python_code
stringlengths 0
679k
| repo_name
stringlengths 9
41
| file_path
stringlengths 6
149
|
---|---|---|
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
#
# This document should comply with PEP-8 Style Guide
# Linter: pylint
"""
Interface for setting up and creating a model in Tensorflow.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import tensorflow as tf
from tensorflow.python.framework import ops
# Local imports
import tf_data
import utils as digits
from utils import model_property
logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
# Constants
SUMMARIZE_TOWER_STATS = False
# from
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/image/cifar10/cifar10_multi_gpu_train.py
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
with tf.name_scope('gradient_average'):
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grads_transformed = tf.concat(grads, 0)
grads_transformed = tf.reduce_mean(grads_transformed, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grads_transformed, v)
average_grads.append(grad_and_var)
return average_grads
class Model(object):
"""
Wrapper around the actual tensorflow workflow process.
This is structured in a way that the user should only care about
creating the model while using the DIGITS UI to select the
optimizer and other options.
This class is executed to start a tensorflow workflow.
"""
def __init__(self, stage, croplen, nclasses, optimization=None, momentum=None, reuse_variable=False):
self.stage = stage
self.croplen = croplen
self.nclasses = nclasses
self.dataloader = None
self.queue_coord = None
self.queue_threads = None
self._optimization = optimization
self._momentum = momentum
self.summaries = []
self.towers = []
self._train = None
self._reuse = reuse_variable
# Touch to initialize
# if optimization:
# self.learning_rate
# self.global_step
# self.optimizer
def create_dataloader(self, db_path):
self.dataloader = tf_data.LoaderFactory.set_source(db_path, is_inference=(self.stage == digits.STAGE_INF))
# @TODO(tzaman) communicate the dataloader summaries to our Model summary list
self.dataloader.stage = self.stage
self.dataloader.croplen = self.croplen
self.dataloader.nclasses = self.nclasses
def init_dataloader(self):
with tf.device('/cpu:0'):
with tf.name_scope(digits.GraphKeys.LOADER):
self.dataloader.create_input_pipeline()
def create_model(self, obj_UserModel, stage_scope, batch_x=None):
if batch_x is None:
self.init_dataloader()
batch_x = self.dataloader.batch_x
if self.stage != digits.STAGE_INF:
batch_y = self.dataloader.batch_y
else:
assert self.stage == digits.STAGE_INF
batch_x = batch_x
available_devices = digits.get_available_gpus()
if not available_devices:
available_devices.append('/cpu:0')
# available_devices = ['/gpu:0', '/gpu:1'] # DEVELOPMENT : virtual multi-gpu
# Split the batch over the batch dimension over the number of available gpu's
if len(available_devices) == 1:
batch_x_split = [batch_x]
if self.stage != digits.STAGE_INF: # Has no labels
batch_y_split = [batch_y]
else:
with tf.name_scope('parallelize'):
# Split them up
batch_x_split = tf.split(batch_x, len(available_devices), 0, name='split_batch')
if self.stage != digits.STAGE_INF: # Has no labels
batch_y_split = tf.split(batch_y, len(available_devices), 0, name='split_batch')
# Run the user model through the build_model function that should be filled in
grad_towers = []
for dev_i, dev_name in enumerate(available_devices):
with tf.device(dev_name):
current_scope = stage_scope if len(available_devices) == 1 else ('tower_%d' % dev_i)
with tf.name_scope(current_scope) as scope_tower:
if self.stage != digits.STAGE_INF:
tower_model = self.add_tower(obj_tower=obj_UserModel,
x=batch_x_split[dev_i],
y=batch_y_split[dev_i])
else:
tower_model = self.add_tower(obj_tower=obj_UserModel,
x=batch_x_split[dev_i],
y=None)
with tf.variable_scope(digits.GraphKeys.MODEL, reuse=dev_i > 0 or self._reuse):
tower_model.inference # touch to initialize
# Reuse the variables in this scope for the next tower/device
tf.get_variable_scope().reuse_variables()
if self.stage == digits.STAGE_INF:
# For inferencing we will only use the inference part of the graph
continue
with tf.name_scope(digits.GraphKeys.LOSS):
for loss in self.get_tower_losses(tower_model):
tf.add_to_collection(digits.GraphKeys.LOSSES, loss['loss'])
# Assemble all made within this scope so far. The user can add custom
# losses to the digits.GraphKeys.LOSSES collection
losses = tf.get_collection(digits.GraphKeys.LOSSES, scope=scope_tower)
losses += ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES, scope=None)
tower_loss = tf.add_n(losses, name='loss')
self.summaries.append(tf.summary.scalar(tower_loss.op.name, tower_loss))
if self.stage == digits.STAGE_TRAIN:
grad_tower_losses = []
for loss in self.get_tower_losses(tower_model):
grad_tower_loss = self.optimizer.compute_gradients(loss['loss'], loss['vars'])
grad_tower_loss = tower_model.gradientUpdate(grad_tower_loss)
grad_tower_losses.append(grad_tower_loss)
grad_towers.append(grad_tower_losses)
# Assemble and average the gradients from all towers
if self.stage == digits.STAGE_TRAIN:
n_gpus = len(available_devices)
if n_gpus == 1:
grad_averages = grad_towers[0]
else:
with tf.device(available_devices[0]):
n_losses = len(grad_towers[0])
grad_averages = []
for loss in xrange(n_losses):
grad_averages.append(average_gradients([grad_towers[gpu][loss] for gpu in xrange(n_gpus)]))
apply_gradient_ops = []
for grad_avg in grad_averages:
apply_gradient_ops.append(self.optimizer.apply_gradients(grad_avg, global_step=self.global_step))
self._train = apply_gradient_ops
def start_queue_runners(self, sess):
logging.info('Starting queue runners (%s)', self.stage)
# Distinguish the queue runner collection (for easily obtaining them by collection key)
queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS, scope=self.stage+'.*')
for qr in queue_runners:
if self.stage in qr.name:
tf.add_to_collection(digits.GraphKeys.QUEUE_RUNNERS, qr)
self.queue_coord = tf.train.Coordinator()
self.queue_threads = tf.train.start_queue_runners(sess=sess, coord=self.queue_coord,
collection=digits.GraphKeys.QUEUE_RUNNERS)
logging.info('Queue runners started (%s)', self.stage)
def __del__(self):
# Destructor
if self.queue_coord:
# Close and terminate the queues
self.queue_coord.request_stop()
self.queue_coord.join(self.queue_threads)
def add_tower(self, obj_tower, x, y):
is_training = self.stage == digits.STAGE_TRAIN
is_inference = self.stage == digits.STAGE_INF
input_shape = self.dataloader.get_shape()
tower = obj_tower(x, y, input_shape, self.nclasses, is_training, is_inference)
self.towers.append(tower)
return tower
@model_property
def train(self):
return self._train
@model_property
def summary(self):
"""
Merge train summaries
"""
for t in self.towers:
self.summaries += t.summaries
if not len(self.summaries):
logging.error("No summaries defined. Please define at least one summary.")
exit(-1)
return tf.summary.merge(self.summaries)
@model_property
def global_step(self):
# Force global_step on the CPU, becaues the GPU's first step will end at 0 instead of 1.
with tf.device('/cpu:0'):
return tf.get_variable('global_step', [], initializer=tf.constant_initializer(0),
trainable=False)
@model_property
def learning_rate(self):
# @TODO(tzaman): the learning rate is a function of the global step, so we could
# define it entirely in tf ops, instead of a placeholder and feeding.
with tf.device('/cpu:0'):
lr = tf.placeholder(tf.float32, shape=[], name='learning_rate')
self.summaries.append(tf.summary.scalar('lr', lr))
return lr
@model_property
def optimizer(self):
logging.info("Optimizer:%s", self._optimization)
if self._optimization == 'sgd':
return tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate)
elif self._optimization == 'adadelta':
return tf.train.AdadeltaOptimizer(learning_rate=self.learning_rate)
elif self._optimization == 'adagrad':
return tf.train.AdagradOptimizer(learning_rate=self.learning_rate)
elif self._optimization == 'adagradda':
return tf.train.AdagradDAOptimizer(learning_rate=self.learning_rate,
global_step=self.global_step)
elif self._optimization == 'momentum':
return tf.train.MomentumOptimizer(learning_rate=self.learning_rate,
momentum=self._momentum)
elif self._optimization == 'adam':
return tf.train.AdamOptimizer(learning_rate=self.learning_rate)
elif self._optimization == 'ftrl':
return tf.train.FtrlOptimizer(learning_rate=self.learning_rate)
elif self._optimization == 'rmsprop':
return tf.train.RMSPropOptimizer(learning_rate=self.learning_rate,
momentum=self._momentum)
else:
logging.error("Invalid optimization flag %s", self._optimization)
exit(-1)
def get_tower_losses(self, tower):
"""
Return list of losses
If user-defined model returns only one loss then this is encapsulated into
the expected list of dicts structure
"""
if isinstance(tower.loss, list):
return tower.loss
else:
return [{'loss': tower.loss, 'vars': tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)}]
class Tower(object):
def __init__(self, x, y, input_shape, nclasses, is_training, is_inference):
self.input_shape = input_shape
self.nclasses = nclasses
self.is_training = is_training
self.is_inference = is_inference
self.summaries = []
self.x = x
self.y = y
self.train = None
def gradientUpdate(self, grad):
return grad
| DIGITS-master | digits/tools/tensorflow/model.py |
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
#
# This document should comply with PEP-8 Style Guide
# Linter: pylint
"""
Digits default Tensorflow Ops as helper functions.
"""
import functools
import tensorflow as tf
from tensorflow.python.client import device_lib
STAGE_TRAIN = 'train'
STAGE_VAL = 'val'
STAGE_INF = 'inf'
class GraphKeys(object):
TEMPLATE = "model"
QUEUE_RUNNERS = "queue_runner"
MODEL = "model"
LOSS = "loss" # The namescope
LOSSES = "losses" # The collection
LOADER = "data"
def model_property(function):
# From https://danijar.com/structuring-your-tensorflow-models/
attribute = '_cache_' + function.__name__
@property
@functools.wraps(function)
def decorator(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return decorator
def classification_loss(pred, y):
"""
Definition of the loss for regular classification
"""
ssoftmax = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=y, name='cross_entropy_single')
return tf.reduce_mean(ssoftmax, name='cross_entropy_batch')
def mse_loss(lhs, rhs):
return tf.reduce_mean(tf.square(lhs - rhs))
def constrastive_loss(lhs, rhs, y, margin=1.0):
"""
Contrastive loss confirming to the Caffe definition
"""
d = tf.reduce_sum(tf.square(tf.subtract(lhs, rhs)), 1)
d_sqrt = tf.sqrt(1e-6 + d)
loss = (y * d) + ((1 - y) * tf.square(tf.maximum(margin - d_sqrt, 0)))
return tf.reduce_mean(loss) # Note: constant component removed (/2)
def classification_accuracy_top_n(pred, y, top_n):
single_acc_t = tf.nn.in_top_k(pred, y, top_n)
return tf.reduce_mean(tf.cast(single_acc_t, tf.float32), name='accuracy_top_%d' % top_n)
def classification_accuracy(pred, y):
"""
Default definition of accuracy. Something is considered accurate if and only
if a true label exactly matches the highest value in the prediction vector.
"""
single_acc = tf.equal(y, tf.argmax(pred, 1))
return tf.reduce_mean(tf.cast(single_acc, tf.float32), name='accuracy')
def nhwc_to_nchw(x):
return tf.transpose(x, [0, 3, 1, 2])
def hwc_to_chw(x):
return tf.transpose(x, [2, 0, 1])
def nchw_to_nhwc(x):
return tf.transpose(x, [0, 2, 3, 1])
def chw_to_hwc(x):
return tf.transpose(x, [1, 2, 0])
def bgr_to_rgb(x):
return tf.reverse(x, [2])
def rgb_to_bgr(x):
return tf.reverse(x, [2])
def get_available_gpus():
"""
Queries the CUDA GPU devices visible to Tensorflow.
Returns:
A list with tf-style gpu strings (f.e. ['/gpu:0', '/gpu:1'])
"""
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
| DIGITS-master | digits/tools/tensorflow/utils.py |
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: caffe_tf.proto
import sys
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2 # noqa
# @@protoc_insertion_point(imports)
_b = (sys.version_info[0] < 3 and (lambda x: x)) or (lambda x: x.encode('latin1'))
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name='caffe_tf.proto',
package='',
serialized_pb=_b('\n\x0e\x63\x61\x66\x66\x65_tf.proto\"\x1c\n\tBlobShape\x12\x0f\n\x03\x64im\x18\x01 \x03(\x03\x42\x02\x10\x01\"\xc6\x01\n\tBlobProto\x12\x19\n\x05shape\x18\x07 \x01(\x0b\x32\n.BlobShape\x12\x10\n\x04\x64\x61ta\x18\x05 \x03(\x02\x42\x02\x10\x01\x12\x10\n\x04\x64iff\x18\x06 \x03(\x02\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_data\x18\x08 \x03(\x01\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_diff\x18\t \x03(\x01\x42\x02\x10\x01\x12\x0e\n\x03num\x18\x01 \x01(\x05:\x01\x30\x12\x13\n\x08\x63hannels\x18\x02 \x01(\x05:\x01\x30\x12\x11\n\x06height\x18\x03 \x01(\x05:\x01\x30\x12\x10\n\x05width\x18\x04 \x01(\x05:\x01\x30\",\n\x0f\x42lobProtoVector\x12\x19\n\x05\x62lobs\x18\x01 \x03(\x0b\x32\n.BlobProto\"\x81\x01\n\x05\x44\x61tum\x12\x10\n\x08\x63hannels\x18\x01 \x01(\x05\x12\x0e\n\x06height\x18\x02 \x01(\x05\x12\r\n\x05width\x18\x03 \x01(\x05\x12\x0c\n\x04\x64\x61ta\x18\x04 \x01(\x0c\x12\r\n\x05label\x18\x05 \x01(\x05\x12\x12\n\nfloat_data\x18\x06 \x03(\x02\x12\x16\n\x07\x65ncoded\x18\x07 \x01(\x08:\x05\x66\x61lse') # noqa
)
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
_BLOBSHAPE = _descriptor.Descriptor(
name='BlobShape',
full_name='BlobShape',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='dim', full_name='BlobShape.dim', index=0,
number=1, type=3, cpp_type=2, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=18,
serialized_end=46,
)
_BLOBPROTO = _descriptor.Descriptor(
name='BlobProto',
full_name='BlobProto',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='shape', full_name='BlobProto.shape', index=0,
number=7, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='data', full_name='BlobProto.data', index=1,
number=5, type=2, cpp_type=6, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))),
_descriptor.FieldDescriptor(
name='diff', full_name='BlobProto.diff', index=2,
number=6, type=2, cpp_type=6, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))),
_descriptor.FieldDescriptor(
name='double_data', full_name='BlobProto.double_data', index=3,
number=8, type=1, cpp_type=5, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))),
_descriptor.FieldDescriptor(
name='double_diff', full_name='BlobProto.double_diff', index=4,
number=9, type=1, cpp_type=5, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))),
_descriptor.FieldDescriptor(
name='num', full_name='BlobProto.num', index=5,
number=1, type=5, cpp_type=1, label=1,
has_default_value=True, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='channels', full_name='BlobProto.channels', index=6,
number=2, type=5, cpp_type=1, label=1,
has_default_value=True, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='height', full_name='BlobProto.height', index=7,
number=3, type=5, cpp_type=1, label=1,
has_default_value=True, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='width', full_name='BlobProto.width', index=8,
number=4, type=5, cpp_type=1, label=1,
has_default_value=True, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=49,
serialized_end=247,
)
_BLOBPROTOVECTOR = _descriptor.Descriptor(
name='BlobProtoVector',
full_name='BlobProtoVector',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='blobs', full_name='BlobProtoVector.blobs', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=249,
serialized_end=293,
)
_DATUM = _descriptor.Descriptor(
name='Datum',
full_name='Datum',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='channels', full_name='Datum.channels', index=0,
number=1, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='height', full_name='Datum.height', index=1,
number=2, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='width', full_name='Datum.width', index=2,
number=3, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='data', full_name='Datum.data', index=3,
number=4, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='label', full_name='Datum.label', index=4,
number=5, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='float_data', full_name='Datum.float_data', index=5,
number=6, type=2, cpp_type=6, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='encoded', full_name='Datum.encoded', index=6,
number=7, type=8, cpp_type=7, label=1,
has_default_value=True, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=296,
serialized_end=425,
)
_BLOBPROTO.fields_by_name['shape'].message_type = _BLOBSHAPE
_BLOBPROTOVECTOR.fields_by_name['blobs'].message_type = _BLOBPROTO
DESCRIPTOR.message_types_by_name['BlobShape'] = _BLOBSHAPE
DESCRIPTOR.message_types_by_name['BlobProto'] = _BLOBPROTO
DESCRIPTOR.message_types_by_name['BlobProtoVector'] = _BLOBPROTOVECTOR
DESCRIPTOR.message_types_by_name['Datum'] = _DATUM
BlobShape = _reflection.GeneratedProtocolMessageType('BlobShape', (_message.Message,), dict(
DESCRIPTOR=_BLOBSHAPE,
__module__='caffe_tf_pb2'
# @@protoc_insertion_point(class_scope:BlobShape)
))
_sym_db.RegisterMessage(BlobShape)
BlobProto = _reflection.GeneratedProtocolMessageType('BlobProto', (_message.Message,), dict(
DESCRIPTOR=_BLOBPROTO,
__module__='caffe_tf_pb2'
# @@protoc_insertion_point(class_scope:BlobProto)
))
_sym_db.RegisterMessage(BlobProto)
BlobProtoVector = _reflection.GeneratedProtocolMessageType('BlobProtoVector', (_message.Message,), dict(
DESCRIPTOR=_BLOBPROTOVECTOR,
__module__='caffe_tf_pb2'
# @@protoc_insertion_point(class_scope:BlobProtoVector)
))
_sym_db.RegisterMessage(BlobProtoVector)
Datum = _reflection.GeneratedProtocolMessageType('Datum', (_message.Message,), dict(
DESCRIPTOR=_DATUM,
__module__='caffe_tf_pb2'
# @@protoc_insertion_point(class_scope:Datum)
))
_sym_db.RegisterMessage(Datum)
_BLOBSHAPE.fields_by_name['dim'].has_options = True
_BLOBSHAPE.fields_by_name['dim']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(),
_b('\020\001'))
_BLOBPROTO.fields_by_name['data'].has_options = True
_BLOBPROTO.fields_by_name['data']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(),
_b('\020\001'))
_BLOBPROTO.fields_by_name['diff'].has_options = True
_BLOBPROTO.fields_by_name['diff']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(),
_b('\020\001'))
_BLOBPROTO.fields_by_name['double_data'].has_options = True
_BLOBPROTO.fields_by_name['double_data']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(),
_b('\020\001'))
_BLOBPROTO.fields_by_name['double_diff'].has_options = True
_BLOBPROTO.fields_by_name['double_diff']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(),
_b('\020\001'))
# @@protoc_insertion_point(module_scope)
| DIGITS-master | digits/tools/tensorflow/caffe_tf_pb2.py |
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
#
# This document should comply with PEP-8 Style Guide
# Linter: pylint
"""
Interface for data loading for Tensorflow.
Data loading is done through a data loading factory,that will setup
the correct functions for the respective backends.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from PIL import Image
import logging
import magic
import math
import numpy as np
import os
import tensorflow as tf
# Local imports
import caffe_tf_pb2
import utils as digits
# Constants
MIN_FRACTION_OF_EXAMPLES_IN_QUEUE = 0.4
MAX_ABSOLUTE_EXAMPLES_IN_QUEUE = 4096 # The queue size cannot exceed this number
NUM_THREADS_DATA_LOADER = 6
LOG_MEAN_FILE = False # Logs the mean file as loaded in TF to TB
# Supported extensions for Loaders
DB_EXTENSIONS = {
'hdf5': ['.H5', '.HDF5'],
'lmdb': ['.MDB', '.LMDB'],
'tfrecords': ['.TFRECORDS'],
'filelist': ['.TXT'],
'file': ['.JPG', '.JPEG', '.PNG'],
'gangrid': ['.GAN'],
}
LIST_DELIMITER = ' ' # For the FILELIST format
logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
def get_backend_of_source(db_path):
"""
Takes a path as argument and infers the format of the data.
If a directory is provided, it looks for the existance of an extension
in the entire directory in an order of a priority of dbs (hdf5, lmdb, filelist, file)
Args:
db_path: path to a file or directory
Returns:
backend: the backend type
"""
# If a directory is given, we include all its contents. Otherwise it's just the one file.
if os.path.isdir(db_path):
files_in_path = [fn for fn in os.listdir(db_path) if not fn.startswith('.')]
else:
files_in_path = [db_path]
# Keep the below priority ordering
for db_fmt in ['hdf5', 'lmdb', 'tfrecords', 'filelist', 'file', 'gangrid']:
ext_list = DB_EXTENSIONS[db_fmt]
for ext in ext_list:
if any(ext in os.path.splitext(fn)[1].upper() for fn in files_in_path):
return db_fmt
logging.error("Cannot infer backend from db_path (%s)." % (db_path))
exit(-1)
class MeanLoader(object):
"""
Loads in a mean file for tensorflow. This is done through using a constant
variable. It needs to be loaded first, after which the constant tf op
can be retrieved through a function, and can be accounted for.
"""
def __init__(self, mean_file_path, subtraction_type, bitdepth):
self._mean_file_path = mean_file_path
self._subtraction_type = subtraction_type
self._bitdepth = bitdepth
self.tf_mean_image = None
self.load_mean()
def load_mean(self):
"""
The mean is loaded in the graph through a tf.constant for maximum efficiency. This is first
done only once through a numpy array that defines the value of the constant.
All pre-processing of the mean file is done before the definition of the tf.constant
to make sure these operations are not repeated in the graph
"""
file_extension = os.path.splitext(self._mean_file_path)[1].upper()
if file_extension == '.BINARYPROTO':
blob = caffe_tf_pb2.BlobProto()
with open(self._mean_file_path, 'rb') as infile:
blob.ParseFromString(infile.read())
data = np.array(blob.data, dtype="float32").reshape(blob.channels, blob.height, blob.width)
if blob.channels == 3:
# converting from BGR to RGB
data = data[[2, 1, 0], ...] # channel swap
# convert to (height, width, channels)
data = data.transpose((1, 2, 0))
elif blob.channels == 1:
# convert to (height, width)
data = data[0]
else:
logging.error('Unknown amount of channels (%d) in mean file (%s)' %
(blob.channels, self._mean_file_path))
exit(-1)
# elif file_extension in IMG_FILE_EXT:
# img = Image.open(self._mean_file_path)
# img.load()
# data = np.asarray(img, dtype="float32")
else:
logging.error('Failed loading mean file: Unsupported extension (%s)' % (file_extension))
exit(-1)
if (self._subtraction_type == 'image') or (self._subtraction_type == 'pixel'):
if self._subtraction_type == 'pixel':
data = data.mean(axis=(0, 1))
data = np.reshape(data, (1, 1, -1))
elif len(data.shape) != 3:
# Explicitly add channel dim
data = data[:, :, None]
# return data in original pixel scale
self.tf_mean_image = tf.constant(data, name='Const_Mean_Image')
else:
logging.error('Unsupported mean subtraction type (%s)' % (self._subtraction_type))
exit(-1)
def subtract_mean_op(self, tf_graph):
"""
Places mean subtraction on top of the tensorflow graph supplied, returns the added op
Args:
tf_graph: the graph the subtraction of the mean should placed upon
Returns:
The graph with the mean subtraction placed on top of it
"""
return (tf_graph - self.tf_mean_image)
class LoaderFactory(object):
"""
A factory for data loading. It sets up a subclass with data loading
done with the respective backend. Its output is a tensorflow queue op
that is used to load in data, with optionally some minor postprocessing ops.
"""
def __init__(self):
self.croplen = None
self.nclasses = None
self.mean_loader = None
self.backend = None
self.db_path = None
self.batch_x = None
self.batch_y = None
self.batch_k = None
self.stage = None
self._seed = None
self.unencoded_data_format = 'hwc'
self.unencoded_channel_scheme = 'rgb'
self.summaries = None
self.aug_dict = {}
# @TODO(tzaman) rewrite this factory again
pass
@staticmethod
def set_source(db_path, is_inference=False):
"""
Returns the correct backend.
"""
backend = get_backend_of_source(db_path)
loader = None
if backend == 'lmdb':
loader = LmdbLoader()
elif backend == 'hdf5':
loader = Hdf5Loader()
elif backend == 'file' or backend == 'filelist':
loader = FileListLoader()
elif backend == 'tfrecords':
loader = TFRecordsLoader()
elif backend == 'gangrid':
loader = GanGridLoader()
else:
logging.error("Backend (%s) not implemented" % (backend))
exit(-1)
loader.backend = backend
loader.db_path = db_path
loader.is_inference = is_inference
return loader
def setup(self, labels_db_path, shuffle, bitdepth, batch_size, num_epochs=None, seed=None):
with tf.device('/cpu:0'):
self.labels_db_path = labels_db_path
self.shuffle = shuffle
self.bitdepth = bitdepth
self.batch_size = batch_size
self.num_epochs = num_epochs
self._seed = seed
if self.labels_db_path:
self.labels_db = LoaderFactory.set_source(self.labels_db_path)
self.labels_db.bitdepth = self.bitdepth
self.labels_db.stage = self.stage
self.labels_db.initialize()
self.initialize()
logging.info("Found %s images in db %s ", self.get_total(), self.db_path)
def get_key_index(self, key):
return self.keys.index(key)
def set_augmentation(self, mean_loader, aug_dict={}):
with tf.device('/cpu:0'):
self.mean_loader = mean_loader
self.aug_dict = aug_dict
def get_shape(self):
input_shape = [self.height, self.width, self.channels]
# update input_shape if crop length specified
# this is necessary as the input_shape is provided
# below to the user-defined function that defines the network
if self.croplen > 0:
input_shape[0] = self.croplen
input_shape[1] = self.croplen
return input_shape
def get_total(self):
return self.total
def reshape_decode(self, data, shape):
if self.float_data: # @TODO(tzaman): this is LMDB specific - Make generic!
data = tf.reshape(data, shape)
data = digits.chw_to_hwc(data)
else:
# Decode image of any time option might come: https://github.com/tensorflow/tensorflow/issues/4009
# Distinguish between mime types
if self.data_encoded:
if self.data_mime == 'image/png':
data = tf.image.decode_png(data, dtype=self.image_dtype, name='image_decoder')
elif self.data_mime == 'image/jpeg':
data = tf.image.decode_jpeg(data, name='image_decoder')
else:
logging.error('Unsupported mime type (%s); cannot be decoded' % (self.data_mime))
exit(-1)
else:
if self.backend == 'lmdb':
data = tf.decode_raw(data, self.image_dtype, name='raw_decoder')
# if data is in CHW, set the shape and convert to HWC
if self.unencoded_data_format == 'chw':
data = tf.reshape(data, [shape[0], shape[1], shape[2]])
data = digits.chw_to_hwc(data)
else: # 'hwc'
data = tf.reshape(data, shape)
if (self.channels == 3) and self.unencoded_channel_scheme == 'bgr':
data = digits.bgr_to_rgb(data)
# Convert to float
data = tf.to_float(data)
# data = tf.image.convert_image_dtype(data, tf.float32) # normalize to [0:1) range
return data
def create_input_pipeline(self):
"""
This function returns part of the graph that does data loading, and
includes a queueing, optional data decoding and optional post-processing
like data augmentation or mean subtraction.
Args:
None.
Produces:
batch_x: Input data batch
batch_y: Label data batch
batch_k: A list of keys (strings) from which the batch originated
Returns:
None.
"""
# @TODO(tzaman) the container can be used if the reset function is implemented:
# see https://github.com/tensorflow/tensorflow/issues/4535#issuecomment-248990633
#
# with tf.container('queue-container'):
key_queue = self.get_queue()
single_label = None
single_label_shape = None
if self.stage == digits.STAGE_INF:
single_key, single_data, single_data_shape, _, _ = self.get_single_data(key_queue)
else:
single_key, single_data, single_data_shape, single_label, single_label_shape = \
self.get_single_data(key_queue)
single_data_shape = tf.reshape(single_data_shape, [3]) # Shape the shape to have three dimensions
single_data = self.reshape_decode(single_data, single_data_shape)
if self.labels_db_path: # Using a seperate label db; label can be anything
single_label_shape = tf.reshape(single_label_shape, [3]) # Shape the shape
single_label = self.labels_db.reshape_decode(single_label, single_label_shape)
elif single_label is not None: # Not using a seperate label db; label is a scalar
single_label = tf.reshape(single_label, [])
# Mean Subtraction
if self.mean_loader:
with tf.name_scope('mean_subtraction'):
single_data = self.mean_loader.subtract_mean_op(single_data)
if LOG_MEAN_FILE:
expanded_data = tf.expand_dims(self.mean_loader.tf_mean_image, 0)
self.summaries.append(tf.summary.image('mean_image', expanded_data, max_outputs=1))
# (Random) Cropping
if self.croplen:
with tf.name_scope('cropping'):
if self.stage == digits.STAGE_TRAIN:
single_data = tf.random_crop(single_data,
[self.croplen, self.croplen, self.channels],
seed=self._seed)
else: # Validation or Inference
single_data = tf.image.resize_image_with_crop_or_pad(single_data, self.croplen, self.croplen)
# Data Augmentation
if self.aug_dict:
with tf.name_scope('augmentation'):
flipflag = self.aug_dict['aug_flip']
if flipflag == 'fliplr' or flipflag == 'fliplrud':
single_data = tf.image.random_flip_left_right(single_data, seed=self._seed)
if flipflag == 'flipud' or flipflag == 'fliplrud':
single_data = tf.image.random_flip_up_down(single_data, seed=self._seed)
noise_std = self.aug_dict['aug_noise']
if noise_std > 0.:
# Note the tf.random_normal requires a static shape
single_data = tf.add(single_data, tf.random_normal(self.get_shape(),
mean=0.0,
stddev=noise_std,
dtype=tf.float32,
seed=self._seed,
name='AWGN'))
contrast_fact = self.aug_dict['aug_contrast']
if contrast_fact > 0:
single_data = tf.image.random_contrast(single_data,
lower=1.-contrast_fact,
upper=1.+contrast_fact,
seed=self._seed)
# @TODO(tzaman): rewrite the below HSV stuff entirely in a TF PR to be done in one single operation
aug_hsv = self.aug_dict['aug_HSV']
if aug_hsv['h'] > 0.:
single_data = tf.image.random_hue(single_data, aug_hsv['h'], seed=self._seed)
if aug_hsv['s'] > 0.:
single_data = tf.image.random_saturation(single_data,
1 - aug_hsv['s'],
1 + aug_hsv['s'],
seed=self._seed)
if aug_hsv['v'] > 0.:
# closely resembles V - temporary until rewritten
single_data = tf.image.random_brightness(single_data, aug_hsv['v'], seed=self._seed)
# @TODO(tzaman) whitening is so invasive that we need a way to add it to the val/inf too in a
# portable manner, like the mean file : how? If we don't find a way, don't use whitening.
aug_whitening = self.aug_dict['aug_whitening']
if aug_whitening:
# Subtract off its own mean and divide by the standard deviation of its own the pixels.
with tf.name_scope('whitening'):
single_data = tf.image.per_image_standardization(single_data) # N.B. also converts to float
max_queue_capacity = min(math.ceil(self.total * MIN_FRACTION_OF_EXAMPLES_IN_QUEUE),
MAX_ABSOLUTE_EXAMPLES_IN_QUEUE)
single_batch = [single_key, single_data]
if single_label is not None:
single_batch.append(single_label)
if self.backend == 'tfrecords' and self.shuffle:
batch = tf.train.shuffle_batch(
single_batch,
batch_size=self.batch_size,
num_threads=NUM_THREADS_DATA_LOADER,
capacity=10*self.batch_size, # Max amount that will be loaded and queued
shapes=[[0], self.get_shape(), []], # Only makes sense is dynamic_pad=False #@TODO(tzaman) - FIXME
min_after_dequeue=5*self.batch_size,
allow_smaller_final_batch=True, # Happens if total%batch_size!=0
name='batcher')
else:
batch = tf.train.batch(
single_batch,
batch_size=self.batch_size,
dynamic_pad=True, # Allows us to not supply fixed shape a priori
enqueue_many=False, # Each tensor is a single example
# set number of threads to 1 for tfrecords (used for inference)
num_threads=NUM_THREADS_DATA_LOADER if not self.is_inference else 1,
capacity=max_queue_capacity, # Max amount that will be loaded and queued
allow_smaller_final_batch=True, # Happens if total%batch_size!=0
name='batcher')
self.batch_k = batch[0] # Key
self.batch_x = batch[1] # Input
if len(batch) == 3:
# There's a label (unlike during inferencing)
self.batch_y = batch[2] # Output (label)
class LmdbLoader(LoaderFactory):
""" Loads files from lmbd files as used in Caffe
"""
def __init__(self):
pass
def initialize(self):
try:
import lmdb
except ImportError:
logging.error("Attempt to create LMDB Loader but lmdb is not installed.")
exit(-1)
self.unencoded_data_format = 'chw'
self.unencoded_channel_scheme = 'bgr'
# Set up the data loader
self.lmdb_env = lmdb.open(self.db_path, readonly=True, lock=False)
self.lmdb_txn = self.lmdb_env.begin(buffers=False)
self.total = self.lmdb_txn.stat()['entries']
self.keys = [key for key, _ in self.lmdb_txn.cursor()]
# Read the first entry to get some info
lmdb_val = self.lmdb_txn.get(self.keys[0])
datum = caffe_tf_pb2.Datum()
datum.ParseFromString(lmdb_val)
self.channels = datum.channels
self.width = datum.width
self.height = datum.height
self.data_encoded = datum.encoded
self.float_data = datum.float_data
if self.data_encoded:
# Obtain mime-type
self.data_mime = magic.from_buffer(datum.data, mime=True)
if not self.float_data:
if self.bitdepth == 8:
self.image_dtype = tf.uint8
else:
if self.data_mime == 'image/jpeg':
logging.error("Tensorflow does not support 16 bit jpeg decoding.")
exit(-1)
self.image_dtype = tf.uint16
def get_queue(self):
return tf.train.string_input_producer(
self.keys,
num_epochs=self.num_epochs,
capacity=self.total,
shuffle=self.shuffle,
seed=self._seed,
name='input_producer'
)
def get_tf_data_type(self):
"""Returns the type of the data, in tf format.
It takes in account byte-data or floating point data.
It also takes in account the possible seperate lmdb label db.
Returns:
The tensorflow-datatype of the data
"""
return tf.float32 if self.float_data else tf.string
def get_tf_label_type(self):
"""Returns the type of the label, in tf format.
It takes in account byte-data or floating point data.
It also takes in account the possible seperate lmdb label db.
Returns:
The tensorflow-datatype of the label
"""
if self.labels_db_path:
return self.labels_db.get_tf_data_type()
else:
# No seperate db, return scalar label
return tf.int64
def generate_data_op(self):
"""Generates and returns an op that fetches a single sample of data.
Args:
self:
Returns:
A python function that is inserted as an op
"""
def get_data_and_shape(lmdb_txn, key):
val = lmdb_txn.get(key)
datum = caffe_tf_pb2.Datum()
datum.ParseFromString(val)
shape = np.array([datum.channels, datum.height, datum.width], dtype=np.int32)
if datum.float_data:
data = np.asarray(datum.float_data, dtype='float32')
else:
data = datum.data
label = np.asarray([datum.label], dtype=np.int64) # scalar label
return data, shape, label
def get_data_op(key):
"""Fetches a sample of data and its label from lmdb. If a seperate label database
exists, it will also load it from the seperate db inside this function. This is
done the data and its label are loaded at the same time, avoiding multiple queues
and race conditions.
Args:
self: the current lmdb instance
Returns:
single_data: One sample of training data
single_data_shape: The shape of the preceeding training data
single_label: The label that is the reference value describing the data
single_label_shape: The shape of the preceeding label data
"""
single_data, single_data_shape, single_label = get_data_and_shape(self.lmdb_txn, key)
single_label_shape = np.array([], dtype=np.int32)
if self.labels_db_path:
single_label, single_label_shape, _ = get_data_and_shape(self.labels_db.lmdb_txn, key)
return single_data, [single_data_shape], single_label, [single_label_shape]
return get_data_op
def get_single_data(self, key_queue):
"""
Returns:
key, single_data, single_data_shape, single_label, single_label_shape
"""
key = key_queue.dequeue() # Operation that dequeues one key and returns a string with the key
py_func_return_type = [self.get_tf_data_type(), tf.int32, self.get_tf_label_type(), tf.int32]
d, ds, l, ls = tf.py_func(self.generate_data_op(), [key], py_func_return_type, name='data_reader')
return key, d, ds, l, ls
def __del__(self):
self.lmdb_env.close()
class FileListLoader(LoaderFactory):
""" The FileListLoader loads files from a list of string(s) pointing to (a) file(s).
These files are then retrieved by their string and loaded according to their extension.
"""
def __init__(self):
pass
def initialize(self):
self.float_data = False
self.data_encoded = True
if self.backend == 'file':
# Single file
self.total = 1
self.keys = [self.db_path]
first_file_path = self.db_path
elif self.backend == 'filelist':
# Single file with a list of files
with open(self.db_path) as f:
self.keys = f.readlines()
# Retain only the images in the list
self.keys = [key.split(LIST_DELIMITER)[0].rstrip() for key in self.keys]
if len(self.keys) > 0:
# Assume the first entry in the line is a pointer to the file path
first_file_path = self.keys[0]
else:
logging.error('Filelist (%s) contains no lines.' % (self.db_path))
exit(-1)
else:
logging.error('Unsupported backend in FileListLoader (%s)' % (self.backend))
exit(-1)
self.total = len(self.keys)
# Check first file for statistics
im = Image.open(first_file_path)
self.width, self.height = im.size
self.channels = 1 if im.mode == 'L' else 3 # @TODO(tzaman): allow more channels
self.data_mime = magic.from_file(first_file_path, mime=True)
if self.bitdepth == 8:
self.image_dtype = tf.uint8
else:
if self.data_mime == 'image/jpeg':
logging.error("Tensorflow does not support 16 bit jpeg decoding.")
exit(-1)
self.image_dtype = tf.uint16
self.reader = tf.WholeFileReader()
def get_queue(self):
return tf.train.string_input_producer(
self.keys,
num_epochs=self.num_epochs,
capacity=self.total,
shuffle=self.shuffle,
seed=self._seed,
name='input_producer'
)
def get_single_data(self, key_queue):
"""
Returns:
key, single_data, single_data_shape, single_label, single_label_shape
"""
key, value = self.reader.read(key_queue)
shape = np.array([self.width, self.height, self.channels], dtype=np.int32) # @TODO: this is not dynamic
return key, value, shape # @TODO(tzaman) - Note: will only work for inferencing stage!
class TFRecordsLoader(LoaderFactory):
""" The TFRecordsLoader connects directly into the tensorflow graph.
It uses TFRecords, the 'standard' tensorflow data format.
"""
def __init__(self):
pass
def initialize(self):
self.float_data = False # For now only strings
self.unencoded_data_format = 'hwc'
self.unencoded_channel_scheme = 'rgb'
self.reader = None
if self.bitdepth == 8:
self.image_dtype = tf.uint8
else:
self.image_dtype = tf.uint16
# Count all the records @TODO(tzaman): account for shards!
# Loop the records in path @TODO(tzaman) get this from a txt?
# self.db_path += '/test.tfrecords' # @TODO(tzaman) this is a hack
self.shard_paths = []
list_db_files = os.path.join(self.db_path, 'list.txt')
self.total = 0
if os.path.exists(list_db_files):
files = [os.path.join(self.db_path, f) for f in open(list_db_files, 'r').read().splitlines()]
else:
files = [self.db_path]
for shard_path in files:
# Account for the relative path format in list.txt
record_iter = tf.python_io.tf_record_iterator(shard_path)
for r in record_iter:
self.total += 1
if not self.total:
raise ValueError('Database or shard contains no records (%s)' % (self.db_path))
self.shard_paths.append(shard_path)
self.keys = ['%s:0' % p for p in self.shard_paths]
# Use last record read to extract some preliminary data that is sometimes needed or useful
example_proto = tf.train.Example()
example_proto.ParseFromString(r)
# @TODO(tzaman) - bitdepth flag?
self.channels = example_proto.features.feature['depth'].int64_list.value[0]
self.height = example_proto.features.feature['height'].int64_list.value[0]
self.width = example_proto.features.feature['width'].int64_list.value[0]
data_encoding_id = example_proto.features.feature['encoding'].int64_list.value[0]
if data_encoding_id:
self.data_encoded = True
self.data_mime = 'image/png' if data_encoding_id == 1 else 'image/jpeg'
else:
self.data_encoded = False
# Set up the reader
# @TODO(tzaman) there's a filename queue because it can have multiple (sharded) tfrecord files (!)
# .. account for that!
self.reader = tf.TFRecordReader(name='tfrecord_reader')
def get_queue(self):
return tf.train.string_input_producer(self.shard_paths,
num_epochs=self.num_epochs,
shuffle=self.shuffle,
seed=self._seed,
name='input_producer'
)
def get_single_data(self, key_queue):
"""
Returns:
key, single_data, single_data_shape, single_label, single_label_shape
"""
key, serialized_example = self.reader.read(key_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([self.height, self.width, self.channels], tf.float32),
'label': tf.FixedLenFeature([], tf.int64),
})
d = features['image_raw']
ds = np.array([self.height, self.width, self.channels], dtype=np.int32) # @TODO: this is not dynamic
l = features['label'] # l = tf.cast(features['label'], tf.int32)
ls = np.array([], dtype=np.int32) # @TODO: this is not dynamic
return key, d, ds, l, ls
class Hdf5Loader(LoaderFactory):
def __init__(self):
pass
def initialize(self):
try:
import h5py
except ImportError:
logging.error("Attempt to create HDF5 Loader but h5py is not installed.")
exit(-1)
self.data_encoded = False
self.float_data = True # Always stored as float32
self.keys = None # Not using keys
self.h5dbs = []
self.h5dbs_endrange = []
list_db_files = self.db_path + '/list.txt'
self.total = 0
with open(list_db_files) as f:
for line in f:
# Account for the relative path format in list.txt
fn = self.db_path + '/' + os.path.basename(line.strip())
db = h5py.File(fn)
self.check_hdf5_db(db)
self.total += len(db['data'])
self.h5dbs_endrange.append(self.total)
self.h5dbs.append(db)
# Read the first file to get shape information
self.channels, self.height, self.width = self.h5dbs[0]['data'][0].shape
def check_hdf5_db(self, db):
# Make sure we have data and labels in the db
if "data" not in db or "label" not in db:
logging.error("The HDF5 loader requires both a 'data' and 'label' group in the HDF5 root.")
exit(-1)
if len(db['data']) != len(db['label']):
logging.error("HDF5 data and label amount mismatch (%d/%d)" % (len(db['data']), len(db['label'])))
exit(-1)
if len(db['data']) == 0:
logging.error("HDF5 database contains no data.")
exit(-1)
def get_queue(self):
return tf.train.range_input_producer(
self.total,
num_epochs=self.num_epochs,
capacity=self.total,
shuffle=self.shuffle,
seed=self._seed,
name='input_producer'
)
def get_tf_data_type(self):
"""Returns the type of the data, in tf format.
It takes in account byte-data or floating point data.
It also takes in account the possible seperate lmdb label db.
Returns:
The tensorflow-datatype of the data
"""
return tf.float32 if self.float_data else tf.string
def get_tf_label_type(self):
"""Returns the type of the label, in tf format.
It takes in account byte-data or floating point data.
It also takes in account the possible seperate lmdb label db.
Returns:
The tensorflow-datatype of the label
"""
if self.labels_db_path:
return self.labels_db.get_tf_data_type()
else:
# No seperate db, return scalar label
return tf.int64
def get_data_and_shape(self, sample_key):
""" Gets a sample across multiple hdf5 databases
"""
prev_end_range = 0
for i, end_range in enumerate(self.h5dbs_endrange):
if sample_key < end_range:
key_within_db = sample_key-prev_end_range
data = self.h5dbs[i]['data'][key_within_db]
shape = np.asarray(data.shape, dtype=np.int32)
label = self.h5dbs[i]['label'][key_within_db].astype(np.int64)
return data, shape, label
prev_end_range = end_range
logging.error("Out of range") # @TODO(tzaman) out of range error
exit(-1)
def generate_data_op(self):
"""Generates and returns an op that fetches a single sample of data.
Returns:
A python function that is inserted as an op
"""
def get_data_op(key):
"""Fetches a sample of data and its label from db. If a seperate label database
exists, it will also load it from the seperate db inside this function. This is
done the data and its label are loaded at the same time, avoiding multiple queues
and race conditions.
Args:
key: integer key id
Returns:
single_data: One sample of training data
single_data_shape: The shape of the preceeding training data
single_label: The label that is the reference value describing the data
single_label_shape: The shape of the preceeding label data
"""
single_data, single_data_shape, single_label = self.get_data_and_shape(key)
single_label_shape = np.array([], dtype=np.int32)
if self.labels_db_path:
single_label, single_label_shape, _ = self.labels_db.get_data_and_shape(key)
return single_data, [single_data_shape], single_label, [single_label_shape]
return get_data_op
def get_single_data(self, key_queue):
"""
Returns:
key, single_data, single_data_shape, single_label, single_label_shape
"""
key = key_queue.dequeue() # Operation that dequeues one key and returns a string with the key
py_func_return_type = [self.get_tf_data_type(), tf.int32, self.get_tf_label_type(), tf.int32]
d, ds, l, ls = tf.py_func(self.generate_data_op(), [key], py_func_return_type, name='data_reader')
return key, d, ds, l, ls
def __del__(self):
for db in self.h5dbs:
db.close()
class GanGridLoader(LoaderFactory):
"""
The GanGridLoader generates data for a GAN.
"""
def __init__(self):
pass
def initialize(self):
self.float_data = False # For now only strings
self.keys = None # Not using keys
self.unencoded_data_format = 'hwc'
self.unencoded_channel_scheme = 'rgb'
self.reader = None
self.image_dtype = tf.float32
self.channels = 1
self.height = 1
self.width = 100
self.data_encoded = False
self.total = 100000
def get_queue(self):
return tf.train.range_input_producer(
self.total,
num_epochs=self.num_epochs,
capacity=self.total,
shuffle=self.shuffle,
seed=self._seed,
name='input_producer'
)
def get_single_data(self, key_queue):
"""
Returns:
key, single_data, single_data_shape, single_label, single_label_shape
"""
key = tf.to_int32(key_queue.dequeue()) # Operation that dequeues an index
d = key
ds = np.array([1, 1, 1], dtype=np.int32)
return key, d, ds, None, None
| DIGITS-master | digits/tools/tensorflow/tf_data.py |
#!/usr/bin/env python2
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
#
# This document should comply with PEP-8 Style Guide
# Linter: pylint
"""
TensorFlow training executable for DIGITS
Defines the training procedure
Usage:
See the self-documenting flags below.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import datetime
import inspect
import json
import logging
import math
import numpy as np
import os
from six.moves import xrange # noqa
import tensorflow as tf
import tensorflow.contrib.slim as slim # noqa
from tensorflow.python.client import timeline, device_lib # noqa
from tensorflow.python.ops import template # noqa
from tensorflow.python.lib.io import file_io
from tensorflow.core.framework import summary_pb2
from tensorflow.python.tools import freeze_graph
# Local imports
import utils as digits
import lr_policy
from model import Model, Tower # noqa
from utils import model_property # noqa
import tf_data
# Constants
TF_INTRA_OP_THREADS = 0
TF_INTER_OP_THREADS = 0
MIN_LOGS_PER_TRAIN_EPOCH = 8 # torch default: 8
logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
FLAGS = tf.app.flags.FLAGS
# Basic model parameters. #float, integer, boolean, string
tf.app.flags.DEFINE_integer('batch_size', 16, """Number of images to process in a batch""")
tf.app.flags.DEFINE_integer(
'croplen', 0, """Crop (x and y). A zero value means no cropping will be applied""")
tf.app.flags.DEFINE_integer('epoch', 1, """Number of epochs to train, -1 for unbounded""")
tf.app.flags.DEFINE_string('inference_db', '', """Directory with inference file source""")
tf.app.flags.DEFINE_integer(
'validation_interval', 1, """Number of train epochs to complete, to perform one validation""")
tf.app.flags.DEFINE_string('labels_list', '', """Text file listing label definitions""")
tf.app.flags.DEFINE_string('mean', '', """Mean image file""")
tf.app.flags.DEFINE_float('momentum', '0.9', """Momentum""") # Not used by DIGITS front-end
tf.app.flags.DEFINE_string('network', '', """File containing network (model)""")
tf.app.flags.DEFINE_string('networkDirectory', '', """Directory in which network exists""")
tf.app.flags.DEFINE_string('optimization', 'sgd', """Optimization method""")
tf.app.flags.DEFINE_string('save', 'results', """Save directory""")
tf.app.flags.DEFINE_integer('seed', 0, """Fixed input seed for repeatable experiments""")
tf.app.flags.DEFINE_boolean('shuffle', False, """Shuffle records before training""")
tf.app.flags.DEFINE_float(
'snapshotInterval', 1.0,
"""Specifies the training epochs to be completed before taking a snapshot""")
tf.app.flags.DEFINE_string('snapshotPrefix', '', """Prefix of the weights/snapshots""")
tf.app.flags.DEFINE_string(
'subtractMean', 'none',
"""Select mean subtraction method. Possible values are 'image', 'pixel' or 'none'""")
tf.app.flags.DEFINE_string('train_db', '', """Directory with training file source""")
tf.app.flags.DEFINE_string(
'train_labels', '',
"""Directory with an optional and seperate labels file source for training""")
tf.app.flags.DEFINE_string('validation_db', '', """Directory with validation file source""")
tf.app.flags.DEFINE_string(
'validation_labels', '',
"""Directory with an optional and seperate labels file source for validation""")
tf.app.flags.DEFINE_string(
'visualizeModelPath', '', """Constructs the current model for visualization""")
tf.app.flags.DEFINE_boolean(
'visualize_inf', False, """Will output weights and activations for an inference job.""")
tf.app.flags.DEFINE_string(
'weights', '', """Filename for weights of a model to use for fine-tuning""")
# @TODO(tzaman): is the bitdepth in line with the DIGITS team?
tf.app.flags.DEFINE_integer('bitdepth', 8, """Specifies an image's bitdepth""")
# @TODO(tzaman); remove torch mentions below
tf.app.flags.DEFINE_float('lr_base_rate', '0.01', """Learning rate""")
tf.app.flags.DEFINE_string(
'lr_policy', 'fixed',
"""Learning rate policy. (fixed, step, exp, inv, multistep, poly, sigmoid)""")
tf.app.flags.DEFINE_float(
'lr_gamma', -1,
"""Required to calculate learning rate. Applies to: (step, exp, inv, multistep, sigmoid)""")
tf.app.flags.DEFINE_float(
'lr_power', float('Inf'),
"""Required to calculate learning rate. Applies to: (inv, poly)""")
tf.app.flags.DEFINE_string(
'lr_stepvalues', '',
"""Required to calculate stepsize of the learning rate. Applies to: (step, multistep, sigmoid).
For the 'multistep' lr_policy you can input multiple values seperated by commas""")
# Tensorflow-unique arguments for DIGITS
tf.app.flags.DEFINE_string(
'save_vars', 'all',
"""Sets the collection of variables to be saved: 'all' or only 'trainable'.""")
tf.app.flags.DEFINE_string('summaries_dir', '', """Directory of Tensorboard Summaries (logdir)""")
tf.app.flags.DEFINE_boolean(
'serving_export', False, """Flag for exporting an Tensorflow Serving model""")
tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""")
tf.app.flags.DEFINE_integer(
'log_runtime_stats_per_step', 0,
"""Logs runtime statistics for Tensorboard every x steps, defaults to 0 (off).""")
# Augmentation
tf.app.flags.DEFINE_string(
'augFlip', 'none',
"""The flip options {none, fliplr, flipud, fliplrud} as randompre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augNoise', 0., """The stddev of Noise in AWGN as pre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augContrast', 0., """The contrast factor's bounds as sampled from a random-uniform distribution
as pre-processing augmentation""")
tf.app.flags.DEFINE_bool(
'augWhitening', False, """Performs per-image whitening by subtracting off its own mean and
dividing by its own standard deviation.""")
tf.app.flags.DEFINE_float(
'augHSVh', 0., """The stddev of HSV's Hue shift as pre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augHSVs', 0., """The stddev of HSV's Saturation shift as pre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augHSVv', 0., """The stddev of HSV's Value shift as pre-processing augmentation""")
def save_timeline_trace(run_metadata, save_dir, step):
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format(show_memory=True)
tl_fn = os.path.join(save_dir, 'timeline_%s.json' % step)
with open(tl_fn, 'w') as f:
f.write(ctf)
logging.info('Timeline trace written to %s', tl_fn)
def strip_data_from_graph_def(graph_def):
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
if (tensor.tensor_content):
tensor.tensor_content = ''
if (tensor.string_val):
del tensor.string_val[:]
return strip_def
def visualize_graph(graph_def, path):
graph_def = strip_data_from_graph_def(graph_def)
logging.info('Writing Graph Definition..')
file_io.write_string_to_file(path, str(graph_def))
logging.info('Graph Definition Written.')
def average_head_keys(tags, vals):
""" Averages keys with same end (head) name.
Example: foo1/bar=1 and foo2/bar=2 should collapse to bar=1.5
"""
tail_tags = [w.split('/')[-1] for w in tags]
sums = {}
nums = {}
for a, b in zip(tail_tags, vals):
if a not in sums:
sums[a] = b
nums[a] = 1
else:
sums[a] += b
nums[a] += 1
tags_clean = sums.keys()
return tags_clean, np.asarray(sums.values())/np.asarray(nums.values())
def summary_to_lists(summary_str):
""" Takes a Tensorflow stringified Summary object and returns only
the scalar values to a list of tags and a list of values
Args:
summary_str: string of a Tensorflow Summary object
Returns:
tags: list of tags
vals: list of values corresponding to the tag list
"""
summ = summary_pb2.Summary()
summ.ParseFromString(summary_str)
tags = []
vals = []
for s in summ.value:
if s.HasField('simple_value'): # and s.simple_value: # Only parse scalar_summaries
if s.simple_value == float('Inf') or np.isnan(s.simple_value):
raise ValueError('Model diverged with %s = %s : Try decreasing your learning rate' %
(s.tag, s.simple_value))
tags.append(s.tag)
vals.append(s.simple_value)
tags, vals = average_head_keys(tags, vals)
vals = np.asarray(vals)
return tags, vals
def print_summarylist(tags, vals):
""" Prints a nice one-line listing of tags and their values in a nice format
that corresponds to how the DIGITS regex reads it.
Args:
tags: an array of tags
vals: an array of values
Returns:
print_list: a string containing formatted tags and values
"""
print_list = ''
for i, key in enumerate(tags):
if vals[i] == float('Inf'):
raise ValueError('Infinite value %s = Inf' % key)
print_list = print_list + key + " = " + "{:.6f}".format(vals[i])
if i < len(tags)-1:
print_list = print_list + ", "
return print_list
def dump(obj):
for attr in dir(obj):
print("obj.%s = %s" % (attr, getattr(obj, attr)))
def load_snapshot(sess, weight_path, var_candidates):
""" Loads a snapshot into a session from a weight path. Will only load the
weights that are both in the weight_path file and the passed var_candidates."""
logging.info("Loading weights from pretrained model - %s ", weight_path)
reader = tf.train.NewCheckpointReader(weight_path)
var_map = reader.get_variable_to_shape_map()
# Only obtain all the variables that are [in the current graph] AND [in the checkpoint]
vars_restore = []
for vt in var_candidates:
for vm in var_map.keys():
if vt.name.split(':')[0] == vm:
if ("global_step" not in vt.name) and not (vt.name.startswith("train/")):
vars_restore.append(vt)
logging.info('restoring %s -> %s' % (vm, vt.name))
else:
logging.info('NOT restoring %s -> %s' % (vm, vt.name))
logging.info('Restoring %s variable ops.' % len(vars_restore))
tf.train.Saver(vars_restore, max_to_keep=0, sharded=FLAGS.serving_export).restore(sess, weight_path)
logging.info('Variables restored.')
def save_snapshot(sess, saver, save_dir, snapshot_prefix, epoch, for_serving=False):
"""
Saves a snapshot of the current session, saving all variables previously defined
in the ctor of the saver. Also saves the flow of the graph itself (only once).
"""
number_dec = str(FLAGS.snapshotInterval-int(FLAGS.snapshotInterval))[2:]
if number_dec is '':
number_dec = '0'
epoch_fmt = "{:." + number_dec + "f}"
snapshot_file = os.path.join(save_dir, snapshot_prefix + '_' + epoch_fmt.format(epoch) + '.ckpt')
logging.info('Snapshotting to %s', snapshot_file)
checkpoint_path = saver.save(sess, snapshot_file)
logging.info('Snapshot saved.')
if for_serving:
# @TODO(tzaman) : we could further extend this by supporting tensorflow-serve
logging.error('NotImplementedError: Tensorflow-Serving support.')
exit(-1)
# Past this point the graph shouldn't be changed, so saving it once is enough
filename_graph = os.path.join(save_dir, snapshot_prefix + '.graph_def')
if not os.path.isfile(filename_graph):
with open(filename_graph, 'wb') as f:
logging.info('Saving graph to %s', filename_graph)
f.write(sess.graph_def.SerializeToString())
logging.info('Saved graph to %s', filename_graph)
# meta_graph_def = tf.train.export_meta_graph(filename='?')
return checkpoint_path, filename_graph
def save_weight_visualization(w_names, a_names, w, a):
try:
import h5py
except ImportError:
logging.error("Attempt to create HDF5 Loader but h5py is not installed.")
exit(-1)
fn = os.path.join(FLAGS.save, 'vis.h5')
vis_db = h5py.File(fn, 'w')
db_layers = vis_db.create_group("layers")
logging.info('Saving visualization to %s', fn)
for i in range(0, len(w)):
dset = db_layers.create_group(str(i))
dset.attrs['var'] = w_names[i].name
dset.attrs['op'] = a_names[i]
if w[i].shape:
dset.create_dataset('weights', data=w[i])
if a[i].shape:
dset.create_dataset('activations', data=a[i])
vis_db.close()
def Inference(sess, model):
"""
Runs one inference (evaluation) epoch (all the files in the loader)
"""
inference_op = model.towers[0].inference
if FLAGS.labels_list: # Classification -> assume softmax usage
# Append a softmax op
inference_op = tf.nn.softmax(inference_op)
weight_vars = []
activation_ops = []
if FLAGS.visualize_inf:
trainable_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
# Retrace the origin op of each variable
for n in tf.get_default_graph().as_graph_def().node:
for tw in trainable_weights:
tw_name_reader = tw.name.split(':')[0] + '/read'
if tw_name_reader in n.input:
node_op_name = n.name + ':0' # @TODO(tzaman) this assumes exactly 1 output - allow to be dynamic!
weight_vars.append(tw)
activation_ops.append(node_op_name)
continue
try:
while not model.queue_coord.should_stop():
keys, preds, [w], [a] = sess.run([model.dataloader.batch_k,
inference_op,
[weight_vars],
[activation_ops]])
if FLAGS.visualize_inf:
save_weight_visualization(weight_vars, activation_ops, w, a)
# @TODO(tzaman): error on no output?
for i in range(len(keys)):
# for j in range(len(preds)):
# We're allowing multiple predictions per image here. DIGITS doesnt support that iirc
logging.info('Predictions for image ' + str(model.dataloader.get_key_index(keys[i])) +
': ' + json.dumps(preds[i].tolist()))
except tf.errors.OutOfRangeError:
print('Done: tf.errors.OutOfRangeError')
def Validation(sess, model, current_epoch):
"""
Runs one validation epoch.
"""
# @TODO(tzaman): utilize the coordinator by resetting the queue after 1 epoch.
# see https://github.com/tensorflow/tensorflow/issues/4535#issuecomment-248990633
print_vals_sum = 0
steps = 0
while (steps * model.dataloader.batch_size) < model.dataloader.get_total():
summary_str = sess.run(model.summary)
# Parse the summary
tags, print_vals = summary_to_lists(summary_str)
print_vals_sum = print_vals + print_vals_sum
steps += 1
print_list = print_summarylist(tags, print_vals_sum/steps)
logging.info("Validation (epoch " + str(current_epoch) + "): " + print_list)
def loadLabels(filename):
with open(filename) as f:
return f.readlines()
def main(_):
# Always keep the cpu as default
with tf.Graph().as_default(), tf.device('/cpu:0'):
if FLAGS.validation_interval == 0:
FLAGS.validation_db = None
# Set Tensorboard log directory
if FLAGS.summaries_dir:
# The following gives a nice but unrobust timestamp
FLAGS.summaries_dir = os.path.join(FLAGS.summaries_dir, datetime.datetime.now().strftime("%Y%m%d_%H%M%S"))
if not FLAGS.train_db and not FLAGS.validation_db and not FLAGS.inference_db and not FLAGS.visualizeModelPath:
logging.error("At least one of the following file sources should be specified: "
"train_db, validation_db or inference_db")
exit(-1)
if FLAGS.seed:
tf.set_random_seed(FLAGS.seed)
batch_size_train = FLAGS.batch_size
batch_size_val = FLAGS.batch_size
logging.info("Train batch size is %s and validation batch size is %s", batch_size_train, batch_size_val)
# This variable keeps track of next epoch, when to perform validation.
next_validation = FLAGS.validation_interval
logging.info("Training epochs to be completed for each validation : %s", next_validation)
# This variable keeps track of next epoch, when to save model weights.
next_snapshot_save = FLAGS.snapshotInterval
logging.info("Training epochs to be completed before taking a snapshot : %s", next_snapshot_save)
last_snapshot_save_epoch = 0
snapshot_prefix = FLAGS.snapshotPrefix if FLAGS.snapshotPrefix else FLAGS.network.split('.')[0]
logging.info("Model weights will be saved as %s_<EPOCH>_Model.ckpt", snapshot_prefix)
if not os.path.exists(FLAGS.save):
os.makedirs(FLAGS.save)
logging.info("Created a directory %s to save all the snapshots", FLAGS.save)
# Load mean variable
if FLAGS.subtractMean == 'none':
mean_loader = None
else:
if not FLAGS.mean:
logging.error("subtractMean parameter not set to 'none' yet mean image path is unset")
exit(-1)
logging.info("Loading mean tensor from %s file", FLAGS.mean)
mean_loader = tf_data.MeanLoader(FLAGS.mean, FLAGS.subtractMean, FLAGS.bitdepth)
classes = 0
nclasses = 0
if FLAGS.labels_list:
logging.info("Loading label definitions from %s file", FLAGS.labels_list)
classes = loadLabels(FLAGS.labels_list)
nclasses = len(classes)
if not classes:
logging.error("Reading labels file %s failed.", FLAGS.labels_list)
exit(-1)
logging.info("Found %s classes", nclasses)
# Create a data-augmentation dict
aug_dict = {
'aug_flip': FLAGS.augFlip,
'aug_noise': FLAGS.augNoise,
'aug_contrast': FLAGS.augContrast,
'aug_whitening': FLAGS.augWhitening,
'aug_HSV': {
'h': FLAGS.augHSVh,
's': FLAGS.augHSVs,
'v': FLAGS.augHSVv,
},
}
# Import the network file
path_network = os.path.join(os.path.dirname(os.path.realpath(__file__)), FLAGS.networkDirectory, FLAGS.network)
exec(open(path_network).read(), globals())
try:
UserModel
except NameError:
logging.error("The user model class 'UserModel' is not defined.")
exit(-1)
if not inspect.isclass(UserModel): # noqa
logging.error("The user model class 'UserModel' is not a class.")
exit(-1)
# @TODO(tzaman) - add mode checks to UserModel
if FLAGS.train_db:
with tf.name_scope(digits.STAGE_TRAIN) as stage_scope:
train_model = Model(digits.STAGE_TRAIN, FLAGS.croplen, nclasses, FLAGS.optimization, FLAGS.momentum)
train_model.create_dataloader(FLAGS.train_db)
train_model.dataloader.setup(FLAGS.train_labels,
FLAGS.shuffle,
FLAGS.bitdepth,
batch_size_train,
FLAGS.epoch,
FLAGS.seed)
train_model.dataloader.set_augmentation(mean_loader, aug_dict)
train_model.create_model(UserModel, stage_scope) # noqa
if FLAGS.validation_db:
with tf.name_scope(digits.STAGE_VAL) as stage_scope:
val_model = Model(digits.STAGE_VAL, FLAGS.croplen, nclasses, reuse_variable=True)
val_model.create_dataloader(FLAGS.validation_db)
val_model.dataloader.setup(FLAGS.validation_labels,
False,
FLAGS.bitdepth,
batch_size_val,
1e9,
FLAGS.seed) # @TODO(tzaman): set numepochs to 1
val_model.dataloader.set_augmentation(mean_loader)
val_model.create_model(UserModel, stage_scope) # noqa
if FLAGS.inference_db:
with tf.name_scope(digits.STAGE_INF) as stage_scope:
inf_model = Model(digits.STAGE_INF, FLAGS.croplen, nclasses)
inf_model.create_dataloader(FLAGS.inference_db)
inf_model.dataloader.setup(None, False, FLAGS.bitdepth, FLAGS.batch_size, 1, FLAGS.seed)
inf_model.dataloader.set_augmentation(mean_loader)
inf_model.create_model(UserModel, stage_scope) # noqa
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True, # will automatically do non-gpu supported ops on cpu
inter_op_parallelism_threads=TF_INTER_OP_THREADS,
intra_op_parallelism_threads=TF_INTRA_OP_THREADS,
log_device_placement=FLAGS.log_device_placement))
if FLAGS.visualizeModelPath:
visualize_graph(sess.graph_def, FLAGS.visualizeModelPath)
exit(0)
# Saver creation.
if FLAGS.save_vars == 'all':
vars_to_save = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
elif FLAGS.save_vars == 'trainable':
vars_to_save = tf.all_variables()
else:
logging.error('Unknown save_var flag (%s)' % FLAGS.save_vars)
exit(-1)
saver = tf.train.Saver(vars_to_save, max_to_keep=0, sharded=FLAGS.serving_export)
# Initialize variables
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
# If weights option is set, preload weights from existing models appropriately
if FLAGS.weights:
load_snapshot(sess, FLAGS.weights, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
# Tensorboard: Merge all the summaries and write them out
writer = tf.summary.FileWriter(os.path.join(FLAGS.summaries_dir, 'tb'), sess.graph)
# If we are inferencing, only do that.
if FLAGS.inference_db:
inf_model.start_queue_runners(sess)
Inference(sess, inf_model)
queue_size_op = []
for n in tf.get_default_graph().as_graph_def().node:
if '_Size' in n.name:
queue_size_op.append(n.name+':0')
start = time.time() # @TODO(tzaman) - removeme
# Initial Forward Validation Pass
if FLAGS.validation_db:
val_model.start_queue_runners(sess)
Validation(sess, val_model, 0)
if FLAGS.train_db:
# During training, a log output should occur at least X times per epoch or every X images, whichever lower
train_steps_per_epoch = train_model.dataloader.get_total() / batch_size_train
if math.ceil(train_steps_per_epoch/MIN_LOGS_PER_TRAIN_EPOCH) < math.ceil(5000/batch_size_train):
logging_interval_step = int(math.ceil(train_steps_per_epoch/MIN_LOGS_PER_TRAIN_EPOCH))
else:
logging_interval_step = int(math.ceil(5000/batch_size_train))
logging.info("During training. details will be logged after every %s steps (batches)",
logging_interval_step)
# epoch value will be calculated for every batch size. To maintain unique epoch value between batches,
# it needs to be rounded to the required number of significant digits.
epoch_round = 0 # holds the required number of significant digits for round function.
tmp_batchsize = batch_size_train*logging_interval_step
while tmp_batchsize <= train_model.dataloader.get_total():
tmp_batchsize = tmp_batchsize * 10
epoch_round += 1
logging.info("While logging, epoch value will be rounded to %s significant digits", epoch_round)
# Create the learning rate policy
total_training_steps = train_model.dataloader.num_epochs * train_model.dataloader.get_total() / \
train_model.dataloader.batch_size
lrpolicy = lr_policy.LRPolicy(FLAGS.lr_policy,
FLAGS.lr_base_rate,
FLAGS.lr_gamma,
FLAGS.lr_power,
total_training_steps,
FLAGS.lr_stepvalues)
train_model.start_queue_runners(sess)
# Training
logging.info('Started training the model')
current_epoch = 0
try:
step = 0
step_last_log = 0
print_vals_sum = 0
while not train_model.queue_coord.should_stop():
log_runtime = FLAGS.log_runtime_stats_per_step and (step % FLAGS.log_runtime_stats_per_step == 0)
run_options = None
run_metadata = None
if log_runtime:
# For a HARDWARE_TRACE you need NVIDIA CUPTI, a 'CUDA-EXTRA'
# SOFTWARE_TRACE HARDWARE_TRACE FULL_TRACE
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
feed_dict = {train_model.learning_rate: lrpolicy.get_learning_rate(step)}
if False:
for op in train_model.train:
_, summary_str, step = sess.run([op, train_model.summary, train_model.global_step],
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
else:
_, summary_str, step = sess.run([train_model.train,
train_model.summary,
train_model.global_step],
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
# HACK
step = step / len(train_model.train)
# logging.info(sess.run(queue_size_op)) # DEVELOPMENT: for checking the queue size
if log_runtime:
writer.add_run_metadata(run_metadata, str(step))
save_timeline_trace(run_metadata, FLAGS.save, int(step))
writer.add_summary(summary_str, step)
# Parse the summary
tags, print_vals = summary_to_lists(summary_str)
print_vals_sum = print_vals + print_vals_sum
# @TODO(tzaman): account for variable batch_size value on very last epoch
current_epoch = round((step * batch_size_train) / train_model.dataloader.get_total(), epoch_round)
# Start with a forward pass
if ((step % logging_interval_step) == 0):
steps_since_log = step - step_last_log
print_list = print_summarylist(tags, print_vals_sum/steps_since_log)
logging.info("Training (epoch " + str(current_epoch) + "): " + print_list)
print_vals_sum = 0
step_last_log = step
# Potential Validation Pass
if FLAGS.validation_db and current_epoch >= next_validation:
Validation(sess, val_model, current_epoch)
# Find next nearest epoch value that exactly divisible by FLAGS.validation_interval:
next_validation = (round(float(current_epoch)/FLAGS.validation_interval) + 1) * \
FLAGS.validation_interval
# Saving Snapshot
if FLAGS.snapshotInterval > 0 and current_epoch >= next_snapshot_save:
checkpoint_path, graphdef_path = save_snapshot(sess,
saver,
FLAGS.save,
snapshot_prefix,
current_epoch,
FLAGS.serving_export
)
# To find next nearest epoch value that exactly divisible by FLAGS.snapshotInterval
next_snapshot_save = (round(float(current_epoch)/FLAGS.snapshotInterval) + 1) * \
FLAGS.snapshotInterval
last_snapshot_save_epoch = current_epoch
writer.flush()
except tf.errors.OutOfRangeError:
logging.info('Done training for epochs: tf.errors.OutOfRangeError')
except ValueError as err:
logging.error(err.args[0])
exit(-1) # DIGITS wants a dirty error.
except (KeyboardInterrupt):
logging.info('Interrupt signal received.')
# If required, perform final snapshot save
if FLAGS.snapshotInterval > 0 and FLAGS.epoch > last_snapshot_save_epoch:
checkpoint_path, graphdef_path =\
save_snapshot(sess, saver, FLAGS.save, snapshot_prefix, FLAGS.epoch, FLAGS.serving_export)
print('Training wall-time:', time.time()-start) # @TODO(tzaman) - removeme
# If required, perform final Validation pass
if FLAGS.validation_db and current_epoch >= next_validation:
Validation(sess, val_model, current_epoch)
if FLAGS.train_db:
if FLAGS.labels_list:
output_tensor = train_model.towers[0].inference
out_name, _ = output_tensor.name.split(':')
if FLAGS.train_db:
del train_model
if FLAGS.validation_db:
del val_model
if FLAGS.inference_db:
del inf_model
# We need to call sess.close() because we've used a with block
sess.close()
writer.close()
tf.reset_default_graph()
del sess
if FLAGS.train_db:
if FLAGS.labels_list:
path_frozen = os.path.join(FLAGS.save, 'frozen_model.pb')
print('Saving frozen model at path {}'.format(path_frozen))
freeze_graph.freeze_graph(
input_graph=graphdef_path,
input_saver='',
input_binary=True,
input_checkpoint=checkpoint_path,
output_node_names=out_name,
restore_op_name="save/restore_all",
filename_tensor_name="save/Const:0",
output_graph=path_frozen,
clear_devices=True,
initializer_nodes="",
)
logging.info('END')
exit(0)
if __name__ == '__main__':
tf.app.run()
| DIGITS-master | digits/tools/tensorflow/main.py |
#!/usr/bin/env python2
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
#
# This document should comply with PEP-8 Style Guide
# Linter: pylint
"""
TensorFlow training executable for DIGITS
Defines the training procedure
Usage:
See the self-documenting flags below.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import threading
import time
import datetime
import inspect
import logging
import math
import numpy as np
import os
import pickle
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.client import timeline
from tensorflow.python.lib.io import file_io
from tensorflow.core.framework import summary_pb2
# Local imports
import utils as digits
import lr_policy
from model import Model
import tf_data
import gandisplay
# Constants
TF_INTRA_OP_THREADS = 0
TF_INTER_OP_THREADS = 0
MIN_LOGS_PER_TRAIN_EPOCH = 8 # torch default: 8
CELEBA_ALL_ATTRIBUTES = """
5_o_Clock_Shadow Arched_Eyebrows Attractive Bags_Under_Eyes Bald Bangs
Big_Lips Big_Nose Black_Hair Blond_Hair Blurry Brown_Hair Bushy_Eyebrows
Chubby Double_Chin Eyeglasses Goatee Gray_Hair Heavy_Makeup High_Cheekbones
Male Mouth_Slightly_Open Mustache Narrow_Eyes No_Beard Oval_Face Pale_Skin
Pointy_Nose Receding_Hairline Rosy_Cheeks Sideburns Smiling Straight_Hair
Wavy_Hair Wearing_Earrings Wearing_Hat Wearing_Lipstick Wearing_Necklace
Wearing_Necktie Young
""".split()
CELEBA_EDITABLE_ATTRIBUTES = [
'Bald', 'Black_Hair', 'Blond_Hair', 'Eyeglasses', 'Male', 'Mustache',
'Smiling', 'Young', 'Attractive', 'Pale_Skin', 'Big_Nose'
]
CELEBA_EDITABLE_ATTRIBUTES_IDS = [CELEBA_ALL_ATTRIBUTES.index(attr) for attr in CELEBA_EDITABLE_ATTRIBUTES]
logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
FLAGS = tf.app.flags.FLAGS
# Basic model parameters. #float, integer, boolean, string
tf.app.flags.DEFINE_integer('batch_size', 16, """Number of images to process in a batch""")
tf.app.flags.DEFINE_integer(
'croplen', 0, """Crop (x and y). A zero value means no cropping will be applied""")
tf.app.flags.DEFINE_integer('epoch', 1, """Number of epochs to train, -1 for unbounded""")
tf.app.flags.DEFINE_string('inference_db', '', """Directory with inference file source""")
tf.app.flags.DEFINE_integer(
'validation_interval', 1, """Number of train epochs to complete, to perform one validation""")
tf.app.flags.DEFINE_string('labels_list', '', """Text file listing label definitions""")
tf.app.flags.DEFINE_string('mean', '', """Mean image file""")
tf.app.flags.DEFINE_float('momentum', '0.9', """Momentum""") # Not used by DIGITS front-end
tf.app.flags.DEFINE_string('network', '', """File containing network (model)""")
tf.app.flags.DEFINE_string('networkDirectory', '', """Directory in which network exists""")
tf.app.flags.DEFINE_string('optimization', 'sgd', """Optimization method""")
tf.app.flags.DEFINE_string('save', 'results', """Save directory""")
tf.app.flags.DEFINE_integer('seed', 0, """Fixed input seed for repeatable experiments""")
tf.app.flags.DEFINE_boolean('shuffle', False, """Shuffle records before training""")
tf.app.flags.DEFINE_float(
'snapshotInterval', 1.0,
"""Specifies the training epochs to be completed before taking a snapshot""")
tf.app.flags.DEFINE_string('snapshotPrefix', '', """Prefix of the weights/snapshots""")
tf.app.flags.DEFINE_string(
'subtractMean', 'none',
"""Select mean subtraction method. Possible values are 'image', 'pixel' or 'none'""")
tf.app.flags.DEFINE_string('train_db', '', """Directory with training file source""")
tf.app.flags.DEFINE_string(
'train_labels', '',
"""Directory with an optional and seperate labels file source for training""")
tf.app.flags.DEFINE_string('validation_db', '', """Directory with validation file source""")
tf.app.flags.DEFINE_string(
'validation_labels', '',
"""Directory with an optional and seperate labels file source for validation""")
tf.app.flags.DEFINE_string(
'visualizeModelPath', '', """Constructs the current model for visualization""")
tf.app.flags.DEFINE_boolean(
'visualize_inf', False, """Will output weights and activations for an inference job.""")
tf.app.flags.DEFINE_string(
'weights', '', """Filename for weights of a model to use for fine-tuning""")
# @TODO(tzaman): is the bitdepth in line with the DIGITS team?
tf.app.flags.DEFINE_integer('bitdepth', 8, """Specifies an image's bitdepth""")
# @TODO(tzaman); remove torch mentions below
tf.app.flags.DEFINE_float('lr_base_rate', '0.01', """Learning rate""")
tf.app.flags.DEFINE_string(
'lr_policy', 'fixed',
"""Learning rate policy. (fixed, step, exp, inv, multistep, poly, sigmoid)""")
tf.app.flags.DEFINE_float(
'lr_gamma', -1,
"""Required to calculate learning rate. Applies to: (step, exp, inv, multistep, sigmoid)""")
tf.app.flags.DEFINE_float(
'lr_power', float('Inf'),
"""Required to calculate learning rate. Applies to: (inv, poly)""")
tf.app.flags.DEFINE_string(
'lr_stepvalues', '',
"""Required to calculate stepsize of the learning rate. Applies to: (step, multistep, sigmoid).
For the 'multistep' lr_policy you can input multiple values seperated by commas""")
# Tensorflow-unique arguments for DIGITS
tf.app.flags.DEFINE_string(
'save_vars', 'all',
"""Sets the collection of variables to be saved: 'all' or only 'trainable'.""")
tf.app.flags.DEFINE_string('summaries_dir', '', """Directory of Tensorboard Summaries (logdir)""")
tf.app.flags.DEFINE_boolean(
'serving_export', False, """Flag for exporting an Tensorflow Serving model""")
tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""")
tf.app.flags.DEFINE_integer(
'log_runtime_stats_per_step', 0,
"""Logs runtime statistics for Tensorboard every x steps, defaults to 0 (off).""")
# Augmentation
tf.app.flags.DEFINE_string(
'augFlip', 'none',
"""The flip options {none, fliplr, flipud, fliplrud} as randompre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augNoise', 0., """The stddev of Noise in AWGN as pre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augContrast', 0., """The contrast factor's bounds as sampled from a random-uniform distribution
as pre-processing augmentation""")
tf.app.flags.DEFINE_bool(
'augWhitening', False, """Performs per-image whitening by subtracting off its own mean and
dividing by its own standard deviation.""")
tf.app.flags.DEFINE_float(
'augHSVh', 0., """The stddev of HSV's Hue shift as pre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augHSVs', 0., """The stddev of HSV's Saturation shift as pre-processing augmentation""")
tf.app.flags.DEFINE_float(
'augHSVv', 0., """The stddev of HSV's Value shift as pre-processing augmentation""")
# GAN Grid
tf.app.flags.DEFINE_string('zs_file', 'zs.pkl', """Pickle file containing z vectors to use""")
tf.app.flags.DEFINE_string('attributes_file', 'attributes.pkl', """Pickle file containing attribute vectors""")
def save_timeline_trace(run_metadata, save_dir, step):
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format(show_memory=True)
tl_fn = os.path.join(save_dir, 'timeline_%s.json' % step)
with open(tl_fn, 'w') as f:
f.write(ctf)
logging.info('Timeline trace written to %s', tl_fn)
def strip_data_from_graph_def(graph_def):
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
if (tensor.tensor_content):
tensor.tensor_content = ''
if (tensor.string_val):
del tensor.string_val[:]
return strip_def
def visualize_graph(graph_def, path):
graph_def = strip_data_from_graph_def(graph_def)
logging.info('Writing Graph Definition..')
file_io.write_string_to_file(path, str(graph_def))
logging.info('Graph Definition Written.')
def average_head_keys(tags, vals):
""" Averages keys with same end (head) name.
Example: foo1/bar=1 and foo2/bar=2 should collapse to bar=1.5
"""
tail_tags = [w.split('/')[-1] for w in tags]
sums = {}
nums = {}
for a, b in zip(tail_tags, vals):
if a not in sums:
sums[a] = b
nums[a] = 1
else:
sums[a] += b
nums[a] += 1
tags_clean = sums.keys()
return tags_clean, np.asarray(sums.values())/np.asarray(nums.values())
def summary_to_lists(summary_str):
""" Takes a Tensorflow stringified Summary object and returns only
the scalar values to a list of tags and a list of values
Args:
summary_str: string of a Tensorflow Summary object
Returns:
tags: list of tags
vals: list of values corresponding to the tag list
"""
summ = summary_pb2.Summary()
summ.ParseFromString(summary_str)
tags = []
vals = []
for s in summ.value:
if s.HasField('simple_value'): # and s.simple_value: # Only parse scalar_summaries
if s.simple_value == float('Inf') or np.isnan(s.simple_value):
raise ValueError('Model diverged with %s = %s : Try decreasing your learning rate' %
(s.tag, s.simple_value))
tags.append(s.tag)
vals.append(s.simple_value)
tags, vals = average_head_keys(tags, vals)
vals = np.asarray(vals)
return tags, vals
def print_summarylist(tags, vals):
""" Prints a nice one-line listing of tags and their values in a nice format
that corresponds to how the DIGITS regex reads it.
Args:
tags: an array of tags
vals: an array of values
Returns:
print_list: a string containing formatted tags and values
"""
print_list = ''
for i, key in enumerate(tags):
if vals[i] == float('Inf'):
raise ValueError('Infinite value %s = Inf' % key)
print_list = print_list + key + " = " + "{:.6f}".format(vals[i])
if i < len(tags)-1:
print_list = print_list + ", "
return print_list
def dump(obj):
for attr in dir(obj):
print("obj.%s = %s" % (attr, getattr(obj, attr)))
def load_snapshot(sess, weight_path, var_candidates):
""" Loads a snapshot into a session from a weight path. Will only load the
weights that are both in the weight_path file and the passed var_candidates."""
logging.info("Loading weights from pretrained model - %s ", weight_path)
reader = tf.train.NewCheckpointReader(weight_path)
var_map = reader.get_variable_to_shape_map()
# Only obtain all the variables that are [in the current graph] AND [in the checkpoint]
vars_restore = []
for vt in var_candidates:
for vm in var_map.keys():
if vt.name.split(':')[0] == vm:
if ("global_step" not in vt.name) and not (vt.name.startswith("train/")):
vars_restore.append(vt)
logging.info('restoring %s -> %s' % (vm, vt.name))
else:
logging.info('NOT restoring %s -> %s' % (vm, vt.name))
logging.info('Restoring %s variable ops.' % len(vars_restore))
tf.train.Saver(vars_restore, max_to_keep=0, sharded=FLAGS.serving_export).restore(sess, weight_path)
logging.info('Variables restored.')
def save_snapshot(sess, saver, save_dir, snapshot_prefix, epoch, for_serving=False):
"""
Saves a snapshot of the current session, saving all variables previously defined
in the ctor of the saver. Also saves the flow of the graph itself (only once).
"""
number_dec = str(FLAGS.snapshotInterval-int(FLAGS.snapshotInterval))[2:]
if number_dec is '':
number_dec = '0'
epoch_fmt = "{:." + number_dec + "f}"
snapshot_file = os.path.join(save_dir, snapshot_prefix + '_' + epoch_fmt.format(epoch) + '.ckpt')
logging.info('Snapshotting to %s', snapshot_file)
saver.save(sess, snapshot_file)
logging.info('Snapshot saved.')
if for_serving:
# @TODO(tzaman) : we could further extend this by supporting tensorflow-serve
logging.error('NotImplementedError: Tensorflow-Serving support.')
exit(-1)
# Past this point the graph shouldn't be changed, so saving it once is enough
filename_graph = os.path.join(save_dir, snapshot_prefix + '.graph_def')
if not os.path.isfile(filename_graph):
with open(filename_graph, 'wb') as f:
logging.info('Saving graph to %s', filename_graph)
f.write(sess.graph_def.SerializeToString())
logging.info('Saved graph to %s', filename_graph)
# meta_graph_def = tf.train.export_meta_graph(filename='?')
def save_weight_visualization(w_names, a_names, w, a):
try:
import h5py
except ImportError:
logging.error("Attempt to create HDF5 Loader but h5py is not installed.")
exit(-1)
fn = os.path.join(FLAGS.save, 'vis.h5')
vis_db = h5py.File(fn, 'w')
db_layers = vis_db.create_group("layers")
logging.info('Saving visualization to %s', fn)
for i in range(0, len(w)):
dset = db_layers.create_group(str(i))
dset.attrs['var'] = w_names[i].name
dset.attrs['op'] = a_names[i]
if w[i].shape:
dset.create_dataset('weights', data=w[i])
if a[i].shape:
dset.create_dataset('activations', data=a[i])
vis_db.close()
def Inference(sess, model):
"""
Runs one inference (evaluation) epoch (all the files in the loader)
"""
inference_op = model.towers[0].inference
if FLAGS.labels_list: # Classification -> assume softmax usage
# Append a softmax op
inference_op = tf.nn.softmax(inference_op)
weight_vars = []
activation_ops = []
if FLAGS.visualize_inf:
trainable_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
# Retrace the origin op of each variable
for n in tf.get_default_graph().as_graph_def().node:
for tw in trainable_weights:
tw_name_reader = tw.name.split(':')[0] + '/read'
if tw_name_reader in n.input:
node_op_name = n.name + ':0' # @TODO(tzaman) this assumes exactly 1 output - allow to be dynamic!
weight_vars.append(tw)
activation_ops.append(node_op_name)
continue
try:
t = 0
with open(FLAGS.attributes_file, 'rb') as f:
attribute_zs = pickle.load(f)
while not False:
# model.queue_coord.should_stop():
attributes = app.GetAttributes()
z = np.zeros(100)
for idx, attr_scale in enumerate(attributes):
z += (attr_scale / 25) * attribute_zs[CELEBA_EDITABLE_ATTRIBUTES_IDS[idx]]
feed_dict = {model.time_placeholder: float(t),
model.attribute_placeholder: z}
preds = sess.run(fetches=inference_op, feed_dict=feed_dict)
app.DisplayCell(preds)
t += 1e-5 * app.GetSpeed() * FLAGS.batch_size
except tf.errors.OutOfRangeError:
print('Done: tf.errors.OutOfRangeError')
def Validation(sess, model, current_epoch):
"""
Runs one validation epoch.
"""
# @TODO(tzaman): utilize the coordinator by resetting the queue after 1 epoch.
# see https://github.com/tensorflow/tensorflow/issues/4535#issuecomment-248990633
print_vals_sum = 0
steps = 0
while (steps * model.dataloader.batch_size) < model.dataloader.get_total():
summary_str = sess.run(model.summary)
# Parse the summary
tags, print_vals = summary_to_lists(summary_str)
print_vals_sum = print_vals + print_vals_sum
steps += 1
print_list = print_summarylist(tags, print_vals_sum/steps)
logging.info("Validation (epoch " + str(current_epoch) + "): " + print_list)
def loadLabels(filename):
with open(filename) as f:
return f.readlines()
def input_generator(zs_file, batch_size):
time_placeholder = tf.placeholder(dtype=tf.float32, shape=())
attribute_placeholder = tf.placeholder(dtype=tf.float32, shape=(100,))
def l2_norm(x):
euclidean_norm = tf.sqrt(tf.reduce_sum(tf.square(x)))
return euclidean_norm
def dot_product(x, y):
return tf.reduce_sum(tf.mul(x, y))
def slerp(initial, final, progress):
omega = tf.acos(dot_product(initial / l2_norm(initial), final / l2_norm(final)))
so = tf.sin(omega)
return tf.sin((1.0-progress)*omega) / so * initial + tf.sin(progress*omega)/so * final
with open(zs_file, 'rb') as f:
zs = pickle.load(f)
img_count = len(zs)
zs = tf.constant(zs, dtype=tf.float32)
tensors = []
epoch = tf.to_int32(time_placeholder)
indices = tf.range(batch_size)
indices_init = (indices * batch_size + epoch) % img_count
indices_final = (indices_init + 1) % img_count
for i in xrange(batch_size):
z_init = zs[indices_init[i]]
z_final = zs[indices_final[i]]
progress = tf.mod(time_placeholder, 1)
# progress = tf.Print(progress, [progress])
z = slerp(z_init, z_final, progress)
tensors.append(z)
batch = tf.pack(tensors) + attribute_placeholder
return batch, time_placeholder, attribute_placeholder
def main(_):
# Always keep the cpu as default
with tf.Graph().as_default(), tf.device('/cpu:0'):
if FLAGS.validation_interval == 0:
FLAGS.validation_db = None
# Set Tensorboard log directory
if FLAGS.summaries_dir:
# The following gives a nice but unrobust timestamp
FLAGS.summaries_dir = os.path.join(FLAGS.summaries_dir, datetime.datetime.now().strftime("%Y%m%d_%H%M%S"))
if not FLAGS.train_db and not FLAGS.validation_db and not FLAGS.inference_db and not FLAGS.visualizeModelPath:
logging.error("At least one of the following file sources should be specified: "
"train_db, validation_db or inference_db")
exit(-1)
if FLAGS.seed:
tf.set_random_seed(FLAGS.seed)
batch_size_train = FLAGS.batch_size
batch_size_val = FLAGS.batch_size
logging.info("Train batch size is %s and validation batch size is %s", batch_size_train, batch_size_val)
# This variable keeps track of next epoch, when to perform validation.
next_validation = FLAGS.validation_interval
logging.info("Training epochs to be completed for each validation : %s", next_validation)
# This variable keeps track of next epoch, when to save model weights.
next_snapshot_save = FLAGS.snapshotInterval
logging.info("Training epochs to be completed before taking a snapshot : %s", next_snapshot_save)
last_snapshot_save_epoch = 0
snapshot_prefix = FLAGS.snapshotPrefix if FLAGS.snapshotPrefix else FLAGS.network.split('.')[0]
logging.info("Model weights will be saved as %s_<EPOCH>_Model.ckpt", snapshot_prefix)
if not os.path.exists(FLAGS.save):
os.makedirs(FLAGS.save)
logging.info("Created a directory %s to save all the snapshots", FLAGS.save)
# Load mean variable
if FLAGS.subtractMean == 'none':
mean_loader = None
else:
if not FLAGS.mean:
logging.error("subtractMean parameter not set to 'none' yet mean image path is unset")
exit(-1)
logging.info("Loading mean tensor from %s file", FLAGS.mean)
mean_loader = tf_data.MeanLoader(FLAGS.mean, FLAGS.subtractMean, FLAGS.bitdepth)
classes = 0
nclasses = 0
if FLAGS.labels_list:
logging.info("Loading label definitions from %s file", FLAGS.labels_list)
classes = loadLabels(FLAGS.labels_list)
nclasses = len(classes)
if not classes:
logging.error("Reading labels file %s failed.", FLAGS.labels_list)
exit(-1)
logging.info("Found %s classes", nclasses)
# Create a data-augmentation dict
aug_dict = {
'aug_flip': FLAGS.augFlip,
'aug_noise': FLAGS.augNoise,
'aug_contrast': FLAGS.augContrast,
'aug_whitening': FLAGS.augWhitening,
'aug_HSV': {
'h': FLAGS.augHSVh,
's': FLAGS.augHSVs,
'v': FLAGS.augHSVv,
},
}
# hard-code GAN inference
FLAGS.inference_db = "grid.gan"
# Import the network file
path_network = os.path.join(os.path.dirname(os.path.realpath(__file__)), FLAGS.networkDirectory, FLAGS.network)
exec(open(path_network).read(), globals())
try:
UserModel
except NameError:
logging.error("The user model class 'UserModel' is not defined.")
exit(-1)
if not inspect.isclass(UserModel): # noqa
logging.error("The user model class 'UserModel' is not a class.")
exit(-1)
# @TODO(tzaman) - add mode checks to UserModel
if FLAGS.train_db:
with tf.name_scope(digits.STAGE_TRAIN) as stage_scope:
train_model = Model(digits.STAGE_TRAIN, FLAGS.croplen, nclasses, FLAGS.optimization, FLAGS.momentum)
train_model.create_dataloader(FLAGS.train_db)
train_model.dataloader.setup(FLAGS.train_labels,
FLAGS.shuffle,
FLAGS.bitdepth,
batch_size_train,
FLAGS.epoch,
FLAGS.seed)
train_model.dataloader.set_augmentation(mean_loader, aug_dict)
train_model.create_model(UserModel, stage_scope) # noqa
if FLAGS.validation_db:
with tf.name_scope(digits.STAGE_VAL) as stage_scope:
val_model = Model(digits.STAGE_VAL, FLAGS.croplen, nclasses)
val_model.create_dataloader(FLAGS.validation_db)
val_model.dataloader.setup(FLAGS.validation_labels,
False,
FLAGS.bitdepth,
batch_size_val,
1e9,
FLAGS.seed) # @TODO(tzaman): set numepochs to 1
val_model.dataloader.set_augmentation(mean_loader)
val_model.create_model(UserModel, stage_scope) # noqa
if FLAGS.inference_db:
with tf.name_scope(digits.STAGE_INF) as stage_scope:
inf_model = Model(digits.STAGE_INF, FLAGS.croplen, nclasses)
inf_model.create_dataloader(FLAGS.inference_db)
inf_model.dataloader.setup(None, False, FLAGS.bitdepth, FLAGS.batch_size, 1, FLAGS.seed)
inf_model.dataloader.set_augmentation(mean_loader)
batch_x, time_placeholder, attribute_placeholder = input_generator(FLAGS.zs_file, FLAGS.batch_size)
inf_model.create_model(UserModel, stage_scope, batch_x=batch_x) # noqa
inf_model.time_placeholder = time_placeholder
inf_model.attribute_placeholder = attribute_placeholder
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True, # will automatically do non-gpu supported ops on cpu
inter_op_parallelism_threads=TF_INTER_OP_THREADS,
intra_op_parallelism_threads=TF_INTRA_OP_THREADS,
log_device_placement=FLAGS.log_device_placement))
if FLAGS.visualizeModelPath:
visualize_graph(sess.graph_def, FLAGS.visualizeModelPath)
exit(0)
# Saver creation.
if FLAGS.save_vars == 'all':
vars_to_save = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
elif FLAGS.save_vars == 'trainable':
vars_to_save = tf.all_variables()
else:
logging.error('Unknown save_var flag (%s)' % FLAGS.save_vars)
exit(-1)
saver = tf.train.Saver(vars_to_save, max_to_keep=0, sharded=FLAGS.serving_export)
# Initialize variables
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
# If weights option is set, preload weights from existing models appropriately
if FLAGS.weights:
load_snapshot(sess, FLAGS.weights, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
# Tensorboard: Merge all the summaries and write them out
writer = tf.train.SummaryWriter(os.path.join(FLAGS.summaries_dir, 'tb'), sess.graph)
# If we are inferencing, only do that.
if FLAGS.inference_db:
inf_model.start_queue_runners(sess)
Inference(sess, inf_model)
queue_size_op = []
for n in tf.get_default_graph().as_graph_def().node:
if '_Size' in n.name:
queue_size_op.append(n.name+':0')
start = time.time() # @TODO(tzaman) - removeme
# Initial Forward Validation Pass
if FLAGS.validation_db:
val_model.start_queue_runners(sess)
Validation(sess, val_model, 0)
if FLAGS.train_db:
# During training, a log output should occur at least X times per epoch or every X images, whichever lower
train_steps_per_epoch = train_model.dataloader.get_total() / batch_size_train
if math.ceil(train_steps_per_epoch/MIN_LOGS_PER_TRAIN_EPOCH) < math.ceil(5000/batch_size_train):
logging_interval_step = int(math.ceil(train_steps_per_epoch/MIN_LOGS_PER_TRAIN_EPOCH))
else:
logging_interval_step = int(math.ceil(5000/batch_size_train))
logging.info("During training. details will be logged after every %s steps (batches)",
logging_interval_step)
# epoch value will be calculated for every batch size. To maintain unique epoch value between batches,
# it needs to be rounded to the required number of significant digits.
epoch_round = 0 # holds the required number of significant digits for round function.
tmp_batchsize = batch_size_train*logging_interval_step
while tmp_batchsize <= train_model.dataloader.get_total():
tmp_batchsize = tmp_batchsize * 10
epoch_round += 1
logging.info("While logging, epoch value will be rounded to %s significant digits", epoch_round)
# Create the learning rate policy
total_training_steps = train_model.dataloader.num_epochs * train_model.dataloader.get_total() / \
train_model.dataloader.batch_size
lrpolicy = lr_policy.LRPolicy(FLAGS.lr_policy,
FLAGS.lr_base_rate,
FLAGS.lr_gamma,
FLAGS.lr_power,
total_training_steps,
FLAGS.lr_stepvalues)
train_model.start_queue_runners(sess)
# Training
logging.info('Started training the model')
current_epoch = 0
try:
step = 0
step_last_log = 0
print_vals_sum = 0
while not train_model.queue_coord.should_stop():
log_runtime = FLAGS.log_runtime_stats_per_step and (step % FLAGS.log_runtime_stats_per_step == 0)
run_options = None
run_metadata = None
if log_runtime:
# For a HARDWARE_TRACE you need NVIDIA CUPTI, a 'CUDA-EXTRA'
# SOFTWARE_TRACE HARDWARE_TRACE FULL_TRACE
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
feed_dict = {train_model.learning_rate: lrpolicy.get_learning_rate(step)}
if False:
for op in train_model.train:
_, summary_str, step = sess.run([op, train_model.summary, train_model.global_step],
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
else:
_, summary_str, step = sess.run([train_model.train,
train_model.summary,
train_model.global_step],
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
# HACK
step = step / len(train_model.train)
# logging.info(sess.run(queue_size_op)) # DEVELOPMENT: for checking the queue size
if log_runtime:
writer.add_run_metadata(run_metadata, str(step))
save_timeline_trace(run_metadata, FLAGS.save, int(step))
writer.add_summary(summary_str, step)
# Parse the summary
tags, print_vals = summary_to_lists(summary_str)
print_vals_sum = print_vals + print_vals_sum
# @TODO(tzaman): account for variable batch_size value on very last epoch
current_epoch = round((step * batch_size_train) / train_model.dataloader.get_total(), epoch_round)
# Start with a forward pass
if ((step % logging_interval_step) == 0):
steps_since_log = step - step_last_log
print_list = print_summarylist(tags, print_vals_sum/steps_since_log)
logging.info("Training (epoch " + str(current_epoch) + "): " + print_list)
print_vals_sum = 0
step_last_log = step
# Potential Validation Pass
if FLAGS.validation_db and current_epoch >= next_validation:
Validation(sess, val_model, current_epoch)
# Find next nearest epoch value that exactly divisible by FLAGS.validation_interval:
next_validation = (round(float(current_epoch)/FLAGS.validation_interval) + 1) * \
FLAGS.validation_interval
# Saving Snapshot
if FLAGS.snapshotInterval > 0 and current_epoch >= next_snapshot_save:
save_snapshot(sess, saver, FLAGS.save, snapshot_prefix, current_epoch, FLAGS.serving_export)
# To find next nearest epoch value that exactly divisible by FLAGS.snapshotInterval
next_snapshot_save = (round(float(current_epoch)/FLAGS.snapshotInterval) + 1) * \
FLAGS.snapshotInterval
last_snapshot_save_epoch = current_epoch
writer.flush()
except tf.errors.OutOfRangeError:
logging.info('Done training for epochs: tf.errors.OutOfRangeError')
except ValueError as err:
logging.error(err.args[0])
exit(-1) # DIGITS wants a dirty error.
except (KeyboardInterrupt):
logging.info('Interrupt signal received.')
# If required, perform final snapshot save
if FLAGS.snapshotInterval > 0 and FLAGS.epoch > last_snapshot_save_epoch:
save_snapshot(sess, saver, FLAGS.save, snapshot_prefix, FLAGS.epoch, FLAGS.serving_export)
print('Training wall-time:', time.time()-start) # @TODO(tzaman) - removeme
# If required, perform final Validation pass
if FLAGS.validation_db and current_epoch >= next_validation:
Validation(sess, val_model, current_epoch)
if FLAGS.train_db:
del train_model
if FLAGS.validation_db:
del val_model
if FLAGS.inference_db:
del inf_model
# We need to call sess.close() because we've used a with block
sess.close()
writer.close()
logging.info('END')
exit(0)
if __name__ == '__main__':
app = gandisplay.DemoApp(0,
grid_size=np.sqrt(FLAGS.batch_size)*64,
attributes=CELEBA_EDITABLE_ATTRIBUTES)
t = threading.Thread(target=tf.app.run, args=())
t.start()
app.MainLoop()
| DIGITS-master | digits/tools/tensorflow/gan_grid.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import imp
import os
import platform
import re
import subprocess
import sys
from . import option_list
from digits import device_query
from digits.utils import parse_version
def load_from_envvar(envvar):
"""
Load information from an installation indicated by an environment variable
"""
value = os.environ[envvar].strip().strip("\"' ")
if platform.system() == 'Windows':
executable_dir = os.path.join(value, 'install', 'bin')
python_dir = os.path.join(value, 'install', 'python')
else:
executable_dir = os.path.join(value, 'build', 'tools')
python_dir = os.path.join(value, 'python')
try:
executable = find_executable_in_dir(executable_dir)
if executable is None:
raise ValueError('Caffe executable not found at "%s"'
% executable_dir)
if not is_pycaffe_in_dir(python_dir):
raise ValueError('Pycaffe not found in "%s"'
% python_dir)
import_pycaffe(python_dir)
version, flavor = get_version_and_flavor(executable)
except:
print ('"%s" from %s does not point to a valid installation of Caffe.'
% (value, envvar))
print 'Use the envvar CAFFE_ROOT to indicate a valid installation.'
raise
return executable, version, flavor
def load_from_path():
"""
Load information from an installation on standard paths (PATH and PYTHONPATH)
"""
try:
executable = find_executable_in_dir()
if executable is None:
raise ValueError('Caffe executable not found in PATH')
if not is_pycaffe_in_dir():
raise ValueError('Pycaffe not found in PYTHONPATH')
import_pycaffe()
version, flavor = get_version_and_flavor(executable)
except:
print 'A valid Caffe installation was not found on your system.'
print 'Use the envvar CAFFE_ROOT to indicate a valid installation.'
raise
return executable, version, flavor
def find_executable_in_dir(dirname=None):
"""
Returns the path to the caffe executable at dirname
If dirname is None, search all directories in sys.path
Returns None if not found
"""
if platform.system() == 'Windows':
exe_name = 'caffe.exe'
else:
exe_name = 'caffe'
if dirname is None:
dirnames = [path.strip("\"' ") for path in os.environ['PATH'].split(os.pathsep)]
else:
dirnames = [dirname]
for dirname in dirnames:
path = os.path.join(dirname, exe_name)
if os.path.isfile(path) and os.access(path, os.X_OK):
return path
return None
def is_pycaffe_in_dir(dirname=None):
"""
Returns True if you can "import caffe" from dirname
If dirname is None, search all directories in sys.path
"""
old_path = sys.path
if dirname is not None:
sys.path = [dirname] # temporarily replace sys.path
try:
imp.find_module('caffe')
except ImportError:
return False
finally:
sys.path = old_path
return True
def import_pycaffe(dirname=None):
"""
Imports caffe
If dirname is not None, prepend it to sys.path first
"""
if dirname is not None:
sys.path.insert(0, dirname)
# Add to PYTHONPATH so that build/tools/caffe is aware of python layers there
os.environ['PYTHONPATH'] = '%s%s%s' % (
dirname, os.pathsep, os.environ.get('PYTHONPATH'))
# Suppress GLOG output for python bindings
GLOG_minloglevel = os.environ.pop('GLOG_minloglevel', None)
# Show only "ERROR" and "FATAL"
os.environ['GLOG_minloglevel'] = '2'
# for Windows environment, loading h5py before caffe solves the issue mentioned in
# https://github.com/NVIDIA/DIGITS/issues/47#issuecomment-206292824
import h5py # noqa
try:
import caffe
except ImportError:
print 'Did you forget to "make pycaffe"?'
raise
# Strange issue with protocol buffers and pickle - see issue #32
sys.path.insert(0, os.path.join(
os.path.dirname(caffe.__file__), 'proto'))
# Turn GLOG output back on for subprocess calls
if GLOG_minloglevel is None:
del os.environ['GLOG_minloglevel']
else:
os.environ['GLOG_minloglevel'] = GLOG_minloglevel
def get_version_and_flavor(executable):
"""
Returns (version, flavor)
Should be called after import_pycaffe()
"""
version_string = get_version_from_pycaffe()
if version_string is None:
version_string = get_version_from_cmdline(executable)
if version_string is None:
version_string = get_version_from_soname(executable)
if version_string is None:
raise ValueError('Could not find version information for Caffe build ' +
'at "%s". Upgrade your installation' % executable)
version = parse_version(version_string)
if parse_version(0, 99, 0) > version > parse_version(0, 9, 0):
flavor = 'NVIDIA'
minimum_version = '0.11.0'
if version < parse_version(minimum_version):
raise ValueError(
'Required version "%s" is greater than "%s". Upgrade your installation.'
% (minimum_version, version_string))
else:
flavor = 'BVLC'
return version_string, flavor
def get_version_from_pycaffe():
try:
from caffe import __version__ as version
return version
except ImportError:
return None
def get_version_from_cmdline(executable):
command = [executable, '-version']
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if p.wait():
print p.stderr.read().strip()
raise RuntimeError('"%s" returned error code %s' % (command, p.returncode))
pattern = 'version'
for line in p.stdout:
if pattern in line:
return line[line.find(pattern) + len(pattern) + 1:].strip()
return None
def get_version_from_soname(executable):
command = ['ldd', executable]
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if p.wait():
print p.stderr.read().strip()
raise RuntimeError('"%s" returned error code %s' % (command, p.returncode))
# Search output for caffe library
libname = 'libcaffe'
caffe_line = None
for line in p.stdout:
if libname in line:
caffe_line = line
break
if caffe_line is None:
raise ValueError('libcaffe not found in linked libraries for "%s"'
% executable)
# Read the symlink for libcaffe from ldd output
symlink = caffe_line.split()[2]
filename = os.path.basename(os.path.realpath(symlink))
# parse the version string
match = re.match(r'%s(.*)\.so\.(\S+)$' % (libname), filename)
if match:
return match.group(2)
else:
return None
if 'CAFFE_ROOT' in os.environ:
executable, version, flavor = load_from_envvar('CAFFE_ROOT')
elif 'CAFFE_HOME' in os.environ:
executable, version, flavor = load_from_envvar('CAFFE_HOME')
else:
executable, version, flavor = load_from_path()
option_list['caffe'] = {
'executable': executable,
'version': version,
'flavor': flavor,
'multi_gpu': (flavor == 'BVLC' or parse_version(version) >= parse_version(0, 12)),
'cuda_enabled': (len(device_query.get_devices()) > 0),
}
| DIGITS-master | digits/config/caffe.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import tempfile
from . import option_list
import digits
if 'DIGITS_MODE_TEST' in os.environ:
value = tempfile.mkdtemp()
elif 'DIGITS_JOBS_DIR' in os.environ:
value = os.environ['DIGITS_JOBS_DIR']
else:
value = os.path.join(os.path.dirname(digits.__file__), 'jobs')
try:
value = os.path.abspath(value)
if os.path.exists(value):
if not os.path.isdir(value):
raise IOError('No such directory: "%s"' % value)
if not os.access(value, os.W_OK):
raise IOError('Permission denied: "%s"' % value)
if not os.path.exists(value):
os.makedirs(value)
except:
print '"%s" is not a valid value for jobs_dir.' % value
print 'Set the envvar DIGITS_JOBS_DIR to fix your configuration.'
raise
option_list['jobs_dir'] = value
| DIGITS-master | digits/config/jobs_dir.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
# Create this object before importing the following imports, since they edit the list
option_list = {}
from . import ( # noqa
caffe,
gpu_list,
jobs_dir,
log_file,
torch,
server_name,
store_option,
tensorflow,
url_prefix,
)
def config_value(option):
"""
Return the current configuration value for the given option
"""
return option_list[option]
| DIGITS-master | digits/config/__init__.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import platform
from . import option_list
if 'DIGITS_SERVER_NAME' in os.environ:
value = os.environ['DIGITS_SERVER_NAME']
else:
value = platform.node()
option_list['server_name'] = value
| DIGITS-master | digits/config/server_name.py |
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from . import option_list
def test_tf_import():
"""
Tests if tensorflow can be imported, returns if it went okay and optional error.
"""
try:
import tensorflow # noqa
return True
except (ImportError, TypeError):
return False
tf_enabled = test_tf_import()
if not tf_enabled:
print('Tensorflow support disabled.')
if tf_enabled:
option_list['tensorflow'] = {
'enabled': True
}
else:
option_list['tensorflow'] = {
'enabled': False
}
| DIGITS-master | digits/config/tensorflow.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
from urlparse import urlparse
from . import option_list
def validate(value):
if value == '':
return value
valid_url_list = list()
if isinstance(value, str):
url_list = value.split(',')
for url in url_list:
if url is not None and urlparse(url).scheme != "" and not os.path.exists(url):
valid_url_list.append(url)
else:
raise ValueError('"%s" is not a valid URL' % url)
return ','.join(valid_url_list)
def load_url_list():
"""
Return Model Store URL's as a list
Verify if each URL is valid
"""
if 'DIGITS_MODEL_STORE_URL' in os.environ:
url_list = os.environ['DIGITS_MODEL_STORE_URL']
else:
url_list = "http://developer.download.nvidia.com/compute/machine-learning/modelstore/6.0"
return validate(url_list).split(',')
option_list['model_store'] = {
'url_list': load_url_list()
}
| DIGITS-master | digits/config/store_option.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import logging
import os
from . import option_list
import digits
def load_logfile_filename():
"""
Return the configured log file or None
Throws an exception only if a manually specified log file is invalid
"""
throw_error = False
if 'DIGITS_MODE_TEST' in os.environ:
filename = None
elif 'DIGITS_LOGFILE_FILENAME' in os.environ:
filename = os.environ['DIGITS_LOGFILE_FILENAME']
throw_error = True
else:
filename = os.path.join(os.path.dirname(digits.__file__), 'digits.log')
if filename is not None:
try:
filename = os.path.abspath(filename)
dirname = os.path.dirname(filename)
if not os.path.exists(dirname):
os.makedirs(os.path.dirname(filename))
with open(filename, 'a'):
pass
except:
if throw_error:
print '"%s" is not a valid value for logfile_filename.' % filename
print 'Set the envvar DIGITS_LOGFILE_FILENAME to fix your configuration.'
raise
else:
filename = None
return filename
def load_logfile_level():
"""
Return the configured logging level, or throw an exception
"""
if 'DIGITS_MODE_TEST' in os.environ:
return logging.DEBUG
elif 'DIGITS_LOGFILE_LEVEL' in os.environ:
level = os.environ['DIGITS_LOGFILE_LEVEL'].strip().lower()
if level == 'debug':
return logging.DEBUG
elif level == 'info':
return logging.INFO
elif level == 'warning':
return logging.WARNING
elif level == 'error':
return logging.ERROR
elif level == 'critical':
return logging.CRITICAL
else:
raise ValueError(
'Invalid value "%s" for logfile_level. '
'Set DIGITS_LOGFILE_LEVEL to fix your configuration.' % level)
else:
return logging.INFO
option_list['log_file'] = {
'filename': load_logfile_filename(),
'level': load_logfile_level(),
}
| DIGITS-master | digits/config/log_file.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from . import option_list
import digits.device_query
option_list['gpu_list'] = ','.join([str(x) for x in xrange(len(digits.device_query.get_devices()))])
| DIGITS-master | digits/config/gpu_list.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
from . import option_list
def find_executable(path=None):
"""
Finds th on the given path and returns it if found
If path is None, searches through PATH
"""
if path is None:
dirnames = os.environ['PATH'].split(os.pathsep)
suffixes = ['th']
else:
dirnames = [path]
# fuzzy search
suffixes = ['th',
os.path.join('bin', 'th'),
os.path.join('install', 'bin', 'th')]
for dirname in dirnames:
dirname = dirname.strip('"')
for suffix in suffixes:
path = os.path.join(dirname, suffix)
if os.path.isfile(path) and os.access(path, os.X_OK):
return path
return None
if 'TORCH_ROOT' in os.environ:
executable = find_executable(os.environ['TORCH_ROOT'])
if executable is None:
raise ValueError('Torch executable not found at "%s" (TORCH_ROOT)'
% os.environ['TORCH_ROOT'])
elif 'TORCH_HOME' in os.environ:
executable = find_executable(os.environ['TORCH_HOME'])
if executable is None:
raise ValueError('Torch executable not found at "%s" (TORCH_HOME)'
% os.environ['TORCH_HOME'])
else:
executable = find_executable()
if executable is None:
option_list['torch'] = {
'enabled': False,
}
else:
option_list['torch'] = {
'enabled': True,
'executable': executable,
}
| DIGITS-master | digits/config/torch.py |
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
from . import option_list
option_list['url_prefix'] = os.environ.get('DIGITS_URL_PREFIX', '')
| DIGITS-master | digits/config/url_prefix.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from digits.job import Job
from digits.utils import subclass
# NOTE: Increment this every time the pickled object changes
PICKLE_VERSION = 1
@subclass
class DatasetJob(Job):
"""
A Job that creates a dataset
"""
def __init__(self, **kwargs):
"""
"""
super(DatasetJob, self).__init__(**kwargs)
self.pickver_job_dataset = PICKLE_VERSION
def get_backend(self):
"""
Return the DB backend used to create this dataset
"""
raise NotImplementedError('Please implement me')
def get_entry_count(self, stage):
"""
Return the number of entries in the DB matching the specified stage
"""
raise NotImplementedError('Please implement me')
def get_feature_db_path(self, stage):
"""
Return the absolute feature DB path for the specified stage
"""
raise NotImplementedError('Please implement me')
def get_feature_dims(self):
"""
Return the shape of the feature N-D array
"""
raise NotImplementedError('Please implement me')
def get_label_db_path(self, stage):
"""
Return the absolute label DB path for the specified stage
"""
raise NotImplementedError('Please implement me')
def get_mean_file(self):
"""
Return the mean file
"""
raise NotImplementedError('Please implement me')
| DIGITS-master | digits/dataset/job.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .images import ImageClassificationDatasetJob, GenericImageDatasetJob
from .generic import GenericDatasetJob
from .job import DatasetJob
__all__ = [
'ImageClassificationDatasetJob',
'GenericImageDatasetJob',
'GenericDatasetJob',
'DatasetJob',
]
| DIGITS-master | digits/dataset/__init__.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from flask_wtf import Form
from wtforms.validators import DataRequired
from digits import utils
class DatasetForm(Form):
"""
Defines the form used to create a new Dataset
(abstract class)
"""
dataset_name = utils.forms.StringField(u'Dataset Name',
validators=[DataRequired()]
)
group_name = utils.forms.StringField('Group Name',
tooltip="An optional group name for organization on the main page."
)
| DIGITS-master | digits/dataset/forms.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import flask
import werkzeug.exceptions
from . import images as dataset_images
from . import generic
from digits import extensions
from digits.utils.routing import job_from_request, request_wants_json
from digits.webapp import scheduler
blueprint = flask.Blueprint(__name__, __name__)
@blueprint.route('/<job_id>/json', methods=['GET'])
@blueprint.route('/<job_id>', methods=['GET'])
def show(job_id):
"""
Show a DatasetJob
Returns JSON when requested:
{id, name, directory, status}
"""
job = scheduler.get_job(job_id)
if job is None:
raise werkzeug.exceptions.NotFound('Job not found')
related_jobs = scheduler.get_related_jobs(job)
if request_wants_json():
return flask.jsonify(job.json_dict(True))
else:
if isinstance(job, dataset_images.ImageClassificationDatasetJob):
return dataset_images.classification.views.show(job, related_jobs=related_jobs)
elif isinstance(job, dataset_images.GenericImageDatasetJob):
return dataset_images.generic.views.show(job, related_jobs=related_jobs)
elif isinstance(job, generic.GenericDatasetJob):
return generic.views.show(job, related_jobs=related_jobs)
else:
raise werkzeug.exceptions.BadRequest('Invalid job type')
@blueprint.route('/summary', methods=['GET'])
def summary():
"""
Return a short HTML summary of a DatasetJob
"""
job = job_from_request()
if isinstance(job, dataset_images.ImageClassificationDatasetJob):
return dataset_images.classification.views.summary(job)
elif isinstance(job, dataset_images.GenericImageDatasetJob):
return dataset_images.generic.views.summary(job)
elif isinstance(job, generic.GenericDatasetJob):
return generic.views.summary(job)
else:
raise werkzeug.exceptions.BadRequest('Invalid job type')
@blueprint.route('/inference-form/<extension_id>/<job_id>', methods=['GET'])
def inference_form(extension_id, job_id):
"""
Returns a rendering of an inference form
"""
inference_form_html = ""
if extension_id != "all-default":
extension_class = extensions.data.get_extension(extension_id)
if not extension_class:
raise RuntimeError("Unable to find data extension with ID=%s"
% job_id.dataset.extension_id)
job = scheduler.get_job(job_id)
if hasattr(job, 'extension_userdata'):
extension_userdata = job.extension_userdata
else:
extension_userdata = {}
extension_userdata.update({'is_inference_db': True})
extension = extension_class(**extension_userdata)
form = extension.get_inference_form()
if form:
template, context = extension.get_inference_template(form)
inference_form_html = flask.render_template_string(template, **context)
return inference_form_html
| DIGITS-master | digits/dataset/views.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os.path
import re
import sys
import digits
from digits import utils
from digits.task import Task
from digits.utils import subclass, override
# NOTE: Increment this every time the pickled object
PICKLE_VERSION = 1
@subclass
class ParseS3Task(Task):
"""Parses a folder into textfiles"""
def __init__(self, s3_endpoint_url, s3_bucket, s3_path, s3_accesskey, s3_secretkey, **kwargs):
"""
Arguments:
s3_endpoint_url -- endpoint url
s3_bucket -- bucekt name
s3_path -- a path to images
s3_accesskey -- accesskey
s3_secretkey -- secretkey
Keyword arguments:
percent_val -- percent of images used in the validation set
percent_test -- percent of images used in the test set
min_per_category -- minimum number of images per category
max_per_category -- maximum number of images per category
"""
# Take keyword arguments out of kwargs
percent_val = kwargs.pop('percent_val', None)
percent_test = kwargs.pop('percent_test', None)
self.min_per_category = kwargs.pop('min_per_category', 2)
self.max_per_category = kwargs.pop('max_per_category', None)
super(ParseS3Task, self).__init__(**kwargs)
self.pickver_task_parsefolder = PICKLE_VERSION
self.s3_endpoint_url = s3_endpoint_url
self.s3_bucket = s3_bucket
self.s3_path = s3_path
self.s3_accesskey = s3_accesskey
self.s3_secretkey = s3_secretkey
if percent_val is None:
self.percent_val = 0
else:
pct = float(percent_val)
if pct < 0:
pct = 0
elif pct > 100:
raise ValueError('percent_val must not exceed 100')
self.percent_val = pct
if percent_test is None:
self.percent_test = 0
else:
pct = float(percent_test)
if pct < 0:
pct = 0
elif pct > 100:
raise ValueError('percent_test must not exceed 100')
self.percent_test = pct
if percent_val is not None and percent_test is not None and percent_val + percent_test > 100:
raise ValueError('the sum of percent_val and percent_test must not exceed 100')
self.train_file = utils.constants.TRAIN_FILE
self.val_file = utils.constants.VAL_FILE
self.labels_file = utils.constants.LABELS_FILE
# Results
self.train_count = None
self.val_count = None
self.test_count = None
self.label_count = None
def __getstate__(self):
state = super(ParseS3Task, self).__getstate__()
return state
def __setstate__(self, state):
super(ParseS3Task, self).__setstate__(state)
@override
def name(self):
sets = []
if (self.percent_val + self.percent_test) < 100:
sets.append('train')
if self.percent_val > 0:
sets.append('val')
if self.percent_test > 0:
sets.append('test')
return 'Parse Folder (%s)' % ('/'.join(sets))
@override
def html_id(self):
sets = []
if (self.percent_val + self.percent_test) < 100:
sets.append('train')
if self.percent_val > 0:
sets.append('val')
if self.percent_test > 0:
sets.append('test')
return 'task-parse-folder-%s' % ('-'.join(sets))
@override
def offer_resources(self, resources):
key = 'parse_folder_task_pool'
if key not in resources:
return None
for resource in resources[key]:
if resource.remaining() >= 1:
return {key: [(resource.identifier, 1)]}
return None
@override
def task_arguments(self, resources, env):
args = [sys.executable, os.path.join(
os.path.dirname(os.path.abspath(digits.__file__)),
'tools', 'parse_s3.py'),
self.s3_endpoint_url,
self.s3_bucket,
self.s3_path,
self.s3_accesskey,
self.s3_secretkey,
self.path(utils.constants.LABELS_FILE),
'--min=%s' % self.min_per_category,
]
if (self.percent_val + self.percent_test) < 100:
args.append('--train_file=%s' % self.path(utils.constants.TRAIN_FILE))
if self.percent_val > 0:
args.append('--val_file=%s' % self.path(utils.constants.VAL_FILE))
args.append('--percent_val=%s' % self.percent_val)
if self.percent_test > 0:
args.append('--test_file=%s' % self.path(utils.constants.TEST_FILE))
args.append('--percent_test=%s' % self.percent_test)
if self.max_per_category is not None:
args.append('--max=%s' % self.max_per_category)
return args
@override
def process_output(self, line):
timestamp, level, message = self.preprocess_output_digits(line)
if not message:
return False
# progress
match = re.match(r'Progress: ([-+]?[0-9]*\.?[0-9]+(e[-+]?[0-9]+)?)', message)
if match:
self.progress = float(match.group(1))
self.emit_progress_update()
return True
# totals
match = re.match(r'Found (\d+) images in (\d+) categories', message)
if match:
self.label_count = int(match.group(2))
return True
# splits
match = re.match(r'Selected (\d+) for (\w+)', message)
if match:
if match.group(2).startswith('training'):
self.train_count = int(match.group(1))
elif match.group(2).startswith('validation'):
self.val_count = int(match.group(1))
elif match.group(2).startswith('test'):
self.test_count = int(match.group(1))
return True
if level == 'warning':
self.logger.warning('%s: %s' % (self.name(), message))
return True
if level in ['error', 'critical']:
self.logger.error('%s: %s' % (self.name(), message))
self.exception = message
return True
return True
| DIGITS-master | digits/dataset/tasks/parse_s3.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import re
import sys
import digits
from digits.task import Task
from digits.utils import subclass, override
# NOTE: Increment this every time the pickled version changes
PICKLE_VERSION = 1
@subclass
class CreateGenericDbTask(Task):
"""
A task to create a db using a user-defined extension
"""
def __init__(self, job, backend, stage, **kwargs):
"""
Arguments:
"""
self.job = job
self.backend = backend
self.stage = stage
self.create_db_log_file = "create_%s_db.log" % stage
self.dbs = {'features': None, 'labels': None}
self.entry_count = 0
self.feature_shape = None
self.label_shape = None
self.mean_file = None
super(CreateGenericDbTask, self).__init__(**kwargs)
self.pickver_task_create_generic_db = PICKLE_VERSION
@override
def name(self):
return 'Create %s DB' % self.stage
@override
def __getstate__(self):
state = super(CreateGenericDbTask, self).__getstate__()
if 'create_db_log' in state:
# don't save file handle
del state['create_db_log']
return state
@override
def __setstate__(self, state):
super(CreateGenericDbTask, self).__setstate__(state)
self.pickver_task_create_generic_db = PICKLE_VERSION
@override
def before_run(self):
super(CreateGenericDbTask, self).before_run()
# create log file
self.create_db_log = open(self.path(self.create_db_log_file), 'a')
# save job before spawning sub-process
self.job.save()
def get_encoding(self, name):
if name == 'features':
return self.job.feature_encoding
elif name == 'labels':
return self.job.label_encoding
else:
raise ValueError("Unknown db: %s" % name)
@override
def process_output(self, line):
self.create_db_log.write('%s\n' % line)
self.create_db_log.flush()
timestamp, level, message = self.preprocess_output_digits(line)
if not message:
return False
# keep track of which databases were created
match = re.match(
r'Created (features|labels) db for stage %s in (.*)' % self.stage,
message)
if match:
db_type = match.group(1)
self.dbs[db_type] = match.group(2)
return True
# mean file
match = re.match(
r'Created mean file for stage %s in (.*)' % self.stage,
message)
if match:
self.mean_file = match.group(1)
return True
# entry counts
match = re.match(
r'Found (\d+) entries for stage %s' % self.stage,
message)
if match:
count = int(match.group(1))
self.entry_count = count
return True
# feature shape
match = re.match(
r'Feature shape for stage %s: (.*)' % self.stage,
message)
if match:
self.feature_shape = eval(match.group(1))
return True
# label shape
match = re.match(
r'Label shape for stage %s: (.*)' % self.stage,
message)
if match:
self.label_shape = eval(match.group(1))
return True
# progress
match = re.match(
r'Processed (\d+)\/(\d+)',
message)
if match:
self.progress = float(match.group(1)) / int(match.group(2))
self.emit_progress_update()
return True
# errors, warnings
if level == 'warning':
self.logger.warning('%s: %s' % (self.name(), message))
return True
if level in ['error', 'critical']:
self.logger.error('%s: %s' % (self.name(), message))
self.exception = message
return True
return False
@override
def after_run(self):
super(CreateGenericDbTask, self).after_run()
self.create_db_log.close()
@override
def offer_resources(self, resources):
reserved_resources = {}
# we need one CPU resource from create_db_task_pool
cpu_key = 'create_db_task_pool'
if cpu_key not in resources:
return None
for resource in resources[cpu_key]:
if resource.remaining() >= 1:
reserved_resources[cpu_key] = [(resource.identifier, 1)]
return reserved_resources
return None
@override
def task_arguments(self, resources, env):
args = [
sys.executable,
os.path.join(
os.path.dirname(os.path.abspath(digits.__file__)),
'tools',
'create_generic_db.py'),
self.job.id(),
'--stage=%s' % self.stage,
'--jobs_dir=%s' % digits.config.config_value('jobs_dir'),
]
return args
| DIGITS-master | digits/dataset/tasks/create_generic_db.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .analyze_db import AnalyzeDbTask
from .create_db import CreateDbTask
from .create_generic_db import CreateGenericDbTask
from .parse_folder import ParseFolderTask
from .parse_s3 import ParseS3Task
__all__ = [
'AnalyzeDbTask',
'CreateDbTask',
'CreateGenericDbTask',
'ParseFolderTask',
'ParseS3Task',
]
| DIGITS-master | digits/dataset/tasks/__init__.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os.path
import re
import sys
import digits
from digits.task import Task
from digits.utils import subclass, override
# NOTE: Increment this every time the pickled object
PICKLE_VERSION = 1
@subclass
class AnalyzeDbTask(Task):
"""
Reads information from a database
"""
def __init__(self, database, purpose, **kwargs):
"""
Arguments:
database -- path to the database to analyze
purpose -- what is this database going to be used for
Keyword arguments:
force_same_shape -- if True, enforce that every entry in the database has the same shape
"""
self.force_same_shape = kwargs.pop('force_same_shape', False)
super(AnalyzeDbTask, self).__init__(**kwargs)
self.pickver_task_analyzedb = PICKLE_VERSION
self.database = database
self.purpose = purpose
self.backend = 'lmdb'
# Results
self.image_count = None
self.image_width = None
self.image_height = None
self.image_channels = None
self.analyze_db_log_file = 'analyze_db_%s.log' % '-'.join(p.lower() for p in self.purpose.split())
def __getstate__(self):
state = super(AnalyzeDbTask, self).__getstate__()
if 'analyze_db_log' in state:
del state['analyze_db_log']
return state
def __setstate__(self, state):
super(AnalyzeDbTask, self).__setstate__(state)
if not hasattr(self, 'backend') or self.backend is None:
self.backend = 'lmdb'
@override
def name(self):
return 'Analyze DB (%s)' % (self.purpose)
@override
def html_id(self):
return 'task-analyze-db-%s' % '-'.join(p.lower() for p in self.purpose.split())
@override
def offer_resources(self, resources):
key = 'analyze_db_task_pool'
if key not in resources:
return None
for resource in resources[key]:
if resource.remaining() >= 1:
return {key: [(resource.identifier, 1)]}
return None
@override
def task_arguments(self, resources, env):
args = [sys.executable, os.path.join(
os.path.dirname(os.path.abspath(digits.__file__)),
'tools', 'analyze_db.py'),
self.database,
]
if self.force_same_shape:
args.append('--force-same-shape')
else:
args.append('--only-count')
return args
@override
def before_run(self):
super(AnalyzeDbTask, self).before_run()
self.analyze_db_log = open(self.path(self.analyze_db_log_file), 'a')
@override
def process_output(self, line):
self.analyze_db_log.write('%s\n' % line)
self.analyze_db_log.flush()
timestamp, level, message = self.preprocess_output_digits(line)
if not message:
return False
# progress
match = re.match(r'Progress: (\d+)\/(\d+)', message)
if match:
self.progress = float(match.group(1)) / float(match.group(2))
self.emit_progress_update()
return True
# total count
match = re.match(r'Total entries: (\d+)', message)
if match:
self.image_count = int(match.group(1))
return True
# image dimensions
match = re.match(r'(\d+) entries found with shape ((\d+)x(\d+)x(\d+))', message)
if match:
# count = int(match.group(1))
dims = match.group(2)
self.image_width = int(match.group(3))
self.image_height = int(match.group(4))
self.image_channels = int(match.group(5))
self.logger.debug('Images are %s' % dims)
return True
if level == 'warning':
self.logger.warning('%s: %s' % (self.name(), message))
return True
if level in ['error', 'critical']:
self.logger.error('%s: %s' % (self.name(), message))
self.exception = message
return True
return True
@override
def after_run(self):
super(AnalyzeDbTask, self).after_run()
self.analyze_db_log.close()
def image_type(self):
"""
Returns an easy-to-read version of self.image_channels
"""
if self.image_channels is None:
return None
elif self.image_channels == 1:
return 'GRAYSCALE'
elif self.image_channels == 3:
return 'COLOR'
else:
return '%s-channel' % self.image_channels
| DIGITS-master | digits/dataset/tasks/analyze_db.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os.path
import re
import sys
import digits
from digits import utils
from digits.task import Task
from digits.utils import subclass, override
# NOTE: Increment this every time the pickled object
PICKLE_VERSION = 1
@subclass
class ParseFolderTask(Task):
"""Parses a folder into textfiles"""
def __init__(self, folder, **kwargs):
"""
Arguments:
folder -- the folder to parse (can be a filesystem path or a url)
Keyword arguments:
percent_val -- percent of images used in the validation set
percent_test -- percent of images used in the test set
min_per_category -- minimum number of images per category
max_per_category -- maximum number of images per category
"""
# Take keyword arguments out of kwargs
percent_val = kwargs.pop('percent_val', None)
percent_test = kwargs.pop('percent_test', None)
self.min_per_category = kwargs.pop('min_per_category', 2)
self.max_per_category = kwargs.pop('max_per_category', None)
super(ParseFolderTask, self).__init__(**kwargs)
self.pickver_task_parsefolder = PICKLE_VERSION
self.folder = folder
if percent_val is None:
self.percent_val = 0
else:
pct = float(percent_val)
if pct < 0:
pct = 0
elif pct > 100:
raise ValueError('percent_val must not exceed 100')
self.percent_val = pct
if percent_test is None:
self.percent_test = 0
else:
pct = float(percent_test)
if pct < 0:
pct = 0
elif pct > 100:
raise ValueError('percent_test must not exceed 100')
self.percent_test = pct
if percent_val is not None and percent_test is not None and percent_val + percent_test > 100:
raise ValueError('the sum of percent_val and percent_test must not exceed 100')
self.train_file = utils.constants.TRAIN_FILE
self.val_file = utils.constants.VAL_FILE
self.labels_file = utils.constants.LABELS_FILE
# Results
self.train_count = None
self.val_count = None
self.test_count = None
self.label_count = None
def __getstate__(self):
state = super(ParseFolderTask, self).__getstate__()
return state
def __setstate__(self, state):
super(ParseFolderTask, self).__setstate__(state)
@override
def name(self):
sets = []
if (self.percent_val + self.percent_test) < 100:
sets.append('train')
if self.percent_val > 0:
sets.append('val')
if self.percent_test > 0:
sets.append('test')
return 'Parse Folder (%s)' % ('/'.join(sets))
@override
def html_id(self):
sets = []
if (self.percent_val + self.percent_test) < 100:
sets.append('train')
if self.percent_val > 0:
sets.append('val')
if self.percent_test > 0:
sets.append('test')
return 'task-parse-folder-%s' % ('-'.join(sets))
@override
def offer_resources(self, resources):
key = 'parse_folder_task_pool'
if key not in resources:
return None
for resource in resources[key]:
if resource.remaining() >= 1:
return {key: [(resource.identifier, 1)]}
return None
@override
def task_arguments(self, resources, env):
args = [sys.executable, os.path.join(
os.path.dirname(os.path.abspath(digits.__file__)),
'tools', 'parse_folder.py'),
self.folder,
self.path(utils.constants.LABELS_FILE),
'--min=%s' % self.min_per_category,
]
if (self.percent_val + self.percent_test) < 100:
args.append('--train_file=%s' % self.path(utils.constants.TRAIN_FILE))
if self.percent_val > 0:
args.append('--val_file=%s' % self.path(utils.constants.VAL_FILE))
args.append('--percent_val=%s' % self.percent_val)
if self.percent_test > 0:
args.append('--test_file=%s' % self.path(utils.constants.TEST_FILE))
args.append('--percent_test=%s' % self.percent_test)
if self.max_per_category is not None:
args.append('--max=%s' % self.max_per_category)
return args
@override
def process_output(self, line):
timestamp, level, message = self.preprocess_output_digits(line)
if not message:
return False
# progress
match = re.match(r'Progress: ([-+]?[0-9]*\.?[0-9]+(e[-+]?[0-9]+)?)', message)
if match:
self.progress = float(match.group(1))
self.emit_progress_update()
return True
# totals
match = re.match(r'Found (\d+) images in (\d+) categories', message)
if match:
self.label_count = int(match.group(2))
return True
# splits
match = re.match(r'Selected (\d+) for (\w+)', message)
if match:
if match.group(2).startswith('training'):
self.train_count = int(match.group(1))
elif match.group(2).startswith('validation'):
self.val_count = int(match.group(1))
elif match.group(2).startswith('test'):
self.test_count = int(match.group(1))
return True
if level == 'warning':
self.logger.warning('%s: %s' % (self.name(), message))
return True
if level in ['error', 'critical']:
self.logger.error('%s: %s' % (self.name(), message))
self.exception = message
return True
return True
| DIGITS-master | digits/dataset/tasks/parse_folder.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os.path
import re
import sys
import digits
from digits import utils
from digits.task import Task
from digits.utils import subclass, override
# NOTE: Increment this every time the pickled version changes
PICKLE_VERSION = 3
@subclass
class CreateDbTask(Task):
"""Creates a database"""
def __init__(self, input_file, db_name, backend, image_dims, **kwargs):
"""
Arguments:
input_file -- read images and labels from this file
db_name -- save database to this location
backend -- database backend (lmdb/hdf5)
image_dims -- (height, width, channels)
Keyword Arguments:
image_folder -- prepend image paths with this folder
shuffle -- shuffle images before saving
resize_mode -- used in utils.image.resize_image()
encoding -- 'none', 'png' or 'jpg'
compression -- 'none' or 'gzip'
mean_file -- save mean file to this location
labels_file -- used to print category distribution
"""
# Take keyword arguments out of kwargs
self.image_folder = kwargs.pop('image_folder', None)
self.shuffle = kwargs.pop('shuffle', True)
self.resize_mode = kwargs.pop('resize_mode', None)
self.encoding = kwargs.pop('encoding', None)
self.compression = kwargs.pop('compression', None)
self.mean_file = kwargs.pop('mean_file', None)
self.labels_file = kwargs.pop('labels_file', None)
self.delete_files = kwargs.pop('delete_files', False)
super(CreateDbTask, self).__init__(**kwargs)
self.pickver_task_createdb = PICKLE_VERSION
self.input_file = input_file
self.db_name = db_name
self.backend = backend
if backend == 'hdf5' or backend == 'tfrecords':
# the list of hdf5 files is stored in a textfile
# tfrecords can be sharded as well
self.textfile = os.path.join(self.db_name, 'list.txt')
self.image_dims = image_dims
if image_dims[2] == 3:
self.image_channel_order = 'BGR'
else:
self.image_channel_order = None
self.entries_count = None
self.entries_error = None
self.distribution = None
self.create_db_log_file = "create_%s.log" % db_name
def __getstate__(self):
d = super(CreateDbTask, self).__getstate__()
if 'create_db_log' in d:
# don't save file handle
del d['create_db_log']
if 'labels' in d:
del d['labels']
return d
def __setstate__(self, state):
super(CreateDbTask, self).__setstate__(state)
if self.pickver_task_createdb <= 1:
if self.image_dims[2] == 1:
self.image_channel_order = None
elif self.encode:
self.image_channel_order = 'BGR'
else:
self.image_channel_order = 'RGB'
if self.pickver_task_createdb <= 2:
if hasattr(self, 'encode'):
if self.encode:
self.encoding = 'jpg'
else:
self.encoding = 'none'
delattr(self, 'encode')
else:
self.encoding = 'none'
self.pickver_task_createdb = PICKLE_VERSION
if not hasattr(self, 'backend') or self.backend is None:
self.backend = 'lmdb'
if not hasattr(self, 'compression') or self.compression is None:
self.compression = 'none'
if not hasattr(self, 'entries_error'):
self.entries_error = 0
for key in self.distribution.keys():
self.distribution[key] = {
'count': self.distribution[key],
'error_count': 0
}
@override
def name(self):
if self.db_name == utils.constants.TRAIN_DB or 'train' in self.db_name.lower():
return 'Create DB (train)'
elif self.db_name == utils.constants.VAL_DB or 'val' in self.db_name.lower():
return 'Create DB (val)'
elif self.db_name == utils.constants.TEST_DB or 'test' in self.db_name.lower():
return 'Create DB (test)'
else:
return 'Create DB (%s)' % self.db_name
@override
def before_run(self):
super(CreateDbTask, self).before_run()
self.create_db_log = open(self.path(self.create_db_log_file), 'a')
@override
def html_id(self):
if self.db_name == utils.constants.TRAIN_DB or 'train' in self.db_name.lower():
return 'task-create_db-train'
elif self.db_name == utils.constants.VAL_DB or 'val' in self.db_name.lower():
return 'task-create_db-val'
elif self.db_name == utils.constants.TEST_DB or 'test' in self.db_name.lower():
return 'task-create_db-test'
else:
return super(CreateDbTask, self).html_id()
@override
def offer_resources(self, resources):
key = 'create_db_task_pool'
if key not in resources:
return None
for resource in resources[key]:
if resource.remaining() >= 1:
return {key: [(resource.identifier, 1)]}
return None
@override
def task_arguments(self, resources, env):
args = [sys.executable, os.path.join(
os.path.dirname(os.path.abspath(digits.__file__)),
'tools', 'create_db.py'),
self.path(self.input_file),
self.path(self.db_name),
self.image_dims[1],
self.image_dims[0],
'--backend=%s' % self.backend,
'--channels=%s' % self.image_dims[2],
'--resize_mode=%s' % self.resize_mode,
]
if self.mean_file is not None:
args.append('--mean_file=%s' % self.path(self.mean_file))
# Add a visual mean_file
args.append('--mean_file=%s' % self.path(utils.constants.MEAN_FILE_IMAGE))
if self.image_folder:
args.append('--image_folder=%s' % self.image_folder)
if self.shuffle:
args.append('--shuffle')
if self.encoding and self.encoding != 'none':
args.append('--encoding=%s' % self.encoding)
if self.compression and self.compression != 'none':
args.append('--compression=%s' % self.compression)
if self.backend == 'hdf5':
args.append('--hdf5_dset_limit=%d' % 2**31)
if self.delete_files:
args.append('--delete_files')
return args
@override
def process_output(self, line):
self.create_db_log.write('%s\n' % line)
self.create_db_log.flush()
timestamp, level, message = self.preprocess_output_digits(line)
if not message:
return False
# progress
match = re.match(r'Processed (\d+)\/(\d+)', message)
if match:
self.progress = float(match.group(1)) / int(match.group(2))
self.emit_progress_update()
return True
# distribution
match = re.match(r'Category (\d+) has (\d+)', message)
if match and self.labels_file is not None:
if not hasattr(self, 'distribution') or self.distribution is None:
self.distribution = {}
self.distribution[match.group(1)] = {
'count': int(match.group(2)),
'error_count': 0
}
self.update_distribution_graph()
return True
# add errors to the distribution
match = re.match(r'\[(.+) (\d+)\] LoadImageError: (.+)', message)
if match:
self.distribution[match.group(2)]['count'] -= 1
self.distribution[match.group(2)]['error_count'] += 1
if self.entries_error is None:
self.entries_error = 0
self.entries_error += 1
self.update_distribution_graph()
return True
# result
match = re.match(r'(\d+) images written to database', message)
if match:
self.entries_count = int(match.group(1))
self.logger.debug(message)
return True
if level == 'warning':
self.logger.warning('%s: %s' % (self.name(), message))
return True
if level in ['error', 'critical']:
self.logger.error('%s: %s' % (self.name(), message))
self.exception = message
return True
return True
@override
def after_run(self):
from digits.webapp import socketio
super(CreateDbTask, self).after_run()
self.create_db_log.close()
if self.backend == 'lmdb':
socketio.emit('task update',
{
'task': self.html_id(),
'update': 'exploration-ready',
},
namespace='/jobs',
room=self.job_id,
)
elif self.backend == 'hdf5':
# add more path information to the list of h5 files
lines = None
with open(self.path(self.textfile)) as infile:
lines = infile.readlines()
with open(self.path(self.textfile), 'w') as outfile:
for line in lines:
# XXX this works because the model job will be in an adjacent folder
outfile.write('%s\n' % os.path.join(
'..', self.job_id, self.db_name, line.strip()))
if self.mean_file:
socketio.emit('task update',
{
'task': self.html_id(),
'update': 'mean-image',
# XXX Can't use url_for here because we don't have a request context
'data': '/files/' + self.path('mean.jpg', relative=True),
},
namespace='/jobs',
room=self.job_id,
)
def get_labels(self):
"""
Read labels from labels_file and return them in a list
"""
# The labels might be set already
if hasattr(self, '_labels') and self._labels and len(self._labels) > 0:
return self._labels
assert hasattr(self, 'labels_file'), 'labels_file not set'
assert self.labels_file, 'labels_file not set'
assert os.path.exists(self.path(self.labels_file)), 'labels_file does not exist'
labels = []
with open(self.path(self.labels_file)) as infile:
for line in infile:
label = line.strip()
if label:
labels.append(label)
assert len(labels) > 0, 'no labels in labels_file'
self._labels = labels
return self._labels
def distribution_data(self):
"""
Returns distribution data for a C3.js graph
"""
if self.distribution is None:
return None
try:
labels = self.get_labels()
except AssertionError:
return None
if len(self.distribution.keys()) != len(labels):
return None
label_count = 'Count'
label_error = 'LoadImageError'
error_values = [label_error]
count_values = [label_count]
titles = []
for key, value in sorted(
self.distribution.items(),
key=lambda item: item[1]['count'],
reverse=True):
count_values.append(value['count'])
error_values.append(value['error_count'])
titles.append(labels[int(key)])
# distribution graph always displays the Count data
data = {'columns': [count_values], 'type': 'bar'}
# only display error data if any error occurred
if sum(error_values[1:]) > 0:
data['columns'] = [count_values, error_values]
data['groups'] = [[label_count, label_error]]
data['colors'] = {label_count: '#1F77B4', label_error: '#B73540'}
data['order'] = 'false'
return {
'data': data,
'axis': {
'x': {
'type': 'category',
'categories': titles,
}
},
}
def update_distribution_graph(self):
from digits.webapp import socketio
data = self.distribution_data()
if data:
socketio.emit('task update',
{
'task': self.html_id(),
'update': 'distribution',
'data': data,
},
namespace='/jobs',
room=self.job_id,
)
| DIGITS-master | digits/dataset/tasks/create_db.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from ..job import DatasetJob
# NOTE: Increment this every time the pickled object changes
PICKLE_VERSION = 1
class ImageDatasetJob(DatasetJob):
"""
A Job that creates an image dataset
"""
def __init__(self, **kwargs):
"""
Keyword arguments:
image_dims -- (height, width, channels)
resize_mode -- used in utils.image.resize_image()
"""
self.image_dims = kwargs.pop('image_dims', None)
self.resize_mode = kwargs.pop('resize_mode', None)
super(ImageDatasetJob, self).__init__(**kwargs)
self.pickver_job_dataset_image = PICKLE_VERSION
@staticmethod
def resize_mode_choices():
return [
('crop', 'Crop'),
('squash', 'Squash'),
('fill', 'Fill'),
('half_crop', 'Half crop, half fill'),
]
def resize_mode_name(self):
c = dict(self.resize_mode_choices())
return c[self.resize_mode]
| DIGITS-master | digits/dataset/images/job.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .classification import * # noqa
from .generic import * # noqa
from .job import ImageDatasetJob
__all__ = ['ImageDatasetJob']
| DIGITS-master | digits/dataset/images/__init__.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import wtforms
from wtforms import validators
from ..forms import DatasetForm
from .job import ImageDatasetJob
from digits import utils
class ImageDatasetForm(DatasetForm):
"""
Defines the form used to create a new ImageDatasetJob
(abstract class)
"""
encoding = utils.forms.SelectField(
'Image Encoding',
default='png',
choices=[
('none', 'None'),
('png', 'PNG (lossless)'),
('jpg', 'JPEG (lossy, 90% quality)'),
],
tooltip=('Using either of these compression formats can save disk space, '
'but can also require marginally more time for training.'),
)
# Image resize
resize_channels = utils.forms.SelectField(
u'Image Type',
default='3',
choices=[('1', 'Grayscale'), ('3', 'Color')],
tooltip="Color is 3-channel RGB. Grayscale is single channel monochrome."
)
resize_width = wtforms.IntegerField(
u'Resize Width',
default=256,
validators=[validators.DataRequired()]
)
resize_height = wtforms.IntegerField(
u'Resize Height',
default=256,
validators=[validators.DataRequired()]
)
resize_mode = utils.forms.SelectField(
u'Resize Transformation',
default='squash',
choices=ImageDatasetJob.resize_mode_choices(),
tooltip="Options for dealing with aspect ratio changes during resize. See examples below."
)
| DIGITS-master | digits/dataset/images/forms.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os.path
# Find the best implementation available
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import flask
import PIL.Image
import digits
from digits import utils
blueprint = flask.Blueprint(__name__, __name__)
@blueprint.route('/resize-example', methods=['POST'])
def resize_example():
"""
Resizes the example image, and returns it as a string of png data
"""
try:
example_image_path = os.path.join(os.path.dirname(digits.__file__), 'static', 'images', 'mona_lisa.jpg')
image = utils.image.load_image(example_image_path)
width = int(flask.request.form['width'])
height = int(flask.request.form['height'])
channels = int(flask.request.form['channels'])
resize_mode = flask.request.form['resize_mode']
backend = flask.request.form['backend']
encoding = flask.request.form['encoding']
image = utils.image.resize_image(image, height, width,
channels=channels,
resize_mode=resize_mode,
)
if backend != 'lmdb' or encoding == 'none':
length = len(image.tostring())
else:
s = StringIO()
if encoding == 'png':
PIL.Image.fromarray(image).save(s, format='PNG')
elif encoding == 'jpg':
PIL.Image.fromarray(image).save(s, format='JPEG', quality=90)
else:
raise ValueError('unrecognized encoding "%s"' % encoding)
s.seek(0)
image = PIL.Image.open(s)
length = len(s.getvalue())
data = utils.image.embed_image_html(image)
return '<img src=\"' + data + '\" style=\"width:%spx;height=%spx\" />\n<br>\n<i>Image size: %s</i>' % (
width,
height,
utils.sizeof_fmt(length)
)
except Exception as e:
return '%s: %s' % (type(e).__name__, e)
| DIGITS-master | digits/dataset/images/views.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
from ..job import ImageDatasetJob
from digits.dataset import tasks
from digits.status import Status
from digits.utils import subclass, override, constants
# NOTE: Increment this every time the pickled object changes
PICKLE_VERSION = 2
@subclass
class ImageClassificationDatasetJob(ImageDatasetJob):
"""
A Job that creates an image dataset for a classification network
"""
def __init__(self, **kwargs):
super(ImageClassificationDatasetJob, self).__init__(**kwargs)
self.pickver_job_dataset_image_classification = PICKLE_VERSION
self.labels_file = None
def __setstate__(self, state):
super(ImageClassificationDatasetJob, self).__setstate__(state)
if self.pickver_job_dataset_image_classification <= 1:
task = self.train_db_task()
if task.image_dims[2] == 3:
if task.encoding == "jpg":
if task.mean_file.endswith('.binaryproto'):
import numpy as np
import caffe_pb2
old_blob = caffe_pb2.BlobProto()
with open(task.path(task.mean_file), 'rb') as infile:
old_blob.ParseFromString(infile.read())
data = np.array(old_blob.data).reshape(
old_blob.channels,
old_blob.height,
old_blob.width)
data = data[[2, 1, 0], ...] # channel swap
new_blob = caffe_pb2.BlobProto()
new_blob.num = 1
new_blob.channels, new_blob.height, new_blob.width = data.shape
new_blob.data.extend(data.astype(float).flat)
with open(task.path(task.mean_file), 'wb') as outfile:
outfile.write(new_blob.SerializeToString())
else:
self.status = Status.ERROR
for task in self.tasks:
task.status = Status.ERROR
task.exception = ('This dataset was created with unencoded '
'RGB channels. Caffe requires BGR input.')
self.pickver_job_dataset_image_classification = PICKLE_VERSION
def create_db_tasks(self):
"""
Return all CreateDbTasks for this job
"""
return [t for t in self.tasks if isinstance(t, tasks.CreateDbTask)]
@override
def get_backend(self):
"""
Return the DB backend used to create this dataset
"""
return self.train_db_task().backend
def get_encoding(self):
"""
Return the DB encoding used to create this dataset
"""
return self.train_db_task().encoding
def get_compression(self):
"""
Return the DB compression used to create this dataset
"""
return self.train_db_task().compression
@override
def get_entry_count(self, stage):
"""
Return the number of entries in the DB matching the specified stage
"""
if stage == constants.TRAIN_DB:
db = self.train_db_task()
elif stage == constants.VAL_DB:
db = self.val_db_task()
elif stage == constants.TEST_DB:
db = self.test_db_task()
else:
return 0
return db.entries_count if db is not None else 0
@override
def get_feature_dims(self):
"""
Return the shape of the feature N-D array
"""
return self.image_dims
@override
def get_feature_db_path(self, stage):
"""
Return the absolute feature DB path for the specified stage
"""
path = self.path(stage)
return path if os.path.exists(path) else None
@override
def get_label_db_path(self, stage):
"""
Return the absolute label DB path for the specified stage
"""
# classification datasets don't have label DBs
return None
@override
def get_mean_file(self):
"""
Return the mean file
"""
return self.train_db_task().mean_file
@override
def job_type(self):
return 'Image Classification Dataset'
@override
def json_dict(self, verbose=False):
d = super(ImageClassificationDatasetJob, self).json_dict(verbose)
if verbose:
d.update({
'ParseFolderTasks': [{
"name": t.name(),
"label_count": t.label_count,
"train_count": t.train_count,
"val_count": t.val_count,
"test_count": t.test_count,
} for t in self.parse_folder_tasks()],
'CreateDbTasks': [{
"name": t.name(),
"entries": t.entries_count,
"image_width": t.image_dims[0],
"image_height": t.image_dims[1],
"image_channels": t.image_dims[2],
"backend": t.backend,
"encoding": t.encoding,
"compression": t.compression,
} for t in self.create_db_tasks()],
})
return d
def parse_folder_tasks(self):
"""
Return all ParseFolderTasks for this job
"""
return [t for t in self.tasks if isinstance(t, tasks.ParseFolderTask)]
def test_db_task(self):
"""
Return the task that creates the test set
"""
for t in self.tasks:
if isinstance(t, tasks.CreateDbTask) and 'test' in t.name().lower():
return t
return None
def train_db_task(self):
"""
Return the task that creates the training set
"""
for t in self.tasks:
if isinstance(t, tasks.CreateDbTask) and 'train' in t.name().lower():
return t
return None
def val_db_task(self):
"""
Return the task that creates the validation set
"""
for t in self.tasks:
if isinstance(t, tasks.CreateDbTask) and 'val' in t.name().lower():
return t
return None
| DIGITS-master | digits/dataset/images/classification/job.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .job import ImageClassificationDatasetJob
__all__ = ['ImageClassificationDatasetJob']
| DIGITS-master | digits/dataset/images/classification/__init__.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import json
import os
import shutil
import tempfile
# Find the best implementation available
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
from bs4 import BeautifulSoup
import PIL.Image
from .test_imageset_creator import create_classification_imageset
from digits import test_utils
import digits.test_views
# May be too short on a slow system
TIMEOUT_DATASET = 45
################################################################################
# Base classes (they don't start with "Test" so nose won't run them)
################################################################################
class BaseViewsTest(digits.test_views.BaseViewsTest):
"""
Provides some functions
"""
@classmethod
def dataset_exists(cls, job_id):
return cls.job_exists(job_id, 'datasets')
@classmethod
def dataset_status(cls, job_id):
return cls.job_status(job_id, 'datasets')
@classmethod
def dataset_info(cls, job_id):
return cls.job_info(job_id, 'datasets')
@classmethod
def abort_dataset(cls, job_id):
return cls.abort_job(job_id, job_type='datasets')
@classmethod
def dataset_wait_completion(cls, job_id, **kwargs):
kwargs['job_type'] = 'datasets'
if 'timeout' not in kwargs:
kwargs['timeout'] = TIMEOUT_DATASET
return cls.job_wait_completion(job_id, **kwargs)
@classmethod
def delete_dataset(cls, job_id):
return cls.delete_job(job_id, job_type='datasets')
class BaseViewsTestWithImageset(BaseViewsTest):
"""
Provides an imageset and some functions
"""
# Inherited classes may want to override these default attributes
IMAGE_COUNT = 10 # per class
IMAGE_HEIGHT = 10
IMAGE_WIDTH = 10
IMAGE_CHANNELS = 3
BACKEND = 'lmdb'
ENCODING = 'png'
COMPRESSION = 'none'
UNBALANCED_CATEGORY = False
@classmethod
def setUpClass(cls):
super(BaseViewsTestWithImageset, cls).setUpClass()
cls.imageset_folder = tempfile.mkdtemp()
# create imageset
cls.imageset_paths = create_classification_imageset(
cls.imageset_folder,
image_count=cls.IMAGE_COUNT,
add_unbalanced_category=cls.UNBALANCED_CATEGORY,
)
cls.created_datasets = []
@classmethod
def tearDownClass(cls):
# delete any created datasets
for job_id in cls.created_datasets:
cls.delete_dataset(job_id)
# delete imageset
shutil.rmtree(cls.imageset_folder)
super(BaseViewsTestWithImageset, cls).tearDownClass()
@classmethod
def create_dataset(cls, **kwargs):
"""
Create a dataset
Returns the job_id
Raises RuntimeError if job fails to create
Keyword arguments:
**kwargs -- data to be sent with POST request
"""
data = {
'dataset_name': 'test_dataset',
'group_name': 'test_group',
'method': 'folder',
'folder_train': cls.imageset_folder,
'resize_channels': cls.IMAGE_CHANNELS,
'resize_width': cls.IMAGE_WIDTH,
'resize_height': cls.IMAGE_HEIGHT,
'backend': cls.BACKEND,
'encoding': cls.ENCODING,
'compression': cls.COMPRESSION,
}
data.update(kwargs)
request_json = data.pop('json', False)
url = '/datasets/images/classification'
if request_json:
url += '/json'
rv = cls.app.post(url, data=data)
if request_json:
if rv.status_code != 200:
print json.loads(rv.data)
raise RuntimeError('Model creation failed with %s' % rv.status_code)
return json.loads(rv.data)['id']
# expect a redirect
if not 300 <= rv.status_code <= 310:
s = BeautifulSoup(rv.data, 'html.parser')
div = s.select('div.alert-danger')
if div:
print div[0]
else:
print rv.data
raise RuntimeError('Failed to create dataset - status %s' % rv.status_code)
job_id = cls.job_id_from_response(rv)
assert cls.dataset_exists(job_id), 'dataset not found after successful creation'
cls.created_datasets.append(job_id)
return job_id
@classmethod
def categoryCount(cls):
return len(cls.imageset_paths.keys())
class BaseViewsTestWithDataset(BaseViewsTestWithImageset):
"""
Provides a dataset and some functions
"""
@classmethod
def setUpClass(cls):
super(BaseViewsTestWithDataset, cls).setUpClass()
cls.dataset_id = cls.create_dataset(json=True)
assert cls.dataset_wait_completion(cls.dataset_id) == 'Done', 'create failed'
def test_clone(self):
options_1 = {
'encoding': 'png',
'folder_pct_test': 0,
'folder_pct_val': 25,
'folder_test': '',
'folder_test_max_per_class': None,
'folder_test_min_per_class': 2,
'folder_train_max_per_class': 3,
'folder_train_min_per_class': 1,
'folder_val_max_per_class': None,
'folder_val_min_per_class': 2,
'resize_mode': 'half_crop',
}
job1_id = self.create_dataset(**options_1)
assert self.dataset_wait_completion(job1_id) == 'Done', 'first job failed'
rv = self.app.get('/datasets/%s/json' % job1_id)
assert rv.status_code == 200, 'json load failed with %s' % rv.status_code
content1 = json.loads(rv.data)
# Clone job1 as job2
options_2 = {
'clone': job1_id,
}
job2_id = self.create_dataset(**options_2)
assert self.dataset_wait_completion(job2_id) == 'Done', 'second job failed'
rv = self.app.get('/datasets/%s/json' % job2_id)
assert rv.status_code == 200, 'json load failed with %s' % rv.status_code
content2 = json.loads(rv.data)
# These will be different
content1.pop('id')
content2.pop('id')
content1.pop('directory')
content2.pop('directory')
assert (content1 == content2), 'job content does not match'
job1 = digits.webapp.scheduler.get_job(job1_id)
job2 = digits.webapp.scheduler.get_job(job2_id)
assert (job1.form_data == job2.form_data), 'form content does not match'
################################################################################
# Test classes
################################################################################
class TestViews(BaseViewsTest, test_utils.DatasetMixin):
"""
Tests which don't require an imageset or a dataset
"""
def test_page_dataset_new(self):
rv = self.app.get('/datasets/images/classification/new')
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
assert 'New Image Classification Dataset' in rv.data, 'unexpected page format'
def test_nonexistent_dataset(self):
assert not self.dataset_exists('foo'), "dataset shouldn't exist"
class TestCreation(BaseViewsTestWithImageset, test_utils.DatasetMixin):
"""
Dataset creation tests
"""
def test_nonexistent_folder(self):
try:
self.create_dataset(
folder_train='/not-a-directory'
)
except RuntimeError:
return
raise AssertionError('Should have failed')
def test_create_json(self):
job_id = self.create_dataset(json=True)
self.abort_dataset(job_id)
def test_create_delete(self):
job_id = self.create_dataset()
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_create_abort_delete(self):
job_id = self.create_dataset()
assert self.abort_dataset(job_id) == 200, 'abort failed'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_create_wait_delete(self):
job_id = self.create_dataset()
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_textfiles(self):
for absolute_path in (True, False):
for local_path in (True, False):
yield self.check_textfiles, absolute_path, local_path
def check_textfiles(self, absolute_path=True, local_path=True):
"""
Create a dataset from textfiles
Arguments:
absolute_path -- if False, give relative paths and image folders
"""
textfile_train_images = ''
textfile_labels_file = ''
label_id = 0
for label, images in self.imageset_paths.iteritems():
textfile_labels_file += '%s\n' % label
for image in images:
image_path = image
if absolute_path:
image_path = os.path.join(self.imageset_folder, image_path)
textfile_train_images += '%s %d\n' % (image_path, label_id)
label_id += 1
data = {
'method': 'textfile',
'textfile_use_val': 'y',
}
if local_path:
train_file = os.path.join(self.imageset_folder, "local_train.txt")
labels_file = os.path.join(self.imageset_folder, "local_labels.txt")
# create files in local filesystem - these will be removed in tearDownClass() function
with open(train_file, "w") as outfile:
outfile.write(textfile_train_images)
with open(labels_file, "w") as outfile:
outfile.write(textfile_labels_file)
data['textfile_use_local_files'] = 'True'
data['textfile_local_train_images'] = train_file
# Use the same file for training and validation.
data['textfile_local_val_images'] = train_file
data['textfile_local_labels_file'] = labels_file
else:
# StringIO wrapping is needed to simulate POST file upload.
train_upload = (StringIO(textfile_train_images), "train.txt")
# Use the same list for training and validation.
val_upload = (StringIO(textfile_train_images), "val.txt")
labels_upload = (StringIO(textfile_labels_file), "labels.txt")
data['textfile_train_images'] = train_upload
data['textfile_val_images'] = val_upload
data['textfile_labels_file'] = labels_upload
if not absolute_path:
data['textfile_train_folder'] = self.imageset_folder
data['textfile_val_folder'] = self.imageset_folder
job_id = self.create_dataset(**data)
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
def test_abort_explore_fail(self):
job_id = self.create_dataset()
self.abort_dataset(job_id)
rv = self.app.get('/datasets/images/classification/explore?job_id=%s&db=val' % job_id)
assert rv.status_code == 500, 'page load should have failed'
assert 'status should be' in rv.data, 'unexpected page format'
class TestImageCount(BaseViewsTestWithImageset, test_utils.DatasetMixin):
def test_image_count(self):
for type in ['train', 'val', 'test']:
yield self.check_image_count, type
def check_image_count(self, type):
data = {'folder_pct_val': 20,
'folder_pct_test': 10}
if type == 'val':
data['has_val_folder'] = 'True'
data['folder_val'] = self.imageset_folder
elif type == 'test':
data['has_test_folder'] = 'True'
data['folder_test'] = self.imageset_folder
job_id = self.create_dataset(**data)
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
info = self.dataset_info(job_id)
if type == 'train':
assert len(info['ParseFolderTasks']) == 1, 'expected exactly one ParseFolderTasks'
parse_info = info['ParseFolderTasks'][0]
image_count = parse_info['train_count'] + parse_info['val_count'] + parse_info['test_count']
assert parse_info['val_count'] == 0.2 * image_count
assert parse_info['test_count'] == 0.1 * image_count
else:
assert len(info['ParseFolderTasks']) == 2, 'expected exactly one ParseFolderTasks'
parse_info = info['ParseFolderTasks'][1]
if type == 'val':
assert parse_info['train_count'] == 0
assert parse_info['test_count'] == 0
image_count = parse_info['val_count']
else:
assert parse_info['train_count'] == 0
assert parse_info['val_count'] == 0
image_count = parse_info['test_count']
assert self.categoryCount() == parse_info['label_count']
assert image_count == self.IMAGE_COUNT * parse_info['label_count'], 'image count mismatch'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
class TestMaxPerClass(BaseViewsTestWithImageset, test_utils.DatasetMixin):
def test_max_per_class(self):
for type in ['train', 'val', 'test']:
yield self.check_max_per_class, type
def check_max_per_class(self, type):
# create dataset, asking for at most IMAGE_COUNT/2 images per class
assert self.IMAGE_COUNT % 2 == 0
max_per_class = self.IMAGE_COUNT / 2
data = {'folder_pct_val': 0}
if type == 'train':
data['folder_train_max_per_class'] = max_per_class
if type == 'val':
data['has_val_folder'] = 'True'
data['folder_val'] = self.imageset_folder
data['folder_val_max_per_class'] = max_per_class
elif type == 'test':
data['has_test_folder'] = 'True'
data['folder_test'] = self.imageset_folder
data['folder_test_max_per_class'] = max_per_class
job_id = self.create_dataset(**data)
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
info = self.dataset_info(job_id)
if type == 'train':
assert len(info['ParseFolderTasks']) == 1, 'expected exactly one ParseFolderTasks'
parse_info = info['ParseFolderTasks'][0]
else:
assert len(info['ParseFolderTasks']) == 2, 'expected exactly one ParseFolderTasks'
parse_info = info['ParseFolderTasks'][1]
image_count = parse_info['train_count'] + parse_info['val_count'] + parse_info['test_count']
assert image_count == max_per_class * parse_info['label_count'], 'image count mismatch'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
class TestMinPerClass(BaseViewsTestWithImageset, test_utils.DatasetMixin):
UNBALANCED_CATEGORY = True
def test_min_per_class(self):
for type in ['train', 'val', 'test']:
yield self.check_min_per_class, type
def check_min_per_class(self, type):
# create dataset, asking for one more image per class
# than available in the "unbalanced" category
min_per_class = self.IMAGE_COUNT / 2 + 1
data = {'folder_pct_val': 0}
if type == 'train':
data['folder_train_min_per_class'] = min_per_class
if type == 'val':
data['has_val_folder'] = 'True'
data['folder_val'] = self.imageset_folder
data['folder_val_min_per_class'] = min_per_class
elif type == 'test':
data['has_test_folder'] = 'True'
data['folder_test'] = self.imageset_folder
data['folder_test_min_per_class'] = min_per_class
job_id = self.create_dataset(**data)
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
info = self.dataset_info(job_id)
if type == 'train':
assert len(info['ParseFolderTasks']) == 1, 'expected exactly one ParseFolderTasks'
parse_info = info['ParseFolderTasks'][0]
else:
assert len(info['ParseFolderTasks']) == 2, 'expected exactly two ParseFolderTasks'
parse_info = info['ParseFolderTasks'][1]
assert self.categoryCount() == parse_info['label_count'] + 1
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
class TestCreated(BaseViewsTestWithDataset, test_utils.DatasetMixin):
"""
Tests on a dataset that has already been created
"""
def test_index_json(self):
rv = self.app.get('/index/json')
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
content = json.loads(rv.data)
found = False
for d in content['datasets']:
if d['id'] == self.dataset_id:
found = True
break
assert found, 'dataset not found in list'
def test_dataset_json(self):
rv = self.app.get('/datasets/%s/json' % self.dataset_id)
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
content = json.loads(rv.data)
assert content['id'] == self.dataset_id, 'expected different job_id'
def test_mean_dimensions(self):
img_url = '/files/%s/mean.jpg' % self.dataset_id
rv = self.app.get(img_url)
assert rv.status_code == 200, 'GET on %s returned %s' % (img_url, rv.status_code)
buff = StringIO(rv.data)
buff.seek(0)
pil_image = PIL.Image.open(buff)
assert pil_image.size == (self.IMAGE_WIDTH, self.IMAGE_HEIGHT), 'image size is %s' % (pil_image.size,)
def test_edit_name(self):
status = self.edit_job(self.dataset_id,
name='new name'
)
assert status == 200, 'failed with %s' % status
rv = self.app.get('/datasets/summary?job_id=%s' % self.dataset_id)
assert rv.status_code == 200
assert 'new name' in rv.data
def test_edit_notes(self):
status = self.edit_job(
self.dataset_id,
notes='new notes'
)
assert status == 200, 'failed with %s' % status
def test_backend_selection(self):
rv = self.app.get('/datasets/%s/json' % self.dataset_id)
content = json.loads(rv.data)
for task in content['CreateDbTasks']:
assert task['backend'] == self.BACKEND
def test_explore_train(self):
rv = self.app.get('/datasets/images/classification/explore?job_id=%s&db=train' % self.dataset_id)
if self.BACKEND == 'hdf5':
# Not supported yet
assert rv.status_code == 500, 'page load should have failed'
assert 'expected backend is lmdb' in rv.data, 'unexpected page format'
else:
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
assert 'Items per page' in rv.data, 'unexpected page format'
def test_explore_val(self):
rv = self.app.get('/datasets/images/classification/explore?job_id=%s&db=val' % self.dataset_id)
if self.BACKEND == 'hdf5':
# Not supported yet
assert rv.status_code == 500, 'page load should have failed'
assert 'expected backend is lmdb' in rv.data, 'unexpected page format'
else:
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
assert 'Items per page' in rv.data, 'unexpected page format'
class TestCreatedGrayscale(TestCreated, test_utils.DatasetMixin):
IMAGE_CHANNELS = 1
class TestCreatedWide(TestCreated, test_utils.DatasetMixin):
IMAGE_WIDTH = 20
class TestCreatedTall(TestCreated, test_utils.DatasetMixin):
IMAGE_HEIGHT = 20
class TestCreatedJPEG(TestCreated, test_utils.DatasetMixin):
ENCODING = 'jpg'
class TestCreatedRaw(TestCreated, test_utils.DatasetMixin):
ENCODING = 'none'
class TestCreatedRawGrayscale(TestCreated, test_utils.DatasetMixin):
ENCODING = 'none'
IMAGE_CHANNELS = 1
class TestCreatedHdf5(TestCreated, test_utils.DatasetMixin):
BACKEND = 'hdf5'
def test_compression_method(self):
rv = self.app.get('/datasets/%s/json' % self.dataset_id)
content = json.loads(rv.data)
for task in content['CreateDbTasks']:
assert task['compression'] == self.COMPRESSION
class TestCreatedHdf5Gzip(TestCreatedHdf5, test_utils.DatasetMixin):
COMPRESSION = 'gzip'
| DIGITS-master | digits/dataset/images/classification/test_views.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os.path
import requests
import wtforms
from wtforms import validators
from ..forms import ImageDatasetForm
from digits import utils
from digits.utils.forms import validate_required_iff, validate_greater_than
class ImageClassificationDatasetForm(ImageDatasetForm):
"""
Defines the form used to create a new ImageClassificationDatasetJob
"""
backend = wtforms.SelectField('DB backend',
choices=[
('lmdb', 'LMDB'),
('hdf5', 'HDF5')
],
default='lmdb',
)
def validate_backend(form, field):
if field.data == 'lmdb':
form.compression.data = 'none'
elif field.data == 'tfrecords':
form.compression.data = 'none'
elif field.data == 'hdf5':
form.encoding.data = 'none'
compression = utils.forms.SelectField(
'DB compression',
choices=[
('none', 'None'),
('gzip', 'GZIP'),
],
default='none',
tooltip=('Compressing the dataset may significantly decrease the size '
'of your database files, but it may increase read and write times.'),
)
# Use a SelectField instead of a HiddenField so that the default value
# is used when nothing is provided (through the REST API)
method = wtforms.SelectField(u'Dataset type',
choices=[
('folder', 'Folder'),
('textfile', 'Textfiles'),
('s3', 'S3'),
],
default='folder',
)
def validate_folder_path(form, field):
if not field.data:
pass
elif utils.is_url(field.data):
# make sure the URL exists
try:
r = requests.get(field.data,
allow_redirects=False,
timeout=utils.HTTP_TIMEOUT)
if r.status_code not in [requests.codes.ok, requests.codes.moved, requests.codes.found]:
raise validators.ValidationError('URL not found')
except Exception as e:
raise validators.ValidationError('Caught %s while checking URL: %s' % (type(e).__name__, e))
else:
return True
else:
# make sure the filesystem path exists
# and make sure the filesystem path is absolute
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError('Folder does not exist')
elif not os.path.isabs(field.data):
raise validators.ValidationError('Filesystem path is not absolute')
else:
return True
#
# Method - folder
#
folder_train = utils.forms.StringField(
u'Training Images',
validators=[
validate_required_iff(method='folder'),
validate_folder_path,
],
tooltip=('Indicate a folder which holds subfolders full of images. '
'Each subfolder should be named according to the desired label for the images that it holds. '
'Can also be a URL for an apache/nginx auto-indexed folder.'),
)
folder_pct_val = utils.forms.IntegerField(
u'% for validation',
default=25,
validators=[
validate_required_iff(method='folder'),
validators.NumberRange(min=0, max=100)
],
tooltip=('You can choose to set apart a certain percentage of images '
'from the training images for the validation set.'),
)
folder_pct_test = utils.forms.IntegerField(
u'% for testing',
default=0,
validators=[
validate_required_iff(method='folder'),
validators.NumberRange(min=0, max=100)
],
tooltip=('You can choose to set apart a certain percentage of images '
'from the training images for the test set.'),
)
folder_train_min_per_class = utils.forms.IntegerField(
u'Minimum samples per class',
default=2,
validators=[
validators.Optional(),
validators.NumberRange(min=1),
],
tooltip=('You can choose to specify a minimum number of samples per class. '
'If a class has fewer samples than the specified amount it will be ignored. '
'Leave blank to ignore this feature.'),
)
folder_train_max_per_class = utils.forms.IntegerField(
u'Maximum samples per class',
validators=[
validators.Optional(),
validators.NumberRange(min=1),
validate_greater_than('folder_train_min_per_class'),
],
tooltip=('You can choose to specify a maximum number of samples per class. '
'If a class has more samples than the specified amount extra samples will be ignored. '
'Leave blank to ignore this feature.'),
)
has_val_folder = wtforms.BooleanField(
'Separate validation images folder',
default=False,
validators=[
validate_required_iff(method='folder')
]
)
folder_val = wtforms.StringField(
u'Validation Images',
validators=[
validate_required_iff(
method='folder',
has_val_folder=True),
]
)
folder_val_min_per_class = utils.forms.IntegerField(
u'Minimum samples per class',
default=2,
validators=[
validators.Optional(),
validators.NumberRange(min=1),
],
tooltip=('You can choose to specify a minimum number of samples per class. '
'If a class has fewer samples than the specified amount it will be ignored. '
'Leave blank to ignore this feature.'),
)
folder_val_max_per_class = utils.forms.IntegerField(
u'Maximum samples per class',
validators=[
validators.Optional(),
validators.NumberRange(min=1),
validate_greater_than('folder_val_min_per_class'),
],
tooltip=('You can choose to specify a maximum number of samples per class. '
'If a class has more samples than the specified amount extra samples will be ignored. '
'Leave blank to ignore this feature.'),
)
has_test_folder = wtforms.BooleanField(
'Separate test images folder',
default=False,
validators=[
validate_required_iff(method='folder')
]
)
folder_test = wtforms.StringField(
u'Test Images',
validators=[
validate_required_iff(
method='folder',
has_test_folder=True),
validate_folder_path,
]
)
folder_test_min_per_class = utils.forms.IntegerField(
u'Minimum samples per class',
default=2,
validators=[
validators.Optional(),
validators.NumberRange(min=1)
],
tooltip=('You can choose to specify a minimum number of samples per class. '
'If a class has fewer samples than the specified amount it will be ignored. '
'Leave blank to ignore this feature.'),
)
folder_test_max_per_class = utils.forms.IntegerField(
u'Maximum samples per class',
validators=[
validators.Optional(),
validators.NumberRange(min=1),
validate_greater_than('folder_test_min_per_class'),
],
tooltip=('You can choose to specify a maximum number of samples per class. '
'If a class has more samples than the specified amount extra samples will be ignored. '
'Leave blank to ignore this feature.'),
)
#
# Method - textfile
#
textfile_use_local_files = wtforms.BooleanField(
u'Use local files',
default=False,
)
textfile_train_images = utils.forms.FileField(
u'Training images',
validators=[
validate_required_iff(method='textfile',
textfile_use_local_files=False)
]
)
textfile_local_train_images = wtforms.StringField(
u'Training images',
validators=[
validate_required_iff(method='textfile',
textfile_use_local_files=True)
]
)
textfile_train_folder = wtforms.StringField(u'Training images folder')
def validate_textfile_train_folder(form, field):
if form.method.data != 'textfile':
field.errors[:] = []
raise validators.StopValidation()
if not field.data.strip():
# allow null
return True
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError('folder does not exist')
return True
textfile_use_val = wtforms.BooleanField(u'Validation set',
default=True,
validators=[
validate_required_iff(method='textfile')
]
)
textfile_val_images = utils.forms.FileField(u'Validation images',
validators=[
validate_required_iff(
method='textfile',
textfile_use_val=True,
textfile_use_local_files=False)
]
)
textfile_local_val_images = wtforms.StringField(u'Validation images',
validators=[
validate_required_iff(
method='textfile',
textfile_use_val=True,
textfile_use_local_files=True)
]
)
textfile_val_folder = wtforms.StringField(u'Validation images folder')
def validate_textfile_val_folder(form, field):
if form.method.data != 'textfile' or not form.textfile_use_val.data:
field.errors[:] = []
raise validators.StopValidation()
if not field.data.strip():
# allow null
return True
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError('folder does not exist')
return True
textfile_use_test = wtforms.BooleanField(u'Test set',
default=False,
validators=[
validate_required_iff(method='textfile')
]
)
textfile_test_images = utils.forms.FileField(u'Test images',
validators=[
validate_required_iff(
method='textfile',
textfile_use_test=True,
textfile_use_local_files=False)
]
)
textfile_local_test_images = wtforms.StringField(u'Test images',
validators=[
validate_required_iff(
method='textfile',
textfile_use_test=True,
textfile_use_local_files=True)
]
)
textfile_test_folder = wtforms.StringField(u'Test images folder')
def validate_textfile_test_folder(form, field):
if form.method.data != 'textfile' or not form.textfile_use_test.data:
field.errors[:] = []
raise validators.StopValidation()
if not field.data.strip():
# allow null
return True
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError('folder does not exist')
return True
# Can't use a BooleanField here because HTML doesn't submit anything
# for an unchecked checkbox. Since we want to use a REST API and have
# this default to True when nothing is supplied, we have to use a
# SelectField
textfile_shuffle = utils.forms.SelectField(
'Shuffle lines',
choices=[
(1, 'Yes'),
(0, 'No'),
],
coerce=int,
default=1,
tooltip="Shuffle the list[s] of images before creating the database."
)
textfile_labels_file = utils.forms.FileField(
u'Labels',
validators=[
validate_required_iff(method='textfile',
textfile_use_local_files=False)
],
tooltip=("The 'i'th line of the file should give the string label "
"associated with the '(i-1)'th numeric label. (E.g. the string label "
"for the numeric label 0 is supposed to be on line 1.)"),
)
textfile_local_labels_file = utils.forms.StringField(
u'Labels',
validators=[
validate_required_iff(method='textfile',
textfile_use_local_files=True)
],
tooltip=("The 'i'th line of the file should give the string label "
"associated with the '(i-1)'th numeric label. (E.g. the string label "
"for the numeric label 0 is supposed to be on line 1.)"),
)
#
# Method - S3
#
s3_endpoint_url = utils.forms.StringField(
u'Training Images',
tooltip=('S3 end point URL'),
)
s3_bucket = utils.forms.StringField(
u'Bucket Name',
tooltip=('bucket name'),
)
s3_path = utils.forms.StringField(
u'Training Images Path',
tooltip=('Indicate a path which holds subfolders full of images. '
'Each subfolder should be named according to the desired label for the images that it holds. '),
)
s3_accesskey = utils.forms.StringField(
u'Access Key',
tooltip=('Access Key to access this S3 End Point'),
)
s3_secretkey = utils.forms.StringField(
u'Secret Key',
tooltip=('Secret Key to access this S3 End Point'),
)
s3_keepcopiesondisk = utils.forms.BooleanField(
u'Keep Copies of Files on Disk',
tooltip=('Checking this box will keep raw files retrieved from S3 stored on disk after the job is completed'),
)
s3_pct_val = utils.forms.IntegerField(
u'% for validation',
default=25,
validators=[
validate_required_iff(method='s3'),
validators.NumberRange(min=0, max=100)
],
tooltip=('You can choose to set apart a certain percentage of images '
'from the training images for the validation set.'),
)
s3_pct_test = utils.forms.IntegerField(
u'% for testing',
default=0,
validators=[
validate_required_iff(method='s3'),
validators.NumberRange(min=0, max=100)
],
tooltip=('You can choose to set apart a certain percentage of images '
'from the training images for the test set.'),
)
s3_train_min_per_class = utils.forms.IntegerField(
u'Minimum samples per class',
default=2,
validators=[
validators.Optional(),
validators.NumberRange(min=1),
],
tooltip=('You can choose to specify a minimum number of samples per class. '
'If a class has fewer samples than the specified amount it will be ignored. '
'Leave blank to ignore this feature.'),
)
s3_train_max_per_class = utils.forms.IntegerField(
u'Maximum samples per class',
validators=[
validators.Optional(),
validators.NumberRange(min=1),
validate_greater_than('s3_train_min_per_class'),
],
tooltip=('You can choose to specify a maximum number of samples per class. '
'If a class has more samples than the specified amount extra samples will be ignored. '
'Leave blank to ignore this feature.'),
)
| DIGITS-master | digits/dataset/images/classification/forms.py |
#!/usr/bin/env python2
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
"""
Functions for creating temporary datasets
Used in test_views
"""
from __future__ import absolute_import
import argparse
from collections import defaultdict
import os
import time
import numpy as np
import PIL.Image
def create_classification_imageset(
folder,
image_size=10,
image_count=10,
add_unbalanced_category=False,
):
"""
Creates a folder of folders of images for classification
If requested to add an unbalanced category then a category is added with
half the number of samples of other categories
"""
# Stores the relative path of each image of the dataset
paths = defaultdict(list)
config = [
('red-to-right', 0, 0, image_count),
('green-to-top', 1, 90, image_count),
('blue-to-left', 2, 180, image_count),
]
if add_unbalanced_category:
config.append(('blue-to-bottom', 2, 270, image_count / 2))
for class_name, pixel_index, rotation, image_count in config:
os.makedirs(os.path.join(folder, class_name))
colors = np.linspace(200, 255, image_count)
for i, color in enumerate(colors):
pixel = [0, 0, 0]
pixel[pixel_index] = color
pil_img = _create_gradient_image(image_size, (0, 0, 0), pixel, rotation)
img_path = os.path.join(class_name, str(i) + '.png')
pil_img.save(os.path.join(folder, img_path))
paths[class_name].append(img_path)
return paths
def _create_gradient_image(size, color_from, color_to, rotation):
"""
Make an image with a color gradient with a specific rotation
"""
# create gradient
rgb_arrays = [np.linspace(color_from[x], color_to[x], size).astype('uint8') for x in range(3)]
gradient = np.concatenate(rgb_arrays)
# extend to 2d
picture = np.repeat(gradient, size)
picture.shape = (3, size, size)
# make image and rotate
image = PIL.Image.fromarray(picture.T)
image = image.rotate(rotation)
return image
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Create-Imageset tool - DIGITS')
# Positional arguments
parser.add_argument('folder',
help='Where to save the images'
)
# Optional arguments
parser.add_argument('-s', '--image_size',
type=int,
help='Size of the images')
parser.add_argument('-c', '--image_count',
type=int,
help='How many images')
args = vars(parser.parse_args())
print 'Creating images at "%s" ...' % args['folder']
start_time = time.time()
create_classification_imageset(args['folder'],
image_size=args['image_size'],
image_count=args['image_count'],
)
print 'Done after %s seconds' % (time.time() - start_time,)
| DIGITS-master | digits/dataset/images/classification/test_imageset_creator.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import shutil
# Find the best implementation available
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import caffe_pb2
import flask
import PIL.Image
from .forms import ImageClassificationDatasetForm
from .job import ImageClassificationDatasetJob
from digits import utils
from digits.dataset import tasks
from digits.utils.forms import fill_form_if_cloned, save_form_to_job
from digits.utils.lmdbreader import DbReader
from digits.utils.routing import request_wants_json, job_from_request
from digits.webapp import scheduler
blueprint = flask.Blueprint(__name__, __name__)
def from_folders(job, form):
"""
Add tasks for creating a dataset by parsing folders of images
"""
job.labels_file = utils.constants.LABELS_FILE
# Add ParseFolderTask
percent_val = form.folder_pct_val.data
val_parents = []
if form.has_val_folder.data:
percent_val = 0
percent_test = form.folder_pct_test.data
test_parents = []
if form.has_test_folder.data:
percent_test = 0
min_per_class = form.folder_train_min_per_class.data
max_per_class = form.folder_train_max_per_class.data
parse_train_task = tasks.ParseFolderTask(
job_dir=job.dir(),
folder=form.folder_train.data,
percent_val=percent_val,
percent_test=percent_test,
min_per_category=min_per_class if min_per_class > 0 else 1,
max_per_category=max_per_class if max_per_class > 0 else None
)
job.tasks.append(parse_train_task)
# set parents
if not form.has_val_folder.data:
val_parents = [parse_train_task]
if not form.has_test_folder.data:
test_parents = [parse_train_task]
if form.has_val_folder.data:
min_per_class = form.folder_val_min_per_class.data
max_per_class = form.folder_val_max_per_class.data
parse_val_task = tasks.ParseFolderTask(
job_dir=job.dir(),
parents=parse_train_task,
folder=form.folder_val.data,
percent_val=100,
percent_test=0,
min_per_category=min_per_class if min_per_class > 0 else 1,
max_per_category=max_per_class if max_per_class > 0 else None
)
job.tasks.append(parse_val_task)
val_parents = [parse_val_task]
if form.has_test_folder.data:
min_per_class = form.folder_test_min_per_class.data
max_per_class = form.folder_test_max_per_class.data
parse_test_task = tasks.ParseFolderTask(
job_dir=job.dir(),
parents=parse_train_task,
folder=form.folder_test.data,
percent_val=0,
percent_test=100,
min_per_category=min_per_class if min_per_class > 0 else 1,
max_per_category=max_per_class if max_per_class > 0 else None
)
job.tasks.append(parse_test_task)
test_parents = [parse_test_task]
# Add CreateDbTasks
backend = form.backend.data
encoding = form.encoding.data
compression = form.compression.data
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
parents=parse_train_task,
input_file=utils.constants.TRAIN_FILE,
db_name=utils.constants.TRAIN_DB,
backend=backend,
image_dims=job.image_dims,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
mean_file=utils.constants.MEAN_FILE_CAFFE,
labels_file=job.labels_file,
)
)
if percent_val > 0 or form.has_val_folder.data:
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
parents=val_parents,
input_file=utils.constants.VAL_FILE,
db_name=utils.constants.VAL_DB,
backend=backend,
image_dims=job.image_dims,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
labels_file=job.labels_file,
)
)
if percent_test > 0 or form.has_test_folder.data:
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
parents=test_parents,
input_file=utils.constants.TEST_FILE,
db_name=utils.constants.TEST_DB,
backend=backend,
image_dims=job.image_dims,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
labels_file=job.labels_file,
)
)
def from_files(job, form):
"""
Add tasks for creating a dataset by reading textfiles
"""
# labels
if form.textfile_use_local_files.data:
labels_file_from = form.textfile_local_labels_file.data.strip()
labels_file_to = os.path.join(job.dir(), utils.constants.LABELS_FILE)
shutil.copyfile(labels_file_from, labels_file_to)
else:
flask.request.files[form.textfile_labels_file.name].save(
os.path.join(job.dir(), utils.constants.LABELS_FILE)
)
job.labels_file = utils.constants.LABELS_FILE
shuffle = bool(form.textfile_shuffle.data)
backend = form.backend.data
encoding = form.encoding.data
compression = form.compression.data
# train
if form.textfile_use_local_files.data:
train_file = form.textfile_local_train_images.data.strip()
else:
flask.request.files[form.textfile_train_images.name].save(
os.path.join(job.dir(), utils.constants.TRAIN_FILE)
)
train_file = utils.constants.TRAIN_FILE
image_folder = form.textfile_train_folder.data.strip()
if not image_folder:
image_folder = None
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
input_file=train_file,
db_name=utils.constants.TRAIN_DB,
backend=backend,
image_dims=job.image_dims,
image_folder=image_folder,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
mean_file=utils.constants.MEAN_FILE_CAFFE,
labels_file=job.labels_file,
shuffle=shuffle,
)
)
# val
if form.textfile_use_val.data:
if form.textfile_use_local_files.data:
val_file = form.textfile_local_val_images.data.strip()
else:
flask.request.files[form.textfile_val_images.name].save(
os.path.join(job.dir(), utils.constants.VAL_FILE)
)
val_file = utils.constants.VAL_FILE
image_folder = form.textfile_val_folder.data.strip()
if not image_folder:
image_folder = None
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
input_file=val_file,
db_name=utils.constants.VAL_DB,
backend=backend,
image_dims=job.image_dims,
image_folder=image_folder,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
labels_file=job.labels_file,
shuffle=shuffle,
)
)
# test
if form.textfile_use_test.data:
if form.textfile_use_local_files.data:
test_file = form.textfile_local_test_images.data.strip()
else:
flask.request.files[form.textfile_test_images.name].save(
os.path.join(job.dir(), utils.constants.TEST_FILE)
)
test_file = utils.constants.TEST_FILE
image_folder = form.textfile_test_folder.data.strip()
if not image_folder:
image_folder = None
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
input_file=test_file,
db_name=utils.constants.TEST_DB,
backend=backend,
image_dims=job.image_dims,
image_folder=image_folder,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
labels_file=job.labels_file,
shuffle=shuffle,
)
)
def from_s3(job, form):
"""
Add tasks for creating a dataset by parsing s3s of images
"""
job.labels_file = utils.constants.LABELS_FILE
# Add Parses3Task
percent_val = form.s3_pct_val.data
val_parents = []
percent_test = form.s3_pct_test.data
test_parents = []
min_per_class = form.s3_train_min_per_class.data
max_per_class = form.s3_train_max_per_class.data
delete_files = not form.s3_keepcopiesondisk.data
parse_train_task = tasks.ParseS3Task(
job_dir=job.dir(),
s3_endpoint_url=form.s3_endpoint_url.data,
s3_bucket=form.s3_bucket.data,
s3_path=form.s3_path.data,
s3_accesskey=form.s3_accesskey.data,
s3_secretkey=form.s3_secretkey.data,
percent_val=percent_val,
percent_test=percent_test,
min_per_category=min_per_class if min_per_class > 0 else 1,
max_per_category=max_per_class if max_per_class > 0 else None
)
job.tasks.append(parse_train_task)
# set parents
val_parents = [parse_train_task]
test_parents = [parse_train_task]
# Add CreateDbTasks
backend = form.backend.data
encoding = form.encoding.data
compression = form.compression.data
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
parents=parse_train_task,
input_file=utils.constants.TRAIN_FILE,
db_name=utils.constants.TRAIN_DB,
backend=backend,
image_dims=job.image_dims,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
mean_file=utils.constants.MEAN_FILE_CAFFE,
labels_file=job.labels_file,
delete_files=delete_files,
)
)
if percent_val > 0:
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
parents=val_parents,
input_file=utils.constants.VAL_FILE,
db_name=utils.constants.VAL_DB,
backend=backend,
image_dims=job.image_dims,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
labels_file=job.labels_file,
delete_files=delete_files,
)
)
if percent_test > 0:
job.tasks.append(
tasks.CreateDbTask(
job_dir=job.dir(),
parents=test_parents,
input_file=utils.constants.TEST_FILE,
db_name=utils.constants.TEST_DB,
backend=backend,
image_dims=job.image_dims,
resize_mode=job.resize_mode,
encoding=encoding,
compression=compression,
labels_file=job.labels_file,
delete_files=delete_files,
)
)
@blueprint.route('/new', methods=['GET'])
@utils.auth.requires_login
def new():
"""
Returns a form for a new ImageClassificationDatasetJob
"""
form = ImageClassificationDatasetForm()
# Is there a request to clone a job with ?clone=<job_id>
fill_form_if_cloned(form)
return flask.render_template('datasets/images/classification/new.html', form=form)
@blueprint.route('/json', methods=['POST'])
@blueprint.route('', methods=['POST'], strict_slashes=False)
@utils.auth.requires_login(redirect=False)
def create():
"""
Creates a new ImageClassificationDatasetJob
Returns JSON when requested: {job_id,name,status} or {errors:[]}
"""
form = ImageClassificationDatasetForm()
# Is there a request to clone a job with ?clone=<job_id>
fill_form_if_cloned(form)
if not form.validate_on_submit():
if request_wants_json():
return flask.jsonify({'errors': form.errors}), 400
else:
return flask.render_template('datasets/images/classification/new.html', form=form), 400
job = None
try:
job = ImageClassificationDatasetJob(
username=utils.auth.get_username(),
name=form.dataset_name.data,
group=form.group_name.data,
image_dims=(
int(form.resize_height.data),
int(form.resize_width.data),
int(form.resize_channels.data),
),
resize_mode=form.resize_mode.data
)
if form.method.data == 'folder':
from_folders(job, form)
elif form.method.data == 'textfile':
from_files(job, form)
elif form.method.data == 's3':
from_s3(job, form)
else:
raise ValueError('method not supported')
# Save form data with the job so we can easily clone it later.
save_form_to_job(job, form)
scheduler.add_job(job)
if request_wants_json():
return flask.jsonify(job.json_dict())
else:
return flask.redirect(flask.url_for('digits.dataset.views.show', job_id=job.id()))
except:
if job:
scheduler.delete_job(job)
raise
def show(job, related_jobs=None):
"""
Called from digits.dataset.views.datasets_show()
"""
return flask.render_template('datasets/images/classification/show.html', job=job, related_jobs=related_jobs)
def summary(job):
"""
Return a short HTML summary of an ImageClassificationDatasetJob
"""
return flask.render_template('datasets/images/classification/summary.html',
dataset=job)
@blueprint.route('/explore', methods=['GET'])
def explore():
"""
Returns a gallery consisting of the images of one of the dbs
"""
job = job_from_request()
# Get LMDB
db = flask.request.args.get('db', 'train')
if 'train' in db.lower():
task = job.train_db_task()
elif 'val' in db.lower():
task = job.val_db_task()
elif 'test' in db.lower():
task = job.test_db_task()
if task is None:
raise ValueError('No create_db task for {0}'.format(db))
if task.status != 'D':
raise ValueError("This create_db task's status should be 'D' but is '{0}'".format(task.status))
if task.backend != 'lmdb':
raise ValueError("Backend is {0} while expected backend is lmdb".format(task.backend))
db_path = job.path(task.db_name)
labels = task.get_labels()
page = int(flask.request.args.get('page', 0))
size = int(flask.request.args.get('size', 25))
label = flask.request.args.get('label', None)
if label is not None:
try:
label = int(label)
except ValueError:
label = None
reader = DbReader(db_path)
count = 0
imgs = []
min_page = max(0, page - 5)
if label is None:
total_entries = reader.total_entries
else:
# After PR#1500, task.distribution[str(label)] is a dictionary
# with keys = 'count' and 'error_count'
label_entries = task.distribution[str(label)]
if isinstance(label_entries, dict):
total_entries = label_entries['count']
else:
total_entries = label_entries
max_page = min((total_entries - 1) / size, page + 5)
pages = range(min_page, max_page + 1)
for key, value in reader.entries():
if count >= page * size:
datum = caffe_pb2.Datum()
datum.ParseFromString(value)
if label is None or datum.label == label:
if datum.encoded:
s = StringIO()
s.write(datum.data)
s.seek(0)
img = PIL.Image.open(s)
else:
import caffe.io
arr = caffe.io.datum_to_array(datum)
# CHW -> HWC
arr = arr.transpose((1, 2, 0))
if arr.shape[2] == 1:
# HWC -> HW
arr = arr[:, :, 0]
elif arr.shape[2] == 3:
# BGR -> RGB
# XXX see issue #59
arr = arr[:, :, [2, 1, 0]]
img = PIL.Image.fromarray(arr)
imgs.append({"label": labels[datum.label], "b64": utils.image.embed_image_html(img)})
if label is None:
count += 1
else:
datum = caffe_pb2.Datum()
datum.ParseFromString(value)
if datum.label == int(label):
count += 1
if len(imgs) >= size:
break
return flask.render_template(
'datasets/images/explore.html',
page=page, size=size, job=job, imgs=imgs, labels=labels,
pages=pages, label=label, total_entries=total_entries, db=db)
| DIGITS-master | digits/dataset/images/classification/views.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from ..job import ImageDatasetJob
from digits.dataset import tasks
from digits.utils import subclass, override, constants
# NOTE: Increment this every time the pickled object changes
PICKLE_VERSION = 1
@subclass
class GenericImageDatasetJob(ImageDatasetJob):
"""
A Job that creates an image dataset for a generic network
"""
def __init__(self, **kwargs):
self.mean_file = kwargs.pop('mean_file', None)
super(GenericImageDatasetJob, self).__init__(**kwargs)
self.pickver_job_dataset_image_generic = PICKLE_VERSION
def __setstate__(self, state):
super(GenericImageDatasetJob, self).__setstate__(state)
self.pickver_job_dataset_image_generic = PICKLE_VERSION
def analyze_db_task(self, stage):
"""
Return AnalyzeDbTask for this stage
"""
if stage == constants.TRAIN_DB:
s = 'train'
elif stage == constants.VAL_DB:
s = 'val'
else:
return None
for t in self.tasks:
if isinstance(t, tasks.AnalyzeDbTask) and s in t.name().lower():
return t
return None
def analyze_db_tasks(self):
"""
Return all AnalyzeDbTasks for this job
"""
return [t for t in self.tasks if isinstance(t, tasks.AnalyzeDbTask)]
@override
def get_backend(self):
"""
Return the DB backend used to create this dataset
"""
return self.analyze_db_task(constants.TRAIN_DB).backend
@override
def get_entry_count(self, stage):
"""
Return the number of entries in the DB matching the specified stage
"""
task = self.analyze_db_task(stage)
return task.image_count if task is not None else 0
@override
def get_feature_db_path(self, stage):
"""
Return the absolute feature DB path for the specified stage
"""
db = None
if stage == constants.TRAIN_DB:
s = 'Training'
elif stage == constants.VAL_DB:
s = 'Validation'
else:
return None
for task in self.tasks:
if task.purpose == '%s Images' % s:
db = task
return self.path(db.database) if db else None
@override
def get_feature_dims(self):
"""
Return the shape of the feature N-D array
"""
db_task = self.analyze_db_task(constants.TRAIN_DB)
return [db_task.image_height, db_task.image_width, db_task.image_channels]
@override
def get_label_db_path(self, stage):
"""
Return the absolute label DB path for the specified stage
"""
db = None
if stage == constants.TRAIN_DB:
s = 'Training'
elif stage == constants.VAL_DB:
s = 'Validation'
else:
return None
for task in self.tasks:
if task.purpose == '%s Labels' % s:
db = task
return self.path(db.database) if db else None
@override
def get_mean_file(self):
"""
Return the mean file
"""
return self.mean_file
@override
def job_type(self):
return 'Generic Image Dataset'
| DIGITS-master | digits/dataset/images/generic/job.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .job import GenericImageDatasetJob
__all__ = ['GenericImageDatasetJob']
| DIGITS-master | digits/dataset/images/generic/__init__.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import json
import os
import tempfile
from bs4 import BeautifulSoup
from .test_lmdb_creator import create_lmdbs
from digits import test_utils
import digits.test_views
# May be too short on a slow system
TIMEOUT_DATASET = 45
################################################################################
# Base classes (they don't start with "Test" so nose won't run them)
################################################################################
class BaseViewsTest(digits.test_views.BaseViewsTest):
"""
Provides some functions
"""
@classmethod
def dataset_exists(cls, job_id):
return cls.job_exists(job_id, 'datasets')
@classmethod
def dataset_status(cls, job_id):
return cls.job_status(job_id, 'datasets')
@classmethod
def abort_dataset(cls, job_id):
return cls.abort_job(job_id, job_type='datasets')
@classmethod
def dataset_wait_completion(cls, job_id, **kwargs):
kwargs['job_type'] = 'datasets'
if 'timeout' not in kwargs:
kwargs['timeout'] = TIMEOUT_DATASET
return cls.job_wait_completion(job_id, **kwargs)
@classmethod
def delete_dataset(cls, job_id):
return cls.delete_job(job_id, job_type='datasets')
class BaseViewsTestWithImageset(BaseViewsTest):
"""
Provides some LMDBs and some functions
"""
@classmethod
def setUpClass(cls):
super(BaseViewsTestWithImageset, cls).setUpClass()
if not hasattr(BaseViewsTestWithImageset, 'imageset_folder'):
# Create folder and LMDBs for all test classes
BaseViewsTestWithImageset.imageset_folder = tempfile.mkdtemp()
BaseViewsTestWithImageset.test_image = create_lmdbs(BaseViewsTestWithImageset.imageset_folder)
BaseViewsTestWithImageset.val_db_path = os.path.join(
BaseViewsTestWithImageset.imageset_folder,
'val_images')
cls.created_datasets = []
@classmethod
def tearDownClass(cls):
# delete any created datasets
for job_id in cls.created_datasets:
cls.delete_dataset(job_id)
super(BaseViewsTestWithImageset, cls).tearDownClass()
@classmethod
def create_dataset(cls, **kwargs):
"""
Create a dataset
Returns the job_id
Raises RuntimeError if job fails to create
Keyword arguments:
**kwargs -- data to be sent with POST request
"""
data = {
'dataset_name': 'test_dataset',
'group_name': 'test_group',
'method': 'prebuilt',
'prebuilt_train_images': os.path.join(cls.imageset_folder, 'train_images'),
'prebuilt_train_labels': os.path.join(cls.imageset_folder, 'train_labels'),
'prebuilt_val_images': os.path.join(cls.imageset_folder, 'val_images'),
'prebuilt_val_labels': os.path.join(cls.imageset_folder, 'val_labels'),
'prebuilt_mean_file': os.path.join(cls.imageset_folder, 'train_mean.binaryproto'),
}
data.update(kwargs)
request_json = data.pop('json', False)
url = '/datasets/images/generic'
if request_json:
url += '/json'
rv = cls.app.post(url, data=data)
if request_json:
if rv.status_code != 200:
print json.loads(rv.data)
raise RuntimeError('Model creation failed with %s' % rv.status_code)
return json.loads(rv.data)['id']
# expect a redirect
if not 300 <= rv.status_code <= 310:
s = BeautifulSoup(rv.data, 'html.parser')
div = s.select('div.alert-danger')
if div:
print div[0]
else:
print rv.data
raise RuntimeError('Failed to create dataset - status %s' % rv.status_code)
job_id = cls.job_id_from_response(rv)
assert cls.dataset_exists(job_id), 'dataset not found after successful creation'
cls.created_datasets.append(job_id)
return job_id
class BaseViewsTestWithDataset(BaseViewsTestWithImageset):
"""
Provides a dataset and some functions
"""
@classmethod
def setUpClass(cls):
super(BaseViewsTestWithDataset, cls).setUpClass()
cls.dataset_id = cls.create_dataset(json=True)
assert cls.dataset_wait_completion(cls.dataset_id) == 'Done', 'create failed'
################################################################################
# Test classes
################################################################################
class TestViews(BaseViewsTest, test_utils.DatasetMixin):
"""
Tests which don't require an imageset or a dataset
"""
def test_page_dataset_new(self):
rv = self.app.get('/datasets/images/generic/new')
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
assert 'New Image Dataset' in rv.data, 'unexpected page format'
def test_nonexistent_dataset(self):
assert not self.dataset_exists('foo'), "dataset shouldn't exist"
class TestCreation(BaseViewsTestWithImageset, test_utils.DatasetMixin):
"""
Dataset creation tests
"""
def test_bad_path(self):
try:
self.create_dataset(
prebuilt_train_images='/not-a-directory'
)
except RuntimeError:
return
raise AssertionError('Should have failed')
def test_create_json(self):
job_id = self.create_dataset(json=True)
self.abort_dataset(job_id)
def test_create_delete(self):
job_id = self.create_dataset()
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_create_abort_delete(self):
job_id = self.create_dataset()
assert self.abort_dataset(job_id) == 200, 'abort failed'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_create_wait_delete(self):
job_id = self.create_dataset()
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_no_force_same_shape(self):
job_id = self.create_dataset(force_same_shape=0)
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
def test_clone(self):
options_1 = {
'resize_channels': '1',
}
job1_id = self.create_dataset(**options_1)
assert self.dataset_wait_completion(job1_id) == 'Done', 'first job failed'
rv = self.app.get('/datasets/%s/json' % job1_id)
assert rv.status_code == 200, 'json load failed with %s' % rv.status_code
content1 = json.loads(rv.data)
# Clone job1 as job2
options_2 = {
'clone': job1_id,
}
job2_id = self.create_dataset(**options_2)
assert self.dataset_wait_completion(job2_id) == 'Done', 'second job failed'
rv = self.app.get('/datasets/%s/json' % job2_id)
assert rv.status_code == 200, 'json load failed with %s' % rv.status_code
content2 = json.loads(rv.data)
# These will be different
content1.pop('id')
content2.pop('id')
content1.pop('directory')
content2.pop('directory')
assert (content1 == content2), 'job content does not match'
job1 = digits.webapp.scheduler.get_job(job1_id)
job2 = digits.webapp.scheduler.get_job(job2_id)
assert (job1.form_data == job2.form_data), 'form content does not match'
class TestCreated(BaseViewsTestWithDataset, test_utils.DatasetMixin):
"""
Tests on a dataset that has already been created
"""
def test_index_json(self):
rv = self.app.get('/index/json')
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
content = json.loads(rv.data)
found = False
for d in content['datasets']:
if d['id'] == self.dataset_id:
found = True
break
assert found, 'dataset not found in list'
def test_dataset_json(self):
rv = self.app.get('/datasets/%s/json' % self.dataset_id)
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
content = json.loads(rv.data)
assert content['id'] == self.dataset_id, 'expected different job_id'
def test_edit_name(self):
status = self.edit_job(
self.dataset_id,
name='new name'
)
assert status == 200, 'failed with %s' % status
rv = self.app.get('/datasets/summary?job_id=%s' % self.dataset_id)
assert rv.status_code == 200
assert 'new name' in rv.data
def test_edit_notes(self):
status = self.edit_job(
self.dataset_id,
notes='new notes'
)
assert status == 200, 'failed with %s' % status
| DIGITS-master | digits/dataset/images/generic/test_views.py |
#!/usr/bin/env python2
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
"""
Functions for creating temporary LMDBs
Used in test_views
"""
from __future__ import absolute_import
import argparse
import os
import sys
import time
# Find the best implementation available
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import lmdb
import numpy as np
import PIL.Image
if __name__ == '__main__':
dirname = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, os.path.join(dirname, '..', '..', '..', '..'))
import digits.config # noqa
# Import digits.config first to set the path to Caffe
import caffe_pb2 # noqa
IMAGE_SIZE = 10
TRAIN_IMAGE_COUNT = 100
VAL_IMAGE_COUNT = 250
def create_lmdbs(folder, image_width=None, image_height=None, image_count=None):
"""
Creates LMDBs for generic inference
Returns the filename for a test image
Creates these files in "folder":
train_images/
train_labels/
val_images/
val_labels/
mean.binaryproto
test.png
"""
if image_width is None:
image_width = IMAGE_SIZE
if image_height is None:
image_height = IMAGE_SIZE
if image_count is None:
train_image_count = TRAIN_IMAGE_COUNT
else:
train_image_count = image_count
val_image_count = VAL_IMAGE_COUNT
# Used to calculate the gradients later
yy, xx = np.mgrid[:image_height, :image_width].astype('float')
for phase, image_count in [
('train', train_image_count),
('val', val_image_count)]:
image_db = lmdb.open(os.path.join(folder, '%s_images' % phase),
map_async=True,
max_dbs=0)
label_db = lmdb.open(os.path.join(folder, '%s_labels' % phase),
map_async=True,
max_dbs=0)
image_sum = np.zeros((image_height, image_width), 'float64')
for i in xrange(image_count):
xslope, yslope = np.random.random_sample(2) - 0.5
a = xslope * 255 / image_width
b = yslope * 255 / image_height
image = a * (xx - image_width / 2) + b * (yy - image_height / 2) + 127.5
image_sum += image
image = image.astype('uint8')
pil_img = PIL.Image.fromarray(image)
# create image Datum
image_datum = caffe_pb2.Datum()
image_datum.height = image.shape[0]
image_datum.width = image.shape[1]
image_datum.channels = 1
s = StringIO()
pil_img.save(s, format='PNG')
image_datum.data = s.getvalue()
image_datum.encoded = True
_write_to_lmdb(image_db, str(i), image_datum.SerializeToString())
# create label Datum
label_datum = caffe_pb2.Datum()
label_datum.channels, label_datum.height, label_datum.width = 1, 1, 2
label_datum.float_data.extend(np.array([xslope, yslope]).flat)
_write_to_lmdb(label_db, str(i), label_datum.SerializeToString())
# close databases
image_db.close()
label_db.close()
# save mean
mean_image = (image_sum / image_count).astype('uint8')
_save_mean(mean_image, os.path.join(folder, '%s_mean.png' % phase))
_save_mean(mean_image, os.path.join(folder, '%s_mean.binaryproto' % phase))
# create test image
# The network should be able to easily produce two numbers >1
xslope, yslope = 0.5, 0.5
a = xslope * 255 / image_width
b = yslope * 255 / image_height
test_image = a * (xx - image_width / 2) + b * (yy - image_height / 2) + 127.5
test_image = test_image.astype('uint8')
pil_img = PIL.Image.fromarray(test_image)
test_image_filename = os.path.join(folder, 'test.png')
pil_img.save(test_image_filename)
return test_image_filename
def _write_to_lmdb(db, key, value):
"""
Write (key,value) to db
"""
success = False
while not success:
txn = db.begin(write=True)
try:
txn.put(key, value)
txn.commit()
success = True
except lmdb.MapFullError:
txn.abort()
# double the map_size
curr_limit = db.info()['map_size']
new_limit = curr_limit * 2
db.set_mapsize(new_limit) # double it
def _save_mean(mean, filename):
"""
Saves mean to file
Arguments:
mean -- the mean as an np.ndarray
filename -- the location to save the image
"""
if filename.endswith('.binaryproto'):
blob = caffe_pb2.BlobProto()
blob.num = 1
blob.channels = 1
blob.height, blob.width = mean.shape
blob.data.extend(mean.astype(float).flat)
with open(filename, 'wb') as outfile:
outfile.write(blob.SerializeToString())
elif filename.endswith(('.jpg', '.jpeg', '.png')):
image = PIL.Image.fromarray(mean)
image.save(filename)
else:
raise ValueError('unrecognized file extension')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Create-LMDB tool - DIGITS')
# Positional arguments
parser.add_argument('folder',
help='Where to save the images'
)
# Optional arguments
parser.add_argument('-x', '--image_width',
type=int,
help='Width of the images')
parser.add_argument('-y', '--image_height',
type=int,
help='Height of the images')
parser.add_argument('-c', '--image_count',
type=int,
help='How many images')
args = vars(parser.parse_args())
if os.path.exists(args['folder']):
print 'ERROR: Folder already exists'
sys.exit(1)
else:
os.makedirs(args['folder'])
print 'Creating images at "%s" ...' % args['folder']
start_time = time.time()
create_lmdbs(args['folder'],
image_width=args['image_width'],
image_height=args['image_height'],
image_count=args['image_count'],
)
print 'Done after %s seconds' % (time.time() - start_time,)
| DIGITS-master | digits/dataset/images/generic/test_lmdb_creator.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os.path
import wtforms
from wtforms import validators
from ..forms import ImageDatasetForm
from digits import utils
from digits.utils.forms import validate_required_iff
class GenericImageDatasetForm(ImageDatasetForm):
"""
Defines the form used to create a new GenericImageDatasetJob
"""
# Use a SelectField instead of a HiddenField so that the default value
# is used when nothing is provided (through the REST API)
method = wtforms.SelectField(
u'Dataset type',
choices=[
('prebuilt', 'Prebuilt'),
],
default='prebuilt',
)
def validate_lmdb_path(form, field):
if not field.data:
pass
else:
# make sure the filesystem path exists
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError('Folder does not exist')
def validate_file_path(form, field):
if not field.data:
pass
else:
# make sure the filesystem path exists
if not os.path.exists(field.data) or not os.path.isfile(field.data):
raise validators.ValidationError('File does not exist')
#
# Method - prebuilt
#
prebuilt_train_images = wtforms.StringField(
'Training Images',
validators=[
validate_required_iff(method='prebuilt'),
validate_lmdb_path,
]
)
prebuilt_train_labels = wtforms.StringField(
'Training Labels',
validators=[
validate_lmdb_path,
]
)
prebuilt_val_images = wtforms.StringField(
'Validation Images',
validators=[
validate_lmdb_path,
]
)
prebuilt_val_labels = wtforms.StringField(
'Validation Labels',
validators=[
validate_lmdb_path,
]
)
# Can't use a BooleanField here because HTML doesn't submit anything
# for an unchecked checkbox. Since we want to use a REST API and have
# this default to True when nothing is supplied, we have to use a
# SelectField
force_same_shape = utils.forms.SelectField(
'Enforce same shape',
choices=[
(1, 'Yes'),
(0, 'No'),
],
coerce=int,
default=1,
tooltip='Check that each entry in the database has the same shape (can be time-consuming)'
)
prebuilt_mean_file = utils.forms.StringField(
'Mean Image',
validators=[
validate_file_path,
],
tooltip="Path to a .binaryproto file on the server"
)
| DIGITS-master | digits/dataset/images/generic/forms.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import flask
from .forms import GenericImageDatasetForm
from .job import GenericImageDatasetJob
from digits import utils
from digits.dataset import tasks
from digits.webapp import scheduler
from digits.utils.forms import fill_form_if_cloned, save_form_to_job
from digits.utils.routing import request_wants_json
blueprint = flask.Blueprint(__name__, __name__)
@blueprint.route('/new', methods=['GET'])
@utils.auth.requires_login
def new():
"""
Returns a form for a new GenericImageDatasetJob
"""
form = GenericImageDatasetForm()
# Is there a request to clone a job with ?clone=<job_id>
fill_form_if_cloned(form)
return flask.render_template('datasets/images/generic/new.html', form=form)
@blueprint.route('/json', methods=['POST'])
@blueprint.route('', methods=['POST'], strict_slashes=False)
@utils.auth.requires_login(redirect=False)
def create():
"""
Creates a new GenericImageDatasetJob
Returns JSON when requested: {job_id,name,status} or {errors:[]}
"""
form = GenericImageDatasetForm()
# Is there a request to clone a job with ?clone=<job_id>
fill_form_if_cloned(form)
if not form.validate_on_submit():
if request_wants_json():
return flask.jsonify({'errors': form.errors}), 400
else:
return flask.render_template('datasets/images/generic/new.html', form=form), 400
job = None
try:
job = GenericImageDatasetJob(
username=utils.auth.get_username(),
name=form.dataset_name.data,
group=form.group_name.data,
mean_file=form.prebuilt_mean_file.data.strip(),
)
if form.method.data == 'prebuilt':
pass
else:
raise ValueError('method not supported')
force_same_shape = form.force_same_shape.data
job.tasks.append(
tasks.AnalyzeDbTask(
job_dir=job.dir(),
database=form.prebuilt_train_images.data,
purpose=form.prebuilt_train_images.label.text,
force_same_shape=force_same_shape,
)
)
if form.prebuilt_train_labels.data:
job.tasks.append(
tasks.AnalyzeDbTask(
job_dir=job.dir(),
database=form.prebuilt_train_labels.data,
purpose=form.prebuilt_train_labels.label.text,
force_same_shape=force_same_shape,
)
)
if form.prebuilt_val_images.data:
job.tasks.append(
tasks.AnalyzeDbTask(
job_dir=job.dir(),
database=form.prebuilt_val_images.data,
purpose=form.prebuilt_val_images.label.text,
force_same_shape=force_same_shape,
)
)
if form.prebuilt_val_labels.data:
job.tasks.append(
tasks.AnalyzeDbTask(
job_dir=job.dir(),
database=form.prebuilt_val_labels.data,
purpose=form.prebuilt_val_labels.label.text,
force_same_shape=force_same_shape,
)
)
# Save form data with the job so we can easily clone it later.
save_form_to_job(job, form)
scheduler.add_job(job)
if request_wants_json():
return flask.jsonify(job.json_dict())
else:
return flask.redirect(flask.url_for('digits.dataset.views.show', job_id=job.id()))
except:
if job:
scheduler.delete_job(job)
raise
def show(job, related_jobs=None):
"""
Called from digits.dataset.views.datasets_show()
"""
return flask.render_template('datasets/images/generic/show.html', job=job, related_jobs=related_jobs)
def summary(job):
"""
Return a short HTML summary of a GenericImageDatasetJob
"""
return flask.render_template('datasets/images/generic/summary.html',
dataset=job)
| DIGITS-master | digits/dataset/images/generic/views.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from ..job import DatasetJob
from digits.dataset import tasks
from digits.utils import subclass, override, constants
# NOTE: Increment this every time the pickled object changes
PICKLE_VERSION = 1
@subclass
class GenericDatasetJob(DatasetJob):
"""
A Job that creates a dataset using a user-defined extension
"""
def __init__(self,
backend,
feature_encoding,
label_encoding,
batch_size,
num_threads,
force_same_shape,
extension_id,
extension_userdata,
**kwargs
):
self.backend = backend
self.feature_encoding = feature_encoding
self.label_encoding = label_encoding
self.num_threads = num_threads
self.force_same_shape = force_same_shape
self.batch_size = batch_size
self.extension_id = extension_id
self.extension_userdata = extension_userdata
super(GenericDatasetJob, self).__init__(**kwargs)
self.pickver_job_dataset_extension = PICKLE_VERSION
# create tasks
for stage in [constants.TRAIN_DB, constants.VAL_DB, constants.TEST_DB]:
self.tasks.append(tasks.CreateGenericDbTask(
job_dir=self.dir(),
job=self,
backend=self.backend,
stage=stage,
)
)
def __setstate__(self, state):
super(GenericDatasetJob, self).__setstate__(state)
self.pickver_job_dataset_extension = PICKLE_VERSION
def create_db_task(self, stage):
for t in self.tasks:
if t.stage == stage:
return t
return None
def create_db_tasks(self):
return self.tasks
@override
def get_backend(self):
"""
Return the DB backend used to create this dataset
"""
return self.backend
@override
def get_entry_count(self, stage):
"""
Return the number of entries in the DB matching the specified stage
"""
return self.create_db_task(stage).entry_count
@override
def get_feature_db_path(self, stage):
"""
Return the absolute feature DB path for the specified stage
"""
return self.path(self.create_db_task(stage).dbs['features'])
@override
def get_feature_dims(self):
"""
Return the shape of the feature N-D array
"""
shape = self.create_db_task(constants.TRAIN_DB).feature_shape
if len(shape) == 3:
# assume image and convert CHW => HWC (numpy default for images)
shape = [shape[1], shape[2], shape[0]]
return shape
@override
def get_label_db_path(self, stage):
"""
Return the absolute label DB path for the specified stage
"""
return self.path(self.create_db_task(stage).dbs['labels'])
@override
def get_mean_file(self):
"""
Return the mean file (if it exists, or None)
"""
mean_file = self.create_db_task(constants.TRAIN_DB).mean_file
return self.path(mean_file) if mean_file else ''
@override
def job_type(self):
return 'Generic Dataset'
@override
def json_dict(self, verbose=False):
d = super(GenericDatasetJob, self).json_dict(verbose)
if verbose:
d.update({
'create_db_tasks': [{
"name": t.name(),
"stage": t.stage,
"entry_count": t.entry_count,
"feature_db_path": t.dbs['features'],
"label_db_path": t.dbs['labels'],
} for t in self.create_db_tasks()],
'feature_dims': self.get_feature_dims()})
return d
| DIGITS-master | digits/dataset/generic/job.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .job import GenericDatasetJob
__all__ = ['GenericDatasetJob']
| DIGITS-master | digits/dataset/generic/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import json
import os
import tempfile
import unittest
from bs4 import BeautifulSoup
import numpy as np
import PIL.Image
import digits.test_views
from digits import extensions
from digits import test_utils
from digits.utils import constants
# May be too short on a slow system
TIMEOUT_DATASET = 45
################################################################################
# Base classes (they don't start with "Test" so nose won't run them)
################################################################################
class BaseViewsTest(digits.test_views.BaseViewsTest):
"""
Provides some functions
"""
@classmethod
def dataset_exists(cls, job_id):
return cls.job_exists(job_id, 'datasets')
@classmethod
def dataset_status(cls, job_id):
return cls.job_status(job_id, 'datasets')
@classmethod
def abort_dataset(cls, job_id):
return cls.abort_job(job_id, job_type='datasets')
@classmethod
def dataset_wait_completion(cls, job_id, **kwargs):
kwargs['job_type'] = 'datasets'
if 'timeout' not in kwargs:
kwargs['timeout'] = TIMEOUT_DATASET
return cls.job_wait_completion(job_id, **kwargs)
@classmethod
def delete_dataset(cls, job_id):
return cls.delete_job(job_id, job_type='datasets')
class BaseViewsTestWithDataset(BaseViewsTest):
"""
Provides some functions
"""
IMAGE_WIDTH = 32
IMAGE_HEIGHT = 32
CHANNELS = 1
@classmethod
def create_dataset(cls, **kwargs):
"""
Create a dataset
Returns the job_id
Raises RuntimeError if job fails to create
Keyword arguments:
**kwargs -- data to be sent with POST request
"""
data = {
'dataset_name': 'test_dataset',
'group_name': 'test_group',
}
data.update(kwargs)
request_json = data.pop('json', False)
url = '/datasets/generic/create/%s' % cls.EXTENSION_ID
if request_json:
url += '/json'
rv = cls.app.post(url, data=data)
if request_json:
if rv.status_code != 200:
raise RuntimeError(
'Dataset creation failed with %s' % rv.status_code)
return json.loads(rv.data)['id']
# expect a redirect
if not 300 <= rv.status_code <= 310:
s = BeautifulSoup(rv.data, 'html.parser')
div = s.select('div.alert-danger')
if div:
print div[0]
else:
print rv.data
raise RuntimeError(
'Failed to create dataset - status %s' % rv.status_code)
job_id = cls.job_id_from_response(rv)
assert cls.dataset_exists(job_id), 'dataset not found after successful creation'
cls.created_datasets.append(job_id)
return job_id
@classmethod
def get_dataset_json(cls):
rv = cls.app.get('/datasets/%s/json' % cls.dataset_id)
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
return json.loads(rv.data)
@classmethod
def get_entry_count(cls, stage):
json_data = cls.get_dataset_json()
for t in json_data['create_db_tasks']:
if t['stage'] == stage:
return t['entry_count']
return None
@classmethod
def get_feature_dims(cls):
json_data = cls.get_dataset_json()
return json_data['feature_dims']
@classmethod
def create_random_imageset(cls, **kwargs):
"""
Create a folder of random grayscale images
"""
num_images = kwargs.pop('num_images', 10)
image_width = kwargs.pop('image_width', 32)
image_height = kwargs.pop('image_height', 32)
if not hasattr(cls, 'imageset_folder'):
# create a temporary folder
cls.imageset_folder = tempfile.mkdtemp()
for i in xrange(num_images):
x = np.random.randint(
low=0,
high=256,
size=(image_height, image_width))
x = x.astype('uint8')
pil_img = PIL.Image.fromarray(x)
filename = os.path.join(
cls.imageset_folder,
'%d.png' % i)
pil_img.save(filename)
if not hasattr(cls, 'test_image'):
cls.test_image = filename
@classmethod
def create_variable_size_random_imageset(cls, **kwargs):
"""
Create a folder of random grayscale images
Image size varies randomly
"""
num_images = kwargs.pop('num_images', 10)
if not hasattr(cls, 'imageset_folder'):
# create a temporary folder
cls.imageset_folder = tempfile.mkdtemp()
for i in xrange(num_images):
image_width = np.random.randint(low=8, high=32)
image_height = np.random.randint(low=8, high=32)
x = np.random.randint(
low=0,
high=256,
size=(image_height, image_width))
x = x.astype('uint8')
pil_img = PIL.Image.fromarray(x)
filename = os.path.join(
cls.imageset_folder,
'%d.png' % i)
pil_img.save(filename)
if not hasattr(cls, 'test_image'):
cls.test_image = filename
@classmethod
def setUpClass(cls, **kwargs):
if extensions.data.get_extension(cls.EXTENSION_ID) is None:
raise unittest.SkipTest('Extension "%s" is not installed' % cls.EXTENSION_ID)
super(BaseViewsTestWithDataset, cls).setUpClass()
cls.dataset_id = cls.create_dataset(json=True, **kwargs)
assert cls.dataset_wait_completion(cls.dataset_id) == 'Done', 'create failed'
# Save val DB path
json = cls.get_dataset_json()
for t in json['create_db_tasks']:
if t['stage'] == constants.VAL_DB:
if t['feature_db_path'] is not None:
cls.val_db_path = os.path.join(
json['directory'],
t['feature_db_path'])
else:
cls.val_db_path = None
class GenericViewsTest(BaseViewsTest):
@classmethod
def setUpClass(cls, **kwargs):
if extensions.data.get_extension(cls.EXTENSION_ID) is None:
raise unittest.SkipTest('Extension "%s" is not installed' % cls.EXTENSION_ID)
super(GenericViewsTest, cls).setUpClass()
def test_page_dataset_new(self):
rv = self.app.get('/datasets/generic/new/%s' % self.EXTENSION_ID)
print rv.data
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
assert extensions.data.get_extension(self.EXTENSION_ID).get_title() in rv.data, 'unexpected page format'
def test_nonexistent_dataset(self):
assert not self.dataset_exists('foo'), "dataset shouldn't exist"
class GenericCreationTest(BaseViewsTestWithDataset):
"""
Dataset creation tests
"""
def test_create_json(self):
job_id = self.create_dataset(json=True)
self.abort_dataset(job_id)
def test_create_delete(self):
job_id = self.create_dataset()
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_create_abort_delete(self):
job_id = self.create_dataset()
assert self.abort_dataset(job_id) == 200, 'abort failed'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_create_wait_delete(self):
job_id = self.create_dataset()
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
assert self.delete_dataset(job_id) == 200, 'delete failed'
assert not self.dataset_exists(job_id), 'dataset exists after delete'
def test_invalid_number_of_reader_threads(self):
try:
self.create_dataset(
json=True,
dsopts_num_threads=0)
assert False
except RuntimeError:
# job is expected to fail with a RuntimeError
pass
def test_no_force_same_shape(self):
job_id = self.create_dataset(force_same_shape=0)
assert self.dataset_wait_completion(job_id) == 'Done', 'create failed'
def test_clone(self):
options_1 = {
'resize_channels': '1',
}
job1_id = self.create_dataset(**options_1)
assert self.dataset_wait_completion(job1_id) == 'Done', 'first job failed'
rv = self.app.get('/datasets/%s/json' % job1_id)
assert rv.status_code == 200, 'json load failed with %s' % rv.status_code
content1 = json.loads(rv.data)
# Clone job1 as job2
options_2 = {
'clone': job1_id,
}
job2_id = self.create_dataset(**options_2)
assert self.dataset_wait_completion(job2_id) == 'Done', 'second job failed'
rv = self.app.get('/datasets/%s/json' % job2_id)
assert rv.status_code == 200, 'json load failed with %s' % rv.status_code
content2 = json.loads(rv.data)
# These will be different
content1.pop('id')
content2.pop('id')
content1.pop('directory')
content2.pop('directory')
assert (content1 == content2), 'job content does not match'
job1 = digits.webapp.scheduler.get_job(job1_id)
job2 = digits.webapp.scheduler.get_job(job2_id)
assert (job1.form_data == job2.form_data), 'form content does not match'
class GenericCreatedTest(BaseViewsTestWithDataset):
"""
Tests on a dataset that has already been created
"""
def test_index_json(self):
rv = self.app.get('/index/json')
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
content = json.loads(rv.data)
found = False
for d in content['datasets']:
if d['id'] == self.dataset_id:
found = True
break
assert found, 'dataset not found in list'
def test_dataset_json(self):
content = self.get_dataset_json()
assert content['id'] == self.dataset_id, 'expected same job_id: %s != %s' % (content['id'], self.dataset_id)
def test_edit_name(self):
status = self.edit_job(
self.dataset_id,
name='new name'
)
assert status == 200, 'failed with %s' % status
rv = self.app.get('/datasets/summary?job_id=%s' % self.dataset_id)
assert rv.status_code == 200
assert 'new name' in rv.data
def test_edit_notes(self):
status = self.edit_job(
self.dataset_id,
notes='new notes'
)
assert status == 200, 'failed with %s' % status
def test_explore_features(self):
# features DB is encoded by default
rv = self.app.get('/datasets/generic/explore?db=train_db%%2Ffeatures&job_id=%s' % self.dataset_id)
# just make sure this doesn't return an error
assert rv.status_code == 200, 'page load failed with %s' % rv.status_code
def test_feature_dims(self):
dims = self.get_feature_dims()
assert dims == [self.IMAGE_HEIGHT, self.IMAGE_WIDTH, self.CHANNELS]
################################################################################
# Test classes
################################################################################
class TestImageGradientViews(GenericViewsTest, test_utils.DatasetMixin):
"""
Tests which don't require an imageset or a dataset
"""
EXTENSION_ID = "image-gradients"
class TestImageGradientCreation(GenericCreationTest, test_utils.DatasetMixin):
"""
Test that create datasets
"""
EXTENSION_ID = "image-gradients"
@classmethod
def setUpClass(cls, **kwargs):
super(TestImageGradientCreation, cls).setUpClass(
train_image_count=100,
val_image_count=20,
test_image_count=10,
image_width=cls.IMAGE_WIDTH,
image_height=cls.IMAGE_HEIGHT,
)
def test_entry_counts(self):
assert self.get_entry_count(constants.TRAIN_DB) == 100
assert self.get_entry_count(constants.VAL_DB) == 20
assert self.get_entry_count(constants.TEST_DB) == 10
class TestImageGradientCreated(GenericCreatedTest, test_utils.DatasetMixin):
"""
Test that create datasets
"""
EXTENSION_ID = "image-gradients"
IMAGE_WIDTH = 8
IMAGE_HEIGHT = 24
@classmethod
def setUpClass(cls, **kwargs):
super(TestImageGradientCreated, cls).setUpClass(
image_width=cls.IMAGE_WIDTH,
image_height=cls.IMAGE_HEIGHT)
class TestImageProcessingCreated(GenericCreatedTest, test_utils.DatasetMixin):
"""
Test Image processing extension
"""
EXTENSION_ID = "image-processing"
NUM_IMAGES = 100
FOLDER_PCT_VAL = 10
@classmethod
def setUpClass(cls, **kwargs):
cls.create_random_imageset(
num_images=cls.NUM_IMAGES,
image_width=cls.IMAGE_WIDTH,
image_height=cls.IMAGE_HEIGHT)
super(TestImageProcessingCreated, cls).setUpClass(
feature_folder=cls.imageset_folder,
label_folder=cls.imageset_folder,
folder_pct_val=cls.FOLDER_PCT_VAL,
channel_conversion='L')
def test_entry_counts(self):
assert self.get_entry_count(constants.TRAIN_DB) == self.NUM_IMAGES * (1. - self.FOLDER_PCT_VAL / 100.)
assert self.get_entry_count(constants.VAL_DB) == self.NUM_IMAGES * (self.FOLDER_PCT_VAL / 100.)
class TestImageProcessingCreatedWithSeparateValidationDirs(GenericCreatedTest, test_utils.DatasetMixin):
"""
Test Image processing extension, using separate fields for the train and validation folders
Use RGB channel conversion for this test
"""
EXTENSION_ID = "image-processing"
NUM_IMAGES = 100
CHANNELS = 3
IMAGE_HEIGHT = 16
IMAGE_WIDTH = 64
@classmethod
def setUpClass(cls, **kwargs):
cls.create_random_imageset(
num_images=cls.NUM_IMAGES,
image_width=cls.IMAGE_WIDTH,
image_height=cls.IMAGE_HEIGHT)
super(TestImageProcessingCreatedWithSeparateValidationDirs, cls).setUpClass(
feature_folder=cls.imageset_folder,
label_folder=cls.imageset_folder,
has_val_folder='y',
validation_feature_folder=cls.imageset_folder,
validation_label_folder=cls.imageset_folder,
channel_conversion='RGB')
def test_entry_counts(self):
assert self.get_entry_count(constants.TRAIN_DB) == self.NUM_IMAGES
assert self.get_entry_count(constants.VAL_DB) == self.NUM_IMAGES
| DIGITS-master | digits/dataset/generic/test_views.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import wtforms
from wtforms import validators
from ..forms import DatasetForm
from digits import utils
class GenericDatasetForm(DatasetForm):
"""
Defines the form used to create a new GenericDatasetJob
"""
# Generic dataset options
dsopts_feature_encoding = utils.forms.SelectField(
'Feature Encoding',
default='png',
choices=[('none', 'None'),
('png', 'PNG (lossless)'),
('jpg', 'JPEG (lossy, 90% quality)'),
],
tooltip="Using either of these compression formats can save disk"
" space, but can also require marginally more time for"
" training."
)
dsopts_label_encoding = utils.forms.SelectField(
'Label Encoding',
default='none',
choices=[
('none', 'None'),
('png', 'PNG (lossless)'),
('jpg', 'JPEG (lossy, 90% quality)'),
],
tooltip="Using either of these compression formats can save disk"
" space, but can also require marginally more time for"
" training."
)
dsopts_batch_size = utils.forms.IntegerField(
'Encoder batch size',
validators=[
validators.DataRequired(),
validators.NumberRange(min=1),
],
default=32,
tooltip="Encode data in batches of specified number of entries"
)
dsopts_num_threads = utils.forms.IntegerField(
'Number of encoder threads',
validators=[
validators.DataRequired(),
validators.NumberRange(min=1),
],
default=4,
tooltip="Use specified number of encoder threads"
)
dsopts_backend = wtforms.SelectField(
'DB backend',
choices=[
('lmdb', 'LMDB'),
],
default='lmdb',
)
dsopts_force_same_shape = utils.forms.SelectField(
'Enforce same shape',
choices=[
(1, 'Yes'),
(0, 'No'),
],
coerce=int,
default=1,
tooltip="Check that each entry in the database has the same shape."
"Disabling this will also disable mean image computation."
)
| DIGITS-master | digits/dataset/generic/forms.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
# Find the best implementation available
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import caffe_pb2
import flask
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
from .forms import GenericDatasetForm
from .job import GenericDatasetJob
from digits import extensions, utils
from digits.utils.constants import COLOR_PALETTE_ATTRIBUTE
from digits.utils.routing import request_wants_json, job_from_request
from digits.utils.lmdbreader import DbReader
from digits.webapp import scheduler
blueprint = flask.Blueprint(__name__, __name__)
@blueprint.route('/new/<extension_id>', methods=['GET'])
@utils.auth.requires_login
def new(extension_id):
"""
Returns a form for a new GenericDatasetJob
"""
form = GenericDatasetForm()
# Is there a request to clone a job with ?clone=<job_id>
utils.forms.fill_form_if_cloned(form)
extension = extensions.data.get_extension(extension_id)
if extension is None:
raise ValueError("Unknown extension '%s'" % extension_id)
extension_form = extension.get_dataset_form()
# Is there a request to clone a job with ?clone=<job_id>
utils.forms.fill_form_if_cloned(extension_form)
template, context = extension.get_dataset_template(extension_form)
rendered_extension = flask.render_template_string(template, **context)
return flask.render_template(
'datasets/generic/new.html',
extension_title=extension.get_title(),
extension_id=extension_id,
extension_html=rendered_extension,
form=form
)
@blueprint.route('/create/<extension_id>/json', methods=['POST'])
@blueprint.route('/create/<extension_id>',
methods=['POST'],
strict_slashes=False)
@utils.auth.requires_login(redirect=False)
def create(extension_id):
"""
Creates a new GenericDatasetJob
Returns JSON when requested: {job_id,name,status} or {errors:[]}
"""
form = GenericDatasetForm()
form_valid = form.validate_on_submit()
extension_class = extensions.data.get_extension(extension_id)
extension_form = extension_class.get_dataset_form()
extension_form_valid = extension_form.validate_on_submit()
if not (extension_form_valid and form_valid):
# merge errors
errors = form.errors.copy()
errors.update(extension_form.errors)
template, context = extension_class.get_dataset_template(
extension_form)
rendered_extension = flask.render_template_string(
template,
**context)
if request_wants_json():
return flask.jsonify({'errors': errors}), 400
else:
return flask.render_template(
'datasets/generic/new.html',
extension_title=extension_class.get_title(),
extension_id=extension_id,
extension_html=rendered_extension,
form=form,
errors=errors), 400
# create instance of extension class
extension = extension_class(**extension_form.data)
job = None
try:
# create job
job = GenericDatasetJob(
username=utils.auth.get_username(),
name=form.dataset_name.data,
group=form.group_name.data,
backend=form.dsopts_backend.data,
feature_encoding=form.dsopts_feature_encoding.data,
label_encoding=form.dsopts_label_encoding.data,
batch_size=int(form.dsopts_batch_size.data),
num_threads=int(form.dsopts_num_threads.data),
force_same_shape=form.dsopts_force_same_shape.data,
extension_id=extension_id,
extension_userdata=extension.get_user_data(),
)
# Save form data with the job so we can easily clone it later.
utils.forms.save_form_to_job(job, form)
utils.forms.save_form_to_job(job, extension_form)
# schedule tasks
scheduler.add_job(job)
if request_wants_json():
return flask.jsonify(job.json_dict())
else:
return flask.redirect(flask.url_for(
'digits.dataset.views.show',
job_id=job.id()))
except:
if job:
scheduler.delete_job(job)
raise
@blueprint.route('/explore', methods=['GET'])
def explore():
"""
Returns a gallery consisting of the images of one of the dbs
"""
job = job_from_request()
# Get LMDB
db = job.path(flask.request.args.get('db'))
db_path = job.path(db)
if (os.path.basename(db_path) == 'labels' and
COLOR_PALETTE_ATTRIBUTE in job.extension_userdata and
job.extension_userdata[COLOR_PALETTE_ATTRIBUTE]):
# assume single-channel 8-bit palette
palette = job.extension_userdata[COLOR_PALETTE_ATTRIBUTE]
palette = np.array(palette).reshape((len(palette) / 3, 3)) / 255.
# normalize input pixels to [0,1]
norm = mpl.colors.Normalize(vmin=0, vmax=255)
# create map
cmap = plt.cm.ScalarMappable(norm=norm,
cmap=mpl.colors.ListedColormap(palette))
else:
cmap = None
page = int(flask.request.args.get('page', 0))
size = int(flask.request.args.get('size', 25))
reader = DbReader(db_path)
count = 0
imgs = []
min_page = max(0, page - 5)
total_entries = reader.total_entries
max_page = min((total_entries - 1) / size, page + 5)
pages = range(min_page, max_page + 1)
for key, value in reader.entries():
if count >= page * size:
datum = caffe_pb2.Datum()
datum.ParseFromString(value)
if not datum.encoded:
raise RuntimeError("Expected encoded database")
s = StringIO()
s.write(datum.data)
s.seek(0)
img = PIL.Image.open(s)
if cmap and img.mode in ['L', '1']:
data = np.array(img)
data = cmap.to_rgba(data) * 255
data = data.astype('uint8')
# keep RGB values only, remove alpha channel
data = data[:, :, 0:3]
img = PIL.Image.fromarray(data)
imgs.append({"label": None, "b64": utils.image.embed_image_html(img)})
count += 1
if len(imgs) >= size:
break
return flask.render_template(
'datasets/images/explore.html',
page=page, size=size, job=job, imgs=imgs, labels=None,
pages=pages, label=None, total_entries=total_entries, db=db)
def show(job, related_jobs=None):
"""
Called from digits.dataset.views.show()
"""
return flask.render_template('datasets/generic/show.html', job=job, related_jobs=related_jobs)
def summary(job):
"""
Return a short HTML summary of a GenericDatasetJob
"""
return flask.render_template('datasets/generic/summary.html', dataset=job)
| DIGITS-master | digits/dataset/generic/views.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import flask
import functools
import re
import werkzeug.exceptions
from .routing import get_request_arg, request_wants_json
def get_username():
return get_request_arg('username') or \
flask.request.cookies.get('username', None)
def validate_username(username):
"""
Raises a ValueError if the username is invalid
"""
if not username:
raise ValueError('username is required')
if not re.match('[a-z]', username):
raise ValueError('Must start with a lowercase letter')
if not re.match('[a-z0-9\.\-_]+$', username):
raise ValueError('Only lowercase letters, numbers, periods, dashes and underscores allowed')
def requires_login(f=None, redirect=True):
"""
Decorator for views that require the user to be logged in
Keyword arguments:
f -- the function to decorate
redirect -- if True, this function may return a redirect
"""
if f is None:
# optional arguments are handled strangely
return functools.partial(requires_login, redirect=redirect)
@functools.wraps(f)
def decorated(*args, **kwargs):
username = get_username()
if not username:
# Handle missing username
if request_wants_json() or not redirect:
raise werkzeug.exceptions.Unauthorized()
else:
return flask.redirect(flask.url_for('digits.views.login', next=flask.request.path))
try:
# Validate username
validate_username(username)
except ValueError as e:
raise werkzeug.exceptions.BadRequest('Invalid username - %s' % e.message)
return f(*args, **kwargs)
return decorated
def has_permission(job, action, username=None):
"""
Returns True if username can perform action on job
Arguments:
job -- the Job in question
action -- the action in question
Keyword arguments:
username -- the user in question (defaults to current user)
"""
if job.is_read_only():
return False
if username is None:
username = get_username()
if not username:
return False
if not job.username:
return True
return username == job.username
| DIGITS-master | digits/utils/auth.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from HTMLParser import HTMLParser
import time
class StoreCache():
def __init__(self, ttl=86400):
self.expiration_time = time.time() + ttl
self.ttl = ttl
self.cache = None
def reset(self):
self.expiration_time = time.time() + self.ttl
self.cache = None
def read(self):
if self.expiration_time < time.time():
self.reset()
return self.cache
def write(self, data):
self.expiration_time = time.time() + self.ttl
self.cache = data
class StoreParser(HTMLParser):
def __init__(self):
HTMLParser.__init__(self)
self.starting = False
self.dirs = list()
self.reset()
def read(self, data):
self.reset()
self.clean()
self.feed(data)
def clean(self):
pass
def handle_starttag(self, tag, attrs):
if tag == 'td' or tag == 'a':
self.starting = True
def handle_endtag(self, tag):
if tag == 'td' or tag == 'a':
self.starting = False
def handle_data(self, data):
if self.starting and data[-1] == '/':
self.dirs.append(data)
def get_child_dirs(self):
return self.dirs
| DIGITS-master | digits/utils/store.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import unittest
from . import parse_version
from digits import test_utils
test_utils.skipIfNotFramework('none')
class TestParseVersion():
def test_equality(self):
for v1, v2 in [
('11', '11'),
('11', 11),
('11', ('11',)),
('11', (11,)),
('11', '11.0'),
('11', '11.0.0'),
]:
yield self.check_equal, v1, v2
def check_equal(self, v1, v2):
assert parse_version(v1) == parse_version(v2)
def test_lt(self):
# Each list should be in strictly increasing order
example_lists = []
# Some DIGITS versions
example_lists.append(
'v1.0 v1.0.1 v1.0.2 v1.0.3 v1.1.0-rc1 v1.1.0-rc2 v1.1.0 v1.1.1 '
'v1.1.2 v1.1.3 v2.0.0-rc v2.0.0-rc2 v2.0.0-rc3 v2.0.0-preview '
'v2.0.0 v2.1.0 v2.2.0 v2.2.1'.split()
)
# Some NVcaffe versions
example_lists.append('v0.13.0 v0.13.1 v0.13.2 v0.14.0-alpha '
'v0.14.0-beta v0.14.0-rc.1 v0.14.0-rc.2'.split())
# Semver.org examples
example_lists.append(
'1.0.0-alpha 1.0.0-alpha.1 1.0.0-alpha.beta 1.0.0-beta '
'1.0.0-beta.2 1.0.0-beta.11 1.0.0-rc.1 1.0.0'.split()
)
# PEP 440 examples
example_lists.append('0.1 0.2 0.3 1.0 1.1'.split())
example_lists.append('1.1.0 1.1.1 1.1.2 1.2.0'.split())
example_lists.append('0.9 1.0a1 1.0a2 1.0b1 1.0rc1 1.0 1.1a1'.split())
example_lists.append('0.9 1.0.dev1 1.0.dev2 1.0.dev3 1.0.dev4 1.0c1 1.0c2 1.0 1.0.post1 1.1.dev1'.split())
example_lists.append('2012.1 2012.2 2012.3 2012.15 2013.1 2013.2'.split())
for l in example_lists:
for v1, v2 in zip(l[:-1], l[1:]):
yield self.check_lt, v1, v2
def check_lt(self, v1, v2):
bad = (
# pkg_resources handles this one differently
'1.0.0-alpha.beta',
# poor decision
'v2.0.0-preview')
if v1 in bad or v2 in bad:
raise unittest.case.SkipTest
assert parse_version(v1) < parse_version(v2)
| DIGITS-master | digits/utils/test_utils.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import hashlib
import os.path
import platform
import re
import shutil
def get_tree_size(start_path):
"""
return size (in bytes) of filesystem tree
"""
if not os.path.exists(start_path):
raise ValueError("Incorrect path: %s" % start_path)
total_size = 0
for dirpath, dirnames, filenames in os.walk(start_path):
for f in filenames:
fp = os.path.join(dirpath, f)
total_size += os.path.getsize(fp)
return total_size
def get_python_file_dst(dirname, basename):
basename = os.path.basename(basename)
(root, ext) = os.path.splitext(basename)
if ext != '.py' and ext != '.pyc':
ValueError('Python file, %s, needs .py or .pyc extension.' % basename)
filename = os.path.join(dirname, 'digits_python_layers' + ext)
if os.path.isfile(filename):
ValueError('Python file, %s, already exists.' % filename)
return filename
def copy_python_layer_file(from_client, job_dir, client_file, server_file):
if from_client and client_file:
filename = get_python_file_dst(job_dir, client_file.filename)
client_file.save(filename)
elif server_file and len(server_file) > 0:
filename = get_python_file_dst(job_dir, server_file)
shutil.copy(server_file, filename)
def tail(file, n=40):
"""
Returns last n lines of text file (or all lines if the file has fewer lines)
Arguments:
file -- full path of that file, calling side must ensure its existence
n -- the number of tailing lines to return
"""
if platform.system() in ['Linux', 'Darwin']:
import subprocess
output = subprocess.check_output(['tail', '-n{}'.format(n), file])
else:
from collections import deque
tailing_lines = deque()
with open(file) as f:
for line in f:
tailing_lines.append(line)
if len(tailing_lines) > n:
tailing_lines.popleft()
output = ''.join(tailing_lines)
return output
def dir_hash(dir_name):
"""
Return a hash for the files in a directory tree, excluding hidden
files and directoies. If any files are renamed, added, removed, or
modified the hash will change.
"""
if not os.path.isdir(dir_name):
raise TypeError('{} is not a directory.'.format(dir_name))
md5 = hashlib.md5()
for root, dirs, files in os.walk(dir_name, topdown=True):
# Skip if the root has a hidden directory in its path
if not re.search(r'/\.', root):
for f in files:
# Skip if the file is hidden
if not f.startswith('.') and not re.search(r'/\.', f):
# Change the hash if the file name changes
file_name = os.path.join(root, f)
md5.update(hashlib.md5(file_name).hexdigest())
# Change the hash if the file content changes
data = open(file_name, 'rb').read()
md5.update(hashlib.md5(data).hexdigest())
return md5.hexdigest()
| DIGITS-master | digits/utils/filesystem.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
# Datasets
TRAIN_FILE = 'train.txt'
TRAIN_DB = 'train_db'
VAL_FILE = 'val.txt'
VAL_DB = 'val_db'
TEST_FILE = 'test.txt'
TEST_DB = 'test_db'
MEAN_FILE_IMAGE = 'mean.jpg'
# Classification jobs
LABELS_FILE = 'labels.txt'
DEFAULT_BATCH_SIZE = 16
# Caffe Protocol Buffers
MEAN_FILE_CAFFE = 'mean.binaryproto'
# Color Palette attribute
COLOR_PALETTE_ATTRIBUTE = 'color_palette'
| DIGITS-master | digits/utils/constants.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import tempfile
# Find the best implementation available
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import mock
from nose.tools import assert_raises
import numpy as np
import PIL.Image
from . import errors
from . import image as image_utils
import digits
from digits import test_utils
test_utils.skipIfNotFramework('none')
class TestLoadImage():
def test_bad_path(self):
for path in [
'some string',
'/tmp/not-a-file',
'http://not-a-url',
]:
yield self.check_none, path
def check_none(self, path):
assert_raises(
errors.LoadImageError,
image_utils.load_image,
path,
)
def test_good_file(self):
for args in [
# created mode, file extension, pixel value, loaded mode (expected)
# Grayscale
('1', 'png', 1, 'L'),
('1', 'ppm', 1, 'L'),
('L', 'png', 127, 'L'),
('L', 'jpg', 127, 'L'),
('L', 'ppm', 127, 'L'),
('LA', 'png', (127, 255), 'L'),
# Color
('RGB', 'png', (127, 127, 127), 'RGB'),
('RGB', 'jpg', (127, 127, 127), 'RGB'),
('RGB', 'ppm', (127, 127, 127), 'RGB'),
('RGBA', 'png', (127, 127, 127, 255), 'RGB'),
('P', 'png', 127, 'RGB'),
('CMYK', 'jpg', (127, 127, 127, 127), 'RGB'),
('YCbCr', 'jpg', (127, 127, 127), 'RGB'),
]:
yield self.check_good_file, args
def check_good_file(self, args):
orig_mode, suffix, pixel, new_mode = args
orig = PIL.Image.new(orig_mode, (10, 10), pixel)
# temp files cause permission errors so just generate the name
tmp = tempfile.mkstemp(suffix='.' + suffix)
orig.save(tmp[1])
new = image_utils.load_image(tmp[1])
try:
# sometimes on windows the file is not closed yet
# which can cause an exception
os.close(tmp[0])
os.remove(tmp[1])
except:
pass
assert new is not None, 'load_image should never return None'
assert new.mode == new_mode, 'Image mode should be "%s", not "%s\nargs - %s' % (new_mode, new.mode, args)
@mock.patch('digits.utils.image.requests')
def test_good_url(self, mock_requests):
# requests
response = mock.Mock()
response.status_code = mock_requests.codes.ok
img_file = os.path.join(
os.path.dirname(digits.__file__),
'static',
'images',
'mona_lisa.jpg',
)
with open(img_file, 'rb') as infile:
response.content = infile.read()
mock_requests.get.return_value = response
img = image_utils.load_image('http://some-url')
assert img is not None
def test_corrupted_file(self):
image = PIL.Image.fromarray(np.zeros((10, 10, 3), dtype=np.uint8))
# Save image to a JPEG buffer.
buffer_io = StringIO()
image.save(buffer_io, format='jpeg')
encoded = buffer_io.getvalue()
buffer_io.close()
# Corrupt the second half of the image buffer.
size = len(encoded)
corrupted = encoded[:size / 2] + encoded[size / 2:][::-1]
# Save the corrupted image to a temporary file.
fname = tempfile.mkstemp(suffix='.bin')
f = os.fdopen(fname[0], 'wb')
fname = fname[1]
f.write(corrupted)
f.close()
assert_raises(
errors.LoadImageError,
image_utils.load_image,
fname,
)
os.remove(fname)
class TestResizeImage():
@classmethod
def setup_class(cls):
cls.np_gray = np.random.randint(0, 255, (10, 10)).astype('uint8')
cls.pil_gray = PIL.Image.fromarray(cls.np_gray)
cls.np_color = np.random.randint(0, 255, (10, 10, 3)).astype('uint8')
cls.pil_color = PIL.Image.fromarray(cls.np_color)
def test_configs(self):
# lots of configs tested here
for h in [10, 15]:
for w in [10, 16]:
for t in ['gray', 'color']:
# test channels=None (should autodetect channels)
if t == 'color':
s = (h, w, 3)
else:
s = (h, w)
yield self.verify_pil, (h, w, None, None, t, s)
yield self.verify_np, (h, w, None, None, t, s)
# test channels={3,1}
for c in [3, 1]:
for m in ['squash', 'crop', 'fill', 'half_crop']:
if c == 3:
s = (h, w, 3)
else:
s = (h, w)
yield self.verify_pil, (h, w, c, m, t, s)
yield self.verify_np, (h, w, c, m, t, s)
def verify_pil(self, args):
# pass a PIL.Image to resize_image and check the returned dimensions
h, w, c, m, t, s = args
if t == 'gray':
i = self.pil_gray
else:
i = self.pil_color
r = image_utils.resize_image(i, h, w, c, m)
assert r.shape == s, 'Resized PIL.Image (orig=%s) should have been %s, but was %s %s' % (
i.size, s, r.shape, self.args_to_str(args))
assert r.dtype == np.uint8, 'image.dtype should be uint8, not %s' % r.dtype
def verify_np(self, args):
# pass a numpy.ndarray to resize_image and check the returned dimensions
h, w, c, m, t, s = args
if t == 'gray':
i = self.np_gray
else:
i = self.np_color
r = image_utils.resize_image(i, h, w, c, m)
assert r.shape == s, 'Resized np.ndarray (orig=%s) should have been %s, but was %s %s' % (
i.shape, s, r.shape, self.args_to_str(args))
assert r.dtype == np.uint8, 'image.dtype should be uint8, not %s' % r.dtype
def args_to_str(self, args):
return """
height=%s
width=%s
channels=%s
resize_mode=%s
image_type=%s
shape=%s""" % args
| DIGITS-master | digits/utils/test_image.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import time
def print_time(t, ref_time=None):
lt = time.localtime(t)
# ref_time is for testing
if ref_time is None:
now = time.localtime()
else:
now = time.localtime(ref_time)
if lt.tm_year != now.tm_year:
return time.strftime('%b %d %Y, %I:%M:%S %p', lt).decode('utf-8')
elif lt.tm_mon != now.tm_mon:
return time.strftime('%b %d, %I:%M:%S %p', lt).decode('utf-8')
elif lt.tm_mday != now.tm_mday:
return time.strftime('%a %b %d, %I:%M:%S %p', lt).decode('utf-8')
else:
return time.strftime('%I:%M:%S %p', lt).decode('utf-8')
def print_time_diff(diff):
if diff is None:
return '?'
if diff < 0:
return 'Negative Time'
total_seconds = int(diff)
days = total_seconds // (24 * 3600)
hours = (total_seconds % (24 * 3600)) // 3600
minutes = (total_seconds % 3600) // 60
seconds = total_seconds % 60
def plural(number, name):
return '%d %s%s' % (number, name, '' if number == 1 else 's')
def pair(number1, name1, number2, name2):
if number2 > 0:
return '%s, %s' % (plural(number1, name1), plural(number2, name2))
else:
return '%s' % plural(number1, name1)
if days >= 1:
return pair(days, 'day', hours, 'hour')
elif hours >= 1:
return pair(hours, 'hour', minutes, 'minute')
elif minutes >= 1:
return pair(minutes, 'minute', seconds, 'second')
return plural(seconds, 'second')
def print_time_diff_nosuffixes(diff):
if diff is None:
return '?'
hours, rem = divmod(diff, 3600)
minutes, seconds = divmod(rem, 60)
return '{:02d}:{:02d}:{:02d}'.format(int(hours), int(minutes), int(seconds))
def print_time_since(t):
return print_time_diff(time.time() - t)
| DIGITS-master | digits/utils/time_filters.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import inspect
from io import BlockingIOError
import locale
import math
import os
import pkg_resources
import platform
from random import uniform
from urlparse import urlparse
if not platform.system() == 'Windows':
import fcntl
else:
import gevent.os
HTTP_TIMEOUT = 6.05
def is_url(url):
return url is not None and urlparse(url).scheme != "" and not os.path.exists(url)
def wait_time():
"""Wait a random number of seconds"""
return uniform(0.3, 0.5)
# From http://code.activestate.com/recipes/578900-non-blocking-readlines/
def nonblocking_readlines(f):
"""Generator which yields lines from F (a file object, used only for
its fileno()) without blocking. If there is no data, you get an
endless stream of empty strings until there is data again (caller
is expected to sleep for a while).
Newlines are normalized to the Unix standard.
"""
fd = f.fileno()
if not platform.system() == 'Windows':
fl = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK)
enc = locale.getpreferredencoding(False)
buf = bytearray()
while True:
try:
if not platform.system() == 'Windows':
block = os.read(fd, 8192)
else:
block = gevent.os.tp_read(fd, 8192)
except (BlockingIOError, OSError):
yield ""
continue
if not block:
if buf:
yield buf.decode(enc)
break
buf.extend(block)
while True:
r = buf.find(b'\r')
n = buf.find(b'\n')
if r == -1 and n == -1:
break
if r == -1 or r > n:
yield buf[:(n + 1)].decode(enc)
buf = buf[(n + 1):]
elif n == -1 or n > r:
yield buf[:r].decode(enc) + '\n'
if n == r + 1:
buf = buf[(r + 2):]
else:
buf = buf[(r + 1):]
def subclass(cls):
"""
Verify all @override methods
Use a class decorator to find the method's class
"""
for name, method in cls.__dict__.iteritems():
if hasattr(method, 'override'):
found = False
for base_class in inspect.getmro(cls)[1:]:
if name in base_class.__dict__:
if not method.__doc__:
# copy docstring
method.__doc__ = base_class.__dict__[name].__doc__
found = True
break
assert found, '"%s.%s" not found in any base class' % (cls.__name__, name)
return cls
def override(method):
"""
Decorator implementing method overriding in python
Must also use the @subclass class decorator
"""
method.override = True
return method
def sizeof_fmt(size, suffix='B'):
"""
Return a human-readable string representation of a filesize
Arguments:
size -- size in bytes
"""
try:
size = int(size)
except ValueError:
return None
if size <= 0:
return '0 %s' % suffix
size_name = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')
i = int(math.floor(math.log(size, 1024)))
if i >= len(size_name):
i = len(size_name) - 1
p = math.pow(1024, i)
s = size / p
# round to 3 significant digits
s = round(s, 2 - int(math.floor(math.log10(s))))
if s.is_integer():
s = int(s)
if s > 0:
return '%s %s%s' % (s, size_name[i], suffix)
else:
return '0 %s' % suffix
def parse_version(*args):
"""
Returns a sortable version
Arguments:
args -- a string, tuple, or list of arguments to be joined with "."'s
"""
v = None
if len(args) == 1:
a = args[0]
if isinstance(a, tuple):
v = '.'.join(str(x) for x in a)
else:
v = str(a)
else:
v = '.'.join(str(a) for a in args)
if v.startswith('v'):
v = v[1:]
try:
return pkg_resources.SetuptoolsVersion(v)
except AttributeError:
return pkg_resources.parse_version(v)
# Import the other utility functions
from . import constants, image, time_filters, errors, forms, routing, auth # noqa
| DIGITS-master | digits/utils/__init__.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from werkzeug.datastructures import FileStorage
import wtforms
from wtforms import SubmitField
from wtforms import validators
from wtforms.compat import string_types
from digits.utils.routing import get_request_arg
def validate_required_iff(**kwargs):
"""
Used as a validator within a wtforms.Form
This implements a conditional DataRequired
Each of the kwargs is a condition that must be met in the form
Otherwise, no validation is done
"""
def _validator(form, field):
all_conditions_met = True
for key, value in kwargs.iteritems():
if getattr(form, key).data != value:
all_conditions_met = False
if all_conditions_met:
# Verify that data exists
if field.data is None \
or (isinstance(field.data, (str, unicode)) and not field.data.strip()) \
or (isinstance(field.data, FileStorage) and not field.data.filename.strip()):
raise validators.ValidationError('This field is required.')
else:
# This field is not required, ignore other errors
field.errors[:] = []
raise validators.StopValidation()
return _validator
def validate_required_if_set(other_field, **kwargs):
"""
Used as a validator within a wtforms.Form
This implements a conditional DataRequired
`other_field` is a field name; if set, the other field makes it mandatory
to set the field being tested
"""
def _validator(form, field):
other_field_value = getattr(form, other_field).data
if other_field_value:
# Verify that data exists
if field.data is None or \
(isinstance(field.data, (str, unicode)) and not field.data.strip()) \
or (isinstance(field.data, FileStorage) and not field.data.filename.strip()):
raise validators.ValidationError('This field is required if %s is set.' % other_field)
else:
# This field is not required, ignore other errors
field.errors[:] = []
raise validators.StopValidation()
return _validator
def validate_greater_than(fieldname):
"""
Compares the value of two fields the value of self is to be greater than the supplied field.
:param fieldname:
The name of the other field to compare to.
"""
def _validator(form, field):
try:
other = form[fieldname]
except KeyError:
raise validators.ValidationError(field.gettext(u"Invalid field name '%s'.") % fieldname)
if field.data != '' and field.data < other.data:
message = field.gettext(u'Field must be greater than %s.' % fieldname)
raise validators.ValidationError(message)
return _validator
class Tooltip(object):
"""
An HTML form tooltip.
"""
def __init__(self, field_id, for_name, text):
self.field_id = field_id
self.text = text
self.for_name = for_name
def __str__(self):
return self()
def __unicode__(self):
return self()
def __html__(self):
return self()
def __call__(self, text=None, **kwargs):
if 'for_' in kwargs:
kwargs['for'] = kwargs.pop('for_')
else:
kwargs.setdefault('for', self.field_id)
return wtforms.widgets.HTMLString(
('<span name="%s_explanation"'
' class="explanation-tooltip glyphicon glyphicon-question-sign"'
' data-container="body"'
' title="%s"'
' ></span>') % (self.for_name, self.text))
def __repr__(self):
return 'Tooltip(%r, %r, %r)' % (self.field_id, self.for_name, self.text)
class Explanation(object):
"""
An HTML form explanation.
"""
def __init__(self, field_id, for_name, filename):
self.field_id = field_id
self.file = filename
self.for_name = for_name
def __str__(self):
return self()
def __unicode__(self):
return self()
def __html__(self):
return self()
def __call__(self, file=None, **kwargs):
if 'for_' in kwargs:
kwargs['for'] = kwargs.pop('for_')
else:
kwargs.setdefault('for', self.field_id)
import flask
from digits.webapp import app
html = ''
# get the text from the html file
with app.app_context():
html = flask.render_template(file if file else self.file)
if len(html) == 0:
return ''
return wtforms.widgets.HTMLString(
('<div id="%s_explanation" style="display:none;">\n'
'%s'
'</div>\n'
'<a href=# onClick="bootbox.alert($(\'#%s_explanation\').html()); '
'return false;"><span class="glyphicon glyphicon-question-sign"></span></a>\n'
) % (self.for_name, html, self.for_name))
def __repr__(self):
return 'Explanation(%r, %r, %r)' % (self.field_id, self.for_name, self.file)
class IntegerField(wtforms.IntegerField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(IntegerField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class FloatField(wtforms.FloatField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(FloatField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class SelectField(wtforms.SelectField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(SelectField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class SelectMultipleField(wtforms.SelectMultipleField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(SelectMultipleField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class TextField(wtforms.TextField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(TextField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class StringField(wtforms.StringField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(StringField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class FileInput(object):
"""
Renders a file input chooser field.
"""
def __call__(self, field, **kwargs):
kwargs.setdefault('id', field.id)
return wtforms.widgets.HTMLString(
('<div class="input-group">' +
' <span class="input-group-btn">' +
' <span class="btn btn-info btn-file" %s>' +
' Browse…' +
' <input %s>' +
' </span>' +
' </span>' +
' <input class="form-control" %s readonly>' +
'</div>') % (wtforms.widgets.html_params(id=field.name + '_btn', name=field.name + '_btn'),
wtforms.widgets.html_params(name=field.name, type='file', **kwargs),
wtforms.widgets.html_params(id=field.id + '_text', name=field.name + '_text', type='text')))
class FileField(wtforms.FileField):
# Comment out the following line to use the native file input
widget = FileInput()
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(FileField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class TextAreaField(wtforms.TextAreaField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(TextAreaField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class BooleanField(wtforms.BooleanField):
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(BooleanField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip)
self.explanation = Explanation(self.id, self.short_name, explanation_file)
class MultiIntegerField(wtforms.Field):
"""
A text field, except all input is coerced to one of more integers.
Erroneous input is ignored and will not be accepted as a value.
"""
widget = wtforms.widgets.TextInput()
def is_int(self, v):
try:
v = int(v)
return True
except:
return False
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(MultiIntegerField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip + ' (accepts comma separated list)')
self.explanation = Explanation(self.id, self.short_name, explanation_file)
self.small_text = 'multiples allowed'
def __setattr__(self, name, value):
if name == 'data':
if not isinstance(value, (list, tuple)):
value = [value]
value = [int(x) for x in value if self.is_int(x)]
if len(value) == 0:
value = [None]
self.__dict__[name] = value
def _value(self):
if self.raw_data:
return ','.join([str(x) for x in self.raw_data[0] if self.is_int(x)])
return ','.join([str(x) for x in self.data if self.is_int(x)])
def process_formdata(self, valuelist):
if valuelist:
try:
valuelist[0] = valuelist[0].replace('[', '')
valuelist[0] = valuelist[0].replace(']', '')
valuelist[0] = valuelist[0].split(',')
self.data = [int(float(datum)) for datum in valuelist[0]]
except ValueError:
self.data = [None]
raise ValueError(self.gettext('Not a valid integer value'))
class MultiFloatField(wtforms.Field):
"""
A text field, except all input is coerced to one of more floats.
Erroneous input is ignored and will not be accepted as a value.
"""
widget = wtforms.widgets.TextInput()
def is_float(self, v):
try:
v = float(v)
return True
except:
return False
def __init__(self, label='', validators=None, tooltip='', explanation_file='', **kwargs):
super(MultiFloatField, self).__init__(label, validators, **kwargs)
self.tooltip = Tooltip(self.id, self.short_name, tooltip + ' (accepts comma separated list)')
self.explanation = Explanation(self.id, self.short_name, explanation_file)
self.small_text = 'multiples allowed'
def __setattr__(self, name, value):
if name == 'data':
if not isinstance(value, (list, tuple)):
value = [value]
value = [float(x) for x in value if self.is_float(x)]
if len(value) == 0:
value = [None]
self.__dict__[name] = value
def _value(self):
if self.raw_data:
return ','.join([str(x) for x in self.raw_data[0] if self.is_float(x)])
return ','.join([str(x) for x in self.data if self.is_float(x)])
def process_formdata(self, valuelist):
if valuelist:
try:
valuelist[0] = valuelist[0].replace('[', '')
valuelist[0] = valuelist[0].replace(']', '')
valuelist[0] = valuelist[0].split(',')
self.data = [float(datum) for datum in valuelist[0]]
except ValueError:
self.data = [None]
raise ValueError(self.gettext('Not a valid float value'))
def data_array(self):
if isinstance(self.data, (list, tuple)):
return self.data
else:
return [self.data]
class MultiNumberRange(object):
"""
Validates that a number is of a minimum and/or maximum value, inclusive.
This will work with any comparable number type, such as floats and
decimals, not just integers.
:param min:
The minimum required value of the number. If not provided, minimum
value will not be checked.
:param max:
The maximum value of the number. If not provided, maximum value
will not be checked.
:param message:
Error message to raise in case of a validation error. Can be
interpolated using `%(min)s` and `%(max)s` if desired. Useful defaults
are provided depending on the existence of min and max.
"""
def __init__(self, min=None, max=None, min_inclusive=True, max_inclusive=True, message=None):
self.min = min
self.max = max
self.message = message
self.min_inclusive = min_inclusive
self.max_inclusive = max_inclusive
def __call__(self, form, field):
fdata = field.data if isinstance(field.data, (list, tuple)) else [field.data]
for data in fdata:
flags = 0
flags |= (data is None) << 0
flags |= (self.min is not None and self.min_inclusive and data < self.min) << 1
flags |= (self.max is not None and self.max_inclusive and data > self.max) << 2
flags |= (self.min is not None and not self.min_inclusive and data <= self.min) << 3
flags |= (self.max is not None and not self.max_inclusive and data >= self.max) << 4
if flags:
message = self.message
if message is None:
# we use %(min)s interpolation to support floats, None, and
# Decimals without throwing a formatting exception.
if flags & 1 << 0:
message = field.gettext('No data.')
elif flags & 1 << 1:
message = field.gettext('Number %(data)s must be at least %(min)s.')
elif flags & 1 << 2:
message = field.gettext('Number %(data)s must be at most %(max)s.')
elif flags & 1 << 3:
message = field.gettext('Number %(data)s must be greater than %(min)s.')
elif flags & 1 << 4:
message = field.gettext('Number %(data)s must be less than %(max)s.')
raise validators.ValidationError(message % dict(data=data, min=self.min, max=self.max))
class MultiOptional(object):
"""
Allows empty input and stops the validation chain from continuing.
If input is empty, also removes prior errors (such as processing errors)
from the field.
:param strip_whitespace:
If True (the default) also stop the validation chain on input which
consists of only whitespace.
"""
field_flags = ('optional', )
def __init__(self, strip_whitespace=True):
if strip_whitespace:
self.string_check = lambda s: s.strip()
else:
self.string_check = lambda s: s
def __call__(self, form, field):
if (not field.raw_data or
(len(field.raw_data[0]) and
isinstance(field.raw_data[0][0], string_types) and
not self.string_check(field.raw_data[0][0]))):
field.errors[:] = []
raise validators.StopValidation()
# Used to save data to populate forms when cloning
def add_warning(form, warning):
if not hasattr(form, 'warnings'):
form.warnings = tuple([])
form.warnings += tuple([warning])
return True
# Iterate over the form looking for field data to either save to or
# get from the job depending on function.
def iterate_over_form(job, form, function, prefix=['form'], indent=''):
warnings = False
if not hasattr(form, '__dict__'):
return False
# This is the list of Field types to save. SubmitField and
# FileField is excluded. SubmitField would cause it to post and
# FileField can not be populated.
whitelist_fields = [
'BooleanField', 'FloatField', 'HiddenField', 'IntegerField',
'RadioField', 'SelectField', 'SelectMultipleField',
'StringField', 'TextAreaField', 'TextField',
'MultiIntegerField', 'MultiFloatField']
blacklist_fields = ['FileField', 'SubmitField']
for attr_name in vars(form):
if attr_name == 'csrf_token' or attr_name == 'flags':
continue
attr = getattr(form, attr_name)
if isinstance(attr, object):
if isinstance(attr, SubmitField):
continue
warnings |= iterate_over_form(job, attr, function, prefix + [attr_name], indent + ' ')
if hasattr(attr, 'data') and hasattr(attr, 'type'):
if (isinstance(attr.data, int) or
isinstance(attr.data, float) or
isinstance(attr.data, basestring) or
attr.type in whitelist_fields):
key = '%s.%s.data' % ('.'.join(prefix), attr_name)
warnings |= function(job, attr, key, attr.data)
# Warn if certain field types are not cloned
if (len(attr.type) > 5 and attr.type[-5:] == 'Field' and
attr.type not in whitelist_fields and
attr.type not in blacklist_fields):
warnings |= add_warning(attr, 'Field type, %s, not cloned' % attr.type)
return warnings
# function to pass to iterate_over_form to save data to job
def set_data(job, form, key, value):
if not hasattr(job, 'form_data'):
job.form_data = dict()
job.form_data[key] = value
if isinstance(value, basestring):
value = '\'' + value + '\''
return False
# function to pass to iterate_over_form to get data from job
# Don't warn if key is not in job.form_data
def get_data(job, form, key, value):
if key in job.form_data.keys():
form.data = job.form_data[key]
return False
# Save to form field data in form to the job so the form can later be
# populated with the sae settings during a clone event.
def save_form_to_job(job, form):
iterate_over_form(job, form, set_data)
# Populate the form with form field data saved in the job
def fill_form_from_job(job, form):
form.warnings = iterate_over_form(job, form, get_data)
# This logic if used in several functions where ?clone=<job_id> may
# be added to the url. If ?clone=<job_id> is specified in the url,
# fill the form with that job.
def fill_form_if_cloned(form):
# is there a request to clone a job.
from digits.webapp import scheduler
clone = get_request_arg('clone')
if clone is not None:
clone_job = scheduler.get_job(clone)
fill_form_from_job(clone_job, form)
| DIGITS-master | digits/utils/forms.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import random
import shutil
import tempfile
from nose.tools import assert_raises
from . import filesystem as fs
from digits import test_utils
test_utils.skipIfNotFramework('none')
class TestTreeSize():
def test_bad_path(self):
for path in [
'some string',
'/tmp/not-a-file',
'http://not-a-url',
]:
yield self.check_bad_path, path
def check_bad_path(self, path):
assert_raises(ValueError, fs.get_tree_size, path)
def test_empty_folder(self):
try:
dir = tempfile.mkdtemp()
assert(fs.get_tree_size(dir) == 0)
finally:
shutil.rmtree(dir)
def test_folder_with_files(self):
for n_files in [1, 5, 10]:
yield self.check_folder_with_files, n_files
def check_folder_with_files(self, n_files):
try:
dir = tempfile.mkdtemp()
total_size = 0
for i in range(n_files):
# create file with random size of up to 1MB
size = random.randint(1, 2**20)
fd, name = tempfile.mkstemp(dir=dir)
f = open(name, "w")
f.seek(size - 1)
f.write("\0")
f.close()
os.close(fd)
total_size += size
tree_size = fs.get_tree_size(dir)
assert tree_size == total_size, "Expected size=%d, got %d" % (total_size, tree_size)
finally:
shutil.rmtree(dir)
| DIGITS-master | digits/utils/test_filesystem.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import flask
import werkzeug.exceptions
def job_from_request():
"""
Returns the job after grabbing job_id from request.args or request.form
Raises werkzeug.exceptions
"""
from digits.webapp import scheduler
job_id = get_request_arg('job_id')
if job_id is None:
raise werkzeug.exceptions.BadRequest('job_id is a required field')
job = scheduler.get_job(job_id)
if job is None:
raise werkzeug.exceptions.NotFound('Job not found')
else:
return job
# Adapted from http://flask.pocoo.org/snippets/45/
def request_wants_json():
"""
Returns True if the response should be JSON
"""
if flask.request.base_url.endswith('/json'):
return True
best = flask.request.accept_mimetypes \
.best_match(['application/json', 'text/html'])
# Some browsers accept on */* and we don't want to deliver JSON to an ordinary browser
return best == 'application/json' and \
flask.request.accept_mimetypes[best] > \
flask.request.accept_mimetypes['text/html']
# check for arguments pass to url
def get_request_arg(key):
value = None
if key in flask.request.args:
value = flask.request.args[key]
elif key in flask.request.form:
value = flask.request.form[key]
return value
| DIGITS-master | digits/utils/routing.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import lmdb
class DbReader(object):
"""
Reads a database
"""
def __init__(self, location):
"""
Arguments:
location -- where is the database
"""
self._db = lmdb.open(
location,
map_size=1024**3, # 1MB
readonly=True,
lock=False)
with self._db.begin() as txn:
self.total_entries = txn.stat()['entries']
self.txn = self._db.begin()
def entries(self):
"""
Generator returning all entries in the DB
"""
with self._db.begin() as txn:
cursor = txn.cursor()
for item in cursor:
yield item
def entry(self, key):
"""Return single entry"""
return self.txn.get(key)
| DIGITS-master | digits/utils/lmdbreader.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import re
import time
from digits import test_utils
from digits import utils
test_utils.skipIfNotFramework('none')
class TestTimeFilters():
def test_print_time(self):
# Pass in a reference time to print_time, to avoid stepping into the
# next year in the other tests close to December. Also avoid the
# leap year and daylight savings time.
t = (2009, 5, 17, 16, 0, 0, 0, 0, 0)
ref_time = time.mktime(t)
day = 60 * 60 * 24
# Year test (365 days)
s = utils.time_filters.print_time(day * 365 + ref_time, ref_time)
assert re.match('\w{3} \d{2} \d{4}, \d{2}:\d{2}:\d{2} [AP]M', s)
# Month test (40 days)
s = utils.time_filters.print_time(day * 40 + ref_time, ref_time)
assert re.match('\w{3} \d{2}, \d{2}:\d{2}:\d{2} [AP]M', s)
# Day test (4 days)
s = utils.time_filters.print_time(day * 4 + ref_time, ref_time)
assert re.match('\w{3} \w{3} \d{2}, \d{2}:\d{2}:\d{2} [AP]M', s)
# default test (4 seconds)
s = utils.time_filters.print_time(4 + ref_time, ref_time)
assert re.match('\d{2}:\d{2}:\d{2} [AP]M', s)
def test_print_time_diff(self):
def time_string(days, hours, minutes, seconds):
time = 86400 * days + 3600 * hours + 60 * minutes + seconds
return utils.time_filters.print_time_diff(time)
# Test days and hours
assert time_string(1, 0, 0, 0) == '1 day'
assert time_string(1, 1, 0, 0) == '1 day, 1 hour'
assert time_string(2, 1, 0, 0) == '2 days, 1 hour'
assert time_string(1, 2, 0, 0) == '1 day, 2 hours'
assert time_string(2, 2, 0, 0) == '2 days, 2 hours'
# Test hours and minutes
assert time_string(0, 1, 0, 0) == '1 hour'
assert time_string(0, 1, 1, 0) == '1 hour, 1 minute'
assert time_string(0, 2, 1, 0) == '2 hours, 1 minute'
assert time_string(0, 1, 2, 0) == '1 hour, 2 minutes'
assert time_string(0, 2, 2, 0) == '2 hours, 2 minutes'
# Test minutes and seconds
assert time_string(0, 0, 1, 0) == '1 minute'
assert time_string(0, 0, 1, 1) == '1 minute, 1 second'
assert time_string(0, 0, 2, 1) == '2 minutes, 1 second'
assert time_string(0, 0, 1, 2) == '1 minute, 2 seconds'
assert time_string(0, 0, 2, 2) == '2 minutes, 2 seconds'
# Test seconds
assert time_string(0, 0, 0, 1) == '1 second'
assert time_string(0, 0, 0, 2) == '2 seconds'
# Test no time
assert time_string(0, 0, 0, 0) == '0 seconds'
# Test negative time
assert time_string(0, 0, 0, -2) == 'Negative Time'
# Test None
assert utils.time_filters.print_time_diff(None) == '?'
def test_print_time_diff_nosuffixes(self):
def time_string(hours, minutes, seconds):
time = 3600 * hours + 60 * minutes + seconds
return utils.time_filters.print_time_diff_nosuffixes(time)
assert time_string(0, 0, 0) == '00:00:00'
assert time_string(0, 0, 1) == '00:00:01'
assert time_string(0, 1, 0) == '00:01:00'
assert time_string(0, 1, 1) == '00:01:01'
assert time_string(1, 0, 0) == '01:00:00'
assert time_string(1, 0, 1) == '01:00:01'
assert time_string(1, 1, 0) == '01:01:00'
assert time_string(1, 1, 1) == '01:01:01'
# Test None
assert utils.time_filters.print_time_diff_nosuffixes(None) == '?'
def test_print_time_since(self):
assert utils.time_filters.print_time_since(time.time()) == '0 seconds'
| DIGITS-master | digits/utils/test_time_filters.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
class DigitsError(Exception):
"""
DIGITS custom exception
"""
pass
class DeleteError(DigitsError):
"""
Errors that occur when deleting a job
"""
pass
class LoadImageError(DigitsError):
"""
Errors that occur while loading an image
"""
pass
class UnsupportedPlatformError(DigitsError):
"""
Errors that occur while performing tasks in unsupported platforms
"""
pass
| DIGITS-master | digits/utils/errors.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import math
import os.path
import requests
# Find the best implementation available
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import numpy as np
import PIL.Image
import scipy.misc
from . import is_url, HTTP_TIMEOUT, errors
# Library defaults:
# PIL.Image:
# size -- (width, height)
# np.array:
# shape -- (height, width, channels)
# range -- [0-255]
# dtype -- uint8
# channels -- RGB
# caffe.datum:
# datum.data type -- bytes (uint8)
# datum.float_data type -- float32
# when decoding images, channels are BGR
# DIGITS:
# image_dims -- (height, width, channels)
# List of supported file extensions
# Use like "if filename.endswith(SUPPORTED_EXTENSIONS)"
SUPPORTED_EXTENSIONS = ('.png', '.jpg', '.jpeg', '.bmp', '.ppm', '.pgm')
def load_image(path):
"""
Reads a file from `path` and returns a PIL.Image with mode 'L' or 'RGB'
Raises LoadImageError
Arguments:
path -- path to the image, can be a filesystem path or a URL
"""
image = None
if is_url(path):
try:
r = requests.get(path,
allow_redirects=False,
timeout=HTTP_TIMEOUT)
r.raise_for_status()
stream = StringIO(r.content)
image = PIL.Image.open(stream)
except requests.exceptions.RequestException as e:
raise errors.LoadImageError, e.message
except IOError as e:
raise errors.LoadImageError, e.message
elif os.path.exists(path):
try:
image = PIL.Image.open(path)
image.load()
except IOError as e:
raise errors.LoadImageError, 'IOError: Trying to load "%s": %s' % (path, e.message)
else:
raise errors.LoadImageError, '"%s" not found' % path
if image.mode in ['L', 'RGB']:
# No conversion necessary
return image
elif image.mode in ['1']:
# Easy conversion to L
return image.convert('L')
elif image.mode in ['LA']:
# Deal with transparencies
new = PIL.Image.new('L', image.size, 255)
new.paste(image, mask=image.convert('RGBA'))
return new
elif image.mode in ['CMYK', 'YCbCr']:
# Easy conversion to RGB
return image.convert('RGB')
elif image.mode in ['P', 'RGBA']:
# Deal with transparencies
new = PIL.Image.new('RGB', image.size, (255, 255, 255))
new.paste(image, mask=image.convert('RGBA'))
return new
else:
raise errors.LoadImageError, 'Image mode "%s" not supported' % image.mode
def upscale(image, ratio):
"""
return upscaled image array
Arguments:
image -- a (H,W,C) numpy.ndarray
ratio -- scaling factor (>1)
"""
if not isinstance(image, np.ndarray):
raise ValueError('Expected ndarray')
if ratio < 1:
raise ValueError('Ratio must be greater than 1 (ratio=%f)' % ratio)
width = int(math.floor(image.shape[1] * ratio))
height = int(math.floor(image.shape[0] * ratio))
channels = image.shape[2]
out = np.ndarray((height, width, channels), dtype=np.uint8)
for x, y in np.ndindex((width, height)):
out[y, x] = image[int(math.floor(y / ratio)), int(math.floor(x / ratio))]
return out
def image_to_array(image,
channels=None):
"""
Returns an image as a np.array
Arguments:
image -- a PIL.Image or numpy.ndarray
Keyword Arguments:
channels -- channels of new image (stays unchanged if not specified)
"""
if channels not in [None, 1, 3, 4]:
raise ValueError('unsupported number of channels: %s' % channels)
if isinstance(image, PIL.Image.Image):
# Convert image mode (channels)
if channels is None:
image_mode = image.mode
if image_mode not in ['L', 'RGB', 'RGBA']:
raise ValueError('unknown image mode "%s"' % image_mode)
elif channels == 1:
# 8-bit pixels, black and white
image_mode = 'L'
elif channels == 3:
# 3x8-bit pixels, true color
image_mode = 'RGB'
elif channels == 4:
# 4x8-bit pixels, true color with alpha
image_mode = 'RGBA'
if image.mode != image_mode:
image = image.convert(image_mode)
image = np.array(image)
elif isinstance(image, np.ndarray):
if image.dtype != np.uint8:
image = image.astype(np.uint8)
if image.ndim == 3 and image.shape[2] == 1:
image = image.reshape(image.shape[:2])
if channels is None:
if not (image.ndim == 2 or (image.ndim == 3 and image.shape[2] in [3, 4])):
raise ValueError('invalid image shape: %s' % (image.shape,))
elif channels == 1:
if image.ndim != 2:
if image.ndim == 3 and image.shape[2] in [3, 4]:
# color to grayscale. throw away alpha
image = np.dot(image[:, :, :3], [0.299, 0.587, 0.114]).astype(np.uint8)
else:
raise ValueError('invalid image shape: %s' % (image.shape,))
elif channels == 3:
if image.ndim == 2:
# grayscale to color
image = np.repeat(image, 3).reshape(image.shape + (3,))
elif image.shape[2] == 4:
# throw away alpha
image = image[:, :, :3]
elif image.shape[2] != 3:
raise ValueError('invalid image shape: %s' % (image.shape,))
elif channels == 4:
if image.ndim == 2:
# grayscale to color
image = np.repeat(image, 4).reshape(image.shape + (4,))
image[:, :, 3] = 255
elif image.shape[2] == 3:
# add alpha
image = np.append(image, np.zeros(image.shape[:2] + (1,), dtype='uint8'), axis=2)
image[:, :, 3] = 255
elif image.shape[2] != 4:
raise ValueError('invalid image shape: %s' % (image.shape,))
else:
raise ValueError('resize_image() expected a PIL.Image.Image or a numpy.ndarray')
return image
def resize_image(image, height, width,
channels=None,
resize_mode=None,
):
"""
Resizes an image and returns it as a np.array
Arguments:
image -- a PIL.Image or numpy.ndarray
height -- height of new image
width -- width of new image
Keyword Arguments:
channels -- channels of new image (stays unchanged if not specified)
resize_mode -- can be crop, squash, fill or half_crop
"""
if resize_mode is None:
resize_mode = 'squash'
if resize_mode not in ['crop', 'squash', 'fill', 'half_crop']:
raise ValueError('resize_mode "%s" not supported' % resize_mode)
# convert to array
image = image_to_array(image, channels)
# No need to resize
if image.shape[0] == height and image.shape[1] == width:
return image
# Resize
interp = 'bilinear'
width_ratio = float(image.shape[1]) / width
height_ratio = float(image.shape[0]) / height
if resize_mode == 'squash' or width_ratio == height_ratio:
return scipy.misc.imresize(image, (height, width), interp=interp)
elif resize_mode == 'crop':
# resize to smallest of ratios (relatively larger image), keeping aspect ratio
if width_ratio > height_ratio:
resize_height = height
resize_width = int(round(image.shape[1] / height_ratio))
else:
resize_width = width
resize_height = int(round(image.shape[0] / width_ratio))
image = scipy.misc.imresize(image, (resize_height, resize_width), interp=interp)
# chop off ends of dimension that is still too long
if width_ratio > height_ratio:
start = int(round((resize_width - width) / 2.0))
return image[:, start:start + width]
else:
start = int(round((resize_height - height) / 2.0))
return image[start:start + height, :]
else:
if resize_mode == 'fill':
# resize to biggest of ratios (relatively smaller image), keeping aspect ratio
if width_ratio > height_ratio:
resize_width = width
resize_height = int(round(image.shape[0] / width_ratio))
if (height - resize_height) % 2 == 1:
resize_height += 1
else:
resize_height = height
resize_width = int(round(image.shape[1] / height_ratio))
if (width - resize_width) % 2 == 1:
resize_width += 1
image = scipy.misc.imresize(image, (resize_height, resize_width), interp=interp)
elif resize_mode == 'half_crop':
# resize to average ratio keeping aspect ratio
new_ratio = (width_ratio + height_ratio) / 2.0
resize_width = int(round(image.shape[1] / new_ratio))
resize_height = int(round(image.shape[0] / new_ratio))
if width_ratio > height_ratio and (height - resize_height) % 2 == 1:
resize_height += 1
elif width_ratio < height_ratio and (width - resize_width) % 2 == 1:
resize_width += 1
image = scipy.misc.imresize(image, (resize_height, resize_width), interp=interp)
# chop off ends of dimension that is still too long
if width_ratio > height_ratio:
start = int(round((resize_width - width) / 2.0))
image = image[:, start:start + width]
else:
start = int(round((resize_height - height) / 2.0))
image = image[start:start + height, :]
else:
raise Exception('unrecognized resize_mode "%s"' % resize_mode)
# fill ends of dimension that is too short with random noise
if width_ratio > height_ratio:
padding = (height - resize_height) / 2
noise_size = (padding, width)
if channels > 1:
noise_size += (channels,)
noise = np.random.randint(0, 255, noise_size).astype('uint8')
image = np.concatenate((noise, image, noise), axis=0)
else:
padding = (width - resize_width) / 2
noise_size = (height, padding)
if channels > 1:
noise_size += (channels,)
noise = np.random.randint(0, 255, noise_size).astype('uint8')
image = np.concatenate((noise, image, noise), axis=1)
return image
def embed_image_html(image):
"""
Returns an image embedded in HTML base64 format
(Based on Caffe's web_demo)
Arguments:
image -- a PIL.Image or np.ndarray
"""
if image is None:
return None
elif isinstance(image, PIL.Image.Image):
pass
elif isinstance(image, np.ndarray):
image = PIL.Image.fromarray(image)
else:
raise ValueError('image must be a PIL.Image or a np.ndarray')
# Read format from the image
fmt = image.format
if not fmt:
# default to PNG
fmt = 'png'
else:
fmt = fmt.lower()
string_buf = StringIO()
image.save(string_buf, format=fmt)
data = string_buf.getvalue().encode('base64').replace('\n', '')
return 'data:image/%s;base64,%s' % (fmt, data)
def get_layer_vis_square(data,
allow_heatmap=True,
normalize=True,
min_img_dim=100,
max_width=1200,
channel_order='RGB',
):
"""
Returns a vis_square for the given layer data
Arguments:
data -- a np.ndarray
Keyword arguments:
allow_heatmap -- if True, convert single channel images to heatmaps
normalize -- whether to normalize the data when visualizing
max_width -- maximum width for the vis_square
"""
if channel_order not in ['RGB', 'BGR']:
raise ValueError('Unsupported channel_order %s' % channel_order)
if data.ndim == 1:
# interpret as 1x1 grayscale images
# (N, 1, 1)
data = data[:, np.newaxis, np.newaxis]
elif data.ndim == 2:
# interpret as 1x1 grayscale images
# (N, 1, 1)
data = data.reshape((data.shape[0] * data.shape[1], 1, 1))
elif data.ndim == 3:
if data.shape[0] == 3:
# interpret as a color image
# (1, H, W,3)
if channel_order == 'BGR':
data = data[[2, 1, 0], ...] # BGR to RGB (see issue #59)
data = data.transpose(1, 2, 0)
data = data[np.newaxis, ...]
else:
# interpret as grayscale images
# (N, H, W)
pass
elif data.ndim == 4:
if data.shape[0] == 3:
# interpret as HxW color images
# (N, H, W, 3)
data = data.transpose(1, 2, 3, 0)
if channel_order == 'BGR':
data = data[:, :, :, [2, 1, 0]] # BGR to RGB (see issue #59)
elif data.shape[1] == 3:
# interpret as HxW color images
# (N, H, W, 3)
data = data.transpose(0, 2, 3, 1)
if channel_order == 'BGR':
data = data[:, :, :, [2, 1, 0]] # BGR to RGB (see issue #59)
else:
# interpret as HxW grayscale images
# (N, H, W)
data = data.reshape((data.shape[0] * data.shape[1], data.shape[2], data.shape[3]))
else:
raise RuntimeError('unrecognized data shape: %s' % (data.shape,))
# chop off data so that it will fit within max_width
padsize = 0
width = data.shape[2]
if width > max_width:
data = data[:1, :max_width, :max_width]
else:
if width > 1:
padsize = 1
width += 1
n = max(max_width / width, 1)
n *= n
data = data[:n]
if not allow_heatmap and data.ndim == 3:
data = data[..., np.newaxis]
vis = vis_square(data,
padsize=padsize,
normalize=normalize,
)
# find minimum dimension and upscale if necessary
_min = sorted(vis.shape[:2])[0]
if _min < min_img_dim:
# upscale image
ratio = min_img_dim / float(_min)
vis = upscale(vis, ratio)
return vis
def vis_square(images,
padsize=1,
normalize=False,
colormap='jet',
):
"""
Visualize each image in a grid of size approx sqrt(n) by sqrt(n)
Returns a np.array image
(Based on Caffe's filter_visualization notebook)
Arguments:
images -- an array of shape (N, H, W) or (N, H, W, C)
if C is not set, a heatmap is computed for the result
Keyword arguments:
padsize -- how many pixels go between the tiles
normalize -- if true, scales (min, max) across all images out to (0, 1)
colormap -- a string representing one of the supported colormaps
"""
assert 3 <= images.ndim <= 4, 'images.ndim must be 3 or 4'
# convert to float since we're going to do some math
images = images.astype('float32')
if normalize:
images -= images.min()
if images.max() > 0:
images /= images.max()
images *= 255
if images.ndim == 3:
# they're grayscale - convert to a colormap
redmap, greenmap, bluemap = get_color_map(colormap)
red = np.interp(images * (len(redmap) - 1) / 255.0, xrange(len(redmap)), redmap)
green = np.interp(images * (len(greenmap) - 1) / 255.0, xrange(len(greenmap)), greenmap)
blue = np.interp(images * (len(bluemap) - 1) / 255.0, xrange(len(bluemap)), bluemap)
# Slap the channels back together
images = np.concatenate((red[..., np.newaxis], green[..., np.newaxis], blue[..., np.newaxis]), axis=3)
images = np.minimum(images, 255)
images = np.maximum(images, 0)
# convert back to uint8
images = images.astype('uint8')
# Compute the output image matrix dimensions
n = int(np.ceil(np.sqrt(images.shape[0])))
ny = n
nx = n
length = images.shape[0]
if n * (n - 1) >= length:
nx = n - 1
# Add padding between the images
padding = ((0, nx * ny - length), (0, padsize), (0, padsize)) + ((0, 0),) * (images.ndim - 3)
padded = np.pad(images, padding, mode='constant', constant_values=255)
# Tile the images beside each other
tiles = padded.reshape((ny, nx) + padded.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, padded.ndim + 1)))
tiles = tiles.reshape((ny * tiles.shape[1], nx * tiles.shape[3]) + tiles.shape[4:])
if tiles.shape[-1] == 1:
# grayscale to color
tiles = np.dstack([tiles.squeeze()] * 3)
return tiles
def get_color_map(name):
"""
Return a colormap as (redmap, greenmap, bluemap)
Arguments:
name -- the name of the colormap. If unrecognized, will default to 'jet'.
"""
redmap = [0]
greenmap = [0]
bluemap = [0]
if name == 'white':
# essentially a noop
redmap = [0, 1]
greenmap = [0, 1]
bluemap = [0, 1]
elif name == 'simple':
redmap = [0, 1, 1, 1]
greenmap = [0, 0, 1, 1]
bluemap = [0, 0, 0, 1]
elif name == 'hot':
redmap = [0, 0.03968253968253968, 0.07936507936507936, 0.119047619047619, 0.1587301587301587, 0.1984126984126984, 0.2380952380952381, 0.2777777777777778, 0.3174603174603174, 0.3571428571428571, 0.3968253968253968, 0.4365079365079365, 0.4761904761904762, 0.5158730158730158, 0.5555555555555556, 0.5952380952380952, 0.6349206349206349, 0.6746031746031745, 0.7142857142857142, 0.753968253968254, 0.7936507936507936, 0.8333333333333333, 0.873015873015873, 0.9126984126984127, 0.9523809523809523, 0.992063492063492, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # noqa
greenmap = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03174603174603163, 0.0714285714285714, 0.1111111111111112, 0.1507936507936507, 0.1904761904761905, 0.23015873015873, 0.2698412698412698, 0.3095238095238093, 0.3492063492063491, 0.3888888888888888, 0.4285714285714284, 0.4682539682539679, 0.5079365079365079, 0.5476190476190477, 0.5873015873015872, 0.6269841269841268, 0.6666666666666665, 0.7063492063492065, 0.746031746031746, 0.7857142857142856, 0.8253968253968254, 0.8650793650793651, 0.9047619047619047, 0.9444444444444442, 0.984126984126984, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # noqa
bluemap = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04761904761904745, 0.1269841269841265, 0.2063492063492056, 0.2857142857142856, 0.3650793650793656, 0.4444444444444446, 0.5238095238095237, 0.6031746031746028, 0.6825396825396828, 0.7619047619047619, 0.8412698412698409, 0.92063492063492, 1] # noqa
elif name == 'rainbow':
redmap = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9365079365079367, 0.8571428571428572, 0.7777777777777777, 0.6984126984126986, 0.6190476190476191, 0.53968253968254, 0.4603174603174605, 0.3809523809523814, 0.3015873015873018, 0.2222222222222223, 0.1428571428571432, 0.06349206349206415, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03174603174603208, 0.08465608465608465, 0.1375661375661377, 0.1904761904761907, 0.2433862433862437, 0.2962962962962963, 0.3492063492063493, 0.4021164021164023, 0.4550264550264553, 0.5079365079365079, 0.5608465608465609, 0.6137566137566139, 0.666666666666667] # noqa
greenmap = [0, 0.03968253968253968, 0.07936507936507936, 0.119047619047619, 0.1587301587301587, 0.1984126984126984, 0.2380952380952381, 0.2777777777777778, 0.3174603174603174, 0.3571428571428571, 0.3968253968253968, 0.4365079365079365, 0.4761904761904762, 0.5158730158730158, 0.5555555555555556, 0.5952380952380952, 0.6349206349206349, 0.6746031746031745, 0.7142857142857142, 0.753968253968254, 0.7936507936507936, 0.8333333333333333, 0.873015873015873, 0.9126984126984127, 0.9523809523809523, 0.992063492063492, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9841269841269842, 0.9047619047619047, 0.8253968253968256, 0.7460317460317465, 0.666666666666667, 0.587301587301587, 0.5079365079365079, 0.4285714285714288, 0.3492063492063493, 0.2698412698412698, 0.1904761904761907, 0.1111111111111116, 0.03174603174603208, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # noqa
bluemap = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01587301587301582, 0.09523809523809534, 0.1746031746031744, 0.2539682539682535, 0.333333333333333, 0.412698412698413, 0.4920634920634921, 0.5714285714285712, 0.6507936507936507, 0.7301587301587302, 0.8095238095238093, 0.8888888888888884, 0.9682539682539679, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # noqa
elif name == 'winter':
greenmap = [0, 1]
bluemap = [1, 0.5]
else:
if name != 'jet':
print 'Warning: colormap "%s" not supported. Using jet instead.' % name
redmap = [0, 0, 0, 0, 0.5, 1, 1, 1, 0.5]
greenmap = [0, 0, 0.5, 1, 1, 1, 0.5, 0, 0]
bluemap = [0.5, 1, 1, 1, 0.5, 0, 0, 0, 0]
return 255.0 * np.array(redmap), 255.0 * np.array(greenmap), 255.0 * np.array(bluemap)
| DIGITS-master | digits/utils/image.py |
# Preferred settings for this model is:
# Training epochs = 80
# Crop Size = 224
# Learning Rate = 0.001
# Under advanced learning rate options:
# Step Size = 10.0
# Gamma = 0.96
# The auxillary branches as spcified in the original googlenet V1 model do exist in this implementation of
# googlenet but it is not used. To use it, be sure to check self.is_training to ensure that it is only used
# during training.
from model import Tower
from utils import model_property
import tensorflow as tf
import utils as digits
class UserModel(Tower):
all_inception_settings = {
'3a': [[64], [96, 128], [16, 32], [32]],
'3b': [[128], [128, 192], [32, 96], [64]],
'4a': [[192], [96, 208], [16, 48], [64]],
'4b': [[160], [112, 224], [24, 64], [64]],
'4c': [[128], [128, 256], [24, 64], [64]],
'4d': [[112], [144, 288], [32, 64], [64]],
'4e': [[256], [160, 320], [32, 128], [128]],
'5a': [[256], [160, 320], [32, 128], [128]],
'5b': [[384], [192, 384], [48, 128], [128]]
}
@model_property
def inference(self):
# rescale to proper form, really we expect 224 x 224 x 1 in HWC form
model = tf.reshape(self.x, shape=[-1, self.input_shape[0], self.input_shape[1], self.input_shape[2]])
conv_7x7_2s_weight, conv_7x7_2s_bias = self.create_conv_vars([7, 7, self.input_shape[2], 64], 'conv_7x7_2s')
model = self.conv_layer_with_relu(model, conv_7x7_2s_weight, conv_7x7_2s_bias, 2)
model = self.max_pool(model, 3, 2)
# model = tf.nn.local_response_normalization(model)
conv_1x1_vs_weight, conv_1x1_vs_bias = self.create_conv_vars([1, 1, 64, 64], 'conv_1x1_vs')
model = self.conv_layer_with_relu(model, conv_1x1_vs_weight, conv_1x1_vs_bias, 1, 'VALID')
conv_3x3_1s_weight, conv_3x3_1s_bias = self.create_conv_vars([3, 3, 64, 192], 'conv_3x3_1s')
model = self.conv_layer_with_relu(model, conv_3x3_1s_weight, conv_3x3_1s_bias, 1)
# model = tf.nn.local_response_normalization(model)
model = self.max_pool(model, 3, 2)
inception_settings_3a = InceptionSettings(192, UserModel.all_inception_settings['3a'])
model = self.inception(model, inception_settings_3a, '3a')
inception_settings_3b = InceptionSettings(256, UserModel.all_inception_settings['3b'])
model = self.inception(model, inception_settings_3b, '3b')
model = self.max_pool(model, 3, 2)
inception_settings_4a = InceptionSettings(480, UserModel.all_inception_settings['4a'])
model = self.inception(model, inception_settings_4a, '4a')
# first auxiliary branch for making training faster
# aux_branch_1 = self.auxiliary_classifier(model, 512, "aux_1")
inception_settings_4b = InceptionSettings(512, UserModel.all_inception_settings['4b'])
model = self.inception(model, inception_settings_4b, '4b')
inception_settings_4c = InceptionSettings(512, UserModel.all_inception_settings['4c'])
model = self.inception(model, inception_settings_4c, '4c')
inception_settings_4d = InceptionSettings(512, UserModel.all_inception_settings['4d'])
model = self.inception(model, inception_settings_4d, '4d')
# second auxiliary branch for making training faster
# aux_branch_2 = self.auxiliary_classifier(model, 528, "aux_2")
inception_settings_4e = InceptionSettings(528, UserModel.all_inception_settings['4e'])
model = self.inception(model, inception_settings_4e, '4e')
model = self.max_pool(model, 3, 2)
inception_settings_5a = InceptionSettings(832, UserModel.all_inception_settings['5a'])
model = self.inception(model, inception_settings_5a, '5a')
inception_settings_5b = InceptionSettings(832, UserModel.all_inception_settings['5b'])
model = self.inception(model, inception_settings_5b, '5b')
model = self.avg_pool(model, 7, 1, 'VALID')
fc_weight, fc_bias = self.create_fc_vars([1024, self.nclasses], 'fc')
model = self.fully_connect(model, fc_weight, fc_bias)
# if self.is_training:
# return [aux_branch_1, aux_branch_2, model]
return model
@model_property
def loss(self):
model = self.inference
loss = digits.classification_loss(model, self.y)
accuracy = digits.classification_accuracy(model, self.y)
self.summaries.append(tf.summary.scalar(accuracy.op.name, accuracy))
return loss
def inception(self, model, inception_setting, layer_name):
weights, biases = self.create_inception_variables(inception_setting, layer_name)
conv_1x1 = self.conv_layer_with_relu(model, weights['conv_1x1_1'], biases['conv_1x1_1'], 1)
conv_3x3 = self.conv_layer_with_relu(model, weights['conv_1x1_2'], biases['conv_1x1_2'], 1)
conv_3x3 = self.conv_layer_with_relu(conv_3x3, weights['conv_3x3'], biases['conv_3x3'], 1)
conv_5x5 = self.conv_layer_with_relu(model, weights['conv_1x1_3'], biases['conv_1x1_3'], 1)
conv_5x5 = self.conv_layer_with_relu(conv_5x5, weights['conv_5x5'], biases['conv_5x5'], 1)
conv_pool = self.max_pool(model, 3, 1)
conv_pool = self.conv_layer_with_relu(conv_pool, weights['conv_pool'], biases['conv_pool'], 1)
final_model = tf.concat([conv_1x1, conv_3x3, conv_5x5, conv_pool], 3)
return final_model
def create_inception_variables(self, inception_setting, layer_name):
model_dim = inception_setting.model_dim
conv_1x1_1_w, conv_1x1_1_b = self.create_conv_vars([1, 1, model_dim, inception_setting.conv_1x1_1_layers],
layer_name + '-conv_1x1_1')
conv_1x1_2_w, conv_1x1_2_b = self.create_conv_vars([1, 1, model_dim, inception_setting.conv_1x1_2_layers],
layer_name + '-conv_1x1_2')
conv_1x1_3_w, conv_1x1_3_b = self.create_conv_vars([1, 1, model_dim, inception_setting.conv_1x1_3_layers],
layer_name + '-conv_1x1_3')
conv_3x3_w, conv_3x3_b = self.create_conv_vars([3, 3, inception_setting.conv_1x1_2_layers,
inception_setting.conv_3x3_layers],
layer_name + '-conv_3x3')
conv_5x5_w, conv_5x5_b = self.create_conv_vars([5, 5, inception_setting.conv_1x1_3_layers,
inception_setting.conv_5x5_layers],
layer_name + '-conv_5x5')
conv_pool_w, conv_pool_b = self.create_conv_vars([1, 1, model_dim, inception_setting.conv_pool_layers],
layer_name + '-conv_pool')
weights = {
'conv_1x1_1': conv_1x1_1_w,
'conv_1x1_2': conv_1x1_2_w,
'conv_1x1_3': conv_1x1_3_w,
'conv_3x3': conv_3x3_w,
'conv_5x5': conv_5x5_w,
'conv_pool': conv_pool_w
}
biases = {
'conv_1x1_1': conv_1x1_1_b,
'conv_1x1_2': conv_1x1_2_b,
'conv_1x1_3': conv_1x1_3_b,
'conv_3x3': conv_3x3_b,
'conv_5x5': conv_5x5_b,
'conv_pool': conv_pool_b
}
return weights, biases
def auxiliary_classifier(self, model, input_size, name):
aux_classifier = self.avg_pool(model, 5, 3, 'VALID')
conv_weight, conv_bias = self.create_conv_vars([1, 1, input_size, input_size], name + '-conv_1x1')
aux_classifier = self.conv_layer_with_relu(aux_classifier, conv_weight, conv_bias, 1)
fc_weight, fc_bias = self.create_fc_vars([4*4*input_size, self.nclasses], name + '-fc')
aux_classifier = self.fully_connect(aux_classifier, fc_weight, fc_bias)
aux_classifier = tf.nn.dropout(aux_classifier, 0.7)
return aux_classifier
def conv_layer_with_relu(self, model, weights, biases, stride_size, padding='SAME'):
new_model = tf.nn.conv2d(model, weights, strides=[1, stride_size, stride_size, 1], padding=padding)
new_model = tf.nn.bias_add(new_model, biases)
new_model = tf.nn.relu(new_model)
return new_model
def max_pool(self, model, kernal_size, stride_size, padding='SAME'):
new_model = tf.nn.max_pool(model, ksize=[1, kernal_size, kernal_size, 1],
strides=[1, stride_size, stride_size, 1], padding=padding)
return new_model
def avg_pool(self, model, kernal_size, stride_size, padding='SAME'):
new_model = tf.nn.avg_pool(model, ksize=[1, kernal_size, kernal_size, 1],
strides=[1, stride_size, stride_size, 1], padding=padding)
return new_model
def fully_connect(self, model, weights, biases):
fc_model = tf.reshape(model, [-1, weights.get_shape().as_list()[0]])
fc_model = tf.matmul(fc_model, weights)
fc_model = tf.add(fc_model, biases)
fc_model = tf.nn.relu(fc_model)
return fc_model
def create_conv_vars(self, size, name):
weight = self.create_weight(size, name + '_W')
bias = self.create_bias(size[3], name + '_b')
return weight, bias
def create_fc_vars(self, size, name):
weight = self.create_weight(size, name + '_W')
bias = self.create_bias(size[1], name + '_b')
return weight, bias
def create_weight(self, size, name):
weight = tf.get_variable(name, size, initializer=tf.contrib.layers.xavier_initializer())
return weight
def create_bias(self, size, name):
bias = tf.get_variable(name, [size], initializer=tf.constant_initializer(0.2))
return bias
class InceptionSettings():
def __init__(self, model_dim, inception_settings):
self.model_dim = model_dim
self.conv_1x1_1_layers = inception_settings[0][0]
self.conv_1x1_2_layers = inception_settings[1][0]
self.conv_1x1_3_layers = inception_settings[2][0]
self.conv_3x3_layers = inception_settings[1][1]
self.conv_5x5_layers = inception_settings[2][1]
self.conv_pool_layers = inception_settings[3][0]
| DIGITS-master | digits/standard-networks/tensorflow/googlenet.py |
from model import Tower
from utils import model_property
import tensorflow as tf
import tensorflow.contrib.slim as slim
import utils as digits
class UserModel(Tower):
@model_property
def inference(self):
x = tf.reshape(self.x, shape=[-1, self.input_shape[0], self.input_shape[1], self.input_shape[2]])
# scale (divide by MNIST std)
x = x * 0.0125
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.contrib.layers.xavier_initializer(),
weights_regularizer=slim.l2_regularizer(0.0005)):
model = slim.conv2d(x, 20, [5, 5], padding='VALID', scope='conv1')
model = slim.max_pool2d(model, [2, 2], padding='VALID', scope='pool1')
model = slim.conv2d(model, 50, [5, 5], padding='VALID', scope='conv2')
model = slim.max_pool2d(model, [2, 2], padding='VALID', scope='pool2')
model = slim.flatten(model)
model = slim.fully_connected(model, 500, scope='fc1')
model = slim.dropout(model, 0.5, is_training=self.is_training, scope='do1')
model = slim.fully_connected(model, self.nclasses, activation_fn=None, scope='fc2')
return model
@model_property
def loss(self):
model = self.inference
loss = digits.classification_loss(model, self.y)
accuracy = digits.classification_accuracy(model, self.y)
self.summaries.append(tf.summary.scalar(accuracy.op.name, accuracy))
return loss
| DIGITS-master | digits/standard-networks/tensorflow/lenet.py |
from model import Tower
from utils import model_property
import tensorflow as tf
import tensorflow.contrib.slim as slim
import utils as digits
class UserModel(Tower):
@model_property
def inference(self):
x = tf.reshape(self.x, shape=[-1, self.input_shape[0], self.input_shape[1], self.input_shape[2]])
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.contrib.layers.xavier_initializer(),
weights_regularizer=slim.l2_regularizer(0.0005)):
model = slim.repeat(x, 2, slim.conv2d, 64, [3, 3], scope='conv1')
model = slim.max_pool2d(model, [2, 2], scope='pool1')
model = slim.repeat(model, 2, slim.conv2d, 128, [3, 3], scope='conv2')
model = slim.max_pool2d(model, [2, 2], scope='pool2')
model = slim.repeat(model, 3, slim.conv2d, 256, [3, 3], scope='conv3')
model = slim.max_pool2d(model, [2, 2], scope='pool3')
model = slim.repeat(model, 3, slim.conv2d, 512, [3, 3], scope='conv4')
model = slim.max_pool2d(model, [2, 2], scope='pool4')
model = slim.repeat(model, 3, slim.conv2d, 512, [3, 3], scope='conv5')
model = slim.max_pool2d(model, [2, 2], scope='pool5')
model = slim.flatten(model, scope='flatten5')
model = slim.fully_connected(model, 4096, scope='fc6')
model = slim.dropout(model, 0.5, is_training=self.is_training, scope='do6')
model = slim.fully_connected(model, 4096, scope='fc7')
model = slim.dropout(model, 0.5, is_training=self.is_training, scope='do7')
model = slim.fully_connected(model, self.nclasses, activation_fn=None, scope='fcX8')
return model
@model_property
def loss(self):
loss = digits.classification_loss(self.inference, self.y)
accuracy = digits.classification_accuracy(self.inference, self.y)
self.summaries.append(tf.summary.scalar(accuracy.op.name, accuracy))
return loss
| DIGITS-master | digits/standard-networks/tensorflow/vgg16.py |
# Preferred settings for this model is:
# Base Learning Rate = 0.001
# Crop Size = 224
from model import Tower
from utils import model_property
import tensorflow as tf
import tensorflow.contrib.slim as slim
import utils as digits
class UserModel(Tower):
@model_property
def inference(self):
x = tf.reshape(self.x, shape=[-1, self.input_shape[0], self.input_shape[1], self.input_shape[2]])
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.contrib.layers.xavier_initializer(),
weights_regularizer=slim.l2_regularizer(1e-6)):
model = slim.conv2d(x, 96, [11, 11], 4, padding='VALID', scope='conv1')
model = slim.max_pool2d(model, [3, 3], 2, scope='pool1')
model = slim.conv2d(model, 256, [5, 5], 1, scope='conv2')
model = slim.max_pool2d(model, [3, 3], 2, scope='pool2')
model = slim.conv2d(model, 384, [3, 3], 1, scope='conv3')
model = slim.conv2d(model, 384, [3, 3], 1, scope='conv4')
model = slim.conv2d(model, 256, [3, 3], 1, scope='conv5')
model = slim.max_pool2d(model, [3, 3], 2, scope='pool5')
model = slim.flatten(model)
model = slim.fully_connected(model, 4096, activation_fn=None, scope='fc1')
model = slim.dropout(model, 0.5, is_training=self.is_training, scope='do1')
model = slim.fully_connected(model, 4096, activation_fn=None, scope='fc2')
model = slim.dropout(model, 0.5, is_training=self.is_training, scope='do2')
model = slim.fully_connected(model, self.nclasses, activation_fn=None, scope='fc3')
return model
@model_property
def loss(self):
model = self.inference
loss = digits.classification_loss(model, self.y)
accuracy = digits.classification_accuracy(model, self.y)
self.summaries.append(tf.summary.scalar(accuracy.op.name, accuracy))
return loss
| DIGITS-master | digits/standard-networks/tensorflow/alexnet.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
import os
import shutil
import urllib
class DataDownloader(object):
"""Base class for downloading data and setting it up for DIGITS"""
def __init__(self, outdir, clean=False, file_extension='png'):
"""
Arguments:
outdir -- directory where to download and create the dataset
if this directory doesn't exist, it will be created
Keyword arguments:
clean -- delete outdir first if it exists
file_extension -- image format for output images
"""
self.outdir = outdir
self.mkdir(self.outdir, clean=clean)
self.file_extension = file_extension.lower()
def getData(self):
"""
This is the main function that should be called by the users!
Downloads the dataset and prepares it for DIGITS consumption
"""
for url in self.urlList():
self.__downloadFile(url)
self.uncompressData()
self.processData()
print "Dataset directory is created successfully at '%s'" % self.outdir
def urlList(self):
"""
return a list of (url, output_file) tuples
"""
raise NotImplementedError
def uncompressData(self):
"""
uncompress the downloaded files
"""
raise NotImplementedError
def processData(self):
"""
Process the downloaded files and prepare the data for DIGITS
"""
raise NotImplementedError
def __downloadFile(self, url):
"""
Downloads the url
"""
download_path = os.path.join(self.outdir, os.path.basename(url))
if not os.path.exists(download_path):
print "Downloading url=%s ..." % url
urllib.urlretrieve(url, download_path)
def mkdir(self, d, clean=False):
"""
Safely create a directory
Arguments:
d -- the directory name
Keyword arguments:
clean -- if True and the directory already exists, it will be deleted and recreated
"""
if os.path.exists(d):
if clean:
shutil.rmtree(d)
else:
return
os.mkdir(d)
| DIGITS-master | digits/download_data/downloader.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
import cPickle
import os
import tarfile
import PIL.Image
from downloader import DataDownloader
class Cifar100Downloader(DataDownloader):
"""
See details about the CIFAR100 dataset here:
http://www.cs.toronto.edu/~kriz/cifar.html
"""
def urlList(self):
return [
'http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz',
]
def uncompressData(self):
filename = 'cifar-100-python.tar.gz'
filepath = os.path.join(self.outdir, filename)
assert os.path.exists(filepath), 'Expected "%s" to exist' % filename
if not os.path.exists(os.path.join(self.outdir, 'cifar-100-python')):
print "Uncompressing file=%s ..." % filename
with tarfile.open(filepath) as tf:
tf.extractall(self.outdir)
def processData(self):
label_filename = 'meta'
label_filepath = os.path.join(self.outdir, 'cifar-100-python', label_filename)
with open(label_filepath, 'rb') as infile:
pickleObj = cPickle.load(infile)
fine_label_names = pickleObj['fine_label_names']
coarse_label_names = pickleObj['coarse_label_names']
for level, label_names in [
('fine', fine_label_names),
('coarse', coarse_label_names),
]:
dirname = os.path.join(self.outdir, level)
self.mkdir(dirname, clean=True)
with open(os.path.join(dirname, 'labels.txt'), 'w') as outfile:
for name in label_names:
outfile.write('%s\n' % name)
for filename, phase in [
('train', 'train'),
('test', 'test'),
]:
filepath = os.path.join(self.outdir, 'cifar-100-python', filename)
assert os.path.exists(filepath), 'Expected "%s" to exist' % filename
self.__extractData(filepath, phase, fine_label_names, coarse_label_names)
def __extractData(self, input_file, phase, fine_label_names, coarse_label_names):
"""
Read a pickle file at input_file and output as images
Arguments:
input_file -- a pickle file
phase -- train or test
fine_label_names -- mapping from fine_labels to strings
coarse_label_names -- mapping from coarse_labels to strings
"""
print 'Extracting images file=%s ...' % input_file
# Read the pickle file
with open(input_file, 'rb') as infile:
pickleObj = cPickle.load(infile)
# print 'Batch -', pickleObj['batch_label']
data = pickleObj['data']
assert data.shape[1] == 3072, 'Unexpected data.shape %s' % (data.shape,)
count = data.shape[0]
fine_labels = pickleObj['fine_labels']
assert len(fine_labels) == count, 'Expected len(fine_labels) to be %d, not %d' % (count, len(fine_labels))
coarse_labels = pickleObj['coarse_labels']
assert len(coarse_labels) == count, 'Expected len(coarse_labels) to be %d, not %d' % (
count, len(coarse_labels))
filenames = pickleObj['filenames']
assert len(filenames) == count, 'Expected len(filenames) to be %d, not %d' % (count, len(filenames))
data = data.reshape((count, 3, 32, 32))
data = data.transpose((0, 2, 3, 1))
fine_to_coarse = {} # mapping of fine labels to coarse labels
fine_dirname = os.path.join(self.outdir, 'fine', phase)
os.makedirs(fine_dirname)
coarse_dirname = os.path.join(self.outdir, 'coarse', phase)
os.makedirs(coarse_dirname)
with open(os.path.join(self.outdir, 'fine', '%s.txt' % phase), 'w') as fine_textfile, \
open(os.path.join(self.outdir, 'coarse', '%s.txt' % phase), 'w') as coarse_textfile:
for index, image in enumerate(data):
# Create the directory
fine_label = fine_label_names[fine_labels[index]]
dirname = os.path.join(fine_dirname, fine_label)
self.mkdir(dirname)
# Get the filename
filename = filenames[index]
ext = os.path.splitext(filename)[1][1:].lower()
if ext != self.file_extension:
filename = '%s.%s' % (os.path.splitext(filename)[0], self.file_extension)
filename = os.path.join(dirname, filename)
# Save the image
PIL.Image.fromarray(image).save(filename)
fine_textfile.write('%s %s\n' % (filename, fine_labels[index]))
coarse_textfile.write('%s %s\n' % (filename, coarse_labels[index]))
if fine_label not in fine_to_coarse:
fine_to_coarse[fine_label] = coarse_label_names[coarse_labels[index]]
# Create the coarse dataset with symlinks
for fine, coarse in fine_to_coarse.iteritems():
self.mkdir(os.path.join(coarse_dirname, coarse))
os.symlink(
# Create relative symlinks for portability
os.path.join('..', '..', '..', 'fine', phase, fine),
os.path.join(coarse_dirname, coarse, fine)
)
| DIGITS-master | digits/download_data/cifar100.py |
DIGITS-master | digits/download_data/__init__.py |
|
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
import cPickle
import os
import tarfile
import PIL.Image
from downloader import DataDownloader
class Cifar10Downloader(DataDownloader):
"""
See details about the CIFAR10 dataset here:
http://www.cs.toronto.edu/~kriz/cifar.html
"""
def urlList(self):
return [
'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
]
def uncompressData(self):
filename = 'cifar-10-python.tar.gz'
filepath = os.path.join(self.outdir, filename)
assert os.path.exists(filepath), 'Expected "%s" to exist' % filename
if not os.path.exists(os.path.join(self.outdir, 'cifar-10-batches-py')):
print "Uncompressing file=%s ..." % filename
with tarfile.open(filepath) as tf:
tf.extractall(self.outdir)
def processData(self):
label_filename = 'batches.meta'
label_filepath = os.path.join(self.outdir, 'cifar-10-batches-py', label_filename)
with open(label_filepath, 'rb') as infile:
pickleObj = cPickle.load(infile)
label_names = pickleObj['label_names']
for phase in 'train', 'test':
dirname = os.path.join(self.outdir, phase)
self.mkdir(dirname, clean=True)
with open(os.path.join(dirname, 'labels.txt'), 'w') as outfile:
for name in label_names:
outfile.write('%s\n' % name)
for filename, phase in [
('data_batch_1', 'train'),
('data_batch_2', 'train'),
('data_batch_3', 'train'),
('data_batch_4', 'train'),
('data_batch_5', 'train'),
('test_batch', 'test'),
]:
filepath = os.path.join(self.outdir, 'cifar-10-batches-py', filename)
assert os.path.exists(filepath), 'Expected "%s" to exist' % filename
self.__extractData(filepath, phase, label_names)
def __extractData(self, input_file, phase, label_names):
"""
Read a pickle file at input_file and output images
Arguments:
input_file -- the input pickle file
phase -- train or test
label_names -- a list of strings
"""
print 'Extracting images file=%s ...' % input_file
# Read the pickle file
with open(input_file, 'rb') as infile:
pickleObj = cPickle.load(infile)
# print 'Batch -', pickleObj['batch_label']
data = pickleObj['data']
assert data.shape == (10000, 3072), 'Expected data.shape to be (10000, 3072), not %s' % (data.shape,)
count = data.shape[0]
labels = pickleObj['labels']
assert len(labels) == count, 'Expected len(labels) to be %d, not %d' % (count, len(labels))
filenames = pickleObj['filenames']
assert len(filenames) == count, 'Expected len(filenames) to be %d, not %d' % (count, len(filenames))
data = data.reshape((10000, 3, 32, 32))
data = data.transpose((0, 2, 3, 1))
output_dir = os.path.join(self.outdir, phase)
self.mkdir(output_dir)
with open(os.path.join(output_dir, '%s.txt' % phase), 'a') as outfile:
for index, image in enumerate(data):
# Create the directory
dirname = os.path.join(output_dir, label_names[labels[index]])
if not os.path.exists(dirname):
os.makedirs(dirname)
# Get the filename
filename = filenames[index]
ext = os.path.splitext(filename)[1][1:].lower()
if ext != self.file_extension:
filename = '%s.%s' % (os.path.splitext(filename)[0], self.file_extension)
filename = os.path.join(dirname, filename)
# Save the image
PIL.Image.fromarray(image).save(filename)
outfile.write('%s %s\n' % (filename, labels[index]))
| DIGITS-master | digits/download_data/cifar10.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
import argparse
import sys
import time
from cifar10 import Cifar10Downloader
from cifar100 import Cifar100Downloader
from mnist import MnistDownloader
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Download-Data tool - DIGITS')
# Positional arguments
parser.add_argument('dataset',
help='mnist/cifar10/cifar100'
)
parser.add_argument('output_dir',
help='The output directory for the data'
)
# Optional arguments
parser.add_argument('-c', '--clean',
action='store_true',
help='clean out the directory first (if it exists)'
)
args = vars(parser.parse_args())
dataset = args['dataset'].lower()
start = time.time()
if dataset == 'mnist':
d = MnistDownloader(
outdir=args['output_dir'],
clean=args['clean'])
d.getData()
elif dataset == 'cifar10':
d = Cifar10Downloader(
outdir=args['output_dir'],
clean=args['clean'])
d.getData()
elif dataset == 'cifar100':
d = Cifar100Downloader(
outdir=args['output_dir'],
clean=args['clean'])
d.getData()
else:
print 'Unknown dataset "%s"' % args['dataset']
sys.exit(1)
print 'Done after %s seconds.' % (time.time() - start)
| DIGITS-master | digits/download_data/__main__.py |
# Copyright (c) 2015-2017, NVIDIA CORPORATION. All rights reserved.
import gzip
import os
import struct
import numpy as np
import PIL.Image
from downloader import DataDownloader
class MnistDownloader(DataDownloader):
"""
See details about the MNIST dataset here:
http://yann.lecun.com/exdb/mnist/
"""
def urlList(self):
return [
'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
]
def uncompressData(self):
for zipped, unzipped in [
('train-images-idx3-ubyte.gz', 'train-images.bin'),
('train-labels-idx1-ubyte.gz', 'train-labels.bin'),
('t10k-images-idx3-ubyte.gz', 'test-images.bin'),
('t10k-labels-idx1-ubyte.gz', 'test-labels.bin'),
]:
zipped_path = os.path.join(self.outdir, zipped)
assert os.path.exists(zipped_path), 'Expected "%s" to exist' % zipped
unzipped_path = os.path.join(self.outdir, unzipped)
if not os.path.exists(unzipped_path):
print "Uncompressing file=%s ..." % zipped
with gzip.open(zipped_path) as infile, open(unzipped_path, 'wb') as outfile:
outfile.write(infile.read())
def processData(self):
self.__extract_images('train-images.bin', 'train-labels.bin', 'train')
self.__extract_images('test-images.bin', 'test-labels.bin', 'test')
def __extract_images(self, images_file, labels_file, phase):
"""
Extract information from binary files and store them as images
"""
labels = self.__readLabels(os.path.join(self.outdir, labels_file))
images = self.__readImages(os.path.join(self.outdir, images_file))
assert len(labels) == len(images), '%d != %d' % (len(labels), len(images))
output_dir = os.path.join(self.outdir, phase)
self.mkdir(output_dir, clean=True)
with open(os.path.join(output_dir, 'labels.txt'), 'w') as outfile:
for label in xrange(10):
outfile.write('%s\n' % label)
with open(os.path.join(output_dir, '%s.txt' % phase), 'w') as outfile:
for index, image in enumerate(images):
dirname = os.path.join(output_dir, labels[index])
self.mkdir(dirname)
filename = os.path.join(dirname, '%05d.%s' % (index, self.file_extension))
image.save(filename)
outfile.write('%s %s\n' % (filename, labels[index]))
def __readLabels(self, filename):
"""
Returns a list of ints
"""
print 'Reading labels from %s ...' % filename
labels = []
with open(filename, 'rb') as infile:
infile.read(4) # ignore magic number
count = struct.unpack('>i', infile.read(4))[0]
data = infile.read(count)
for byte in data:
label = struct.unpack('>B', byte)[0]
labels.append(str(label))
return labels
def __readImages(self, filename):
"""
Returns a list of PIL.Image objects
"""
print 'Reading images from %s ...' % filename
images = []
with open(filename, 'rb') as infile:
infile.read(4) # ignore magic number
count = struct.unpack('>i', infile.read(4))[0]
rows = struct.unpack('>i', infile.read(4))[0]
columns = struct.unpack('>i', infile.read(4))[0]
for i in xrange(count):
data = infile.read(rows * columns)
image = np.fromstring(data, dtype=np.uint8)
image = image.reshape((rows, columns))
image = 255 - image # now black digit on white background
images.append(PIL.Image.fromarray(image))
return images
| DIGITS-master | digits/download_data/mnist.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .data import * # noqa
from .view import * # noqa
| DIGITS-master | digits/extensions/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
class VisualizationInterface(object):
"""
A visualization extension
"""
def __init__(self, **kwargs):
pass
@staticmethod
def get_config_form():
"""
Return a form to be used to configure visualization options
"""
raise NotImplementedError
@staticmethod
def get_config_template(form):
"""
The config template shows a form with view config options
Parameters:
- form: form returned by get_config_form(). This may be populated
with values if the job was cloned
Returns:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
raise NotImplementedError
@staticmethod
def get_default_visibility():
"""
Return whether to show extension in GUI (can be overridden through
DIGITS configuration options)
"""
return True
def get_header_template(self):
"""
This returns the content to be rendered at the top of the result
page. This may include a summary of the job as well as utility
functions and scripts to use from "view" templates.
By default this method returns (None, None), an indication that there
is no header to display. This method may be overridden in sub-classes
to show more elaborate content.
Returns:
- (template, context) tuple
- template is a Jinja template to use for rendering the header,
or None if there is no header to display
- context is a dictionary of context variables to use for rendering
the form
"""
return None, None
def get_ng_templates(self):
"""
This returns the angularjs content defining the app and maybe a
large scope controller. By default this method returns None,
an indication that there is no angular header. This method
may be overridden in sub-classes to implement the app and controller.
This header html protion will likely be of the form:
<script>
...
</script>
<div ng-app="my_app">
<div ng-controller="my_controller">
and the footer needs to close any open divs:
</div>
</div>
Returns:
- (header, footer) tuple
- header is the html text defining the angular app and adding the ng-app div,
or None if there is no angular app defined
- footer is the html text closing any open divs from the header
or None if there is no angular app defined
"""
return None, None
@staticmethod
def get_id():
"""
Returns a unique ID
"""
raise NotImplementedError
@staticmethod
def get_title():
"""
Returns a title
"""
raise NotImplementedError
@staticmethod
def get_dirname():
"""
Returns the extension's dirname for building a path to the
extension's static files
"""
raise NotImplementedError
def get_view_template(self, data):
"""
The view template shows the visualization of one inference output.
In the case of multiple inference, this method is called once per
input sample.
Parameters:
- data: the data returned by process_data()
Returns:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
raise NotImplementedError
def process_data(
self,
input_id,
input_data,
inference_data,
ground_truth=None):
"""
Process one inference output
Parameters:
- input_id: index of input sample
- input_data: input to the network
- inference_data: network output
- ground_truth: Ground truth. Format is application specific.
None if absent.
Returns:
- an object reprensenting the processed data
"""
raise NotImplementedError
| DIGITS-master | digits/extensions/view/interface.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import copy
from pkg_resources import iter_entry_points
from . import boundingBox
from . import imageOutput
from . import imageSegmentation
from . import rawData
# Entry point group (this is the key we use to register and
# find installed plug-ins)
GROUP = "digits.plugins.view"
# built-in extensions
builtin_view_extensions = [
boundingBox.Visualization,
imageOutput.Visualization,
imageSegmentation.Visualization,
rawData.Visualization,
]
def get_default_extension():
"""
return the default view extension
"""
return rawData.Visualization
def get_extensions():
"""
return set of data data extensions
"""
extensions = copy.copy(builtin_view_extensions)
# find installed extension plug-ins
for entry_point in iter_entry_points(group=GROUP, name=None):
extensions.append(entry_point.load())
return extensions
def get_extension(extension_id):
"""
return extension associated with specified extension_id
"""
for extension in get_extensions():
if extension.get_id() == extension_id:
return extension
return None
| DIGITS-master | digits/extensions/view/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .view import Visualization
__all__ = ['Visualization']
| DIGITS-master | digits/extensions/view/imageSegmentation/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from flask_wtf import Form
from digits import utils
from digits.utils import subclass
@subclass
class ConfigForm(Form):
"""
A form used to display the network output as an image
"""
colormap = utils.forms.SelectField(
'Colormap',
choices=[
('dataset', 'From dataset'),
('paired', 'Paired (matplotlib)'),
('none', 'None (grayscale)'),
],
default='dataset',
tooltip='Set color map to use when displaying segmented image'
)
| DIGITS-master | digits/extensions/view/imageSegmentation/forms.py |
"""Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved."""
from __future__ import absolute_import
import json
import os
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import skfmm
import digits
from digits.utils import subclass, override
from digits.utils.constants import COLOR_PALETTE_ATTRIBUTE
from .forms import ConfigForm
from ..interface import VisualizationInterface
CONFIG_TEMPLATE = "config_template.html"
HEADER_TEMPLATE = "header_template.html"
APP_BEGIN_TEMPLATE = "app_begin_template.html"
APP_END_TEMPLATE = "app_end_template.html"
VIEW_TEMPLATE = "view_template.html"
@subclass
class Visualization(VisualizationInterface):
"""A visualization extension to display the network output as an image."""
def __init__(self, dataset, **kwargs):
"""Constructor for Visualization class.
:param dataset:
:type dataset:
:param kwargs:
:type kwargs:
"""
# memorize view template for later use
extension_dir = os.path.dirname(os.path.abspath(__file__))
self.view_template = open(
os.path.join(extension_dir, VIEW_TEMPLATE), "r").read()
# view options
if kwargs['colormap'] == 'dataset':
if COLOR_PALETTE_ATTRIBUTE not in dataset.extension_userdata or \
not dataset.extension_userdata[COLOR_PALETTE_ATTRIBUTE]:
raise ValueError("No palette found in dataset - choose other colormap")
palette = dataset.extension_userdata[COLOR_PALETTE_ATTRIBUTE]
# assume 8-bit RGB palette and convert to N*3 numpy array
palette = np.array(palette).reshape((len(palette) / 3, 3)) / 255.
# normalize input pixels to [0,1]
norm = mpl.colors.Normalize(vmin=0, vmax=255)
# create map
cmap = mpl.colors.ListedColormap(palette)
self.map = plt.cm.ScalarMappable(norm=norm, cmap=cmap)
elif kwargs['colormap'] == 'paired':
cmap = plt.cm.get_cmap('Paired')
self.map = plt.cm.ScalarMappable(norm=None, cmap=cmap)
elif kwargs['colormap'] == 'none':
self.map = None
else:
raise ValueError("Unknown color map option: %s" % kwargs['colormap'])
# memorize class labels
if 'class_labels' in dataset.extension_userdata:
self.class_labels = dataset.extension_userdata['class_labels']
else:
self.class_labels = None
@staticmethod
def get_config_form():
"""Utility function.
returns: ConfigForm().
"""
return ConfigForm()
@staticmethod
def get_config_template(form):
"""Get the template and context.
parameters:
- form: form returned by get_config_form(). This may be populated
with values if the job was cloned
returns:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(
os.path.join(extension_dir, CONFIG_TEMPLATE), "r").read()
return (template, {'form': form})
def get_legend_for(self, found_classes, skip_classes=[]):
"""Return the legend color image squares and text for each class.
:param found_classes: list of class indices
:param skip_classes: list of class indices to skip
:return: list of dicts of text hex_color for each class
"""
legend = []
for c in (x for x in found_classes if x not in skip_classes):
# create hex color associated with the category ID
if self.map:
rgb_color = self.map.to_rgba([c])[0, :3]
hex_color = mpl.colors.rgb2hex(rgb_color)
else:
# make a grey scale hex color
h = hex(int(c)).split('x')[1].zfill(2)
hex_color = '#%s%s%s' % (h, h, h)
if self.class_labels:
text = self.class_labels[int(c)]
else:
text = "Class #%d" % c
legend.append({'index': c, 'text': text, 'hex_color': hex_color})
return legend
@override
def get_header_template(self):
"""Implement get_header_template method from view extension interface."""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(
os.path.join(extension_dir, HEADER_TEMPLATE), "r").read()
return template, {}
@override
def get_ng_templates(self):
"""Implement get_ng_templates method from view extension interface."""
extension_dir = os.path.dirname(os.path.abspath(__file__))
header = open(os.path.join(extension_dir, APP_BEGIN_TEMPLATE), "r").read()
footer = open(os.path.join(extension_dir, APP_END_TEMPLATE), "r").read()
return header, footer
@staticmethod
def get_id():
"""returns: id string that identifies the extension."""
return 'image-segmentation'
@staticmethod
def get_title():
"""returns: name string to display in html."""
return 'Image Segmentation'
@staticmethod
def get_dirname():
"""returns: extension dir name to locate static dir."""
return 'imageSegmentation'
@override
def get_view_template(self, data):
"""Get the view template.
returns:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
return self.view_template, {
'input_id': data['input_id'],
'input_image': digits.utils.image.embed_image_html(data['input_image']),
'fill_image': digits.utils.image.embed_image_html(data['fill_image']),
'line_image': digits.utils.image.embed_image_html(data['line_image']),
'seg_image': digits.utils.image.embed_image_html(data['seg_image']),
'mask_image': digits.utils.image.embed_image_html(data['mask_image']),
'legend': data['legend'],
'is_binary': data['is_binary'],
'class_data': json.dumps(data['class_data'].tolist()),
}
@override
def process_data(self, input_id, input_data, output_data):
"""Process one inference and return data to visualize."""
# assume the only output is a CHW image where C is the number
# of classes, H and W are the height and width of the image
class_data = output_data[output_data.keys()[0]].astype('float32')
# Is this binary segmentation?
is_binary = class_data.shape[0] == 2
# retain only the top class for each pixel
class_data = np.argmax(class_data, axis=0).astype('uint8')
# remember the classes we found
found_classes = np.unique(class_data)
# convert using color map (assume 8-bit output)
if self.map:
fill_data = (self.map.to_rgba(class_data) * 255).astype('uint8')
else:
fill_data = np.ndarray((class_data.shape[0], class_data.shape[1], 4), dtype='uint8')
for x in xrange(3):
fill_data[:, :, x] = class_data.copy()
# Assuming that class 0 is the background
mask = np.greater(class_data, 0)
fill_data[:, :, 3] = mask * 255
line_data = fill_data.copy()
seg_data = fill_data.copy()
# Black mask of non-segmented pixels
mask_data = np.zeros(fill_data.shape, dtype='uint8')
mask_data[:, :, 3] = (1 - mask) * 255
def normalize(array):
mn = array.min()
mx = array.max()
return (array - mn) * 255 / (mx - mn) if (mx - mn) > 0 else array * 255
try:
PIL.Image.fromarray(input_data)
except TypeError:
# If input_data can not be converted to an image,
# normalize and convert to uint8
input_data = normalize(input_data).astype('uint8')
# Generate outlines around segmented classes
if len(found_classes) > 1:
# Assuming that class 0 is the background.
line_mask = np.zeros(class_data.shape, dtype=bool)
max_distance = np.zeros(class_data.shape, dtype=float) + 1
for c in (x for x in found_classes if x != 0):
c_mask = np.equal(class_data, c)
# Find the signed distance from the zero contour
distance = skfmm.distance(c_mask.astype('float32') - 0.5)
# Accumulate the mask for all classes
line_width = 3
line_mask |= c_mask & np.less(distance, line_width)
max_distance = np.maximum(max_distance, distance + 128)
line_data[:, :, 3] = line_mask * 255
max_distance = np.maximum(max_distance, np.zeros(max_distance.shape, dtype=float))
max_distance = np.minimum(max_distance, np.zeros(max_distance.shape, dtype=float) + 255)
seg_data[:, :, 3] = max_distance
# Input image with outlines
input_max = input_data.max()
input_min = input_data.min()
input_range = input_max - input_min
if input_range > 255:
input_data = (input_data - input_min) * 255.0 / input_range
elif input_min < 0:
input_data -= input_min
input_image = PIL.Image.fromarray(input_data.astype('uint8'))
input_image.format = 'png'
# Fill image
fill_image = PIL.Image.fromarray(fill_data)
fill_image.format = 'png'
# Fill image
line_image = PIL.Image.fromarray(line_data)
line_image.format = 'png'
# Seg image
seg_image = PIL.Image.fromarray(seg_data)
seg_image.format = 'png'
seg_image.save('seg.png')
# Mask image
mask_image = PIL.Image.fromarray(mask_data)
mask_image.format = 'png'
# legend for this instance
legend = self.get_legend_for(found_classes, skip_classes=[0])
return {
'input_id': input_id,
'input_image': input_image,
'fill_image': fill_image,
'line_image': line_image,
'seg_image': seg_image,
'mask_image': mask_image,
'legend': legend,
'is_binary': is_binary,
'class_data': class_data,
}
| DIGITS-master | digits/extensions/view/imageSegmentation/view.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .view import Visualization
__all__ = ['Visualization']
| DIGITS-master | digits/extensions/view/imageOutput/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from flask_wtf import Form
from digits import utils
from digits.utils import subclass
@subclass
class ConfigForm(Form):
"""
A form used to display the network output as an image
"""
channel_order = utils.forms.SelectField(
'Channel order',
choices=[
('rgb', 'RGB'),
('bgr', 'BGR'),
],
default='rgb',
tooltip='Set channel order to BGR for Caffe networks (this field '
'is ignored in the case of a grayscale image)'
)
data_order = utils.forms.SelectField(
'Data order',
choices=[
('chw', 'CHW'),
('hwc', 'HWC'),
],
default='chw',
tooltip="Set the order of the data. For Caffe and Torch models this "
"is often NCHW, for Tensorflow it's NHWC."
"N=Batch Size, W=Width, H=Height, C=Channels"
)
pixel_conversion = utils.forms.SelectField(
'Pixel conversion',
choices=[
('normalize', 'Normalize'),
('clip', 'Clip'),
],
default='normalize',
tooltip='Select method to convert pixel values to the target bit '
'range'
)
show_input = utils.forms.SelectField(
'Show input as image',
choices=[
('yes', 'Yes'),
('no', 'No'),
],
default='no',
tooltip='Show input as image'
)
| DIGITS-master | digits/extensions/view/imageOutput/forms.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import PIL.Image
import PIL.ImageDraw
import digits
from digits.utils import subclass, override
from .forms import ConfigForm
from ..interface import VisualizationInterface
CONFIG_TEMPLATE = "config_template.html"
VIEW_TEMPLATE = "view_template.html"
@subclass
class Visualization(VisualizationInterface):
"""
A visualization extension to display the network output as an image
"""
def __init__(self, dataset, **kwargs):
# memorize view template for later use
extension_dir = os.path.dirname(os.path.abspath(__file__))
self.view_template = open(
os.path.join(extension_dir, VIEW_TEMPLATE), "r").read()
# view options
self.channel_order = kwargs['channel_order'].upper()
self.data_order = kwargs['data_order'].upper()
self.normalize = (kwargs['pixel_conversion'] == 'normalize')
self.show_input = (kwargs['show_input'] == 'yes')
@staticmethod
def get_config_form():
return ConfigForm()
@staticmethod
def get_config_template(form):
"""
parameters:
- form: form returned by get_config_form(). This may be populated
with values if the job was cloned
returns:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(
os.path.join(extension_dir, CONFIG_TEMPLATE), "r").read()
return (template, {'form': form})
@staticmethod
def get_id():
return 'image-image-output'
@staticmethod
def get_title():
return 'Image output'
@override
def get_view_template(self, data):
"""
returns:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
return self.view_template, {'image_input': digits.utils.image.embed_image_html(data[0]),
'image_output': digits.utils.image.embed_image_html(data[1])}
@override
def process_data(self, input_id, input_data, output_data):
"""
Process one inference and return data to visualize
"""
if self.show_input:
data_input = input_data.astype('float32')
image_input = self.process_image(self.data_order, data_input)
else:
image_input = None
data_output = output_data[output_data.keys()[0]].astype('float32')
image_output = self.process_image(self.data_order, data_output)
return [image_input, image_output]
def process_image(self, data_order, data):
if data_order == 'HWC':
data = (data.transpose((2, 0, 1)))
# assume CHW at this point
channels = data.shape[0]
if channels == 3 and self.channel_order == 'BGR':
data = data[[2, 1, 0], ...] # BGR to RGB
# convert to HWC
data = data.transpose((1, 2, 0))
# assume 8-bit
if self.normalize:
data -= data.min()
if data.max() > 0:
data /= data.max()
data *= 255
else:
# clip
data = data.clip(0, 255)
# convert to uint8
data = data.astype('uint8')
# convert to PIL image
if channels == 1:
# drop channel axis
image = PIL.Image.fromarray(data[:, :, 0])
elif channels == 3:
image = PIL.Image.fromarray(data)
else:
raise ValueError("Unhandled number of channels: %d" % channels)
return image
| DIGITS-master | digits/extensions/view/imageOutput/view.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .view import Visualization
__all__ = ['Visualization']
| DIGITS-master | digits/extensions/view/boundingBox/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from digits.utils import subclass
from flask_wtf import Form
@subclass
class ConfigForm(Form):
pass
| DIGITS-master | digits/extensions/view/boundingBox/forms.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
import PIL.Image
import digits
from digits.utils import subclass, override
from .forms import ConfigForm
from ..interface import VisualizationInterface
CONFIG_TEMPLATE = "config_template.html"
HEADER_TEMPLATE = "header_template.html"
APP_BEGIN_TEMPLATE = "app_begin_template.html"
APP_END_TEMPLATE = "app_end_template.html"
VIEW_TEMPLATE = "view_template.html"
@subclass
class Visualization(VisualizationInterface):
"""
A visualization extension to display bounding boxes
"""
def __init__(self, dataset, **kwargs):
# memorize view template for later use
extension_dir = os.path.dirname(os.path.abspath(__file__))
self.view_template = open(
os.path.join(extension_dir, VIEW_TEMPLATE), "r").read()
# stats
self.image_count = 0
self.bbox_count = 0
@staticmethod
def get_config_form():
return ConfigForm()
@staticmethod
def get_config_template(form):
"""
parameters:
- form: form returned by get_config_form(). This may be populated
with values if the job was cloned
returns:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(
os.path.join(extension_dir, CONFIG_TEMPLATE), "r").read()
context = {'form': form}
return (template, context)
@override
def get_header_template(self):
"""
Implements get_header_template() method from view extension interface
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(
os.path.join(extension_dir, HEADER_TEMPLATE), "r").read()
return template, {'image_count': self.image_count, 'bbox_count': self.bbox_count}
@override
def get_ng_templates(self):
"""
Implements get_ng_templates() method from view extension interface
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
header = open(os.path.join(extension_dir, APP_BEGIN_TEMPLATE), "r").read()
footer = open(os.path.join(extension_dir, APP_END_TEMPLATE), "r").read()
return header, footer
@staticmethod
def get_id():
return 'image-bounding-boxes'
@staticmethod
def get_title():
return 'Bounding boxes'
@override
def get_view_template(self, data):
"""
return:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
return self.view_template, {
'image': data['image'],
'bboxes': data['bboxes'],
'index': data['index'],
}
@override
def process_data(
self,
input_id,
input_data,
inference_data,
ground_truth=None):
"""
Process one inference output
"""
# get source image
image = PIL.Image.fromarray(input_data).convert('RGB')
self.image_count += 1
# create arrays in expected format
keys = inference_data.keys()
bboxes = dict(zip(keys, [[] for x in range(0, len(keys))]))
for key, outputs in inference_data.items():
# last number is confidence
bboxes[key] = [list(o) for o in outputs if o[-1] > 0]
self.bbox_count += len(bboxes[key])
image_html = digits.utils.image.embed_image_html(image)
return {
'image': image_html,
'bboxes': bboxes,
'index': self.image_count,
}
| DIGITS-master | digits/extensions/view/boundingBox/view.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .view import Visualization
__all__ = ['Visualization']
| DIGITS-master | digits/extensions/view/rawData/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from digits.utils import subclass
from flask_wtf import Form
@subclass
class ConfigForm(Form):
pass
| DIGITS-master | digits/extensions/view/rawData/forms.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
from digits.utils import subclass, override
from .forms import ConfigForm
from ..interface import VisualizationInterface
CONFIG_TEMPLATE = "config_template.html"
VIEW_TEMPLATE = "view_template.html"
@subclass
class Visualization(VisualizationInterface):
"""
A visualization extension to display raw data
"""
def __init__(self, dataset, **kwargs):
# memorize view template for later use
extension_dir = os.path.dirname(os.path.abspath(__file__))
self.view_template = open(
os.path.join(extension_dir, VIEW_TEMPLATE), "r").read()
@staticmethod
def get_config_form():
return ConfigForm()
@staticmethod
def get_config_template(form):
"""
parameters:
- form: form returned by get_config_form(). This may be populated
with values if the job was cloned
return:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(
os.path.join(extension_dir, CONFIG_TEMPLATE), "r").read()
return (template, {})
@staticmethod
def get_id():
return 'all-raw-data'
@staticmethod
def get_title():
return 'Raw Data'
@override
def get_view_template(self, data):
"""
return:
- (template, context) tuple
- template is a Jinja template to use for rendering config options
- context is a dictionary of context variables to use for rendering
the form
"""
return self.view_template, {'data': data}
@override
def process_data(
self,
input_id,
input_data,
inference_data,
ground_truth=None):
"""
Process one inference output
"""
# just return the same data and ignore ground truth
return inference_data
| DIGITS-master | digits/extensions/view/rawData/view.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
class DataIngestionInterface(object):
"""
A data ingestion extension
"""
def __init__(self, is_inference_db=False, **kwargs):
"""
Initialize the data ingestion extension
Parameters:
- is_inference_db: boolean value, indicates whether the database is
created for inference. If this is true then the extension needs to
use the data from the inference form and create a database only for
the test phase (stage == constants.TEST_DB)
- kwargs: dataset form fields
"""
# save all data there - no other fields will be persisted
self.userdata = kwargs
# populate instance from userdata dictionary
for k, v in self.userdata.items():
setattr(self, k, v)
def encode_entry(self, entry):
"""
Encode the entry associated with specified ID (returned by
itemize_entries())
Returns a list of (feature, label) tuples, or a single tuple
if there is only one sample for the entry.
Data are expected in HWC format
Color images are expected in RGB order
"""
raise NotImplementedError
@staticmethod
def get_category():
raise NotImplementedError
@staticmethod
def get_dataset_form():
"""
Return a Form object with all fields required to create the dataset
"""
raise NotImplementedError
@staticmethod
def get_dataset_template(form):
"""
Parameters:
- form: form returned by get_dataset_form(). This may be populated
with values if the job was cloned
return:
- (template, context) tuple
- template is a Jinja template to use for rendering dataset creation
options
- context is a dictionary of context variables to use for rendering
the form
"""
raise NotImplementedError
@staticmethod
def get_id():
"""
Return unique ID
"""
raise NotImplementedError
def get_inference_form(self):
"""
Return a Form object with all fields required to create an inference dataset
"""
return None
@staticmethod
def get_inference_template(form):
"""
Parameters:
- form: form returned by get_inference_form().
return:
- (template, context) tuple
- template is a Jinja template to use for rendering the inference form
- context is a dictionary of context variables to use for rendering
the form
"""
return (None, None)
@staticmethod
def get_title():
"""
Return get_title
"""
raise NotImplementedError
def get_user_data(self):
"""
Return serializable user data
The data will be persisted as part of the dataset job data
"""
return self.userdata
def itemize_entries(self, stage):
"""
Return a list of entry IDs to encode
This function is called on the main thread
The returned list will be spread across all reader threads
Reader threads will call encode_entry() with IDs returned by
this function in no particular order
"""
raise NotImplementedError
| DIGITS-master | digits/extensions/data/interface.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import copy
from pkg_resources import iter_entry_points
from . import imageProcessing
from . import imageSegmentation
from . import objectDetection
# Entry point group (this is the key we use to register and
# find installed plug-ins)
GROUP = "digits.plugins.data"
# built-in extensions
builtin_data_extensions = [
imageProcessing.DataIngestion,
imageSegmentation.DataIngestion,
objectDetection.DataIngestion,
]
def get_extensions():
"""
return set of data data extensions
"""
extensions = copy.copy(builtin_data_extensions)
# find installed extension plug-ins
for entry_point in iter_entry_points(group=GROUP, name=None):
extensions.append(entry_point.load())
return extensions
def get_extension(extension_id):
"""
return extension associated with specified extension_id
"""
for extension in get_extensions():
if extension.get_id() == extension_id:
return extension
return None
| DIGITS-master | digits/extensions/data/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .data import DataIngestion
__all__ = ['DataIngestion']
| DIGITS-master | digits/extensions/data/imageSegmentation/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
from flask_wtf import Form
from wtforms import validators
from digits import utils
from digits.utils import subclass
from digits.utils.forms import validate_required_iff
@subclass
class DatasetForm(Form):
"""
A form used to create an image processing dataset
"""
def validate_folder_path(form, field):
if not field.data:
pass
else:
# make sure the filesystem path exists
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError(
'Folder does not exist or is not reachable')
else:
return True
def validate_file_path(form, field):
if not field.data:
pass
else:
# make sure the filesystem path exists
if not os.path.exists(field.data) and not os.path.isdir(field.data):
raise validators.ValidationError(
'File does not exist or is not reachable')
else:
return True
feature_folder = utils.forms.StringField(
u'Feature image folder',
validators=[
validators.DataRequired(),
validate_folder_path,
],
tooltip="Indicate a folder full of images."
)
label_folder = utils.forms.StringField(
u'Label image folder',
validators=[
validators.DataRequired(),
validate_folder_path,
],
tooltip="Indicate a folder full of images. For each image in the feature"
" image folder there must be one corresponding image in the label"
" image folder. The label image must have the same filename except"
" for the extension, which may differ. Label images are expected"
" to be single-channel images (paletted or grayscale), or RGB"
" images, in which case the color/class mappings need to be"
" specified through a separate text file."
)
folder_pct_val = utils.forms.IntegerField(
u'% for validation',
default=10,
validators=[
validators.NumberRange(min=0, max=100)
],
tooltip="You can choose to set apart a certain percentage of images "
"from the training images for the validation set."
)
has_val_folder = utils.forms.BooleanField('Separate validation images',
default=False,
)
validation_feature_folder = utils.forms.StringField(
u'Validation feature image folder',
validators=[
validate_required_iff(has_val_folder=True),
validate_folder_path,
],
tooltip="Indicate a folder full of images."
)
validation_label_folder = utils.forms.StringField(
u'Validation label image folder',
validators=[
validate_required_iff(has_val_folder=True),
validate_folder_path,
],
tooltip="Indicate a folder full of images. For each image in the feature"
" image folder there must be one corresponding image in the label"
" image folder. The label image must have the same filename except"
" for the extension, which may differ. Label images are expected"
" to be single-channel images (paletted or grayscale), or RGB"
" images, in which case the color/class mappings need to be"
" specified through a separate text file."
)
channel_conversion = utils.forms.SelectField(
'Channel conversion',
choices=[
('RGB', 'RGB'),
('L', 'Grayscale'),
('none', 'None'),
],
default='none',
tooltip="Perform selected channel conversion on feature images. Label"
" images are single channel and not affected by this parameter."
)
class_labels_file = utils.forms.StringField(
u'Class labels (optional)',
validators=[
validate_file_path,
],
tooltip="The 'i'th line of the file should give the string label "
"associated with the '(i-1)'th numeric label. (E.g. the "
"string label for the numeric label 0 is supposed to be "
"on line 1.)"
)
colormap_method = utils.forms.SelectField(
'Color map specification',
choices=[
('label', 'From label image'),
('textfile', 'From text file'),
],
default='label',
tooltip="Specify how to map class IDs to colors. Select 'From label "
"image' to use palette or grayscale from label images. For "
"RGB image labels, select 'From text file' and provide "
"color map in separate text file."
)
colormap_text_file = utils.forms.StringField(
'Color map file',
validators=[
validate_required_iff(colormap_method="textfile"),
validate_file_path,
],
tooltip="Specify color/class mappings through a text file. "
"Each line in the file should contain three space-separated "
"integer values, one for each of the Red, Green, Blue "
"channels. The 'i'th line of the file should give the color "
"associated with the '(i-1)'th class. (E.g. the "
"color for class #0 is supposed to be on line 1.)"
)
| DIGITS-master | digits/extensions/data/imageSegmentation/forms.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import math
import os
import random
import numpy as np
import PIL.Image
import PIL.ImagePalette
from digits.utils import image, subclass, override, constants
from digits.utils.constants import COLOR_PALETTE_ATTRIBUTE
from ..interface import DataIngestionInterface
from .forms import DatasetForm
TEMPLATE = "template.html"
@subclass
class DataIngestion(DataIngestionInterface):
"""
A data ingestion extension for an image segmentation dataset
"""
def __init__(self, **kwargs):
"""
the parent __init__ method automatically populates this
instance with attributes from the form
"""
super(DataIngestion, self).__init__(**kwargs)
self.random_indices = None
if 'seed' not in self.userdata:
# choose random seed and add to userdata so it gets persisted
self.userdata['seed'] = random.randint(0, 1000)
if 'colormap_method' not in self.userdata:
self.userdata['colormap_method'] = 'label'
random.seed(self.userdata['seed'])
if self.userdata['colormap_method'] == "label":
# open first image in label folder to retrieve palette
# all label images must use the same palette - this is enforced
# during dataset creation
filename = self.make_image_list(self.label_folder)[0]
image = self.load_label(filename)
self.userdata[COLOR_PALETTE_ATTRIBUTE] = image.getpalette()
else:
# read colormap from file
with open(self.colormap_text_file) as f:
palette = []
lines = f.read().splitlines()
for line in lines:
for val in line.split():
try:
palette.append(int(val))
except:
raise ValueError("Your color map file seems to "
"be badly formatted: '%s' is not "
"an integer" % val)
# fill rest with zeros
palette = palette + [0] * (256 * 3 - len(palette))
self.userdata[COLOR_PALETTE_ATTRIBUTE] = palette
self.palette_img = PIL.Image.new("P", (1, 1))
self.palette_img.putpalette(palette)
# get labels if those were provided
if self.class_labels_file:
with open(self.class_labels_file) as f:
self.userdata['class_labels'] = f.read().splitlines()
@override
def encode_entry(self, entry):
"""
Return numpy.ndarray
"""
feature_image_file = entry[0]
label_image_file = entry[1]
# feature image
feature_image = self.encode_PIL_Image(
image.load_image(feature_image_file),
self.channel_conversion)
# label image
label_image = self.load_label(label_image_file)
if label_image.getpalette() != self.userdata[COLOR_PALETTE_ATTRIBUTE]:
raise ValueError("All label images must use the same palette")
label_image = self.encode_PIL_Image(label_image)
return feature_image, label_image
def encode_PIL_Image(self, image, channel_conversion='none'):
if channel_conversion != 'none':
if image.mode != channel_conversion:
# convert to different image mode if necessary
image = image.convert(channel_conversion)
# convert to numpy array
image = np.array(image)
# add channel axis if input is grayscale image
if image.ndim == 2:
image = image[..., np.newaxis]
elif image.ndim != 3:
raise ValueError("Unhandled number of channels: %d" % image.ndim)
# transpose to CHW
image = image.transpose(2, 0, 1)
return image
@staticmethod
@override
def get_category():
return "Images"
@staticmethod
@override
def get_id():
return "image-segmentation"
@staticmethod
@override
def get_dataset_form():
return DatasetForm()
@staticmethod
@override
def get_dataset_template(form):
"""
parameters:
- form: form returned by get_dataset_form(). This may be populated
with values if the job was cloned
returns:
- (template, context) tuple
- template is a Jinja template to use for rendering dataset creation
options
- context is a dictionary of context variables to use for rendering
the form
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(os.path.join(extension_dir, TEMPLATE), "r").read()
context = {'form': form}
return (template, context)
@staticmethod
@override
def get_title():
return "Segmentation"
@override
def itemize_entries(self, stage):
if stage == constants.TEST_DB:
# don't retun anything for the test stage
return []
if stage == constants.TRAIN_DB or (not self.has_val_folder):
feature_image_list = self.make_image_list(self.feature_folder)
label_image_list = self.make_image_list(self.label_folder)
else:
# separate validation images
feature_image_list = self.make_image_list(self.validation_feature_folder)
label_image_list = self.make_image_list(self.validation_label_folder)
# make sure filenames match
if len(feature_image_list) != len(label_image_list):
raise ValueError(
"Expect same number of images in feature and label folders (%d!=%d)"
% (len(feature_image_list), len(label_image_list)))
for idx in range(len(feature_image_list)):
feature_name = os.path.splitext(
os.path.split(feature_image_list[idx])[1])[0]
label_name = os.path.splitext(
os.path.split(label_image_list[idx])[1])[0]
if feature_name != label_name:
raise ValueError("No corresponding feature/label pair found for (%s,%s)"
% (feature_name, label_name))
# split lists if there is no val folder
if not self.has_val_folder:
feature_image_list = self.split_image_list(feature_image_list, stage)
label_image_list = self.split_image_list(label_image_list, stage)
return zip(
feature_image_list,
label_image_list)
def load_label(self, filename):
"""
Load a label image
"""
image = PIL.Image.open(filename)
if self.userdata['colormap_method'] == "label":
if image.mode not in ['P', 'L', '1']:
raise ValueError("Labels are expected to be single-channel (paletted or "
" grayscale) images - %s mode is '%s'. If your labels are "
"RGB images then set the 'Color Map Specification' field "
"to 'from text file' and provide a color map text file."
% (filename, image.mode))
else:
if image.mode not in ['RGB']:
raise ValueError("Labels are expected to be RGB images - %s mode is '%s'. "
"If your labels are palette or grayscale images then set "
"the 'Color Map Specification' field to 'from label image'."
% (filename, image.mode))
image = image.quantize(palette=self.palette_img)
return image
def make_image_list(self, folder):
image_files = []
for dirpath, dirnames, filenames in os.walk(folder, followlinks=True):
for filename in filenames:
if filename.lower().endswith(image.SUPPORTED_EXTENSIONS):
image_files.append('%s' % os.path.join(dirpath, filename))
if len(image_files) == 0:
raise ValueError("Unable to find supported images in %s" % folder)
return sorted(image_files)
def split_image_list(self, filelist, stage):
if self.random_indices is None:
self.random_indices = range(len(filelist))
random.shuffle(self.random_indices)
elif len(filelist) != len(self.random_indices):
raise ValueError(
"Expect same number of images in folders (%d!=%d)"
% (len(filelist), len(self.random_indices)))
filelist = [filelist[idx] for idx in self.random_indices]
pct_val = int(self.folder_pct_val)
n_val_entries = int(math.floor(len(filelist) * pct_val / 100))
if stage == constants.VAL_DB:
return filelist[:n_val_entries]
elif stage == constants.TRAIN_DB:
return filelist[n_val_entries:]
else:
raise ValueError("Unknown stage: %s" % stage)
| DIGITS-master | digits/extensions/data/imageSegmentation/data.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .data import DataIngestion
__all__ = ['DataIngestion']
| DIGITS-master | digits/extensions/data/objectDetection/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from flask_wtf import Form
import os
from wtforms import validators
from digits import utils
from digits.utils import subclass
from digits.utils.forms import validate_required_if_set
@subclass
class DatasetForm(Form):
"""
A form used to create an image processing dataset
"""
def validate_folder_path(form, field):
if not field.data:
pass
else:
# make sure the filesystem path exists
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError('Folder does not exist or is not reachable')
else:
return True
train_image_folder = utils.forms.StringField(
u'Training image folder',
validators=[
validators.DataRequired(),
validate_folder_path,
],
tooltip="Indicate a folder of images to use for training"
)
train_label_folder = utils.forms.StringField(
u'Training label folder',
validators=[
validators.DataRequired(),
validate_folder_path,
],
tooltip="Indicate a folder of training labels"
)
val_image_folder = utils.forms.StringField(
u'Validation image folder',
validators=[
validate_required_if_set('val_label_folder'),
validate_folder_path,
],
tooltip="Indicate a folder of images to use for training"
)
val_label_folder = utils.forms.StringField(
u'Validation label folder',
validators=[
validate_required_if_set('val_image_folder'),
validate_folder_path,
],
tooltip="Indicate a folder of validation labels"
)
resize_image_width = utils.forms.IntegerField(
u'Resize Image Width',
validators=[
validate_required_if_set('resize_image_height'),
validators.NumberRange(min=1),
],
tooltip="If specified, images will be resized to that dimension after padding"
)
resize_image_height = utils.forms.IntegerField(
u'Resize Image Height',
validators=[
validate_required_if_set('resize_image_width'),
validators.NumberRange(min=1),
],
tooltip="If specified, images will be resized to that dimension after padding"
)
padding_image_width = utils.forms.IntegerField(
u'Padding Image Width',
default=1248,
validators=[
validate_required_if_set('padding_image_height'),
validators.NumberRange(min=1),
],
tooltip="If specified, images will be padded to that dimension"
)
padding_image_height = utils.forms.IntegerField(
u'Padding Image Height',
default=384,
validators=[
validate_required_if_set('padding_image_width'),
validators.NumberRange(min=1),
],
tooltip="If specified, images will be padded to that dimension"
)
channel_conversion = utils.forms.SelectField(
u'Channel conversion',
choices=[
('RGB', 'RGB'),
('L', 'Grayscale'),
('none', 'None'),
],
default='RGB',
tooltip="Perform selected channel conversion."
)
val_min_box_size = utils.forms.IntegerField(
u'Minimum box size (in pixels) for validation set',
default='25',
validators=[
validators.InputRequired(),
validators.NumberRange(min=0),
],
tooltip="Retain only the boxes that are larger than the specified "
"value in both dimensions. This only affects objects in "
"the validation set. Enter 0 to disable this threshold."
)
custom_classes = utils.forms.StringField(
u'Custom classes',
validators=[
validators.Optional(),
],
tooltip="Enter a comma-separated list of class names. "
"Class IDs are assigned sequentially, starting from 0. "
"Unmapped class names automatically map to 0. "
"Leave this field blank to use default class mappings. "
"See object detection extension documentation for more "
"information."
)
| DIGITS-master | digits/extensions/data/objectDetection/forms.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
import csv
import os
import numpy as np
import PIL.Image
class ObjectType:
Dontcare, Car, Van, Truck, Bus, Pickup, VehicleWithTrailer, SpecialVehicle,\
Person, Person_fa, Person_unsure, People, Cyclist, Tram, Person_Sitting,\
Misc = range(16)
def __init__(self):
pass
class Bbox:
def __init__(self, x_left=0, y_top=0, x_right=0, y_bottom=0):
self.xl = x_left
self.yt = y_top
self.xr = x_right
self.yb = y_bottom
def area(self):
return (self.xr - self.xl) * (self.yb - self.yt)
def width(self):
return self.xr - self.xl
def height(self):
return self.yb - self.yt
def get_array(self):
return [self.xl, self.yt, self.xr, self.yb]
class GroundTruthObj:
""" This class is the data ground-truth
#Values Name Description
----------------------------------------------------------------------------
1 type Class ID
1 truncated Float from 0 (non-truncated) to 1 (truncated), where
truncated refers to the object leaving image boundaries.
-1 corresponds to a don't care region.
1 occluded Integer (-1,0,1,2) indicating occlusion state:
-1 = unknown, 0 = fully visible,
1 = partly occluded, 2 = largely occluded
1 alpha Observation angle of object, ranging [-pi..pi]
4 bbox 2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x,y,z in camera coordinates (in meters)
1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi]
1 score Only for results: Float, indicating confidence in
detection, needed for p/r curves, higher is better.
Here, 'DontCare' labels denote regions in which objects have not been labeled,
for example because they have been too far away from the laser scanner.
"""
# default class mappings
OBJECT_TYPES = {
'bus': ObjectType.Bus,
'car': ObjectType.Car,
'cyclist': ObjectType.Cyclist,
'pedestrian': ObjectType.Person,
'people': ObjectType.People,
'person': ObjectType.Person,
'person_sitting': ObjectType.Person_Sitting,
'person-fa': ObjectType.Person_fa,
'person?': ObjectType.Person_unsure,
'pickup': ObjectType.Pickup,
'misc': ObjectType.Misc,
'special-vehicle': ObjectType.SpecialVehicle,
'tram': ObjectType.Tram,
'truck': ObjectType.Truck,
'van': ObjectType.Van,
'vehicle-with-trailer': ObjectType.VehicleWithTrailer}
def __init__(self):
self.stype = ''
self.truncated = 0
self.occlusion = 0
self.angle = 0
self.height = 0
self.width = 0
self.length = 0
self.locx = 0
self.locy = 0
self.locz = 0
self.roty = 0
self.bbox = Bbox()
self.object = ObjectType.Dontcare
@classmethod
def lmdb_format_length(cls):
"""
width of an LMDB datafield returned by the gt_to_lmdb_format function.
:return:
"""
return 16
def gt_to_lmdb_format(self):
"""
For storage of a bbox ground truth object into a float32 LMDB.
Sort-by attribute is always the last value in the array.
"""
result = [
# bbox in x,y,w,h format:
self.bbox.xl,
self.bbox.yt,
self.bbox.xr - self.bbox.xl,
self.bbox.yb - self.bbox.yt,
# alpha angle:
self.angle,
# class number:
self.object,
0,
# Y axis rotation:
self.roty,
# bounding box attributes:
self.truncated,
self.occlusion,
# object dimensions:
self.length,
self.width,
self.height,
self.locx,
self.locy,
# depth (sort-by attribute):
self.locz,
]
assert(len(result) is self.lmdb_format_length())
return result
def set_type(self):
self.object = self.OBJECT_TYPES.get(self.stype, ObjectType.Dontcare)
class GroundTruth:
"""
this class loads the ground truth
"""
def __init__(self,
label_dir,
label_ext='.txt',
label_delimiter=' ',
min_box_size=None,
class_mappings=None):
self.label_dir = label_dir
self.label_ext = label_ext # extension of label files
self.label_delimiter = label_delimiter # space is used as delimiter in label files
self._objects_all = dict() # positive bboxes across images
self.min_box_size = min_box_size
if class_mappings is not None:
GroundTruthObj.OBJECT_TYPES = class_mappings
def update_objects_all(self, _key, _bboxes):
if _bboxes:
self._objects_all[_key] = _bboxes
else:
self._objects_all[_key] = []
def load_gt_obj(self):
""" load bbox ground truth from files either via the provided label directory or list of label files"""
files = os.listdir(self.label_dir)
files = filter(lambda x: x.endswith(self.label_ext), files)
if len(files) == 0:
raise RuntimeError('error: no label files found in %s' % self.label_dir)
for label_file in files:
objects_per_image = list()
with open(os.path.join(self.label_dir, label_file), 'rb') as flabel:
for row in csv.reader(flabel, delimiter=self.label_delimiter):
if len(row) == 0:
# This can happen when you open an empty file
continue
if len(row) < 15:
raise ValueError('Invalid label format in "%s"'
% os.path.join(self.label_dir, label_file))
# load data
gt = GroundTruthObj()
gt.stype = row[0].lower()
gt.truncated = float(row[1])
gt.occlusion = int(row[2])
gt.angle = float(row[3])
gt.bbox.xl = float(row[4])
gt.bbox.yt = float(row[5])
gt.bbox.xr = float(row[6])
gt.bbox.yb = float(row[7])
gt.height = float(row[8])
gt.width = float(row[9])
gt.length = float(row[10])
gt.locx = float(row[11])
gt.locy = float(row[12])
gt.locz = float(row[13])
gt.roty = float(row[14])
gt.set_type()
box_dimensions = [gt.bbox.xr - gt.bbox.xl, gt.bbox.yb - gt.bbox.yt]
if self.min_box_size is not None:
if not all(x >= self.min_box_size for x in box_dimensions):
# object is smaller than threshold => set to "DontCare"
gt.stype = ''
gt.object = ObjectType.Dontcare
objects_per_image.append(gt)
key = os.path.splitext(label_file)[0]
self.update_objects_all(key, objects_per_image)
@property
def objects_all(self):
return self._objects_all
# return the # of pixels remaining in a
def pad_bbox(arr, max_bboxes=64, bbox_width=16):
if arr.shape[0] > max_bboxes:
raise ValueError(
'Too many bounding boxes (%d > %d)' % arr.shape[0], max_bboxes
)
# fill remainder with zeroes:
data = np.zeros((max_bboxes + 1, bbox_width), dtype='float')
# number of bounding boxes:
data[0][0] = arr.shape[0]
# width of a bounding box:
data[0][1] = bbox_width
# bounding box data. Merge nothing if no bounding boxes exist.
if arr.shape[0] > 0:
data[1:1 + arr.shape[0]] = arr
return data
def bbox_to_array(arr, label=0, max_bboxes=64, bbox_width=16):
"""
Converts a 1-dimensional bbox array to an image-like
3-dimensional array CHW array
"""
arr = pad_bbox(arr, max_bboxes, bbox_width)
return arr[np.newaxis, :, :]
def bbox_overlap(abox, bbox):
# the abox box
x11 = abox[0]
y11 = abox[1]
x12 = abox[0] + abox[2] - 1
y12 = abox[1] + abox[3] - 1
# the closer box
x21 = bbox[0]
y21 = bbox[1]
x22 = bbox[0] + bbox[2] - 1
y22 = bbox[1] + bbox[3] - 1
overlap_box_x2 = min(x12, x22)
overlap_box_x1 = max(x11, x21)
overlap_box_y2 = min(y12, y22)
overlap_box_y1 = max(y11, y21)
# make sure we preserve any non-bbox components
overlap_box = list(bbox)
overlap_box[0] = overlap_box_x1
overlap_box[1] = overlap_box_y1
overlap_box[2] = overlap_box_x2 - overlap_box_x1 + 1
overlap_box[3] = overlap_box_y2 - overlap_box_y1 + 1
xoverlap = max(0, overlap_box_x2 - overlap_box_x1)
yoverlap = max(0, overlap_box_y2 - overlap_box_y1)
overlap_pix = xoverlap * yoverlap
return overlap_pix, overlap_box
def pad_image(img, padding_image_height, padding_image_width):
"""
pad a single image to the specified dimensions
"""
src_width = img.size[0]
src_height = img.size[1]
if padding_image_width < src_width:
raise ValueError("Source image width %d is greater than padding width %d" % (src_width, padding_image_width))
if padding_image_height < src_height:
raise ValueError("Source image height %d is greater than padding height %d" %
(src_height, padding_image_height))
padded_img = PIL.Image.new(
img.mode,
(padding_image_width, padding_image_height),
"black")
padded_img.paste(img, (0, 0)) # copy to top-left corner
return padded_img
def resize_bbox_list(bboxlist, rescale_x=1, rescale_y=1):
# this is expecting x1,y1,w,h:
bboxListNew = []
for bbox in bboxlist:
abox = bbox
abox[0] *= rescale_x
abox[1] *= rescale_y
abox[2] *= rescale_x
abox[3] *= rescale_y
bboxListNew.append(abox)
return bboxListNew
| DIGITS-master | digits/extensions/data/objectDetection/utils.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import csv
import operator
import os
import random
import StringIO
import numpy as np
import digits
from digits.utils import subclass, override, constants
from ..interface import DataIngestionInterface
from .forms import DatasetForm
from .utils import GroundTruth, GroundTruthObj
from .utils import bbox_to_array, pad_image, resize_bbox_list
TEMPLATE = "template.html"
@subclass
class DataIngestion(DataIngestionInterface):
"""
A data ingestion extension for an object detection dataset
"""
def __init__(self, **kwargs):
super(DataIngestion, self).__init__(**kwargs)
# this instance is automatically populated with form field
# attributes by superclass constructor
if hasattr(self, 'custom_classes') and self.custom_classes != '':
s = StringIO.StringIO(self.custom_classes)
reader = csv.reader(s)
self.class_mappings = {}
for idx, name in enumerate(reader.next()):
self.class_mappings[name.strip().lower()] = idx
else:
self.class_mappings = None
# this will be set when we know the phase we are encoding
self.ground_truth = None
@override
def encode_entry(self, entry):
"""
Return numpy.ndarray
"""
image_filename = entry
# (1) image part
# load from file (this returns a PIL image)
img = digits.utils.image.load_image(image_filename)
if self.channel_conversion != 'none':
if img.mode != self.channel_conversion:
# convert to different image mode if necessary
img = img.convert(self.channel_conversion)
# note: the form validator ensured that either none
# or both width/height were specified
if self.padding_image_width:
# pad image
img = pad_image(
img,
self.padding_image_height,
self.padding_image_width)
if self.resize_image_width is not None:
resize_ratio_x = float(self.resize_image_width) / img.size[0]
resize_ratio_y = float(self.resize_image_height) / img.size[1]
# resize and convert to numpy HWC
img = digits.utils.image.resize_image(
img,
self.resize_image_height,
self.resize_image_width)
else:
resize_ratio_x = 1
resize_ratio_y = 1
# convert to numpy array
img = np.array(img)
if img.ndim == 2:
# grayscale
img = img[np.newaxis, :, :]
if img.dtype == 'uint16':
img = img.astype(float)
else:
if img.ndim != 3 or img.shape[2] != 3:
raise ValueError("Unsupported image shape: %s" % repr(img.shape))
# HWC -> CHW
img = img.transpose(2, 0, 1)
# (2) label part
# make sure label exists
label_id = os.path.splitext(os.path.basename(entry))[0]
if label_id not in self.datasrc_annotation_dict:
raise ValueError("Label key %s not found in label folder" % label_id)
annotations = self.datasrc_annotation_dict[label_id]
# collect bbox list into bboxList
bboxList = []
for bbox in annotations:
# retrieve all vars defining groundtruth, and interpret all
# serialized values as float32s:
np_bbox = np.array(bbox.gt_to_lmdb_format())
bboxList.append(np_bbox)
bboxList = sorted(
bboxList,
key=operator.itemgetter(GroundTruthObj.lmdb_format_length() - 1)
)
bboxList.reverse()
# adjust bboxes according to image cropping
bboxList = resize_bbox_list(bboxList, resize_ratio_x, resize_ratio_y)
# return data
feature = img
label = np.asarray(bboxList)
# LMDB compaction: now label (aka bbox) is the joint array
label = bbox_to_array(
label,
0,
max_bboxes=self.max_bboxes,
bbox_width=GroundTruthObj.lmdb_format_length())
return feature, label
@staticmethod
@override
def get_category():
return "Images"
@staticmethod
@override
def get_id():
return "image-object-detection"
@staticmethod
@override
def get_dataset_form():
return DatasetForm()
@staticmethod
@override
def get_dataset_template(form):
"""
parameters:
- form: form returned by get_dataset_form(). This may be populated with values if the job was cloned
return:
- (template, context) tuple
template is a Jinja template to use for rendering dataset creation options
context is a dictionary of context variables to use for rendering the form
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(os.path.join(extension_dir, TEMPLATE), "r").read()
context = {'form': form}
return (template, context)
@staticmethod
@override
def get_title():
return "Object Detection"
@override
def itemize_entries(self, stage):
"""
return list of image file names to encode for specified stage
"""
if stage == constants.TEST_DB:
# don't retun anything for the test stage
return []
elif stage == constants.TRAIN_DB:
# load ground truth
self.load_ground_truth(self.train_label_folder)
# get training image file names
return self.make_image_list(self.train_image_folder)
elif stage == constants.VAL_DB:
if self.val_image_folder != '':
# load ground truth
self.load_ground_truth(
self.val_label_folder,
self.val_min_box_size)
# get validation image file names
return self.make_image_list(self.val_image_folder)
else:
# no validation folder was specified
return []
else:
raise ValueError("Unknown stage: %s" % stage)
def load_ground_truth(self, folder, min_box_size=None):
"""
load ground truth from specified folder
"""
datasrc = GroundTruth(
folder,
min_box_size=min_box_size,
class_mappings=self.class_mappings)
datasrc.load_gt_obj()
self.datasrc_annotation_dict = datasrc.objects_all
scene_files = []
for key in self.datasrc_annotation_dict:
scene_files.append(key)
# determine largest label height:
self.max_bboxes = max([len(annotation) for annotation in self.datasrc_annotation_dict.values()])
def make_image_list(self, folder):
"""
find all supported images within specified folder and return list of file names
"""
image_files = []
for dirpath, dirnames, filenames in os.walk(folder, followlinks=True):
for filename in filenames:
if filename.lower().endswith(digits.utils.image.SUPPORTED_EXTENSIONS):
image_files.append('%s' % os.path.join(dirpath, filename))
if len(image_files) == 0:
raise ValueError("Unable to find supported images in %s" % folder)
# shuffle
random.shuffle(image_files)
return image_files
| DIGITS-master | digits/extensions/data/objectDetection/data.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from .data import DataIngestion
__all__ = ['DataIngestion']
| DIGITS-master | digits/extensions/data/imageProcessing/__init__.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import os
from flask_wtf import Form
from wtforms import validators
from digits import utils
from digits.utils import subclass
from digits.utils.forms import validate_required_iff
@subclass
class DatasetForm(Form):
"""
A form used to create an image processing dataset
"""
def validate_folder_path(form, field):
if not field.data:
pass
else:
# make sure the filesystem path exists
if not os.path.exists(field.data) or not os.path.isdir(field.data):
raise validators.ValidationError(
'Folder does not exist or is not reachable')
else:
return True
feature_folder = utils.forms.StringField(
u'Feature image folder',
validators=[
validators.DataRequired(),
validate_folder_path,
],
tooltip="Indicate a folder full of images."
)
label_folder = utils.forms.StringField(
u'Label image folder',
validators=[
validators.DataRequired(),
validate_folder_path,
],
tooltip="Indicate a folder full of images. For each image in the feature"
" image folder there must be one corresponding image in the label"
" image folder. The label image must have the same filename except"
" for the extension, which may differ."
)
folder_pct_val = utils.forms.IntegerField(
u'% for validation',
default=10,
validators=[
validators.NumberRange(min=0, max=100)
],
tooltip="You can choose to set apart a certain percentage of images "
"from the training images for the validation set."
)
has_val_folder = utils.forms.BooleanField('Separate validation images',
default=False,
)
validation_feature_folder = utils.forms.StringField(
u'Validation feature image folder',
validators=[
validate_required_iff(has_val_folder=True),
validate_folder_path,
],
tooltip="Indicate a folder full of images."
)
validation_label_folder = utils.forms.StringField(
u'Validation label image folder',
validators=[
validate_required_iff(has_val_folder=True),
validate_folder_path,
],
tooltip="Indicate a folder full of images. For each image in the feature"
" image folder there must be one corresponding image in the label"
" image folder. The label image must have the same filename except"
" for the extension, which may differ."
)
channel_conversion = utils.forms.SelectField(
'Channel conversion',
choices=[
('RGB', 'RGB'),
('L', 'Grayscale'),
('none', 'None'),
],
default='none',
tooltip="Perform selected channel conversion."
)
| DIGITS-master | digits/extensions/data/imageProcessing/forms.py |
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
import math
import os
import random
import numpy as np
from digits.utils import image, subclass, override, constants
from ..interface import DataIngestionInterface
from .forms import DatasetForm
TEMPLATE = "template.html"
@subclass
class DataIngestion(DataIngestionInterface):
"""
A data ingestion extension for an image processing dataset
"""
def __init__(self, **kwargs):
"""
the parent __init__ method automatically populates this
instance with attributes from the form
"""
super(DataIngestion, self).__init__(**kwargs)
self.random_indices = None
if 'seed' not in self.userdata:
# choose random seed and add to userdata so it gets persisted
self.userdata['seed'] = random.randint(0, 1000)
random.seed(self.userdata['seed'])
@override
def encode_entry(self, entry):
"""
Return numpy.ndarray
"""
feature_image_file = entry[0]
label_image_file = entry[1]
feature_image = self.encode_PIL_Image(
image.load_image(feature_image_file))
label_image = self.encode_PIL_Image(
image.load_image(label_image_file))
return feature_image, label_image
def encode_PIL_Image(self, image):
if self.channel_conversion != 'none':
if image.mode != self.channel_conversion:
# convert to different image mode if necessary
image = image.convert(self.channel_conversion)
# convert to numpy array
image = np.array(image)
# add channel axis if input is grayscale image
if image.ndim == 2:
image = image[..., np.newaxis]
elif image.ndim != 3:
raise ValueError("Unhandled number of channels: %d" % image.ndim)
# transpose to CHW
image = image.transpose(2, 0, 1)
return image
@staticmethod
@override
def get_category():
return "Images"
@staticmethod
@override
def get_id():
return "image-processing"
@staticmethod
@override
def get_dataset_form():
return DatasetForm()
@staticmethod
@override
def get_dataset_template(form):
"""
parameters:
- form: form returned by get_dataset_form(). This may be populated
with values if the job was cloned
returns:
- (template, context) tuple
- template is a Jinja template to use for rendering dataset creation
options
- context is a dictionary of context variables to use for rendering
the form
"""
extension_dir = os.path.dirname(os.path.abspath(__file__))
template = open(os.path.join(extension_dir, TEMPLATE), "r").read()
context = {'form': form}
return (template, context)
@staticmethod
@override
def get_title():
return "Processing"
@override
def itemize_entries(self, stage):
if stage == constants.TEST_DB:
# don't retun anything for the test stage
return []
if stage == constants.TRAIN_DB or (not self.has_val_folder):
feature_image_list = self.make_image_list(self.feature_folder)
label_image_list = self.make_image_list(self.label_folder)
else:
# separate validation images
feature_image_list = self.make_image_list(self.validation_feature_folder)
label_image_list = self.make_image_list(self.validation_label_folder)
# make sure filenames match
if len(feature_image_list) != len(label_image_list):
raise ValueError(
"Expect same number of images in feature and label folders (%d!=%d)"
% (len(feature_image_list), len(label_image_list)))
for idx in range(len(feature_image_list)):
feature_name = os.path.splitext(
os.path.split(feature_image_list[idx])[1])[0]
label_name = os.path.splitext(
os.path.split(label_image_list[idx])[1])[0]
if feature_name != label_name:
raise ValueError("No corresponding feature/label pair found for (%s,%s)"
% (feature_name, label_name))
# split lists if there is no val folder
if not self.has_val_folder:
feature_image_list = self.split_image_list(feature_image_list, stage)
label_image_list = self.split_image_list(label_image_list, stage)
return zip(
feature_image_list,
label_image_list)
def make_image_list(self, folder):
image_files = []
for dirpath, dirnames, filenames in os.walk(folder, followlinks=True):
for filename in filenames:
if filename.lower().endswith(image.SUPPORTED_EXTENSIONS):
image_files.append('%s' % os.path.join(dirpath, filename))
if len(image_files) == 0:
raise ValueError("Unable to find supported images in %s" % folder)
return sorted(image_files)
def split_image_list(self, filelist, stage):
if self.random_indices is None:
self.random_indices = range(len(filelist))
random.shuffle(self.random_indices)
elif len(filelist) != len(self.random_indices):
raise ValueError(
"Expect same number of images in folders (%d!=%d)"
% (len(filelist), len(self.random_indices)))
filelist = [filelist[idx] for idx in self.random_indices]
pct_val = int(self.folder_pct_val)
n_val_entries = int(math.floor(len(filelist) * pct_val / 100))
if stage == constants.VAL_DB:
return filelist[:n_val_entries]
elif stage == constants.TRAIN_DB:
return filelist[n_val_entries:]
else:
raise ValueError("Unknown stage: %s" % stage)
| DIGITS-master | digits/extensions/data/imageProcessing/data.py |
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
from __future__ import absolute_import
from . import tasks
from digits.job import Job
from digits.utils import override
# NOTE: Increment this every time the pickled object changes
PICKLE_VERSION = 1
class ModelJob(Job):
"""
A Job that creates a neural network model
"""
def __init__(self, dataset_id, **kwargs):
"""
Arguments:
dataset_id -- the job_id of the DatasetJob that this ModelJob depends on
"""
super(ModelJob, self).__init__(**kwargs)
self.pickver_job_dataset = PICKLE_VERSION
self.dataset_id = dataset_id
self.load_dataset()
def __getstate__(self):
state = super(ModelJob, self).__getstate__()
if 'dataset' in state:
del state['dataset']
return state
def __setstate__(self, state):
super(ModelJob, self).__setstate__(state)
self.dataset = None
@override
def json_dict(self, verbose=False):
d = super(ModelJob, self).json_dict(verbose)
d['dataset_id'] = self.dataset_id
if verbose:
d.update({
'snapshots': [s[1] for s in self.train_task().snapshots],
})
return d
def load_dataset(self):
from digits.webapp import scheduler
job = scheduler.get_job(self.dataset_id)
assert job is not None, 'Cannot find dataset'
self.dataset = job
for task in self.tasks:
task.dataset = job
def train_task(self):
"""Return the first TrainTask for this job"""
return [t for t in self.tasks if isinstance(t, tasks.TrainTask)][0]
def download_files(self):
"""
Returns a list of tuples: [(path, filename)...]
These files get added to an archive when this job is downloaded
"""
return NotImplementedError()
| DIGITS-master | digits/model/job.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.