python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
import argparse import itertools import math import os import subprocess import sys import time import yaml def get_factors(n): factors = [] for i in range(1, n + 1): if i > math.sqrt(n): break if n % i == 0: factors.append(i) if (n // i != i): factors.append(n // i) return sorted(factors) def load_yaml_config(yaml_file, config_name): with open(yaml_file, 'r') as f: config = yaml.safe_load(f)[config_name] return config def generate_command_lines(config, args): generic_cmd = f"{args.launcher_cmd}" generic_cmd += " {0}" generic_cmd += " --pr {1} --pc {2}" if config["skip_correctness_testing"]: generic_cmd += " -s" generic_cmd += f" --gx {args.gx} --gy {args.gy} --gz {args.gz}" cmds = [] prs = get_factors(args.ngpu) pcs = [args.ngpu // x for x in prs] if config['run_autotuning']: prs = [0] + prs pcs = [0] + pcs if (not 0 in config['backend']): config['backend'].append(0) for pr, pc in zip(prs, pcs): for vals in itertools.product(*[config[x] for x in config['args']]): arg_dict = dict(zip(config['args'], vals)) cmd = generic_cmd.format(f"{config['executable_prefix']}", pr, pc) cmd += " " + " ".join([f"--{x} {y}" for x, y in arg_dict.items()]) # Only run full (grid and backend) autotuning cases if (config['run_autotuning']): if ((pr == 0 and pc == 0) and arg_dict["backend"] != 0): continue elif ((pr != 0 and pc != 0) and arg_dict["backend"] == 0): continue extra_flags = [] extra_flags.append(['-m' if x else '' for x in config['managed_memory']]) extra_flags.append(['-o' if x else '' for x in config['out_of_place']]) extra_flags.append(['--acx 1 --acy 1 --acz 1' if x else '' for x in config['axis_contiguous']]) for extras in itertools.product(*extra_flags): cmds.append(f"{cmd} {' '.join(filter(lambda x: x != '', extras))}") return cmds def setup_env(config, args): print("Setting environment variables...") # Environment variables from config for var, val in config['env_vars'].items(): os.environ[var] = f"{val}" print(f"Set {var} = {val}") # Dynamically setting NVSHMEM_SYMMETRIC_SIZE based on expected workspace size # for input grid dimensions (with 5% margin) symmetric_size = 0 wordsize = 8 if "_f" in config["executable_prefix"] else 16 if "c2c" in config["executable_prefix"]: symmetric_size = 2 * (args.gx * args.gy * args.gz * wordsize) // args.ngpu else: symmetric_size = 2* ((args.gx // 2 + 1) * args.gy * args.gz * wordsize) // args.ngpu symmetric_size = int(1.05 * symmetric_size) os.environ["NVSHMEM_SYMMETRIC_SIZE"] = f"{symmetric_size}" print(f"Set NVSHMEM_SYMMETRIC_SIZE = {symmetric_size}") def add_csv_entry(csvfile, cmd, stdout_str): if not os.path.exists(csvfile): # Create file with header with open(csvfile, 'w') as f: f.write("nx,ny,nz,fft_mode,precision,pr,pc,backend," "acx,acy,acz,out_of_place,managed," "tmin,tmax,tavg,tstd,gfmin,gfmax,gfavg,gfstd," "at_grid,at_backend,at_results\n") at_grid = "--pr 0" in cmd and "--pc 0" in cmd at_backend = "--backend 0" in cmd lines = stdout_str.split('\n') at_lines = [x for x in lines if "CUDECOMP:" in x] at_results = [] if at_lines: for i, line in enumerate(at_lines): if "grid:" in line and not "SELECTED" in line: grid = line.split(', ')[0].split(': ')[-1].strip() backend = line.split(', ')[1].split(': ')[-1].strip() tmin, tmax, tavg, tstd = [float(x) for x in at_lines[i+1].split(': ')[-1].split('/')] at_results.append(f"{grid},{backend},{tmin},{tmax},{tavg},{tstd}") if at_results: at_results_str = ";".join(at_results) else: at_results_str = "" results_lines = stdout_str.split("Result Summary:")[-1].split('\n') for line in results_lines: line = line.strip() if "FFT size" in line: nx, ny, nz = [int(x) for x in line.split(': ')[1].split('x')] elif "FFT mode" in line: fft_mode = line.split(': ')[1] elif "Precision" in line: precision = line.split(': ')[1] elif "Process grid" in line: pr, pc = [int(x) for x in line.split(': ')[1].split('x')] elif "Comm backend" in line: backend = line.split(': ')[1] elif "Axis contiguous" in line: acx, acy, acz = [int(x) for x in line.split(': ')[1].split(' ')] elif "Out of place" in line: out_of_place = True if "true" in line.split(': ')[1] else False elif "Managed memory" in line: managed = True if "true" in line.split(': ')[1] else False elif "Time" in line: tmin, tmax, tavg, tstd = [float(x) for x in line.split(': ')[1].split('/')] elif "Throughput" in line: gfmin, gfmax, gfavg, gfstd = [float(x) for x in line.split(': ')[1].split('/')] with open(csvfile, 'a') as f: f.write(f"{nx},{ny},{nz},{fft_mode},{precision},{pr},{pc},{backend}," f"{acx},{acy},{acz},{out_of_place},{managed}," f"{tmin},{tmax},{tavg},{tstd},{gfmin},{gfmax},{gfavg},{gfstd}," f"{at_grid},{at_backend},\"{at_results_str}\"\n") def run_test(cmd, args): print(f"command: {cmd}", sep="") cmd_fields = cmd.split() failed = False try: status = subprocess.run(cmd_fields, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, timeout=300, check=True) except subprocess.TimeoutExpired as ex: print(f" FAILED (timeout)") print(f"Failing output:\n{ex.stdout.decode('utf-8')}") failed = True except subprocess.CalledProcessError as ex: print(f" FAILED") print(f"Failing output:\n{ex.stdout.decode('utf-8')}") failed = True else: print(" PASSED") if args.csvfile: add_csv_entry(args.csvfile, cmd, status.stdout.decode('utf-8')) if failed: if args.exit_on_failure: print("Stopping tests...") sys.exit(1) return False if args.verbose: print(f"Passing output:\n{status.stdout.decode('utf-8')}") return True def main(): parser = argparse.ArgumentParser() parser.add_argument('--launcher_cmd', type=str, required=True, help='parallel launch command') parser.add_argument('--ngpu', type=int, required=True, help='number of gpus') parser.add_argument('--gx', type=int, required=True, help='fft dimension in X') parser.add_argument('--gy', type=int, required=True, help='fft dimension in Y') parser.add_argument('--gz', type=int, required=True, help='fft dimension in Z') parser.add_argument('--csvfile', type=str, default='', required=False, help='csv file to dump results (will append if file exists)') parser.add_argument('--verbose', action='store_true', required=False, help='flag to enable full run output') parser.add_argument('--exit_on_failure', action='store_true', required=False, help='flag to control whether script exits on case failure') parser.add_argument('config_name', type=str, help='configuration name from benchmark_configs.yaml') args = parser.parse_args() config = load_yaml_config("benchmark_config.yaml", args.config_name) cmds = generate_command_lines(config, args) setup_env(config, args) print(f"Running {len(cmds)} tests...") t0 = time.time() failed_cmds = [] for i,c in enumerate(cmds): status = run_test(c, args) if not status: failed_cmds.append(c) if (i+1) % 10 == 0: t1 = time.time() print(f"Completed {i+1}/{len(cmds)} tests, running time {t1-t0} s") print(f"Completed all tests, running time {time.time() - t0} s") if len(failed_cmds) == 0: print("Passed all tests.") return 0 else: print(f"Failed {len(failed_cmds)} / {len(cmds)} tests. Failing commands:") for c in failed_cmds: print(f"\t{c}") return -1 if __name__ == "__main__": main()
cuDecomp-main
benchmark/benchmark_runner.py
import argparse import collections import itertools import math import matplotlib.pyplot as plt import numpy as np import pandas def get_cases(df): cases = collections.OrderedDict() cases["grid"] = list(set((x, y, z) for x, y, z in zip(df["nx"], df["ny"], df["nz"]))) cases["precision"] = df["precision"].unique() cases["axis_contiguous"] = list(set((x, y, z) for x, y, z in zip(df["acx"], df["acy"], df["acz"]))) cases["out_of_place"] = df["out_of_place"].unique() cases["managed"] = df["managed"].unique() cases["fft_mode"] = df["fft_mode"].unique() return cases def get_case_df(df, grid, precision, axis_contiguous, out_of_place, managed, fft_mode): cond = (df["nx"] == grid[0]) & (df["ny"] == grid[1]) & (df["nz"] == grid[2]) cond = (cond) & (df["precision"] == precision) cond = (cond) & (df["acx"] == axis_contiguous[0]) & (df["acy"] == axis_contiguous[1]) & (df["acz"] == axis_contiguous[2]) cond = (cond) & (df["out_of_place"] == out_of_place) cond = (cond) & (df["managed"] == managed) cond = (cond) & (df["fft_mode"] == fft_mode) return df[cond], f"{fft_mode}, {precision}, grid: {grid}, axis_contiguous: {axis_contiguous}, out_of_place: {out_of_place}, managed: {managed}" def get_factors(n): factors = [] for i in range(1, n + 1): if i > math.sqrt(n): break if n % i == 0: factors.append(i) if (n // i != i): factors.append(n // i) return sorted(factors) def plot_heatmap(ax, data, backends, factors, cmap_name='Greens', x_label=True, y_label=True, mark_min_col=False, mark_min_row=False, mark_min_all=False, precision=0, title=""): ax.matshow(data, vmin=np.min(data), vmax=np.max(data), interpolation='none', cmap=plt.get_cmap(cmap_name)) ax.xaxis.set_ticks(np.arange(0,data.shape[1])) ax.yaxis.set_ticks(np.arange(0,data.shape[0])) ax.xaxis.set_ticks(np.arange(0,data.shape[1])-0.5, minor=True) ax.yaxis.set_ticks(np.arange(0,data.shape[0])-0.5, minor=True) ax.grid(which='minor', color='w', linestyle='-', linewidth=2) if x_label: ax.xaxis.set_ticklabels([f"{x} x {factors[-1] // x}" for x in factors], fontsize=12) else: ax.xaxis.set_ticklabels([]) if y_label: ax.yaxis.set_ticklabels(backends, fontsize=12) else: ax.yaxis.set_ticklabels([]) ax.tick_params(axis=u'both', which=u'both',length=0) cm = plt.get_cmap('Greys_r') for i in range(data.shape[0]): for j in range(data.shape[1]): #color = cm((data[i,j]-np.min(data))/(np.max(data) - np.min(data))) color = cm(float((data[i,j]-np.min(data))/(np.max(data) - np.min(data)) > 0.5)) ndigits = int(np.log10(data[i,j])) + precision ax.text(j-0.165*ndigits/2, i, f"{{:.{precision}f}}".format(data[i,j]), color=color, fontsize=12, fontweight='demi') if (mark_min_col and data[i,j] == np.min(data[:,j])): ax.plot(j-0.39, i+0.39, color=color, marker='v', markersize=10) if (mark_min_row and data[i,j] == np.min(data[i,:])): ax.plot(j+0.39, i-0.39, color=color, marker='>', markersize=10) if (mark_min_all and data[i,j] == np.min(data[:,:])): ax.plot(j-0.39, i-0.39, color=color, marker='*', markersize=10) if title: ax.set_title(title, y=-0.05) def plot_case_heatmaps(df_in, case_label, outputfile): backends = sorted(df_in["backend"].unique().tolist()) ngpu = df_in["pr"].iloc[0] * df_in["pc"].iloc[0] factors = get_factors(ngpu) heatmap_data = np.zeros([len(backends), len(factors)]) fig, axes = plt.subplots(1,2,figsize=(3*len(factors),8)) fig.suptitle(case_label, fontsize=14) # Plot FFT GFLOPS heatmap df = df_in[(~df_in["at_grid"]) & (~df_in["at_backend"])] for b in backends: df_backend = df[df["backend"] == b] heatmap_i = backends.index(b) for i, row in df_backend.iterrows(): pr = row["pr"] pc = row["pc"] gfavg = row["gfavg"] heatmap_j = factors.index(pr) if (heatmap_data[heatmap_i, heatmap_j] != 0): print("Duplicate entry detected!") heatmap_data[heatmap_i, heatmap_j] = gfavg plot_heatmap(axes[0], heatmap_data, backends, factors, title="FFT Performanace [GFLOP/s]") # Plot full autotuned heatmap heatmap_data[:] = 0 df = df_in[(df_in["at_grid"]) & (df_in["at_backend"])] for i, row in df.iterrows(): at_results = row["at_results"].split(';') for entry in at_results: fields = entry.split(',') pr, pc = [int(x) for x in fields[0].split('x')] backend = fields[1] tmin, tmax, tavg, tstd = [float(x) for x in fields[2:]] heatmap_i = backends.index(backend) heatmap_j = factors.index(pr) if (heatmap_data[heatmap_i, heatmap_j] != 0): print("Duplicate entry detected!") heatmap_data[heatmap_i, heatmap_j] = tavg plot_heatmap(axes[1], heatmap_data, backends, factors, cmap_name='Purples', x_label=True, y_label=False, precision=2, mark_min_all=True, mark_min_col=True, mark_min_row=True, title="Avg. Transpose Trial Time [ms]") plt.tight_layout() plt.savefig(outputfile) def main(): parser = argparse.ArgumentParser() parser.add_argument('--csvfile', type=str, required=True, help='csvfile containing benchmark run data') parser.add_argument('--output_prefix', type=str, required=True, help='Output prefix for heatmap PNG files. Output is written to <output_prefix>_*.png, with one file per case found in csv.') args = parser.parse_args() df = pandas.read_csv(args.csvfile) cases = get_cases(df) for i, (grid, precision, axis_contiguous, out_of_place, managed, fft_mode) in enumerate(itertools.product(*cases.values())): case_df, case_label = get_case_df(df, grid, precision, axis_contiguous, out_of_place, managed, fft_mode) plot_case_heatmaps(case_df, case_label, f"{args.output_prefix}_{i}.png") if __name__ == "__main__": main()
cuDecomp-main
benchmark/heatmap_scripts/plot_heatmaps.py
import argparse import itertools import math import os import subprocess import sys import time import yaml def get_factors(n): factors = [] for i in range(1, n + 1): if i > math.sqrt(n): break if n % i == 0: factors.append(i) if (n // i != i): factors.append(n // i) return sorted(factors) def load_yaml_config(yaml_file, config_name): with open(yaml_file, 'r') as f: config = yaml.safe_load(f)[config_name] return config def should_skip_case(arg_dict): skip = False try: # No need to test periodic flags if halo extent is zero if arg_dict["hex"] == 0 and arg_dict["hpx"] == 1: skip = True if arg_dict["hey"] == 0 and arg_dict["hpy"] == 1: skip = True if arg_dict["hez"] == 0 and arg_dict["hpz"] == 1: skip = True # Skip cases with all halo extents as zero if arg_dict["hex"] == 0 and arg_dict["hey"] == 0 and arg_dict["hez"] == 0: skip = True except: pass return skip def generate_command_lines(config, args): generic_cmd = f"{args.launcher_cmd}" generic_cmd += " {0}" generic_cmd += " --pr {1} --pc {2}" cmds = [] for dtype in config['dtypes']: prs = get_factors(args.ngpu) pcs = [args.ngpu // x for x in prs] if config['run_autotuning']: prs = [0] + prs pcs = [0] + pcs if (not 0 in config['backend']): config['backend'].append(0) for pr, pc in zip(prs, pcs): for vals in itertools.product(*[config[x] for x in config['args']]): arg_dict = dict(zip(config['args'], vals)) cmd = generic_cmd.format(f"{config['executable_prefix']}_{dtype}", pr, pc) cmd += " " + " ".join([f"--{x} {y}" for x, y in arg_dict.items()]) # Only run full (grid and backend) autotuning cases if (config['run_autotuning']): if ((pr == 0 and pc == 0) and arg_dict["backend"] != 0): continue elif ((pr != 0 and pc != 0) and arg_dict["backend"] == 0): continue # Check additional skip conditions if should_skip_case(arg_dict): continue extra_flags = [] extra_flags.append(['-m' if x else '' for x in config['managed_memory']]) extra_flags.append(['-o' if x else '' for x in config['out_of_place']]) for extras in itertools.product(*extra_flags): cmds.append(f"{cmd} {' '.join(filter(lambda x: x != '', extras))}") return cmds def setup_env(config, args): print("Setting environment variables...") # Environment variables from config for var, val in config['env_vars'].items(): os.environ[var] = f"{val}" print(f"Set {var} = {val}") def run_test(cmd, args): print(f"command: {cmd}", sep="") cmd_fields = cmd.split() failed = False try: status = subprocess.run(cmd_fields, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, timeout=300, check=True) except subprocess.TimeoutExpired as ex: print(f" FAILED (timeout)") print(f"Failing output:\n{ex.stdout.decode('utf-8')}") failed = True except subprocess.CalledProcessError as ex: print(f" FAILED") print(f"Failing output:\n{ex.stdout.decode('utf-8')}") failed = True else: print(" PASSED") if failed: if args.exit_on_failure: print("Stopping tests...") sys.exit(1) return False if args.verbose: print(f"Passing output:\n{status.stdout.decode('utf-8')}") return True def main(): parser = argparse.ArgumentParser() parser.add_argument('--launcher_cmd', type=str, required=True, help='parallel launch command') parser.add_argument('--ngpu', type=int, required=True, help='number of gpus') parser.add_argument('--verbose', action='store_true', required=False, help='flag to enable full run output') parser.add_argument('--exit_on_failure', action='store_true', required=False, help='flag to control whether script exits on case failure') parser.add_argument('config_name', type=str, help='configuration name from test_configs.yaml') args = parser.parse_args() config = load_yaml_config("test_config.yaml", args.config_name) cmds = generate_command_lines(config, args) setup_env(config, args) print(f"Running {len(cmds)} tests...") t0 = time.time() failed_cmds = [] for i,c in enumerate(cmds): status = run_test(c, args) if not status: failed_cmds.append(c) if (i+1) % 10 == 0: t1 = time.time() print(f"Completed {i+1}/{len(cmds)} tests, running time {t1-t0} s") print(f"Completed all tests, running time {time.time() - t0} s") if len(failed_cmds) == 0: print("Passed all tests.") return 0 else: print(f"Failed {len(failed_cmds)} / {len(cmds)} tests. Failing commands:") for c in failed_cmds: print(f"\t{c}") return -1 if __name__ == "__main__": main()
cuDecomp-main
tests/test_runner.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html import sphinx_rtd_theme # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'cuDecomp' copyright = '2022, NVIDIA Corporation' author = 'NVIDIA Corporation' # The full version, including alpha/beta/rc tags release = '2022' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'breathe', 'sphinx.ext.mathjax', 'sphinx_tabs.tabs', 'sphinxfortran.fortran_domain', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. #pygments_style = 'sphinx' highlight_language = 'cpp' def setup(app): app.add_css_file('style.css') # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme_options = { "collapse_navigation" : False, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] breathe_projects = { "cuDecomp": "xml/" } breathe_default_project = "cuDecomp"
cuDecomp-main
docs/conf.py
""" Author: Vinay Bagde Modifier: Anurag Guda Maintainer: Andrew Liu, Anurag Guda Copyright (c) 2018 NVIDIA Corporation. All rights reserved. """ import sys import os from collections import OrderedDict tile_map = {1:(1,1), 2: (1,2), 4:(2,2), 6:(2,3), 8:(2,4), 10:(2,5), 12:(3,4), 15:(3,5), 18:(3,6)} tile_map = OrderedDict(tile_map) def read_camera_file(): camera_path = '/etc/config' files = os.listdir(camera_path) camera_ips = [] for file in files: current_file = os.path.join(camera_path,file) if os.path.isfile(current_file): camera_file = open(current_file) camera_ip = camera_file.readline() camera_ip = camera_ip.strip("\n") camera_file.close() camera_ips.append(camera_ip) return camera_ips def main(): ips = read_camera_file() print(ips) print(len(ips)) n_rows = None n_columns = None for key,val in tile_map.items(): if len(ips) < key: break n_rows = val[0] n_columns = val[1] write_list = [] if len(ips) != 0: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str(n_rows) elif pair[0] == "columns": pair[1] = str(n_columns) elif pair[0] == "batch-size": pair[1] = str(len(ips)) output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() else: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str("1") elif pair[0] == "columns": pair[1] = str("1") elif pair[0] == "num-sources": pair[1] = str("1") elif pair[0] == "file-loop": pair[1] = str("1") elif pair[0] == "batch-size": pair[1] = str("1") output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() if len(ips) != 0: for index,ip in enumerate(ips): write_list.append("\n") write_list.append("[source{}]".format(index)) write_list.append("enable=1") write_list.append("type=4") write_list.append("uri={}".format(ip)) write_list.append("num-sources=1") write_list.append("gpu-id=0") write_list.append("cudadec-memtype=0") write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("sync=0") write_list.append("bitrate=2000000") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") if len(ips) == 0: write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=1") write_list.append("sync=1") write_list.append("codec=1") write_list.append("bitrate=4000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("source-id=0") write_list.append("gpu-id=0") write_list.append("nvbuf-memory-type=0") write_list.append("\n") write_list.append("[sink2]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("sync=1") write_list.append("bitrate=2000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") write_file = os.path.join(os.path.dirname(sys.argv[2]),'run.txt') with open(write_file,"w") as file: for line in write_list: file.write(line) file.write("\n") file.close() print(write_file) os.system("{} -c {}".format(sys.argv[1],write_file)) if __name__ == '__main__': main()
fleet-command-master
azure-iot/video-analytics-demo/config/create_config_backup.py
""" Author: Vinay Bagde Modifier: Anurag Guda Maintainer: Andrew Liu, Anurag Guda Copyright (c) 2018 NVIDIA Corporation. All rights reserved. """ import sys import os from collections import OrderedDict tile_map = {1:(1,1), 2: (1,2), 4:(2,2), 6:(2,3), 8:(2,4), 10:(2,5), 12:(3,4), 15:(3,5), 18:(3,6)} tile_map = OrderedDict(tile_map) def read_camera_file(): camera_path = '/etc/config' files = os.listdir(camera_path) camera_ips = [] for file in files: current_file = os.path.join(camera_path,file) if os.path.isfile(current_file): camera_file = open(current_file) camera_ip = camera_file.readline() camera_ip = camera_ip.strip("\n") camera_file.close() camera_ips.append(camera_ip) return camera_ips def main(): ips = read_camera_file() print(ips) print(len(ips)) n_rows = None n_columns = None for key,val in tile_map.items(): if len(ips) < key: break n_rows = val[0] n_columns = val[1] write_list = [] if len(ips) != 0: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str(n_rows) elif pair[0] == "columns": pair[1] = str(n_columns) elif pair[0] == "batch-size": pair[1] = str(len(ips)) output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() else: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str("1") elif pair[0] == "columns": pair[1] = str("1") elif pair[0] == "num-sources": pair[1] = str("1") elif pair[0] == "file-loop": pair[1] = str("1") elif pair[0] == "batch-size": pair[1] = str("1") output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() gpulist = os.popen('nvidia-smi -L').read() print(gpulist) if 'T4' in gpulist: if len(ips) != 0: for index,ip in enumerate(ips): write_list.append("\n") write_list.append("[source{}]".format(index)) write_list.append("enable=1") write_list.append("type=4") write_list.append("uri={}".format(ip)) write_list.append("num-sources=1") write_list.append("gpu-id=0") write_list.append("cudadec-memtype=0") write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("sync=0") write_list.append("bitrate=2000000") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") if len(ips) == 0: write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=1") write_list.append("sync=1") write_list.append("codec=1") write_list.append("bitrate=4000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("source-id=0") write_list.append("gpu-id=0") write_list.append("nvbuf-memory-type=0") write_list.append("\n") write_list.append("[sink2]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("sync=1") write_list.append("bitrate=2000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") else: if len(ips) != 0: for index,ip in enumerate(ips): write_list.append("\n") write_list.append("[source{}]".format(index)) write_list.append("enable=1") write_list.append("type=4") write_list.append("uri={}".format(ip)) write_list.append("num-sources=1") write_list.append("gpu-id=0") write_list.append("cudadec-memtype=0") write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("enc-type=1") write_list.append("sync=0") write_list.append("bitrate=2000000") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") if len(ips) == 0: write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=1") write_list.append("sync=1") write_list.append("codec=1") write_list.append("enc-type=1") write_list.append("bitrate=4000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("source-id=0") write_list.append("gpu-id=0") write_list.append("nvbuf-memory-type=0") write_list.append("\n") write_list.append("[sink2]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("enc-type=1") write_list.append("sync=1") write_list.append("bitrate=2000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") write_file = os.path.join(os.path.dirname(sys.argv[2]),'run.txt') with open(write_file,"w") as file: for line in write_list: file.write(line) file.write("\n") file.close() print(write_file) os.system("{} -c {}".format(sys.argv[1],write_file)) if __name__ == '__main__': main()
fleet-command-master
azure-iot/video-analytics-demo/config/create_config.py
""" Author: Vinay Bagde Modifier: Anurag Guda Maintainer: Andrew Liu, Anurag Guda Copyright (c) 2018 NVIDIA Corporation. All rights reserved. """ import sys import os from collections import OrderedDict tile_map = {1:(1,1), 2: (1,2), 4:(2,2), 6:(2,3), 8:(2,4), 10:(2,5), 12:(3,4), 15:(3,5), 18:(3,6)} tile_map = OrderedDict(tile_map) def read_camera_file(): camera_path = '/etc/config' files = os.listdir(camera_path) camera_ips = [] for file in files: current_file = os.path.join(camera_path,file) if os.path.isfile(current_file): camera_file = open(current_file) camera_ip = camera_file.readline() camera_ip = camera_ip.strip("\n") camera_file.close() camera_ips.append(camera_ip) return camera_ips def main(): ips = read_camera_file() print(ips) print(len(ips)) n_rows = None n_columns = None for key,val in tile_map.items(): if len(ips) < key: break n_rows = val[0] n_columns = val[1] write_list = [] if len(ips) != 0: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str(n_rows) elif pair[0] == "columns": pair[1] = str(n_columns) elif pair[0] == "batch-size": pair[1] = str(len(ips)) output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() else: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str("1") elif pair[0] == "columns": pair[1] = str("1") elif pair[0] == "num-sources": pair[1] = str("1") elif pair[0] == "file-loop": pair[1] = str("1") elif pair[0] == "batch-size": pair[1] = str("1") output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() if len(ips) != 0: for index,ip in enumerate(ips): write_list.append("\n") write_list.append("[source{}]".format(index)) write_list.append("enable=1") write_list.append("type=4") write_list.append("uri={}".format(ip)) write_list.append("num-sources=1") write_list.append("gpu-id=0") write_list.append("cudadec-memtype=0") write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("enc-type=1") write_list.append("sync=0") write_list.append("bitrate=2000000") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") if len(ips) == 0: write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=1") write_list.append("sync=1") write_list.append("codec=1") write_list.append("enc-type=1") write_list.append("bitrate=4000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("source-id=0") write_list.append("gpu-id=0") write_list.append("nvbuf-memory-type=0") write_list.append("\n") write_list.append("[sink2]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("enc-type=1") write_list.append("sync=1") write_list.append("bitrate=2000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") write_file = os.path.join(os.path.dirname(sys.argv[2]),'run.txt') with open(write_file,"w") as file: for line in write_list: file.write(line) file.write("\n") file.close() print(write_file) os.system("{} -c {}".format(sys.argv[1],write_file)) if __name__ == '__main__': main()
fleet-command-master
azure-iot/video-analytics-demo/config/create_config_a100.py
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import asyncio from azure.iot.device.aio import IoTHubDeviceClient import time import datetime async def main(): # Fetch the connection string from an enviornment variable conn_str = os.getenv("IOTHUB_DEVICE_CONNECTION_STRING") hostname = os.getenv("HOSTNAME") # Create instance of the device client using the authentication provider device_client = IoTHubDeviceClient.create_from_connection_string(conn_str) # Connect the device client. await device_client.connect() # Send a single message print("Sending message to {}".format(conn_str)) #tail = sh.tail("-f", "/home/deepstream.log", _iter=True) tail = os.popen("cat /home/deepstream.log | tail -125f | grep -v -e '^$'") #await device_client.send_message("This is a message that is being sent from {}".format(hostname)) await device_client.send_message("{} host current time is {}".format(hostname, str(datetime.datetime.now()))) await device_client.send_message(tail.read()) #await device_client.send_message("This is a message that is being sent from {}".format(hostname)) print("Message successfully sent!") print() # finally, disconnect await device_client.disconnect() if __name__ == "__main__": while True: time.sleep(3) asyncio.run(main())
fleet-command-master
azure-iot/azure-iot-read/azure-send-message-deviceto-cloud.py
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio from azure.eventhub import TransportType from azure.eventhub.aio import EventHubConsumerClient import os import logging # Event Hub-compatible endpoint # az iot hub show --query properties.eventHubEndpoints.events.endpoint --name {your IoT Hub name} EVENTHUB_COMPATIBLE_ENDPOINT = "{your Event Hubs compatible endpoint}" # Event Hub-compatible name # az iot hub show --query properties.eventHubEndpoints.events.path --name {your IoT Hub name} EVENTHUB_COMPATIBLE_PATH = "{your Event Hubs compatible name}" # Primary key for the "service" policy to read messages # az iot hub policy show --name service --query primaryKey --hub-name {your IoT Hub name} IOTHUB_SAS_KEY = "{your service primary key}" # If you have access to the Event Hub-compatible connection string from the Azure portal, then # you can skip the Azure CLI commands above, and assign the connection string directly here. #CONNECTION_STR = f'Endpoint={EVENTHUB_COMPATIBLE_ENDPOINT}/;SharedAccessKeyName=service;SharedAccessKey={IOTHUB_SAS_KEY};EntityPath={EVENTHUB_COMPATIBLE_PATH}' CONNECTION_STR = os.getenv("IOTHUB_CONNECTION_STRING") # Define callbacks to process events async def on_event_batch(partition_context, events): for event in events: #print("Received event from partition: {}.".format(partition_context.partition_id)) print("Telemetry received: ", event.body_as_str()) #print("Properties (set by device): ", event.properties) #print("System properties (set by IoT Hub): ", event.system_properties) print() await partition_context.update_checkpoint() async def on_error(partition_context, error): # Put your code here. partition_context can be None in the on_error callback. if partition_context: print("An exception: {} occurred during receiving from Partition: {}.".format( partition_context.partition_id, error )) else: print("An exception: {} occurred during the load balance process.".format(error)) async def main(): loop = asyncio.get_event_loop() client = EventHubConsumerClient.from_connection_string( conn_str=CONNECTION_STR, consumer_group="$default", eventhub_name = os.getenv("IOTHUB_NAME") #eventhub_name="egx-iot" # transport_type=TransportType.AmqpOverWebsocket, # uncomment it if you want to use web socket # http_proxy={ # uncomment if you want to use proxy # 'proxy_hostname': '127.0.0.1', # proxy hostname. # 'proxy_port': 3128, # proxy port. # 'username': '<proxy user name>', # 'password': '<proxy password>' # } ) try: #print("try loop") recv_task = asyncio.ensure_future(client.receive_batch(on_event_batch=on_event_batch, on_error=on_error)) #loop.run_until_complete(client.receive_batch(on_event_batch=on_event_batch, on_error=on_error)) await asyncio.sleep(3) recv_task.cancel() await client.close() except KeyboardInterrupt: print("Receiving has stopped.") if __name__ == '__main__': while True: asyncio.run(main())
fleet-command-master
azure-iot/azure-iot-read/read.py
""" # Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import sys import os from collections import OrderedDict tile_map = {1:(1,1), 2: (1,2), 4:(2,2), 6:(2,3), 8:(2,4), 10:(2,5), 12:(3,4), 15:(3,5), 18:(3,6)} tile_map = OrderedDict(tile_map) def read_camera_file(): camera_path = '/etc/config' files = os.listdir(camera_path) camera_ips = [] for file in files: current_file = os.path.join(camera_path,file) if os.path.isfile(current_file): camera_file = open(current_file) camera_ip = camera_file.readline() camera_ip = camera_ip.strip("\n") camera_file.close() camera_ips.append(camera_ip) return camera_ips def main(): ips = read_camera_file() print(ips) print(len(ips)) n_rows = None n_columns = None for key,val in tile_map.items(): if len(ips) < key: break n_rows = val[0] n_columns = val[1] write_list = [] if len(ips) != 0: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str(n_rows) elif pair[0] == "columns": pair[1] = str(n_columns) elif pair[0] == "batch-size": pair[1] = str(len(ips)) output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() else: with open(sys.argv[2]) as fp: line = fp.readline() while line: pair = line.split("=") if pair[0] == "rows": pair[1] = str("1") elif pair[0] == "columns": pair[1] = str("1") elif pair[0] == "num-sources": pair[1] = str("1") elif pair[0] == "file-loop": pair[1] = str("1") elif pair[0] == "batch-size": pair[1] = str("1") output = line if len(pair) > 1: output = "=".join(pair) output = output.replace('\n','') write_list.append(output) line = fp.readline() fp.close() if len(ips) != 0: for index,ip in enumerate(ips): write_list.append("\n") write_list.append("[source{}]".format(index)) write_list.append("enable=1") write_list.append("type=4") write_list.append("uri={}".format(ip)) write_list.append("num-sources=1") write_list.append("gpu-id=0") write_list.append("cudadec-memtype=0") write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("sync=0") write_list.append("bitrate=2000000") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") if len(ips) == 0: write_list.append("\n") write_list.append("[sink0]") write_list.append("enable=1") write_list.append("type=1") write_list.append("sync=1") write_list.append("codec=1") write_list.append("bitrate=4000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("source-id=0") write_list.append("gpu-id=0") write_list.append("nvbuf-memory-type=0") write_list.append("\n") write_list.append("[sink2]") write_list.append("enable=1") write_list.append("type=4") write_list.append("container=1") write_list.append("codec=1") write_list.append("sync=1") write_list.append("bitrate=2000000") write_list.append("rtsp-port=8554") write_list.append("udp-port=5400") write_list.append("profile=0") write_list.append("output-file=out.mp4") write_list.append("source-id=0") write_file = os.path.join(os.path.dirname(sys.argv[2]),'run.txt') with open(write_file,"w") as file: for line in write_list: file.write(line) file.write("\n") file.close() print(write_file) os.system("{} -c {}".format(sys.argv[1],write_file)) if __name__ == '__main__': main()
fleet-command-master
azure-iot/video-analytics-demo-old/config/create_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup script to build Data-Services.""" import os import setuptools from release.python.utils import utils PACKAGE_LIST = [ "nvidia_tao_ds" ] version_locals = utils.get_version_details() setuptools_packages = [] for package_name in PACKAGE_LIST: setuptools_packages.extend(utils.find_packages(package_name)) setuptools.setup( name=version_locals['__package_name__'], version=version_locals['__version__'], description=version_locals['__description__'], author='NVIDIA Corporation', classifiers=[ 'Environment :: Console', 'License :: Other/Proprietary License', 'Natural Language :: English', 'Operating System :: Linux', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], license=version_locals['__license__'], keywords=version_locals['__keywords__'], packages=setuptools_packages, package_data={ '': ['*.py', "*.pyc", "*.yaml", "*.so", "*.pdf"] }, include_package_data=True, zip_safe=False, entry_points={ 'console_scripts': [ 'augmentation=nvidia_tao_ds.augment.entrypoint.augment:main', 'auto_label=nvidia_tao_ds.auto_label.entrypoint.auto_label:main', 'annotations=nvidia_tao_ds.annotations.entrypoint.annotations:main', 'analytics=nvidia_tao_ds.data_analytics.entrypoint.analytics:main' ] } )
tao_dataset_suite-main
setup.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Instantiate the Data-Services docker container for developers.""" import argparse from distutils.version import LooseVersion import json import os import subprocess import sys ROOT_DIR = os.getenv("NV_TAO_DS_TOP", os.path.dirname(os.path.dirname(os.getcwd()))) with open(os.path.join(ROOT_DIR, "docker/manifest.json"), "r") as m_file: docker_config = json.load(m_file) DOCKER_REGISTRY = docker_config["registry"] DOCKER_REPOSITORY = docker_config["repository"] DOCKER_TAG = docker_config["tag"] DOCKER_COMMAND = "docker" HOME_PATH = os.path.expanduser("~") MOUNTS_PATH = os.path.join(HOME_PATH, ".tao_mounts.json") def get_docker_mounts_from_file(mounts_file=MOUNTS_PATH): """Check for docker mounts in ~/.tao_mounts.json.""" if not os.path.exists(mounts_file): return [] with open(mounts_file, 'r') as mfile: data = json.load(mfile) assert "Mounts" in list(data.keys()), "Invalid json file. Requires Mounts key." return data["Mounts"] def format_mounts(mount_points): """Format mount points to docker recognizable commands.""" formatted_mounts = [] # Traverse through mount points and add format them for the docker command. for mount_point in mount_points: assert "source" in list(mount_point.keys()), "destination" in list(mount_point.keys()) mount = "{}:{}".format(mount_point["source"], mount_point["destination"]) formatted_mounts.append(mount) return formatted_mounts def check_image_exists(docker_image): """Check if the image exists locally.""" check_command = '{} images | grep "\\<{}\\>" | grep "{}" >/dev/null 2>&1'.format(DOCKER_COMMAND, docker_image, DOCKER_TAG) rc = subprocess.call(check_command, stdout=sys.stderr, shell=True) return rc == 0 def pull_base_container(docker_image): """Pull the default base container.""" pull_command = "{} pull {}:{}".format(DOCKER_COMMAND, docker_image, DOCKER_TAG) rc = subprocess.call(pull_command, stdout=sys.stderr, shell=True) return rc == 0 def get_formatted_mounts(mount_file): """Simple function to get default mount points.""" default_mounts = get_docker_mounts_from_file(mount_file) return format_mounts(default_mounts) def check_mounts(formatted_mounts): """Check the formatted mount commands.""" assert type(formatted_mounts) == list for mounts in formatted_mounts: source_path = mounts.split(":")[0] if not os.path.exists(source_path): raise ValueError("Path doesn't exist: {}".format(source_path)) return True def get_docker_gpus_prefix(gpus): """Get the docker command gpu's prefix.""" docker_version = ( subprocess.check_output( ["docker", "version", "--format={{ .Server.APIVersion }}"] ) .strip() .decode() ) if LooseVersion(docker_version) >= LooseVersion("1.40"): # You are using the latest version of docker using # --gpus instead of the nvidia runtime. gpu_string = "--gpus " if gpus == "all": gpu_string += "all" else: gpu_string += '\'\"device={}\"\''.format(gpus) else: # Stick to the older version of getting the gpu's using runtime=nvidia gpu_string = "--runtime=nvidia -e NVIDIA_DRIVER_CAPABILITIES=all " if gpus != "none": gpu_string += "-e NVIDIA_VISIBLE_DEVICES={}".format(gpus) return gpu_string def create_base_docker(): """Function to create the base docker.""" create_command = "bash {}/docker/build.sh --build".format(ROOT_DIR) try: subprocess.run(create_command, stdout=sys.stderr, shell=True, check=True) except subprocess.CalledProcessError as e: raise RuntimeError(f"Container build failed with error {e}") def instantiate_dev_docker(gpus, mount_file, mount_cli_list, env_var_list, command, ulimit=None, shm_size="16G", run_as_user=False): """Instiate the docker container.""" docker_image = "{}/{}:{}".format(DOCKER_REGISTRY, DOCKER_REPOSITORY, DOCKER_TAG) # Invoking the nvidia docker. gpu_string = get_docker_gpus_prefix(gpus) # Prefix for the run command. run_command = "{} run -it --rm".format(DOCKER_COMMAND) # get default mount points. formatted_mounts = get_formatted_mounts(MOUNTS_PATH) # get mounts from cli mount file. formatted_mounts += get_formatted_mounts(mount_file) if mount_cli_list is not None: formatted_mounts.extend(mount_cli_list) assert check_mounts(formatted_mounts), "Mounts don't exists, Please make sure the paths all exist." mount_string = "-v {}:/workspace ".format(os.getenv("NV_TAO_DS_TOP", os.getcwd())) # Defining env variables. env_variables = "-e PYTHONPATH={}:$PYTHONPATH ".format("/workspace") for env in env_var_list: if "=" not in env: print("invalid env variable definition. skipping this {}".format(env)) continue env_variables += "-e {} ".format(env) for path in formatted_mounts: mount_string += "-v {} ".format(path) # Setting shared memory. shm_option = "--shm-size {}".format(shm_size) # Setting ulimits for host ulimit_options = "" if ulimit is not None: for param in ulimit: ulimit_options += "--ulimit {} ".format(param) user_option = "" if run_as_user: user_option = "--user {}:{}".format(os.getuid(), os.getgid()) working_directory = "/workspace" working_dir_option = f"-w {working_directory}" final_command = "{} {} {} {} {} {} {} {} {} {}".format( run_command, gpu_string, mount_string, env_variables, shm_option, ulimit_options, user_option, working_dir_option, docker_image, " ".join(command) ) print(final_command) return subprocess.check_call(final_command, stdout=sys.stderr, shell=True) def parse_cli_args(args=None): """Parse run container command line.""" parser = argparse.ArgumentParser( prog="tao_ds", description="Tool to run the Data-Services container.", add_help=True) parser.add_argument( "--gpus", default="all", type=str, help="Comma separated GPU indices to be exposed to the docker." ) parser.add_argument( "--volume", action="append", type=str, default=[], help="Volumes to bind." ) parser.add_argument( "--env", action="append", type=str, default=[], help="Environment variables to bind." ) parser.add_argument( "--mounts_file", help="Path to the mounts file.", default="", type=str ) parser.add_argument( "--shm_size", help="Shared memory size for docker", default="16G", type=str ) parser.add_argument( "--run_as_user", help="Flag to run as user", action="store_true", default=False ) parser.add_argument( "--ulimit", action='append', help="Docker ulimits for the host machine." ) args = vars(parser.parse_args(args)) return args def main(cl_args=None): """Start docker container.""" if "--" in cl_args: index = cl_args.index("--") # Split args to the tao docker wrapper and the command to be run inside the docker. ds_args = cl_args[:index] command_args = cl_args[index + 1:] else: ds_args = cl_args command_args = ["/bin/bash"] args = parse_cli_args(ds_args) docker_image = "{}/{}".format(DOCKER_REGISTRY, DOCKER_REPOSITORY) if not check_image_exists(docker_image): if not pull_base_container(docker_image): print("The base container doesn't exist locally and the pull failed. Hence creating the base container") create_base_docker() try: instantiate_dev_docker( args["gpus"], args["mounts_file"], args["volume"], args["env"], command_args, args["ulimit"], args["shm_size"], args["run_as_user"] ) except subprocess.CalledProcessError: # Do nothing - the errors are printed in entrypoint launch. pass if __name__ == "__main__": main(sys.argv[1:])
tao_dataset_suite-main
runner/tao_ds.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KITTI visualization tool.""" from PIL import Image, ImageDraw from glob import glob import os import argparse def draw_one_image(image_file, kitti_file, output_dir): img = Image.open(image_file) draw = ImageDraw.Draw(img) f = open(kitti_file, 'r') for line in f: po = list(map(lambda x:float(x), line.split(' ')[4:8])) # print label draw.rectangle(po, outline=(0,0,255,200)) img.save(os.path.join(output_dir, os.path.basename(kitti_file)+'.jpg')) def draw_dir(imagedir, labeldir, output_dir, ext='.png'): assert os.path.isdir(imagedir), "Image dir invalid." assert os.path.isdir(labeldir), "Label dir invalid." if not os.path.isdir(output_dir): os.mkdir(output_dir) for labelpath in sorted(glob(labeldir + '/*.txt')): imgpath = os.path.join(imagedir, os.path.basename(labelpath)[:-4] + ext) if os.path.isfile(imgpath): # print imgpath draw_one_image(imgpath, labelpath, output_dir) if __name__ == '__main__': parser = argparse.ArgumentParser(description="KITTI visualization tool.") parser.add_argument('-i', '--imagedir', help="Image Dir", type=str, required=True) parser.add_argument('-l', '--labeldir', help="Label Dir", type=str, required=True) parser.add_argument('-o', '--outputdir', help="Output Dir", type=str, required=True) parser.add_argument('-e', '--extension', help="File extension", type=str, default='.png') args = parser.parse_args() draw_dir(args.imagedir, args.labeldir, args.outputdir, args.extension)
tao_dataset_suite-main
internal/visualize_kitti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import json import PIL import PIL import shutil import random import argparse import numpy as np from PIL import Image from tqdm import tqdm_notebook as tqdm from joblib import parallel_backend from joblib import Parallel, delayed from split_data.utils.util import read_kitti_labels, save_kitti_labels from pdb import set_trace as bp from argparse import ArgumentParser from PIL import Image from distutils.dir_util import copy_tree from itertools import chain,repeat def copy_files(f,dest_dir,splits,split_count,images_path,labels_path): if ".txt" in f: try: dest_split_dir = dest_dir + "/%d/" % (split_count % splits) image_dest_dir = dest_split_dir + "/images_final_hres" label_dest_dir = dest_split_dir + "/labels_final_hres" img_id,ext = f.split(".txt") img = img_id + ".jpg" seq_dir = images_path.split("/")[-3] image_file = os.path.join(images_path,img) label_file = os.path.join(labels_path,f) dest_image_file = os.path.join(image_dest_dir,img) dest_label_file = os.path.join(label_dest_dir,f) missing_count =0 if not os.path.getsize(label_file) == 0: shutil.copyfile(label_file,dest_label_file) shutil.copyfile(image_file,dest_image_file) else: print(label_file) except Exception as e: print ("Not a right file") print (f) else: print ("Not a text file") print (f) def sample_dataset(dataset,splits,dest_dir,percent): dataset_file = str("data_sources.csv") file_name = os.path.join(dest_dir,dataset_file) images_path = dataset + "/images_final_hres/" labels_path = dataset + "/labels_final_hres/" if os.path.exists(labels_path): data = os.listdir(labels_path) if len(data) < 10: print ("data source is wrong") print (dataset) images_path = dataset + "/images_final_960x544" labels_path = dataset + "/labels_final_960x544/" print (images_path) print (labels_path) data = os.listdir(labels_path) print ("other folder works", len(data)) if percent < 1: data_samples = round(percent*len(data)) print ("samples", data_samples) data_list = random.sample(data,k=int(data_samples)) else: data_list = list(chain.from_iterable(repeat(item, percent) for item in data)) file = open(file_name, 'w') quick_count = 0 random.shuffle(data_list) for item in data_list: split_num = quick_count % splits file.write("%s,%s,%d,%s\n" % (dest_dir,item,split_num,dataset)) quick_count +=1 file.close() split_count = 0 with parallel_backend("threading", n_jobs=8): Parallel(verbose=10)(delayed(copy_files)(f,dest_dir,splits,split_count,images_path,labels_path) for split_count,f in enumerate(data_list)) else: print ("labels_dir does not exist") def create_dir_if_not_exists(dir): if os.path.isdir(dir) == False: os.mkdir(dir) def copy_dataset(project_folder,rotation_folder,item): image_id = item[1].split(".txt")[0] src_image_path = project_folder + "/images_final_fres/" + image_id + ".jpg" src_labels_path = project_folder + "/labels_final_fres/" + image_id + ".txt" dest_image_folder = rotation_folder + str(item[2]) + "/images_final_fres/" dest_labels_folder = rotation_folder + str(item[2]) + "/labels_final_fres/" ensureDir(dest_image_folder) ensureDir(dest_labels_folder) dest_image_path = dest_image_folder + image_id + ".jpg" dest_labels_path = dest_labels_folder + image_id + ".txt" try: shutil.copyfile(src_image_path,dest_image_path) shutil.copyfile(src_labels_path,dest_labels_path) except: print (src_image_path) def split(inp_dir, dest_dir, n=12, p=1): create_dir_if_not_exists(dest_dir) for i in range(n): dest_split_dir = dest_dir + "/%d/" % (i) create_dir_if_not_exists(dest_split_dir) image_dest_dir = dest_split_dir + "/images_final_hres" create_dir_if_not_exists(image_dest_dir) label_dest_dir = dest_split_dir + "/labels_final_hres" create_dir_if_not_exists(label_dest_dir) sample_dataset(inp_dir,n,dest_dir,p) def parse_command_line(args=None): """ Function to parse the command line arguments Args: args(list): list of arguments to be parsed. """ parser = argparse.ArgumentParser( prog='split_data', description='Split the dataset for performing augmentation' ) parser.add_argument( '-i', '--input-directory', required=True, help='Snapshot data directory' ) parser.add_argument( '-o', '--output-directory', required=True, help='Directory to output the data splits' ) parser.add_argument( '-n', '--splits', type=int, required=True, help='Number of splits' ) return parser.parse_args(args) def main(cl_args=None): """ Split dataset and perform augmentations. Args: cl_args(list): list of arguments. """ args = parse_command_line(args=cl_args) try: split([args.input_directory], args.output_directory, args.splits) except RuntimeError as e: print("Data Split execution failed with error: {}".format(e)) exit(-1) if __name__ == '__main__': main()
tao_dataset_suite-main
internal/split_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import csv import argparse from time import sleep from tqdm import tqdm from tqdm import trange label_map = {'baggage': ['handbag', 'suitcase', 'backpack'], 'person': ['person'], 'lp': ['lp', 'LPD'], 'face': 'face'} OMIT_LIST = ['crops'] def read_kitti_labels(label_file): "Function wrapper to read kitti format labels txt file." label_list = [] if not os.path.exists(label_file): raise ValueError("Labelfile : {} does not exist".format(label_file)) with open(label_file, 'r') as lf: for row in csv.reader(lf, delimiter=' '): label_list.append(row) lf.closed return label_list def filter_objects(child_objects, class_key): "Extract object metadata of class name class key." filtered_objects = [] for item in child_objects: if item[0] in label_map[class_key]: item[0] = class_key # if class_key == 'lp': # item.append("1ABC2345") filtered_objects.append(item) return filtered_objects def save_kitti_labels(objects, output_file): "Function wrapper to save kitti format bbox labels to txt file." with open(output_file, 'w') as outfile: outwrite=csv.writer(outfile, delimiter=' ') for row in objects: outwrite.writerow(row) def main_kitti_concatenate(args): "Function wrapper to concatenate kitti format labels from two different directories for same images to one file." class_key = args.filter_class parent_root = args.parent_dir child_root = args.child_dir output_root = args.output_dir if not os.path.exists(parent_root): raise ValueError("Parent label path: {} does not exist".format(parent_root)) if not os.path.exists(child_root): raise ValueError("Child label path: {} does not exist".format(parent_root)) if not os.path.exists(output_root): os.mkdir(output_root) parent_label_list = [ item for item in sorted(os.listdir(parent_root)) if item.endswith('.txt') ] for label in tqdm(parent_label_list): child_label = os.path.join(child_root, label) parent_label = os.path.join(parent_root, label) parent_objects = read_kitti_labels(parent_label) if os.path.exists(child_label): child_objects = read_kitti_labels(child_label) filtered_objects = filter_objects(child_objects, class_key) if not filtered_objects is None: for elem in filtered_objects: parent_objects.append(elem) output_file = os.path.join(output_root, label) save_kitti_labels(parent_objects, output_file) def class_rename(input_dir, filter_class, new_classname, output_dir): "Function wrapper to rename classes for objects in kitti format label file." class_key = filter_class parent_root = input_dir output_dir = output_dir new_name = new_classname lv = True ns = True if not new_name is None: if not os.path.exists(parent_root): raise ValueError("Input directory: {} does not exist".format(parent_root)) if not os.path.exists(output_dir): os.mkdir(output_dir) labels_list = [item for item in os.listdir(parent_root) if item.endswith('.txt')] for i in trange(len(labels_list), desc='frame_list', leave=lv): renamed_data = [] label = labels_list[i] read_file = os.path.join(parent_root, label) output_file = os.path.join(output_dir, label) label_data = read_kitti_labels(read_file) for item in label_data: if item[0].lower() == class_key.lower(): item[0] = new_name renamed_data.append(item) save_kitti_labels(renamed_data, output_file) def KPI_rename_wrapper(args): "Function wrapper to rename label files for multiple sequences in a directory." KPI_root = args.parent_dir class_key = args.filter_class output_root = KPI_root new_name = args.new_name KPI_directory_list = [os.path.join(KPI_root, item) for item in os.listdir(KPI_root) \ if os.path.isdir(os.path.join(KPI_root, item)) and \ item not in OMIT_LIST] for i in trange(len(KPI_directory_list), desc='sequence_list', leave=True): item = KPI_directory_list[i] sequence = os.path.join(KPI_directory_list, item) input_dir = os.path.join(sequence, 'labels') output_dir = os.path.join(sequence, 'labels_renamed') class_rename(input_dir, class_key, new_name, output_dir) def parse_command_line(): parser = argparse.ArgumentParser(description='Label concatenation tool') parser.add_argument('-p', '--parent_dir', help='Parent directory of labels.', default=None) parser.add_argument('-ch', '--child_dir', help='Child directory of labels.', default=None) parser.add_argument('-o', '--output_dir', help='Output directory for concatenated labels', default=None) parser.add_argument('-fc', '--filter_class', help='Key to filter class in child directory', default='None') parser.add_argument('-nn', '--new_name', help='Name of the filters class to be renamed', default='None') arguments = parser.parse_args() return arguments if __name__=='__main__': arguments = parse_command_line() KPI_rename_wrapper(arguments)
tao_dataset_suite-main
internal/utils/util.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for auto labeling."""
tao_dataset_suite-main
internal/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing implementation of release packaging."""
tao_dataset_suite-main
release/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Version string for the Data-Services""" MAJOR = "5" MINOR = "0.0" PATCH = "0" PRE_RELEASE = '' # Getting the build number. def get_build_info(): """Get the build version number.""" # required since setup.py runs a version string and global imports aren't executed. import os # noqa pylint: disable=import-outside-toplevel build_file = "build.info" if not os.path.exists(build_file): raise FileNotFoundError("Build file doesn't exist.") patch = 0 with open(build_file, 'r') as bfile: patch = bfile.read().strip() assert bfile.closed, "Build file wasn't closed properly." return patch try: PATCH = get_build_info() except FileNotFoundError: pass # Use the following formatting: (major, minor, patch, pre-release) VERSION = (MAJOR, MINOR, PATCH, PRE_RELEASE) # Version of the library. __version__ = '.'.join(map(str, VERSION[:3])) + ''.join(VERSION[3:]) # Version of the file format. __format_version__ = 2 # Other package info. __package_name__ = "nvidia-tao-ds" __description__ = "NVIDIA's package for Data-services for use with TAO Toolkit." __keywords__ = "nvidia, tao, tf2" __contact_names__ = "Yu Wang" __contact_emails__ = "[email protected]" __license__ = "Apache 2.0"
tao_dataset_suite-main
release/python/version.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Packaging modules for Data-Services."""
tao_dataset_suite-main
release/python/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing utility functions required for packaging Data-Services."""
tao_dataset_suite-main
release/python/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper utils for packaging.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import setuptools # Rename all .py files to .py_tmp temporarily. ignore_list = ['__init__.py', '__version__.py'] LOCAL_DIR = os.path.dirname(os.path.abspath(__file__)) def up_directory(dir_path, n=1): """Go up n directories from dir_path.""" dir_up = dir_path for _ in range(n): dir_up = os.path.split(dir_up)[0] return dir_up TOP_LEVEL_DIR = up_directory(LOCAL_DIR, 3) def remove_prefix(dir_path): """Remove a certain prefix from path.""" max_path = 8 prefix = dir_path while max_path > 0: prefix = os.path.split(prefix)[0] if prefix.endswith('ai_infra'): return dir_path[len(prefix) + 1:] max_path -= 1 return dir_path def get_subdirs(path): """Get all subdirs of given path.""" dirs = os.walk(path) return [remove_prefix(x[0]) for x in dirs] def rename_py_files(path, ext, new_ext, ignore_files): """Rename all .ext files in a path to .new_ext except __init__ files.""" files = glob.glob(path + '/*' + ext) for ignore_file in ignore_files: files = [f for f in files if ignore_file not in f] for filename in files: os.rename(filename, filename.replace(ext, new_ext)) def get_version_details(): """Simple function to get packages for setup.py.""" # Define env paths. LAUNCHER_SDK_PATH = os.path.join(TOP_LEVEL_DIR, "release/python") # Get current __version__. version_locals = {} with open(os.path.join(LAUNCHER_SDK_PATH, 'version.py')) as version_file: exec(version_file.read(), {}, version_locals) return version_locals def cleanup(): """Cleanup directories after the build process.""" req_subdirs = get_subdirs(TOP_LEVEL_DIR) # Cleanup. Rename all .py_tmp files back to .py and delete pyc files for dir_path in req_subdirs: dir_path = os.path.join(TOP_LEVEL_DIR, dir_path) # TODO: @vpraveen Think about removing python files before the final # release. rename_py_files(dir_path, '.py_tmp', '.py', ignore_list) pyc_list = glob.glob(dir_path + '/*.pyc') for pyc_file in pyc_list: os.remove(pyc_file) def find_packages(package_name): """List of packages. Args: package_name (str): Name of the package. Returns: packages (list): List of packages. """ packages = setuptools.find_packages(package_name) packages = [f"{package_name}.{f}" for f in packages] packages.append(package_name) return packages
tao_dataset_suite-main
release/python/utils/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Package module for the Data services."""
tao_dataset_suite-main
nvidia_tao_ds/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data Analytics module."""
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data analytics config."""
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from dataclasses import dataclass from omegaconf import MISSING from typing import Optional, List import multiprocessing @dataclass class DataConfig: """Dataset configuration template.""" input_format: str = MISSING output_dir: str = MISSING image_dir: str = MISSING ann_path: str = MISSING @dataclass class GraphConfig: """Graph configuration template.""" height: int = 15 width: int = 15 show_all: bool = False generate_summary_and_graph: bool = True @dataclass class WandbConfig: """Wandb configuration template.""" project: Optional[str] = None entity: Optional[str] = None save_code: bool = False name: Optional[str] = None notes: Optional[str] = None tags: Optional[List] = None visualize: bool = False @dataclass class ImageConfig: """Image configuration template.""" generate_image_with_bounding_box: bool = False sample_size: int = 100 @dataclass class ExperimentConfig: """Experiment configuration template.""" workers: int = multiprocessing.cpu_count() data: DataConfig = DataConfig() image: ImageConfig = ImageConfig() apply_correction: bool = False graph: GraphConfig = GraphConfig() wandb: WandbConfig = WandbConfig() results_dir: Optional[str] = None
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to handle coco operations.""" import pandas from pycocotools.coco import COCO import os import json import logging logger = logging.getLogger(__name__) def correct_data(coco_obj, output_dir): """ Correct the invalid coco annotations. Correction criteria : set bounding box values = 0 if their values are less than 0. set x_max=img_width if x_max>img_width. set y_max=img_height if y_max>img_height. swap inverted bouding box coordinates. Args: coco_obj (DataFormat): object of coco data format. output_dir (str): output directory. Return: No explicit returns. """ coco = COCO(coco_obj.ann_file) for annots in coco.anns.values(): bbox = annots['bbox'] bbox = [bbox[0], bbox[1], bbox[2] + bbox[0], bbox[3] + bbox[1]] image_id = annots['image_id'] image_data = coco.loadImgs([image_id])[0] height = image_data["height"] width = image_data['width'] xmin, ymin, xmax, ymax = bbox[0], bbox[1], bbox[2], bbox[3] xmin = max(xmin, 0) xmax = max(xmax, 0) ymin = max(ymin, 0) ymax = max(ymax, 0) if xmax < xmin: xmin, xmax = xmax, xmin if ymax < ymin: ymin, ymax = ymax, ymin xmax = min(xmax, width) ymax = min(ymax, height) annots['bbox'] = [xmin, ymin, xmax - xmin, ymax - ymin] final_dict = {"annotations": list(coco.anns.values()), "images": list(coco.imgs.values()), "categories": list(coco.cats.values())} # save the corrected coco annotation file. basename = os.path.basename(coco_obj.ann_file) save_path = os.path.join(output_dir, f"{basename}") with open(save_path, "w", encoding='utf-8') as f: json.dump(final_dict, f) logger.info(f"Corrected coco file is available at {save_path}") def get_image_data(coco_obj): """ Get image width and height. Args: coco_obj (DataFormat): object of coco data format. Returns: image_data(dict): Dictionary of image name. mapped to image width and height. """ coco = COCO(coco_obj.ann_file) image_dir = coco_obj.image_dir image_data = {} for img in coco.imgs.values(): img_fname = img['file_name'] width = img['width'] height = img['height'] image_data[img_fname] = [width, height, os.path.join(image_dir, img_fname)] return image_data def create_image_dataframe(image_data): """ Create image data frame. Args: image_data(Dict): image data dictionary. Returns: No explicit returns. """ image_df = pandas.DataFrame.from_dict(image_data, orient='index', columns=['img_width', 'img_height', 'path']) image_df['size'] = image_df['img_width'] * image_df['img_height'] return image_df def is_valid(bbox, width, height): """ Check if bbox coordinates are valid. Args: bbox(list): bbox coordinates. width(float): image width. height(float): image height. Returns: Bool: True if coordinates are valid else False. reason: list of reason for invalidaity. """ reason = [] xmin, ymin, xmax, ymax = bbox[0], bbox[1], bbox[2], bbox[3] if xmin < 0 or ymin < 0 or xmax < 0 or ymax < 0: reason.append("INVALID_OUT_OF_BOX_COORD") if (xmax - xmin) == 0 or (ymax - ymin) == 0: reason.append("INVALID_ZERO_COORD") if xmax < xmin or ymax < ymin: reason.append("INVALID_INVERTED_COORD") if (xmax > width or ymax > height): if "INVALID_OUT_OF_BOX_COORD" not in reason: reason.append("INVALID_OUT_OF_BOX_COORD") if len(reason) > 0: return False, reason return True, None def create_dataframe(coco_obj): """Create DataFrame from coco annotation file. Args: coco_obj (DataFormat): object of coco data format. Returns: valid_df (Pandas DataFrame): output valid dataframe of kitti data. invalid_df (Pandas DataFrame): output invalid dataframe of kitti data. """ coco = COCO(coco_obj.ann_file) valid_data_list = [] invalid_data_list = [] category_ids = coco.getCatIds() categories = coco.loadCats(category_ids) image_dir = "" if coco_obj.image_dir: image_dir = coco_obj.image_dir category_id_dict = {} for category in categories: category_id_dict[category['id']] = category['name'] for annots in coco.anns.values(): bbox = annots['bbox'] bbox = [bbox[0], bbox[1], bbox[2] + bbox[0], bbox[3] + bbox[1]] image_id = annots['image_id'] category_id = annots['category_id'] category_name = category_id_dict[category_id] image_data = coco.loadImgs([image_id])[0] image_name = image_data['file_name'] height = image_data["height"] width = image_data['width'] bbox_area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) valid, reason = is_valid(bbox, width, height) image_path = os.path.join(image_dir, image_name) if valid: valid_data_list.append([category_name, bbox[0], bbox[1], bbox[2], bbox[3], image_name, width, height, bbox_area, image_path]) else: out_of_box, zero_area, inverted_coord = 'False', 'False', 'False' if "INVALID_OUT_OF_BOX_COORD" in reason: out_of_box = 'True' if "INVALID_ZERO_COORD" in reason: zero_area = 'True' if "INVALID_INVERTED_COORD" in reason: inverted_coord = 'True' invalid_data_list.append([category_name, bbox[0], bbox[1], bbox[2], bbox[3], image_name, width, height, out_of_box, zero_area, inverted_coord, bbox_area, image_path]) valid_df = pandas.DataFrame(valid_data_list, columns=['type', 'bbox_xmin', 'bbox_ymin', 'bbox_xmax', 'bbox_ymax', 'image_name', 'img_width', 'img_height', 'bbox_area', 'img_path']) invalid_df = pandas.DataFrame(invalid_data_list, columns=['type', 'bbox_xmin', 'bbox_ymin', 'bbox_xmax', 'bbox_ymax', 'image_name', 'img_width', 'img_height', 'out_of_box_coordinates', 'zero_area_bounding_box', 'inverted_coordinates', 'bbox_area', 'img_path']) return valid_df, invalid_df
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/utils/coco.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines for connecting with Weights and Biases client.""" import logging import os import random import wandb from nvidia_tao_ds.core.mlops.wandb import ( check_wandb_logged_in, initialize_wandb, is_wandb_initialized ) logger = logging.getLogger(__name__) def login_and_initialize_wandb(wandb_config, output_dir): """ Login and initialize wandb. Args: wandb_config (DictConfig): wandb config. output_dir (str): output directory. Return: No explicit return """ logged_in = check_wandb_logged_in() if not is_wandb_initialized(): initialize_wandb(output_dir, project=wandb_config.project if wandb_config.project else None, entity=wandb_config.entity if wandb_config.entity else None, save_code=wandb_config.save_code if wandb_config.save_code else None, name=wandb_config.name if wandb_config.name else None, notes=wandb_config.notes if wandb_config.notes else None, tags=wandb_config.tags if wandb_config.tags else None, wandb_logged_in=logged_in) def create_barplot(data, title, name): """ Create barplot in wandb. Args: data (Pandas dataframe): data to create barplot. title (str): barplot title. name (str): wandb plot log name. Return: No explicit return """ table = wandb.Table(data=data) barplot = wandb.plot.bar(table, data.columns[0], data.columns[1], title=title) wandb.log({name: barplot}) def create_table(data, name): """ Create table in wandb. Args: data (Pandas dataframe): data to create table. name (str): wandb table log name. Return: No explicit return """ table = wandb.Table(data=data) wandb.log({name: table}) def generate_images_with_bounding_boxes(df, wandb_config, output_dir, image_sample_size): """ Generate images with Bounding boxes in wandb. Args: df (Pandas dataframe): valid dataframe used to draw images with bboxes. wandb_config (dict): wandb config. output_dir (str): output directory. Return: No explicit return """ table = wandb.Table(columns=['Name', 'Images']) classes = df['type'].unique() class_id_to_label = {} class_label_to_id = {} i = 0 for classname in classes: class_id_to_label[i] = classname class_label_to_id[classname] = i i += 1 images = df['img_path'].unique() if len(images) > image_sample_size: images = random.sample(set(images), image_sample_size) for img in images: temp_df = df.loc[df['img_path'].str.contains(img), :] box_data = [] for _, box in temp_df.iterrows(): xmin = box["bbox_xmin"] ymin = box["bbox_ymin"] xmax = box["bbox_xmax"] ymax = box["bbox_ymax"] class_id = class_label_to_id[box["type"]] box_data.append({"position": { "minX": xmin, "minY": ymin, "maxX": xmax, "maxY": ymax }, "class_id": class_id, "domain": "pixel" }) box_img = wandb.Image(img, boxes={ "ground_truth": {"box_data": box_data, "class_labels": class_id_to_label }}) table.add_data(os.path.basename(img), box_img) logger.info("It might take some time to log images in wandb.Please wait...") wandb.log({"image_table": table}) # run.finish()
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/utils/wandb.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to handle kitti operations.""" from concurrent.futures import ProcessPoolExecutor from concurrent.futures import as_completed, wait import glob import os import multiprocessing import numpy as np import pandas as pd from PIL import Image from nvidia_tao_ds.data_analytics.utils.constant import COMMON_FILE_NAMES import logging logger = logging.getLogger(__name__) IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg"] def list_files(kitti_obj): """ List image and label files. Args: kitti_obj(DataFormat): object of kitti data format. Returns: No explicit returns. """ image_dir = kitti_obj.image_dir label_dir = kitti_obj.label_dir images = [] # List image files. for ext in IMAGE_EXTENSIONS: images.extend( glob.glob( os.path.join(image_dir, f'**/*{ext}'), recursive=True ) ) # List label files. labels = glob.glob(os.path.join(label_dir, '**/*.txt'), recursive=True) images = sorted(images) labels = sorted(labels) if len(images) == 0: kitti_obj.image_paths = None kitti_obj.label_paths = labels return image_names = [x[x.rfind('/'):-4] for x in images] label_names = [x[x.rfind('/'):-4] for x in labels] out_img = [] out_lbl = [] i = 0 j = 0 while i < len(image_names) and j < len(label_names): if image_names[i] < label_names[j]: i += 1 elif image_names[i] > label_names[j]: j += 1 else: out_img.append(images[i]) out_lbl.append(labels[j]) i += 1 j += 1 kitti_obj.image_paths = out_img kitti_obj.label_paths = out_lbl def create_image_dataframe(image_data): """ Create image data frame. Args: image_data(Dict): image data dictionary. Returns: No explicit returns. """ image_df = pd.DataFrame.from_dict(image_data, orient='index', columns=['img_width', 'img_height', 'path']) image_df['size'] = image_df['img_width'] * image_df['img_height'] return image_df def create_dataframe(valid_kitti_file_path, invalid_kitti_file_path, image_data): """Create DataFrame from kitti files. Args: paths (str): Unix path to the kitti files. image_data(dict): Dictionary of image data corresponding to kitti data.(None if no images are given). Returns: df (Pandas DataFrame): output dataframe of kitti data. """ dtype = {'type': str, 'truncated': np.dtype('float'), 'occluded': np.dtype('int32'), 'alpha': np.dtype('float'), 'bbox_xmin': np.dtype('float'), 'bbox_ymin': np.dtype('float'), 'bbox_xmax': np.dtype('float'), 'bbox_ymax': np.dtype('float'), 'dim_height': np.dtype('float'), 'dim_width': np.dtype('float'), 'dim_length': np.dtype('float'), 'loc_x': np.dtype('float'), 'loc_y': np.dtype('float'), 'loc_z': np.dtype('float'), 'rotation_y': np.dtype('float'), 'path': str} name_list = ['type', 'truncated', 'occluded', 'alpha', 'bbox_xmin', 'bbox_ymin', 'bbox_xmax', 'bbox_ymax', 'dim_height', 'dim_width', 'dim_length', 'loc_x', 'loc_y', 'loc_z', 'rotation_y', 'path'] if image_data is not None: name_list += ['img_width', 'img_height', 'img_path'] dtype['img_width'] = np.dtype('float') dtype['img_height'] = np.dtype('float') dtype['img_path'] = str df_list = [pd.read_csv(filepath, sep=' ', names=name_list, dtype=dtype, index_col=False) for filepath in valid_kitti_file_path] valid_df = pd.concat(df_list) valid_df['bbox_area'] = (valid_df['bbox_xmax'] - valid_df['bbox_xmin']) * (valid_df['bbox_ymax'] - valid_df['bbox_ymin']) dtype['out_of_box_coordinates'] = np.dtype('bool') dtype['zero_area_bounding_box'] = np.dtype('bool') dtype['inverted_coordinates'] = np.dtype('bool') name_list += ['out_of_box_coordinates', 'zero_area_bounding_box', 'inverted_coordinates'] invalid_df = pd.read_csv(invalid_kitti_file_path, sep=' ', names=name_list, dtype=dtype, index_col=False) invalid_df['bbox_area'] = (invalid_df['bbox_xmax'] - invalid_df['bbox_xmin']) * (invalid_df['bbox_ymax'] - invalid_df['bbox_ymin']) return valid_df, invalid_df def validate_kitti_row(kitti_row, img_height=None, img_width=None): """ Validate kitti row. Args: kitti_row (str): kitti row. img_height (int): corresponding image height. img_width (int): corresponding image width. Returns: Bool,str: boolean status if valid or not , description """ columns = kitti_row.strip().split(' ') # data is not in kitti format if kitti columns are 15 or 16 # data is invalid in case of out of bound bbox and inverted coordinates. if len(columns) not in (15, 16): return False, "NOT_KITTI" try: truncated, occluded, = float(columns[1]), int(columns[2]) x_min, y_min = float(columns[4]), float(columns[5]) x_max, y_max = float(columns[6]), float(columns[7]) except Exception: return False, "NOT_KITTI" return_status = True invalid_reason_list = [] if x_min < 0 or x_max < 0 or y_min < 0 or y_max < 0: return_status = False invalid_reason_list.append("INVALID_OUT_OF_BOX_COORD") if (x_max - x_min) == 0 or (y_max - y_min) == 0: return_status = False invalid_reason_list.append("INVALID_ZERO_COORD") if x_max < x_min or y_max < y_min: return_status = False invalid_reason_list.append("INVALID_INVERTED_COORD") if img_width and img_height and (x_max > img_width or y_max > img_height): return_status = False if "INVALID_OUT_OF_BOX_COORD" not in invalid_reason_list: invalid_reason_list.append("INVALID_OUT_OF_BOX_COORD") if not return_status: return return_status, invalid_reason_list if truncated < 0 or truncated > 1 or occluded not in (0, 1, 2, 3): return False, "GOOD_TO_CORRECT" return True, "VALID_DATA" def validate_and_merge(filepaths, lock, i, not_kitti_file, invalid_kitti_data, good_to_correct_kitti_data, image_data=None): """ Validate and merge kitti files in one file. Args: filepaths (list): List of kitti filepaths. lock (object): Multiprocessing lock object. i (int): Suffix for merged file to be created (thread_multi_{i}). not_kitti_file (str): Txt file Path where details will be logged for files that are not kitti or images. invalid_kitti_data (str): File Path where invalid kitti rows will be logged. good_to_correct_kitti_data(str): File Path where good to correct kitti rows will be logged. image_data(dict): Dictionary of image data corresponding to kitti data. (None if no images are given). Returns: mergedfilepath (str): Path of text file in which kitti files are merged. """ filename = f"thread_multi_{str(i)}.txt" merged_file_path = os.path.join(COMMON_FILE_NAMES['INTERMEDIATE_KITTI_FOLDER'], filename) not_kitti_files_list = set() invalid_kitti_row = [] good_to_correct_kitti_row = [] with open(merged_file_path, 'w+', encoding='utf-8') as handle1: for filepath in filepaths: basename = os.path.basename(filepath).split(".")[0] try: with open(filepath, 'r', encoding='utf-8') as handle2: content = '' line_number = 0 for line in handle2: if not line.strip(): continue columns = line.strip().split(' ') if image_data: img_width, img_height, img_path = (image_data[basename][0], image_data[basename][1], image_data[basename][2]) columns = columns[0:15] + [filepath, str(img_width), str(img_height), img_path] else: columns = columns[0:15] + [filepath] img_height = None img_width = None valid, desc = validate_kitti_row(line, img_height, img_width) if not valid: if not isinstance(desc, list): if desc == "NOT_KITTI": not_kitti_files_list.add(filepath + " " + str(line_number)) line_number += 1 elif desc == "GOOD_TO_CORRECT": good_to_correct_kitti_row.append(" ".join(columns).lower()) else: out_of_box, zero_area, inverted_coord = 'False', 'False', 'False' if "INVALID_OUT_OF_BOX_COORD" in desc: out_of_box = 'True' if "INVALID_ZERO_COORD" in desc: zero_area = 'True' if "INVALID_INVERTED_COORD" in desc: inverted_coord = 'True' columns = columns + [out_of_box, zero_area, inverted_coord] invalid_kitti_row.append(" ".join(columns).lower()) continue content += " ".join(columns).lower() + "\n" line_number += 1 handle1.write(content) except Exception: not_kitti_files_list.add(filepath) lock.acquire() with open(not_kitti_file, 'a+', encoding='utf-8') as handle: handle.write("\n") handle.write('\n'.join(not_kitti_files_list)) with open(invalid_kitti_data, 'a+', encoding='utf-8') as handle: handle.write("\n") handle.write('\n'.join(invalid_kitti_row)) with open(good_to_correct_kitti_data, 'a+', encoding='utf-8') as handle: handle.write("\n") handle.write('\n'.join(good_to_correct_kitti_row)) lock.release() return merged_file_path def validate_and_merge_kitti_files(files, output_dir, num_workers, image_data=None): """Validate and Merge Kitti Files using multiprocessing. Args: files (str): Unix path to the kitti files. output_dir (str): Path to output directory. num_workers (int): Number of workers. image_data(dict): Dictionary of image data corresponding to kitti data.(None if no images are given). Returns: mergedfilenames(list): List of all merged file paths. """ merged_file_names = [] workers = int(num_workers) not_kitti_file = os.path.join(output_dir, 'not_kitti.txt') if not os.path.exists(COMMON_FILE_NAMES['INTERMEDIATE_KITTI_FOLDER']): os.makedirs(COMMON_FILE_NAMES['INTERMEDIATE_KITTI_FOLDER']) invalid_kitti_data_file = os.path.join(COMMON_FILE_NAMES['INTERMEDIATE_KITTI_FOLDER'], COMMON_FILE_NAMES['INVALID_KITTI']) good_to_correct_kitti_data_file = os.path.join(COMMON_FILE_NAMES['INTERMEDIATE_KITTI_FOLDER'], COMMON_FILE_NAMES['GOOD_TO_CORRECT_KITTI']) with open(not_kitti_file, 'w+', encoding='utf-8'): pass with open(invalid_kitti_data_file, 'w+', encoding='utf-8'): pass with open(good_to_correct_kitti_data_file, 'w+', encoding='utf-8'): pass # create the process pool with ProcessPoolExecutor(workers) as executor: futures = [] m = multiprocessing.Manager() lock = m.Lock() if len(files) < workers: chunksize = 1 else: chunksize = round(len(files) / workers) # split the merge operations into chunks for i in range(0, len(files), chunksize): # select a chunk of filenames filepaths = files[i:(i + chunksize)] # submit the task future = executor.submit(validate_and_merge, filepaths, lock, i, not_kitti_file, invalid_kitti_data_file, good_to_correct_kitti_data_file, image_data) futures.append(future) # process all results for future in as_completed(futures): # open the file and load the data filename = future.result() merged_file_names.append(filename) merged_file_names.append(good_to_correct_kitti_data_file) return merged_file_names def get_image_data(kitti_obj): """ Get image width and height . Args: kitti_obj (DataFormat): object of kitti data format. Returns: image_data(dict): Dictionary of image name. mapped to image width and height . """ filepaths = kitti_obj.image_paths image_data = {} for filepath in filepaths: basename = os.path.basename(filepath).rsplit(".", 1)[0] img = Image.open(filepath) width, height = img.size image_data[basename] = [width, height, filepath] return image_data def correct_data(invalid_df): """ Correct the invalid kitti dataframe. correction criteria : set bounding box values = 0 if their values are less than 0. set x_max=img_width if x_max>img_width. set y_max=img_height if y_max>img_height. swap inverted bouding box coordinates. Args: invalid_df(Pandas Dataframe): invalid kitti dataframe. Return: valid kitti dataframe. """ if 'img_width' in invalid_df.columns and 'img_height' in invalid_df.columns: invalid_df.loc[invalid_df['bbox_xmax'] > invalid_df['img_width'], 'bbox_xmax'] = invalid_df['img_width'] invalid_df.loc[invalid_df['bbox_ymax'] > invalid_df['img_height'], 'bbox_ymax'] = invalid_df['img_height'] invalid_df.loc[invalid_df['bbox_xmax'] < 0, 'bbox_xmax'] = 0 invalid_df.loc[invalid_df['bbox_xmin'] < 0, 'bbox_xmin'] = 0 invalid_df.loc[invalid_df['bbox_ymin'] < 0, 'bbox_ymin'] = 0 invalid_df.loc[invalid_df['bbox_ymax'] < 0, 'bbox_ymax'] = 0 temp_rows = invalid_df['bbox_xmax'] < invalid_df['bbox_xmin'] invalid_df.loc[temp_rows, ['bbox_xmax', 'bbox_xmin']] = (invalid_df.loc[temp_rows, ['bbox_xmin', 'bbox_xmax']].values) temp_rows = invalid_df['bbox_ymax'] < invalid_df['bbox_ymin'] invalid_df.loc[temp_rows, ['bbox_ymax', 'bbox_ymin']] = (invalid_df.loc[temp_rows, ['bbox_ymin', 'bbox_ymax']].values) return invalid_df def write_to_csv(paths, kitti_folder, df): """ write dataframe to csv's. Args: paths(List): path to csv files. kitti_folder(str): path to folder to save kitti files. df(Pandas dataframe): dataframe. Return: No explicit return. """ for filepath in paths: temp_df = df.loc[df['path'] == filepath, :] temp_df = temp_df.drop(['path', 'bbox_area', 'out_of_box_coordinates', 'zero_area_bounding_box', 'inverted_coordinates'], axis=1) if 'img_height' in temp_df.columns: temp_df = temp_df.drop(['img_height', 'img_width', 'img_path'], axis=1) basename = os.path.basename(filepath) kitti_path = os.path.join(kitti_folder, basename) temp_df.to_csv(kitti_path, header=None, index=None, sep=' ', mode='w+') def create_correct_kitti_files(df, corrected_df, output_dir, workers): """ Create corrected kitti files back from dataframe. Args: df(Pandas dataframe): valid dataframe used to create csv. corrected_df(Pandas dataframe): valid dataframe used to get filenames to rewrite. output_dir(str): output directory. workers(int): number of workers for multiprocessing. Return: No explicit return. """ kitti_folder = os.path.join(output_dir, "corrected_kitti_files") if not os.path.exists(kitti_folder): os.makedirs(kitti_folder) kitti_files = corrected_df['path'].unique() logging.info(f"Total kitti files to be corrected - {len(kitti_files)}") with ProcessPoolExecutor(workers) as executor: futures = [] if len(kitti_files) < workers: chunksize = 1 else: chunksize = round(len(kitti_files) / workers) # split the operations into chunks for i in range(0, len(kitti_files), chunksize): # select a chunk of filenames filepaths = kitti_files[i:(i + chunksize)] temp_df = df.loc[df['path'].isin(filepaths), :] # submit the task future = executor.submit(write_to_csv, filepaths, kitti_folder, temp_df) futures.append(future) wait(futures) logger.info(f"Corrected kitti files are available at {kitti_folder}")
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/utils/kitti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for TAO analyze and validate."""
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to handle different data formats.""" class DataFormat: """Class data format""" pass class CocoData(DataFormat): """COCO data format""" def __init__(self, ann_file, image_dir=None) -> None: """Initialize a COCO object. Args: ann_file(str): path to annotation file. image_dir(str): path to image dir. """ self.ann_file = ann_file self.image_dir = image_dir class KittiData(DataFormat): """KITTI data format""" def __init__(self, image_dir=None, label_dir=None) -> None: """Initialize a KITTI object. Args: image_dir(str): path to image dir. label_dir(str): path to label dir. """ self.image_dir = image_dir self.label_dir = label_dir self.image_paths = None self.label_paths = None
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/utils/data_format.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to handle constants.""" COMMON_FILE_NAMES = {'INTERMEDIATE_KITTI_FOLDER': "intermediate_kitti_files", 'GOOD_TO_CORRECT_KITTI': "good_to_correct_kitti.txt", 'INVALID_KITTI': "invalid_kitti_data.txt"}
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/utils/constant.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to handle image operations.""" import os from concurrent.futures import ProcessPoolExecutor from concurrent.futures import as_completed import logging import re import random from PIL import Image, ImageDraw from tqdm import tqdm def write_to_image(filepaths, output_image_folder, df, object_color_dict, dataformat=None): """ Draw Bounding boxes in images. Args: df(Pandas dataframe): valid dataframe used to draw bboxes. filepaths(list): list of image files to draw. output_image_folder(str): output directory. object_color_dict(dict): dictiory of object names to their unique color. dataformat(str): input data format. Return: No explicit return. """ for filepath in filepaths: basename = os.path.basename(filepath).split(".")[0] # read image im = Image.open(filepath) if dataformat == "KITTI": pattern = '.*' + basename + '.txt' pattern = re.compile(pattern) temp_df = df.loc[df['path'].str.contains(pattern), :] else: pattern = os.path.basename(filepath) pattern = re.compile(pattern) temp_df = df.loc[df['image_name'].str.contains(pattern), :] for _, row in temp_df.iterrows(): bbox = row['bbox_xmin'], row['bbox_ymin'], row['bbox_xmax'], row['bbox_ymax'] draw = ImageDraw.Draw(im) obj_type = row['type'] color = object_color_dict[obj_type] draw.rectangle((bbox[0], bbox[1], bbox[2], bbox[3]), fill=None, outline=color) draw.text((bbox[0], bbox[1]), obj_type) output_filepath = os.path.join(output_image_folder, os.path.basename(filepath)) im.save(output_filepath) def assign_object_colors(objects_names): """ Assign color to each object. Args: object_names(List): list of object names. Return: color_dict(dict): dictiory of object names to their unique color. """ color_list = [] objects_names = list(objects_names) for _ in range(0, len(objects_names)): r = random.randint(0, 255) g = random.randint(0, 255) b = random.randint(0, 255) while ((r, g, b) in color_list): r = random.randint(0, 255) g = random.randint(0, 255) b = random.randint(0, 255) color_list.append((r, g, b)) color_dict = {} for i in range(0, len(objects_names)): color_dict[objects_names[i]] = color_list[i] return color_dict def generate_images_with_bounding_boxes(df, image_data, output_dir, image_sample_size, workers, dataformat=None): """ Draw Bounding boxes in images. Args: df(Pandas dataframe): valid dataframe used to draw bboxes. image_data(Dict): Dictionary to hold image data. output_dir(str): output directory. workers(int): number of workers for multiprocessing. dataformat(str): input data format. Return: No explicit return """ output_image_folder = os.path.join(output_dir, "image_with_bounding_boxes") if not os.path.exists(output_image_folder): os.makedirs(output_image_folder) all_image_paths = [i_data[2] for i_data in image_data.values()] if len(all_image_paths) > image_sample_size: all_image_paths = random.sample(set(all_image_paths), image_sample_size) logging.info(f"Total image files- {len(all_image_paths)}") object_color_dict = assign_object_colors(df['type'].unique()) if dataformat == "KITTI": df = df.drop(["truncated", "occluded", "alpha", "rotation_y", "loc_x", "loc_y", "loc_z", "dim_height", "dim_width", "dim_length"], axis=1) tq = tqdm(total=len(all_image_paths), position=0, leave=True) with ProcessPoolExecutor(workers) as executor: futures = [] if len(all_image_paths) < workers: chunksize = 1 else: chunksize = round(len(all_image_paths) / workers) # split the operations into chunks for i in range(0, len(all_image_paths), chunksize): # select a chunk of filenames filepaths = all_image_paths[i:(i + chunksize)] if dataformat == "COCO": patterns = [os.path.basename(filepath) for filepath in filepaths] patterns = re.compile('|'.join(patterns)) temp_df = df.loc[df['image_name'].str.contains(patterns), :] else: patterns = [os.path.basename(filepath).split(".")[0] + ".txt" for filepath in filepaths] patterns = re.compile('|'.join(patterns)) temp_df = df.loc[df['path'].str.contains(patterns), :] # submit the task future = executor.submit(write_to_image, filepaths, output_image_folder, temp_df, object_color_dict, dataformat) futures.append(future) for future in as_completed(futures): tq.update(chunksize) tq.close() logging.info(f"Images with bounding boxes are available at {output_image_folder}")
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/utils/image.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data Analytics scripts."""
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script to run TAO validate.""" import logging import os import time import sys import pandas as pd from nvidia_tao_ds.data_analytics.utils import kitti, coco, data_format from nvidia_tao_ds.core.decorators import monitor_status from nvidia_tao_ds.core.hydra.hydra_runner import hydra_runner from nvidia_tao_ds.data_analytics.config.default_config import ExperimentConfig from nvidia_tao_ds.data_analytics.utils.constant import COMMON_FILE_NAMES logger = logging.getLogger(__name__) def class_balance_info(df): """Print class balance summary. Args: df (Pandas Dataframe): Dataframe for valid kitti rows. Return: No explicit return. """ count_df = df['type'].value_counts(ascending=False, normalize=True).rename( 'count_num').reset_index() count_df['count_num'] = count_df['count_num'] * 100 count_df = count_df.rename(columns={"index": "Object_tags", "count_num": "Percentage"}) logger.info("Review below table to find if data for object tags is imbalanced") logger.info(count_df.to_string()) def validate_summary(valid_df, invalid_df, data_format): """Show validation summary. Args: valid_df (Pandas Dataframe): Valid kitti dataframe. invalid_df (Pandas Dataframe): invalid kitti dataframe. data_format (str): Input data format Return: No explicit returns. """ total_rows = len(valid_df) + len(invalid_df) num_of_invalid_rows = len(invalid_df) invalid_percentage = (num_of_invalid_rows / total_rows) * 100 invalid_percentage = round(invalid_percentage, 2) logger.info(f"Number of total annotations : {total_rows}\ \nNumber of invalid annotations : {num_of_invalid_rows}") if invalid_percentage > 5: logger.warning(f"WARNING: Number of invalid annotations are {invalid_percentage}" " of total annotations , It is advisable" " to correct the data before training.") else: logger.info(f"Number of invalid annotations are {invalid_percentage}" " of total annotations,") if 'img_width' in invalid_df.columns: oob_condition = ((invalid_df['bbox_xmin'] < 0) | (invalid_df['bbox_ymin'] < 0) | (invalid_df['bbox_ymax'] < 0) | (invalid_df['bbox_xmax'] < 0) | (invalid_df['bbox_xmax'] > invalid_df['img_width']) | (invalid_df['bbox_ymax'] > invalid_df['img_height'])) else: oob_condition = ((invalid_df['bbox_xmin'] < 0) | (invalid_df['bbox_ymin'] < 0) | (invalid_df['bbox_ymax'] < 0) | (invalid_df['bbox_xmax'] < 0)) out_of_bound_count = len(invalid_df[oob_condition]) inverted_cord_count = len(invalid_df[(invalid_df['bbox_ymax'] > 0) & (invalid_df['bbox_xmax'] > 0) & (invalid_df['bbox_ymin'] > 0) & (invalid_df['bbox_xmin'] > 0) & ((invalid_df['bbox_xmax'] < invalid_df['bbox_xmin']) | (invalid_df['bbox_ymax'] < invalid_df['bbox_ymin']))]) out_of_bound_percentage = round((out_of_bound_count / total_rows) * 100, 2) inverted_cord_percentage = round((inverted_cord_count / total_rows) * 100, 2) logger.info("Number and Percent of annotations with out of bound " f"coordinates {out_of_bound_count}, {out_of_bound_percentage}%") logger.info("Number and Percent of annotations with inverted " f"coordinates {inverted_cord_count}, {inverted_cord_percentage}%") class_balance_info(valid_df) @monitor_status(mode='KITTI validation') def validate_dataset_kitti(config): """TAO KITTI dataset validate. Args: config (Hydra config): Config element of the analyze config. """ start_time = time.perf_counter() kitti_obj = data_format.KittiData(config.data.image_dir, config.data.ann_path) if not os.path.isdir(config.data.ann_path): logger.info("Please provide path of kitti label directory in config data.ann_path.") sys.exit(1) kitti.list_files(kitti_obj) if kitti_obj.image_paths is None: logger.info("Image Directory not found.Processing only label files") image_data = None else: # Get image data (image width and height) image_data = kitti.get_image_data(kitti_obj) if kitti_obj.label_paths is None: logger.info("kitti files not Found. Exiting ") sys.exit(1) valid_kitti_filepaths = kitti.validate_and_merge_kitti_files(kitti_obj.label_paths, config.data.output_dir, config.workers, image_data) invalid_filepath = os.path.join(COMMON_FILE_NAMES['INTERMEDIATE_KITTI_FOLDER'], COMMON_FILE_NAMES['INVALID_KITTI']) # Dataframe creation for valid and invalid kitti data valid_df, invalid_df = kitti.create_dataframe(valid_kitti_filepaths, invalid_filepath, image_data) validate_summary(valid_df, invalid_df, config.data.input_format) if config.apply_correction: corrected_df = kitti.correct_data(invalid_df) df = pd.concat([valid_df, corrected_df]) kitti.create_correct_kitti_files(df, corrected_df, config.data.output_dir, config.workers) logger.debug(f"Total time taken : {time.perf_counter() - start_time}") @monitor_status(mode='COCO validation') def validate_dataset_coco(config): """TAO COCO dataset validate. Args: config (Hydra config): Config element of the analyze config. """ start_time = time.perf_counter() if not os.path.isfile(config.data.ann_path): logger.info("Please provide path of coco annotation file in config data.ann_path.") sys.exit(1) coco_obj = data_format.CocoData(config.data.ann_path, config.data.image_dir) # Dataframe creation for valid and invalid kitti data valid_df, invalid_df = coco.create_dataframe(coco_obj) validate_summary(valid_df, invalid_df, config.data.input_format) if config.apply_correction: # correct the coco file and write into output_dir coco.correct_data(coco_obj, config.data.output_dir) logger.debug(f"Total time taken : {time.perf_counter() - start_time}") spec_root = os.path.dirname(os.path.abspath(__file__)) @hydra_runner( config_path=os.path.join(spec_root, "../experiment_specs"), config_name="validate", schema=ExperimentConfig ) def main(cfg: ExperimentConfig): """TAO Validate main wrapper function.""" try: if not os.path.exists(cfg.data.output_dir): os.makedirs(cfg.data.output_dir) cfg.results_dir = cfg.results_dir or cfg.data.output_dir if cfg.data.input_format == "COCO": validate_dataset_coco(cfg) elif cfg.data.input_format == "KITTI": validate_dataset_kitti(cfg) else: logger.info(f"Data format {cfg.data.input_format} is not supported.") sys.exit(1) except KeyboardInterrupt: logger.info("Aborting execution.") sys.exit(1) except RuntimeError as e: logger.info(f"Validate run failed with error: {e}") sys.exit(1) except Exception as e: logger.info(f"Validate run failed with error: {e}") sys.exit(1) if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/scripts/validate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script to run TAO analyze.""" import pandas as pd import os import time import logging import numpy as np import sys import seaborn as sns import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from matplotlib.font_manager import FontProperties from nvidia_tao_ds.data_analytics.utils import kitti, data_format, coco, image, wandb from nvidia_tao_ds.data_analytics.utils.constant import COMMON_FILE_NAMES from nvidia_tao_ds.core.decorators import monitor_status from nvidia_tao_ds.core.hydra.hydra_runner import hydra_runner from nvidia_tao_ds.core.mlops.wandb import is_wandb_initialized from nvidia_tao_ds.data_analytics.config.default_config import ExperimentConfig logger = logging.getLogger(__name__) def configure_subgraph(axn, xlabel=None, ylabel=None, xtickrotate=None, ytickrotate=None, xticklabelformat=None, yticklabelformat=None, xticks=None, yticks=None): """ Configure graph properties. Args: axn = graph axis object, xlabel (str): Label for x axis, ylabel (str): Label for y axis, xtickrotate (str): Rotation for x axis label, ytickrotate (str): Rotation for y axis label, xticklabelformat (str): Format of x axis label, yticklabelformat (str): Format of y axis label, xticks (str): set x ticks, yticks (str): set y ticks Return: No explicit Return. """ if xlabel: axn.set_xlabel(xlabel) if ylabel: axn.set_ylabel(ylabel) if xticklabelformat: axn.ticklabel_format(style=xticklabelformat, axis='x') if yticklabelformat: axn.ticklabel_format(style=yticklabelformat, axis='y') if xticks: axn.set_xticks(xticks) if yticks: axn.set_yticks(yticks) if xtickrotate: axn.tick_params(axis='x', labelrotation=xtickrotate[0]) if ytickrotate: axn.tick_params(axis='y', labelrotation=ytickrotate[0]) def object_count_visualize(valid_df, output_dir, graph_attr, wandb_attr): """ Create Graphs for Object Count. Args: valid_df (Pandas DataFrame): valid kitti dataframe output_dir (str): Result Directory. graph_attr (DictConfig): graph attributes( height - to set graph height width - to set graph width show_all - to show all object on graph, by default maximum 100 object will be shown.) wandb_attr (DictConfig): wandb attributes Return: No explicit Return """ # per Object Count count_df = valid_df['type'].value_counts(ascending=False).rename( 'count_num').reset_index() figuresizes = (graph_attr.width, graph_attr.height) show_all = True if not graph_attr.show_all and len(count_df) > 100: show_all = False if not show_all: graph_data = count_df.head(100) else: graph_data = count_df # Create graph for object count if wandb_attr.visualize: graph_data = graph_data.rename(columns={'index': 'Object Name', 'count_num': 'Count'}) wandb.create_barplot(graph_data, "Object Name Vs Count", "object_count_chart1") else: pdf = PdfPages(os.path.join(output_dir, 'Object_count.pdf')) fig = plt.figure(figsize=figuresizes) if max(count_df['count_num']) - min(count_df['count_num']) > 10: binrange = range(min(count_df['count_num']), max(count_df['count_num']), int((max(count_df['count_num']) - min(count_df['count_num'])) / 10)) else: binrange = range(min(count_df['count_num']), max(count_df[ 'count_num'])) ax = plt.gca() sns.barplot(y='count_num', x='index', data=graph_data, width=0.2) txt = "The bar plot below describes the count of each object"\ " available in valid kitti data." plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) configure_subgraph(ax, xlabel="Object Name", ylabel="Count", xtickrotate=(90, "right"), yticklabelformat="plain", yticks=binrange) pdf.savefig(fig) plt.close() # Create graph for object count(%) count_sum = count_df["count_num"].sum() count_df['percent'] = (count_df["count_num"] / count_sum) * 100 count_df['percent'] = count_df['percent'].round(decimals=2) graph_data = count_df if show_all else count_df.head(100) if wandb_attr.visualize: graph_data = graph_data.drop("count_num", axis=1) graph_data = graph_data.rename(columns={'index': 'Object Name', 'percent': 'Count(%)'}) wandb.create_barplot(graph_data, "Object Name Vs Count Percentage", "object_count_chart2") else: fig = plt.figure(figsize=figuresizes) ax = plt.gca() binrange = range(0, 100, 10) sns.barplot(y='percent', x='index', data=graph_data, width=0.2) txt = "The bar plot below describes the count percentage of each "\ "object available in valid kitti data ." plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) configure_subgraph(ax, xlabel="Object Name", ylabel="Count (%)", xtickrotate=(90, "right"), yticklabelformat="plain", yticks=binrange) pdf.savefig(fig) plt.close() # Create stats table for object count count_df_desc = count_df['count_num'].describe() count_stat = pd.DataFrame({'Value': count_df_desc}) count_stat = count_stat.reset_index() count_stat = count_stat.rename(columns={'index': 'Statistic'}) if not wandb_attr.visualize: fig = plt.figure(figsize=figuresizes) fig.clf() plt.axis('off') txt = "The table below shows object count statistics" plt.text(0.05, 0.90, txt, transform=fig.transFigure, size=10) table = plt.table(cellText=count_stat.values, edges='closed', loc='center', colLoc='right') for coord, cell in table.get_celld().items(): if (coord[1] == 0): font_property = FontProperties(weight='bold') cell.set_text_props(fontproperties=font_property) pdf.savefig(fig) plt.close() else: wandb.create_table(count_stat, "Count statistics") # Create summary table for object count per tag if not wandb_attr.visualize: fig = plt.figure(figsize=figuresizes) fig.clf() plt.axis('off') txt = 'The table below shows object count per object.' plt.text(0.05, 0.90, txt, transform=fig.transFigure, size=10) count_df['percent'] = count_df['percent'].round(decimals=4) graph_data = count_df if show_all else count_df.head(100) table = plt.table(cellText=graph_data.values, edges='closed', loc='center', colLoc='right', colLabels=['Object Name', 'Count', 'Percentage']) for coord, cell in table.get_celld().items(): if (coord[0] == 0): font_property = FontProperties(weight='bold') cell.set_text_props(fontproperties=font_property) pdf.savefig(fig) plt.close() pdf.close() def occlusion_visualize(valid_df, output_dir, graph_attr, wandb_attr): """ Create Graphs for Object Count. Args: valid_df (Pandas DataFrame): valid kitti dataframe output_dir(str): Result Directory. graph_attr (DictConfig): graph attributes( height - to set graph height width - to set graph width show_all - to show all object on graph, by default maximum 100 object will be shown.) wandb_attr (DictConfig): wandb attributes Return: No explicit Return """ # Object Occlusion occluded_df = valid_df.groupby(['occluded'])['type'].count().rename('occ_count').reset_index() occluded_df['count_per'] = (occluded_df['occ_count'] / occluded_df[ 'occ_count'].sum()) * 100 occluded_df['count_per'] = occluded_df['count_per'] .round(decimals=3) # Occlusion per object per_object_occluded_df = valid_df.groupby(['type', 'occluded'])[ 'truncated'].count().reset_index() figuresizes = (graph_attr.width, graph_attr.height) show_all = True if not graph_attr.show_all and len(per_object_occluded_df) > 100: show_all = False if not wandb_attr.visualize: pdf = PdfPages(os.path.join(output_dir, 'Occlusion.pdf')) # Create Occlusion Barplot fig = plt.figure(figsize=figuresizes) ax = plt.gca() binrange = range(0, 100, 10) gph = sns.barplot(occluded_df, y='count_per', x='occluded', width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="Occlusion", ylabel="Count (%)", yticks=binrange) txt = "The bar plot below describes the count percentage of each "\ "occlusion level in valid kitti data .\n0: Fully visible, "\ "1: Partly occluded, 2: Largely occluded,"\ " 3: Unknown, Any other integer: Unknown occlusion tag" plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() sumvalue = per_object_occluded_df["truncated"].sum() # Draw a nested barplot for occlusion level per object Tag per_object_occluded_df["truncated"] = (per_object_occluded_df["truncated"] / sumvalue) * 100 fig = plt.figure(figsize=figuresizes) ax = plt.gca() graph_data = per_object_occluded_df if show_all else per_object_occluded_df.head(100) gph = sns.barplot(data=graph_data, x="type", y="truncated", hue="occluded", errorbar="sd", palette="dark") txt = "The bar plot below describes the count percentage of occlusion"\ " per object, available in valid kitti data .\n0: Fully "\ "Visible, 1: Partly occluded, 2: Largely occluded, 3: Unknown, "\ "Any other integer: Unknown occlusion tag" plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) configure_subgraph(ax, xlabel="Object Name", ylabel="Count(%)", xtickrotate=(90, "right"), yticklabelformat="plain", yticks=binrange) fig.legend(fontsize=5) pdf.savefig(fig) plt.close() pdf.close() else: occluded_df['occluded'] = np.where((occluded_df['occluded'] < 0) | (occluded_df['occluded'] > 3), "Unknown occlusion value", occluded_df['occluded']) occluded_df['occluded'] = occluded_df['occluded'].replace(["0", "1", "2", "3"], ['Fully visible', 'Partly occluded', 'Largely occluded', 'Unknown']) occluded_df = occluded_df.drop("occ_count", axis=1) occluded_df = occluded_df.rename(columns={'occluded': 'Occlusion', 'count_per': 'Count(%)'}) wandb.create_barplot(occluded_df, "Occlusion Vs Count(%)", "Occlusion_chart1") def bbox_area_visualize(valid_df, output_dir, graph_attr, wandb_attr): """ Create Graphs for Object Bounding box area. Args: valid_df (Pandas DataFrame): valid kitti data dataframe. output_dir(str): Result Directory. graph_attr (DictConfig): graph attributes( height - to set graph height width - to set graph width show_all - to show all object on graph, by default maximum 100 object will be shown.) wandb_attr (DictConfig): wandb attributes Return: No explicit Return """ figuresizes = (graph_attr.width, graph_attr.height) area_mean = valid_df.groupby('type')['bbox_area'] area_mean = area_mean.describe()['mean'].reset_index() if not graph_attr.show_all and len(area_mean) > 100: graph_data = area_mean.head(100) else: graph_data = area_mean area_stats = valid_df['bbox_area'].describe() area_stat = pd.DataFrame({'Value': area_stats}) area_stat['Value'] = area_stat['Value'].round(decimals=4) area_stat = area_stat.reset_index() area_stat = area_stat.rename(columns={'index': 'Area Statistic'}) area_stat_per_type = valid_df.groupby('type')['bbox_area'].describe() if not graph_attr.show_all and len(area_stat_per_type) > 100: graph_data_per_type = area_stat_per_type.head(100) else: graph_data_per_type = area_stat_per_type if not wandb_attr.visualize: pdf = PdfPages(os.path.join(output_dir, 'Area.pdf')) fig = plt.figure(figsize=figuresizes) ax = plt.gca() minv = min(area_mean['mean']) maxv = max(area_mean['mean']) if maxv - minv > 10: binrange = range(round(minv), round(maxv), int((maxv - minv) // 10)) else: binrange = range(round(minv), round(maxv)) sns.scatterplot(graph_data, x='type', y='mean') configure_subgraph(ax, xlabel="Object Name", ylabel="mean bbox area ", xtickrotate=(90, "right"), yticklabelformat="plain", yticks=binrange) txt = "The scatter plot below describes the mean bounding box size "\ "of different objects." plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() fig = plt.figure(figsize=figuresizes) fig.clf() plt.axis('off') txt = 'The table below shows bounding box area statistics.' plt.text(0.05, 0.90, txt, transform=fig.transFigure, size=10) table = plt.table(cellText=area_stat.values, edges='closed', loc='center', colLoc='right', colLabels=area_stat.columns) for coord, cell in table.get_celld().items(): if (coord[0] == 0 or coord[1] == 0): font_property = FontProperties(weight='bold') cell.set_text_props(fontproperties=font_property) pdf.savefig(fig) plt.close() fig = plt.figure(figsize=figuresizes) fig.clf() plt.axis('off') txt = 'The table below shows per object bounding box area statistics.' plt.text(0.05, 0.90, txt, transform=fig.transFigure, size=10) table = plt.table(cellText=graph_data_per_type.values, edges='closed', loc='center', colLoc='right', colLabels=graph_data_per_type.columns, rowLabels=graph_data_per_type.index) for coord, cell in table.get_celld().items(): if (coord[0] == 0 or coord[1] == -1): font_property = FontProperties(weight='bold') cell.set_text_props(fontproperties=font_property) pdf.savefig(fig) plt.close() pdf.close() else: graph_data = graph_data.rename(columns={'type': 'Object Name', 'mean': 'Mean bbox area'}) wandb.create_barplot(graph_data, "Object Name Vs Mean bbox area", "bbox_area_chart1") wandb.create_table(area_stat, "Area statistics") graph_data_per_type = graph_data_per_type.reset_index(level=0) graph_data_per_type = graph_data_per_type.rename(columns={'type': 'Object Name'}) wandb.create_table(graph_data_per_type, "Area statistics per object.") def truncation_visualize(valid_df, output_dir, graph_attr, wandb_attr): """ Create Graphs for Object Truncation. Args: valid_df (Pandas DataFrame): valid kitti dataframe. output_dir(str): Result Directory. graph_attr (DictConfig): graph attributes( height - to set graph height width - to set graph width show_all - to show all object on graph, by default maximum 100 object will be shown.) wandb_attr (DictConfig): wandb attributes Return: No explicit Return. """ # Truncation valid_df['truncated'] = valid_df['truncated'].round(decimals=1) truncated_df = valid_df['truncated'] truncated_df = truncated_df.value_counts(normalize=True) truncated_df = truncated_df.rename('count_per').reset_index() truncated_df_count = valid_df['truncated'] truncated_df_count = truncated_df_count.value_counts().rename('count') truncated_df_count = truncated_df_count.reset_index() truncated_df['index'] = truncated_df['index'] * 100 truncated_df['count_per'] = truncated_df['count_per'] * 100 truncated_df['count_per'] = truncated_df['count_per'].round(decimals=2) figuresizes = (graph_attr.width, graph_attr.height) if not wandb_attr.visualize: pdf = PdfPages(os.path.join(output_dir, 'Truncation.pdf')) fig = plt.figure(figsize=figuresizes) ax = plt.gca() c_min = min(truncated_df_count['count']) c_max = max(truncated_df_count['count']) if c_max - c_min > 10: binrange = range(c_min, c_max, int((c_max - c_min) / 10)) else: binrange = range(c_min, c_max) gph = sns.barplot(data=truncated_df_count, y='count', x='index', width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="Trucation(%)", ylabel="Object Count", yticks=binrange, yticklabelformat="plain") txt = "The bar plot below describes the object count against "\ "truncation percentage." plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() fig = plt.figure(figsize=figuresizes) ax = plt.gca() binrange = range(0, 100, 10) gph = sns.barplot(data=truncated_df, y='count_per', x='index', width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="Trucation(%)", ylabel="Object Count(%)", yticks=binrange) txt = "The bar plot below describes the object count percentage "\ "against truncation percentage" plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() pdf.close() else: truncated_df_count = truncated_df_count.rename(columns={'count': 'Count', 'index': 'Truncation(%)'}) wandb.create_barplot(truncated_df_count, "Truncation(%) Vs Count", "truncation_chart1") def invalid_data_visualize(valid_df, invalid_df, output_dir, graph_attr, wandb_attr): """ Create Graphs for Object Truncation. Args: valid_df (Pandas DataFrame): valid kitti data invalid_df (Pandas DataFrame): invalid kitti data output_dir(str): Result Directory. graph_attr (DictConfig): graph attributes( height - to set graph height width - to set graph width show_all - to show all object on graph, by default maximum 100 object will be shown.) wandb_attr (DictConfig): wandb attributes Return: No explicit Return """ count_df = valid_df['type'] count_df = count_df.value_counts().rename('count_num') count_df = count_df.reset_index() # invalid Obejct tag kitti row invalid_count_df = invalid_df['type'] var = 'invalid_count_num' invalid_count_df = invalid_count_df.value_counts().rename(var) invalid_count_df = invalid_count_df.reset_index() valid_invalid_count_df = count_df.merge(invalid_count_df, on='index', how='outer') cols = {"count_num": "valid_count", "invalid_count_num": "invalid_count"} valid_invalid_count_df = valid_invalid_count_df.rename(columns=cols) valid_invalid_count_df = valid_invalid_count_df.fillna(0) xmin = invalid_df['bbox_xmin'] xmax = invalid_df['bbox_xmax'] ymin = invalid_df['bbox_ymin'] ymax = invalid_df['bbox_ymax'] if 'img_height' in invalid_df.columns: oob_condition = ((xmin < 0) | (ymin < 0) | (ymax < 0) | (xmax < 0) | (ymax > invalid_df['img_height']) | (xmax > invalid_df['img_width'])) else: oob_condition = ((xmin < 0) | (ymin < 0) | (ymax < 0) | (xmax < 0)) out_of_bound_bbox = invalid_df[oob_condition] inverted_cord = invalid_df[(ymax > 0) & (xmax > 0) & (ymin > 0) & (xmin > 0) & ((xmax < xmin) | (ymax < ymin))] coord_df = pd.DataFrame({"Coordinates": ["valid", "inverted", "out_of_bound"], "count": [len(valid_df), len(inverted_cord), len(out_of_bound_bbox)]}) figuresizes = (graph_attr.width, graph_attr.height) if len(inverted_cord) > 0: temp_df = inverted_cord['type'] var = "inverted_cord_count" temp_df = temp_df.value_counts(ascending=True).rename(var) temp_df = temp_df.reset_index() if not graph_attr.show_all and len(temp_df) > 100: graph_data_inverted = temp_df.head(100) else: graph_data_inverted = temp_df if len(out_of_bound_bbox) > 0: temp_df = out_of_bound_bbox['type'] var = "out_of_bound_bbox_count" temp_df = temp_df.value_counts(ascending=True).rename(var) temp_df = temp_df.reset_index() if not graph_attr.show_all and len(temp_df) > 100: graph_data_oob = temp_df.head(100) else: graph_data_oob = temp_df if not wandb_attr.visualize: pdf = PdfPages(os.path.join(output_dir, 'Invalid_data.pdf')) fig = plt.figure(figsize=figuresizes) ax = plt.gca() gph = sns.barplot(data=coord_df, x="Coordinates", y="count", errorbar="sd", palette="dark") gph.bar_label(gph.containers[0]) txt = "The bar plot below describes the count of valid, "\ "inverted and out of bound coordinates." plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() if len(inverted_cord) > 0: fig = plt.figure(figsize=figuresizes) ax = plt.gca() gph = sns.barplot(y='inverted_cord_count', x='index', data=graph_data_inverted, width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="Object Name", ylabel="inverted_cord_count", xtickrotate=(90, "right"), yticklabelformat="plain") txt = "The bar plot below describes the inverted coordinates "\ "count per object." plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() if len(out_of_bound_bbox) > 0: fig = plt.figure(figsize=figuresizes) ax = plt.gca() gph = sns.barplot(y='out_of_bound_bbox_count', x='index', data=graph_data_oob, width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="Object Name", ylabel="out of bound coordinates count", xtickrotate=(90, "right"), yticklabelformat="plain") txt = "The bar plot below describes the out of bound coordinates "\ "count per object." plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() pdf.close() else: wandb.create_barplot(coord_df, "Count Vs bbox Coordinates", "coordinates_chart1") if len(inverted_cord) > 0: graph_data_inverted = graph_data_inverted.rename(columns={'index': 'Object Name', 'inverted_cord_count': 'Inverted coordinates count'}) wandb.create_barplot(graph_data_inverted, "Object Name Vs Inverted coordinates count", "coordinates_chart2") if len(out_of_bound_bbox) > 0: graph_data_oob = graph_data_oob.rename(columns={'out_of_bound_bbox_count': 'out of bound coordinates count', 'index': 'Object Name'}) wandb.create_barplot(graph_data_oob, "Object Name Vs Out of bound coordinates count", "coordinates_chart3") def image_visualize(image_df, output_dir, graph_attr, wandb_attr): """ Create Graphs for Object Truncation. Args: image_df (Pandas DataFrame): Image Dataframe output_dir(str): Result Directory. graph_attr (DictConfig): graph attributes( height - to set graph height width - to set graph width show_all - to show all object on graph, by default maximum 100 object will be shown.) wandb_attr (DictConfig): wandb attributes Return: No explicit Return """ # Image stats size_df = image_df['size'].value_counts(ascending=True, normalize=True).rename('count_per').reset_index() size_df['count_per'] = size_df['count_per'] * 100 width_df = image_df['img_width'] width_df = width_df.value_counts(ascending=True, normalize=True) width_df = width_df.rename('count_per').reset_index() width_df['count_per'] = width_df['count_per'] * 100 height_df = image_df['img_height'] height_df = height_df.value_counts(ascending=True, normalize=True) height_df = height_df.rename('count_per').reset_index() height_df['count_per'] = height_df['count_per'] * 100 height_df['count_per'] = height_df['count_per'].round(decimals=3) width_df['count_per'] = width_df['count_per'].round(decimals=3) size_df['count_per'] = size_df['count_per'].round(decimals=3) image_stat = image_df.describe() figuresizes = (graph_attr.width, graph_attr.height) if not wandb_attr.visualize: pdf = PdfPages(os.path.join(output_dir, 'Image.pdf')) fig = plt.figure(figsize=figuresizes) ax = plt.gca() binrange = range(0, 100, 10) gph = sns.barplot(size_df, y='count_per', x='index', width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="image size", ylabel="Count Percentage", yticks=binrange) txt = "The bar plot below decribes the count(%) of different image "\ "sizes" plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() fig = plt.figure(figsize=figuresizes) ax = plt.gca() binrange = range(0, 100, 10) gph = sns.barplot(width_df, y='count_per', x='index', width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="image width", ylabel="Count Percentage", yticks=binrange) txt = "The bar plot below decribes the count(%) of different image "\ "widths" plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() fig = plt.figure(figsize=figuresizes) ax = plt.gca() binrange = range(0, 100, 10) gph = sns.barplot(height_df, y='count_per', x='index', width=0.2) gph.bar_label(gph.containers[0]) configure_subgraph(ax, xlabel="image height", ylabel="Count Percentage", yticks=binrange) txt = "The bar plot below decribes the count(%) of different image "\ "heights" plt.text(0.05, 0.95, txt, transform=fig.transFigure, size=10) pdf.savefig(fig) plt.close() fig = plt.figure(figsize=figuresizes) fig.clf() plt.axis('off') txt = 'The table below shows image statistics.' plt.text(0.05, 0.90, txt, transform=fig.transFigure, size=10) table = plt.table(cellText=image_stat.values, edges='closed', loc='center', colLoc='right', colLabels=image_stat.columns, rowLabels=image_stat.index) for coord, cell in table.get_celld().items(): if (coord[0] == 0 or coord[1] == -1): font_property = FontProperties(weight='bold') cell.set_text_props(fontproperties=font_property) pdf.savefig(fig) plt.close() pdf.close() else: size_df = size_df.rename(columns={'count_per': 'Count(%)', 'index': 'image area'}) wandb.create_barplot(size_df, "image area vs count(%)", "image_chart1") width_df = width_df.rename(columns={'count_per': 'Count(%)', 'index': 'image width'}) wandb.create_barplot(width_df, "image width vs count(%)", "image_chart2") height_df = height_df.rename(columns={'count_per': 'Count(%)', 'index': 'image height'}) wandb.create_barplot(height_df, "image height vs count(%)", "image_chart3") image_stat = image_stat.reset_index(level=0) image_stat = image_stat.rename(columns={'index': 'Stat'}) wandb.create_table(image_stat, "Image Statistics") def create_csv(valid_df, invalid_df, output_dir): """ Create Graph and summary. Args: valid_df(Pandas Dataframe): Valid kitti dataframe invalid_df(Pandas Dataframe): invalid kitti dataframe output_dir(str): result Dir Return: No explicit returns. """ csv_folder = os.path.join(output_dir, 'csv') if not os.path.exists(csv_folder): os.makedirs(csv_folder) invalid_file = os.path.join(csv_folder, 'invalid_data.csv') valid_file = os.path.join(csv_folder, 'valid_data.csv') valid_df = valid_df.drop('bbox_area', axis=1) invalid_df = invalid_df.drop('bbox_area', axis=1) valid_df.to_csv(valid_file, columns=valid_df.columns, index=False) invalid_df.to_csv(invalid_file, columns=invalid_df.columns, index=False) def summary_and_graph(valid_df, invalid_df, image_df, output_dir, data_format, graph_attr, wandb_attr): """ Create Graph and summary. Args: valid_df (Pandas Dataframe): Valid kitti dataframe invalid_df (Pandas Dataframe): invalid kitti dataframe image_df (Pandas Dataframe): image dataframe output_dir (str): result Dir data_format (str): input data format. graph_attr (DictConfig): graph attributes( height - to set graph height width - to set graph width show_all - to show all object on graph, by default maximum 100 object will be shown.) wandb_attr (DictConfig): wandb attributes Return: No explicit returns. """ # Create CSV for valid and invalid data create_csv(valid_df, invalid_df, output_dir) # Create visualizations output_dir = os.path.join(output_dir, 'graphs') if not os.path.exists(output_dir): os.makedirs(output_dir) object_count_visualize(valid_df, output_dir, graph_attr, wandb_attr) bbox_area_visualize(valid_df, output_dir, graph_attr, wandb_attr) if image_df is not None: image_visualize(image_df, output_dir, graph_attr, wandb_attr) if data_format == "KITTI": occlusion_visualize(valid_df, output_dir, graph_attr, wandb_attr) truncation_visualize(valid_df, output_dir, graph_attr, wandb_attr) invalid_data_visualize(valid_df, invalid_df, output_dir, graph_attr, wandb_attr) def visualize_on_wandb(config, valid_df, invalid_df, image_df, len_image_data): """ Visualize on wandb. Args: config (Hydra config): Config element of the analyze config. valid_df (Pandas Dataframe): Valid kitti dataframe invalid_df (Pandas Dataframe): invalid kitti dataframe image_df (Pandas Dataframe): image dataframe len_image_data (int): len of image data dict. Return: No explicit returns. """ wandb.login_and_initialize_wandb(config.wandb, config.data.output_dir) if config.graph.generate_summary_and_graph: summary_and_graph(valid_df, invalid_df, image_df, config.data.output_dir, config.data.input_format, config.graph, config.wandb) if not is_wandb_initialized(): logger.info("Not able to login or initialize wandb.Exiting..") sys.exit(1) if config.image.generate_image_with_bounding_box: if len_image_data == 0: logging.info("Skipping visualizing images with Bounding boxes.Please provide correct path in data.image_dir .") else: wandb.generate_images_with_bounding_boxes(valid_df, config.wandb, config.data.output_dir, config.image.sample_size) def visualize_on_desktop(config, valid_df, invalid_df, image_df, image_data): """ Visualize and save locally. Args: config (Hydra config): Config element of the analyze config. valid_df (Pandas Dataframe): Valid kitti dataframe invalid_df (Pandas Dataframe): invalid kitti dataframe image_df (Pandas Dataframe): image dataframe image_data (Dict): Dict containing image info (image_width, image_height, image_path) Return: No explicit returns. """ if config.graph.generate_summary_and_graph: summary_and_graph(valid_df, invalid_df, image_df, config.data.output_dir, config.data.input_format, config.graph, config.wandb) logging.info(f"Created Graphs inside {config.data.output_dir} folder") # Generate Images with bounding boxes if config.image.generate_image_with_bounding_box: if len(image_data) == 0: logging.info("Skipping visualizing images with Bounding boxes.Please provide correct path in data.image_dir .") else: logger.info("Generating images with bounding boxes and labels.") image.generate_images_with_bounding_boxes(valid_df, image_data, config.data.output_dir, config.image.sample_size, config.workers, config.data.input_format) @monitor_status(mode='KITTI analysis') def analyze_dataset_kitti(config): """Tao kitti analysis. Args: config (Hydra config): Config element of the analyze config. """ start_time = time.perf_counter() kitti_obj = data_format.KittiData(config.data.image_dir, config.data.ann_path) if not os.path.isdir(config.data.ann_path): logger.info("Please provide path of kitti label directory in config data.ann_path.") sys.exit(1) kitti.list_files(kitti_obj) if kitti_obj.image_paths is None: logger.info("Image Directory not found.Processing only label files") image_data = None image_df = None else: # Get image data (image width and height) image_data = kitti.get_image_data(kitti_obj) image_df = kitti.create_image_dataframe(image_data) # Validate and create big merged kitti files valid_kitti_filepaths = kitti.validate_and_merge_kitti_files(kitti_obj.label_paths, config.data.output_dir, config.workers, image_data) invalid_filepath = os.path.join(COMMON_FILE_NAMES['INTERMEDIATE_KITTI_FOLDER'], COMMON_FILE_NAMES['INVALID_KITTI']) # Dataframe creation for valid and invalid kitti data valid_df, invalid_df = kitti.create_dataframe(valid_kitti_filepaths, invalid_filepath, image_data) if config.wandb.visualize: visualize_on_wandb(config, valid_df, invalid_df, image_df, len(image_data)) else: visualize_on_desktop(config, valid_df, invalid_df, image_df, image_data) logger.debug(f"Total time taken : {time.perf_counter() - start_time}") @monitor_status(mode='COCO analysis') def analyze_dataset_coco(config): """Tao coco analysis. Args: config (Hydra config): Config element of the analyze config. """ start = time.perf_counter() if not os.path.isfile(config.data.ann_path): logger.info("Please provide path of coco annotation file in config data.ann_path.") sys.exit(1) coco_obj = data_format.CocoData(config.data.ann_path, config.data.image_dir) image_data = coco.get_image_data(coco_obj) image_df = None if image_data: image_df = coco.create_image_dataframe(image_data) # Dataframe creation for valid and invalid kitti data valid_df, invalid_df = coco.create_dataframe(coco_obj) if config.wandb.visualize: visualize_on_wandb(config, valid_df, invalid_df, image_df, len(image_data)) else: visualize_on_desktop(config, valid_df, invalid_df, image_df, image_data) logger.debug(f"Total time taken : {time.perf_counter() - start}") spec_root = os.path.dirname(os.path.abspath(__file__)) @hydra_runner( config_path=os.path.join(spec_root, "../experiment_specs"), config_name="analyze", schema=ExperimentConfig ) def main(cfg: ExperimentConfig): """TAO Analyze main wrapper function.""" try: if not os.path.exists(cfg.data.output_dir): os.makedirs(cfg.data.output_dir) cfg.results_dir = cfg.results_dir or cfg.data.output_dir if cfg.data.input_format == "COCO": analyze_dataset_coco(cfg) elif cfg.data.input_format == "KITTI": analyze_dataset_kitti(cfg) else: logger.info(f"Data format {cfg.data.input_format} is not supported.") sys.exit(1) except KeyboardInterrupt: logger.info("Interrupting dataset analysis.") sys.exit(1) except RuntimeError as e: logger.info(f"Analysis run failed with error: {e}") sys.exit(1) except Exception as e: logger.info(f"Analysis run failed with error: {e}") sys.exit(1) if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/scripts/analyze.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data analytics entrypoint"""
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define entrypoint to run tasks for analytics.""" import argparse from nvidia_tao_ds.data_analytics import scripts from nvidia_tao_ds.core.entrypoint.entrypoint import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "analytics", add_help=True, description="Data analytics entrypoint" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch( parser, subtasks, task="analytics" ) if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/data_analytics/entrypoint/analytics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data-Services core module"""
tao_dataset_suite-main
nvidia_tao_ds/core/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common decorators used in TAO Toolkit.""" from functools import wraps import os from nvidia_tao_ds.augment.utils.distributed_utils import MPI_is_distributed, MPI_local_rank import nvidia_tao_ds.core.logging.logging as status_logging from nvidia_tao_ds.core.mlops.wandb import alert def monitor_status(name='Data-services', mode='analyze'): """Status monitoring decorator.""" def inner(runner): @wraps(runner) def _func(cfg, **kwargs): try: if MPI_is_distributed(): is_master = MPI_local_rank() == 0 else: is_master = True except ValueError: is_master = True # set up status logger if not os.path.exists(cfg.results_dir) and is_master: os.makedirs(cfg.results_dir) status_file = os.path.join(cfg.results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, is_master=is_master, verbosity=1, append=True ) ) s_logger = status_logging.get_status_logger() try: s_logger.write( status_level=status_logging.Status.STARTED, message=f"Starting {name} {mode}." ) alert( title=f'{mode.capitalize()} started', text=f'{mode.capitalize()} {name} has started', level=0, is_master=is_master ) runner(cfg, **kwargs) s_logger.write( status_level=status_logging.Status.SUCCESS, message=f"{mode.capitalize()} finished successfully." ) except (KeyboardInterrupt, SystemError): status_logging.get_status_logger().write( message=f"{mode.capitalize()} was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) alert( title=f'{mode.capitalize()} stopped', text=f'{mode.capitalize()} was interrupted', level=1, is_master=is_master ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) alert( title=f'{mode.capitalize()} failed', text=str(e), level=2, is_master=is_master ) raise e return _func return inner
tao_dataset_suite-main
nvidia_tao_ds/core/decorators.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines for connecting with Weights and Biases client.""" from datetime import datetime import logging import wandb from wandb import AlertLevel import os DEFAULT_WANDB_CONFIG = "~/.netrc" logger = logging.getLogger(__name__) _WANDB_INITIALIZED = False def alert(title, text, duration=300, level=0, is_master=True): """Send alert.""" alert_levels = { 0: AlertLevel.INFO, 1: AlertLevel.WARN, 2: AlertLevel.ERROR } if is_wandb_initialized() and is_master: wandb.alert( title=title, text=text, level=alert_levels[level], wait_duration=duration ) def is_wandb_initialized(): """Check if wandb has been initialized.""" global _WANDB_INITIALIZED # pylint: disable=W0602,W0603 return _WANDB_INITIALIZED def check_wandb_logged_in(): """Check if weights and biases have been logged in.""" wandb_logged_in = False try: wandb_api_key = os.getenv("WANDB_API_KEY", None) if wandb_api_key is not None or os.path.exists(os.path.expanduser(DEFAULT_WANDB_CONFIG)): wandb_logged_in = wandb.login(key=wandb_api_key) return wandb_logged_in except wandb.errors.UsageError: logger.warning("WandB wasn't logged in.") return False def initialize_wandb(output_dir, project="TAO Data Analytics", entity=None, save_code=False, name=None, notes=None, tags=None, wandb_logged_in=False, ): """Function to initialize wandb client with the weights and biases server. If wandb initialization fails, then the function just catches the exception and prints an error log with the reason as to why wandb.init() failed. Args: output_dir (str): Output directory of the experiment. project (str): Name of the project to sync data with. entity (str): Name of the wanbd entity. save_code (bool): save the main script or notebook to W&B notes (str): One line description about the wandb job. tags (list(str)): List of tags about the job. name (str): Name of the task running. wandb_logged_in (bool): Boolean flag to check if wandb was logged in. Returns: No explicit return. """ logger.info("Initializing wandb.") try: assert wandb_logged_in, ( "WandB client wasn't logged in. Please make sure to set " "the WANDB_API_KEY env variable or run `wandb login` in " "over the CLI and copy the ~/.netrc file to the container." ) start_time = datetime.now() time_string = start_time.strftime("%d/%y/%m_%H:%M:%S") if name is None: name = "run" wandb_name = f"{name}_{time_string}" wandb.init( project=project, entity=entity, save_code=save_code, name=wandb_name, notes=notes, tags=tags, dir=output_dir ) global _WANDB_INITIALIZED # pylint: disable=W0602,W0603 _WANDB_INITIALIZED = True except Exception as e: logger.warning("Wandb logging failed with error %s", e)
tao_dataset_suite-main
nvidia_tao_ds/core/mlops/wandb.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MLOps for data-services."""
tao_dataset_suite-main
nvidia_tao_ds/core/mlops/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common entrypoint module to TAO Data Services."""
tao_dataset_suite-main
nvidia_tao_ds/core/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define routines required for the entrypoint.""" import importlib import os import pkgutil import subprocess import sys from time import time from nvidia_tao_ds.core.telemetry.nvml_utils import get_device_details from nvidia_tao_ds.core.telemetry.telemetry import send_telemetry_data def get_subtasks(package): """Get supported subtasks for a given task. This function lists out the tasks in in the .scripts folder. Returns: subtasks (dict): Dictionary of files. """ module_path = package.__path__ modules = {} # Collect modules dynamically. for _, task, is_package in pkgutil.walk_packages(module_path): if is_package: continue module_name = package.__name__ + '.' + task module_details = { "module_name": module_name, "runner_path": os.path.abspath(importlib.import_module(module_name).__file__), } modules[task] = module_details return modules def launch(parser, subtasks, multigpu_support=['generate'], task="tao_ds"): """CLI function that executes subtasks. Args: parser: Created parser object for a given task. subtasks: list of subtasks for a given task. """ # Subtasks for a given model. parser.add_argument( 'subtask', default='train', choices=subtasks.keys(), help="Subtask for a given task/model.", ) # Add standard TAO arguments. parser.add_argument( "-r", "--results_dir", help="Path to a folder where the experiment outputs should be written. (DEFAULT: ./)", required=False, ) parser.add_argument( "-e", "--experiment_spec_file", help="Path to the experiment spec file.", required=True) parser.add_argument( "-g", "--gpus", help="Number of GPUs or gpu index to use.", type=str, default=None ) # Parse the arguments. args, unknown_args = parser.parse_known_args() process_passed = True script_args = "" # Check for whether the experiment spec file exists. if not os.path.exists(args.experiment_spec_file): raise FileNotFoundError( f"Experiment spec file wasn't found at {args.experiment_spec_file}" ) path, name = os.path.split(args.experiment_spec_file) if path != "": script_args += f" --config-path {os.path.realpath(path)}" script_args += f" --config-name {name}" if args.results_dir: script_args += " results_dir=" + args.results_dir if args.gpus and args.subtask in multigpu_support: try: script_args += f" gpu_ids=[{','.join([str(i) for i in range(int(args.gpus))])}]" except ValueError: script_args += f" gpu_ids={args.gpus}" script = subtasks[args.subtask]["runner_path"] # Pass unknown args to call unknown_args_as_str = " ".join(unknown_args) # Create a system call. call = "python " + script + script_args + " " + unknown_args_as_str start = time() try: # Run the script. subprocess.check_call(call, shell=True, stdout=sys.stdout, stderr=sys.stdout) except (KeyboardInterrupt, SystemExit) as e: print("Command was interrupted due to ", e) process_passed = True except subprocess.CalledProcessError as e: if e.output is not None: print(e.output) process_passed = False end = time() time_lapsed = int(end - start) try: gpu_data = list() for device in get_device_details(): gpu_data.append(device.get_config()) print("Sending telemetry data.") send_telemetry_data( task, args.subtask, gpu_data, num_gpus=args.gpus, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: print("Telemetry data couldn't be sent, but the command ran successfully.") print(f"[Error]: {e}") pass if not process_passed: print("Execution status: FAIL") exit(1) # returning non zero return code from the process. print("Execution status: PASS")
tao_dataset_suite-main
nvidia_tao_ds/core/entrypoint/entrypoint.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities using the NVML library for GPU devices.""" import json import pynvml BRAND_NAMES = { pynvml.NVML_BRAND_UNKNOWN: "Unknown", pynvml.NVML_BRAND_QUADRO: "Quadro", pynvml.NVML_BRAND_TESLA: "Tesla", pynvml.NVML_BRAND_NVS: "NVS", pynvml.NVML_BRAND_GRID: "Grid", pynvml.NVML_BRAND_TITAN: "Titan", pynvml.NVML_BRAND_GEFORCE: "GeForce", pynvml.NVML_BRAND_NVIDIA_VAPPS: "NVIDIA Virtual Applications", pynvml.NVML_BRAND_NVIDIA_VPC: "NVIDIA Virtual PC", pynvml.NVML_BRAND_NVIDIA_VCS: "NVIDIA Virtual Compute Server", pynvml.NVML_BRAND_NVIDIA_VWS: "NVIDIA RTX Virtual Workstation", pynvml.NVML_BRAND_NVIDIA_VGAMING: "NVIDIA Cloud Gaming", pynvml.NVML_BRAND_QUADRO_RTX: "Quadro RTX", pynvml.NVML_BRAND_NVIDIA_RTX: "NVIDIA RTX", pynvml.NVML_BRAND_NVIDIA: "NVIDIA", pynvml.NVML_BRAND_GEFORCE_RTX: "GeForce RTX", pynvml.NVML_BRAND_TITAN_RTX: "TITAN RTX", } class GPUDevice: """Data structure to represent a GPU device.""" def __init__(self, pci_bus_id, device_name, device_brand, memory, cuda_compute_capability): """Data structure representing a GPU device. Args: pci_bus_id (hex): PCI bus ID of the GPU. device_name (str): Name of the device GPU. device_branch (int): Brand of the GPU. """ self.name = device_name self.pci_bus_id = pci_bus_id if device_brand in BRAND_NAMES.keys(): self.brand = BRAND_NAMES[device_brand] else: self.brand = None self.defined = True self.memory = memory self.cuda_compute_capability = cuda_compute_capability def get_config(self): """Get json config of the device. Returns device_dict (dict): Dictionary containing data about the device. """ assert self.defined, "Device wasn't defined." config_dict = {} config_dict["name"] = self.name.decode().replace(" ", "-") config_dict["pci_bus_id"] = self.pci_bus_id config_dict["brand"] = self.brand config_dict["memory"] = self.memory config_dict["cuda_compute_capability"] = self.cuda_compute_capability return config_dict def __str__(self): """Generate a printable representation of the device.""" config = self.get_config() data_string = json.dumps(config, indent=2) return data_string def pynvml_context(fn): """Simple decorator to setup python nvml context. Args: f: Function pointer. Returns: output of f. """ def _fn_wrapper(*args, **kwargs): """Wrapper setting up nvml context.""" try: pynvml.nvmlInit() return fn(*args, **kwargs) finally: pynvml.nvmlShutdown() return _fn_wrapper @pynvml_context def get_number_gpus_available(): """Get the number of GPU's attached to the machine. Returns: num_gpus (int): Number of GPUs in the machine. """ num_gpus = pynvml.nvmlDeviceGetCount() return num_gpus @pynvml_context def get_device_details(): """Get details about each device. Returns: device_list (list): List of GPUDevice objects. """ num_gpus = pynvml.nvmlDeviceGetCount() device_list = [] assert num_gpus > 0, "Atleast 1 GPU is required for TAO Toolkit to run." for idx in range(num_gpus): handle = pynvml.nvmlDeviceGetHandleByIndex(idx) pci_info = pynvml.nvmlDeviceGetPciInfo(handle) device_name = pynvml.nvmlDeviceGetName(handle) brand_name = pynvml.nvmlDeviceGetBrand(handle) memory = pynvml.nvmlDeviceGetMemoryInfo(handle) cuda_compute_capability = pynvml.nvmlDeviceGetCudaComputeCapability(handle) device_list.append( GPUDevice( pci_info.busId, device_name, brand_name, memory.total, cuda_compute_capability ) ) return device_list
tao_dataset_suite-main
nvidia_tao_ds/core/telemetry/nvml_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Initial module containing implementation for TAO Telemetry."""
tao_dataset_suite-main
nvidia_tao_ds/core/telemetry/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilties to send data to the TAO Toolkit Telemetry Remote Service.""" import os import shutil import subprocess import sys import tarfile import tempfile import urllib import requests import urllib3 TELEMETRY_TIMEOUT = int(os.getenv("TELEMETRY_TIMEOUT", "30")) def get_url_from_variable(variable, default=None): """Get the Telemetry Server URL.""" url = os.getenv(variable, default) return url def url_exists(url): """Check if a URL exists. Args: url (str): String to be verified as a URL. Returns: valid (bool): True/Falso """ url_request = urllib.request.Request(url) url_request.get_method = lambda: 'HEAD' try: urllib.request.urlopen(url_request) # noqa pylint: disable=R1732 return True except urllib.request.URLError: return False def get_certificates(): """Download the cacert.pem file and return the path. Returns: path (str): UNIX path to the certificates. """ certificates_url = get_url_from_variable("TAO_CERTIFICATES_URL") if not url_exists(certificates_url): raise urllib.request.URLError("Url for the certificates not found.") tmp_dir = tempfile.mkdtemp() download_command = f"wget {certificates_url} -P {tmp_dir} --quiet" try: subprocess.check_call( download_command, shell=True, stdout=sys.stdout ) except Exception as exc: raise urllib.request.URLError("Download certificates.tar.gz failed.") from exc tarfile_path = os.path.join(tmp_dir, "certificates.tar.gz") assert tarfile.is_tarfile(tarfile_path), ( "The downloaded file isn't a tar file." ) with tarfile.open(name=tarfile_path, mode="r:gz") as tar_file: filenames = tar_file.getnames() for memfile in filenames: member = tar_file.getmember(memfile) tar_file.extract(member, tmp_dir) file_list = [item for item in os.listdir(tmp_dir) if item.endswith(".pem")] assert file_list, ( f"Didn't get pem files. Directory contents {file_list}" ) return tmp_dir def send_telemetry_data(network, action, gpu_data, num_gpus=1, time_lapsed=None, pass_status=False): """Wrapper to send TAO telemetry data. Args: network (str): Name of the network being run. action (str): Subtask of the network called. gpu_data (dict): Dictionary containing data about the GPU's in the machine. num_gpus (int): Number of GPUs used in the job. time_lapsed (int): Time lapsed. pass_status (bool): Job passed or failed. Returns: No explicit returns. """ urllib3.disable_warnings(urllib3.exceptions.SubjectAltNameWarning) if os.getenv('TELEMETRY_OPT_OUT', "no").lower() in ["no", "false", "0"]: url = get_url_from_variable("TAO_TELEMETRY_SERVER") data = { "version": os.getenv("TAO_TOOLKIT_VERSION", "4.0.0"), "action": action, "network": network, "gpu": [device["name"] for device in gpu_data[:num_gpus]], "success": pass_status } if time_lapsed is not None: data["time_lapsed"] = time_lapsed certificate_dir = get_certificates() cert = ('client-cert.pem', 'client-key.pem') requests.post( url, json=data, cert=tuple([os.path.join(certificate_dir, item) for item in cert]), # noqa pylint: disable=R1728 timeout=TELEMETRY_TIMEOUT ) shutil.rmtree(certificate_dir)
tao_dataset_suite-main
nvidia_tao_ds/core/telemetry/telemetry.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logger class for data-services.""" from abc import abstractmethod import atexit from datetime import datetime import json import logging import os logger = logging.getLogger(__name__) class Verbosity(): """Verbosity levels.""" DISABLE = 0 DEBUG = 10 INFO = 20 WARNING = 30 ERROR = 40 CRITICAL = 50 # Defining a log level to name dictionary. log_level_to_name = { Verbosity.DISABLE: "DISABLE", Verbosity.DEBUG: 'DEBUG', Verbosity.INFO: 'INFO', Verbosity.WARNING: 'WARNING', Verbosity.ERROR: 'ERROR', Verbosity.CRITICAL: 'CRITICAL' } class Status(): """Status levels.""" SUCCESS = 0 FAILURE = 1 STARTED = 2 RUNNING = 3 SKIPPED = 4 status_level_to_name = { Status.SUCCESS: 'SUCCESS', Status.FAILURE: 'FAILURE', Status.STARTED: 'STARTED', Status.RUNNING: 'RUNNING', Status.SKIPPED: 'SKIPPED' } class BaseLogger(object): """File logger class.""" def __init__(self, is_master=False, verbosity=Verbosity.DISABLE): """Base logger class.""" self.is_master = is_master self.verbosity = verbosity self.categorical = {} self.graphical = {} self.kpi = {} @property def date(self): """Get date from the status.""" date_time = datetime.now() date_object = date_time.date() return "{}/{}/{}".format( # noqa pylint: disable=C0209 date_object.month, date_object.day, date_object.year ) @property def time(self): """Get date from the status.""" date_time = datetime.now() time_object = date_time.time() return "{}:{}:{}".format( # noqa pylint: disable=C0209 time_object.hour, time_object.minute, time_object.second ) @property def categorical(self): """Categorical data to be logged.""" return self._categorical @categorical.setter def categorical(self, value: dict): """Set categorical data to be logged.""" self._categorical = value @property def graphical(self): """Graphical data to be logged.""" return self._graphical @graphical.setter def graphical(self, value: dict): """Set graphical data to be logged.""" self._graphical = value @property def kpi(self): """Set KPI data.""" return self._kpi @kpi.setter def kpi(self, value: dict): """Set KPI data.""" self._kpi = value def flush(self): """Flush the logger.""" pass def format_data(self, data: dict): """Format the data.""" if isinstance(data, dict): data_string = [] for key, value in data.items(): data_string.append( f"{key}: {self.format_data(value)}" if isinstance(value, dict) else value ) return ", ".join(data_string) def log(self, level, string): """Log the data string.""" if level >= self.verbosity: logging.log(level, string) @abstractmethod def write(self, data=None, status_level=Status.RUNNING, verbosity_level=Verbosity.INFO, message=None): """Write data out to the log file.""" if self.verbosity > Verbosity.DISABLE: if not data: data = {} # Define generic data. data["date"] = self.date data["time"] = self.time data["status"] = status_level_to_name.get(status_level, "RUNNING") data["verbosity"] = log_level_to_name.get(verbosity_level, "INFO") if message: data["message"] = message logging.log(verbosity_level, message) if self.categorical: data["categorical"] = self.categorical if self.graphical: data["graphical"] = self.graphical if self.kpi: data["kpi"] = self.kpi data_string = self.format_data(data) if self.is_master: self.log(verbosity_level, data_string) self.flush() class StatusLogger(BaseLogger): """Simple logger to save the status file.""" def __init__(self, filename=None, is_master=False, verbosity=Verbosity.INFO, append=True): """Logger to write out the status.""" super().__init__(is_master=is_master, verbosity=verbosity) self.log_path = os.path.realpath(filename) if is_master: if os.path.exists(self.log_path): logger.info("Log file already exists at %s", self.log_path) self.l_file = open(self.log_path, "a" if append else "w", encoding='utf-8') # noqa pylint: disable=R1732 atexit.register(self.l_file.close) def log(self, level, string): """Log the data string.""" if level >= self.verbosity: self.l_file.write(string + "\n") def flush(self): """Flush contents of the log file.""" if self.is_master: self.l_file.flush() @staticmethod def format_data(data): """Format the dictionary data.""" if not isinstance(data, dict): raise TypeError(f"Data must be a dictionary and not type {type(data)}.") data_string = json.dumps(data) return data_string # Define the logger here so it's static. _STATUS_LOGGER = BaseLogger() def set_status_logger(status_logger): """Set the status logger. Args: status_logger: An instance of the logger class. """ global _STATUS_LOGGER # pylint: disable=W0603 _STATUS_LOGGER = status_logger def get_status_logger(): """Get the status logger.""" global _STATUS_LOGGER # pylint: disable=W0602,W0603 return _STATUS_LOGGER
tao_dataset_suite-main
nvidia_tao_ds/core/logging/logging.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logger for data-services."""
tao_dataset_suite-main
nvidia_tao_ds/core/logging/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
tao_dataset_suite-main
nvidia_tao_ds/core/hydra/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class to work with hydra config files.""" import functools import os import sys from typing import Any, Callable, Optional from hydra._internal.utils import _run_hydra, get_args_parser from hydra.core.config_store import ConfigStore from hydra.types import TaskFunction from omegaconf import DictConfig def hydra_runner( config_path: Optional[str] = ".", config_name: Optional[str] = None, schema: Optional[Any] = None ) -> Callable[[TaskFunction], Any]: """ Decorator used for passing the Config paths to main function. Optionally registers a schema used for validation/providing default values. Args: config_path: Optional path that will be added to config search directory. NOTE: The default value of `config_path` has changed between Hydra 1.0 and Hydra 1.1+. Please refer to https://hydra.cc/docs/next/upgrades/1.0_to_1.1/changes_to_hydra_main_config_path/ for details. config_name: Pathname of the config file. schema: Structured config type representing the schema used for validation/providing default values. """ def decorator(task_function: TaskFunction) -> Callable[[], None]: @functools.wraps(task_function) def wrapper(cfg_passthrough: Optional[DictConfig] = None) -> Any: # Check it config was passed. if cfg_passthrough is not None: return task_function(cfg_passthrough) args = get_args_parser() # Parse arguments in order to retrieve overrides parsed_args = args.parse_args() # Get overriding args in dot string format overrides = parsed_args.overrides # type: list # Disable the creation of .hydra subdir # https://hydra.cc/docs/tutorials/basic/running_your_app/working_directory overrides.append("hydra.output_subdir=null") # Hydra logging outputs only to stdout (no log file). # https://hydra.cc/docs/configure_hydra/logging overrides.append("hydra/job_logging=stdout") # Set run.dir ONLY for ExpManager "compatibility" - to be removed. overrides.append("hydra.run.dir=.") # Check if user set the schema. if schema is not None: # Create config store. cs = ConfigStore.instance() # Get the correct ConfigStore "path name" to "inject" the schema. if parsed_args.config_name is not None: path, name = os.path.split(parsed_args.config_name) # Make sure the path is not set - as this will disable validation scheme. if path != '': sys.stderr.write( f"ERROR Cannot set config file path using `--config-name` when " "using schema. Please set path using `--config-path` and file name using " "`--config-name` separately.\n" ) sys.exit(1) else: name = config_name # Register the configuration as a node under the name in the group. cs.store(name=name, node=schema) # group=group, # Wrap a callable object with name `parse_args` # This is to mimic the ArgParser.parse_args() API. def parse_args(self, args=None, namespace=None): return parsed_args # Overwriting the default definition of parse_args # function in argparse.Namespace. parsed_args.parse_args = parse_args # no return value from run_hydra() as it may sometime actually run the task_function # multiple times (--multirun) # argparse_wrapper = _argparse_wrapper(args) argparse_wrapper = parsed_args _run_hydra( args=argparse_wrapper, args_parser=args, task_function=task_function, config_path=config_path, config_name=config_name, ) return wrapper return decorator
tao_dataset_suite-main
nvidia_tao_ds/core/hydra/hydra_runner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Auto label module"""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAL config module."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from typing import List, Optional from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class InferConfig: """Inference configuration template.""" ann_path: str = MISSING img_dir: str = MISSING label_dump_path: str = MISSING batch_size: int = 3 load_mask: bool = False @dataclass class EvalConfig: """Evaluation configuration template.""" batch_size: int = 3 use_mixed_model_test: bool = False use_teacher_test: bool = False comp_clustering: bool = False use_flip_test: bool = False @dataclass class DataConfig: """Data configuration template.""" type: str = 'coco' crop_size: int = 512 train_ann_path: str = '' train_img_dir: str = '' val_ann_path: str = '' val_img_dir: str = '' min_obj_size: float = 2048 max_obj_size: float = 1e10 num_workers_per_gpu: int = 2 load_mask: bool = True @dataclass class ModelConfig: """Model configuration template.""" arch: str = 'vit-mae-base/16' frozen_stages: List[int] = field(default_factory=lambda: [-1]) mask_head_num_convs: int = 4 mask_head_hidden_channel: int = 256 mask_head_out_channel: int = 256 teacher_momentum: float = 0.996 not_adjust_scale: bool = False mask_scale_ratio_pre: int = 1 mask_scale_ratio: float = 2.0 vit_dpr: float = 0 @dataclass class TrainConfig: """Train configuration template.""" seed: int = 1 num_epochs: int = 10 save_every_k_epoch: int = 1 val_interval: int = 1 batch_size: int = 3 accum_grad_batches: int = 1 use_amp: bool = True # optim optim_type: str = 'adamw' optim_momentum: float = 0.9 lr: float = 0.000001 min_lr: float = 0 min_lr_rate: float = 0.2 num_wave: float = 1 wd: float = 0.0005 optim_eps: float = 1e-8 optim_betas: List[float] = field(default_factory=lambda: [0.9, 0.9]) warmup_epochs: int = 1 margin_rate: List[float] = field(default_factory=lambda: [0, 1.2]) test_margin_rate: List[float] = field(default_factory=lambda: [0.6, 0.6]) mask_thres: List[float] = field(default_factory=lambda: [0.1]) # loss loss_mil_weight: float = 4 loss_crf_weight: float = 0.5 # crf crf_zeta: float = 0.1 crf_kernel_size: int = 3 crf_num_iter: int = 100 loss_crf_step: int = 4000 loss_mil_step: int = 1000 crf_size_ratio: int = 1 crf_value_high_thres: float = 0.9 crf_value_low_thres: float = 0.1 @dataclass class ExperimentConfig: """Experiment configuration template.""" gpu_ids: List[int] = field(default_factory=lambda: []) strategy: str = 'ddp_sharded' num_nodes: int = 1 checkpoint: Optional[str] = None dataset: DataConfig = DataConfig() train: TrainConfig = TrainConfig() model: ModelConfig = ModelConfig() inference: InferConfig = InferConfig() evaluate: EvalConfig = EvalConfig() results_dir: str = MISSING
tao_dataset_suite-main
nvidia_tao_ds/auto_label/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """COCO dataset.""" from nvidia_tao_ds.auto_label.datasets.voc import InstSegVOC, BoxLabelVOC, InstSegVOCwithBoxInput class BoxLabelCOCO(BoxLabelVOC): """Dataset to load COCO box labels.""" def get_category_mapping(self): """Category mapping.""" categories = self.coco.dataset['categories'] self.cat_mapping = {cat['id']: idx + 1 for idx, cat in enumerate(categories)} class InstSegCOCO(InstSegVOC): """Dataset to load COCO instance segmentation labels.""" def get_category_mapping(self): """Category mapping.""" categories = self.coco.dataset['categories'] self.cat_mapping = {cat['id']: idx + 1 for idx, cat in enumerate(categories)} class InstSegCOCOwithBoxInput(InstSegVOCwithBoxInput): """Dataset to load COCO labels with only box input.""" def get_category_mapping(self): """Category mapping.""" categories = self.coco.dataset['categories'] self.cat_mapping = {cat['id']: idx + 1 for idx, cat in enumerate(categories)}
tao_dataset_suite-main
nvidia_tao_ds/auto_label/datasets/coco.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAL data module."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/datasets/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """Data augmentation.""" import collections from copy import deepcopy from PIL import ImageFilter, ImageOps, Image import numpy as np import random import torch from torch.utils.data._utils.collate import default_collate from torchvision import transforms from nvidia_tao_ds.auto_label.datasets.voc import DataWrapper def custom_crop_image(img, box): """This function aims at getting `no padding` cropped image. Implementation Details: If the target box goes beyond one of the borderlines, the function will crop the content from the opposite side of the image Examples: An image of HxW, if we crop the image using box [W-10, H-10, W+10, H+10] Top-left corner: (W-10, H-10); Bottom-right corner: (W+10, H+10). Motivation: Since the CRF algorithm uses the original pixels for generating pseudo-labels, each pixels matters a lot here. A fact that synthetic padding pixels (mean color of ImageNet) do sereve damage to the refined image """ # box [x0, y0, x1 y1] [top left x, top left y, bottom right x, bottom right y] ret_shape = list(img.shape) ret_shape[:2] = box[3] - box[1], box[2] - box[0] h, w = img.shape[:2] ret_img = np.zeros(ret_shape) # top left if box[0] < 0 and box[1] < 0: ret_img[:-box[1], :-box[0]] = img[box[1]:, box[0]:] # middle top if (box[0] < w and box[2] > 0) and box[1] < 0: ret_img[:-box[1], max(-box[0], 0): min(w, box[2]) - box[0]] = img[box[1]:, max(0, box[0]):min(w, box[2])] # top right if box[2] > w and box[1] < 0: ret_img[:-box[1], -(box[2] - w):] = img[box[1]:, :box[2] - w] # middle left if box[0] < 0 and (box[1] < h and box[3] > 0): ret_img[max(0, -box[1]): min(h, box[3]) - box[1], :-box[0]] = img[max(0, box[1]):min(h, box[3]), box[0]:] # middle right if box[2] > w and (box[1] < h and box[3] > 0): ret_img[max(0, -box[1]): min(h, box[3]) - box[1], -(box[2] - w):] = img[max(0, box[1]):min(h, box[3]), :(box[2] - w)] # bottom left if box[0] < 0 and box[3] > h: ret_img[-(box[3] - h):, :-box[0]] = img[:box[3] - h, box[0]:] # middle bottom if (box[0] < w and box[2] > 0) and box[3] > h: ret_img[-(box[3] - h):, max(-box[0], 0): min(w, box[2]) - box[0]] = img[:box[3] - h, max(0, box[0]):min(w, box[2])] # bottom right if box[2] > w and box[3] > h: ret_img[-(box[3] - h):, -(box[2] - w):] = img[:(box[3] - h), :(box[2] - w)] # middle ret_img[max(0, -box[1]): min(h, box[3]) - box[1], max(0, -box[0]): min(w, box[2]) - box[0]] = \ img[max(box[1], 0): min(h, box[3]), max(box[0], 0): min(w, box[2])] return ret_img def custom_collate_fn(batch): """Puts each data field into a tensor with outer dimension batch size""" elem = batch[0] elem_type = type(elem) if isinstance(elem, collections.abc.Mapping): try: return elem_type({key: custom_collate_fn([d[key] for d in batch]) for key in elem}) except TypeError: # The mapping type may not support `__init__(iterable)`. return {key: custom_collate_fn([d[key] for d in batch]) for key in elem} if isinstance(elem, DataWrapper): return batch return default_collate(batch) class RandomCropV2: """RandomCropV2.""" def __init__(self, max_size=512, margin_rate=[0.05, 0.15], mean=(0.485, 0.456, 0.406), random=True, crop_fields=['image', 'mask']): """Init.""" self._max_size = max_size self._margin_rate = np.array(margin_rate) self._mean = np.array(mean) * 255 self._random = random self._crop_fields = crop_fields def _expand_box(self, box, margins): ctr = (box[2] + box[0]) / 2, (box[3] + box[1]) / 2 box = ctr[0] - (ctr[0] - box[0]) * (1 + margins[0]), \ ctr[1] - (ctr[1] - box[1]) * (1 + margins[1]), \ ctr[0] + (box[2] - ctr[0]) * (1 + margins[2]) + 1, \ ctr[1] + (box[3] - ctr[1]) * (1 + margins[3]) + 1 return box def __call__(self, data): """Call.""" # obtain more info img = np.array(data['image']) box = np.array(data['bbox']) h, w = img.shape[0], img.shape[1] if self._random: margins = np.random.rand(4) * (self._margin_rate[1] - self._margin_rate[0]) + self._margin_rate[0] gates = np.random.rand(2) gates = np.array([gates[0], gates[1], 1 - gates[0], 1 - gates[1]]) margins = margins * gates extbox = self._expand_box(box, margins) extbox = np.array([np.floor(extbox[0]), np.floor(extbox[1]), np.ceil(extbox[2]), np.ceil(extbox[3])]).astype(np.int) ext_h, ext_w = extbox[3] - extbox[1], extbox[2] - extbox[0] else: margins = np.ones(4) * self._margin_rate[0] * 0.5 extbox = self._expand_box(box, margins) extbox = np.array([np.floor(extbox[0]), np.floor(extbox[1]), np.ceil(extbox[2]), np.ceil(extbox[3])]).astype(np.int) ext_h, ext_w = extbox[3] - extbox[1], extbox[2] - extbox[0] # extended box size data['ext_h'], data['ext_w'] = ext_h, ext_w # crop image if 'image' in self._crop_fields: ret_img = custom_crop_image(img, extbox) ret_img = Image.fromarray(ret_img.astype(np.uint8)).resize((self._max_size, self._max_size)) data['image'] = ret_img # crop mask if 'mask' in self._crop_fields and 'mask' in data.keys(): mask = np.array(data['mask']) ret_mask = custom_crop_image(mask, extbox) ret_mask = Image.fromarray(ret_mask.astype(np.uint8)).resize((self._max_size, self._max_size)) ret_mask = np.array(ret_mask) data['mask'] = ret_mask # crop box mask (during test) if 'boxmask' in self._crop_fields: boxmask = data['boxmask'] ret_boxmask = np.zeros((ext_h, ext_w)) ret_boxmask[max(0 - extbox[1], 0):ext_h + min(0, h - extbox[3]), max(0 - extbox[0], 0):ext_w + min(0, w - extbox[2])] = \ boxmask[max(extbox[1], 0):min(extbox[3], h), max(extbox[0], 0):min(extbox[2], w)] ret_boxmask = np.array(Image.fromarray(ret_boxmask.astype(np.uint8)).resize((self._max_size, self._max_size))) data['boxmask'] = ret_boxmask data['ext_boxes'] = extbox data['margins'] = margins return data class RandomCropV3(RandomCropV2): """RandomCropV3.""" def __call__(self, data): """Call.""" # obtain more info img = np.array(data['image']) box = np.array(data['bbox']) h, w = img.shape[0], img.shape[1] if self._random: margins = np.random.rand(4) * (self._margin_rate[1] - self._margin_rate[0]) + self._margin_rate[0] gates = np.random.rand(2) gates = np.array([gates[0], gates[1], 1 - gates[0], 1 - gates[1]]) margins = margins * gates extbox = self._expand_box(box, margins) extbox = np.array([np.floor(extbox[0]), np.floor(extbox[1]), np.ceil(extbox[2]), np.ceil(extbox[3])]).astype(np.int) ext_h, ext_w = extbox[3] - extbox[1], extbox[2] - extbox[0] else: margins = np.ones(4) * self._margin_rate[0] * 0.5 extbox = self._expand_box(box, margins) extbox = np.array([np.floor(extbox[0]), np.floor(extbox[1]), np.ceil(extbox[2]), np.ceil(extbox[3])]).astype(np.int) ext_h, ext_w = extbox[3] - extbox[1], extbox[2] - extbox[0] # extended box size data['ext_h'], data['ext_w'] = ext_h, ext_w # crop image if 'image' in self._crop_fields: ret_img = custom_crop_image(img, extbox) ret_img = Image.fromarray(ret_img.astype(np.uint8)).resize((self._max_size, self._max_size)) data['image'] = ret_img # crop mask if 'mask' in self._crop_fields: mask = np.array(data['mask']) ret_mask = custom_crop_image(mask, extbox) ret_mask = Image.fromarray(ret_mask.astype(np.uint8)).resize((self._max_size, self._max_size)) ret_mask = np.array(ret_mask) data['mask'] = ret_mask # crop box mask (during test) if 'boxmask' in self._crop_fields: boxmask = data['boxmask'] ret_boxmask = np.zeros((ext_h, ext_w)) ret_boxmask[max(0 - extbox[1], 0):ext_h + min(0, h - extbox[3]), max(0 - extbox[0], 0):ext_w + min(0, w - extbox[2])] = \ boxmask[max(extbox[1], 0):min(extbox[3], h), max(extbox[0], 0):min(extbox[2], w)] ret_boxmask = np.array(Image.fromarray(ret_boxmask.astype(np.uint8)).resize((self._max_size, self._max_size))) data['boxmask'] = ret_boxmask data['ext_boxes'] = extbox data['margins'] = margins return data class RandomFlip: """Random Flip.""" def __init__(self, p=0.5): """Init.""" self.p = p def __call__(self, x): """Call.""" if 'aug_images' in x.keys(): x['flip_records'] = [] for idx in range(len(x['aug_images'])): x['flip_records'].append([]) for jdx in range(len(x['aug_images'][idx])): if float(torch.rand(1)) > self.p: x['aug_images'][idx][jdx] = ImageOps.mirror(x['aug_images'][idx][jdx]) x['flip_records'][idx].append(1) else: x['flip_records'][idx].append(0) elif 'image' in x.keys(): if float(torch.rand(1)) > self.p: x['flip_records'] = 1 x['image'] = ImageOps.mirror(x['image']) x['mask'] = x['mask'][:, ::-1] else: x['flip_records'] = 0 else: raise NotImplementedError return x class Normalize(transforms.Normalize): """Normalize image in dictionary.""" def forward(self, tensor): """Forward.""" if 'image' in tensor.keys(): tensor['image'] = super().forward(tensor['image']) if 'timage' in tensor.keys(): tensor['timage'] = super().forward(tensor['timage']) elif 'aug_images' in tensor.keys(): for idx in range(len(tensor['aug_images'])): for jdx in range(len(tensor['aug_images'][idx])): tensor['aug_images'][idx][jdx] = super().forward(tensor['aug_images'][idx][jdx]) else: raise NotImplementedError return tensor class Denormalize: """Denormalize image.""" def __init__(self, mean, std, inplace=False): """Init.""" self._mean = mean self._std = std self._inplace = inplace def __call__(self, img): """Call.""" img = (img * self._std + self._mean) * 255 return img class ToTensor(transforms.ToTensor): """Dictioinary data to Tensor.""" def __call__(self, data): """Call.""" if 'image' in data.keys(): if isinstance(data['image'], (list, tuple)): img_list = [] for img in data['image']: img_list.append(super().__call__(img)) data['image'] = torch.cat(img_list) else: data['image'] = super().__call__(data['image']) if 'flip_records' in data.keys(): data['flip_records'] = torch.tensor([data['flip_records']]) elif 'aug_images' in data.keys(): for idx in range(len(data['aug_images'])): for jdx in range(len(data['aug_images'][idx])): data['aug_images'][idx][jdx] = super().__call__(data['aug_images'][idx][jdx]) data['aug_ranges'][idx][jdx] = torch.tensor(data['aug_ranges'][idx][jdx]) if 'flip_records' in data.keys(): data['flip_records'][idx] = torch.tensor(data['flip_records'][idx]) else: raise NotImplementedError if 'timage' in data.keys(): if isinstance(data['timage'], (list, tuple)): img_list = [] for img in data['timage']: img_list.append(super().__call__(img)) data['timage'] = torch.cat(img_list) else: data['timage'] = super().__call__(data['timage']) if 'mask' in data.keys(): if isinstance(data['mask'], (list, tuple)): mask_list = [] for mask in data['mask']: mask_list.append(torch.tensor(mask, dtype=torch.float)[None, ...]) data['mask'] = torch.cat(mask_list) else: data['mask'] = torch.tensor(data['mask'], dtype=torch.float)[None, ...] if 'boxmask' in data.keys(): if isinstance(data['boxmask'], (list, tuple)): mask_list = [] for mask in data['boxmask']: mask_list.append(torch.tensor(mask, dtype=torch.float)[None, ...]) data['boxmask'] = torch.cat(mask_list) else: data['boxmask'] = torch.tensor(data['boxmask'], dtype=torch.float)[None, ...] if 'ann' in data.keys(): data['ann'] = torch.tensor(data['ann']) return data class ColorJitter(transforms.ColorJitter): """Color Jitter.""" def single_forward(self, img): """Single forward.""" if isinstance(img, list): return [self.single_forward(_img) for _img in img] return super().forward(img) def forward(self, img): """Forward.""" if 'image' in img.keys(): img['image'] = self.single_forward(img['image']) elif 'aug_images' in img.keys(): for idx in range(len(img['aug_images'])): for jdx in range(len(img['aug_images'][idx])): img['aug_images'][idx][jdx] = super().forward(img['aug_images'][idx][jdx]) else: raise NotImplementedError return img class RandomGrayscale(transforms.RandomGrayscale): """Random Grayscale.""" def single_forward(self, img): """Single forward.""" if isinstance(img, list): return [self.single_forward(_img) for _img in img] return super().forward(img) def forward(self, img): """Forward.""" if 'image' in img.keys(): img['image'] = self.single_forward(img['image']) elif 'aug_images' in img.keys(): for idx in range(len(img['aug_images'])): for jdx in range(len(img['aug_images'][idx])): img['aug_images'][idx][jdx] = super().forward(img['aug_images'][idx][jdx]) else: raise NotImplementedError return img class GaussianBlur(object): """Apply Gaussian Blur to the PIL image.""" def __init__(self, p=0.5, radius_min=0.1, radius_max=2.): """Init.""" self.prob = p self.radius_min = radius_min self.radius_max = radius_max def single_forward(self, img): """Single forward.""" if isinstance(img, list): return [self.single_forward(img_) for img_ in img] do_it = random.random() <= self.prob if not do_it: return img return img.filter( ImageFilter.GaussianBlur( radius=random.uniform(self.radius_min, self.radius_max) ) ) def __call__(self, data): """Call.""" if 'image' in data.keys(): data['image'] = self.single_forward(data['image']) elif 'aug_images' in data.keys(): for idx in range(len(data['aug_images'])): for jdx in range(len(data['aug_images'][idx])): data['aug_images'][idx][jdx] = self.single_forward(data['aug_images'][idx][jdx]) else: raise NotImplementedError return data class DropAllExcept: """Drop all except keys to keep.""" def __init__(self, keep_keys): """Init.""" self.keep_keys = keep_keys def __call__(self, data): """Call.""" data_keys = list(data.keys()) for key in data_keys: if key not in self.keep_keys: del data[key] return data class ChangeNames: """Change names.""" def __init__(self, kv_dic): """Init.""" self.kv_dic = kv_dic def __call__(self, data): """Call.""" data_keys = list(data.keys()) for key, value in self.kv_dic.items(): if key in data_keys: data[value] = data[key] del data[key] return data class Solarization: """Apply Solarization to the PIL image.""" def __init__(self, p): """Init.""" self.p = p def single_forward(self, img): """Single forward.""" if isinstance(img, list): return [self.single_forward(img_) for img_ in img] if random.random() < self.p: return ImageOps.solarize(img) return img def __call__(self, data): """Call.""" if 'image' in data.keys(): data['image'] = self.single_forward(data['image']) elif 'aug_images' in data.keys(): for idx in range(len(data['aug_images'])): for jdx in range(len(data['aug_images'][idx])): data['aug_images'][idx][jdx] = self.single_forward(data['aug_images'][idx][jdx]) else: raise NotImplementedError return data class ImageSizeAlignment: """Image Size Alignment.""" def __init__(self, max_size, mean, random_offset=False): """Init.""" self._max_size = max_size self._mean = (np.array(mean) * 255).astype(np.uint8) self._random_offset = random_offset def __call__(self, data): """Call.""" assert 'image' in data.keys() padded_image = np.ones((self._max_size, self._max_size, 3), dtype=np.uint8) * self._mean image = np.array(data['image']) h, w = image.shape[0], image.shape[1] if self._random_offset: offy, offx = torch.randint(0, self._max_size - h + 1, (1,)), torch.randint(0, self._max_size - w + 1, (1,)) else: offy, offx = 0, 0 padded_image[offy:offy + h, offx:offx + w] = image data['image'] = Image.fromarray(padded_image) if 'mask' in data.keys(): padded_mask = np.ones((self._max_size, self._max_size)) padded_mask[offy:offy + h, offx:offx + w] = np.array(data['mask']) data['mask'] = Image.fromarray(padded_mask) return data class RandomScale: """Random Scale.""" def __init__(self, min_size, max_size, mean=(0.485, 0.456, 0.406)): """Init.""" self._min_size = min_size self._max_size = max_size self._mean = mean def __call__(self, data): """Call.""" if 'image' in data.keys(): for i in range(len(data['image'])): img = np.array(data['image'][i]) w, h = img.shape[:2] mask = data['mask'][i] rw, rh = torch.randint(self._min_size, self._max_size + 1, (2, )) offw, offh = torch.randint(0, w - rw + 1, (1, )), torch.randint(0, h - rh + 1, (1, )) ret_img = (np.ones(img.shape) * np.array(self._mean)).astype(img.dtype) ret_mask = np.zeros(mask.shape, img.dtype) img = np.array(Image.fromarray(img).resize((rw, rh))) mask = np.array(Image.fromarray(mask).resize((rw, rh))) ret_img[offh: offh + rh, offw: offw + rw] = img ret_mask[offh: offh + rh, offw: offw + rw] = mask data['image'][i] = Image.fromarray(ret_img) data['mask'][i] = ret_mask else: raise NotImplementedError return data class SplitAndMerge: """Split and Merge.""" def __init__(self, branch1, branch2): """Init.""" self.branch1 = branch1 self.branch2 = branch2 def __call__(self, data): """Call.""" data_clone = deepcopy(data) data1 = self.branch1(data_clone) data_clone = deepcopy(data) data2 = self.branch2(data_clone) data1.update(data2) return data1 data_aug_pipelines = { 'test': lambda cfg: transforms.Compose([ RandomCropV2(cfg.dataset.crop_size, margin_rate=cfg.train.test_margin_rate, random=False, crop_fields=['image', 'boxmask', 'mask']), ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]), 'train': lambda cfg: transforms.Compose([ RandomCropV3(cfg.dataset.crop_size, margin_rate=cfg.train.margin_rate), RandomFlip(0.5), SplitAndMerge( transforms.Compose([ transforms.RandomApply( [ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.5 ), RandomGrayscale(p=0.2), transforms.RandomApply([GaussianBlur(1.0)], p=0.5) ]), transforms.Compose([ DropAllExcept(['image']), ChangeNames({'image': 'timage'}) ]) ), ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]), }
tao_dataset_suite-main
nvidia_tao_ds/auto_label/datasets/data_aug.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """Custom LightningDataModule for MAL.""" import logging import pytorch_lightning as pl from torch.utils.data import DataLoader from nvidia_tao_ds.auto_label.datasets.coco import BoxLabelCOCO, InstSegCOCO, InstSegCOCOwithBoxInput from nvidia_tao_ds.auto_label.datasets.data_aug import data_aug_pipelines, custom_collate_fn logger = logging.getLogger(__name__) class WSISDataModule(pl.LightningDataModule): """Weakly supervised instance segmentation data module.""" def __init__(self, num_workers, load_train=False, load_val=False, cfg=None): """Initialize train/val dataset and dataloader.""" super().__init__() self.cfg = cfg self.num_workers = num_workers self.train_transform = data_aug_pipelines['train'](cfg) self.test_transform = data_aug_pipelines['test'](cfg) assert self.cfg.dataset.type == 'coco', 'only COCO format is supported.' self._train_data_loader = None self._val_data_loader = None self.box_inputs = None if load_train: logger.info("Loading train set...") dataset = BoxLabelCOCO( self.cfg.dataset.train_ann_path, self.cfg.dataset.train_img_dir, min_obj_size=self.cfg.dataset.min_obj_size, max_obj_size=self.cfg.dataset.max_obj_size, transform=self.train_transform, cfg=cfg) data_loader = DataLoader( dataset, batch_size=self.cfg.train.batch_size, shuffle=True, num_workers=self.num_workers) self._train_data_loader = data_loader logger.info("Train set is loaded successfully.") if load_val: logger.info("Loading validation set...") build_dataset = InstSegCOCOwithBoxInput if self.box_inputs else InstSegCOCO dataset = build_dataset( self.cfg.dataset.val_ann_path, self.cfg.dataset.val_img_dir, min_obj_size=0, max_obj_size=1e9, load_mask=self.cfg.dataset.load_mask, transform=self.test_transform, box_inputs=self.box_inputs ) data_loader = DataLoader( dataset, collate_fn=custom_collate_fn, batch_size=self.cfg.train.batch_size, num_workers=self.num_workers) self._val_data_loader = data_loader logger.info("Validation set is loaded successfully.") def train_dataloader(self): """Set train dataloader.""" return self._train_data_loader def val_dataloader(self): """Set val dataloader.""" return self._val_data_loader
tao_dataset_suite-main
nvidia_tao_ds/auto_label/datasets/pl_data_module.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """VOC dataset.""" import os import logging import json import numpy as np from PIL import Image from pycocotools.coco import COCO import pycocotools.mask as maskUtils from torch.utils.data import Dataset logger = logging.getLogger(__name__) class DataWrapper: """Simple data wrapper.""" def __init__(self, data): """Init.""" self.data = data class BoxLabelVOC(Dataset): """Base class for loading COCO format labels.""" def __init__(self, ann_path, img_data_dir, min_obj_size=0, max_obj_size=1e10, transform=None, cfg=None, **kwargs): """Initialize dataset. Args: ann_path (str): annotation file in json format img_data_dir (str): raw image directory min_obj_size (float): min object size max_obj_size (float): max object size transform (transform.Compose): data augmentation methods cfg (Hydra config): Hydra configurations """ self.cfg = cfg self.ann_path = ann_path self.img_data_dir = img_data_dir self.min_obj_size = min_obj_size self.max_obj_size = max_obj_size self.transform = transform self.coco = COCO(ann_path) self._filter_imgs() self.get_category_mapping() def get_category_mapping(self): """Map category index in json to 1 based index.""" self.cat_mapping = dict([i, i] for i in range(1, 21)) def _filter_imgs(self): """Filter out bboxes based on area and H/W range.""" anns = self.coco.dataset['annotations'] filtered_anns = [] for ann in anns: # query image info image_info = self.coco.loadImgs(ann['image_id'])[0] # check if bbox is out of bound is_correct_bbox = ann['bbox'][0] >= 0 and ann['bbox'][1] >= 0 and \ (ann['bbox'][0] + ann['bbox'][2]) <= image_info['width'] and \ (ann['bbox'][1] + ann['bbox'][3]) <= image_info['height'] area = ann['bbox'][2] * ann['bbox'][3] # check if bbox area is within range is_correct_area = self.max_obj_size > area > self.min_obj_size # additionally, check bbox w/h > 2 if is_correct_bbox and is_correct_area and ann['bbox'][2] > 2 and ann['bbox'][3] > 2: filtered_anns.append(ann) self.coco.dataset['annotations'] = filtered_anns num_filtered = len(self.coco.dataset['annotations']) - len(filtered_anns) if num_filtered > 0: print("***********************************") print(f"WARNING: {num_filtered} bboxes were filtered out.") print("***********************************") def __len__(self): """Total number of bboxes.""" return len(self.coco.getAnnIds()) def __getitem__(self, idx): """Per item.""" ann = self.coco.dataset['annotations'][idx] img_info = self.coco.loadImgs(ann['image_id'])[0] h, w, file_name = img_info['height'], img_info['width'], img_info['file_name'] img = self.get_image(file_name) # box mask mask = np.zeros((h, w)) bbox = ann['bbox'] x0, y0, x1, y1 = int(bbox[0]), int(bbox[1]), int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]) mask[y0:y1 + 1, x0:x1 + 1] = 1 data = { 'image': img, 'mask': mask, 'height': h, 'width': w, 'category_id': ann['category_id'], 'bbox': np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]], dtype=np.float32), 'compact_category_id': self.cat_mapping[int(ann['category_id'])], 'id': ann['id'] } if self.transform is not None: data = self.transform(data) return data def get_image(self, file_name): """Load image. Args: file_name (str): relative path to an image file. Return: image (PIL image): loaded image """ image = Image.open(os.path.join(self.img_data_dir, file_name)).convert('RGB') return image class InstSegVOC(BoxLabelVOC): """Class for loading COCO format labels with instance segmentation masks.""" def __init__(self, *args, load_mask=True, **kwargs): """Init.""" super().__init__(*args, **kwargs) self.load_mask = load_mask if load_mask: for ann in self.coco.dataset['annotations']: if not ann.get('segmentation', None): raise ValueError( "Please check your annotation file, " "as not all annotations contain segmentation info. " "Or set load_mask to False.") self.get_category_mapping() def __getitem__(self, idx): """Per item.""" ann = self.coco.dataset['annotations'][idx] img_info = self.coco.loadImgs(ann['image_id'])[0] h, w, file_name = img_info['height'], img_info['width'], img_info['file_name'] img = self.get_image(file_name) # box mask boxmask = np.zeros((h, w)) bbox = ann['bbox'] x0, y0, x1, y1 = int(bbox[0]), int(bbox[1]), int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]) boxmask[y0:y1 + 1, x0:x1 + 1] = 1 data = {'image': img, 'boxmask': boxmask, 'height': h, 'width': w, 'category_id': ann['category_id'], 'bbox': np.array( [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]], dtype=np.float32), 'compact_category_id': self.cat_mapping[int(ann['category_id'])], 'id': ann['id'], 'image_id': ann['image_id']} if self.load_mask: # mask = np.ascontiguousarray( # maskUtils.decode(maskUtils.frPyObjects(ann['segmentation'], h, w))) # polygons if isinstance(ann['segmentation'], list): rles = maskUtils.frPyObjects(ann['segmentation'], h, w) rle = maskUtils.merge(rles) elif 'counts' in ann['segmentation']: # e.g. {'counts': [6, 1, 40, 4, 5, 4, 5, 4, 21], 'size': [9, 10]} if isinstance(ann['segmentation']['counts'], list): rle = maskUtils.frPyObjects(ann['segmentation'], h, w) else: rle = ann['segmentation'] else: raise ValueError('Please check the segmentation format.') mask = np.ascontiguousarray(maskUtils.decode(rle)) if len(mask.shape) > 2: mask = mask.transpose((2, 0, 1)).sum(0) > 0 mask = mask.astype(np.uint8) data['gtmask'] = DataWrapper(mask) data['mask'] = mask if self.transform is not None: data = self.transform(data) return data class InstSegVOCwithBoxInput(InstSegVOC): """Class for loading bbox inputs with instance segmentation masks.""" def __init__(self, ann_path, img_data_dir, min_obj_size=0, max_obj_size=1e10, transform=None, load_mask=True, box_inputs=None): """Init.""" self.load_mask = load_mask self.ann_path = ann_path self.img_data_dir = img_data_dir self.min_obj_size = min_obj_size self.max_obj_size = max_obj_size self.transform = transform self.coco = COCO(ann_path) self._filter_imgs() self.get_category_mapping() with open(box_inputs, "r", encoding='utf-8') as f: self.val_coco = json.load(f) def __len__(self): """Number of samples.""" return len(self.val_coco) def __getitem__(self, idx): """Per item.""" ann = self.val_coco[idx] img_info = self.coco.loadImgs(ann['image_id'])[0] h, w, file_name = img_info['height'], img_info['width'], img_info['file_name'] img = self.get_image(file_name) # box mask boxmask = np.zeros((h, w)) bbox = np.array(ann['bbox']) x0, y0, x1, y1 = int(bbox[0]), int(bbox[1]), int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]) boxmask[y0:y1 + 1, x0:x1 + 1] = 1 if 'id' not in ann.keys(): _id = hash(str(ann['image_id']) + ' ' + str(x0) + ' ' + str(x1) + ' ' + str(y0) + ' ' + str(y1)) else: _id = ann['id'] data = {'image': img, 'boxmask': boxmask, 'height': h, 'width': w, 'category_id': ann['category_id'], 'bbox': np.array( [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]], dtype=np.float32), 'compact_category_id': self.cat_mapping[int(ann['category_id'])], 'id': _id, 'image_id': ann['image_id'], 'score': ann['score']} if self.load_mask: mask = np.ascontiguousarray(maskUtils.decode(ann['segmentation'])) if len(mask.shape) > 2: mask = mask.transpose((2, 0, 1)).sum(0) > 0 mask = mask.astype(np.uint8) data['gtmask'] = DataWrapper(mask) data['mask'] = mask if self.transform is not None: data = self.transform(data) return data
tao_dataset_suite-main
nvidia_tao_ds/auto_label/datasets/voc.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAL utils module."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for configuration.""" def update_config(cfg): """Update Hydra config.""" # mask threshold if len(cfg.train.mask_thres) == 1: # this means to repeat the same threshold three times # all scale objects are sharing the same threshold cfg.train.mask_thres = [cfg.train.mask_thres[0] for _ in range(3)] assert len(cfg.train.mask_thres) == 3 # frozen_stages if len(cfg.model.frozen_stages) == 1: cfg.model.frozen_stages = [0, cfg.model.frozen_stages[0]] assert len(cfg.model.frozen_stages) == 2 assert len(cfg.train.margin_rate) == 2 return cfg
tao_dataset_suite-main
nvidia_tao_ds/auto_label/utils/config_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LR scheduler utils."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/utils/lr_schedulers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """Cosine learning rate scheduler.""" import math def adjust_learning_rate(optimizer, epoch, cfg): """Decay the learning rate with half-cycle cosine after warmup.""" if epoch < cfg.train.warmup_epochs: lr = cfg.train.lr * (epoch / cfg.train.warmup_epochs) else: lr = cfg.train.min_lr + (cfg.train.lr - cfg.train.min_lr) * 0.5 * \ (1. + math.cos( math.pi * (epoch - cfg.train.warmup_epochs) / (cfg.train.num_epochs - cfg.train.warmup_epochs) * cfg.train.num_wave)) for param_group in optimizer.param_groups: if "lr_scale" in param_group: param_group["lr"] = lr * param_group["lr_scale"] else: param_group["lr"] = lr return lr
tao_dataset_suite-main
nvidia_tao_ds/auto_label/utils/lr_schedulers/cosine_lr.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optimizer utils."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/utils/optimizers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """AdamW optimizer with step.""" from torch.optim import AdamW class AdamWwStep(AdamW): """AdamW optimizer with step.""" def __init__(self, *args, **kwargs): """Init.""" super().__init__(*args, **kwargs) for param_group in self.param_groups: param_group['step'] = 0 param_group['epoch'] = 0 def step(self, closure=None): """Step.""" super().step(closure) for param_group in self.param_groups: param_group['step'] = param_group['step'] + 1 def next_epoch(self): """Next epoch.""" for param_group in self.param_groups: param_group['epoch'] += 1
tao_dataset_suite-main
nvidia_tao_ds/auto_label/utils/optimizers/adamw.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAL model module."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/models/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """MAL model.""" import itertools import json import os import cv2 import numpy as np from pycocotools.coco import COCO from pycocotools.mask import encode from pycocotools.cocoeval import COCOeval from mmcv.cnn import ConvModule import torchmetrics import pytorch_lightning as pl from fairscale.nn import auto_wrap import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist from nvidia_tao_ds.auto_label.datasets.data_aug import Denormalize from nvidia_tao_ds.auto_label.models import vit_builder from nvidia_tao_ds.auto_label.utils.optimizers.adamw import AdamWwStep from nvidia_tao_ds.auto_label.utils.lr_schedulers.cosine_lr import adjust_learning_rate class MeanField(nn.Module): """Mean Field approximation to refine mask.""" def __init__(self, cfg=None): """Init.""" super().__init__() self.kernel_size = cfg.train.crf_kernel_size assert self.kernel_size % 2 == 1 self.zeta = cfg.train.crf_zeta self.num_iter = cfg.train.crf_num_iter self.high_thres = cfg.train.crf_value_high_thres self.low_thres = cfg.train.crf_value_low_thres self.cfg = cfg def trunc(self, seg): """Clamp mask values by crf_value_(low/high)_thres.""" seg = torch.clamp(seg, min=self.low_thres, max=self.high_thres) return seg @torch.no_grad() def forward(self, feature_map, seg, targets=None): """Forward pass with num_iter.""" feature_map = feature_map.float() kernel_size = self.kernel_size B, H, W = seg.shape C = feature_map.shape[1] self.unfold = torch.nn.Unfold(kernel_size, stride=1, padding=self.kernel_size // 2) # feature_map [B, C, H, W] feature_map = feature_map + 10 # unfold_feature_map [B, C, kernel_size ** 2, H*W] unfold_feature_map = self.unfold(feature_map).reshape(B, C, kernel_size**2, H * W) # B, kernel_size**2, H*W kernel = torch.exp(-(((unfold_feature_map - feature_map.reshape(B, C, 1, H * W)) ** 2) / (2 * self.zeta ** 2)).sum(1)) if targets is not None: t = targets.reshape(B, H, W) seg = seg * t else: t = None seg = self.trunc(seg) for it in range(self.num_iter): seg = self.single_forward(seg, kernel, t, B, H, W, it) return (seg > 0.5).float() def single_forward(self, x, kernel, targets, B, H, W, it): """Forward pass.""" x = x[:, None] # x [B 2 H W] B, _, H, W = x.shape x = torch.cat([1 - x, x], 1) kernel_size = self.kernel_size # unfold_x [B, 2, kernel_size**2, H * W] # kernel [B, kennel_size**2, H * W] unfold_x = self.unfold(-torch.log(x)).reshape(B, 2, kernel_size ** 2, H * W) # aggre, x [B, 2, H * W] aggre = (unfold_x * kernel[:, None]).sum(2) aggre = torch.exp(-aggre) if targets is not None: aggre[:, 1:] = aggre[:, 1:] * targets.reshape(B, 1, H * W) out = aggre out = out / (1e-6 + out.sum(1, keepdim=True)) out = self.trunc(out) return out[:, 1].reshape(B, H, W) class MaskHead(nn.Module): """Mask Head.""" def __init__(self, in_channels=2048, cfg=None): """Init.""" super().__init__() self.num_convs = cfg.model.mask_head_num_convs self.in_channels = in_channels self.mask_head_hidden_channel = cfg.model.mask_head_hidden_channel self.mask_head_out_channel = cfg.model.mask_head_out_channel self.mask_scale_ratio = cfg.model.mask_scale_ratio self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else self.mask_head_hidden_channel out_channels = self.mask_head_hidden_channel if i < self.num_convs - 1 else self.mask_head_out_channel self.convs.append(ConvModule(in_channels, out_channels, 3, padding=1)) def forward(self, x): """Forward pass.""" for idx, conv in enumerate(self.convs): if idx == 3: h, w = x.shape[2:] th, tw = int(h * self.mask_scale_ratio), int(w * self.mask_scale_ratio) x = F.interpolate(x, (th, tw), mode='bilinear', align_corners=False) x = conv(x) return x class RoIHead(nn.Module): """RoI Head.""" def __init__(self, in_channels=2048, cfg=None): """Init.""" super().__init__() self.mlp1 = nn.Linear(in_channels, cfg.model.mask_head_out_channel) self.relu = nn.ReLU() self.mlp2 = nn.Linear(cfg.model.mask_head_out_channel, cfg.model.mask_head_out_channel) def forward(self, x, boxmask=None): """Forward pass.""" x = x.mean((2, 3)) x = self.mlp2(self.relu(self.mlp1(x))) return x class MALStudentNetwork(pl.LightningModule): """MAL student model.""" def __init__(self, in_channels=2048, cfg=None): """Init.""" super().__init__() self.cfg = cfg self.backbone = vit_builder.build_model(cfg=cfg) # Load pretrained weights if cfg.checkpoint: print('Loading pretrained weights.....') state_dict = torch.load(cfg.checkpoint) if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict'] if 'model' in state_dict.keys(): state_dict = state_dict['model'] self.backbone.load_state_dict(state_dict, strict=False) # K head self.roi_head = RoIHead(in_channels, cfg=cfg) # V head self.mask_head = MaskHead(in_channels, cfg=cfg) # make student sharded on multiple gpus self.configure_sharded_model() def configure_sharded_model(self): """Sharded backbone.""" self.backbone = auto_wrap(self.backbone) def forward(self, x, boxmask, bboxes): """Forward pass.""" if self.cfg.train.use_amp: x = x.half() feat = self.backbone.base_forward(x) spatial_feat_ori = self.backbone.get_spatial_feat(feat) h, w = spatial_feat_ori.shape[2:] mask_scale_ratio_pre = int(self.cfg.model.mask_scale_ratio_pre) if not self.cfg.model.not_adjust_scale: spatial_feat_list = [] masking_list = [] areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0]) for idx, (scale_low, scale_high) in enumerate([(0, 32**2), (32**2, 96**2), (96**2, 1e5**2)]): masking = (areas < scale_high) * (areas > scale_low) if masking.sum() > 0: spatial_feat = F.interpolate( spatial_feat_ori[masking], size=(int(h * 2**(idx - 1)), int(w * 2**(idx - 1))), mode='bilinear', align_corners=False) boxmask = None else: spatial_feat = None boxmask = None spatial_feat_list.append(spatial_feat) masking_list.append(masking) roi_feat = self.roi_head(spatial_feat_ori) n, maxh, maxw = roi_feat.shape[0], h * 4, w * 4 seg_all = torch.zeros(n, 1, maxh, maxw).to(roi_feat) for idx, (spatial_feat, masking) in enumerate(zip(spatial_feat_list, masking_list)): if masking.sum() > 0: mn = masking.sum() mh, mw = int(h * mask_scale_ratio_pre * 2**(idx - 1)), int(w * mask_scale_ratio_pre * 2**(idx - 1)) seg_feat = self.mask_head(spatial_feat) c = seg_feat.shape[1] masked_roi_feat = roi_feat[masking] seg = (masked_roi_feat[:, None, :] @ seg_feat.reshape(mn, c, mh * mw * 4)).reshape(mn, 1, mh * 2, mw * 2) seg = F.interpolate(seg, size=(maxh, maxw), mode='bilinear', align_corners=False) seg_all[masking] = seg ret_vals = {'feat': feat, 'seg': seg_all, 'spatial_feat': spatial_feat_ori, 'masking_list': masking_list} else: spatial_feat = F.interpolate( spatial_feat_ori, size=(int(h * mask_scale_ratio_pre), int(w * mask_scale_ratio_pre)), mode='bilinear', align_corners=False) boxmask = F.interpolate(boxmask, size=spatial_feat.shape[2:], mode='bilinear', align_corners=False) seg_feat = self.mask_head(spatial_feat) roi_feat = self.roi_head(spatial_feat_ori, boxmask) n, c, h, w = seg_feat.shape seg = (roi_feat[:, None, :] @ seg_feat.reshape(n, c, h * w)).reshape(n, 1, h, w) seg = F.interpolate(seg, (h * 4, w * 4), mode='bilinear', align_corners=False) ret_vals = {'feat': feat, 'seg': seg, 'spatial_feat': spatial_feat_ori} return ret_vals class MALTeacherNetwork(MALStudentNetwork): """MAL teacher model.""" def __init__(self, in_channels, cfg=None): """Init.""" super().__init__(in_channels, cfg=cfg) self.eval() self.momentum = cfg.model.teacher_momentum @torch.no_grad() def update(self, student): """Update EMA teacher model.""" for param_student, param_teacher in zip(student.parameters(), self.parameters()): param_teacher.data = param_teacher.data * self.momentum + param_student.data * (1 - self.momentum) class MIoUMetrics(torchmetrics.Metric): """MIoU Metrics.""" def __init__(self, dist_sync_on_step=True, num_classes=20): """Init.""" super().__init__(dist_sync_on_step=dist_sync_on_step) self.add_state("cnt", default=torch.zeros(num_classes), dist_reduce_fx="sum") self.add_state("total", default=torch.zeros(num_classes), dist_reduce_fx="sum") def update(self, label, iou): """Update.""" self.cnt[label - 1] += 1 self.total[label - 1] += iou def update_with_ious(self, labels, ious): """Update with IOUs.""" for iou, label in zip(ious, labels): self.cnt[label - 1] += 1 self.total[label - 1] += float(iou) return ious def cal_intersection(self, seg, gt): """Calcuate mask intersection.""" B = seg.shape[0] inter_cnt = (seg * gt).reshape(B, -1).sum(1) return inter_cnt def cal_union(self, seg, gt, inter_cnt=None): """Calculate mask union.""" B = seg.shape[0] if inter_cnt is None: inter_cnt = self.cal_intersection(seg, gt) union_cnt = seg.reshape(B, -1).sum(1) + gt.reshape(B, -1).sum(1) - inter_cnt return union_cnt def cal_iou(self, seg, gt): """Calculate mask IOU.""" inter_cnt = self.cal_intersection(seg, gt) union_cnt = self.cal_union(seg, gt, inter_cnt) return 1.0 * inter_cnt / (union_cnt + 1e-6) def compute(self): """Compute mIOU.""" mIoUs = self.total / (1e-6 + self.cnt) mIoU = mIoUs.sum() / (self.cnt > 0).sum() return mIoU def compute_with_ids(self, ids=None): """Compute mIOU with IDs.""" if ids is not None: total = self.total[torch.tensor(np.array(ids)).long()] cnt = self.cnt[torch.tensor(np.array(ids)).long()] else: total = self.total cnt = self.cnt mIoUs = total / (1e-6 + cnt) mIoU = mIoUs.sum() / (cnt > 0).sum() return mIoU class MAL(pl.LightningModule): """Base MAL model.""" def __init__(self, cfg=None, num_iter_per_epoch=None, categories=None): """Init.""" super().__init__() # loss term hyper parameters self.num_convs = cfg.model.mask_head_num_convs self.loss_mil_weight = cfg.train.loss_mil_weight self.loss_crf_weight = cfg.train.loss_crf_weight self.loss_crf_step = cfg.train.loss_crf_step self.cfg = cfg self.mask_thres = cfg.train.mask_thres self.num_classes = len(categories) + 1 self.mIoUMetric = MIoUMetrics(num_classes=self.num_classes) self.areaMIoUMetrics = nn.ModuleList([MIoUMetrics(num_classes=self.num_classes) for _ in range(3)]) if self.cfg.evaluate.comp_clustering: self.clusteringScoreMetrics = torchmetrics.MeanMetric() backbone_type = cfg.model.arch # TODO(@yuw): arch options? self.categories = categories if 'tiny' in backbone_type.lower(): in_channel = 192 if 'small' in backbone_type.lower(): in_channel = 384 elif 'base' in backbone_type.lower(): in_channel = 768 elif 'large' in backbone_type.lower(): in_channel = 1024 elif 'huge' in backbone_type.lower(): in_channel = 1280 elif 'fan' in backbone_type.lower(): in_channel = 448 self.mean_field = MeanField(cfg=self.cfg) self.student = MALStudentNetwork(in_channel, cfg=cfg) self.teacher = MALTeacherNetwork(in_channel, cfg=cfg) self.denormalize = Denormalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) self._optim_type = cfg.train.optim_type self._lr = cfg.train.lr self._wd = cfg.train.wd self._momentum = cfg.train.optim_momentum if num_iter_per_epoch is not None: self._num_iter_per_epoch = num_iter_per_epoch // len(self.cfg.gpu_ids) self.cfg = cfg self.vis_cnt = 0 self.local_step = 0 # Enable manual optimization self.automatic_optimization = False def configure_optimizers(self): """Configure optimizers.""" optimizer = AdamWwStep( self.parameters(), eps=self.cfg.train.optim_eps, betas=self.cfg.train.optim_betas, lr=self._lr, weight_decay=self._wd) return optimizer def crf_loss(self, img, seg, tseg, boxmask): """CRF loss.""" refined_mask = self.mean_field(img, tseg, targets=boxmask) return self.dice_loss(seg, refined_mask).mean(), refined_mask def dice_loss(self, pred, target): """DICE loss. replace cross-entropy like loss in the original paper: (https://papers.nips.cc/paper/2019/file/e6e713296627dff6475085cc6a224464-Paper.pdf). Args: pred (torch.Tensor): [B, embed_dim] target (torch.Tensor): [B, embed_dim] Return: loss (torch.Tensor): [B] """ pred = pred.contiguous().view(pred.size()[0], -1).float() target = target.contiguous().view(target.size()[0], -1).float() a = torch.sum(pred * target, 1) b = torch.sum(pred * pred, 1) + 0.001 c = torch.sum(target * target, 1) + 0.001 d = (2 * a) / (b + c) return 1 - d def mil_loss(self, pred, target): """Multi-instance loss. Args: pred (torch.Tensor): size of [batch_size, 128, 128], where 128 is input_size // 4 target (torch.Tensor): size of [batch_size, 128, 128], where 128 is input_size // 4 Return: loss (torch.Tensor): size of [batch_size] """ row_labels = target.max(1)[0] column_labels = target.max(2)[0] row_input = pred.max(1)[0] column_input = pred.max(2)[0] loss = self.dice_loss(column_input, column_labels) loss += self.dice_loss(row_input, row_labels) return loss def training_step(self, x): """training step.""" optimizer = self.optimizers() loss = {} image = x['image'] local_step = self.local_step self.local_step += 1 if 'timage' in x.keys(): timage = x['timage'] else: timage = image student_output = self.student(image, x['mask'], x['bbox']) teacher_output = self.teacher(timage, x['mask'], x['bbox']) B, oh, ow = student_output['seg'].shape[0], student_output['seg'].shape[2], student_output['seg'].shape[3] mask = F.interpolate(x['mask'], size=(oh, ow), mode='bilinear', align_corners=False).reshape(-1, oh, ow) if 'image' in x: student_seg_sigmoid = torch.sigmoid(student_output['seg'])[:, 0].float() teacher_seg_sigmoid = torch.sigmoid(teacher_output['seg'])[:, 0].float() # Multiple instance learning Loss loss_mil = self.mil_loss(student_seg_sigmoid, mask) # Warmup loss weight for multiple instance learning loss if self.current_epoch > 0: step_mil_loss_weight = 1 else: step_mil_loss_weight = min(1, 1. * local_step / self.cfg.train.loss_mil_step) loss_mil *= step_mil_loss_weight loss_mil = loss_mil.sum() / (loss_mil.numel() + 1e-4) * self.loss_mil_weight loss.update({'mil': loss_mil}) # Tensorboard logs self.log("train/loss_mil", loss_mil, on_step=True, on_epoch=False, prog_bar=True, sync_dist=True) # Conditional Random Fields Loss th, tw = oh * self.cfg.train.crf_size_ratio, ow * self.cfg.train.crf_size_ratio # resize image scaled_img = F.interpolate(image, size=(th, tw), mode='bilinear', align_corners=False).reshape(B, -1, th, tw) # resize student segmentation scaled_stu_seg = F.interpolate(student_seg_sigmoid[None, ...], size=(th, tw), mode='bilinear', align_corners=False).reshape(B, th, tw) # resize teacher segmentation scaled_tea_seg = F.interpolate(teacher_seg_sigmoid[None, ...], size=(th, tw), mode='bilinear', align_corners=False).reshape(B, th, tw) # resize mask scaled_mask = F.interpolate(x['mask'], size=(th, tw), mode='bilinear', align_corners=False).reshape(B, th, tw) # loss_crf, pseudo_label loss_crf, _ = self.crf_loss(scaled_img, scaled_stu_seg, (scaled_stu_seg + scaled_tea_seg) / 2, scaled_mask) if self.current_epoch > 0: step_crf_loss_weight = 1 else: step_crf_loss_weight = min(1. * local_step / self.loss_crf_step, 1.) loss_crf *= self.loss_crf_weight * step_crf_loss_weight loss.update({'crf': loss_crf}) self.log("train/loss_crf", loss_crf, on_step=True, on_epoch=False, prog_bar=True, sync_dist=True) else: raise NotImplementedError total_loss = sum(loss.values()) self.log("train/loss", total_loss, on_step=True, on_epoch=False, prog_bar=True, sync_dist=True) self.log("lr", optimizer.param_groups[0]['lr'], on_step=True, on_epoch=False, prog_bar=True, sync_dist=True) self.log("train/bs", image.shape[0], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True) optimizer.zero_grad() self.manual_backward(total_loss) optimizer.step() if self._optim_type == 'adamw': adjust_learning_rate(optimizer, 1. * local_step / self._num_iter_per_epoch + self.current_epoch, self.cfg) self.teacher.update(self.student) def training_epoch_end(self, outputs): """On training epoch end.""" self.local_step = 0 def validation_step(self, batch, batch_idx, return_mask=False): """Validation step.""" if self.cfg.dataset.load_mask: imgs, gt_masks, masks, labels, ids, boxmasks, boxes, ext_boxes, ext_hs, ext_ws =\ batch['image'], batch['gtmask'], batch['mask'], batch['compact_category_id'], \ batch['id'], batch['boxmask'], batch['bbox'], batch['ext_boxes'], batch['ext_h'], batch['ext_w'] else: imgs, gt_masks, masks, labels, ids, boxmasks, boxes, ext_boxes, ext_hs, ext_ws =\ batch['image'], batch['boxmask'], batch['boxmask'], batch['compact_category_id'], \ batch['id'], batch['boxmask'], batch['bbox'], batch['ext_boxes'], batch['ext_h'], batch['ext_w'] _, _, H, W = imgs.shape # B, C, H, W denormalized_images = self.denormalize(imgs.cpu().numpy().transpose(0, 2, 3, 1)).astype(np.uint8) labels = labels.cpu().numpy() if self.cfg.evaluate.use_mixed_model_test: s_outputs = self.student(imgs, batch['boxmask'], batch['bbox']) t_outputs = self.teacher(imgs, batch['boxmask'], batch['bbox']) segs = (s_outputs['seg'] + t_outputs['seg']) / 2 else: if self.cfg.evaluate.use_teacher_test: outputs = self.teacher(imgs, batch['boxmask'], batch['bbox']) else: outputs = self.student(imgs, batch['boxmask'], batch['bbox']) segs = outputs['seg'] if self.cfg.evaluate.use_flip_test: if self.cfg.evaluate.use_mixed_model_test: s_outputs = self.student(torch.flip(imgs, [3]), batch['boxmask'], batch['bbox']) t_outputs = self.teacher(torch.flip(imgs, [3]), batch['boxmask'], batch['bbox']) flipped_segs = torch.flip((s_outputs['seg'] + t_outputs['seg']) / 2, [3]) segs = (flipped_segs + segs) / 2 else: if self.cfg.evaluate.use_teacher_test: flip_outputs = self.teacher(torch.flip(imgs, [3]), batch['boxmask'], batch['bbox']) else: flip_outputs = self.student(torch.flip(imgs, [3]), batch['boxmask'], batch['bbox']) segs = (segs + torch.flip(flip_outputs['seg'], [3])) / 2 segs = F.interpolate(segs, (H, W), align_corners=False, mode='bilinear') segs = segs.sigmoid() thres_list = [0, 32**2, 96 ** 2, 1e5**2] segs = segs * boxmasks areas = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) binseg = segs.clone() for idx, (lth, hth) in enumerate(zip(thres_list[:-1], thres_list[1:])): obj_ids = ((lth < areas) * (areas <= hth)).cpu().numpy() if obj_ids.sum() > 0: binseg[obj_ids] = (binseg[obj_ids] > self.mask_thres[idx]).float() tb_logger = self.logger.experiment epoch_count = self.current_epoch batch_ious = [] img_pred_masks = [] for idx, (img_h, img_w, ext_h, ext_w, ext_box, seg, gt_mask, area, label) in enumerate(zip(batch['height'], batch['width'], ext_hs, ext_ws, ext_boxes, segs, gt_masks, areas, labels)): roi_pred_mask = F.interpolate(seg[None, ...], (ext_h, ext_w), mode='bilinear', align_corners=False)[0][0] h, w = int(img_h), int(img_w) img_pred_mask_shape = h, w img_pred_mask = np.zeros(img_pred_mask_shape).astype(np.float) img_pred_mask[max(ext_box[1], 0):min(ext_box[3], h), max(ext_box[0], 0):min(ext_box[2], w)] = \ roi_pred_mask[max(0 - ext_box[1], 0):ext_h + min(0, h - ext_box[3]), max(0 - ext_box[0], 0):ext_w + min(0, w - ext_box[2])].cpu().numpy() for idx, (lth, hth) in enumerate(zip(thres_list[:-1], thres_list[1:])): if lth < area <= hth: img_pred_mask = (img_pred_mask > self.mask_thres[idx]).astype(np.float) img_pred_masks.append(img_pred_mask[None, ...]) if self.cfg.dataset.load_mask: iou = self.mIoUMetric.cal_iou(img_pred_mask[np.newaxis, ...], gt_mask.data[np.newaxis, ...]) # overall mask IoU self.mIoUMetric.update(int(label), iou[0]) batch_ious.extend(iou) # Small/Medium/Large IoU for jdx, (lth, hth) in enumerate(zip(thres_list[:-1], thres_list[1:])): obj_ids = ((lth < area) * (area <= hth)).cpu().numpy() if obj_ids.sum() > 0: self.areaMIoUMetrics[jdx].update_with_ious(labels[obj_ids], iou[obj_ids]) # Tensorboard vis if self.cfg.dataset.load_mask: for idx, batch_iou, img, seg, label, gt_mask, mask, _, area in zip(ids, batch_ious, denormalized_images, segs, labels, gt_masks, masks, boxes, areas): if area > 64**2 and batch_iou < 0.78 and self.vis_cnt <= 100: seg = seg.cpu().numpy().astype(np.float32)[0] mask = mask.data seg = cv2.resize(seg, (W, H), interpolation=cv2.INTER_LINEAR) seg = (seg * 255).astype(np.uint8) seg = cv2.applyColorMap(seg, cv2.COLORMAP_JET) tseg = cv2.applyColorMap((mask[0] > 0.5).cpu().numpy().astype(np.uint8) * 255, cv2.COLORMAP_JET) vis = cv2.addWeighted(img, 0.5, seg, 0.5, 0) tvis = cv2.addWeighted(img, 0.5, tseg, 0.5, 0) tb_logger.add_image(f'val/vis_{int(idx)}', vis, epoch_count, dataformats="HWC") tb_logger.add_image(f'valgt/vis_{int(idx)}', tvis, epoch_count, dataformats="HWC") self.vis_cnt += 1 ret_dict = {} if return_mask: ret_dict['img_pred_masks'] = img_pred_masks if self.cfg.dataset.load_mask: ret_dict['ious'] = batch_ious return ret_dict def get_parameter_groups(self, print_fn=print): """Get parameter groups.""" groups = ([], [], [], []) for name, value in self.named_parameters(): # pretrained weights if 'backbone' in name: if 'weight' in name: # print_fn(f'pretrained weights : {name}') groups[0].append(value) else: # print_fn(f'pretrained bias : {name}') groups[1].append(value) # scracthed weights else: if 'weight' in name: if print_fn is not None: print_fn(f'scratched weights : {name}') groups[2].append(value) else: if print_fn is not None: print_fn(f'scratched bias : {name}') groups[3].append(value) return groups def validation_epoch_end(self, outputs): """On validation epoch end.""" mIoU = self.mIoUMetric.compute() self.log("val/mIoU", mIoU, on_epoch=True, prog_bar=True, sync_dist=True) if dist.get_rank() == 0: print(f"val/mIoU: {mIoU}") if "coco" in self.cfg.dataset.type: # cat_kv = dict([(cat["name"], cat["id"]) for cat in self.categories]) if self.cfg.evaluate.comp_clustering: clustering_score = self.clusteringScoreMetrics.compute() self.log("val/cluster_score", clustering_score, on_epoch=True, prog_bar=True, sync_dist=True) if dist.get_rank() == 0: if self.cfg.evaluate.comp_clustering: print("val/cluster_score", clustering_score) else: raise NotImplementedError self.mIoUMetric.reset() self.vis_cnt = 0 for i, name in zip(range(len(self.areaMIoUMetrics)), ["small", "medium", "large"]): area_mIoU = self.areaMIoUMetrics[i].compute() self.log(f"val/mIoU_{name}", area_mIoU, on_epoch=True, sync_dist=True) if dist.get_rank() == 0: print(f"val/mIoU_{name}: {area_mIoU}") self.areaMIoUMetrics[i].reset() class MALPseudoLabels(MAL): """MAL model for pseudo label generation.""" def __init__(self, *args, **kwargs): """Init.""" super().__init__(*args, **kwargs) self.box_inputs = None def validation_step(self, batch, batch_idx): """Validation step.""" pred_dict = super().validation_step(batch, batch_idx, return_mask=True) pred_seg = pred_dict['img_pred_masks'] if self.cfg.dataset.load_mask: ious = pred_dict['ious'] ret = [] cnt = 0 # t = time.time() for seg, (x0, y0, x1, y1), idx, image_id, category_id in zip(pred_seg, batch['bbox'], batch['id'], batch.get('image_id', batch.get('video_id', None)), batch['category_id']): encoded_mask = encode(np.asfortranarray(seg[0].astype(np.uint8))) encoded_mask['counts'] = encoded_mask['counts'].decode('ascii') labels = { "bbox": [float(x0), float(y0), float(x1 - x0), float(y1 - y0)], "id": int(idx), "category_id": int(category_id), "segmentation": encoded_mask, "iscrowd": 0, "area": float(x1 - x0) * float(y1 - y0), "image_id": int(image_id) } if 'score' in batch.keys(): labels['score'] = float(batch['score'][cnt].cpu().numpy()) if self.cfg.dataset.load_mask: labels['iou'] = float(ious[cnt]) cnt += 1 ret.append(labels) if batch.get('ytvis_idx', None) is not None: for ytvis_idx, labels in zip(batch['ytvis_idx'], ret): labels['ytvis_idx'] = list(map(int, ytvis_idx)) return ret def validation_epoch_end(self, outputs): """On validation epoch end.""" super().validation_epoch_end(outputs) ret = list(itertools.chain.from_iterable(outputs)) if self.trainer.strategy.root_device.index > 0: with open(f"{self.cfg.inference.label_dump_path}.part{self.trainer.strategy.root_device.index}", "w", encoding='utf-8') as f: json.dump(ret, f) torch.distributed.barrier() else: val_ann_path = self.cfg.inference.ann_path with open(val_ann_path, "r", encoding='utf-8') as f: anns = json.load(f) torch.distributed.barrier() for i in range(1, len(self.cfg.gpu_ids)): with open(f"{self.cfg.inference.label_dump_path}.part{i}", "r", encoding='utf-8') as f: obj = json.load(f) ret.extend(obj) os.remove(f"{self.cfg.inference.label_dump_path}.part{i}") if ret[0].get('ytvis_idx', None) is None: # for COCO format _ret = [] _ret_set = set() for ann in ret: if ann['id'] not in _ret_set: _ret_set.add(ann['id']) _ret.append(ann) anns['annotations'] = _ret else: # for YouTubeVIS format for inst_ann in anns['annotations']: len_video = len(inst_ann['bboxes']) inst_ann['segmentations'] = [None for _ in range(len_video)] for seg_ann in ret: inst_idx, frame_idx = seg_ann['ytvis_idx'] anns['annotations'][inst_idx]['segmentations'][frame_idx] = seg_ann['segmentation'] with open(self.cfg.inference.label_dump_path, "w", encoding='utf-8') as f: json.dump(anns, f) if self.box_inputs is not None: print("Start evaluating the results...") cocoGt = COCO(self.cfg.val_ann_path) cocoDt = cocoGt.loadRes(self.cfg.label_dump_path + ".result") for iou_type in ['bbox', 'segm']: cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize()
tao_dataset_suite-main
nvidia_tao_ds/auto_label/models/mal.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """Transformer (ViT and FAN) builder.""" from functools import partial import torch from torch import nn from torch.utils import model_zoo from nvidia_tao_ds.backbone.fan import ( fan_tiny_12_p16_224, fan_small_12_p16_224, fan_base_18_p16_224, fan_large_24_p16_224, fan_tiny_8_p4_hybrid, fan_small_12_p4_hybrid, fan_base_16_p4_hybrid, fan_large_16_p4_hybrid ) from nvidia_tao_ds.backbone.vision_transformer import VisionTransformer fan_dict = { "fan_tiny_12_p16_224": fan_tiny_12_p16_224, "fan_small_12_p16_224": fan_small_12_p16_224, "fan_base_18_p16_224": fan_base_18_p16_224, "fan_large_24_p16_224": fan_large_24_p16_224, "fan_tiny_8_p4_hybrid": fan_tiny_8_p4_hybrid, "fan_small_12_p4_hybrid": fan_small_12_p4_hybrid, "fan_base_16_p4_hybrid": fan_base_16_p4_hybrid, "fan_large_16_p4_hybrid": fan_large_16_p4_hybrid } urls_dic = { "vit-deit-tiny/16": "https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth", "vit-deit-small/16": "https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth", "vit-deit-base/16": "https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", "vit-deit-base-distilled/16": "https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth", "vit-deit-iii-base-224/16": "https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth", "vit-mocov3-base/16": "https://dl.fbaipublicfiles.com/moco-v3/vit-b-300ep/vit-b-300ep.pth.tar", "vit-mae-base/16": "https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth", 'vit-mae-large/16': "https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth", 'vit-mae-huge/14': 'https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_huge.pth' } def get_vit(cfg=None, load_imagenet_weights=False): """Build ViT models.""" arch = cfg.model.arch if '16' in arch: patch_size = 16 elif '8' in arch: patch_size = 8 elif '14' in arch: patch_size = 14 else: raise ValueError("Only 8/14/16 are supported.") if 'tiny' in arch.lower(): embed_dim = 192 num_heads = 3 depth = 12 if 'small' in arch.lower(): embed_dim = 384 num_heads = 6 depth = 12 elif 'base' in arch.lower(): embed_dim = 768 num_heads = 12 depth = 12 elif 'large' in arch.lower(): embed_dim = 1024 num_heads = 16 depth = 24 elif 'huge' in arch.lower(): embed_dim = 1280 num_heads = 16 depth = 32 else: raise ValueError("Only tiny/small/base/large/huge are supported.") model = VisionTransformer( patch_size=patch_size, embed_dim=embed_dim, depth=depth, num_heads=num_heads, mlp_ratio=4, qkv_bias=True, drop_path_rate=cfg.model.vit_dpr, norm_layer=partial(nn.LayerNorm, eps=1e-6), frozen_stages=cfg.model.frozen_stages) if load_imagenet_weights: path = urls_dic[arch] if path.startswith('http'): state_dict = model_zoo.load_url(path) else: state_dict = torch.load(path) if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict'] if 'model' in state_dict.keys(): state_dict = state_dict['model'] model.load_state_dict(state_dict, strict=False) return model def get_fan(cfg, load_imagenet_weights=False): """Build FAN models.""" arch = cfg.model.arch if arch in list(fan_dict.keys()): return fan_dict[arch](pretrained=load_imagenet_weights) raise ValueError(f"Only {list(fan_dict.keys())} are supported.") def build_model(cfg): """Model builder.""" if 'vit' in cfg.model.arch: backbone = get_vit(cfg, load_imagenet_weights=False) elif 'fan' in cfg.model.arch: backbone = get_fan(cfg, load_imagenet_weights=False) else: raise ValueError('Only vit and fan are supported.') return backbone
tao_dataset_suite-main
nvidia_tao_ds/auto_label/models/vit_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/MAL/blob/main/LICENSE """MAL inference script.""" import os import warnings import torch from pytorch_lightning import Trainer from nvidia_tao_ds.auto_label.config.default_config import ExperimentConfig from nvidia_tao_ds.auto_label.datasets.pl_data_module import WSISDataModule from nvidia_tao_ds.auto_label.models.mal import MALPseudoLabels from nvidia_tao_ds.auto_label.utils.config_utils import update_config from nvidia_tao_ds.core.decorators import monitor_status from nvidia_tao_ds.core.hydra.hydra_runner import hydra_runner warnings.filterwarnings("ignore") spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="generate", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Wrapper function for format conversion.""" run_inference(cfg=cfg) @monitor_status(mode='Auto-label') def run_inference(cfg: ExperimentConfig) -> None: """Run pseudo-label generation.""" cfg = update_config(cfg) os.makedirs(cfg.results_dir, exist_ok=True) # gpu indices if len(cfg.gpu_ids) == 0: cfg.gpu_ids = list(range(torch.cuda.device_count())) cfg.train.lr = 0 cfg.train.min_lr = 0 num_workers = len(cfg.gpu_ids) * cfg.dataset.num_workers_per_gpu # override validation path cfg.dataset.val_ann_path = cfg.inference.ann_path cfg.dataset.val_img_dir = cfg.inference.img_dir cfg.dataset.load_mask = cfg.inference.load_mask cfg.train.batch_size = cfg.inference.batch_size cfg.evaluate.use_mixed_model_test = False cfg.evaluate.use_teacher_test = False cfg.evaluate.comp_clustering = False cfg.evaluate.use_flip_test = False data_loader = WSISDataModule( num_workers=num_workers, load_train=False, load_val=True, cfg=cfg) # Phase 2: Generating pseudo-labels model = MALPseudoLabels( cfg=cfg, categories=data_loader._val_data_loader.dataset.coco.dataset['categories']) trainer = Trainer( gpus=cfg.gpu_ids, strategy=cfg.strategy, devices=1, accelerator='gpu', default_root_dir=cfg.results_dir, precision=16, check_val_every_n_epoch=1, resume_from_checkpoint=cfg.checkpoint ) trainer.validate(model, ckpt_path=cfg.checkpoint, dataloaders=data_loader.val_dataloader()) if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/auto_label/scripts/generate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAL scripts."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define entrypoint to run tasks for auto-label.""" import argparse from nvidia_tao_ds.auto_label import scripts from nvidia_tao_ds.core.entrypoint.entrypoint import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "auto_label", add_help=True, description="TAO Toolkit entrypoint for MAL" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch( parser, subtasks, task="auto_label" ) if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/auto_label/entrypoint/auto_label.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAL entrypoint."""
tao_dataset_suite-main
nvidia_tao_ds/auto_label/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Offline augmentation module."""
tao_dataset_suite-main
nvidia_tao_ds/augment/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DALI pipeline runner.""" import os import numpy as np from multiprocessing import Pool import pycocotools.mask as maskUtils from PIL import Image from tqdm import tqdm from nvidia_tao_ds.augment.utils import kitti from nvidia_tao_ds.augment.utils.helper import decode_str def save_image(img, path): """Write PIL image to path.""" img.save(path) def process_augmented_coco(image_id, image, boxes_per_image, masks_per_image, coco, config): """Process augmented COCO data.""" ann_load = coco.loadAnns(coco.getAnnIds(imgIds=image_id)) img_info = coco.loadImgs(ids=image_id)[0] img_name = img_info['file_name'] out_image_path = os.path.join(config.data.output_dataset, 'images', img_name) ann_per_image = [] for j in range(len(ann_load)): ann_load[j]['bbox'] = list(map(lambda x: float(x), list(boxes_per_image[j]))) if config.data.include_masks: # mask --> RLE encoded_mask = maskUtils.encode( np.asfortranarray(masks_per_image[..., j].astype(np.uint8))) encoded_mask['counts'] = encoded_mask['counts'].decode('ascii') ann_load[j]['segmentation'] = encoded_mask ann_per_image.append(ann_load[j]) save_image(Image.fromarray(image), out_image_path) return ann_per_image def process_augmented_kitti(image, boxes_per_image, encoded_image_path, encoded_label_path, config): """Process augmented KITTI data.""" image_path = decode_str(encoded_image_path) image_name = os.path.basename(image_path) label_path = decode_str(encoded_label_path) label_name = os.path.basename(label_path) output_image_dir = os.path.join(config.data.output_dataset, 'images') output_label_dir = os.path.join(config.data.output_dataset, 'labels') # save augmented image save_image(Image.fromarray(image), os.path.join(output_image_dir, image_name)) # dump kitti file with augmented labels with open(os.path.join(output_label_dir, label_name), "w", encoding='utf-8') as f: annotations = kitti.parse_label_file(label_path) for j in range(boxes_per_image.shape[0]): annotation = annotations[j] annotation.box = boxes_per_image[j] f.write(str(annotation)) f.write('\n') class DALIPipeIter(): """Dali pipe iterator.""" def __init__(self, pipe): """Initialization of the pipeline iterator. Args: pipe (dali.pipeline.Pipeline): Dali pipeline object. Returns: DALIPipeIter object class. """ self.pipe = pipe def __iter__(self): """Return interator.""" return self def __next__(self): """Next method for the DALI iterator. This method runs the DALI pipeline and generates the pipes outputs. """ return self.pipe.run() def run(pipe, batch_size, data_callable, config): """Run pipeline.""" if config.data.dataset_type.lower() == 'coco': results = [] ann_dump = [] img_id_set = set() with Pool(batch_size) as pool: with tqdm(total=data_callable.size) as pbar: for images, boxes, img_ids, masks in DALIPipeIter(pipe): images = images.as_cpu() img_ids = img_ids.as_array().flatten() for i, img_id in enumerate(img_ids): img_id = int(img_id) if img_id not in img_id_set: img_id_set.add(img_id) results.append(pool.apply_async( process_augmented_coco, (img_id, images.at(i), boxes.at(i), masks.at(i), data_callable.coco, config))) pbar.update(data_callable.samples_per_iter) for r in results: r.wait() ann_batch = r.get() for b in ann_batch: ann_dump.append(b) return ann_dump if config.data.dataset_type.lower() == 'kitti': with Pool(batch_size) as pool: with tqdm(total=data_callable.size) as pbar: for images, boxes, img_paths, lbl_paths in DALIPipeIter(pipe): images = images.as_cpu() results = [] for i in range(len(images)): results.append(pool.apply_async( process_augmented_kitti, (images.at(i), boxes.at(i), img_paths.at(i), lbl_paths.at(i), config))) for r in results: r.wait() pbar.update(data_callable.samples_per_iter) return 0 raise ValueError("Only `kitti` and `coco` are supported in dataset_type.")
tao_dataset_suite-main
nvidia_tao_ds/augment/pipeline/runner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data pipeline module for TAO augment."""
tao_dataset_suite-main
nvidia_tao_ds/augment/pipeline/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DALI pipeline.""" import logging import numpy as np from nvidia import dali from nvidia.dali import fn, pipeline_def import nvidia.dali.fn.transforms as tr logger = logging.getLogger(__name__) def random_pick(values): """Randomly pick from values or range.""" if len(values) == 0: value = 0 elif len(values) == 1: value = values[0] elif len(values) == 2: value = dali.fn.random.uniform(range=tuple(values)) else: value = dali.fn.random.uniform(values=list(values)) return value def spatial_transform(config, input_size, output_size): """Define a spatial transform pipe. Args: config (Hydra config): Spatial augumentation config element. input_size (tuple): Size of the input image. output_size (tuple): Size of the output image. Return: m (2x3): Spatial transformation matrix. """ # DALI cannot conditionally apply a transform, so we have to pass neutral parameters. # Since we're only manipulating 2x3 matrix, it's not a problem. angle = config.rotation.angle angle = random_pick(angle) if config.rotation.units == "radians": angle *= 180 / np.pi center = input_size / 2 shear_ratio_x = random_pick(config.shear.shear_ratio_x) shear_ratio_y = random_pick(config.shear.shear_ratio_y) shear = np.float32([shear_ratio_x, shear_ratio_y]) translate_x = random_pick(config.translation.translate_x) translate_y = random_pick(config.translation.translate_y) offset = np.float32( [translate_x, translate_y] ) flip = np.int32([config.flip.flip_horizontal, config.flip.flip_vertical]) m = tr.rotation(angle=angle, center=center) # flip operator is scale with negative axis. m = tr.scale(m, scale=1 - flip * 2.0, center=center) m = tr.shear(m, shear=shear, center=center) m = tr.translation(m, offset=offset) m = tr.scale(m, scale=output_size / input_size) return m def apply_color_transform(images, config): """Apply color transform to the image. Args: images (list): Array of images. config (Hydra config): Color configuration element. Returns: images (list): Batch of images. """ H = config.hue.hue_rotation_angle H = -random_pick(H) S = config.saturation.saturation_shift S = random_pick(S) C = 1.0 # TODO(@yuw): verify C += random_pick(config.contrast.contrast) center = random_pick(config.contrast.center) B = random_pick(config.brightness.offset) / 255 # applying hue rotation images = fn.hsv( images, hue=H, saturation=S, dtype=dali.types.FLOAT ) # applying contrast adjustment. images = fn.brightness_contrast( images, contrast=C, contrast_center=center, brightness_shift=B * C, dtype=dali.types.UINT8) return images def transform_boxes(boxes, matrix, out_w, out_h): """Apply color transform to the image. Args: boxes (list): batch of boxes matrix (np.array): transformation matrix out_w (int): output width out_h (int): output height """ # boxes' shape: num_boxes x 4 box_x0 = fn.slice(boxes, 0, 1, axes=[1]) box_y0 = fn.slice(boxes, 1, 1, axes=[1]) box_x1 = fn.slice(boxes, 2, 1, axes=[1]) box_y1 = fn.slice(boxes, 3, 1, axes=[1]) corners = fn.stack( fn.cat(box_x0, box_y0, axis=1), fn.cat(box_x1, box_y0, axis=1), fn.cat(box_x0, box_y1, axis=1), fn.cat(box_x1, box_y1, axis=1), axis=1 ) # corners' shape: nboxes x 4 x 2 corners = fn.coord_transform(corners, MT=matrix) lo = fn.reductions.min(corners, axes=1) hi = fn.reductions.max(corners, axes=1) # I really DO wish DALI had broadcasting :( # hi, lo shape: nboxes x 2 lohi = fn.stack(lo, hi, axis=1) # lohi shape: nboxes x 2 x 2 lohix = dali.math.clamp(fn.slice(lohi, 0, 1, axes=[2]), 0, out_w) lohiy = dali.math.clamp(fn.slice(lohi, 1, 1, axes=[2]), 0, out_h) lohi = fn.stack(lohix, lohiy, axis=2) return fn.reshape(lohi, shape=[-1, 4]) def apply_blur(images, blur_config): """Apply blur operator on an image. Args: images (list): Batch of images. blur_config (Hydra config): Config element for the blur operator. Returns: images (batch): Batch of images blurred. """ logger.debug("Applying Gaussian blur operator to the images.") sigma = random_pick(blur_config.std) or None size = random_pick(blur_config.size) or None return fn.gaussian_blur(images, sigma=sigma, window_size=size) def build_coco_pipeline(coco_callable, is_fixed_size, config, batch_size=1, device_id=0): """Build DALI pipeline for COCO format dataset.""" @pipeline_def(batch_size=batch_size, num_threads=2, device_id=device_id, py_num_workers=1, py_start_method='spawn', seed=config.random_seed) def sharded_coco_pipeline(coco_callable, is_fixed_size, config): logger.debug("Defining COCO pipeline.") raw_files, boxes, img_ids, masks = fn.external_source( source=coco_callable, num_outputs=4, batch=False, parallel=True, dtype=[dali.types.UINT8, dali.types.FLOAT, dali.types.INT32, dali.types.UINT8]) shapes = fn.peek_image_shape(raw_files) images = fn.image_decoder(raw_files, device="mixed") in_h = fn.slice(shapes, 0, 1, axes=[0]) in_w = fn.slice(shapes, 1, 1, axes=[0]) if is_fixed_size: out_w = config.data.output_image_width out_h = config.data.output_image_height out_size = [out_h, out_w] else: out_w = in_w out_h = in_h out_size = fn.cat(out_h, out_w) mt = spatial_transform( config.spatial_aug, input_size=fn.cat(in_w, in_h), output_size=dali.types.Constant( [out_w, out_h]) if is_fixed_size else fn.cat(out_w, out_h) ) images = fn.warp_affine( images, matrix=mt, size=out_size, fill_value=0, inverse_map=False ) if config.data.include_masks: masks = fn.warp_affine( masks, matrix=mt, size=out_size, fill_value=0, inverse_map=False ) orig_boxes = boxes # noqa pylint: disable=W0612 boxes = transform_boxes(boxes, mt, out_w, out_h) images = apply_color_transform(images, config.color_aug) images = apply_blur(images, config.blur_aug) return images, boxes, img_ids, masks logger.debug("Building COCO pipeline.") pipe = sharded_coco_pipeline( coco_callable, is_fixed_size, config) pipe.build() return pipe def build_kitti_pipeline(kitti_callable, is_fixed_size, config, batch_size=1, device_id=0): """Build DALI pipeline for COCO format dataset.""" @pipeline_def(batch_size=batch_size, num_threads=2, device_id=device_id, py_num_workers=1, py_start_method='spawn', seed=config.random_seed) def sharded_kitti_pipeline(kitti_callable, is_fixed_size, config): logger.debug("Defining KITTI pipeline.") raw_files, boxes, img_paths, lbl_paths = fn.external_source( source=kitti_callable, num_outputs=4, batch=False, parallel=True, dtype=[dali.types.UINT8, dali.types.FLOAT, dali.types.UINT8, dali.types.UINT8]) shapes = fn.peek_image_shape(raw_files) images = fn.image_decoder(raw_files, device="mixed") in_h = fn.slice(shapes, 0, 1, axes=[0]) in_w = fn.slice(shapes, 1, 1, axes=[0]) if is_fixed_size: out_w = config.data.output_image_width out_h = config.data.output_image_height out_size = [out_h, out_w] else: out_w = in_w out_h = in_h out_size = fn.cat(out_h, out_w) mt = spatial_transform( config.spatial_aug, input_size=fn.cat(in_w, in_h), output_size=dali.types.Constant( [out_w, out_h]) if is_fixed_size else fn.cat(out_w, out_h) ) images = fn.warp_affine( images, matrix=mt, size=out_size, fill_value=0, inverse_map=False ) orig_boxes = boxes # noqa pylint: disable=W0612 boxes = transform_boxes(boxes, mt, out_w, out_h) images = apply_color_transform(images, config.color_aug) images = apply_blur(images, config.blur_aug) return images, boxes, img_paths, lbl_paths logger.debug("Building KITTI pipeline.") pipe = sharded_kitti_pipeline( kitti_callable, is_fixed_size, config) pipe.build() return pipe
tao_dataset_suite-main
nvidia_tao_ds/augment/pipeline/sharded_pipeline.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default configs for TAO augment."""
tao_dataset_suite-main
nvidia_tao_ds/augment/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from typing import List, Optional, Union from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class RotationAIConfig: """Rotation configuration template.""" enabled: bool = False gt_cache: str = '' @dataclass class RotationConfig: """Rotation configuration template.""" angle: List[float] = field(default_factory=lambda: [0]) units: str = "degrees" refine_box: RotationAIConfig = RotationAIConfig() @dataclass class ShearConfig: """Rotation configuration template.""" shear_ratio_x: List[float] = field(default_factory=lambda: [0]) shear_ratio_y: List[float] = field(default_factory=lambda: [0]) @dataclass class FlipConfig: """Flip configuration template.""" flip_horizontal: bool = False flip_vertical: bool = False @dataclass class TranslationConfig: """Translation configuration template.""" translate_x: List[int] = field(default_factory=lambda: [0]) translate_y: List[int] = field(default_factory=lambda: [0]) @dataclass class HueConfig: """Hue configuration template.""" hue_rotation_angle: List[float] = field(default_factory=lambda: [0]) @dataclass class SaturationConfig: """Saturation configuration template.""" saturation_shift: List[float] = field(default_factory=lambda: [1]) @dataclass class ContrastConfig: """Contrast configuration template.""" contrast: List[float] = field(default_factory=lambda: [0]) center: List[float] = field(default_factory=lambda: [127]) @dataclass class BrightnessConfig: """Contrast configuration template.""" offset: List[float] = field(default_factory=lambda: [0]) @dataclass class SpatialAugmentationConfig: """Spatial augmentation configuration template.""" rotation: RotationConfig = RotationConfig() shear: ShearConfig = ShearConfig() flip: FlipConfig = FlipConfig() translation: TranslationConfig = TranslationConfig() @dataclass class ColorAugmentationConfig: """Color augmentation configuration template.""" hue: HueConfig = HueConfig() saturation: SaturationConfig = SaturationConfig() contrast: ContrastConfig = ContrastConfig() brightness: BrightnessConfig = BrightnessConfig() @dataclass class KernelFilterConfig: """Blur configuration template.""" std: List[float] = field(default_factory=lambda: [0.1]) size: List[float] = field(default_factory=lambda: [3]) @dataclass class DataConfig: """Dataset configuration template.""" dataset_type: str = 'coco' output_image_width: Union[int, None] = None output_image_height: Union[int, None] = None image_dir: str = MISSING ann_path: str = MISSING output_dataset: str = MISSING batch_size: int = 8 include_masks: bool = False @dataclass class AugmentConfig: """Experiment configuration template.""" random_seed: int = 42 num_gpus: int = 1 gpu_ids: List[int] = field(default_factory=lambda: [0]) data: DataConfig = DataConfig() color_aug: ColorAugmentationConfig = ColorAugmentationConfig() spatial_aug: SpatialAugmentationConfig = SpatialAugmentationConfig() blur_aug: KernelFilterConfig = KernelFilterConfig() results_dir: Optional[str] = None
tao_dataset_suite-main
nvidia_tao_ds/augment/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to handle kitti annotations.""" from pathlib import Path import glob import os IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg"] def list_files(image_dir, label_dir): """List images and labels file in the dataset directory. Args: root_dir (str): Unix path to the dataset root. Returns: output_image(str), output_label (str): List of output images and output labels """ images = [] # List image files. for ext in IMAGE_EXTENSIONS: images.extend( glob.glob( os.path.join(image_dir, f'*{ext}'), ) ) # List label files. labels = glob.glob(os.path.join(label_dir, '*.txt')) image_names = list(map(lambda x: Path(x).stem, images)) label_names = list(map(lambda x: Path(x).stem, labels)) image_dict = dict(zip(image_names, images)) label_dict = dict(zip(label_names, labels)) common = set(image_names).intersection(set(label_names)) return zip(*[(image_dict[i], label_dict[i]) for i in common]) class Annotation: """Label annotation object corresponding to a single line in the kitti object.""" def __init__(self, *args): """Initialize a kitti label object. Args: args[list]: List of kitti labels. """ self.category = args[0] self.truncation = float(args[1]) self.occlusion = int(args[2]) self.observation_angle = float(args[3]) self.box = [float(x) for x in args[4:8]] hwlxyz = [float(x) for x in args[8:14]] self.world_bbox = hwlxyz[3:6] + hwlxyz[0:3] self.world_bbox_rot_y = float(args[14]) def __str__(self): """String representation of annotation object.""" world_box_str = "{3:.2f} {4:.2f} {5:.2f} {0:.2f} {1:.2f} {2:.2f}".format(*self.world_bbox) # noqa pylint: disable=C0209 box_str = "{:.2f} {:.2f} {:.2f} {:.2f}".format(*self.box) # noqa pylint: disable=C0209 return "{0} {1:.2f} {2} {3:.2f} {4} {5} {6:.2f}".format( # noqa pylint: disable=C0209 self.category, self.truncation, self.occlusion, self.observation_angle, box_str, world_box_str, self.world_bbox_rot_y) def parse_label_file(label_file): """Parse a label file. Args: label_file (str): Unix path to the kitti label file. Returns: annotations (list): List of parsed kitti labels. """ with open(label_file, "r", encoding='utf-8') as f: lines = f.readlines() annotations = [] for line in lines: if line[-1] == '\n': line = line[:-1] tokens = line.split(" ") annotations.append(Annotation(*tokens)) return annotations
tao_dataset_suite-main
nvidia_tao_ds/augment/utils/kitti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for TAO augment.""" from nvidia_tao_ds.augment.dataloader.coco_callable import CocoInputCallable from nvidia_tao_ds.augment.dataloader.kitti_callable import KittiInputCallable from nvidia_tao_ds.augment.pipeline.sharded_pipeline import ( build_coco_pipeline, build_kitti_pipeline, ) callable_dict = { 'kitti': KittiInputCallable, 'coco': CocoInputCallable } pipeline_dict = { 'kitti': build_kitti_pipeline, 'coco': build_coco_pipeline }
tao_dataset_suite-main
nvidia_tao_ds/augment/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for distributed execution.""" import os import sys __all__ = ["MPI_local_rank", "MPI_rank", "MPI_size", "MPI_rank_and_size", "MPI_is_distributed"] def MPI_is_distributed(): """Return a boolean whether a distributed training/inference runtime is being used.""" return all(var in os.environ for var in ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"]) def MPI_local_rank(): """Local rank.""" if "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ: return int(os.environ.get("OMPI_COMM_WORLD_LOCAL_RANK")) return 0 def MPI_rank(): """MPI rank.""" return MPI_rank_and_size()[0] def MPI_size(): """MPI size.""" return MPI_rank_and_size()[1] def MPI_rank_and_size(): """MPI rank and size.""" if "tensorflow" in sys.modules: return mpi_env_MPI_rank_and_size() return 0, 1 # Source: https://github.com/horovod/horovod/blob/c3626e/test/common.py#L25 def mpi_env_MPI_rank_and_size(): """Get MPI rank and size from environment variables and return them as a tuple of integers. Most MPI implementations have an `mpirun` or `mpiexec` command that will run an MPI executable and set up all communication necessary between the different processors. As part of that set up, they will set environment variables that contain the rank and size of the MPI_COMM_WORLD communicator. We can read those environment variables from Python in order to ensure that `hvd.rank()` and `hvd.size()` return the expected values. Since MPI is just a standard, not an implementation, implementations typically choose their own environment variable names. This function tries to support several different implementation, but really it only needs to support whatever implementation we want to use for the TensorFlow test suite. If this is not running under MPI, then defaults of rank zero and size one are returned. (This is appropriate because when you call MPI_Init in an application not started with mpirun, it will create a new independent communicator with only one process in it.) Source: https://github.com/horovod/horovod/blob/c3626e/test/common.py#L25 """ rank_env = 'PMI_RANK OMPI_COMM_WORLD_RANK'.split() size_env = 'PMI_SIZE OMPI_COMM_WORLD_SIZE'.split() for rank_var, size_var in zip(rank_env, size_env): rank = os.environ.get(rank_var) size = os.environ.get(size_var) if rank is not None and size is not None: return int(rank), int(size) # Default to rank zero and size one if there are no environment variables return 0, 1
tao_dataset_suite-main
nvidia_tao_ds/augment/utils/distributed_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities functions for file handling.""" import numpy as np def load_file(path): """Get a numpy array from a loaded file. Args: path (str): Unix path to the file. Returns: np.array of loaded file. """ return np.fromfile(path, dtype=np.uint8) def file_fetcher(paths, batch_size): """Fetcher for a batch of file. Args: path (list): List of Unix paths to files. batch_size (int): Number of files per batch. Return: f (function pointer): Function pointer to the batch. """ def f(i): start = batch_size * i end = min(len(paths), start + batch_size) if end <= start: raise StopIteration() batch = paths[start:end] if len(batch) < batch_size: # pad with last sample batch += [batch[-1]] * (batch_size - len(batch)) return [load_file(path) for path in batch] return f def box_fetcher(labels, batch_size): """Fetcher for a batch of file. Args: labels (list): List of kitti read annotation objects. batch_size (int): Number of files per batch. Return: f (function pointer): Function pointer to the batch. """ def f(i): start = batch_size * i end = min(len(labels), start + batch_size) if end <= start: raise StopIteration() batch = [] for j in range(start, end): boxes = [] for annotation in labels[j]: boxes.append(annotation.box) batch.append(np.float32(boxes)) if len(batch) < batch_size: # pad with last sample batch += [batch[-1]] * (batch_size - len(batch)) return batch return f
tao_dataset_suite-main
nvidia_tao_ds/augment/utils/file_handlers.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions.""" import logging def encode_str(s): """Encode str to array.""" return [ord(e) for e in s] def decode_str(arr): """Decode array to str.""" return ''.join([chr(e) for e in arr]) class ColorFormatter(logging.Formatter): """Color formatter.""" grey = "\x1b[38;20m" yellow = "\x1b[33;20m" red = "\x1b[31;20m" bold_red = "\x1b[31;1m" reset = "\x1b[0m" fmt = "%(asctime)s - %(levelname)s - %(message)s (%(filename)s:%(lineno)d)" FORMATS = { logging.DEBUG: grey + fmt + reset, logging.INFO: grey + fmt + reset, logging.WARNING: yellow + fmt + reset, logging.ERROR: red + fmt + reset, logging.CRITICAL: bold_red + fmt + reset } def format(self, record): """format.""" log_fmt = self.FORMATS.get(record.levelno) formatter = logging.Formatter(log_fmt) return formatter.format(record) def config_logger(logger): """Add color format to logger.""" # create console handler with a higher log level ch = logging.StreamHandler() ch.setFormatter(ColorFormatter()) logger.addHandler(ch)
tao_dataset_suite-main
nvidia_tao_ds/augment/utils/helper.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script to run TAO augmentation.""" from copy import deepcopy import glob import logging import json import os import sys import time from nvidia_tao_ds.annotations.kitti_to_coco import convert_kitti_to_coco from nvidia_tao_ds.annotations.coco_to_kitti import convert_coco_to_kitti from nvidia_tao_ds.augment.config.default_config import AugmentConfig from nvidia_tao_ds.augment.pipeline import runner from nvidia_tao_ds.augment.utils import callable_dict, pipeline_dict from nvidia_tao_ds.augment.utils.helper import config_logger from nvidia_tao_ds.augment.utils.distributed_utils import MPI_local_rank from nvidia_tao_ds.core.decorators import monitor_status from nvidia_tao_ds.core.hydra.hydra_runner import hydra_runner logger = logging.getLogger(__name__) config_logger(logger) @monitor_status(mode='Augment') def run_augment(config): """TAO augmentation pipeline for OD datasets. Args: config (Hydra config): Config element of the augmentation config. """ logger.info("Data augmentation started.") start_time = time.time() num_gpus = max(1, config.num_gpus) if num_gpus != len(config.gpu_ids): config.gpu_ids = list(range(num_gpus)) logger.warning(f"Number of GPUs ({num_gpus}) doesn't match the length of GPU indices.") logger.warning(f"Default GPU indices ({config.gpu_ids}) will be used.") image_dir = config.data.image_dir ann_path = config.data.ann_path batch_size = config.data.batch_size is_fixed_size = config.data.output_image_width and config.data.output_image_height dataset_type = config.data.dataset_type.lower() output_dir = config.data.output_dataset output_image_dir = os.path.join(config.data.output_dataset, 'images') output_label_dir = os.path.join(config.data.output_dataset, 'labels') if MPI_local_rank() == 0: os.makedirs(output_dir, exist_ok=True) os.makedirs(output_image_dir, exist_ok=True) os.makedirs(output_label_dir, exist_ok=True) # prepare dataloader and DALI pipeline data_callable = callable_dict[dataset_type]( image_dir, ann_path, batch_size, include_masks=config.data.include_masks, shard_id=MPI_local_rank(), num_shards=len(config.gpu_ids)) pipe = pipeline_dict[dataset_type]( data_callable, is_fixed_size, config, batch_size, device_id=MPI_local_rank() ) ann_dump = runner.run(pipe, batch_size, data_callable, config) # extra process for COCO dump if config.data.dataset_type.lower() == 'coco' and ann_dump: out_label_path = os.path.join(output_label_dir, "output.json") tmp_label_path = out_label_path + f'.part{MPI_local_rank()}' with open(tmp_label_path, "w", encoding='utf-8') as f: json.dump(ann_dump, f) from mpi4py import MPI # noqa pylint: disable=C0415 MPI.COMM_WORLD.Barrier() # noqa pylint: disable=I1101 if MPI_local_rank() == 0: tmp_files = glob.glob(out_label_path + '.part*') ann_final = [] for tmp_i in tmp_files: with open(tmp_i, "r", encoding='utf-8') as g: ann_i = json.load(g) ann_final.extend(ann_i) # write final json coco_output = deepcopy(data_callable.coco.dataset) coco_output['annotations'] = ann_final # modify image size if not output dim is specified if is_fixed_size: for image_info in coco_output['images']: image_info['height'] = config.data.output_image_height image_info['width'] = config.data.output_image_width with open(out_label_path, "w", encoding='utf-8') as o: json.dump(coco_output, o) # remove tmp files for tmp_i in tmp_files: if os.path.exists(tmp_i): os.remove(tmp_i) if MPI_local_rank() == 0: time_elapsed = time.time() - start_time logger.info(f"Data augmentation finished in {time_elapsed:.2f}s.") def check_gt_cache(cfg, is_kitti=False, gt_cache=None): """Generate COCO cache file.""" if not os.path.exists(gt_cache): root = os.path.abspath(cfg.data.output_dataset) if MPI_local_rank() == 0: logger.info(f"Mask cache file ({gt_cache}) is not found.") if is_kitti: project_name = os.path.basename(root) tmp_ann_file = os.path.join(root, 'coco', f'{project_name}.json') if not os.path.isfile(tmp_ann_file): # convert kitti to coco logger.info("Converting KITTI labels into COCO format...") convert_kitti_to_coco( cfg.data.image_dir, cfg.data.ann_path, os.path.join(root, 'coco'), name=project_name) logger.info("COCO format conversion completed.") else: tmp_ann_file = cfg.data.ann_path # generate masks logger.error(f"You need to generate pseudo-masks for `{tmp_ann_file}` with TAO auto-label tool first.") sys.exit() spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="kitti", schema=AugmentConfig ) def main(cfg: AugmentConfig): """TAO Augment main wrapper function.""" try: is_kitti = cfg.data.dataset_type.lower() == 'kitti' refine_box_enabled = cfg.spatial_aug.rotation.refine_box.enabled if refine_box_enabled: gt_cache = cfg.spatial_aug.rotation.refine_box.gt_cache check_gt_cache(cfg, is_kitti, gt_cache) # Update Hydra config cfg.data.dataset_type = 'coco' cfg.data.ann_path = gt_cache cfg.data.include_masks = True from mpi4py import MPI # noqa pylint: disable=C0415 MPI.COMM_WORLD.Barrier() # noqa pylint: disable=I1101 # run augmention cfg.results_dir = cfg.results_dir or cfg.data.output_dataset run_augment(cfg) if is_kitti and refine_box_enabled and MPI_local_rank() == 0: logger.info("Converting COCO json into KITTI format...") # convert coco to kitti convert_coco_to_kitti( os.path.join(cfg.data.output_dataset, 'labels', 'output.json'), output_dir=os.path.join(cfg.data.output_dataset, 'labels'), refine_box=refine_box_enabled ) logger.info("KITTI conversion is complete.") except KeyboardInterrupt: logger.info("Interrupting augmentation.") sys.exit() except RuntimeError as e: logger.info(f"Augmentation run failed with error: {e}") sys.exit() if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/augment/scripts/generate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Offline augmentation entrypoint."""
tao_dataset_suite-main
nvidia_tao_ds/augment/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Augmentation entrypoint."""
tao_dataset_suite-main
nvidia_tao_ds/augment/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define entrypoint to run tasks for augmentation.""" import argparse import importlib import os import pkgutil import subprocess import sys from time import time from nvidia_tao_ds.augment import scripts from nvidia_tao_ds.core.telemetry.nvml_utils import get_device_details from nvidia_tao_ds.core.telemetry.telemetry import send_telemetry_data def get_subtasks(package): """Get supported subtasks for a given task. This function lists out the tasks in in the .scripts folder. Returns: subtasks (dict): Dictionary of files. """ module_path = package.__path__ modules = {} # Collect modules dynamically. for _, task, is_package in pkgutil.walk_packages(module_path): if is_package: continue module_name = package.__name__ + '.' + task module_details = { "module_name": module_name, "runner_path": os.path.abspath(importlib.import_module(module_name).__file__), } modules[task] = module_details return modules def launch(parser, subtasks, multigpu_support=['generate'], task="tao_ds"): """CLI function that executes subtasks. Args: parser: Created parser object for a given task. subtasks: list of subtasks for a given task. """ # Subtasks for a given model. parser.add_argument( 'subtask', default='generate', choices=subtasks.keys(), help="Subtask for augmentation.", ) # Add standard TAO arguments. parser.add_argument( "-e", "--experiment_spec_file", help="Path to the experiment spec file.", required=True) parser.add_argument( "--gpu_ids", help="GPU index to use.", type=str, default=None ) parser.add_argument( "--num_gpus", help="Number of GPUs to use.", type=int, default=1 ) parser.add_argument( "-o", "--output_specs_dir", help="Path to a target folder where experiment spec files will be downloaded.", default=None ) parser.add_argument( "--mpirun_arg", type=str, default="-x NCCL_IB_HCA=mlx5_4,mlx5_6,mlx5_8,mlx5_10 -x NCCL_SOCKET_IFNAME=^lo,docker", help="Arguments for the mpirun command to run multi-node." ) parser.add_argument( "--launch_cuda_blocking", action="store_true", default=False, help="Debug flag to add CUDA_LAUNCH_BLOCKING=1 to the command calls." ) # Parse the arguments. args, unknown_args = parser.parse_known_args() script_args = "" # Process spec file for all commands except the one for getting spec files ;) if args.subtask not in ["download_specs", "pitch_stats"]: # Make sure the user provides spec file. if args.experiment_spec_file is None: print(f"ERROR: The subtask `{args.subtask}` requires the following argument: -e/--experiment_spec_file") sys.exit() # Make sure the file exists! if not os.path.exists(args.experiment_spec_file): print(f"ERROR: The indicated experiment spec file `{args.experiment_spec_file}` doesn't exist!") sys.exit() # Split spec file_path into config path and config name. path, name = os.path.split(args.experiment_spec_file) if path != '': script_args += " --config-path " + os.path.realpath(path) script_args += " --config-name " + name # Find relevant module and pass args. mpi_command = "" gpu_ids = args.gpu_ids num_gpus = args.num_gpus if gpu_ids is None: gpu_ids = range(num_gpus) else: gpu_ids = eval(args.gpu_ids) num_gpus = len(gpu_ids) launch_cuda_blocking = args.launch_cuda_blocking assert num_gpus > 0, "At least 1 GPU required to run any task." if num_gpus > 1: if args.subtask not in multigpu_support: raise NotImplementedError( f"This {args['subtask']} doesn't support multiGPU. Please set --num_gpus 1" ) mpi_command = f'mpirun -np {num_gpus} --oversubscribe --bind-to none --allow-run-as-root -mca pml ob1 -mca btl ^openib' if args.subtask in multigpu_support: if not args.gpu_ids: script_args += f" gpu_ids=[{','.join([str(i) for i in range(num_gpus)])}]" script_args += f" num_gpus={num_gpus}" else: script_args += f" gpu_ids=[{','.join([str(i) for i in (eval(args.gpu_ids))])}]" script_args += f" num_gpus={len(gpu_ids)}" script = subtasks[args.subtask]["runner_path"] # Pass unknown args to call unknown_args_as_str = " ".join(unknown_args) task_command = f"python {script} {script_args} {unknown_args_as_str}" env_variables = "" env_variables += set_gpu_info_single_node(num_gpus, gpu_ids) if launch_cuda_blocking: task_command = f"CUDA_LAUNCH_BLOCKING=1 {task_command}" run_command = f"{mpi_command} bash -c \'{env_variables} {task_command}\'" start = time() process_passed = True try: subprocess.check_call( run_command, shell=True, stdout=sys.stdout, stderr=sys.stderr ) except (KeyboardInterrupt, SystemExit): print("Command was interrupted.") except subprocess.CalledProcessError as e: if e.output is not None: print(f"TAO Toolkit task: {args['subtask']} failed with error:\n{e.output}") process_passed = False end = time() time_lapsed = int(end - start) try: gpu_data = [] for device in get_device_details(): gpu_data.append(device.get_config()) print("Sending telemetry data.") send_telemetry_data( task, args.subtask, gpu_data, num_gpus=num_gpus, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: print("Telemetry data couldn't be sent, but the command ran successfully.") print(f"[Error]: {e}") pass if not process_passed: print("Execution status: FAIL") sys.exit(1) # returning non zero return code from the process. print("Execution status: PASS") def check_valid_gpus(num_gpus, gpu_ids): """Check if the number of GPU's called and IDs are valid. This function scans the machine using the nvidia-smi routine to find the number of GPU's and matches the id's and num_gpu's accordingly. Once validated, it finally also sets the CUDA_VISIBLE_DEVICES env variable. Args: num_gpus (int): Number of GPUs alloted by the user for the job. gpu_ids (list(int)): List of GPU indices used by the user. Returns: No explicit returns """ # Ensure the gpu_ids are all different, and sorted gpu_ids = sorted(list(set(gpu_ids))) assert num_gpus > 0, "At least 1 GPU required to run any task." num_gpus_available = str(subprocess.check_output(["nvidia-smi", "-L"])).count("UUID") max_id = max(gpu_ids) assert min(gpu_ids) >= 0, ( "GPU ids cannot be negative." ) assert len(gpu_ids) == num_gpus, ( f"The number of GPUs ({gpu_ids}) must be the same as the number of GPU indices" f" ({num_gpus}) provided." ) assert max_id < num_gpus_available and num_gpus <= num_gpus_available, ( "Checking for valid GPU ids and num_gpus." ) cuda_visible_devices = ",".join([str(idx) for idx in gpu_ids]) os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices def set_gpu_info_single_node(num_gpus, gpu_ids): """Set gpu environment variable for single node.""" check_valid_gpus(num_gpus, gpu_ids) env_variable = "" visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", None) if visible_devices is not None: env_variable = f" CUDA_VISIBLE_DEVICES={visible_devices}" return env_variable def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "augmentation", add_help=True, description="TAO Toolkit entrypoint for MAL" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch( parser, subtasks, task="augment" ) if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/augment/entrypoint/augment.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataloader module for TAO augment."""
tao_dataset_suite-main
nvidia_tao_ds/augment/dataloader/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """kitti loader.""" import os import numpy as np from pycocotools import mask from pycocotools.coco import COCO from nvidia_tao_ds.augment.utils.file_handlers import load_file class CocoInputCallable: """KITTI loader for DALI pipeline.""" def __init__(self, image_dir, annotation_path, batch_size, include_masks=False, shard_id=0, num_shards=1): """Init.""" self.image_dir = image_dir self.coco = COCO(annotation_path) self.include_masks = include_masks self.batch_size = batch_size self.shard_id = shard_id self.num_shards = num_shards self.samples_per_iter = batch_size * num_shards self.size = (self.samples_per_iter - 1 + len(self.coco.dataset['images'])) // self.samples_per_iter * self.samples_per_iter self.shard_size = self.size // num_shards self.shard_offset = self.shard_size * shard_id self.full_iterations = self.shard_size // batch_size def __call__(self, sample_info): """Call.""" if sample_info.iteration >= self.full_iterations: # Indicate end of the epoch raise StopIteration sample_idx = sample_info.idx_in_epoch + self.shard_offset sample_idx = min(sample_idx, len(self.coco.dataset['images']) - 1) image = self.coco.dataset['images'][sample_idx] image_path = os.path.join(self.image_dir, image['file_name']) image_id = image['id'] ann_ids = self.coco.getAnnIds(imgIds=image_id) boxes, masks = self._get_boxes(ann_ids, image['height'], image['width']) encoded_img = load_file(image_path) if self.include_masks: masks = np.transpose(masks, (1, 2, 0)) return encoded_img, boxes, np.array([image_id], dtype=np.int32), np.uint8(masks) def _get_boxes(self, ann_ids, image_height, image_width): boxes = [] masks = [] for ann_id in ann_ids: ann = self.coco.loadAnns(ann_id)[0] boxes.append(ann['bbox']) if self.include_masks: if 'segmentation' not in ann: raise ValueError( f"segmentation groundtruth is missing in object: {ann}.") # pylygon (e.g. [[289.74,443.39,302.29,445.32, ...], [1,2,3,4]]) if isinstance(ann['segmentation'], list): rles = mask.frPyObjects(ann['segmentation'], image_height, image_width) rle = mask.merge(rles) elif 'counts' in ann['segmentation']: # e.g. {'counts': [6, 1, 40, 4, 5, 4, 5, 4, 21], 'size': [9, 10]} if isinstance(ann['segmentation']['counts'], list): rle = mask.frPyObjects(ann['segmentation'], image_height, image_width) else: rle = ann['segmentation'] else: raise ValueError('Please check the segmentation format.') binary_mask = mask.decode(rle) masks.append(binary_mask) else: masks.append(np.zeros((1, 1))) return np.float32(boxes), np.uint8(masks)
tao_dataset_suite-main
nvidia_tao_ds/augment/dataloader/coco_callable.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """kitti loader.""" import os import numpy as np from nvidia_tao_ds.augment.utils import kitti from nvidia_tao_ds.augment.utils.file_handlers import load_file from nvidia_tao_ds.augment.utils.helper import encode_str class KittiInputCallable: """KITTI loader for DALI pipeline.""" def __init__(self, image_dir, label_dir, batch_size, include_masks=False, shard_id=0, num_shards=1): """Init.""" assert os.path.isdir(label_dir) self.include_masks = include_masks self.image_paths, self.label_paths = kitti.list_files(image_dir, label_dir) assert len(self.image_paths) == len(self.label_paths) self.labels = [kitti.parse_label_file(lbl) for lbl in self.label_paths] self.batch_size = batch_size self.shard_id = shard_id self.num_shards = num_shards self.samples_per_iter = batch_size * num_shards self.size = (self.samples_per_iter - 1 + len(self.image_paths)) // self.samples_per_iter * self.samples_per_iter self.shard_size = self.size // num_shards self.shard_offset = self.shard_size * shard_id self.full_iterations = self.shard_size // batch_size def __call__(self, sample_info): """Call.""" if sample_info.iteration >= self.full_iterations: # Indicate end of the epoch raise StopIteration sample_idx = sample_info.idx_in_epoch + self.shard_offset sample_idx = min(sample_idx, len(self.image_paths) - 1) image_path = self.image_paths[sample_idx] label_path = self.label_paths[sample_idx] label = self.labels[sample_idx] boxes = [] for annotation in label: boxes.append(annotation.box) boxes = np.float32(boxes) encoded_img = load_file(image_path) return encoded_img, boxes, np.uint8(encode_str(image_path)), np.uint8(encode_str(label_path))
tao_dataset_suite-main
nvidia_tao_ds/augment/dataloader/kitti_callable.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert COCO annotations to KITTI format""" import os import numpy as np from pycocotools.coco import COCO from pycocotools import mask def find_corners_2d(np_array): """Find corners in a 2D binary mask.""" result = np.where(np_array == np.amax(np_array)) x1 = np.min(result[0]) x2 = np.max(result[0]) y1 = np.min(result[1]) y2 = np.max(result[1]) return y1, x1, y2, x2 def convert_coco_to_kitti(annotations_file, output_dir, refine_box=False): """Function to convert COCO annotations to KITTI format. Args: annotations_file (string): Path to the COCO annotation file. output_dir (string): Directory to output the KITTI files """ if not os.path.isfile(annotations_file): print("Annotation file doenot exsit. Please check the path") if not os.path.exists(output_dir): os.makedirs(output_dir) coco = COCO(annotations_file) category_ids = coco.getCatIds() categories = coco.loadCats(category_ids) category_id_dict = {} for category in categories: category_id_dict[category['id']] = category['name'] for img, ann in coco.imgs.items(): annotation_ids = coco.getAnnIds(imgIds=[img], catIds=category_ids) if len(annotation_ids) > 0: img_fname = ann['file_name'] label_fname = img_fname.split('.')[0] with open(os.path.join(output_dir, f'{label_fname}.txt'), 'w', encoding='utf-8') as label_file: annotations = coco.loadAnns(annotation_ids) for annotation in annotations: bbox = annotation['bbox'] bbox = [bbox[0], bbox[1], bbox[2] + bbox[0], bbox[3] + bbox[1]] if refine_box and annotation.get('segmentation', None): rle = annotation['segmentation'] binary_mask = mask.decode(rle) bbox = find_corners_2d(binary_mask) bbox = [str(b) for b in bbox] catname = category_id_dict[annotation['category_id']] out_str = [catname.replace(" ", "") + ' ' + ' '.join(['0'] * 3) + ' ' + ' '.join(list(bbox)) + ' ' + ' '.join(['0'] * 7) + '\n'] label_file.write(out_str[0])
tao_dataset_suite-main
nvidia_tao_ds/annotations/coco_to_kitti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert KITTI labels to COCO format""" from collections import OrderedDict import os from pathlib import Path import pandas as pd import numpy as np import ujson import yaml from tqdm.auto import tqdm import csv import cv2 def read_kitti_labels(label_file): """ Utility function to read a KITTI label file Args: label_file (string): Label file path Returns: label_list (list): List of labels """ label_list = [] if not os.path.exists(label_file): raise ValueError(f"Labelfile : {label_file} does not exist") with open(label_file, 'r', encoding='utf-8') as lf: for row in csv.reader(lf, delimiter=' '): label_list.append(row) lf.closed return label_list def check_bbox_coordinates(coord, img_h, img_w): """ Utility function to validate the bounding box coordinates Args: coord (tuple): Bounding box coordinates in KITTI format img_h (int): Image height img_w (int): Image widith label_file (string): Label file path Returns: Bounding box coordinates """ "Checks coordinates." x1, y1, x2, y2 = coord x1 = min(max(x1, 0), img_w) x2 = min(max(x2, 0), img_w) y1 = min(max(y1, 0), img_h) y2 = min(max(y2, 0), img_h) if x2 > x1 and y2 > y1: return [x1, y1, x2, y2] return None def convert_xyxy_to_xywh(coord): """ Utility function to convert bounding box coordinates from KITTI format to COCO Args: coord (tuple): Bounding box coordinates in KITTI format img_h (int): Image height img_w (int): Image widith label_file (string): Label file path Returns: Bounding box coordinates in COCO format """ "Checks coordinates." x1, y1, x2, y2 = coord w, h = x2 - x1, y2 - y1 return [x1, y1, w, h] def get_categories(cat_map): """ Function to convert the category map to COCO annotation format Args: cat_map (dictionary): Category map Returns: categories_list (list): COCO annotation format of the category map """ categories_list = [] for i, class_name in enumerate(cat_map): category = { 'id': i + 1, 'name': class_name } categories_list.append(category) return categories_list def construct_category_map(label_dir, mapping=None): """ Function to create a category map for the given dataset Args: label_dir (str): Label directory mapping (str): Mapping file Returns: cat_map (dictionary): Category mapping """ cat_map = OrderedDict() if mapping is not None: with open(mapping, "r", encoding='utf-8') as f: try: cat_map_list = yaml.safe_load(f) except yaml.YAMLError as e: print(e) for i in cat_map_list: k, v = list(i.items())[0] cat_map[k] = v else: for img in os.listdir(label_dir): labels = read_kitti_labels(os.path.join(label_dir, f"{img[:-4]}.txt")) df = pd.DataFrame(labels) for _, row_p in df.iterrows(): if row_p[0] not in cat_map: cat_map[row_p[0]] = [row_p[0]] return cat_map def convert_kitti_to_coco(img_dir, label_dir, output_dir, mapping=None, name=None): """Function to convert KITTI annotations to COCO format. Args: img_dir (string): Directory containing the images. label_dir (string): Directory containing the KITTI labels output_dir (string): Directory to output the COCO annotation file """ annot_list, img_list, skipped_list = [], [], [] img_id, obj_id = 0, 0 img_dir = str(Path(img_dir)) label_dir = str(Path(label_dir)) project = name or img_dir.split('/')[-2] if not os.path.exists(output_dir): os.makedirs(output_dir) cat_map = construct_category_map(label_dir, mapping) categories = get_categories(cat_map) labels2cat = {label: k for k, v in cat_map.items() for label in v} cat2index = {c['name']: c['id'] for c in categories} print("category to id mapping:") print("*********************") print(cat2index) print("*********************") for img in tqdm(os.listdir(img_dir)): if str(Path(img).suffix).lower() not in [".jpg", ".png", ".jpeg"]: continue labels = os.path.join(label_dir, f"{img[:-4]}.txt") img_shape = cv2.imread(os.path.join(img_dir, img)).shape height, width = img_shape[0], img_shape[1] # update image list img_id += 1 img_dict = { "file_name": img, "scene_id": project, "height": height, "width": width, "id": img_id } img_list.append(img_dict) # process labels bboxes = read_kitti_labels(labels) df = pd.DataFrame(bboxes) df = df.drop_duplicates() # update annotation list include_image = False for _, row_p in df.iterrows(): mapped = labels2cat.get(row_p[0], None) if not mapped: continue bbox = np.array(row_p[4:8]) bbox = bbox.astype(float) coord = check_bbox_coordinates(bbox.tolist(), height, width) if not coord: continue include_image = True coord = convert_xyxy_to_xywh(coord) area = coord[2] * coord[3] obj_id += 1 annot_dict = { "bbox": coord, "image_id": img_id, "scene_id": project, "iscrowd": 0, "area": area, "category_id": cat2index[mapped], "id": obj_id } annot_list.append(annot_dict) if not include_image: img_skipped = img_list.pop() skipped_list.append(img_skipped['file_name']) final_dict = { "annotations": annot_list, "images": img_list, "categories": categories } save_path = os.path.join(output_dir, f"{project}.json") with open(save_path, "w", encoding='utf-8') as f: ujson.dump(final_dict, f) if skipped_list: with open(os.path.join(output_dir, 'skipped_files.txt'), 'w', encoding='utf-8') as g: g.write('\n'.join(str(fname) for fname in skipped_list))
tao_dataset_suite-main
nvidia_tao_ds/annotations/kitti_to_coco.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data format conversion module"""
tao_dataset_suite-main
nvidia_tao_ds/annotations/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data conversion config module."""
tao_dataset_suite-main
nvidia_tao_ds/annotations/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from dataclasses import dataclass from omegaconf import MISSING from typing import Optional @dataclass class DataConfig: """Dataset configuration template.""" input_format: str = "KITTI" output_format: str = "COCO" output_dir: str = MISSING @dataclass class KITTIConfig: """Dataset configuration template.""" image_dir: str = MISSING label_dir: str = MISSING project: Optional[str] = None mapping: Optional[str] = None @dataclass class COCOConfig: """Dataset configuration template.""" ann_file: str = MISSING @dataclass class ExperimentConfig: """Experiment configuration template.""" data: DataConfig = DataConfig() kitti: KITTIConfig = KITTIConfig() coco: COCOConfig = COCOConfig() results_dir: Optional[str] = None
tao_dataset_suite-main
nvidia_tao_ds/annotations/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script to run TAO data format conversion.""" import os import sys from nvidia_tao_ds.annotations.coco_to_kitti import convert_coco_to_kitti from nvidia_tao_ds.annotations.config.default_config import ExperimentConfig from nvidia_tao_ds.annotations.kitti_to_coco import convert_kitti_to_coco from nvidia_tao_ds.core.decorators import monitor_status from nvidia_tao_ds.core.hydra.hydra_runner import hydra_runner @hydra_runner( config_path=os.path.join(os.path.dirname(os.path.abspath(__file__)), "../experiment_specs"), config_name="annotations", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Wrapper function for format conversion.""" cfg.results_dir = cfg.results_dir or cfg.data.output_dir run_conversion(cfg=cfg) @monitor_status(mode='Annotation conversion') def run_conversion(cfg: ExperimentConfig): """TAO annotation convert wrapper.""" try: if cfg.data.input_format == "KITTI" and cfg.data.output_format == "COCO": convert_kitti_to_coco( cfg.kitti.image_dir, cfg.kitti.label_dir, cfg.data.output_dir, cfg.kitti.mapping, cfg.kitti.project) elif cfg.data.input_format == "COCO" and cfg.data.output_format == "KITTI": convert_coco_to_kitti( cfg.coco.ann_file, cfg.data.output_dir) else: print("Unsupported format") except KeyboardInterrupt as e: print(f"Interrupting data conversion with error: {e}") sys.exit() except RuntimeError as e: print(f"Data conversion run failed with error: {e}") sys.exit() if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/annotations/scripts/convert.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data format conversion scripts"""
tao_dataset_suite-main
nvidia_tao_ds/annotations/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data format conversion entrypoint"""
tao_dataset_suite-main
nvidia_tao_ds/annotations/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define entrypoint to run tasks for annotation.""" import argparse from nvidia_tao_ds.core.entrypoint.entrypoint import get_subtasks, launch from nvidia_tao_ds.annotations import scripts def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "annotation", add_help=True, description="Annotation entrypoint" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch( parser, subtasks, task="annotation" ) if __name__ == '__main__': main()
tao_dataset_suite-main
nvidia_tao_ds/annotations/entrypoint/annotations.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/FAN/blob/main/LICENSE """ ConvNeXt Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman """ from collections import OrderedDict from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.fx_features import register_notrace_module from timm.models.helpers import named_apply, build_model_with_cfg from timm.models.layers import trunc_normal_, ClassifierHead, SelectAdaptivePool2d, DropPath, Mlp def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs } default_cfgs = dict( convnext_tiny=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth"), convnext_small=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth"), convnext_base=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth"), convnext_large=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth"), convnext_tiny_hnf=_cfg(url=''), convnext_base_in22k=_cfg( # url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=80), url="pretrained/convnext_base_22k_224.pth", num_classes=80), convnext_large_in22k=_cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", num_classes=80), convnext_xlarge_in22k=_cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", num_classes=80), ) def _is_contiguous(tensor: torch.Tensor) -> bool: """Check if the tensor is continguous for torch jit script purpose""" # jit is oh so lovely :/ # if torch.jit.is_tracing(): # return True if torch.jit.is_scripting(): return tensor.is_contiguous() return tensor.is_contiguous(memory_format=torch.contiguous_format) class ConvMlp(nn.Module): """ MLP using 1x1 convs that keeps spatial dims""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, drop=0.): """Initialize the ConvMlp Class. Args: in_features: number of input features hidden_feautres: number of hidden features out_features: number of output features act_layer: activation layer class to be used norm_layer: normalization layer class to be used drop: dropout probability """ super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=True) self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=True) self.drop = nn.Dropout(drop) def forward(self, x): """Forward function""" x = self.fc1(x) x = self.norm(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) return x @register_notrace_module class LayerNorm2d(nn.LayerNorm): """ LayerNorm for channels_first tensors with 2d spatial dimensions (ie N, C, H, W).""" def __init__(self, normalized_shape, eps=1e-6): """Initialize the Layernorm2d class. Args: normalized_shape: shape to be normalized to eps: epsilon value for numerically stability """ super().__init__(normalized_shape, eps=eps) def forward(self, x) -> torch.Tensor: """Forward function.""" if _is_contiguous(x): return F.layer_norm( x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2) s, u = torch.var_mean(x, dim=1, keepdim=True) x = (x - u) * torch.rsqrt(s + self.eps) x = x * self.weight[:, None, None] + self.bias[:, None, None] return x class ConvNeXtBlock(nn.Module): """ ConvNeXt Block There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. """ def __init__(self, dim, drop_path=0., ls_init_value=1e-6, conv_mlp=True, mlp_ratio=4, norm_layer=None): """Initialize ConvNext Block. Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 ls_init_value (float): Init value for Layer Scale. Default: 1e-6. """ super().__init__() if not norm_layer: norm_layer = partial(LayerNorm2d, eps=1e-6) if conv_mlp else partial(nn.LayerNorm, eps=1e-6) mlp_layer = ConvMlp if conv_mlp else Mlp self.use_conv_mlp = conv_mlp self.conv_dw = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = norm_layer(dim) self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=nn.GELU) self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): """Forward function.""" shortcut = x x = self.conv_dw(x) if self.use_conv_mlp: x = self.norm(x) x = self.mlp(x) else: x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.mlp(x) x = x.permute(0, 3, 1, 2) if self.gamma is not None: x = x.mul(self.gamma.reshape(1, -1, 1, 1)) x = self.drop_path(x) + shortcut return x class ConvNeXtStage(nn.Module): """ConvNeXt Stage.""" def __init__( self, in_chs, out_chs, stride=2, depth=2, dp_rates=None, ls_init_value=1.0, conv_mlp=True, norm_layer=None, cl_norm_layer=None, no_downsample=False): """Initialize ConvNext Stage. Args: in_chs (int): Number of input channels. out_chs (int): Number of output channels. """ super().__init__() if in_chs != out_chs or stride > 1: self.downsample = nn.Sequential( norm_layer(in_chs), nn.Conv2d(in_chs, out_chs, kernel_size=stride, stride=stride if not no_downsample else 1), ) else: self.downsample = nn.Identity() dp_rates = dp_rates or [0.] * depth self.blocks = nn.Sequential(*[ConvNeXtBlock( dim=out_chs, drop_path=dp_rates[j], ls_init_value=ls_init_value, conv_mlp=conv_mlp, norm_layer=norm_layer if conv_mlp else cl_norm_layer) for j in range(depth)] ) def forward(self, x): """Forward function.""" x = self.downsample(x) x = self.blocks(x) return x class ConvNeXt(nn.Module): """A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf""" def __init__( self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, patch_size=4, depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), ls_init_value=1e-6, conv_mlp=True, use_head=True, head_init_scale=1., head_norm_first=False, norm_layer=None, drop_rate=0., drop_path_rate=0., remove_last_downsample=False ): """ Initialize the ConvNext Class Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (tuple(int)): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_rate (float): Head dropout rate drop_path_rate (float): Stochastic depth rate. Default: 0. ls_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ super().__init__() assert output_stride == 32 if norm_layer is None: norm_layer = partial(LayerNorm2d, eps=1e-6) cl_norm_layer = norm_layer if conv_mlp else partial(nn.LayerNorm, eps=1e-6) else: assert conv_mlp,\ 'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' cl_norm_layer = norm_layer self.num_classes = num_classes self.drop_rate = drop_rate self.feature_info = [] # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size), norm_layer(dims[0]) ) self.stages = nn.Sequential() dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] curr_stride = patch_size prev_chs = dims[0] stages = [] # 4 feature resolution stages, each consisting of multiple residual blocks for i in range(len(depths)): stride = 2 if i > 0 else 1 # FIXME support dilation / output_stride curr_stride *= stride out_chs = dims[i] no_downsample = remove_last_downsample and (i == len(depths) - 1) stages.append(ConvNeXtStage( prev_chs, out_chs, stride=stride, depth=depths[i], dp_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp, norm_layer=norm_layer, cl_norm_layer=cl_norm_layer, no_downsample=no_downsample) ) prev_chs = out_chs # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.num_features = prev_chs if head_norm_first: # norm -> global pool -> fc ordering, like most other nets (not compat with FB weights) self.norm_pre = norm_layer(self.num_features) # final norm layer, before pooling if use_head: self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) else: # pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights) self.norm_pre = nn.Identity() if use_head: self.head = nn.Sequential(OrderedDict([ ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), ('norm', norm_layer(self.num_features)), ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) def get_classifier(self): """Returns classifier of ConvNeXt""" return self.head.fc def reset_classifier(self, num_classes=0, global_pool='avg'): """Redefine the classification head""" if isinstance(self.head, ClassifierHead): # norm -> global pool -> fc self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) else: # pool -> norm -> fc self.head = nn.Sequential(OrderedDict([ ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), ('norm', self.head.norm), ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) def forward_features(self, x, return_feat=False): """Extract features""" x = self.stem(x) out_list = [] for i in range(len(self.stages)): x = self.stages[i](x) out_list.append(x) x = self.norm_pre(x) return x, out_list if return_feat else x def forward(self, x): """Forward function""" x = self.forward_features(x) x = self.head(x) return x def _init_weights(module, name=None, head_init_scale=1.0): """Initialize weights""" if isinstance(module, nn.Conv2d): trunc_normal_(module.weight, std=.02) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.Linear): trunc_normal_(module.weight, std=.02) nn.init.constant_(module.bias, 0) if name and 'head.' in name: module.weight.data.mul_(head_init_scale) module.bias.data.mul_(head_init_scale) def checkpoint_filter_fn(state_dict, model): """ Remap FB checkpoints -> timm """ if 'model' in state_dict: state_dict = state_dict['model'] out_dict = {} import re for k, v in state_dict.items(): k = k.replace('downsample_layers.0.', 'stem.') k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) k = k.replace('dwconv', 'conv_dw') k = k.replace('pwconv', 'mlp.fc') k = k.replace('head.', 'head.fc.') if k in model.state_dict().keys(): if k.startswith('norm.'): k = k.replace('norm', 'head.norm') if v.ndim == 2 and 'head' not in k: model_shape = model.state_dict()[k].shape v = v.reshape(model_shape) out_dict[k] = v return out_dict def _create_hybrid_backbone(variant='convnext_base_in22k', pretrained=False, **kwargs): """Create ConvNeXt hybrid backbone for FAN""" model = build_model_with_cfg( ConvNeXt, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) return model
tao_dataset_suite-main
nvidia_tao_ds/backbone/convnext_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/FAN/blob/main/LICENSE """ Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # # Modified by: Daquan Zhou # -------------------------------------------------------- import math from copy import deepcopy from typing import Optional import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.fx_features import register_notrace_function from timm.models.helpers import build_model_with_cfg from timm.models.layers import PatchEmbed, Mlp from timm.models.layers import _assert from timm.models.vision_transformer import checkpoint_filter_fn, init_weights_vit_timm from timm.models.layers import DropPath, trunc_normal_, to_2tuple def overlay_external_default_cfg(default_cfg, kwargs): """Overlay 'external_default_cfg' in kwargs on top of default_cfg arg.""" external_default_cfg = kwargs.pop('external_default_cfg', None) if external_default_cfg: default_cfg.pop('url', None) # url should come from external cfg default_cfg.pop('hf_hub', None) # hf hub id should come from external cfg default_cfg.update(external_default_cfg) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { # patch models (my experiments) 'swin_base_patch4_window12_384': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'swin_base_patch4_window7_224': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth', ), 'swin_large_patch4_window12_384': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'swin_large_patch4_window7_224': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth', ), 'swin_small_patch4_window7_224': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth', ), 'swin_tiny_patch4_window7_224': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth', ), 'swin_base_patch4_window12_384_in22k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', input_size=(3, 384, 384), crop_pct=1.0, num_classes=21841), 'swin_base_patch4_window7_224_in22k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', num_classes=21841), 'swin_large_patch4_window12_384_in22k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth', input_size=(3, 384, 384), crop_pct=1.0, num_classes=21841), 'swin_large_patch4_window7_224_in22k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth', num_classes=21841), } def window_partition(x, window_size: int): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse(windows, window_size: int, H: int, W: int): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.): """Initialize WindowAttention class""" super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask: Optional[torch.Tensor] = None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x class PositionalEncodingFourier(nn.Module): """ Positional encoding relying on a fourier kernel matching the one used in the "Attention is all of Need" paper. Based on the official XCiT code - https://github.com/facebookresearch/xcit/blob/master/xcit.py """ def __init__(self, hidden_dim=32, dim=768, temperature=10000): """Initialize PositionalEncodingFourier class""" super().__init__() self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) self.scale = 2 * math.pi self.temperature = temperature self.hidden_dim = hidden_dim self.dim = dim self.eps = 1e-6 def forward(self, B: int, H: int, W: int): """Forward function""" device = self.token_projection.weight.device y_embed = torch.arange(1, H + 1, dtype=torch.float32, device=device).unsqueeze(1).repeat(1, 1, W) x_embed = torch.arange(1, W + 1, dtype=torch.float32, device=device).repeat(1, H, 1) y_embed = y_embed / (y_embed[:, -1:, :] + self.eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + self.eps) * self.scale dim_t = torch.arange(self.hidden_dim, dtype=torch.float32, device=device) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack([pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()], dim=4).flatten(3) pos_y = torch.stack([pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()], dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) pos = self.token_projection(pos) return pos.repeat(B, 1, 1, 1) # (B, C, H, W) class FANMlp(nn.Module): """FANMlp""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False): """Initialize FANMlp""" super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.gamma = nn.Parameter(torch.ones(hidden_features), requires_grad=True) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.linear = linear if self.linear: self.relu = nn.ReLU(inplace=True) self.apply(self._init_weights) def _init_weights(self, m): """Initialize weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): """Forward function""" x = self.fc1(x) if self.linear: x = self.relu(x) x = self.drop(self.gamma * self.dwconv(x, H, W)) # + x x = self.fc2(x) x = self.drop(x) return x class DWConv(nn.Module): """Depth-wise convolution""" def __init__(self, in_features, out_features=None, act_layer=nn.GELU, kernel_size=3): """Initialize DWConv class""" super().__init__() out_features = out_features or in_features padding = kernel_size // 2 self.conv1 = torch.nn.Conv2d( in_features, in_features, kernel_size=kernel_size, padding=padding, groups=in_features) self.act = act_layer() self.bn = nn.BatchNorm2d(in_features) self.conv2 = torch.nn.Conv2d( in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features) def forward(self, x, H: int, W: int): """Forward function""" B, N, C = x.shape x = x.permute(0, 2, 1).reshape(B, C, H, W) x = self.conv1(x) x = self.act(x) x = self.bn(x) x = self.conv2(x) x = x.reshape(B, C, N).permute(0, 2, 1) return x class ChannelProcessing(nn.Module): """Channel Processing""" def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False, drop_path=0., mlp_hidden_dim=None, act_layer=nn.GELU, drop=0., norm_layer=nn.LayerNorm, cha_sr_ratio=1, c_head_num=None): """Initialize ChannelProcessing class""" super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim num_heads = c_head_num or num_heads self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.cha_sr_ratio = cha_sr_ratio if num_heads > 1 else 1 # config of mlp for v processing self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp_v = FANMlp(in_features=dim // self.cha_sr_ratio, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear) self.norm_v = norm_layer(dim // self.cha_sr_ratio) self.q = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.linear = linear self.sr_ratio = sr_ratio self.apply(self._init_weights) def _init_weights(self, m): """Initialize weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _gen_attn(self, q, k): """Returns attention""" q = q.softmax(-2).transpose(-1, -2) _, _, N, _ = k.shape k = torch.nn.functional.adaptive_avg_pool2d(k.softmax(-2), (N, 1)) attn = torch.nn.functional.sigmoid(q @ k) return attn * self.temperature def forward(self, x, H, W, atten=None): """Forward functions """ B, N, C = x.shape v = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = self._gen_attn(q, k) attn = self.attn_drop(attn) Bv, Hd, Nv, Cv = v.shape v = self.norm_v(self.mlp_v(v.transpose(1, 2).reshape(Bv, Nv, Hd * Cv), H, W)).reshape(Bv, Nv, Hd, Cv).transpose(1, 2) repeat_time = N // attn.shape[-1] attn = attn.repeat_interleave(repeat_time, dim=-1) if attn.shape[-1] > 1 else attn x = (attn * v.transpose(-1, -2)).permute(0, 3, 1, 2).reshape(B, N, C) return x @torch.jit.ignore def no_weight_decay(self): """layers to ignore for weight decay""" return {'temperature'} class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block.""" def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., mlp_type=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm): """Initialize SwinTransformerBlock class Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp_type = mlp_type if mlp_type == 'Mlp': self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) else: self.mlp = ChannelProcessing(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, drop_path=drop_path, mlp_hidden_dim=mlp_hidden_dim) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): """Forward function""" H, W = self.input_resolution B, L, C = x.shape _assert(L == H * W, "input feature has wrong size") shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) if self.mlp_type == 'Mlp': x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x class PatchMerging(nn.Module): r""" Patch Merging Layer.""" def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): """Initialize PatchMerging class Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """Forward function Args: x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape _assert(L == H * W, "input feature has wrong size") _assert(H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even.") x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: """exptra representation""" return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): """returns FLOPs""" H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage.""" def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., mlp_type=None, drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): """Initialize BasicLayer Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock( dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, mlp_type=mlp_type, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): """Forward function""" for blk in self.blocks: if not torch.jit.is_scripting() and self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: """exptra representation""" return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" class SwinTransformer(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, weight_init='', mlp_type='Mlp', **kwargs): """Initialize SwinTransformer class Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) self.patch_grid = self.patch_embed.grid_size # absolute position embedding if self.ape: # self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) # trunc_normal_(self.absolute_pos_embed, std=.02) self.absolute_pos_embed = PositionalEncodingFourier(dim=embed_dim) else: self.absolute_pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers layers = [] for i_layer in range(self.num_layers): layers += [BasicLayer( dim=int(embed_dim * 2 ** i_layer), input_resolution=(self.patch_grid[0] // (2 ** i_layer), self.patch_grid[1] // (2 ** i_layer)), depth=depths[i_layer], mlp_type=mlp_type[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) ] self.layers = nn.Sequential(*layers) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() assert weight_init in ('jax', 'jax_nlhb', 'nlhb', '') head_bias = -math.log(self.num_classes) if 'nlhb' in weight_init else 0. if weight_init.startswith('jax'): for n, m in self.named_modules(): init_weights_vit_timm(m, n, head_bias=head_bias, jax_impl=True) # pylint: disable=E1123 else: self.apply(init_weights_vit_timm) @torch.jit.ignore def no_weight_decay(self): """layers to ignore for weight decay""" return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): """keywords to ignore for weight decay""" return {'relative_position_bias_table'} def get_classifier(self): """Returns classifier""" return self.head def reset_classifier(self, num_classes, global_pool=''): """Redefine classifier of FAN""" self.num_classes = num_classes self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): """Extract features""" x = self.patch_embed(x) B, N, _ = x.shape H = W = math.sqrt(N) if self.absolute_pos_embed is not None: # import pdb; pdb.set_trace() x = x + self.absolute_pos_embed(B, H, W).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = self.pos_drop(x) x = self.layers(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): """Forward functions""" x = self.forward_features(x) x = self.head(x) return x def _create_fan_swin_transformer(variant, pretrained=False, default_cfg=None, **kwargs): """Create FAN Swin Transformer backbone""" if default_cfg is None: default_cfg = deepcopy(default_cfgs[variant]) overlay_external_default_cfg(default_cfg, kwargs) default_num_classes = default_cfg['num_classes'] default_img_size = default_cfg['input_size'][-2:] num_classes = kwargs.pop('num_classes', default_num_classes) img_size = kwargs.pop('img_size', default_img_size) if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg( SwinTransformer, variant, pretrained, default_cfg=default_cfg, img_size=img_size, num_classes=num_classes, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) return model
tao_dataset_suite-main
nvidia_tao_ds/backbone/swin_utils.py