height, self._image_width), maxshape=(self._max_count, self._image_channels, self._image_height, self._image_width), chunks=True, compression=self._compression, dtype=self.DTYPE) self._db.create_dataset('label', (initial_count,), maxshape=(self._max_count,), chunks=True, compression=self._compression, dtype=self.DTYPE) def _list_filename(self): return os.path.join(self._dir, self.LIST_FILENAME) def _new_filename(self): return '%s.h5' % self.count() def create_db(input_file, output_dir, image_width, image_height, image_channels, backend, resize_mode=None, image_folder=None, shuffle=True, mean_files=None, delete_files=False, **kwargs): """ Create a database of images from a list of image paths Raises exceptions on errors Arguments: input_file -- a textfile containing labelled image paths output_dir -- the location to store the created database image_width -- image resize width image_height -- image resize height image_channels -- image channels backend -- the DB format (lmdb/hdf5) Keyword arguments: resize_mode -- passed to utils.image.resize_image() shuffle -- if True, shuffle the images in the list before creating mean_files -- a list of mean files to save delete_files -- if True, delete raw images after creation of database """ # Validate arguments if not os.path.exists(input_file): raise ValueError('input_file does not exist') if os.path.exists(output_dir): logger.warning('removing existing database') if os.path.isdir(output_dir): shutil.rmtree(output_dir, ignore_errors=True) else: os.remove(output_dir) if image_width <= 0: raise ValueError('invalid image width') if image_height <= 0: raise ValueError('invalid image height') if image_channels not in [1, 3]: raise ValueError('invalid number of channels') if resize_mode not in [None, 'crop', 'squash', 'fill', 'half_crop']: raise ValueError('invalid resize_mode') if image_folder is not None and not os.path.exists(image_folder): raise ValueError('image_folder does not exist') if mean_files: for mean_file in mean_files: if os.path.exists(mean_file): logger.warning('overwriting existing mean file "%s"!' % mean_file) else: dirname = os.path.dirname(mean_file) if not dirname: dirname = '.' if not os.path.exists(dirname): raise ValueError('Cannot save mean file at "%s"' % mean_file) compute_mean = bool(mean_files) # Load lines from input_file into a load_queue load_queue = Queue.Queue() image_count = _fill_load_queue(input_file, load_queue, shuffle) # Start some load threads batch_size = _calculate_batch_size(image_count, bool(backend == 'hdf5'), kwargs.get('hdf5_dset_limit'), image_channels, image_height, image_width) num_threads = _calculate_num_threads(batch_size, shuffle) write_queue = Queue.Queue(2 * batch_size) summary_queue = Queue.Queue() for _ in xrange(num_threads): p = threading.Thread(target=_load_thread, args=(load_queue, write_queue, summary_queue, image_width, image_height, image_channels, resize_mode, image_folder, compute_mean), kwargs={'backend': backend, 'encoding': kwargs.get('encoding', None)}, ) p.daemon = True p.start() start = time.time() if backend == 'lmdb': _create_lmdb(image_count, write_queue, batch_size, output_dir, summary_queue, num_threads, mean_files, **kwargs) elif backend == 'hdf5': _create_hdf5(image_count, write_queue, batch_size, output_dir, image_width, image_height, image_channels, summary_queue, num_threads, mean_files, **kwargs) else: raise ValueError('invalid backend') if delete_files: # delete files deleted_files = 0 distribution = Counter() with open(input_file) as infile: for line in infile: try: # delete file [path, label] = _parse_line(line, distribution) os.remove(path) deleted_files += 1 except ParseLineError: pass logger.info("Deleted " + str(deleted_files) + " files") logger.info('Database created after %d seconds.' % (time.time() - start)) def _create_tfrecords(image_count, write_queue, batch_size, output_dir, summary_queue, num_threads, mean_files=None, encoding=None, lmdb_map_size=None, **kwargs): """ Creates the TFRecords database(s) """ LIST_FILENAME = 'list.txt' if not tf: raise ValueError("Can't create TFRecords as support for Tensorflow " "is not enabled.") wait_time = time.time() threads_done = 0 images_loaded = 0 images_written = 0 image_sum = None compute_mean = bool(mean_files) os.makedirs(output_dir) # We need shards to achieve good mixing properties because TFRecords # is a sequential/streaming reader, and has no random access. num_shards = 16 # @TODO(tzaman) put some logic behind this writers = [] with open(os.path.join(output_dir, LIST_FILENAME), 'w') as outfile: for shard_id in xrange(num_shards): shard_name = 'SHARD_%03d.tfrecords' % (shard_id) filename = os.path.join(output_dir, shard_name) writers.append(tf.python_io.TFRecordWriter(filename)) outfile.write('%s\n' % (filename)) shard_id = 0 while (threads_done < num_threads) or not write_queue.empty(): # Send update every 2 seconds if time.time() - wait_time > 2: logger.debug('Processed %d/%d' % (images_written, image_count)) wait_time = time.time() processed_something = False if not summary_queue.empty(): result_count, result_sum = summary_queue.get() images_loaded += result_count # Update total_image_sum if compute_mean and result_count > 0 and result_sum is not None: if image_sum is None: image_sum = result_sum else: image_sum += result_sum threads_done += 1 processed_something = True if not write_queue.empty(): writers[shard_id].write(write_queue.get()) shard_id += 1 if shard_id >= num_shards: shard_id = 0 images_written += 1 processed_something = True if not processed_something: time.sleep(0.2) if images_loaded == 0: raise LoadError('no images loaded from input file') logger.debug('%s images loaded' % images_loaded) if images_written == 0: raise WriteError('no images written to database') logger.info('%s images written to database' % images_written) if compute_mean: _save_means(image_sum, images_written, mean_files) for writer in writers: writer.close() def _create_lmdb(image_count, write_queue, batch_size, output_dir, summary_queue, num_threads, mean_files=None, encoding=None, lmdb_map_size=None, **kwargs): """ Create an LMDB Keyword arguments: encoding -- image encoding format lmdb_map_size -- the initial LMDB map size """ wait_time = time.time() threads_done = 0 images_loaded = 0 images_written = 0 image_sum = None batch = [] compute_mean = bool(mean_files) db = lmdb.open(output_dir, map_size=lmdb_map_size, map_async=True, max_dbs=0) while (threads_done < num_threads) or not write_queue.empty(): # Send update every 2 seconds if time.time() - wait_time > 2: logger.debug('Processed %d/%d' % (images_written, image_count)) wait_time = time.time() processed_something = False if not summary_queue.empty(): result_count, result_sum = summary_queue.get() images_loaded += result_count # Update total_image_sum if compute_mean and result_count > 0 and result_sum is not None: if image_sum is None: image_sum = result_sum else: image_sum += result_sum threads_done += 1 processed_something = True if not write_queue.empty(): datum = write_queue.get() batch.append(datum) if len(batch) == batch_size: _write_batch_lmdb(db, batch, images_written) images_written += len(batch) batch = [] processed_something = True if not processed_something: time.sleep(0.2) if len(batch) > 0: _write_batch_lmdb(db, batch, images_written) images_written += len(batch) if images_loaded == 0: raise LoadError('no images loaded from input file') logger.debug('%s images loaded' % images_loaded) if images_written == 0: raise WriteError('no images written to database') logger.info('%s images written to database' % images_written) if compute_mean: _save_means(image_sum, images_written, mean_files) db.close() def _create_hdf5(image_count, write_queue, batch_size, output_dir, image_width, image_height, image_channels, summary_queue, num_threads, mean_files=None, compression=None, hdf5_dset_limit=None, **kwargs): """ Create an HDF5 file Keyword arguments: compression -- dataset compression format """ wait_time = time.time() threads_done = 0 images_loaded = 0 images_written = 0 image_sum = None batch = [] compute_mean = bool(mean_files) writer = Hdf5Writer( output_dir=output_dir, image_height=image_height, image_width=image_width, image_channels=image_channels, dset_limit=hdf5_dset_limit, compression=compression, ) while (threads_done < num_threads) or not write_queue.empty(): # Send update every 2 seconds if time.time() - wait_time > 2: logger.debug('Processed %d/%d' % (images_written, image_count)) wait_time = time.time() processed_something = False if not summary_queue.empty(): result_count, result_sum = summary_queue.get() images_loaded += result_count # Update total_image_sum if compute_mean and result_count > 0 and result_sum is not None: if image_sum is None: image_sum = result_sum else: image_sum += result_sum threads_done += 1 processed_something = True if not write_queue.empty(): batch.append(write_queue.get()) if len(batch) == batch_size: writer.write_batch(batch) images_written += len(batch) batch = [] processed_something = True if not processed_something: time.sleep(0.2) if len(batch) > 0: writer.write_batch(batch) images_written += len(batch) assert images_written == writer.count() if images_loaded == 0: raise LoadError('no images loaded from input file') logger.debug('%s images loaded' % images_loaded) if images_written == 0: raise WriteError('no images written to database') logger.info('%s images written to database' % images_written) if compute_mean: _save_means(image_sum, images_written, mean_files) def _fill_load_queue(filename, queue, shuffle): """ Fill the queue with data from the input file Print the category distribution Returns the number of lines added to the queue NOTE: This can be slow on a large input file, but we need the total image count in order to report the progress, so we might as well read it all """ total_lines = 0 valid_lines = 0 distribution = Counter() with open(filename) as infile: if shuffle: lines = infile.readlines() # less memory efficient random.shuffle(lines) for line in lines: total_lines += 1 try: result = _parse_line(line, distribution) valid_lines += 1 queue.put(result) except ParseLineError: pass else: for line in infile: # more memory efficient total_lines += 1 try: result = _parse_line(line, distribution) valid_lines += 1 queue.put(result) except ParseLineError: pass logger.debug('%s total lines in file' % total_lines) if valid_lines == 0: raise BadInputFileError('No valid lines in input file') logger.info('%s valid lines in file' % valid_lines) for key in sorted(distribution): logger.debug('Category %s has %d images.' % (key, distribution[key])) return valid_lines def _parse_line(line, distribution): """ Parse a line in the input file into (path, label) """ line = line.strip() if not line: raise ParseLineError # Expect format - [/]path/to/file.jpg 123 match = re.match(r'(.+)\s+(\d+)\s*$', line) if match is None: raise ParseLineError path = match.group(1) label = int(match.group(2)) distribution[label] += 1 return path, label def _calculate_batch_size(image_count, is_hdf5=False, hdf5_dset_limit=None, image_channels=None, image_height=None, image_width=None): """ Calculates an appropriate batch size for creating this database """ if is_hdf5 and hdf5_dset_limit is not None: return min(100, image_count, hdf5_dset_limit / (image_channels * image_height * image_width)) else: return min(100, image_count) def _calculate_num_threads(batch_size, shuffle): """ Calculates an appropriate number of threads for creating this database """ if shuffle: return min(10, int(round(math.sqrt(batch_size)))) else: # XXX This is the only way to preserve order for now # This obviously hurts performance considerably return 1 def _load_thread(load_queue, write_queue, summary_queue, image_width, image_height, image_channels, resize_mode, image_folder, compute_mean, backend=None, encoding=None): """ Consumes items in load_queue Produces items to write_queue Stores cumulative results in summary_queue """ images_added = 0 if compute_mean: image_sum = _initial_image_sum(image_width, image_height, image_channels) else: image_sum = None while not load_queue.empty(): try: path, label = load_queue.get(True, 0.05) except Queue.Empty: continue # prepend path with image_folder, if appropriate if not utils.is_url(path) and image_folder and not os.path.isabs(path): path = os.path.join(image_folder, path) try: image = utils.image.load_image(path) except utils.errors.LoadImageError as e: logger.warning('[%s %s] %s: %s' % (path, label, type(e).__name__, e)) continue image = utils.image.resize_image(image, image_height, image_width, channels=image_channels, resize_mode=resize_mode, ) if compute_mean: image_sum += image if backend == 'lmdb': datum = _array_to_datum(image, label, encoding) write_queue.put(datum) elif backend == 'tfrecords': tf_example = _array_to_tf_feature(image, label, encoding) write_queue.put(tf_example) else: write_queue.put((image, label)) images_added += 1 summary_queue.put((images_added, image_sum)) def _initial_image_sum(width, height, channels): """ Returns an array of zeros that will be used to store the accumulated sum of images """ if channels == 1: return np.zeros((height, width), np.float64) else: return np.zeros((height, width, channels), np.float64) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _array_to_tf_feature(image, label, encoding): """ Creates a tensorflow Example from a numpy.ndarray """ if not encoding: image_raw = image.tostring() encoding_id = 0 else: s = StringIO() if encoding == 'png': PIL.Image.fromarray(image).save(s, format='PNG') encoding_id = 1 elif encoding == 'jpg': PIL.Image.fromarray(image).save(s, format='JPEG', quality=90) encoding_id = 2 else: raise ValueError('Invalid encoding type') image_raw = s.getvalue() depth = image.shape[2] if len(image.shape) > 2 else 1 example = tf.train.Example( features=tf.train.Features( feature={ 'height': _int64_feature(image.shape[0]), 'width': _int64_feature(image.shape[1]), 'depth': _int64_feature(depth), 'label': _int64_feature(label), 'image_raw': _bytes_feature(image_raw), 'encoding': _int64_feature(encoding_id), # @TODO(tzaman) - add bitdepth flag? } )) return example.SerializeToString() def _array_to_datum(image, label, encoding): """ Create a caffe Datum from a numpy.ndarray """ if not encoding: # Transform to caffe's format requirements if image.ndim == 3: # Transpose to (channels, height, width) image = image.transpose((2, 0, 1)) if image.shape[0] == 3: # channel swap # XXX see issue #59 image = image[[2, 1, 0], ...] elif image.ndim == 2: # Add a channels axis image = image[np.newaxis, :, :] else: raise Exception('Image has unrecognized shape: "%s"' % image.shape) datum = caffe.io.array_to_datum(image, label) else: datum = caffe_pb2.Datum() if image.ndim == 3: datum.channels = image.shape[2] else: datum.channels = 1 datum.height = image.shape[0] datum.width = image.shape[1] datum.label = label s = StringIO() if encoding == 'png': PIL.Image.fromarray(image).save(s, format='PNG') elif encoding == 'jpg': PIL.Image.fromarray(image).save(s, format='JPEG', quality=90) else: raise ValueError('Invalid encoding type') datum.data = s.getvalue() datum.encoded = True return datum def _write_batch_lmdb(db, batch, image_count): """ Write a batch to an LMDB database """ try: with db.begin(write=True) as lmdb_txn: for i, datum in enumerate(batch): key = '%08d_%d' % (image_count + i, datum.label) lmdb_txn.put(key, datum.SerializeToString()) except lmdb.MapFullError: # double the map_size curr_limit = db.info()['map_size'] new_limit = curr_limit * 2 try: db.set_mapsize(new_limit) # double it except AttributeError as e: version = tuple(int(x) for x in lmdb.__version__.split('.')) if version < (0, 87): raise Error('py-lmdb is out of date (%s vs 0.87)' % lmdb.__version__) else: raise e # try again _write_batch_lmdb(db, batch, image_count) def _save_means(image_sum, image_count, mean_files): """ Save mean[s] to file """ mean = np.around(image_sum / image_count).astype(np.uint8) for mean_file in mean_files: if mean_file.lower().endswith('.npy'): np.save(mean_file, mean) elif mean_file.lower().endswith('.binaryproto'): data = mean # Transform to caffe's format requirements if data.ndim == 3: # Transpose to (channels, height, width) data = data.transpose((2, 0, 1)) if data.shape[0] == 3: # channel swap # XXX see issue #59 data = data[[2, 1, 0], ...] elif mean.ndim == 2: # Add a channels axis data = data[np.newaxis, :, :] blob = caffe_pb2.BlobProto() blob.num = 1 blob.channels, blob.height, blob.width = data.shape blob.data.extend(data.astype(float).flat) with open(mean_file, 'wb') as outfile: outfile.write(blob.SerializeToString()) elif mean_file.lower().endswith(('.jpg', '.jpeg', '.png')): image = PIL.Image.fromarray(mean) image.save(mean_file) else: logger.warning('Unrecognized file extension for mean file: "%s"' % mean_file) continue logger.info('Mean saved at "%s"' % mean_file) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Create-Db tool - DIGITS') # Positional arguments parser.add_argument('input_file', help='An input file of labeled images') parser.add_argument('output_dir', help='Path to the output database') parser.add_argument('width', type=int, help='width of resized images' ) parser.add_argument('height', type=int, help='height of resized images' ) # Optional arguments parser.add_argument('-c', '--channels', type=int, default=3, help='channels of resized images (1 for grayscale, 3 for color [default])' ) parser.add_argument('-r', '--resize_mode', help='resize mode for images (must be "crop", "squash" [default], "fill" or "half_crop")' ) parser.add_argument('-m', '--mean_file', action='append', help="location to output the image mean (doesn't save mean if not specified)") parser.add_argument('-f', '--image_folder', help='folder containing the images (if the paths in input_file are not absolute)') parser.add_argument('-s', '--shuffle', action='store_true', help='Shuffle images before saving' ) parser.add_argument('-e', '--encoding', help='Image encoding format (jpg/png)' ) parser.add_argument('-C', '--compression', help='Database compression format (gzip)' ) parser.add_argument('-b', '--backend', default='lmdb', help='The database backend - lmdb[default], hdf5 or tfrecords') parser.add_argument('--lmdb_map_size', type=int, help='The initial map size for LMDB (in MB)') parser.add_argument('--hdf5_dset_limit', type=int, default=2**31, help='The size limit for HDF5 datasets') parser.add_argument('--delete_files', action='store_true', help='Specifies whether to keep files after creation of dataset') args = vars(parser.parse_args()) if args['lmdb_map_size']: # convert from MB to B args['lmdb_map_size'] <<= 20 try: create_db(args['input_file'], args['output_dir'], args['width'], args['height'], args['channels'], args['backend'], resize_mode=args['resize_mode'], image_folder=args['image_folder'], shuffle=args['shuffle'], mean_files=args['mean_file'], encoding=args['encoding'], compression=args['compression'], lmdb_map_size=args['lmdb_map_size'], hdf5_dset_limit=args['hdf5_dset_limit'], delete_files=args['delete_files'] ) except Exception as e: logger.error('%s: %s' % (type(e).__name__, e.message)) raise
DIGITS-master
digits/tools/create_db.py
#!/usr/bin/env python2 # Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import argparse import logging import os import sys import PIL.Image # Add path for DIGITS package sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import digits.config # noqa from digits import utils, log # noqa logger = logging.getLogger('digits.tools.resize_image') def validate_output_file(filename): if filename is None: return True if os.path.exists(filename): if not os.access(filename, os.W_OK): logger.error('cannot overwrite existing output file "%s"' % filename) return False output_dir = os.path.dirname(filename) if not output_dir: output_dir = '.' if not os.path.exists(output_dir): logger.error('output directory "%s" does not exist' % output_dir) return False if not os.access(output_dir, os.W_OK): logger.error('you do not have write access to output directory "%s"' % output_dir) return False return True def validate_input_file(filename): if not os.path.exists(filename) or not os.path.isfile(filename): logger.error('input file "%s" does not exist' % filename) return False if not os.access(filename, os.R_OK): logger.error('you do not have read access to "%s"' % filename) return False return True def validate_range(number, min_value=None, max_value=None, allow_none=False): if number is None: if allow_none: return True else: logger.error('invalid value %s' % number) return False try: float(number) except ValueError: logger.error('invalid value %s' % number) return False if min_value is not None and number < min_value: logger.error('invalid value %s' % number) return False if max_value is not None and number > max_value: logger.error('invalid value %s' % number) return False return True if __name__ == '__main__': parser = argparse.ArgumentParser(description='Resize-Image tool - DIGITS') # Positional arguments parser.add_argument('image', help='A filesystem path or url to the image' ) parser.add_argument('output', help='The location to output the image' ) parser.add_argument('width', type=int, help='The new width' ) parser.add_argument('height', type=int, help='The new height' ) # Optional arguments parser.add_argument('-c', '--channels', type=int, help='The new number of channels [default is to remain unchanged]' ) parser.add_argument('-m', '--mode', default='squash', help='Resize mode (squash/crop/fill/half_crop) [default is squash]' ) args = vars(parser.parse_args()) for valid in [ validate_range(args['width'], min_value=1), validate_range(args['height'], min_value=1), validate_range(args['channels'], min_value=1, max_value=3, allow_none=True), validate_output_file(args['output']), ]: if not valid: sys.exit(1) # load image image = utils.image.load_image(args['image']) # resize image image = utils.image.resize_image(image, args['height'], args['width'], channels=args['channels'], resize_mode=args['mode'], ) image = PIL.Image.fromarray(image) try: image.save(args['output']) except KeyError: logger.error('Unable to save file to "%s"' % args['output']) sys.exit(1)
DIGITS-master
digits/tools/resize_image.py
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. # # This document should comply with PEP-8 Style Guide # Linter: pylint """ Class for generating Caffe-style learning rates using different policies. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import math logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO) class LRPolicy(object): """This class contains details of learning rate policies that are used in caffe. Calculates and returns the current learning rate. The currently implemented learning rate policies are as follows: - fixed: always return base_lr. - step: return base_lr * gamma ^ (floor(iter / step)) - exp: return base_lr * gamma ^ iter - inv: return base_lr * (1 + gamma * iter) ^ (- power) - multistep: similar to step but it allows non uniform steps defined by stepvalue - poly: the effective learning rate follows a polynomial decay, to be zero by the max_steps. return base_lr (1 - iter/max_steps) ^ (power) - sigmoid: the effective learning rate follows a sigmod decay return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize)))) """ def __init__(self, policy, base_rate, gamma, power, max_steps, step_values): """Initialize a learning rate policy Args: policy: Learning rate policy base_rate: Base learning rate gamma: parameter to compute learning rate power: parameter to compute learning rate max_steps: parameter to compute learning rate step_values: parameter(s) to compute learning rate. should be a string, multiple values divided as csv Returns: - """ self.policy = policy self.base_rate = base_rate self.gamma = gamma self.power = power self.max_steps = max_steps self.step_values = step_values if self.step_values: self.stepvalues_list = map(float, step_values.split(',')) else: self.stepvalues_list = [] if (self.max_steps < len(self.stepvalues_list)): self.policy = 'step' self.stepvalues_list[0] = 1 logging.info("Maximum iterations (i.e., %s) is less than provided step values count " "(i.e, %s), so learning rate policy is reset to (%s) policy with the " "step value (%s).", self.max_steps, len(self.stepvalues_list), self.policy, self.stepvalues_list[0]) else: # Converting stepsize percentages into values for i in range(len(self.stepvalues_list)): self.stepvalues_list[i] = round(self.max_steps * self.stepvalues_list[i] / 100) # Avoids 'nan' values during learning rate calculation if self.stepvalues_list[i] == 0: self.stepvalues_list[i] = 1 if (self.policy == 'step') or (self.policy == 'sigmoid'): # If the policy is not multistep, then even though multiple step values # are provided as input, we will consider only the first value. self.step_size = self.stepvalues_list[0] elif (self.policy == 'multistep'): self.current_step = 0 # This counter is important to take arbitary steps self.stepvalue_size = len(self.stepvalues_list) def get_learning_rate(self, step): """Initialize a learning rate policy Args: step: the current step for which the learning rate should be computed Returns: rate: the learning rate for the requested step """ rate = 0 progress = 100 * (step / self.max_steps) # expressed in percent units if self.policy == "fixed": rate = self.base_rate elif self.policy == "step": current_step = math.floor(step/self.step_size) rate = self.base_rate * math.pow(self.gamma, current_step) elif self.policy == "exp": rate = self.base_rate * math.pow(self.gamma, progress) elif self.policy == "inv": rate = self.base_rate * math.pow(1 + self.gamma * progress, - self.power) elif self.policy == "multistep": if ((self.current_step < self.stepvalue_size) and (step > self.stepvalues_list[self.current_step])): self.current_step = self.current_step + 1 rate = self.base_rate * math.pow(self.gamma, self.current_step) elif self.policy == "poly": rate = self.base_rate * math.pow(1.0 - (step / self.max_steps), self.power) elif self.policy == "sigmoid": rate = self.base_rate * \ (1.0 / (1.0 + math.exp(self.gamma * (progress - 100 * self.step_size / self.max_steps)))) else: logging.error("Unknown learning rate policy: %s", self.policy) exit(-1) return rate
DIGITS-master
digits/tools/tensorflow/lr_policy.py
import time import numpy as np import wx # This has been set up to optionally use the wx.BufferedDC if # USE_BUFFERED_DC is True, it will be used. Otherwise, it uses the raw # wx.Memory DC , etc. # USE_BUFFERED_DC = False USE_BUFFERED_DC = True myEVT = wx.NewEventType() DISPLAY_GRID_EVT = wx.PyEventBinder(myEVT, 1) class MyEvent(wx.PyCommandEvent): """Event to signal that a count value is ready""" def __init__(self, etype, eid, value=None): """Creates the event object""" wx.PyCommandEvent.__init__(self, etype, eid) self._value = value def GetValue(self): """Returns the value from the event. @return: the value of this event """ return self._value class BufferedWindow(wx.Window): """ A Buffered window class. To use it, subclass it and define a Draw(DC) method that takes a DC to draw to. In that method, put the code needed to draw the picture you want. The window will automatically be double buffered, and the screen will be automatically updated when a Paint event is received. When the drawing needs to change, you app needs to call the UpdateDrawing() method. Since the drawing is stored in a bitmap, you can also save the drawing to file by calling the SaveToFile(self, file_name, file_type) method. """ def __init__(self, *args, **kwargs): # make sure the NO_FULL_REPAINT_ON_RESIZE style flag is set. kwargs['style'] = kwargs.setdefault('style', wx.NO_FULL_REPAINT_ON_RESIZE) | wx.NO_FULL_REPAINT_ON_RESIZE wx.Window.__init__(self, *args, **kwargs) wx.EVT_PAINT(self, self.OnPaint) wx.EVT_SIZE(self, self.OnSize) # OnSize called to make sure the buffer is initialized. # This might result in OnSize getting called twice on some # platforms at initialization, but little harm done. self.OnSize(None) self.paint_count = 0 def Draw(self, dc): # just here as a place holder. # This method should be over-ridden when subclassed pass def OnPaint(self, event): # All that is needed here is to draw the buffer to screen if USE_BUFFERED_DC: dc = wx.BufferedPaintDC(self, self._Buffer) else: dc = wx.PaintDC(self) dc.DrawBitmap(self._Buffer, 0, 0) def OnSize(self, event): # The Buffer init is done here, to make sure the buffer is always # the same size as the Window # Size = self.GetClientSizeTuple() Size = self.ClientSize # Make new offscreen bitmap: this bitmap will always have the # current drawing in it, so it can be used to save the image to # a file, or whatever. self._Buffer = wx.EmptyBitmap(*Size) self.UpdateDrawing() def SaveToFile(self, FileName, FileType=wx.BITMAP_TYPE_PNG): # This will save the contents of the buffer # to the specified file. See the wxWindows docs for # wx.Bitmap::SaveFile for the details self._Buffer.SaveFile(FileName, FileType) def UpdateDrawing(self): """ This would get called if the drawing needed to change, for whatever reason. The idea here is that the drawing is based on some data generated elsewhere in the system. If that data changes, the drawing needs to be updated. This code re-draws the buffer, then calls Update, which forces a paint event. """ dc = wx.MemoryDC() dc.SelectObject(self._Buffer) self.Draw(dc) del dc # need to get rid of the MemoryDC before Update() is called. self.Refresh() self.Update() class DrawWindow(BufferedWindow): def __init__(self, *args, **kwargs): # Any data the Draw() function needs must be initialized before # calling BufferedWindow.__init__, as it will call the Draw function. self.DrawData = {} BufferedWindow.__init__(self, *args, **kwargs) def Draw(self, dc): dc.SetBackground(wx.Brush("White")) dc.Clear() # make sure you clear the bitmap! # Here's the actual drawing code. for key, data in self.DrawData.items(): if key == "text": dc.DrawText(data, 0, 0) elif key == "np": data = data.astype('uint8') img_count = data.shape[0] height = data.shape[1] width = data.shape[2] grid_size = int(np.sqrt(img_count)) size = (grid_size * width, grid_size * height) if True: # self.size != size: self.size = size self.SetSize(size) image = wx.EmptyImage(width, height) for i in xrange(img_count): x = width * (i // grid_size) y = height * (i % grid_size) s = data[i].tostring() image.SetData(s) wxBitmap = image.ConvertToBitmap() dc.DrawBitmap(wxBitmap, x=x, y=y) class TestFrame(wx.Frame): SLIDER_WIDTH = 100 SLIDER_BORDER = 50 STATUS_HEIGHT = 20 def __init__(self, parent=None, grid_size=640, attributes=[]): wx.Frame.__init__(self, parent, size=(grid_size + self.SLIDER_WIDTH + self.SLIDER_BORDER, grid_size + self.STATUS_HEIGHT), title="GAN Demo", style=wx.DEFAULT_FRAME_STYLE ^ wx.RESIZE_BORDER) # Set up the MenuBar MenuBar = wx.MenuBar() file_menu = wx.Menu() item = file_menu.Append(wx.ID_EXIT, text="&Exit") self.Bind(wx.EVT_MENU, self.OnQuit, item) MenuBar.Append(file_menu, "&File") self.SetMenuBar(MenuBar) self.statusbar = self.CreateStatusBar() self.statusbar.SetStatusText('Initialising...') # Set up UI elements panel = wx.Panel(self) self.Window = DrawWindow(panel, size=(grid_size, grid_size)) hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add(self.Window, 1, wx.ALIGN_LEFT) # Sliders vbox = wx.BoxSizer(wx.VERTICAL) self.speed_slider = wx.Slider(panel, -1, value=5, minValue=0, maxValue=10, pos=wx.DefaultPosition, size=(self.SLIDER_WIDTH, -1), style=wx.SL_AUTOTICKS | wx.SL_HORIZONTAL | wx.SL_LABELS) slider_text = wx.StaticText(panel, label='Speed') vbox.Add(slider_text, 0, wx.ALIGN_CENTRE) vbox.Add(self.speed_slider, 0, wx.ALIGN_CENTRE) self.attribute_sliders = [] for attribute in attributes: slider_text = wx.StaticText(panel, label=attribute) slider = wx.Slider(panel, -1, value=0, minValue=-100, maxValue=100, pos=wx.DefaultPosition, size=(self.SLIDER_WIDTH, -1), style=wx.SL_AUTOTICKS | wx.SL_HORIZONTAL | wx.SL_LABELS) vbox.Add(slider_text, 0, wx.ALIGN_CENTRE) vbox.Add(slider, 0, wx.ALIGN_CENTRE) self.attribute_sliders.append(slider) hbox.Add(vbox, 0, wx.ALIGN_RIGHT) panel.SetSizer(hbox) self.Window.DrawData = {'text': u'Initialising...'} self.Window.UpdateDrawing() # to measure frames per second self.last_frame_timestamp = None self.last_fps_update = None # add panel to frame frameSizer = wx.BoxSizer(wx.VERTICAL) frameSizer.Add(panel, 0, wx.EXPAND | wx.ALIGN_LEFT) self.SetSizer(frameSizer) self.Show() self.Fit() self.Bind(DISPLAY_GRID_EVT, self.OnDisplayCell) def OnQuit(self, event): self.Close(True) def OnDisplayCell(self, evt): array = evt.GetValue() self.Window.DrawData = {'np': array} self.Window.UpdateDrawing() if self.last_frame_timestamp is not None: fps = 1. / (time.time() - self.last_frame_timestamp) if (self.last_fps_update is None) or (time.time() - self.last_fps_update > 0.5): self.statusbar.SetStatusText('%.1ffps' % fps) self.last_fps_update = time.time() self.last_frame_timestamp = time.time() class DemoApp(wx.App): def __init__(self, arg, grid_size, attributes): self.gan_grid_size = grid_size self.attributes = attributes super(DemoApp, self).__init__(arg) def OnInit(self): self.frame = TestFrame(grid_size=self.gan_grid_size, attributes=self.attributes) self.SetTopWindow(self.frame) return True def DisplayCell(self, array): evt = MyEvent(myEVT, -1, array) wx.PostEvent(self.frame, evt) def GetSpeed(self): return self.frame.speed_slider.GetValue() def GetAttributes(self): return [s.GetValue() for s in self.frame.attribute_sliders]
DIGITS-master
digits/tools/tensorflow/gandisplay.py