python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script for the Metric Learning Recognition task."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric-learning recognition Model Module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/model/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Main PTL model file for Metric Learning Recognition.""" from collections import defaultdict import os import pandas as pd import numpy as np import torch import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_only from pytorch_metric_learning import losses, miners, testers from pytorch_metric_learning.utils.accuracy_calculator import AccuracyCalculator from nvidia_tao_pytorch.cv.metric_learning_recognition.model.build_nn_model import build_model from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.build_data_loader import build_dataloader from nvidia_tao_pytorch.cv.re_identification.utils.scheduler import WarmupMultiStepLR import nvidia_tao_pytorch.core.loggers.api_logging as status_logging class MLRecogModel(pl.LightningModule): """PTL module for single stream Metric Learning Recognition. The training process is to minimize the distances between the embeddings of the same class and maximize the distances between the embeddings of different classes. The validation process is to evaluate the similarity search performance of the model on the validation reference and query datasets. The validation process only supports running on a single GPU. """ def __init__(self, experiment_spec, results_dir, subtask="train"): """Initializes training for Metric Learning Recognition model. Args: experiment_spec (DictConfig): Configuration File results_dir (String): Path to save results subtask (String): The purpose of the model. Can be "train", "evaluate", "export", "inference" only """ super().__init__() self.experiment_spec = experiment_spec self.results_dir = results_dir self.subtask = subtask self.status_logging_dict = {"train_loss": 0.0, "val Precision at Rank 1": 0.0} if subtask == "train": checkpoint = self.experiment_spec["train"]["resume_training_checkpoint_path"] elif subtask in ("evaluate", "export", "inference"): checkpoint = self.experiment_spec[subtask]["checkpoint"] if checkpoint: # Failure should always be caught before or after this warning if not os.path.exists(checkpoint): checkpoint_to_load = False else: checkpoint_to_load = True else: checkpoint_to_load = False self._build_model(experiment_spec, checkpoint_to_load=checkpoint_to_load) # Activates manual optimization self.automatic_optimization = False if self.subtask == "train": status_logging.get_status_logger().write( message="Preparing for training", status_level=status_logging.Status.RUNNING) self.my_loss_func = self.__make_loss(experiment_spec) (self.train_loader, self.query_loader, self.gallery_loader, self.dataset_dict) = build_dataloader( cfg=self.experiment_spec, mode="train") self.class_dict = self.dataset_dict["query"].class_dict self.load_tester() def load_tester(self): """Loads a `pytorch_metric_learning.testers.GlobalTwoStreamEmbeddingSpaceTester` to prepare for gallery-query similarity search evaluation.""" # suppress end test print results def end_test_hook(tester): pass self.tester = testers.GlobalEmbeddingSpaceTester( batch_size=self.experiment_spec["train"]["val_batch_size"], end_of_testing_hook=end_test_hook, dataloader_num_workers=self.experiment_spec["dataset"]["workers"], accuracy_calculator=AccuracyCalculator( k="max_bin_count", return_per_class=self.experiment_spec[self.subtask]["report_accuracy_per_class"]), ) def _build_model(self, experiment_spec, checkpoint_to_load=False): self.model = build_model( experiment_spec, checkpoint_to_load=checkpoint_to_load) if self.subtask != "train": self.model.eval() def train_dataloader(self): """Builds the dataloader for training. Returns: train_loader (torch.utils.data.Dataloader): Traininig Data. """ return self.train_loader def configure_optimizers(self): """Configure optimizers for training. Returns: optim_dict1 (Dict[String, Object]): a map for trunk's optimizer, monitor and lr scheduler optim_dict2 ( Dict[String, Object]): a map for embedder's optimizer, monitor and lr scheduler """ self.train_config = self.experiment_spec["train"] self.optim_config = self.train_config["optim"] optimizers = self.__make_optimizer() self.schedulers = {} for k, opt in optimizers.items(): sch = WarmupMultiStepLR( opt, self.optim_config["steps"], gamma=self.optim_config["gamma"], warmup_factor=self.optim_config["warmup_factor"], warmup_iters=self.optim_config["warmup_iters"], warmup_method=self.optim_config["warmup_method"], last_epoch=self.current_epoch - 1, ) self.schedulers[k] = sch optim_dict1 = { "optimizer": optimizers["trunk"], 'monitor': None, "lr_scheduler": self.schedulers["trunk"] } optim_dict2 = { "optimizer": optimizers["embedder"], 'monitor': None, "lr_scheduler": self.schedulers["embedder"] } return (optim_dict1, optim_dict2) def __make_module_optimizer(self, model_name): if model_name == "embedder": model = self.model.embedder elif model_name == "trunk": model = self.model.trunk params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue lr = self.optim_config[model_name]["base_lr"] weight_decay = self.optim_config[model_name]["weight_decay"] if "bias" in key: lr = self.optim_config[model_name]["base_lr"] * self.optim_config[model_name]["bias_lr_factor"] weight_decay = self.optim_config[model_name]["weight_decay_bias"] params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] if self.optim_config["name"] == 'SGD': optimizer = getattr(torch.optim, self.optim_config["name"])(params, momentum=self.optim_config[model_name]["momentum"]) else: optimizer = getattr(torch.optim, self.optim_config["name"])(params) return optimizer def __make_optimizer(self): embedder_optimizer = self.__make_module_optimizer("embedder") trunk_optimizer = self.__make_module_optimizer("trunk") optimizers = { "embedder": embedder_optimizer, "trunk": trunk_optimizer } return optimizers def training_step(self, batch): """Training step. Args: batch (torch.Tensor): Batch of data Returns: loss (torch.float32): Loss value for each step in training """ data, labels = batch data = data.float() opt1, opt2 = self.optimizers() self.optimizer_dict = {'trunk': opt1, "embedder": opt2} self._zero_grad() outputs = self.model(data) loss = self.my_loss_func(outputs, labels) self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True) self.log("trunk_base_lr", self.schedulers["trunk"].get_lr()[0], on_step=False, on_epoch=True, prog_bar=True, sync_dist=True) self.log("embedder_base_lr", self.schedulers["embedder"].get_lr()[0], on_step=False, on_epoch=True, prog_bar=True, sync_dist=True) self.manual_backward(loss) # clip gradients for opt in self.optimizer_dict.values(): self.clip_gradients( opt, gradient_clip_val=self.experiment_spec['train']['clip_grad_norm'], gradient_clip_algorithm="norm" ) self._step_optimizers() self.current_loss = loss return loss def get_query_accuracy(self): """Obtains the metric results of gallery-query similarity search evaluation. Returns: all_accuracies (Dict[str, float]): a map of default accuracy metrics from `pytorch_metric_learning.utils.accuracy_calculator.AccuracyCalculator`. Explanations see https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/#explanations-of-the-default-accuracy-metrics """ if self.subtask == "train": epoch_log = self.current_epoch else: epoch_log = "eval mode" all_accuracies = self.tester.test(self.dataset_dict, epoch_log, # used for logging self.model, # your model splits_to_eval=[('query', ['gallery'])] ) return all_accuracies def on_train_epoch_end(self): """Action on training epoch end.""" self._step_schedulers() @rank_zero_only def update_validation_metrics(self): """Updates the validation metrics at the end of each validation epoch.""" all_accuracies = self.get_query_accuracy() ami = all_accuracies['query']['AMI_level0'] nmi = all_accuracies['query']['NMI_level0'] mean_avg_prec = all_accuracies['query']['mean_average_precision_level0'] mean_reciprocal_rank = all_accuracies['query']['mean_reciprocal_rank_level0'] mean_r_precision = all_accuracies['query']['r_precision_level0'] val_accuracy = all_accuracies['query']['precision_at_1_level0'] self.status_logging_dict['val_AMI'] = ami self.status_logging_dict['val_NMI'] = nmi if self.experiment_spec['train']['report_accuracy_per_class']: self.status_logging_dict['val Mean Average Precision'] = sum(mean_avg_prec) / len(mean_avg_prec) self.status_logging_dict['val Mean Reciprocal Rank'] = sum(mean_reciprocal_rank) / len(mean_reciprocal_rank) self.status_logging_dict['val r-Precision'] = sum(mean_r_precision) / len(mean_r_precision) self.status_logging_dict['val Precision at Rank 1'] = sum(val_accuracy) / len(val_accuracy) else: self.status_logging_dict['val Mean Average Precision'] = mean_avg_prec self.status_logging_dict['val Mean Reciprocal Rank'] = mean_reciprocal_rank self.status_logging_dict['val r-Precision'] = mean_r_precision self.status_logging_dict['val Precision at Rank 1'] = val_accuracy # print out validation results print("============================================") print(f"Validation results at epoch {self.current_epoch}:") for k, v in self.status_logging_dict.items(): if "val" in k: print(f"{k}: {v:.4f}") if self.experiment_spec['train']['report_accuracy_per_class']: print("\nValidation results per class:") for k, v in all_accuracies['query'].items(): if "level" in k: if isinstance(v, list): print(f" {k[:-7]}:") for i, vv in enumerate(v): print(f" {self.class_dict[i]}: {vv:.4f}") print("============================================") def training_epoch_end(self, training_step_outputs): """Generates train and validation metrics and the end of training epoch. training_step_outputs (List[Dict[str, torch.Tensor]]): List of outputs from training_step. """ average_train_loss = 0.0 for out in training_step_outputs: average_train_loss += out['loss'].item() average_train_loss /= len(training_step_outputs) report_loss = np.around(average_train_loss, decimals=4) report_trunk_lr = '{:.4e}'.format(self.schedulers['trunk'].get_lr()[0]) report_embedder_lr = '{:.4e}'.format(self.schedulers['embedder'].get_lr()[0]) self.status_logging_dict['train_loss'] = report_loss self.status_logging_dict['trunk_base_lr'] = report_trunk_lr self.status_logging_dict['embedder_base_lr'] = report_embedder_lr # validation_epoch_end does not work here. Manually set it up. # add one to match the checkpoint saving epochs if (self.current_epoch + 1) % self.experiment_spec['train']['checkpoint_interval'] == 0: self.update_validation_metrics() # status loggings are rank zero only status_logging.get_status_logger().kpi = self.status_logging_dict status_logging.get_status_logger().write( message="Train and eval metrics generated.", status_level=status_logging.Status.RUNNING ) def _step_optimizers(self): for v in self.optimizer_dict.values(): v.step() def _step_schedulers(self): for v in self.schedulers.values(): v.step() def _zero_grad(self): self.model.zero_grad() for v in self.optimizer_dict.values(): v.zero_grad() def on_train_epoch_start(self): """Perform on start of every epoch.""" print('\n') def forward(self, x): """Forward of the Metric Learning Recognition model. Args: x (torch.Tensor): Batch of data Returns: output (torch.Tensor): Output of the model (class score, feats) """ output = self.model(x) return output def __make_loss(self, cfg): self.optim_config = cfg["train"]["optim"] loss_func = losses.TripletMarginLoss( margin=self.optim_config["triplet_loss_margin"], smooth_loss=self.experiment_spec["train"]["smooth_loss"]) mining_func = miners.MultiSimilarityMiner( epsilon=self.optim_config["miner_function_margin"]) def calculate_loss(embeddings, labels): indices_tuple = mining_func(embeddings, labels) metric_loss = loss_func(embeddings, labels, indices_tuple) return metric_loss return calculate_loss def report_accuracies(self, acc_dict, save_results=False): """Converts the metrics results map to a pd.DataFrame table to display top1 precisions of all classes. Args: acc_dict (Dict[str, float]): A map of metrics and results obtained from `self.get_query_accuracies()` save_results (Boolean): If True, the derived dataframe would be saved to a csv file at output_dir/accuracy_per_class.csv Returns: df (pd.DataFrame): A table of top1 precision of all classes. """ output = defaultdict(dict) count = 0 for idx in self.class_dict: class_name = self.class_dict[idx] if class_name in self.dataset_dict["query"].empty_classes: output[class_name]['top1_acc'] = None count += 1 else: output[class_name]['top1_acc'] = \ acc_dict['query']['precision_at_1_level0'][idx - count] df = pd.DataFrame.from_dict(output, orient='index') if save_results: df.to_csv(os.path.join( self.results_dir, "accuracy_per_class.csv")) return df
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/model/pl_ml_recog_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The top model builder interface.""" import os import torch import torchvision.models as torch_model import nvidia_tao_pytorch.core.loggers.api_logging as status_logging class MLPSeq(torch.nn.Module): """This block implements a series of MLP layers given the input sizes.""" def __init__(self, layer_sizes, final_relu=False): """Initiates the sequential module of MLP layers. Args: layer_sizes (List[List]): a nested list of MLP layer sizes final_relu (Boolean): if True, a ReLu activation layer is added after each MLP layer. """ super().__init__() layer_list = [] layer_sizes = [int(x) for x in layer_sizes] num_layers = len(layer_sizes) - 1 final_relu_layer = num_layers if final_relu else num_layers - 1 for i in range(len(layer_sizes) - 1): input_size = layer_sizes[i] curr_size = layer_sizes[i + 1] if i < final_relu_layer: layer_list.append(torch.nn.ReLU(inplace=True)) layer_list.append(torch.nn.Linear(input_size, curr_size)) self.net = torch.nn.Sequential(*layer_list) self.last_linear = self.net[-1] def forward(self, x): """Sequential MLP forward.""" return self.net(x) class Baseline(torch.nn.Module): """Base model for Metric Learning Recognition model. The model consists of a backbone (trunk) and a feature extractor (embedder). The backbone has a softmax layer and it would be replaced by an identity layer. """ def __init__(self, trunk, embedder): """Initiates the joint modules of the backbone and feature extractors. Args: embedder (torch.Module): The MLP layers with embedding vector outputs trunk (torch.Module): the backbone with fc layer removed """ super().__init__() self.embedder = embedder self.trunk = trunk def forward(self, x): """Joint forward function for the backbone and the feature extractor.""" features_extracted = self.trunk(x) output_embeds = self.embedder(features_extracted) return output_embeds def load_param(self, model_path): """Load paramaters for the model from a .pth format pretrained weights. Args: model_path (str): Model path. """ param_dict = torch.load(model_path) if "state_dict" in param_dict: param_dict = param_dict["state_dict"] for i in param_dict: if 'fc' in i: continue if ("net" in i) or ("bias" in i): j = "embedder." + i else: j = "trunk." + i if j in self.state_dict(destination=None).keys(): self.state_dict(destination=None)[j].copy_(param_dict[i]) def build_model(cfg, checkpoint_to_load=False): """Builds metric learning recognition model according to config. If `checkpoint_to_load` is True, nothing would be returned as the model is already loaded somewhere else. If `checkpoint_to_load` is False, the function would do following things: first the model trunk and embedder would be initialized randomly. if `model.pretrain_choice` is `imagenet`, the pretrained weights from `Torch IMAGENET1K_V2` would be loaded to the trunk. If `model.pretrained_model_path` is specified, the pretrained weights from the weights file would be loaded to the trunk. If `model.pretrain_choice` is empty and `model.pretrained_model_path` is not specified, the trunk would keep its random weights. Notice that the embedder would not be loaded with pretrained weights in any case. In the end, the embedder and trunk would be combined to a Baseline model and the model would be returned. Args: cfg (DictConfig): Hydra config object. checkpoint_to_load (Bool): If True, a checkpoint would be loaded after building the model so the pretrained weights should not be loaded. Returns: model (torch.Module): the Baseline torch module. """ status_logging.get_status_logger().write( message="Constructing model graph...", status_level=status_logging.Status.RUNNING) model_configs = cfg["model"] trunk_model = model_configs["backbone"] embed_dim = model_configs["feat_dim"] # torchvision model load_weights = None if not checkpoint_to_load and model_configs["pretrain_choice"] == "imagenet": status_logging.get_status_logger().write( message="Loading ImageNet pretrained weights to trunk...", status_level=status_logging.Status.RUNNING) if trunk_model == "resnet_50": load_weights = torch_model.ResNet50_Weights.IMAGENET1K_V2 elif trunk_model == "resnet_101": load_weights = torch_model.ResNet101_Weights.IMAGENET1K_V2 else: error_mesage = "`model.backbone` only supports resnet_50 and resnet_101 at this moment." status_logging.get_status_logger().write( message=error_mesage, status_level=status_logging.Status.FAILURE) raise ValueError(error_mesage) trunk = torch_model.__dict__[trunk_model.replace("_", "")]( weights=load_weights, progress=False) trunk_output_size = trunk.fc.in_features trunk.fc = torch.nn.Identity() embedder = MLPSeq([trunk_output_size, embed_dim]) model = Baseline(trunk=trunk, embedder=embedder) if checkpoint_to_load: status_logging.get_status_logger().write( message="Skipped loading pretrained model as checkpoint is to load.", status_level=status_logging.Status.SKIPPED) else: status_logging.get_status_logger().write( message=f"Loading pretrained model to trunk: {model_configs['pretrained_model_path']}. Embedder pretrain weights loading is not supported now.", status_level=status_logging.Status.RUNNING) resume_ckpt = model_configs["pretrained_model_path"] if resume_ckpt: if not os.path.exists(resume_ckpt): error_mesage = "`model.pretrained_model_path` file does not exist." status_logging.get_status_logger().write( message=error_mesage, status_level=status_logging.Status.FAILURE) raise ValueError(error_mesage) model.load_param(resume_ckpt) return model
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/model/build_nn_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inferencer.""" import os import pandas as pd import torch import numpy as np from tqdm import tqdm from pytorch_metric_learning.utils.inference import InferenceModel from nvidia_tao_pytorch.cv.metric_learning_recognition.utils.match_finder import EmbeddingKNN from nvidia_tao_pytorch.cv.metric_learning_recognition.model.build_nn_model import build_model from nvidia_tao_pytorch.cv.metric_learning_recognition.model.pl_ml_recog_model import MLRecogModel from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.transforms import build_transforms from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.build_data_loader import build_inference_dataloader from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.build_data_loader import build_dataloader from nvidia_tao_pytorch.cv.metric_learning_recognition.utils.common_utils import no_folders_in from nvidia_tao_pytorch.cv.re_identification.utils.common_utils import read_image import nvidia_tao_pytorch.core.loggers.api_logging as status_logging class Inferencer(): """Pytorch model inferencer.""" def __init__(self, cfg, results_dir): """Inferencer for Metric Learning Recognition model. The inferencer would load the model and process the dataset, and run inference on the inputs. Three formats of inputs are supported: a single image, a folder of images, a folder of classification dataset. The inferencer would return the predicted class if the input is a single image, and return a csv table of predicted classes if the input is a folder of images or a folder of classification dataset. During inference, the model would be loaded from the checkpoint specified in the config. If no checkpoint is specified, the model would be initialized randomly. The model would be loaded to the device specified in the config. The model would be set to eval mode during inference. The reference dataset would be loaded from the `dataset.val_dataset.reference` specified in the config. The query dataset would be loaded from `inference.input_path` specified in the config. The dataset would be processed with the non-train mode transforms returned from the `cv.metric_learning_recognition.dataloader.transforms.build_transforms` function. The reference and query embeddings would be generated from the model. The K nearest neighbors of the query embeddings would be found from the reference embeddings. The classes of the K nearest neighbors would be the returned. If the input is a folder of images or a folder of classification dataset, a csv table would be generated and it would also include the distances of the query embeddings from the reference neighbors. Args: cfg (DictConfig): Hydra config object for inference task results_dir (String): path to save the results """ device = "cuda" if torch.cuda.is_available() else "cpu" if device == "cuda": gpu_id = cfg["inference"]["gpu_id"] torch.cuda.set_device(gpu_id) self.experiment_spec = cfg self.results_dir = results_dir self.__load_model() self.model.to(device) _, _, _, self.dataset_dict = build_dataloader(cfg, mode="inference") self.transforms = build_transforms(cfg, is_train=False) self.__load_inferencer() self.class_dict = self.dataset_dict["gallery"].class_dict self.topk = cfg["inference"]["topk"] def __load_model(self): if not self.experiment_spec["inference"]["checkpoint"]: self.model = build_model(self.experiment_spec, checkpoint_to_load=False) status_logging.get_status_logger().write( message="No weights loaded, model initialized randomly.", status_level=status_logging.Status.SKIPPED) else: status_logging.get_status_logger().write( message=f"Loading checkpoint: {self.experiment_spec['inference']['checkpoint']}", status_level=status_logging.Status.STARTED ) self.model = MLRecogModel.load_from_checkpoint( self.experiment_spec["inference"]["checkpoint"], map_location="cpu", experiment_spec=self.experiment_spec, results_dir=self.results_dir, subtask="inference") self.model.eval() def __load_inferencer(self): # TODO: reset before and after for better mem control? infernce_knn_func = EmbeddingKNN(reset_before=False, reset_after=False) self.inference_model = InferenceModel(self.model, knn_func=infernce_knn_func) self.inference_model.train_knn(self.dataset_dict["gallery"]) def preprocess(self, image_path): """Preprocesses a single image file to inferencer. Args: image_path (str): path of an image file. Returns: image_tensor (torch.Tensor): image tensor with shape (1, C, W, H). """ image = read_image(image_path) image_tensor = self.transforms(image) image_tensor = image_tensor.unsqueeze(0) return image_tensor def infer_image(self): """Infers the class of a single image tensor. Returns: class_idx (int): the index of predicted class """ image = self.experiment_spec['inference']['input_path'] device = "cuda" if torch.cuda.is_available() else "cpu" img = self.preprocess(image).to(device) _, indices = self.inference_model.get_nearest_neighbors(img, k=self.topk) class_indices = [self.dataset_dict["gallery"][i][1] for i in indices[0]] # class_idx = Counter(class_indices).most_common(1)[0][0] class_ids = [self.class_dict[i] for i in class_indices] status_logging.get_status_logger().write( message=f"input image: {image}, predicted top {self.topk} class names: {class_ids}", status_level=status_logging.Status.SUCCESS) return class_ids def infer_image_dir(self): """Infers all images in an image folder or a classification folder. Returns: final_df (pd.DataFrame): a table displaying image file path, top k predicted classes, topk distances """ inference_dataloader = build_inference_dataloader( self.experiment_spec) dfs = [] for img_batch in tqdm(inference_dataloader): distances, indices = self.inference_model.get_nearest_neighbors( img_batch[0], k=self.topk) class_indices = [self.dataset_dict["gallery"][i][1] for i in indices.flatten()] class_labels = np.array([self.class_dict[idx] for idx in class_indices]).reshape(len(img_batch[0]), -1) df = pd.DataFrame(zip(list(img_batch[1]), class_labels.tolist(), distances.tolist())) dfs.append(df) csv_f = os.path.join(self.results_dir, 'result.csv') final_df = pd.concat(dfs) final_df.to_csv(csv_f, header=False, index=False) status_logging.get_status_logger().write( message=f"result saved at {csv_f}", status_level=status_logging.Status.SUCCESS) return final_df def infer(self): """Runs inference for files at `cfg.inference.input_path`. Returns: output (int / pd.DataFrame): If self.experiment_spec.inference.inference_input_type is `image`,the output is a integer of the predicted class index If self.experiment_spec.inference.inference_input_type is `xx_folder` the output is a table displaying `file_name, topk predicted classes, topk distances` of the examples in the folder line by line """ # check input input_file = self.experiment_spec["inference"]["input_path"] inference_input_type = self.experiment_spec["inference"]["inference_input_type"] if os.path.isdir(input_file): if (not no_folders_in(input_file)) and inference_input_type != "classification_folder": raise ValueError("Folders detected in the dataset.query_dataset, The inference_input_type should be classification_folder") if no_folders_in(input_file) and inference_input_type != "image_folder": raise ValueError("No folders detected in the dataset.query_dataset, The inference_input_type should be image_folder") elif inference_input_type != "image": raise ValueError("The input is not a folder, try 'image' as the inference_input_type") if inference_input_type == "image": output = self.infer_image() else: output = self.infer_image_dir() return output
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/inference/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric-learning recognition inference module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/inference/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Original source taken from https://github.com/michuanhaohao/reid-strong-baseline # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Builds Transforms based on training and validation.""" import torchvision.transforms as T from nvidia_tao_pytorch.cv.re_identification.dataloader.transforms import RandomErasing def build_transforms(model_config, is_train=True): """Returns training or validation dataloader transforms. The transforms include transferring the Image file to torch.Tensor, random crop, random horizontal flip, color jitter, gaussian blur, normalization and random erasing. Whether to use random rotation, color jitter and gaussian blur is specified in the config. The mean and std of normalization is specified in the config. The size of random crop is specified in the config. The probability of random horizontal flip is specified in the config. The kernel size and sigma of gaussian blur is specified in the config. The brightness, contrast, saturation and hue of color jitter is specified in the config. The probability of random erasing is specified in the config. Args: model_config (DictConfig): Configuration file is_train (Boolean): True for training, False for Testing & Validation Returns: transform (torchvision.transforms.Compose): Image transform for traning, testing & validation data """ normalize_transform = T.Normalize(mean=model_config['dataset']['pixel_mean'], std=model_config['dataset']['pixel_std']) input_size = (model_config['model']['input_width'], model_config['model']['input_height']) if is_train: transforms = [ T.RandomResizedCrop(input_size), T.RandomHorizontalFlip(p=model_config['dataset']['prob']), ] if model_config['dataset']['random_rotation']: transforms.append(T.RandomRotation(degrees=(0, 180), expand=False)) if model_config['dataset']['color_augmentation']['enabled'] is True: color_aug_params = model_config['dataset']['color_augmentation'] transforms.append(T.ColorJitter(brightness=color_aug_params['brightness'], contrast=color_aug_params['contrast'], saturation=color_aug_params['saturation'], hue=color_aug_params['hue'])) if model_config['dataset']['gaussian_blur']['enabled'] is True: gauss_params = model_config['dataset']['gaussian_blur'] transforms.append(T.GaussianBlur(kernel_size=list(gauss_params['kernel']), sigma=gauss_params['sigma'])) transforms += [ T.ToTensor(), normalize_transform, RandomErasing(probability=model_config['dataset']['re_prob'], mean=model_config['dataset']['pixel_mean']) ] transform = T.Compose(transforms) else: w, h = input_size # takes 1/1.14 of the image after cropping init_resize = (int(w * 1.14), int(h * 1.14)) transform = T.Compose([ T.Resize(init_resize), T.CenterCrop(input_size), T.ToTensor(), normalize_transform ]) return transform
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/dataloader/transforms.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric-learning recognition dataloader module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/dataloader/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build torch data loader.""" import yaml from torch.utils.data import DataLoader from pytorch_metric_learning import samplers from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.transforms import build_transforms from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.datasets.inference_datasets import InferenceImageFolder, InferenceImageDataset from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.datasets.image_datasets import MetricLearnImageFolder def build_dataloader(cfg, mode="train"): """Build torch dataloader. Args: cfg (DictConfig): Hydra config object is_train (Boolean): True for train tasks. False for evaluation tasks is_inference (Boolean): True for inference tasks. False for non-inference tasks.Cannot be true the same time when is_train = True Returns: train_loader (Dataloader): Train dataloader query_loader (Dataloader): Val dataloader, used for query jobs in validation or test gallery_loader (Dataloader): Val dataloader, used for reference job in validation or test dataset_dict (Dict): a dictionary of train, query and gallery datasets """ assert mode in ["train", "eval", "inference"], "mode can only be train, eval or inference" dataset_configs = cfg["dataset"] val_transforms = build_transforms(cfg, is_train=False) num_workers = dataset_configs["workers"] train_loader, query_loader, gallery_loader = None, None, None train_dataset = None query_dataset = None class_mapping = None if dataset_configs["class_map"]: with open(dataset_configs["class_map"], "r") as f: class_mapping = yaml.load(f, Loader=yaml.FullLoader) if mode == "train": train_transforms = build_transforms(cfg, is_train=True) train_dataset = MetricLearnImageFolder(dataset_configs['train_dataset'], transform=train_transforms, class_mapping=class_mapping) sampler = samplers.MPerClassSampler(train_dataset.targets, m=cfg["dataset"]["num_instance"], batch_size=cfg["train"]["batch_size"], length_before_new_iter=len(train_dataset)) train_loader = DataLoader( train_dataset, batch_size=cfg["train"]["batch_size"], sampler=sampler, num_workers=num_workers ) val_batch_size = cfg["train"]["val_batch_size"] elif mode == "inference": val_batch_size = cfg["inference"]["batch_size"] elif mode == "eval": val_batch_size = cfg["evaluate"]["batch_size"] gallery_dataset = MetricLearnImageFolder(dataset_configs["val_dataset"]["reference"], transform=val_transforms, class_mapping=class_mapping) gallery_loader = DataLoader( gallery_dataset, batch_size=val_batch_size, shuffle=False, num_workers=num_workers ) if mode in ("eval", "train"): # inference mode has query folder as inference.input_path query_dataset = MetricLearnImageFolder(dataset_configs["val_dataset"]["query"], transform=val_transforms, class_to_idx=gallery_dataset.class_to_idx, classes=gallery_dataset.classes, class_mapping=class_mapping) query_loader = DataLoader( query_dataset, batch_size=val_batch_size, shuffle=False, num_workers=num_workers ) dataset_dict = { "train": train_dataset, "query": query_dataset, "gallery": gallery_dataset } return train_loader, query_loader, gallery_loader, dataset_dict def build_inference_dataloader(cfg): """Create a dataloader for inference task. Args: cfg (DictConfig): Hydra config object Returns: dataloader (InferenceImageFolder / InferenceImageDataset): If cfg.inference.input_path is a classification folder and cfg.inference.inference_input_type is correctly marked as `classification_folder`, it returns a InferenceImageFolder. If cfg.inference.input_path is a folder of images and cfg.inference.inference_input_type is correctly marked as `image_folder`, it returns a InferenceImageDataset """ image_folder_type = cfg["inference"]["inference_input_type"] if image_folder_type == "classification_folder": dataset_builder = InferenceImageFolder elif image_folder_type == "image_folder": dataset_builder = InferenceImageDataset val_transform = build_transforms(cfg, is_train=False) inference_dataset = dataset_builder( cfg['inference']['input_path'], transform=val_transform) dataloader = DataLoader(inference_dataset, cfg['inference']['batch_size'], shuffle=False) return dataloader
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/dataloader/build_data_loader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset for Metric Learning Recognition inference.""" import os import torch from torchvision import transforms from nvidia_tao_pytorch.cv.metric_learning_recognition.dataloader.datasets.image_datasets import MetricLearnImageFolder from nvidia_tao_pytorch.cv.re_identification.utils.common_utils import read_image VALID_IMAGE_EXT = ['.jpg', '.jpeg', '.png'] class InferenceImageFolder(MetricLearnImageFolder): """This class inherits from :class:`MetricLearnImageFolder`. It prepares the data loader from the a classification dataset folder. In __getitem__ instead of returning image tensor and the target, it returns image tensor and the image path. """ def __getitem__(self, index): """Retrieves the (image, image path) from data index. Args: index (int): Index of the data to retrieve Returns: sample (torch.Tensor): the image tensor path (String): the directory of the image file """ path, _ = self.samples[index] sample = self.loader(path) if self.transform: sample = self.transform(sample) return sample, path class InferenceImageDataset(torch.utils.data.Dataset): """This class inherits from :class:`torch.utils.data.Dataset`. It prepares data loader from an image folder. In __getitem__, it returns image tensor and the image path. """ def __init__(self, image_folder, transform=None): """Initiates Dataset for inference image folder input. Args: image_folder(String): path of image folder transform(torchvision.transorms.Compose): the composed transforms """ self.paths = [os.path.join(image_folder, imgname) for imgname in sorted(os.listdir(image_folder)) if os.path.splitext(imgname)[1].lower() in VALID_IMAGE_EXT] self.transform = transform def __len__(self): """Gets the length of datasets""" return len(self.paths) def __getitem__(self, index): """Retrieves the (image, image path) from data index.""" image = read_image(self.paths[index]) if self.transform is not None: image = self.transform(image) else: image = transforms.ToTensor()(image) return image, self.paths[index]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/dataloader/datasets/inference_datasets.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Original source of `_make_dataset` function taken from https://github.com/pytorch/vision/blob/31a4ef9f815a86a924d0faa7709e091b5118f00d/torchvision/datasets/folder.py#L48 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image Dataset for Metric Learning Recognition model training.""" import os import logging from typing import Callable, cast, Dict, List, Optional, Tuple from torchvision.datasets.folder import (has_file_allowed_extension, find_classes, default_loader, IMG_EXTENSIONS, Any) from torchvision.datasets import DatasetFolder def _make_dataset( directory: str, class_to_idx: Optional[Dict[str, int]] = None, extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, return_empty_class: Optional[bool] = False) -> List[Tuple[str, int]]: directory = os.path.expanduser(directory) if class_to_idx is None: _, class_to_idx = find_classes(directory) elif not class_to_idx: raise ValueError("'class_to_index' must have at least one entry to collect any samples.") both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file_func(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = is_valid_file_func is_valid_file = cast(Callable[[str], bool], is_valid_file) instances = [] available_classes = set() for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): item = path, class_index instances.append(item) if target_class not in available_classes: available_classes.add(target_class) # replace empty class error with warning empty_classes = set(class_to_idx.keys()) - available_classes if empty_classes: empty_class_report = "" for clas in empty_classes: empty_class_report += clas + " " logging.warning(f"Empty classes detected in {directory}: {empty_class_report}") if return_empty_class: return instances, empty_classes return instances class MetricLearnImageFolder(DatasetFolder): """This class inherits from :class:`torchvision.datasets.DatasetFolder`. The functions are similar to `torchvision.datasets.ImageFolder` that it creates a dataloader from a classification dataset input, except that it allows the existance of empty class folders. Users can also assign custom `classes` and `class_to_idx` to the class. """ def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, is_valid_file: Optional[Callable[[str], bool]] = None, class_to_idx=None, classes=None, class_mapping=None, ): """Intiates Dataset for image folder input. Args: root (String): Root directory path. transform (Callable, Optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, transforms.RandomCrop target_transform (Callable, Optional): A function/transform that takes in the target and transforms it. loader (Callable, Optional): A function to load an image given its path. is_valid_file (Boolean, Optional): A function that takes path of an Image file and check if the file is a valid file (used to check of corrupt files) class_to_idx (Dict[str, int], Optional): Dictionary mapping each class to an index. classes (List[str], Optional): List of all classes. class_mapping (Dict[str, str], Optional): Dictionary mapping each class to a new class name. """ super(DatasetFolder, self).__init__(root=root, transform=transform, target_transform=target_transform) self.loader = loader self.extensions = IMG_EXTENSIONS if is_valid_file is None else None default_classes, default_class_to_idx = self.find_classes(self.root) # check class assigned if classes: class_set = set(classes) for clas in default_classes: if clas not in class_set: raise ValueError("The image folder classes should be a subset of the assigned classes.") if class_to_idx: for clas in default_class_to_idx: if clas not in class_to_idx: raise ValueError("The image folder classes should be a subset of the assigned classes.") else: classes = default_classes class_to_idx = default_class_to_idx samples, empty_classes = self.make_dataset(self.root, class_to_idx, self.extensions, is_valid_file) self.empty_classes = empty_classes self.classes = classes self.samples = samples self.class_to_idx = class_to_idx self.targets = [s[1] for s in self.samples] self.imgs = self.samples if class_mapping: # check class mapping dict first: for class_name in class_mapping: if class_name not in self.class_to_idx: raise ValueError(f"Class {class_name} is not in the dataset.") for class_name in self.class_to_idx: if class_name not in class_mapping: raise ValueError(f"Class {class_name} is not in the class mapping dict.") self.class_dict = {self.class_to_idx[k]: class_mapping[k] for k in self.class_to_idx} else: self.class_dict = {self.class_to_idx[k]: k for k in self.class_to_idx} @staticmethod def make_dataset( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: """Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk. Args: directory (String): root dataset directory, corresponding to ``self.root``. class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. extensions (Optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (Optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. Raises: ValueError: In case ``class_to_idx`` is empty. ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. FileNotFoundError: In case no valid file was found for any class. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class) """ if class_to_idx is None: # prevent potential bug since make_dataset() would use the class_to_idx logic of the # find_classes() function, instead of using that of the find_classes() method, which # is potentially overridden and thus could have a different logic. raise ValueError( "The class_to_idx parameter cannot be None." ) return _make_dataset(directory, class_to_idx, extensions=extensions, is_valid_file=is_valid_file, return_empty_class=True)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/dataloader/datasets/image_datasets.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric-learning recognition datasets module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/metric_learning_recognition/dataloader/datasets/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DINO module.""" # Temporarily override torch versioning from DLFW so that we disable warning from fairscale # about torch version during ddp_sharded training. Fairscale doesn't handle commit versions well # E.g. 1.13.0a0+d0d6b1f import torch import re numbering = re.search(r"^(\d+).(\d+).(\d+)([^\+]*)(\+\S*)?$", torch.__version__) torch.__version__ = ".".join([str(numbering.group(n)) for n in range(1, 4)])
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DINO config module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from typing import Optional, List, Dict from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class DINODatasetConvertConfig: """Dataset Convert config.""" input_source: Optional[str] = None data_root: Optional[str] = None results_dir: str = MISSING image_dir_name: Optional[str] = None label_dir_name: Optional[str] = None val_split: int = 0 num_shards: int = 20 num_partitions: int = 1 partition_mode: Optional[str] = None image_extension: str = ".jpg" mapping_path: Optional[str] = None @dataclass class DINOAugmentationConfig: """Augmentation config.""" scales: List[int] = field(default_factory=lambda: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800], metadata={"description": "Random Scales for Augmentation"}) input_mean: List[float] = field(default_factory=lambda: [0.485, 0.456, 0.406], metadata={"description": "Pixel mean value"}) input_std: List[float] = field(default_factory=lambda: [0.229, 0.224, 0.225], metadata={"description": "Pixel Standard deviation value"}) train_random_resize: List[int] = field(default_factory=lambda: [400, 500, 600], metadata={"description": "Training Randome Resize"}) horizontal_flip_prob: float = 0.5 train_random_crop_min: int = 384 train_random_crop_max: int = 600 random_resize_max_size: int = 1333 test_random_resize: int = 800 fixed_padding: bool = True @dataclass class DINODatasetConfig: """Dataset config.""" train_sampler: str = "default_sampler" train_data_sources: Optional[List[Dict[str, str]]] = None val_data_sources: Optional[List[Dict[str, str]]] = None test_data_sources: Optional[Dict[str, str]] = None infer_data_sources: Optional[Dict[str, str]] = None batch_size: int = 4 workers: int = 8 pin_memory: bool = True dataset_type: str = "serialized" num_classes: int = 91 eval_class_ids: Optional[List[int]] = None augmentation: DINOAugmentationConfig = DINOAugmentationConfig() @dataclass class DINOModelConfig: """DINO model config.""" pretrained_backbone_path: Optional[str] = None backbone: str = "resnet_50" num_queries: int = 300 num_feature_levels: int = 4 cls_loss_coef: float = 2.0 bbox_loss_coef: float = 5.0 giou_loss_coef: float = 2.0 # DINO training specific interm_loss_coef: float = 1.0 num_select: int = 300 no_interm_box_loss: bool = False # DINO model arch specific pre_norm: bool = False # Add layer norm in encoder or not two_stage_type: str = 'standard' decoder_sa_type: str = 'sa' embed_init_tgt: bool = True fix_refpoints_hw: int = -1 pe_temperatureH: int = 20 pe_temperatureW: int = 20 return_interm_indices: List[int] = field(default_factory=lambda: [1, 2, 3, 4], metadata={"description": "Indices to return from backbone"}) # for DN use_dn: bool = True dn_number: int = 100 dn_box_noise_scale: float = 1.0 dn_label_noise_ratio: float = 0.5 focal_alpha: float = 0.25 clip_max_norm: float = 0.1 dropout_ratio: float = 0.0 hidden_dim: int = 256 nheads: int = 8 enc_layers: int = 6 dec_layers: int = 6 dim_feedforward: int = 2048 dec_n_points: int = 4 enc_n_points: int = 4 aux_loss: bool = True dilation: bool = False train_backbone: bool = True loss_types: List[str] = field(default_factory=lambda: ['labels', 'boxes'], metadata={"description": "Losses to be used during training"}) backbone_names: List[str] = field(default_factory=lambda: ["backbone.0"], metadata={"description": "Backbone name"}) linear_proj_names: List[str] = field(default_factory=lambda: ['reference_points', 'sampling_offsets'], metadata={"description": "Linear Projection names"}) @dataclass class OptimConfig: """Optimizer config.""" optimizer: str = "AdamW" monitor_name: str = "val_loss" # {val_loss, train_loss} lr: float = 2e-4 lr_backbone: float = 2e-5 lr_linear_proj_mult: float = 0.1 momentum: float = 0.9 weight_decay: float = 1e-4 lr_scheduler: str = "MultiStep" lr_steps: List[int] = field(default_factory=lambda: [11], # 11, 20, 30 metadata={"description": "learning rate decay steps"}) lr_step_size: int = 11 lr_decay: float = 0.1 @dataclass class DINOTrainExpConfig: """Train experiment config.""" num_gpus: int = 1 num_nodes: int = 1 resume_training_checkpoint_path: Optional[str] = None pretrained_model_path: Optional[str] = None validation_interval: int = 1 clip_grad_norm: float = 0.1 is_dry_run: bool = False conf_threshold: float = 0.0 results_dir: Optional[str] = None num_epochs: int = 12 # 12, 24, 36 checkpoint_interval: int = 1 optim: OptimConfig = OptimConfig() precision: str = "fp32" distributed_strategy: str = "ddp" activation_checkpoint: bool = True @dataclass class DINOInferenceExpConfig: """Inference experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None color_map: Dict[str, str] = MISSING conf_threshold: float = 0.5 is_internal: bool = False input_width: Optional[int] = None input_height: Optional[int] = None @dataclass class DINOEvalExpConfig: """Evaluation experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None input_width: Optional[int] = None input_height: Optional[int] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None conf_threshold: float = 0.0 @dataclass class CalibrationConfig: """Calibration config.""" cal_image_dir: List[str] = MISSING cal_cache_file: str = MISSING cal_batch_size: int = 1 cal_batches: int = 1 @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class DINOExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 checkpoint: str = MISSING onnx_file: str = MISSING on_cpu: bool = False input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False @dataclass class DINOGenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: DINOModelConfig = DINOModelConfig() dataset: DINODatasetConfig = DINODatasetConfig() train: DINOTrainExpConfig = DINOTrainExpConfig() evaluate: DINOEvalExpConfig = DINOEvalExpConfig() inference: DINOInferenceExpConfig = DINOInferenceExpConfig() export: DINOExportExpConfig = DINOExportExpConfig() gen_trt_engine: DINOGenTrtEngineExpConfig = DINOGenTrtEngineExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Generates TRT compatible DDETR onnx model. """ import torch from torch.onnx import register_custom_op_symbolic import onnx import numpy as np import onnx_graphsurgeon as gs # register plugin def nvidia_msda(g, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights): """Returns nvidia_msda.""" return g.op("nvidia::MultiscaleDeformableAttnPlugin_TRT", value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) class ONNXExporter(object): """Onnx Exporter""" @classmethod def setUpClass(cls): """SetUpclass to set the manual seed for reproduceability""" torch.manual_seed(123) def export_model(self, model, batch_size, onnx_file, dummy_input, do_constant_folding=False, opset_version=12, output_names=None, input_names=None, verbose=False): """ Export_model. The do_constant_folding = False avoids MultiscaleDeformableAttnPlugin_TRT error (tensors on 2 devices) when torch > 1.9.0. However, it would cause tensorrt 8.0.3.4 (nvcr.io/nvidia/pytorch:21.11-py3 env) reports clip node error. This error is fixed in tensorrt >= 8.2.1.8 (nvcr.io/nvidia/tensorrt:22.01-py3). Args: model (nn.Module): torch model to export. batch_size (int): batch size of the ONNX model. -1 means dynamic batch size. onnx_file (str): output path of the onnx file. dummy_input (torch.Tensor): input tensor. do_constant_folding (bool): flag to indicate whether to fold constants in the ONNX model. opset_version (int): opset_version of the ONNX file. output_names (str): output names of the ONNX file. input_names (str): input names of the ONNX file. verbose (bool): verbosity level. """ if batch_size is None or batch_size == -1: dynamic_axes = {"inputs": {0: "batch"}, "pred_logits": {0: "batch"}, "pred_boxes": {0: "batch"}} else: dynamic_axes = None # CPU version requires opset_version > 16 if not next(model.parameters()).is_cuda and opset_version < 16: print(f"CPU version of Deformable MHA requires opset version larger than 16. Overriding provided opset {opset_version} to 16.") opset_version = 16 register_custom_op_symbolic('nvidia::MultiscaleDeformableAttnPlugin_TRT', nvidia_msda, opset_version) torch.onnx.export(model, dummy_input, onnx_file, input_names=input_names, output_names=output_names, export_params=True, training=torch.onnx.TrainingMode.EVAL, opset_version=opset_version, do_constant_folding=do_constant_folding, custom_opsets={"nvidia": 1}, verbose=verbose, dynamic_axes=dynamic_axes) @staticmethod def check_onnx(onnx_file): """Check onnx file. Args: onnx_file (str): path to ONNX file. """ model = onnx.load(onnx_file) onnx.checker.check_model(model) @staticmethod def onnx_change(onnx_file): """Make dino onnx compatible with TRT. Additionally, fold constants. Args: onnx_file (str): path to ONNX file. """ graph = gs.import_onnx(onnx.load(onnx_file)) for node in graph.nodes: if node.op == "MultiscaleDeformableAttnPlugin_TRT": node.attrs = {"name": "MultiscaleDeformableAttnPlugin_TRT", "version": "1", "namespace": ""} new_inputs = [] for i, inp in enumerate(node.inputs): if i in (1, 2) and hasattr(inp, "values"): new_inp = gs.Constant(name=inp.name, values=inp.values.astype(np.int32)) new_inputs.append(new_inp) else: new_inputs.append(inp) node.inputs = new_inputs # Setting constant folding in torch result in error due to some layers still in CPU # Constant folding is required to replace K value in TopK as doesn't support dynamic K value # Limit workspace size to 1GB to disable folding for MatMul graph.fold_constants(size_threshold=1024 * 1024 * 1024) graph.cleanup().toposort() onnx.save(gs.export_onnx(graph), onnx_file)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/utils/onnx_export.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DINO utils module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ODDataset to sharded json format.""" import os import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.dino.config.default_config import DINODatasetConvertConfig from nvidia_tao_pytorch.cv.deformable_detr.scripts.convert import run_experiment spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="convert", schema=DINODatasetConvertConfig ) def main(cfg: DINODatasetConvertConfig) -> None: """Run the convert dataset process.""" try: run_experiment(experiment_config=cfg, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Dataset convert finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Dataset convert was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/scripts/convert.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DINO scripts module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Export DINO model to ONNX.""" import os import torch import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.core.utilities import update_results_dir from nvidia_tao_pytorch.cv.action_recognition.utils.common_utils import check_and_create, encrypt_onnx from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.cv.dino.utils.onnx_export import ONNXExporter from nvidia_tao_pytorch.cv.dino.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.dino.model.pl_dino_model import DINOPlModel spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="export", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """CLI wrapper to run export. This function parses the command line interface for tlt-export, instantiates the respective exporter and serializes the trained model to an etlt file. The tools also runs optimization to the int8 backend. Args: cl_args(list): Arguments to parse. Returns: No explicit returns. """ try: torch.backends.cudnn.allow_tf32 = False torch.backends.cuda.matmul.allow_tf32 = False cfg = update_results_dir(cfg, task="export") run_export(cfg, cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Export finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Export was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e def run_export(experiment_config, results_dir): """Wrapper to run export of tlt models. Args: args (dict): Dictionary of parsed arguments to run export. Returns: No explicit returns. """ check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting DINO export" ) gpu_id = experiment_config.export.gpu_id torch.cuda.set_device(gpu_id) # Parsing command line arguments. model_path = experiment_config.export.checkpoint key = experiment_config.encryption_key # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) output_file = experiment_config.export.onnx_file input_channel = experiment_config.export.input_channel input_width = experiment_config.export.input_width input_height = experiment_config.export.input_height opset_version = experiment_config.export.opset_version batch_size = experiment_config.export.batch_size on_cpu = experiment_config.export.on_cpu if batch_size is None or batch_size == -1: input_batch_size = 1 else: input_batch_size = batch_size # Set default output filename if the filename # isn't provided over the command line. if output_file is None: split_name = os.path.splitext(model_path)[0] output_file = "{}.onnx".format(split_name) # Warn the user if an exported file already exists. assert not os.path.exists(output_file), "Default onnx file {} already "\ "exists".format(output_file) # Make an output directory if necessary. output_root = os.path.dirname(os.path.realpath(output_file)) if not os.path.exists(output_root): os.makedirs(output_root) # load model pl_model = DINOPlModel.load_from_checkpoint(model_path, map_location='cpu' if on_cpu else 'cuda', experiment_spec=experiment_config, export=True) model = pl_model.model model.eval() if not on_cpu: model.cuda() input_names = ['inputs'] output_names = ["pred_logits", "pred_boxes"] # create dummy input if on_cpu: dummy_input = torch.ones(input_batch_size, input_channel, input_height, input_width, device='cpu') else: dummy_input = torch.ones(input_batch_size, input_channel, input_height, input_width, device='cuda') if output_file.endswith('.etlt'): tmp_onnx_file = output_file.replace('.etlt', '.onnx') else: tmp_onnx_file = output_file onnx_export = ONNXExporter() onnx_export.export_model(model, batch_size, tmp_onnx_file, dummy_input, input_names=input_names, opset_version=opset_version, output_names=output_names, do_constant_folding=False, verbose=experiment_config.export.verbose) onnx_export.check_onnx(tmp_onnx_file) onnx_export.onnx_change(tmp_onnx_file) if output_file.endswith('.etlt') and key: # encrypt the onnx if and only if key is provided and output file name ends with .etlt encrypt_onnx(tmp_file_name=tmp_onnx_file, output_file_name=output_file, key=key) os.remove(tmp_onnx_file) print(f"ONNX file stored at {output_file}") if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/scripts/export.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train DINO model.""" import os import re from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from nvidia_tao_pytorch.core.callbacks.loggers import TAOStatusLogger from nvidia_tao_pytorch.core.connectors.checkpoint_connector import TLTCheckpointConnector from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.core.utilities import update_results_dir import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.dino.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.dino.model.pl_dino_model import DINOPlModel from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_data_module import ODDataModule from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import check_and_create def run_experiment(experiment_config, results_dir, key): """Start the training.""" # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) dm = ODDataModule(experiment_config.dataset) # find_unuser_parameters=False and activation_checkpoint combination # requires every output in forward function to participate in # loss calculation. When return_interm_indices < 4, we must disable # activation checkpointing if experiment_config.train.activation_checkpoint and \ len(experiment_config.model.return_interm_indices) < 4 and \ experiment_config.train.num_gpus > 1: experiment_config.train.activation_checkpoint = False print("Disabling activation checkpointing since model is smaller") activation_checkpoint = experiment_config.train.activation_checkpoint # Load pretrained model as starting point if pretrained path is provided, pretrained_path = experiment_config.train.pretrained_model_path if pretrained_path is not None: pt_model = DINOPlModel.load_from_checkpoint(pretrained_path, map_location="cpu", experiment_spec=experiment_config) else: pt_model = DINOPlModel(experiment_config) total_epochs = experiment_config.train.num_epochs check_and_create(results_dir) status_logger_callback = TAOStatusLogger( results_dir, append=True, num_epochs=total_epochs ) status_logging.set_status_logger(status_logger_callback.logger) num_gpus = experiment_config.train.num_gpus num_nodes = experiment_config.train.num_nodes validation_interval = experiment_config.train.validation_interval ckpt_inter = experiment_config.train.checkpoint_interval assert ckpt_inter <= total_epochs, ( f"Checkpoint interval {ckpt_inter} > Number of epochs {total_epochs}." f"Please set experiment_config.train.checkpoint_interval < {total_epochs}" ) assert validation_interval <= total_epochs, ( f"Validation interval {validation_interval} > Number of epochs {total_epochs}." f"Please set experiment_config.train.validation_interval < {total_epochs}" ) clip_grad_norm = experiment_config.train.clip_grad_norm is_dry_run = experiment_config.train.is_dry_run distributed_strategy = experiment_config.train.distributed_strategy if experiment_config.train.precision.lower() in ["fp16", "fp32"]: precision = int(experiment_config.train.precision.replace("fp", "")) else: raise NotImplementedError(f"{experiment_config.train.precision} is not supported. Only fp32 and fp16 are supported") sync_batchnorm = False strategy = None if num_gpus > 1: # By default find_unused_parameters is set to True in Lightning for backward compatibility # This introduces extra overhead and can't work with activation checkpointing # Ref: https://pytorch-lightning.readthedocs.io/en/1.8.5/advanced/model_parallel.html#when-using-ddp-strategies-set-find-unused-parameters-false # TODO: Starting from PTL 2.0, find_usued_parameters is set to False by default if distributed_strategy.lower() == "ddp" and activation_checkpoint: strategy = DDPStrategy(find_unused_parameters=False) elif distributed_strategy.lower() == "ddp" and not activation_checkpoint: strategy = 'ddp' elif distributed_strategy.lower() == "ddp_sharded": strategy = 'ddp_sharded' # Override to FP16 for ddp_sharded as there's an error with FP32 during Positional Embedding forward pass print("Overriding Precision to FP16 for ddp_sharded") precision = 16 else: raise NotImplementedError(f"{distributed_strategy} is not implemented. Only ddp and ddp_sharded are supported") if "fan" in experiment_config.model.backbone: print("Setting sync batch norm") sync_batchnorm = True trainer = Trainer(devices=num_gpus, num_nodes=num_nodes, max_epochs=total_epochs, check_val_every_n_epoch=validation_interval, default_root_dir=results_dir, accelerator='gpu', strategy=strategy, precision=precision, gradient_clip_val=clip_grad_norm, replace_sampler_ddp=False, sync_batchnorm=sync_batchnorm, fast_dev_run=is_dry_run) # Overload connector to enable intermediate ckpt encryption & decryption. resume_ckpt = experiment_config.train.resume_training_checkpoint_path if resume_ckpt and resume_ckpt.endswith('.tlt'): if resume_ckpt is not None: trainer._checkpoint_connector = TLTCheckpointConnector(trainer, resume_from_checkpoint=resume_ckpt) else: trainer._checkpoint_connector = TLTCheckpointConnector(trainer) resume_ckpt = None # setup checkpointer: ModelCheckpoint.FILE_EXTENSION = ".pth" checkpoint_callback = ModelCheckpoint(every_n_epochs=ckpt_inter, dirpath=results_dir, save_on_train_epoch_end=True, monitor=None, save_top_k=-1, filename='dino_model_{epoch:03d}') if resume_ckpt: status_logging.get_status_logger().write( message=f"Resuming training from checkpoint: {resume_ckpt}", status_level=status_logging.Status.STARTED ) resumed_epoch = re.search('epoch=(\\d+)', resume_ckpt) if resumed_epoch: resumed_epoch = int(resumed_epoch.group(1)) else: resumed_epoch = 0 status_logger_callback.epoch_counter = resumed_epoch + 1 # make sure callback epoch matches resumed epoch trainer.callbacks.append(status_logger_callback) trainer.callbacks.append(checkpoint_callback) trainer.fit(pt_model, dm, ckpt_path=resume_ckpt or None) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="train", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the training process.""" try: cfg = update_results_dir(cfg, task="train") run_experiment(experiment_config=cfg, key=cfg.encryption_key, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Training finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Training was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/scripts/train.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Inference on single patch. """ import os from pytorch_lightning import Trainer import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.utilities import update_results_dir from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_data_module import ODDataModule from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import check_and_create from nvidia_tao_pytorch.cv.dino.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.dino.model.pl_dino_model import DINOPlModel def run_experiment(experiment_config, model_path, key, results_dir=None): """Start the inference.""" if not model_path: raise FileNotFoundError("inference.checkpoint is not set!") # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting DINO inference" ) # tlt inference if model_path.endswith('.tlt') or model_path.endswith('.pth'): num_gpus = experiment_config.inference.num_gpus # build data module dm = ODDataModule(experiment_config.dataset) dm.setup(stage="predict") # Run inference using tlt model acc_flag = None if num_gpus > 1: acc_flag = "ddp" model = DINOPlModel.load_from_checkpoint(model_path, map_location="cpu", experiment_spec=experiment_config) trainer = Trainer(devices=num_gpus, default_root_dir=results_dir, accelerator='gpu', strategy=acc_flag) trainer.predict(model, datamodule=dm) elif model_path.endswith('.engine'): raise NotImplementedError("TensorRT inference is supported through tao-deploy. " "Please use tao-deploy to generate TensorRT enigne and run inference.") else: raise NotImplementedError("Model path format is only supported for .tlt or .pth") spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="infer", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the inference process.""" try: cfg = update_results_dir(cfg, task="inference") run_experiment(experiment_config=cfg, key=cfg.encryption_key, model_path=cfg.inference.checkpoint, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Inference finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Inference was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluate a trained DINO model.""" import os from pytorch_lightning import Trainer import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.core.utilities import update_results_dir from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_data_module import ODDataModule from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import check_and_create from nvidia_tao_pytorch.cv.dino.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.dino.model.pl_dino_model import DINOPlModel def run_experiment(experiment_config, model_path, key, results_dir=None): """Run experiment.""" if not model_path: raise FileNotFoundError("evaluate.checkpoint is not set!") # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting DINO evaluation" ) # tlt inference if model_path.endswith('.tlt') or model_path.endswith('.pth'): # build dataloader dm = ODDataModule(experiment_config.dataset) dm.setup(stage="test") # build model and load from the given checkpoint model = DINOPlModel.load_from_checkpoint(model_path, map_location="cpu", experiment_spec=experiment_config) num_gpus = experiment_config.evaluate.num_gpus acc_flag = None if num_gpus > 1: acc_flag = "ddp" trainer = Trainer(devices=num_gpus, default_root_dir=results_dir, accelerator='gpu', strategy=acc_flag) trainer.test(model, datamodule=dm) elif model_path.endswith('.engine'): raise NotImplementedError("TensorRT evaluation is supported through tao-deploy. " "Please use tao-deploy to generate TensorRT enigne and run evaluation.") else: raise NotImplementedError("Model path format is only supported for .tlt or .pth") spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="evaluate", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the evaluate process.""" try: cfg = update_results_dir(cfg, task="evaluate") run_experiment(experiment_config=cfg, key=cfg.encryption_key, model_path=cfg.evaluate.checkpoint, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Evaluation finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Evaluation was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script for the DINO task."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """'Entry point' script running subtasks related to DINO.""" import importlib import os import pkgutil import argparse import subprocess import sys from time import time import nvidia_tao_pytorch.cv.dino.scripts as scripts from nvidia_tao_pytorch.core.telemetry.nvml_utils import get_device_details from nvidia_tao_pytorch.core.telemetry.telemetry import send_telemetry_data def get_subtasks(package): """Get supported subtasks for a given task. This function lists out the tasks in in the .scripts folder. Returns: subtasks (dict): Dictionary of files. """ module_path = package.__path__ modules = {} # Collect modules dynamically. for _, task, is_package in pkgutil.walk_packages(module_path): if is_package: continue module_name = package.__name__ + '.' + task module_details = { "module_name": module_name, "runner_path": os.path.abspath(importlib.import_module(module_name).__file__), } modules[task] = module_details return modules def launch(parser, subtasks, network=None): """CLI function that executes subtasks. Args: parser: Created parser object for a given task. subtasks: list of subtasks for a given task. network (str): Name of the network. """ # Subtasks for a given model. parser.add_argument( 'subtask', default='train', choices=subtasks.keys(), help="Subtask for a given task/model.", ) # Add standard TLT arguments. parser.add_argument( "-r", "--results_dir", help="Path to a folder where the experiment outputs should be written.", default=None, required=False, ) parser.add_argument( "--gpus", help="Number of GPUs to run the train subtask.", default=None, type=int, ) parser.add_argument( "--num_nodes", help="Number of nodes to run the train subtask.", default=None, type=int ) parser.add_argument("-k", "--key", help="User specific encoding key to save or load a .tlt model.") parser.add_argument("-e", "--experiment_spec_file", help="Path to the experiment spec file.", default=None) # Parse the arguments. args, unknown_args = parser.parse_known_args() script_args = "" # Process spec file for all commands except the one for getting spec files ;) # Make sure the user provides spec file. if args.experiment_spec_file is None: print("ERROR: The subtask `{}` requires the following argument: -e/--experiment_spec_file".format(args.subtask)) exit(1) # Make sure the file exists! if not os.path.exists(args.experiment_spec_file): print("ERROR: The indicated experiment spec file `{}` doesn't exist!".format(args.experiment_spec_file)) exit(1) # Split spec file_path into config path and config name. path, name = os.path.split(args.experiment_spec_file) if path != '': script_args += " --config-path " + os.path.realpath(path) script_args += " --config-name " + name # And add other params AFTERWARDS! if args.results_dir: script_args += " results_dir=" + args.results_dir if args.subtask in ["train", "evaluate", "inference"]: if args.gpus: script_args += f" {args.subtask}.num_gpus={args.gpus}" if args.subtask in ["train"]: if args.num_nodes: script_args += f" {args.subtask}.num_nodes={args.num_nodes}" # Add encryption key. if args.subtask in ["train", "evaluate", "inference", "export"]: if args.key is not None: script_args += " encryption_key=" + args.key # Find relevant module and pass args. script = subtasks[args.subtask]["runner_path"] # Pass unknown args to call unknown_args_as_str = " ".join(unknown_args) # Create a system call. call = "python " + script + script_args + " " + unknown_args_as_str process_passed = True start = time() try: # Run the script. subprocess.check_call(call, shell=True, stdout=sys.stdout, stderr=sys.stdout) except (KeyboardInterrupt, SystemExit): print("Command was interrupted.") process_passed = True except subprocess.CalledProcessError as e: if e.output is not None: print(e.output) process_passed = False end = time() time_lapsed = int(end - start) try: gpu_data = list() for device in get_device_details(): gpu_data.append(device.get_config()) send_telemetry_data( network, args.subtask, gpu_data, num_gpus=args.gpus, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: print("Telemetry data couldn't be sent, but the command ran successfully.") print(f"[Error]: {e}") pass if not process_passed: print("Execution status: FAIL") exit(1) # returning non zero return code from the process. print("Execution status: PASS") def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "dino", add_help=True, description="TAO Toolkit" ) # Build list of subtasks by inspecting the package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="dino") if __name__ == '__main__': main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/entrypoint/dino.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Model functions. """ import torch from torch import nn, Tensor import math import torch.nn.functional as F def gen_encoder_output_proposals(memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh: Tensor = None, export: bool = False): """Generate proposals from the output of the encoder. Args: memory (torch.Tensor): bs, r'\'sum{hw}, d_model memory_padding_mask (torch.Tensor): bs, r'\'sum{hw} spatial_shapes (torch.Tensor): nlevel, 2 learnedwh (torch.Tensor): 2 export (bool): whether the model is in export stage. Returns: output_memory (torch.Tensor): bs, r'\'sum{hw}, d_model output_proposals (torch.Tensor): bs, r'\'sum{hw}', 4 """ N_, _, _ = memory.shape proposals = [] _cur = 0 for lvl, (H_, W_) in enumerate(spatial_shapes): if export: # Fixed dimensions for export in onnx H_, W_ = int(H_), int(W_) else: H_, W_ = spatial_shapes[lvl, 0], spatial_shapes[lvl, 1] mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device)) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2 scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale if learnedwh is not None: wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0 ** lvl) else: wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) proposals.append(proposal) _cur += (H_ * W_) output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf')) output_memory = memory output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) return output_memory, output_proposals class RandomBoxPerturber(): """Random Box Perturber Class.""" def __init__(self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2) -> None: """Initialize RandomBoxPerturber Class. Args: x_noise_scale (float): scale of noise applied to x dimension y_noise_scale (float): scale of noise applied to y dimension w_noise_scale (float): scale of noise applied to w dimension h_noise_scale (float): scale of noise applied to h dimension """ self.noise_scale = torch.Tensor([x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]) def __call__(self, refanchors: Tensor) -> Tensor: """Call function.""" _, _, query_dim = refanchors.shape device = refanchors.device noise_raw = torch.rand_like(refanchors) noise_scale = self.noise_scale.to(device)[:query_dim] new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale) return new_refanchors.clamp_(0, 1) class MLP(nn.Module): """Simple multi-layer perceptron (FFN).""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): """FFN Initialization. Args: input_dim (int): input dimension. hidden_dim (int): hidden dimension. output_dim (int): output dimension. num_layers (int): number of layers. """ super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): """Forward function.""" for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (torch.Tensor): A float tensor of arbitrary shape. The predictions for each example. targets (torch.Tensor): A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha (float): (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma (float): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes def _get_activation_fn(activation): """Return an activation function given a string. Args: activation (str): type of activation function. Returns: PyTorch activation layer. Raises: RuntimeError: if unsupported activation type is provided. """ if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu if activation == "prelu": return nn.PReLU() if activation == "selu": return F.selu raise RuntimeError(F"activation should be relu/gelu/glu/prelu/selu, not {activation}.") def gen_sineembed_for_position(pos_tensor): """Generate sine embedding for position encoding. Args: pos_tensor (torch.Tensor): Positional Encoding. Returns: pos (torch.Tensor): Sine Embedding. """ # n_query, bs, _ = pos_tensor.size() # sineembed_tensor = torch.zeros(n_query, bs, 256) scale = 2 * math.pi dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * (dim_t // 2) / 128) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.shape[-1] == 2: pos = torch.cat((pos_y, pos_x), dim=2) elif pos_tensor.shape[-1] == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) return pos
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/model_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Matcher module. """ import torch from torch import nn from scipy.optimize import linear_sum_assignment from nvidia_tao_pytorch.cv.deformable_detr.utils.box_ops import box_cxcywh_to_xyxy, generalized_box_iou class HungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, focal_alpha: float = 0.25): """Creates the matcher. Args: cost_class (float): This is the relative weight of the classi dfication error in the matching cost. cost_bbox (float): This is the relative weight of the L1 error of the bounding box coordinates in the matching cost. cost_giou (float): This is the relative weight of the giou loss of the bounding box in the matching cost. """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" self.focal_alpha = focal_alpha @torch.no_grad() def forward(self, outputs, targets): """ Performs the matching Args: outputs (dict): This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets (dict): This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = self.focal_alpha gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] class SimpleMinsumMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, focal_alpha: float = 0.25): """Creates the matcher. Args: cost_class (float): This is the relative weight of the classification error in the matching cost cost_bbox (float): This is the relative weight of the L1 error of the bounding box coordinates in the matching cost cost_giou (float): This is the relative weight of the giou loss of the bounding box in the matching cost """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" self.focal_alpha = focal_alpha @torch.no_grad() def forward(self, outputs, targets): """ Performs the matching. Args: outputs (dict): This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets (dict): This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = self.focal_alpha gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1) sizes = [len(v["boxes"]) for v in targets] indices = [] device = C.device for i, (c, _size) in enumerate(zip(C.split(sizes, -1), sizes)): weight_mat = c[i] idx_i = weight_mat.min(0)[1] idx_j = torch.arange(_size).to(device) indices.append((idx_i, idx_j)) return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/matcher.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FAN Backbone for DINO""" import math from functools import partial import warnings import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, trunc_normal_, to_2tuple from nvidia_tao_pytorch.cv.backbone.convnext_utils import _create_hybrid_backbone from nvidia_tao_pytorch.cv.backbone.fan import (PositionalEncodingFourier, Mlp, ConvPatchEmbed, ClassAttentionBlock, adaptive_avg_pool) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, patch_size=2, feature_size=None, in_chans=3, embed_dim=384): """Initialize HybridEmbedding class""" super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # NOTE Most reliable way of determining output dims is to run forward pass training = backbone.training if training: backbone.eval() o = self.backbone.forward_features(torch.zeros(1, in_chans, img_size[0], img_size[1])) if isinstance(o, (list, tuple)): o = o[-1] # last feature if backbone outputs list/tuple of features feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) if hasattr(self.backbone, 'feature_info'): feature_dim = self.backbone.feature_info[-1]['num_chs'] else: feature_dim = self.backbone.num_features assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0 self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, return_feat=False): """Forward function""" x, out_list = self.backbone.forward_features(x, return_feat=return_feat) _, _, H, W = x.shape if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.proj(x).flatten(2).transpose(1, 2) if return_feat: return x, (H // self.patch_size[0], W // self.patch_size[1]), out_list return x, (H // self.patch_size[0], W // self.patch_size[1]) class ChannelProcessing(nn.Module): """Channel Processing""" def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., mlp_hidden_dim=None, act_layer=nn.GELU, drop=None, norm_layer=nn.LayerNorm, cha_sr_ratio=1): """Initialize ChannelProcessing class""" super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.cha_sr_ratio = cha_sr_ratio if num_heads > 1 else 1 self.mlp_v = Mlp(in_features=dim // self.cha_sr_ratio, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.norm_v = norm_layer(dim // self.cha_sr_ratio) self.q = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.apply(self._init_weights) def _init_weights(self, m): """Initialize weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _gen_attn(self, q, k): """Returns attention""" _, _, N, _ = k.shape if torch.onnx.is_in_onnx_export(): # If softmax dim is not the last dimension, then PyTorch decompose the softmax ops into # smaller ops like ReduceMax, ReduceSum, Sub, and Div. # As a result, ONNX export fails for opset_version >= 12. # Here, we rearrange the transpose so that softmax is done over the last dimension. q = q.transpose(-1, -2).softmax(-1) k = k.transpose(-1, -2).softmax(-1) warnings.warn("Replacing default adatpive_avg_pool2d to custom implementation for ONNX export") # adaptive_avg_pool2d is not supported for torch to onnx export k = adaptive_avg_pool(k.transpose(-1, -2), (N, 1)) else: q = q.softmax(-2).transpose(-1, -2) k = torch.nn.functional.adaptive_avg_pool2d(k.softmax(-2), (N, 1)) attn = torch.sigmoid(q @ k) return attn * self.temperature def forward(self, x, H, W): """Forward functions """ _, N, C = x.shape v = x.reshape(-1, N, self.num_heads, C // self.num_heads // self.cha_sr_ratio).permute(0, 2, 1, 3) q = self.q(x).reshape(-1, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = x.reshape(-1, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = self._gen_attn(q, k) attn = self.attn_drop(attn) Bv, Hd, Nv, Cv = v.shape v = self.norm_v(self.mlp_v(v.transpose(1, 2).reshape(Bv, Nv, Hd * Cv), H, W)).reshape(Bv, Nv, Hd, Cv).transpose(1, 2) repeat_time = N // attn.shape[-1] attn = attn.repeat_interleave(repeat_time, dim=-1) if attn.shape[-1] > 1 else attn x = (attn * v.transpose(-1, -2)).permute(0, 3, 1, 2).reshape(-1, N, C) return x, attn * v.transpose(-1, -2) @torch.jit.ignore def no_weight_decay(self): """Ignore during weight decay""" return {'temperature'} class TokenMixing(nn.Module): """Token Mixing""" def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): """Initialize TokenMixing class""" super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.fast_attn = hasattr(torch._C._nn, '_scaled_dot_product_attention') # pylint:disable=I1101 cha_sr = 1 self.q = nn.Linear(dim, dim // cha_sr, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2 // cha_sr, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.apply(self._init_weights) def _init_weights(self, m): """Initialize weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x): """Forward function""" B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] if torch.onnx.is_in_onnx_export() or not self.fast_attn: attn = (q * self.scale @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) else: # Since Torch 1.14, scaled_dot_product_attention has been optimized for performance x, attn = F._scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p, ) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class FANBlock(nn.Module): """FAN block from https://arxiv.org/abs/2204.12451""" def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, eta=1.): """Initialize FANBlock class""" super().__init__() self.norm1 = norm_layer(dim) self.attn = TokenMixing(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = ChannelProcessing(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, drop=drop, mlp_hidden_dim=int(dim * mlp_ratio)) self.gamma1 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) self.gamma2 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) self.H = None self.W = None def forward(self, x, attn=None, return_attention=False): """Forward function""" H, W = self.H, self.W x_new, attn = self.attn(self.norm1(x)) x = x + self.drop_path(self.gamma1 * x_new) x_new, attn = self.mlp(self.norm2(x), H, W) x = x + self.drop_path(self.gamma2 * x_new) self.H, self.W = H, W if return_attention: return attn return x class FAN(nn.Module): """FAN implementation from https://arxiv.org/abs/2204.12451 Based on timm https://github.com/rwightman/pytorch-image-models/tree/master/timm """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., backbone=None, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=False, out_index=-1, out_channels=None, out_indices=[0, 1, 2, 3], patch_embed="ConvNext", activation_checkpoint=True): """Initialize FAN class""" super(FAN, self).__init__() img_size = to_2tuple(img_size) self.activation_checkpoint = activation_checkpoint self.out_index = out_index self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim self.out_channels = out_channels norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU if patch_embed == "ConvNext": self.patch_embed = HybridEmbed(backbone=backbone, patch_size=2, embed_dim=embed_dim) else: self.patch_embed = ConvPatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, act_layer=act_layer) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.use_pos_embed = use_pos_embed if use_pos_embed: self.pos_embed = PositionalEncodingFourier(dim=embed_dim) self.pos_drop = nn.Dropout(p=drop_rate) build_block = FANBlock self.blocks = nn.ModuleList([ build_block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate, norm_layer=norm_layer, eta=eta) for _ in range(depth)]) self.cls_attn_blocks = nn.ModuleList([ ClassAttentionBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm) for _ in range(cls_attn_layers)]) self.out_indices = out_indices for i_layer in self.out_indices: layer = nn.LayerNorm(self.out_channels[i_layer]) layer_name = f'out_norm{i_layer}' self.add_module(layer_name, layer) self.learnable_downsample = nn.Conv2d(in_channels=embed_dim, out_channels=768, kernel_size=3, stride=2, padding=1, dilation=1, groups=1, bias=True) # Init weights trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): """Initialize weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): """layers to ignore for weight decay""" return {'pos_embed', 'cls_token'} def get_classifier(self): """Returns classifier""" return self.head def reset_classifier(self, num_classes, global_pool=''): """Redefine classifier of FAN""" self.num_classes = num_classes self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): """Extract features Args: x: tensor Returns: final_outs: dictionary containing indice name as key and indice feature as value """ outs = [] B = x.shape[0] if isinstance(self.patch_embed, HybridEmbed): x, (Hp, Wp), out_list = self.patch_embed(x, return_feat=True) outs = outs + out_list out_index = [self.out_index] else: x, (Hp, Wp) = self.patch_embed(x) if self.use_pos_embed: pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = self.pos_drop(x) for idx, blk in enumerate(self.blocks): blk.H, blk.W = Hp, Wp # Disable activation checkpointing during ONNX export if torch.onnx.is_in_onnx_export() or not self.activation_checkpoint: x = blk(x) else: x = checkpoint.checkpoint(blk, x) Hp, Wp = blk.H, blk.W if idx in out_index: outs.append(x.reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous()) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) for blk in self.cls_attn_blocks: x = blk(x) x = x[:, 1:, :].reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous() x = self.learnable_downsample(x) outs.append(x) final_outs = {} for i, out in enumerate(outs): if i in self.out_indices: out = out.permute(0, 2, 3, 1).contiguous() norm_layer = getattr(self, f'out_norm{i}') out = norm_layer(out) final_outs[f'p{i}'] = out.permute(0, 3, 1, 2).contiguous() del outs return final_outs def forward(self, x): """Forward functions""" outs = self.forward_features(x) return outs def get_last_selfattention(self, x): """Returns last self-attention""" B = x.shape[0] # x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches) x, (Hp, Wp) = self.patch_embed(x) if self.use_pos_embed: # `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C) pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = self.pos_drop(x) for blk in self.blocks: x = blk(x, Hp, Wp) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) attn = None for i, blk in enumerate(self.cls_attn_blocks): if i < len(self.blocks) - 1: x = blk(x) else: # return attention of the last block attn = blk(x, return_attention=True) return attn return attn def checkpoint_filter_fn(state_dict, model): """Filter loaded checkpoints""" if 'model' in state_dict: state_dict = state_dict['model'] use_pos_embed = getattr(model, 'pos_embed', None) is not None pos_embed_keys = [k for k in state_dict if k.startswith('pos_embed')] for k in pos_embed_keys: if use_pos_embed: state_dict[k.replace('pos_embeder.', 'pos_embed.')] = state_dict.pop(k) else: del state_dict[k] if 'cls_attn_blocks.0.attn.qkv.weight' in state_dict and 'cls_attn_blocks.0.attn.q.weight' in model.state_dict(): num_ca_blocks = len(model.cls_attn_blocks) for i in range(num_ca_blocks): qkv_weight = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.weight') qkv_weight = qkv_weight.reshape(3, -1, qkv_weight.shape[-1]) for j, subscript in enumerate('qkv'): state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.weight'] = qkv_weight[j] qkv_bias = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.bias', None) if qkv_bias is not None: qkv_bias = qkv_bias.reshape(3, -1) for j, subscript in enumerate('qkv'): state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.bias'] = qkv_bias[j] return state_dict def fan_tiny_8_p4_hybrid(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """FAN Hybrid Tiny Args: out_indices (list): List of block indices to return as feature """ depth = 8 model_args = dict(depths=[3, 3], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) model = FAN(patch_size=16, in_chans=3, num_classes=80, embed_dim=192, depth=depth, backbone=backbone, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, out_index=7, out_channels=[128, 256, 192, 768], out_indices=out_indices, activation_checkpoint=activation_checkpoint, **kwargs) return model def fan_small_12_p4_hybrid(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """FAN Hybrid Small Args: out_indices (list): List of block indices to return as feature """ depth = 10 model_args = dict(depths=[3, 3], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) model = FAN(patch_size=16, in_chans=3, num_classes=80, embed_dim=384, depth=depth, backbone=backbone, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, out_index=9, out_channels=[128, 256, 384, 768], out_indices=out_indices, activation_checkpoint=activation_checkpoint, **kwargs) return model def fan_base_12_p4_hybrid(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """FAN Hybrid Base Args: out_indices (list): List of block indices to return as feature """ depth = 16 model_args = dict(depths=[3, 3], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) model = FAN(patch_size=16, in_chans=3, num_classes=80, embed_dim=448, depth=depth, backbone=backbone, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, out_index=15, out_channels=[128, 256, 448, 768], out_indices=out_indices, activation_checkpoint=activation_checkpoint, **kwargs) return model def fan_large_12_p4_hybrid(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """FAN Hybrid Large Args: out_indices (list): List of block indices to return as feature """ depth = 22 model_args = dict(depths=[3, 5], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) model = FAN(patch_size=16, in_chans=3, num_classes=80, embed_dim=480, depth=depth, backbone=backbone, num_heads=10, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, out_index=18, out_channels=[128, 256, 480, 768], out_indices=out_indices, activation_checkpoint=activation_checkpoint, **kwargs) return model fan_model_dict = { 'fan_tiny': fan_tiny_8_p4_hybrid, 'fan_small': fan_small_12_p4_hybrid, 'fan_base': fan_base_12_p4_hybrid, 'fan_large': fan_large_12_p4_hybrid }
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/fan.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Backbone modules. """ import numpy as np import torch import torch.nn.functional as F from torch import nn from torchvision.models._utils import IntermediateLayerGetter from typing import Optional from typing import Dict, List from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import get_global_rank, load_pretrained_weights from nvidia_tao_pytorch.cv.deformable_detr.model.resnet import resnet50 from nvidia_tao_pytorch.cv.deformable_detr.model.backbone import FrozenBatchNorm2d from nvidia_tao_pytorch.cv.deformable_detr.model.gc_vit import gc_vit_model_dict from nvidia_tao_pytorch.cv.dino.model.fan import fan_model_dict class BackboneBase(nn.Module): """BackboneBase class.""" def __init__(self, model_name, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_indices: list, export: bool): """Initialize the Backbone Base Class. Args: model_name (str): backbone model name. backbone (nn.Module): backbone torch module. train_backbone (bool): flag whether we want to train the backbone or not. num_channels (int): channel size. return_interm_indices (list): list of layer indices to reutrn as backbone features. export (bool): flag to indicate whehter exporting to onnx or not. """ super().__init__() self.export = export self.model_name = model_name if 'resnet' in model_name: for name, parameter in backbone.named_parameters(): if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: parameter.requires_grad_(False) return_layers = {} # 4 scale: {'layer2': '1', 'layer3': '2', 'layer4': '3'} # 5 scale: {'layer1': '0', 'layer2': '1', 'layer3': '2', 'layer4': '3'} for layer_index in return_interm_indices: return_layers.update({"layer{}".format(layer_index + 1): "{}".format(layer_index)}) self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) elif 'fan' in model_name or 'gc_vit' in model_name: for name, parameter in backbone.named_parameters(): if not train_backbone: parameter.requires_grad_(False) # FAN Small case # 4 scale: {'patch_embed.backbone.stages.1': 'p1', 'blocks.9': 'p2', 'learnable_downsample': 'p4'} # 5 scale: {'patch_embed.backbone.stages.0': 'p0', 'patch_embed.backbone.stages.1': 'p1', 'blocks.9': 'p2', 'learnable_downsample': 'p4'} self.body = backbone self.num_channels = num_channels self.return_interm_indices = return_interm_indices def forward(self, input_tensors): """Forward function for Backboone base. Args: input_tensors (torch.Tensor): input tensor. Returns: out (torch.Tensor): output tensor. """ if self.export: batch_shape = input_tensors.shape dtype = input_tensors.dtype device = input_tensors.device # when exporting, the input shape is fixed and no padding mask is needed. masks = torch.zeros((batch_shape[0], 1, batch_shape[2], batch_shape[3]), dtype=dtype, device=device) input_tensor = input_tensors else: masks = input_tensors[:, 3:4] input_tensor = input_tensors[:, :3] xs = self.body(input_tensor) out: Dict[str, torch.Tensor] = {} for name, x in xs.items(): mask = F.interpolate(masks.float(), size=x.shape[-2:]) mask = mask.to(torch.bool) out[name] = (x, mask) return out class Backbone(BackboneBase): """Backbone for DINO.""" def __init__(self, name: str, pretrained_backbone_path: Optional[str], train_backbone: bool, return_interm_indices: list, dilation: bool, export: bool, activation_checkpoint: bool): """Initialize the Backbone Class. Args: pretrained_backbone_path (str): optional path to the pretrained backbone. train_backbone (bool): flag whether we want to train the backbone or not. return_interm_indices (list): list of layer indices to reutrn as backbone features. dilation (bool): flag whether we can to use dilation or not. export (bool): flag to indicate whehter exporting to onnx or not. activation_checkpoint (bool): flag to indicate whether to run activation checkpointing during training. Raises: ValueError: If return_interm_indices does not have valid range or has duplicate index. NotImplementedError: If invalid backbone name was provided. """ return_interm_indices = np.array(return_interm_indices) if not np.logical_and(return_interm_indices >= 0, return_interm_indices <= 4).all(): raise ValueError(f"Invalid range for return_interm_indices. " f"Provided return_interm_indices is {return_interm_indices}.") if len(np.unique(return_interm_indices)) != len(return_interm_indices): raise ValueError(f"Duplicate index in the provided return_interm_indices: {return_interm_indices}") if name == 'resnet_50': if export: _norm_layer = nn.BatchNorm2d else: _norm_layer = FrozenBatchNorm2d backbone = resnet50(norm_layer=_norm_layer, replace_stride_with_dilation=[False, False, dilation]) num_channels_all = np.array([256, 512, 1024, 2048]) num_channels = num_channels_all[return_interm_indices] elif 'fan' in name: if name not in fan_model_dict: raise NotImplementedError(f"{name} is not supported FAN backbone. " f"Supported architecutres: {fan_model_dict.keys()}") backbone = fan_model_dict[name](out_indices=return_interm_indices, activation_checkpoint=activation_checkpoint) num_channels_all = np.array(backbone.out_channels) num_channels = num_channels_all[return_interm_indices] elif 'gc_vit' in name: if name not in gc_vit_model_dict: raise NotImplementedError(f"{name} is not supported GCViT backbone. " f"Supported architecutres: {gc_vit_model_dict.keys()}") backbone = gc_vit_model_dict[name](out_indices=return_interm_indices, activation_checkpoint=activation_checkpoint) num_channels_all = np.array(backbone.num_features) num_channels = num_channels_all[return_interm_indices] else: supported_arch = list(fan_model_dict.keys()) + list(gc_vit_model_dict.keys()) + ["resnet_50"] raise NotImplementedError(f"Backbone {name} is not implemented. Supported architectures {supported_arch}") if pretrained_backbone_path: checkpoint = load_pretrained_weights(pretrained_backbone_path) _tmp_st_output = backbone.load_state_dict(checkpoint, strict=False) if get_global_rank() == 0: print(f"Loaded pretrained weights from {pretrained_backbone_path}") print(f"{_tmp_st_output}") super().__init__(name, backbone, train_backbone, num_channels, return_interm_indices, export) class Joiner(nn.Sequential): """Joiner Class.""" def __init__(self, backbone): """Initialize the Joiner Class. Args: backbone (nn.Module): backbone module. """ super().__init__(backbone) self.num_channels = backbone.num_channels def forward(self, input_tensors): """Forward function for Joiner to prepare the backbone output into transformer input format. Args: input_tensors (torch.Tensor): input tensor. Returns: out (List[Tensor]): list of tensor (feature vectors from backbone). """ xs = self[0](input_tensors) out: List[torch.Tensor] = [] for _, x in sorted(xs.items()): out.append(x) return out
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/backbone.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Main PTL model file for DINO. """ import copy import datetime import os import json from typing import Any, Dict import torch from torch.optim.lr_scheduler import MultiStepLR, StepLR from fairscale.optim import OSS import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_only from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.cv.action_recognition.utils.common_utils import patch_decrypt_checkpoint from nvidia_tao_pytorch.pointcloud.pointpillars.pcdet.utils import common_utils from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_dataset import CoCoDataMerge from nvidia_tao_pytorch.cv.deformable_detr.utils.coco import COCO from nvidia_tao_pytorch.cv.deformable_detr.utils.coco_eval import CocoEvaluator from nvidia_tao_pytorch.cv.dino.model.build_nn_model import build_model from nvidia_tao_pytorch.cv.dino.model.matcher import HungarianMatcher from nvidia_tao_pytorch.cv.dino.model.criterion import SetCriterion from nvidia_tao_pytorch.cv.deformable_detr.model.post_process import PostProcess, save_inference_prediction, threshold_predictions # pylint:disable=too-many-ancestors class DINOPlModel(pl.LightningModule): """PTL module for DINO Object Detection Model.""" def __init__(self, experiment_spec, export=False): """Init training for DINO Model.""" super().__init__() self.experiment_spec = experiment_spec self.dataset_config = experiment_spec.dataset self.model_config = experiment_spec.model self.eval_class_ids = self.dataset_config["eval_class_ids"] self.dataset_type = self.dataset_config["dataset_type"] if self.dataset_type not in ("serialized", "default"): raise ValueError(f"{self.dataset_type} is not supported. Only serialized and default are supported.") # init the model self._build_model(export) self._build_criterion() self.status_logging_dict = {} def _build_model(self, export): """Internal function to build the model.""" self.model = build_model(experiment_config=self.experiment_spec, export=export) def _build_criterion(self): """Internal function to build the loss function.""" self.matcher = HungarianMatcher(cost_class=self.model_config["cls_loss_coef"], cost_bbox=self.model_config["bbox_loss_coef"], cost_giou=self.model_config["giou_loss_coef"]) weight_dict = {'loss_ce': self.model_config["cls_loss_coef"], 'loss_bbox': self.model_config["bbox_loss_coef"], 'loss_giou': self.model_config["giou_loss_coef"]} clean_weight_dict_wo_dn = copy.deepcopy(weight_dict) # for de-noising training if self.model_config['use_dn']: weight_dict['loss_ce_dn'] = self.model_config["cls_loss_coef"] weight_dict['loss_bbox_dn'] = self.model_config["bbox_loss_coef"] weight_dict['loss_giou_dn'] = self.model_config["giou_loss_coef"] clean_weight_dict = copy.deepcopy(weight_dict) if self.model_config["aux_loss"]: aux_weight_dict = {} for i in range(self.model_config["dec_layers"] - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in clean_weight_dict.items()}) weight_dict.update(aux_weight_dict) if self.model_config['two_stage_type'] != 'no': interm_weight_dict = {} _coeff_weight_dict = { 'loss_ce': 1.0, 'loss_bbox': 1.0 if not self.model_config['no_interm_box_loss'] else 0.0, 'loss_giou': 1.0 if not self.model_config['no_interm_box_loss'] else 0.0, } interm_weight_dict.update({f'{k}_interm': v * self.model_config['interm_loss_coef'] * _coeff_weight_dict[k] for k, v in clean_weight_dict_wo_dn.items()}) weight_dict.update(interm_weight_dict) self.weight_dict = copy.deepcopy(weight_dict) self.criterion = SetCriterion(self.dataset_config["num_classes"], matcher=self.matcher, losses=self.model_config['loss_types'], focal_alpha=self.model_config["focal_alpha"]) # nms_iou_threshold is always 0 in original DINO self.box_processors = PostProcess(num_select=self.model_config['num_select']) def configure_optimizers(self): """Configure optimizers for training.""" self.train_config = self.experiment_spec.train param_dicts = [ {"params": [p for n, p in self.model.named_parameters() if "backbone" not in n and p.requires_grad]}, { "params": [p for n, p in self.model.named_parameters() if "backbone" in n and p.requires_grad], "lr": self.train_config['optim']['lr_backbone'], } ] if self.train_config.optim.optimizer == 'SGD': base_optimizer = torch.optim.SGD(params=param_dicts, lr=self.train_config.optim.lr, momentum=self.train_config.optim.momentum, weight_decay=self.train_config.optim.weight_decay) elif self.train_config.optim.optimizer == 'AdamW': base_optimizer = torch.optim.AdamW(params=param_dicts, lr=self.train_config.optim.lr, weight_decay=self.train_config.optim.weight_decay) else: raise NotImplementedError(f"Optimizer {self.train_config.optim.optimizer} is not implemented") if self.train_config.distributed_strategy == "ddp_sharded": # Override force_broadcast_object=False in PTL optim = OSS(params=base_optimizer.param_groups, optim=type(base_optimizer), force_broadcast_object=True, **base_optimizer.defaults) else: optim = base_optimizer optim_dict = {} optim_dict["optimizer"] = optim scheduler_type = self.train_config.optim.lr_scheduler if scheduler_type == "MultiStep": lr_scheduler = MultiStepLR(optimizer=optim, milestones=self.train_config.optim.lr_steps, gamma=self.train_config.optim.lr_decay, verbose=True) elif scheduler_type == "StepLR": lr_scheduler = StepLR(optimizer=optim, step_size=self.train_config.optim.lr_step_size, gamma=self.train_config.optim.lr_decay, verbose=True) else: raise NotImplementedError("LR Scheduler {} is not implemented".format(scheduler_type)) optim_dict["lr_scheduler"] = lr_scheduler optim_dict['monitor'] = self.train_config.optim.monitor_name return optim_dict def training_step(self, batch, batch_idx): """Training step.""" data, targets, _ = batch batch_size = data.shape[0] if self.model_config['use_dn']: outputs = self.model(data, targets) else: outputs = self.model(data) # loss loss_dict = self.criterion(outputs, targets) losses = sum(loss_dict[k] * self.weight_dict[k] for k in loss_dict.keys() if k in self.weight_dict) self.log("train_loss", losses, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True, batch_size=batch_size) self.log("train_class_error", loss_dict['class_error'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("train_loss_ce", loss_dict['loss_ce'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("train_loss_bbox", loss_dict['loss_bbox'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("train_loss_giou", loss_dict['loss_giou'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) return {'loss': losses} def training_epoch_end(self, training_step_outputs): """Log Training metrics to status.json""" average_train_loss = 0.0 for out in training_step_outputs: average_train_loss += out['loss'].item() average_train_loss /= len(training_step_outputs) self.status_logging_dict["train_loss"] = average_train_loss status_logging.get_status_logger().kpi = self.status_logging_dict status_logging.get_status_logger().write( message="Train and Val metrics generated.", status_level=status_logging.Status.RUNNING ) training_step_outputs.clear() def on_validation_epoch_start(self) -> None: """ Validation epoch start. Reset coco evaluator for each epoch. """ if self.dataset_type == "serialized": # Load from scratch since COCO object is not instantiated for SerializedDatasetFromList coco_lists = [] for source in self.dataset_config["val_data_sources"]: with open(source["json_file"], "r") as f: tmp = json.load(f) coco_lists.append(COCO(tmp)) coco = COCO(CoCoDataMerge(coco_lists)) self.val_coco_evaluator = CocoEvaluator(coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) else: self.val_coco_evaluator = CocoEvaluator(self.trainer.datamodule.val_dataset.coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) def validation_step(self, batch, batch_idx): """Validation step.""" data, targets, image_names = batch batch_size = data.shape[0] if self.model_config['use_dn']: outputs = self.model(data, targets) else: outputs = self.model(data) loss_dict = self.criterion(outputs, targets) losses = sum(loss_dict[k] * self.weight_dict[k] for k in loss_dict.keys() if k in self.weight_dict) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = self.box_processors(outputs, orig_target_sizes, image_names) res = {target['image_id'].item(): output for target, output in zip(targets, results)} self.val_coco_evaluator.update(res) self.log("val_loss", losses, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True, batch_size=batch_size) self.log("val_class_error", loss_dict['class_error'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("val_loss_ce", loss_dict['loss_ce'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("val_loss_bbox", loss_dict['loss_bbox'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("val_loss_giou", loss_dict['loss_giou'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) return losses def validation_epoch_end(self, outputs): """ Validation epoch end. Compute mAP at the end of epoch. """ self.val_coco_evaluator.synchronize_between_processes() self.val_coco_evaluator.overall_accumulate() self.val_coco_evaluator.overall_summarize(is_print=False) mAP = self.val_coco_evaluator.coco_eval['bbox'].stats[0] mAP50 = self.val_coco_evaluator.coco_eval['bbox'].stats[1] if self.trainer.is_global_zero: print("\n Validation mAP : {}\n".format(mAP)) print("\n Validation mAP50 : {}\n".format(mAP50)) self.log("val_mAP", mAP, rank_zero_only=True, sync_dist=True) self.log("val_mAP50", mAP50, rank_zero_only=True, sync_dist=True) self.status_logging_dict["val_mAP"] = str(mAP) self.status_logging_dict["val_mAP50"] = str(mAP50) average_val_loss = 0.0 for out in outputs: average_val_loss += out.item() average_val_loss /= len(outputs) self.status_logging_dict["val_loss"] = average_val_loss outputs.clear() def on_test_epoch_start(self) -> None: """ Test epoch start. Reset coco evaluator at start. """ if self.dataset_type == "serialized": # Load from scratch since COCO object is not instantiated for SerializedDatasetFromList with open(self.dataset_config["test_data_sources"]["json_file"], "r") as f: tmp = json.load(f) coco = COCO(tmp) self.test_coco_evaluator = CocoEvaluator(coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) else: self.test_coco_evaluator = CocoEvaluator(self.trainer.datamodule.test_dataset.coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) def test_step(self, batch, batch_idx): """Test step. Evaluate.""" data, targets, image_names = batch outputs = self.model(data) batch_size = data.shape[0] loss_dict = self.criterion(outputs, targets) losses = sum(loss_dict[k] * self.weight_dict[k] for k in loss_dict.keys() if k in self.weight_dict) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = self.box_processors(outputs, orig_target_sizes, image_names) if self.experiment_spec.evaluate.conf_threshold > 0: filtered_res = threshold_predictions(results, self.experiment_spec.evaluate.conf_threshold) else: filtered_res = results res = {target['image_id'].item(): output for target, output in zip(targets, filtered_res)} self.test_coco_evaluator.update(res) self.log("test_loss", losses, on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_class_error", loss_dict['class_error'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_loss_ce", loss_dict['loss_ce'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_loss_bbox", loss_dict['loss_bbox'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_loss_giou", loss_dict['loss_giou'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) def test_epoch_end(self, outputs): """ Test epoch end. Compute mAP at the end of epoch. """ self.test_coco_evaluator.synchronize_between_processes() self.test_coco_evaluator.overall_accumulate() self.test_coco_evaluator.overall_summarize(is_print=True) mAP = self.test_coco_evaluator.coco_eval['bbox'].stats[0] mAP50 = self.test_coco_evaluator.coco_eval['bbox'].stats[1] self.log("test_mAP", mAP, rank_zero_only=True) self.log("test_mAP50", mAP50, rank_zero_only=True) # Log the evaluation results to a file log_file = os.path.join(self.experiment_spec.results_dir, 'log_eval_{}.txt'.format(datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))) logger = common_utils.create_logger(log_file, rank=0) if self.trainer.is_global_zero: logger.info('**********************Start logging Evaluation Results **********************') logger.info('*************** mAP *****************') logger.info('mAP : %2.2f' % mAP) logger.info('*************** mAP50 *****************') logger.info('mAP50 : %2.2f' % mAP50) self.status_logging_dict["test_mAP"] = str(mAP) self.status_logging_dict["test_mAP50"] = str(mAP50) status_logging.get_status_logger().kpi = self.status_logging_dict status_logging.get_status_logger().write( message="Evaluation metrics generated.", status_level=status_logging.Status.RUNNING ) outputs.clear() def predict_step(self, batch, batch_idx): """Predict step. Inference.""" data, targets, image_names = batch outputs = self.model(data) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) pred_results = self.box_processors(outputs, orig_target_sizes, image_names) return pred_results @rank_zero_only def on_predict_batch_end(self, outputs, batch, batch_idx, dataloader_idx): """ Predict batch end. Save the result inferences at the end of batch. """ output_dir = self.experiment_spec.results_dir label_map = self.trainer.datamodule.pred_dataset.label_map color_map = self.experiment_spec.inference.color_map conf_threshold = self.experiment_spec.inference.conf_threshold is_internal = self.experiment_spec.inference.is_internal save_inference_prediction(outputs, output_dir, conf_threshold, label_map, color_map, is_internal) def forward(self, x): """Forward of the dino model.""" outputs = self.model(x) return outputs def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """Encrpyt the checkpoint. The encryption is done in TLTCheckpointConnector.""" pass def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """Decrpyt the checkpoint.""" if checkpoint.get("state_dict_encrypted", False): # Retrieve encryption key from TLTPyTorchCookbook. key = TLTPyTorchCookbook.get_passphrase() if key is None: raise PermissionError("Cannot access model state dict without the encryption key") checkpoint = patch_decrypt_checkpoint(checkpoint, key)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/pl_dino_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DeNoising components. """ import torch from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import inverse_sigmoid def prepare_for_cdn(dn_args, training, num_queries, num_classes, hidden_dim, label_enc): """A major difference of DINO from DN-DETR is that the author process pattern embedding pattern embedding in its detector forward function and use learnable tgt embedding, so we change this function a little bit. Args: dn_args (tuple): targets, dn_number, label_noise_ratio, box_noise_scale. training (bool): if it is training or inference. num_queries (int): number of queires. num_classes (int): number of classes. hidden_dim (int): transformer hidden dim. label_enc (nn.Module): encode labels in dn. Returns: input_query_label (torch.Tensor): input query for label. None if not training. input_query_bbox (torch.Tensor): input query for bounding box. None if not training. attn_mask (torch.Tensor): attention mask. None if not training. dn_meta (dict): meta information of de-nosing. None if not training. """ if training: targets, dn_number, label_noise_ratio, box_noise_scale = dn_args # positive and negative dn queries dn_number = dn_number * 2 known = [(torch.ones_like(t['labels'])).cuda() for t in targets] batch_size = len(known) known_num = [sum(k) for k in known] if int(max(known_num)) == 0: dn_number = 1 else: if dn_number >= 100: dn_number = dn_number // (int(max(known_num) * 2)) elif dn_number < 1: dn_number = 1 if dn_number == 0: dn_number = 1 unmask_bbox = unmask_label = torch.cat(known) labels = torch.cat([t['labels'] for t in targets]) boxes = torch.cat([t['boxes'] for t in targets]) batch_idx = torch.cat([torch.full_like(t['labels'].long(), i) for i, t in enumerate(targets)]) known_indice = torch.nonzero(unmask_label + unmask_bbox) known_indice = known_indice.view(-1) known_indice = known_indice.repeat(2 * dn_number, 1).view(-1) known_labels = labels.repeat(2 * dn_number, 1).view(-1) known_bid = batch_idx.repeat(2 * dn_number, 1).view(-1) known_bboxs = boxes.repeat(2 * dn_number, 1) known_labels_expaned = known_labels.clone() known_bbox_expand = known_bboxs.clone() if label_noise_ratio > 0: p = torch.rand_like(known_labels_expaned.float()) chosen_indice = torch.nonzero(p < (label_noise_ratio * 0.5)).view(-1) # half of bbox prob new_label = torch.randint_like(chosen_indice, 0, num_classes) # randomly put a new one here known_labels_expaned.scatter_(0, chosen_indice, new_label) single_pad = int(max(known_num)) pad_size = int(single_pad * 2 * dn_number) positive_idx = torch.tensor(range(len(boxes))).long().cuda().unsqueeze(0).repeat(dn_number, 1) positive_idx += (torch.tensor(range(dn_number)) * len(boxes) * 2).long().cuda().unsqueeze(1) positive_idx = positive_idx.flatten() negative_idx = positive_idx + len(boxes) if box_noise_scale > 0: known_bbox_ = torch.zeros_like(known_bboxs) known_bbox_[:, :2] = known_bboxs[:, :2] - known_bboxs[:, 2:] / 2 known_bbox_[:, 2:] = known_bboxs[:, :2] + known_bboxs[:, 2:] / 2 diff = torch.zeros_like(known_bboxs) diff[:, :2] = known_bboxs[:, 2:] / 2 diff[:, 2:] = known_bboxs[:, 2:] / 2 rand_sign = torch.randint_like(known_bboxs, low=0, high=2, dtype=torch.float32) * 2.0 - 1.0 rand_part = torch.rand_like(known_bboxs) rand_part[negative_idx] += 1.0 rand_part *= rand_sign known_bbox_ = known_bbox_ + torch.mul(rand_part, diff).cuda() * box_noise_scale known_bbox_ = known_bbox_.clamp(min=0.0, max=1.0) known_bbox_expand[:, :2] = (known_bbox_[:, :2] + known_bbox_[:, 2:]) / 2 known_bbox_expand[:, 2:] = known_bbox_[:, 2:] - known_bbox_[:, :2] m = known_labels_expaned.long().to('cuda') input_label_embed = label_enc(m) input_bbox_embed = inverse_sigmoid(known_bbox_expand) padding_label = torch.zeros(pad_size, hidden_dim).cuda() padding_bbox = torch.zeros(pad_size, 4).cuda() input_query_label = padding_label.repeat(batch_size, 1, 1) input_query_bbox = padding_bbox.repeat(batch_size, 1, 1) map_known_indice = torch.tensor([]).to('cuda') if len(known_num): map_known_indice = torch.cat([torch.tensor(range(num)) for num in known_num]) # [1,2, 1,2,3] map_known_indice = torch.cat([map_known_indice + single_pad * i for i in range(2 * dn_number)]).long() if len(known_bid): input_query_label[(known_bid.long(), map_known_indice)] = input_label_embed input_query_bbox[(known_bid.long(), map_known_indice)] = input_bbox_embed tgt_size = pad_size + num_queries attn_mask = torch.ones(tgt_size, tgt_size).to('cuda') < 0 # match query cannot see the reconstruct attn_mask[pad_size:, :pad_size] = True # reconstruct cannot see each other for i in range(dn_number): if i == 0: attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), single_pad * 2 * (i + 1):pad_size] = True if i == dn_number - 1: attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), :single_pad * i * 2] = True else: attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), single_pad * 2 * (i + 1):pad_size] = True attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), :single_pad * 2 * i] = True dn_meta = { 'pad_size': pad_size, 'num_dn_group': dn_number, } else: input_query_label = None input_query_bbox = None attn_mask = None dn_meta = None return input_query_label, input_query_bbox, attn_mask, dn_meta def dn_post_process(outputs_class, outputs_coord, dn_meta, aux_loss, _set_aux_loss): """Post process of dn after output from the transformer. Put the dn part in the dn_meta. """ if dn_meta and dn_meta['pad_size'] > 0: output_known_class = outputs_class[:, :, :dn_meta['pad_size'], :] output_known_coord = outputs_coord[:, :, :dn_meta['pad_size'], :] outputs_class = outputs_class[:, :, dn_meta['pad_size']:, :] outputs_coord = outputs_coord[:, :, dn_meta['pad_size']:, :] out = {'pred_logits': output_known_class[-1], 'pred_boxes': output_known_coord[-1]} if aux_loss: out['aux_outputs'] = _set_aux_loss(output_known_class, output_known_coord) dn_meta['output_known_lbs_bboxes'] = out return outputs_class, outputs_coord
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/dn_components.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Various positional encodings for the transformer.""" import math import torch from torch import nn class PositionEmbeddingSineHW(nn.Module): """For DINO, different temperature values (usually 20) are applied along width and height respectively.""" def __init__(self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None): """Initialize PositionEmbeddingSineHW Class""" super().__init__() self.num_pos_feats = num_pos_feats self.temperatureH = temperatureH self.temperatureW = temperatureW self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, not_mask, device): """Forward""" y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device) dim_tx = self.temperatureW ** (2 * (dim_tx // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_tx dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device) dim_ty = self.temperatureH ** (2 * (dim_ty // 2) / self.num_pos_feats) pos_y = y_embed[:, :, :, None] / dim_ty pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingSineHWExport(nn.Module): """ONNX/TRT compatible PositionEmbedding""" def __init__(self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None): """Initialize PositionEmbeddingSineHWExport Class""" super().__init__() self.num_pos_feats = num_pos_feats self.temperatureH = temperatureH self.temperatureW = temperatureW self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, batch_shape, device): """ Forward """ not_mask = torch.ones(batch_shape.tolist(), dtype=torch.bool, device=device) y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device) dim_tx = self.temperatureW ** (2 * (dim_tx // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_tx dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device) dim_ty = self.temperatureH ** (2 * (dim_ty // 2) / self.num_pos_feats) pos_y = y_embed[:, :, :, None] / dim_ty pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/position_encoding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DINO model module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable Transformer functions. """ import math import random import copy from typing import Optional import torch from torch import nn, Tensor import torch.utils.checkpoint as checkpoint from nvidia_tao_pytorch.core.modules.activation.activation import MultiheadAttention from nvidia_tao_pytorch.cv.dino.model.model_utils import gen_encoder_output_proposals, MLP, _get_activation_fn, gen_sineembed_for_position from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import inverse_sigmoid from nvidia_tao_pytorch.cv.deformable_detr.model.ops.modules import MSDeformAttn class DeformableTransformer(nn.Module): """ Deformable Transfromer module """ def __init__(self, d_model=256, nhead=8, num_queries=300, export=False, activation_checkpoint=True, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.0, activation="relu", normalize_before=False, return_intermediate_dec=False, num_patterns=0, modulate_hw_attn=False, # for deformable encoder deformable_decoder=False, num_feature_levels=1, enc_n_points=4, dec_n_points=4, # init query decoder_query_perturber=None, add_channel_attention=False, random_refpoints_xy=False, # two stage two_stage_type='no', # ['no', 'standard'] two_stage_pat_embed=0, two_stage_add_query_num=0, two_stage_learn_wh=False, two_stage_keep_all_tokens=False, # evo of #anchors dec_layer_number=None, rm_self_attn_layers=None, key_aware_type=None, # layer share layer_share_type=None, # for detach rm_detach=None, decoder_sa_type='ca', module_seq=['sa', 'ca', 'ffn'], # for dn embed_init_tgt=False, use_detached_boxes_dec_out=False, ): """Initialize Encoder-Decoder Class for DINO. Args: d_model (int): size of the hidden dimension. nheads (int): number of heads. num_queries (int): number of queries to be used in D-DETR encoder-decoder. export (bool): flag to indicate if the current model is being used for ONNX export. activation_checkpoint (bool): flag to indicate if activation checkpointing is used. num_encoder_layers (int): number of encoder layers. num_decoder_layers (int): number of decoder layers. dim_feedforward (int): dimension of the feedforward layer. dropout (float): probability for the dropout layer. activation (str): type of activation. normalize_before (bool): whether to add LayerNorm before the encoder. return_intermediate_dec (bool): whether to return intermediate decoder. num_patterns (int): number of patterns in encoder-decoder. modulate_hw_attn (bool): whether to apply modulated HW attentions. deformable_attention (bool): whether to apply deformable attention. num_feature_levels (int): Number of levels to extract from the backbone feature maps. enc_n_points (int): number of reference points in the encoder. dec_n_points (int): number of reference points in the decoder. decoder_query_perturber (class): RandomBoxPertuber. add_channel_attention (bool): whether to add channel attention. random_refpoints_xy (bool): whether to randomly initialize reference point embedding. two_stage_type (str): type of two stage in DINO. two_stage_pat_embed (int): size of the patch embedding for the second stage. two_stage_add_query_num (int): size of the target embedding. two_stage_learn_wh (bool): add embedding for learnable w and h. two_stage_keep_all_tokens (bool): whether to keep all tokens in the second stage. dec_layer_number (int): number of decoder layers. rm_self_attn_layers (bool): remove self-attention in decoder. key_aware_type (str): type of key_aware in cross-attention. layer_share_type (str): type of layer sharing. rm_detach (list): list of names to remove detach. decoder_sa_type (str): type of self-attention in the decoder. module_seq (list): sequence of modules in the forward function. embed_init_tgt (bool): whether to add target embedding. use_detached_boxes_dec_out (bool): use detached box decoder output in the reference points. """ super().__init__() self.num_feature_levels = num_feature_levels self.num_encoder_layers = num_encoder_layers self.num_decoder_layers = num_decoder_layers self.deformable_decoder = deformable_decoder self.two_stage_keep_all_tokens = two_stage_keep_all_tokens self.num_queries = num_queries self.random_refpoints_xy = random_refpoints_xy self.use_detached_boxes_dec_out = use_detached_boxes_dec_out self.export = export assert layer_share_type in [None, 'encoder', 'decoder', 'both'] enc_layer_share = layer_share_type in ['encoder', 'both'] dec_layer_share = layer_share_type in ['decoder', 'both'] assert layer_share_type is None self.decoder_sa_type = decoder_sa_type supported_decoder_types = ['sa', 'ca_label', 'ca_content'] if decoder_sa_type not in supported_decoder_types: raise NotImplementedError( f"Decoder type {decoder_sa_type} unsupported. Please set the decoder type to any one of {supported_decoder_types}" ) encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points, add_channel_attention=add_channel_attention, export=export) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder( encoder_layer, num_encoder_layers, encoder_norm, d_model=d_model, num_queries=num_queries, enc_layer_share=enc_layer_share, two_stage_type=two_stage_type, export=export, activation_checkpoint=activation_checkpoint ) # choose decoder layer type if deformable_decoder: decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, dec_n_points, key_aware_type=key_aware_type, decoder_sa_type=decoder_sa_type, module_seq=module_seq, export=export) else: raise NotImplementedError decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, export=export, activation_checkpoint=activation_checkpoint, return_intermediate=return_intermediate_dec, d_model=d_model, query_dim=4, modulate_hw_attn=modulate_hw_attn, num_feature_levels=num_feature_levels, deformable_decoder=deformable_decoder, decoder_query_perturber=decoder_query_perturber, dec_layer_number=dec_layer_number, dec_layer_share=dec_layer_share, use_detached_boxes_dec_out=use_detached_boxes_dec_out) self.d_model = d_model self.nhead = nhead self.dec_layers = num_decoder_layers self.num_queries = num_queries # useful for single stage model only if not isinstance(num_patterns, int): try: num_patterns = int(num_patterns) except Exception: print("num_patterns should be int but {}".format(type(num_patterns))) num_patterns = 0 self.num_patterns = num_patterns if num_feature_levels > 1: if self.num_encoder_layers > 0: self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) else: self.level_embed = None self.embed_init_tgt = embed_init_tgt if (two_stage_type != 'no' and embed_init_tgt) or (two_stage_type == 'no'): self.tgt_embed = nn.Embedding(self.num_queries, d_model) nn.init.normal_(self.tgt_embed.weight.data) else: self.tgt_embed = None # for two stage self.two_stage_type = two_stage_type self.two_stage_pat_embed = two_stage_pat_embed self.two_stage_add_query_num = two_stage_add_query_num self.two_stage_learn_wh = two_stage_learn_wh assert two_stage_type in ['no', 'standard'], f"unknown param {two_stage_type} of two_stage_type" if two_stage_type == 'standard': # anchor selection at the output of encoder self.enc_output = nn.Linear(d_model, d_model) self.enc_output_norm = nn.LayerNorm(d_model) if two_stage_pat_embed > 0: self.pat_embed_for_2stage = nn.Parameter(torch.Tensor(two_stage_pat_embed, d_model)) nn.init.normal_(self.pat_embed_for_2stage) if two_stage_add_query_num > 0: self.tgt_embed = nn.Embedding(self.two_stage_add_query_num, d_model) if two_stage_learn_wh: self.two_stage_wh_embedding = nn.Embedding(1, 2) else: self.two_stage_wh_embedding = None if two_stage_type == 'no': self.init_ref_points(num_queries) # init self.refpoint_embed self.enc_out_class_embed = None self.enc_out_bbox_embed = None # evolution of anchors self.dec_layer_number = dec_layer_number if dec_layer_number is not None: if self.two_stage_type != 'no' or num_patterns == 0: assert dec_layer_number[0] == num_queries, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries})" else: assert dec_layer_number[0] == num_queries * num_patterns, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries}) * num_patterns({num_patterns})" self._reset_parameters() self.rm_self_attn_layers = rm_self_attn_layers if rm_self_attn_layers is not None: print("Removing the self-attn in {} decoder layers".format(rm_self_attn_layers)) for lid, dec_layer in enumerate(self.decoder.layers): if lid in rm_self_attn_layers: dec_layer.rm_self_attn_modules() self.rm_detach = rm_detach if self.rm_detach: assert isinstance(rm_detach, list) assert any([i in ['enc_ref', 'enc_tgt', 'dec'] for i in rm_detach]) self.decoder.rm_detach = rm_detach def _reset_parameters(self): """ Reset parmaeters """ for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MSDeformAttn): m._reset_parameters() if self.num_feature_levels > 1 and self.level_embed is not None: nn.init.normal_(self.level_embed) if self.two_stage_learn_wh: nn.init.constant_(self.two_stage_wh_embedding.weight, math.log(0.05 / (1 - 0.05))) def get_valid_ratio(self, mask): """ Compute the valid ratio from given mask """ _, H, W = mask.shape temp_mask = mask.bool() valid_H = torch.sum((~temp_mask).float()[:, :, 0], 1) valid_W = torch.sum((~temp_mask).float()[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def init_ref_points(self, use_num_queries): """Initialize reference points""" self.refpoint_embed = nn.Embedding(use_num_queries, 4) if self.random_refpoints_xy: self.refpoint_embed.weight.data[:, :2].uniform_(0, 1) self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2]) self.refpoint_embed.weight.data[:, :2].requires_grad = False def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None): """Encoder-Decoder forward function. Args: srcs (torch.Tensor): List of multi features [bs, ci, hi, wi]. masks (torch.Tensor): List of multi masks [bs, hi, wi]. refpoint_embed (torch.Tensor): [bs, num_dn, 4]. None in infer. pos_embeds (torch.Tensor): List of multi pos embeds [bs, ci, hi, wi]. tgt (torch.Tensor): [bs, num_dn, d_model]. None in infer. Returns: hs (torch.Tensor): (n_dec, bs, nq, d_model) references (torch.Tensor): sigmoid coordinates. (n_dec+1, bs, bq, 4) hs_enc (torch.Tensor): (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None ref_enc (torch.Tensor): sigmoid coordinates. \ (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None """ # prepare input for encoder src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] if self.export: spatial_shapes = [] else: spatial_shapes = torch.empty(len(srcs), 2, dtype=torch.int32, device=srcs[0].device) for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): bs, _, h, w = src.shape if self.export: # Input shape is fixed for export in onnx/tensorRT spatial_shapes.append(torch.tensor([[h, w]], dtype=torch.int32, device=srcs[0].device)) else: # Used for dynamic input shape spatial_shapes[lvl, 0], spatial_shapes[lvl, 1] = h, w src = src.flatten(2).transpose(1, 2) # bs, hw, c mask = mask.flatten(1) # bs, hw pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c if self.num_feature_levels > 1 and self.level_embed is not None: lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) else: lvl_pos_embed = pos_embed lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) mask_flatten.append(mask) src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw} lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c if isinstance(spatial_shapes, list): spatial_shapes = torch.cat(spatial_shapes, 0) level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # two stage enc_topk_proposals = enc_refpoint_embed = None ######################################################### # Begin Encoder ######################################################### memory, _, _ = self.encoder(src_flatten, pos=lvl_pos_embed_flatten, level_start_index=level_start_index, spatial_shapes=spatial_shapes, valid_ratios=valid_ratios, key_padding_mask=mask_flatten, ref_token_index=enc_topk_proposals, # bs, nq ref_token_coord=enc_refpoint_embed, # bs, nq, 4 ) ######################################################### # End Encoder # - memory: bs, \sum{hw}, c # - mask_flatten: bs, \sum{hw} # - lvl_pos_embed_flatten: bs, \sum{hw}, c # - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c) # - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c) ######################################################### if self.two_stage_type == 'standard': if self.two_stage_learn_wh: input_hw = self.two_stage_wh_embedding.weight[0] else: input_hw = None output_memory, output_proposals = gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes, input_hw, export=self.export) output_memory = self.enc_output_norm(self.enc_output(output_memory)) if self.two_stage_pat_embed > 0: bs, nhw, _ = output_memory.shape # output_memory: bs, n, 256; self.pat_embed_for_2stage: k, 256 output_memory = output_memory.repeat(1, self.two_stage_pat_embed, 1) _pats = self.pat_embed_for_2stage.repeat_interleave(nhw, 0) output_memory = output_memory + _pats output_proposals = output_proposals.repeat(1, self.two_stage_pat_embed, 1) if self.two_stage_add_query_num > 0: assert refpoint_embed is not None output_memory = torch.cat((output_memory, tgt), dim=1) output_proposals = torch.cat((output_proposals, refpoint_embed), dim=1) enc_outputs_class_unselected = self.enc_out_class_embed(output_memory) enc_outputs_coord_unselected = self.enc_out_bbox_embed(output_memory) + output_proposals # (bs, \sum{hw}, 4) unsigmoid topk = self.num_queries topk_proposals = torch.topk(enc_outputs_class_unselected.max(-1)[0], topk, dim=1)[1] # bs, nq # gather boxes refpoint_embed_undetach = torch.gather(enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # unsigmoid refpoint_embed_ = refpoint_embed_undetach.detach() init_box_proposal = torch.gather(output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)).sigmoid() # sigmoid # gather tgt tgt_undetach = torch.gather(output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)) if self.embed_init_tgt: tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model else: tgt_ = tgt_undetach.detach() if refpoint_embed is not None: refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1) tgt = torch.cat([tgt, tgt_], dim=1) else: refpoint_embed, tgt = refpoint_embed_, tgt_ elif self.two_stage_type == 'no': tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model refpoint_embed_ = self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, 4 if refpoint_embed is not None: refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1) tgt = torch.cat([tgt, tgt_], dim=1) else: refpoint_embed, tgt = refpoint_embed_, tgt_ if self.num_patterns > 0: tgt_embed = tgt.repeat(1, self.num_patterns, 1) refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1) tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(self.num_queries, 1) # 1, n_q*n_pat, d_model tgt = tgt_embed + tgt_pat init_box_proposal = refpoint_embed_.sigmoid() else: raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type)) ######################################################### # End preparing tgt # - tgt: bs, NQ, d_model # - refpoint_embed(unsigmoid): bs, NQ, d_model ######################################################### ######################################################### # Begin Decoder ######################################################### hs, references = self.decoder(tgt=tgt.transpose(0, 1), memory=memory.transpose(0, 1), memory_key_padding_mask=mask_flatten, pos=lvl_pos_embed_flatten.transpose(0, 1), refpoints_unsigmoid=refpoint_embed.transpose(0, 1), level_start_index=level_start_index, spatial_shapes=spatial_shapes, valid_ratios=valid_ratios, tgt_mask=attn_mask) ######################################################### # End Decoder # hs: n_dec, bs, nq, d_model # references: n_dec+1, bs, nq, query_dim ######################################################### ######################################################### # Begin postprocess ######################################################### if self.two_stage_type == 'standard': if self.two_stage_keep_all_tokens: hs_enc = output_memory.unsqueeze(0) ref_enc = enc_outputs_coord_unselected.unsqueeze(0) init_box_proposal = output_proposals else: hs_enc = tgt_undetach.unsqueeze(0) ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0) else: hs_enc = ref_enc = None ######################################################### # End postprocess # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None # ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None ######################################################### return hs, references, hs_enc, ref_enc, init_box_proposal # hs: (n_dec, bs, nq, d_model) # references: sigmoid coordinates. (n_dec+1, bs, bq, 4) # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None # ref_enc: sigmoid coordinates. \ # (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None class TransformerEncoder(nn.Module): """ Deformable Transfromer Encoder module """ def __init__(self, encoder_layer, num_layers, norm=None, d_model=256, num_queries=300, enc_layer_share=False, enc_layer_dropout_prob=None, two_stage_type='no', # ['no', 'standard'] export=False, activation_checkpoint=True): """ Initializes the Transformer Encoder Module """ super().__init__() # prepare layers if num_layers > 0: self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share) else: self.layers = [] del encoder_layer self.activation_checkpoint = activation_checkpoint self.export = export self.query_scale = None self.num_queries = num_queries self.num_layers = num_layers self.norm = norm self.d_model = d_model self.enc_layer_dropout_prob = enc_layer_dropout_prob if enc_layer_dropout_prob is not None: assert isinstance(enc_layer_dropout_prob, list) assert len(enc_layer_dropout_prob) == num_layers for i in enc_layer_dropout_prob: assert 0.0 <= i <= 1.0 self.two_stage_type = two_stage_type @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device, export=False): """ get reference points """ reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): if export: # Fixed dimensions for export in onnx H_, W_ = int(H_), int(W_) else: H_, W_ = spatial_shapes[lvl, 0], spatial_shapes[lvl, 1] ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward(self, src: Tensor, pos: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, key_padding_mask: Tensor, ref_token_index: Optional[Tensor] = None, ref_token_coord: Optional[Tensor] = None ): """Deformable Encoder forward functions. Args: src (torch.Tensor): [bs, sum(hi*wi), 256]. pos (torch.Tensor): pos embed for src. [bs, sum(hi*wi), 256]. spatial_shapes (torch.Tensor): h,w of each level [num_level, 2]. level_start_index (torch.Tensor): [num_level] start point of level in sum(hi*wi).. valid_ratios (torch.Tensor): [bs, num_level, 2]. key_padding_mask (torch.Tensor): [bs, sum(hi*wi)]. ref_token_index (torch.Tensor): bs, nq. ref_token_coord (torch.Tensor): bs, nq, 4. Returns: output (torch.Tensor): [bs, sum(hi*wi), 256]. reference_points (torch.Tensor): [bs, sum(hi*wi), num_level, 2]. """ if self.two_stage_type in ['no', 'standard']: assert ref_token_index is None output = src # preparation and reshape if self.num_layers > 0: reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device, export=self.export) intermediate_output = [] intermediate_ref = [] if ref_token_index is not None: out_i = torch.gather(output, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, self.d_model)) intermediate_output.append(out_i) intermediate_ref.append(ref_token_coord) # main process for layer_id, layer in enumerate(self.layers): # main process dropflag = False if self.enc_layer_dropout_prob is not None: prob = random.random() if prob < self.enc_layer_dropout_prob[layer_id]: dropflag = True if not dropflag: if self.export or not self.activation_checkpoint: output = layer(src=output, pos=pos, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, key_padding_mask=key_padding_mask) else: output = checkpoint.checkpoint(layer, output, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask) # aux loss if (layer_id != self.num_layers - 1) and ref_token_index is not None: out_i = torch.gather(output, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, self.d_model)) intermediate_output.append(out_i) intermediate_ref.append(ref_token_coord) if self.norm is not None: output = self.norm(output) if ref_token_index is not None: intermediate_output = torch.stack(intermediate_output) # n_enc/n_enc-1, bs, \sum{hw}, d_model intermediate_ref = torch.stack(intermediate_ref) else: intermediate_output = intermediate_ref = None return output, intermediate_output, intermediate_ref class TransformerDecoder(nn.Module): """ Deformable Transfromer Decoder module """ def __init__(self, decoder_layer, num_layers, norm=None, export=False, activation_checkpoint=True, return_intermediate=False, d_model=256, query_dim=4, modulate_hw_attn=False, num_feature_levels=1, deformable_decoder=False, decoder_query_perturber=None, dec_layer_number=None, # number of queries each layer in decoder dec_layer_share=False, dec_layer_dropout_prob=None, use_detached_boxes_dec_out=False ): """ Initializes the Transformer Decoder Module """ super().__init__() self.export = export self.activation_checkpoint = activation_checkpoint if num_layers > 0: self.layers = _get_clones(decoder_layer, num_layers, layer_share=dec_layer_share) else: self.layers = [] self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate assert return_intermediate, "support return_intermediate only" self.query_dim = query_dim assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim) self.num_feature_levels = num_feature_levels self.use_detached_boxes_dec_out = use_detached_boxes_dec_out self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2) if not deformable_decoder: self.query_pos_sine_scale = MLP(d_model, d_model, d_model, 2) else: self.query_pos_sine_scale = None self.query_scale = None self.bbox_embed = None self.class_embed = None self.d_model = d_model self.modulate_hw_attn = modulate_hw_attn self.deformable_decoder = deformable_decoder if not deformable_decoder and modulate_hw_attn: self.ref_anchor_head = MLP(d_model, d_model, 2, 2) else: self.ref_anchor_head = None self.decoder_query_perturber = decoder_query_perturber self.box_pred_damping = None self.dec_layer_number = dec_layer_number if dec_layer_number is not None: assert isinstance(dec_layer_number, list) assert len(dec_layer_number) == num_layers self.dec_layer_dropout_prob = dec_layer_dropout_prob if dec_layer_dropout_prob is not None: assert isinstance(dec_layer_dropout_prob, list) assert len(dec_layer_dropout_prob) == num_layers for i in dec_layer_dropout_prob: assert 0.0 <= i <= 1.0 self.rm_detach = None def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2 # for memory level_start_index: Optional[Tensor] = None, # num_levels spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 valid_ratios: Optional[Tensor] = None, ): """ Deformable Decoder forward function. Args: tgt (torch.Tensor): nq, bs, d_model. memory (torch.Tensor): hw, bs, d_model. pos (torch.Tensor): hw, bs, d_model. refpoints_unsigmoid (torch.Tensor): nq, bs, 2/4. valid_ratios/spatial_shapes (torch.Tensor): bs, nlevel, 2. """ output = tgt intermediate = [] reference_points = refpoints_unsigmoid.sigmoid() ref_points = [reference_points] for layer_id, layer in enumerate(self.layers): # preprocess ref points if self.training and self.decoder_query_perturber is not None and layer_id != 0: reference_points = self.decoder_query_perturber(reference_points) if self.deformable_decoder: if reference_points.shape[-1] == 4: # nq, bs, nlevel, 4 reference_points_input = reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[None, :] else: assert reference_points.shape[-1] == 2 reference_points_input = reference_points[:, :, None] * valid_ratios[None, :] query_sine_embed = gen_sineembed_for_position(reference_points_input[:, :, 0, :]) # nq, bs, 256*2 else: query_sine_embed = gen_sineembed_for_position(reference_points) # nq, bs, 256*2 reference_points_input = None # conditional query raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256 pos_scale = self.query_scale(output) if self.query_scale is not None else 1 query_pos = pos_scale * raw_query_pos if not self.deformable_decoder: query_sine_embed = query_sine_embed[..., :self.d_model] * self.query_pos_sine_scale(output) # modulated HW attentions if not self.deformable_decoder and self.modulate_hw_attn: refHW_cond = self.ref_anchor_head(output).sigmoid() # nq, bs, 2 query_sine_embed[..., self.d_model // 2:] *= (refHW_cond[..., 0] / reference_points[..., 2]).unsqueeze(-1) query_sine_embed[..., :self.d_model // 2] *= (refHW_cond[..., 1] / reference_points[..., 3]).unsqueeze(-1) # random drop some layers if needed dropflag = False if self.dec_layer_dropout_prob is not None: prob = random.random() if prob < self.dec_layer_dropout_prob[layer_id]: dropflag = True if not dropflag: if self.export or not self.activation_checkpoint: output = layer(tgt=output, tgt_query_pos=query_pos, tgt_query_sine_embed=query_sine_embed, tgt_key_padding_mask=tgt_key_padding_mask, tgt_reference_points=reference_points_input, memory=memory, memory_key_padding_mask=memory_key_padding_mask, memory_level_start_index=level_start_index, memory_spatial_shapes=spatial_shapes, memory_pos=pos, self_attn_mask=tgt_mask, cross_attn_mask=memory_mask) else: output = checkpoint.checkpoint(layer, output, query_pos, query_sine_embed, tgt_key_padding_mask, reference_points_input, memory, memory_key_padding_mask, level_start_index, spatial_shapes, pos, tgt_mask, memory_mask) # iter update if self.bbox_embed is not None: reference_before_sigmoid = inverse_sigmoid(reference_points) delta_unsig = self.bbox_embed[layer_id](output) # pylint: disable=E1136 outputs_unsig = delta_unsig + reference_before_sigmoid new_reference_points = outputs_unsig.sigmoid() # select # ref points if self.dec_layer_number is not None and layer_id != self.num_layers - 1: nq_now = new_reference_points.shape[0] select_number = self.dec_layer_number[layer_id + 1] if nq_now != select_number: # pylint: disable=E1136 class_unselected = self.class_embed[layer_id](output) # nq, bs, 91 topk_proposals = torch.topk(class_unselected.max(-1)[0], select_number, dim=0)[1] # new_nq, bs new_reference_points = torch.gather(new_reference_points, 0, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # unsigmoid if self.rm_detach and 'dec' in self.rm_detach: reference_points = new_reference_points else: reference_points = new_reference_points.detach() if self.use_detached_boxes_dec_out: ref_points.append(reference_points) else: ref_points.append(new_reference_points) intermediate.append(self.norm(output)) if self.dec_layer_number is not None and layer_id != self.num_layers - 1: if nq_now != select_number: output = torch.gather(output, 0, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)) # unsigmoid return [ [itm_out.transpose(0, 1) for itm_out in intermediate], [itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points] ] class DeformableTransformerEncoderLayer(nn.Module): """ Deformable Transfromer Encoder Layer module """ def __init__(self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4, add_channel_attention=False, export=False, ): """ Initializes the Transformer Encoder Layer """ super().__init__() self.export = export # self attention self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) # channel attention self.add_channel_attention = add_channel_attention if add_channel_attention: self.activ_channel = _get_activation_fn('dyrelu') self.norm_channel = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): """ Add positional Embedding to the tensor """ return tensor if pos is None else tensor + pos def forward_ffn(self, src): """Feed-forward network forward function""" src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None): """ forward function for Encoder Layer""" # self attention src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, key_padding_mask, export=self.export) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) # channel attn if self.add_channel_attention: src = self.norm_channel(src + self.activ_channel(src)) return src class DeformableTransformerDecoderLayer(nn.Module): """ Deformable Transfromer Decoder Layer module """ def __init__(self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4, key_aware_type=None, decoder_sa_type='sa', module_seq=['sa', 'ca', 'ffn'], export=False ): """ Initializes the Transformer Decoder Layer """ super().__init__() self.module_seq = module_seq assert sorted(module_seq) == ['ca', 'ffn', 'sa'] self.export = export # cross attention self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # self attention if self.export: # Starting from PyT 1.14, _scaled_dot_product_attention has been switched to C++ backend # which is not exportable as ONNX operator # However, the training / eval time can be greatly optimized by Torch selecting the optimal # attention mechanism under the hood self.self_attn = MultiheadAttention(d_model, n_heads, dropout=dropout) else: self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) self.dropout2 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout3 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout4 = nn.Dropout(dropout) self.norm3 = nn.LayerNorm(d_model) self.key_aware_type = key_aware_type self.key_aware_proj = None self.decoder_sa_type = decoder_sa_type assert decoder_sa_type in ['sa', 'ca_label', 'ca_content'] if decoder_sa_type == 'ca_content': self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) def rm_self_attn_modules(self): """Remove self attention module""" self.self_attn = None self.dropout2 = None self.norm2 = None @staticmethod def with_pos_embed(tensor, pos): """ Add positional Embedding to the tensor """ return tensor if pos is None else tensor + pos def forward_ffn(self, tgt): """Feed-forward network forward function""" tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout4(tgt2) tgt = self.norm3(tgt) return tgt def forward_sa(self, # for tgt tgt: Optional[Tensor], # nq, bs, d_model tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos)) tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos) tgt_key_padding_mask: Optional[Tensor] = None, tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4 # for memory memory: Optional[Tensor] = None, # hw, bs, d_model memory_key_padding_mask: Optional[Tensor] = None, memory_level_start_index: Optional[Tensor] = None, # num_levels memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 memory_pos: Optional[Tensor] = None, # pos for memory # sa self_attn_mask: Optional[Tensor] = None, # mask used for self-attention cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention ): """Self-Attention forward function""" # self attention if self.self_attn is not None: if self.decoder_sa_type == 'sa': q = k = self.with_pos_embed(tgt, tgt_query_pos) tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) elif self.decoder_sa_type == 'ca_label': bs = tgt.shape[1] k = v = self.label_embedding.weight[:, None, :].repeat(1, bs, 1) tgt2 = self.self_attn(tgt, k, v, attn_mask=self_attn_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) elif self.decoder_sa_type == 'ca_content': tgt2 = self.self_attn(self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1), tgt_reference_points.transpose(0, 1).contiguous(), memory.transpose(0, 1), memory_spatial_shapes, memory_level_start_index, memory_key_padding_mask).transpose(0, 1) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) else: raise NotImplementedError("Unknown decoder_sa_type {}".format(self.decoder_sa_type)) return tgt def forward_ca(self, # for tgt tgt: Optional[Tensor], # nq, bs, d_model tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos)) tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos) tgt_key_padding_mask: Optional[Tensor] = None, tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4 # for memory memory: Optional[Tensor] = None, # hw, bs, d_model memory_key_padding_mask: Optional[Tensor] = None, memory_level_start_index: Optional[Tensor] = None, # num_levels memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 memory_pos: Optional[Tensor] = None, # pos for memory # sa self_attn_mask: Optional[Tensor] = None, # mask used for self-attention cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention ): """Cross-Attention forward function""" # cross attention if self.key_aware_type is not None: if self.key_aware_type == 'mean': tgt = tgt + memory.mean(0, keepdim=True) elif self.key_aware_type == 'proj_mean': tgt = tgt + self.key_aware_proj(memory).mean(0, keepdim=True) else: raise NotImplementedError("Unknown key_aware_type: {}".format(self.key_aware_type)) tgt2 = self.cross_attn(self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1), tgt_reference_points.transpose(0, 1).contiguous(), memory.transpose(0, 1), memory_spatial_shapes, memory_level_start_index, memory_key_padding_mask, export=self.export).transpose(0, 1) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) return tgt def forward(self, # for tgt tgt: Optional[Tensor], # nq, bs, d_model tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos)) tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos) tgt_key_padding_mask: Optional[Tensor] = None, tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4 # for memory memory: Optional[Tensor] = None, # hw, bs, d_model memory_key_padding_mask: Optional[Tensor] = None, memory_level_start_index: Optional[Tensor] = None, # num_levels memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 memory_pos: Optional[Tensor] = None, # pos for memory # sa self_attn_mask: Optional[Tensor] = None, # mask used for self-attention cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention ): """Forward function""" for funcname in self.module_seq: if funcname == 'ffn': tgt = self.forward_ffn(tgt) elif funcname == 'ca': tgt = self.forward_ca(tgt, tgt_query_pos, tgt_query_sine_embed, tgt_key_padding_mask, tgt_reference_points, memory, memory_key_padding_mask, memory_level_start_index, memory_spatial_shapes, memory_pos, self_attn_mask, cross_attn_mask) elif funcname == 'sa': tgt = self.forward_sa(tgt, tgt_query_pos, tgt_query_sine_embed, tgt_key_padding_mask, tgt_reference_points, memory, memory_key_padding_mask, memory_level_start_index, memory_spatial_shapes, memory_pos, self_attn_mask, cross_attn_mask) else: raise ValueError(f'Unknown funcname {funcname}') return tgt def _get_clones(module, N, layer_share=False): """ get clones """ if layer_share: return nn.ModuleList([module for i in range(N)]) return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/deformable_transformer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Criterion Loss functions. """ import torch import torch.nn.functional as F from torch import nn from nvidia_tao_pytorch.cv.dino.model.model_utils import sigmoid_focal_loss from nvidia_tao_pytorch.cv.deformable_detr.utils import box_ops from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import (accuracy, get_world_size, is_dist_avail_and_initialized) class SetCriterion(nn.Module): """ This class computes the loss for DINO. The process happens in two steps: 1) Compute hungarian assignment between ground truth boxes and the outputs of the model 2) Supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, focal_alpha, losses): """ Create the criterion. Args: num_classes (int): number of object categories, omitting the special no-object category matcher (nn.Module): module able to compute a matching between targets and proposals losses (list[str]): list of all the losses to be applied. See get_loss for list of available losses. focal_alpha (float): alpha in Focal Loss """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.losses = losses self.focal_alpha = focal_alpha def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (Binary focal loss). Args: outputs (dict[torch.Tensor]): computed outputs targets List[dict]): target annotations. targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] indices (list): matching indices num_boxes (int): number of bounding boxes Returns: classification loss """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] losses = {'loss_ce': loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Args: outputs (dict[torch.Tensor]): computed outputs targets (List[dict]): target annotations targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. indices (list): matching indices num_boxes (int): number of bounding boxes Returns: bbox loss and giou loss """ assert 'pred_boxes' in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou'] = loss_giou.sum() / num_boxes # calculate the x,y and h,w loss with torch.no_grad(): losses['loss_xy'] = loss_bbox[..., :2].sum() / num_boxes losses['loss_hw'] = loss_bbox[..., 2:].sum() / num_boxes return losses def _get_src_permutation_idx(self, indices): """Permute predictions following indices. Args: indices (list): matching indices. """ batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): """Permute targets following indices. Args: indices (list): matching indices. """ batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Args: loss (str): name of the loss to get outputs (dict[torch.Tensor]): computed outputs targets (List[dict]): target annotations indices (list): matching indices num_boxes (int): number of bounding boxes Returns: the loss value given the loss name """ loss_map = { 'labels': self.loss_labels, 'boxes': self.loss_boxes, } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets, return_indices=False): """ Performs the loss computation. Args: outputs (dict[torch.Tensor]): dict of tensors, see the output specification of the model for the format targets (List[dict]): list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc Returns: losses (dict): Dictionary of computed losses """ outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} device = next(iter(outputs.values())).device indices = self.matcher(outputs_without_aux, targets) if return_indices: indices0_copy = indices indices_list = [] # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() # Compute all the requested losses losses = {} # prepare for dn loss dn_meta = outputs['dn_meta'] if self.training and dn_meta and 'output_known_lbs_bboxes' in dn_meta: output_known_lbs_bboxes, single_pad, scalar = self.prep_for_dn(dn_meta) dn_pos_idx = [] dn_neg_idx = [] for i in range(len(targets)): if len(targets[i]['labels']) > 0: t = torch.range(0, len(targets[i]['labels']) - 1).long().cuda() t = t.unsqueeze(0).repeat(scalar, 1) tgt_idx = t.flatten() output_idx = (torch.tensor(range(scalar)) * single_pad).long().cuda().unsqueeze(1) + t output_idx = output_idx.flatten() else: output_idx = tgt_idx = torch.tensor([]).long().cuda() dn_pos_idx.append((output_idx, tgt_idx)) dn_neg_idx.append((output_idx + single_pad // 2, tgt_idx)) output_known_lbs_bboxes = dn_meta['output_known_lbs_bboxes'] l_dict = {} for loss in self.losses: kwargs = {} if 'labels' in loss: kwargs = {'log': False} l_dict.update(self.get_loss(loss, output_known_lbs_bboxes, targets, dn_pos_idx, num_boxes * scalar, **kwargs)) l_dict = {f'{k}_dn': v for k, v in l_dict.items()} losses.update(l_dict) else: l_dict = dict() l_dict['loss_bbox_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_giou_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_ce_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_xy_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_hw_dn'] = torch.as_tensor(0.).to('cuda') losses.update(l_dict) for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if 'aux_outputs' in outputs: for idx, aux_outputs in enumerate(outputs['aux_outputs']): indices = self.matcher(aux_outputs, targets) if return_indices: indices_list.append(indices) for loss in self.losses: kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs = {'log': False} l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_{idx}': v for k, v in l_dict.items()} losses.update(l_dict) if self.training and dn_meta and 'output_known_lbs_bboxes' in dn_meta: aux_outputs_known = output_known_lbs_bboxes['aux_outputs'][idx] l_dict = {} for loss in self.losses: kwargs = {} if 'labels' in loss: kwargs = {'log': False} l_dict.update(self.get_loss(loss, aux_outputs_known, targets, dn_pos_idx, num_boxes * scalar, **kwargs)) l_dict = {k + f'_dn_{idx}': v for k, v in l_dict.items()} losses.update(l_dict) else: l_dict = dict() l_dict['loss_bbox_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_giou_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_ce_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_xy_dn'] = torch.as_tensor(0.).to('cuda') l_dict['loss_hw_dn'] = torch.as_tensor(0.).to('cuda') l_dict = {k + f'_{idx}': v for k, v in l_dict.items()} losses.update(l_dict) # interm_outputs loss if 'interm_outputs' in outputs: interm_outputs = outputs['interm_outputs'] indices = self.matcher(interm_outputs, targets) if return_indices: indices_list.append(indices) for loss in self.losses: kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs = {'log': False} l_dict = self.get_loss(loss, interm_outputs, targets, indices, num_boxes, **kwargs) l_dict = {f'{k}_interm': v for k, v in l_dict.items()} losses.update(l_dict) # enc output loss if 'enc_outputs' in outputs: for i, enc_outputs in enumerate(outputs['enc_outputs']): indices = self.matcher(enc_outputs, targets) if return_indices: indices_list.append(indices) for loss in self.losses: kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs = {'log': False} l_dict = self.get_loss(loss, enc_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_enc_{i}': v for k, v in l_dict.items()} losses.update(l_dict) if return_indices: indices_list.append(indices0_copy) return losses, indices_list return losses def prep_for_dn(self, dn_meta): """Prepare for de-noising. Args: dn_meta (dict): meta information about de-noising. """ output_known_lbs_bboxes = dn_meta['output_known_lbs_bboxes'] num_dn_groups, pad_size = dn_meta['num_dn_group'], dn_meta['pad_size'] assert pad_size % num_dn_groups == 0 single_pad = pad_size // num_dn_groups return output_known_lbs_bboxes, single_pad, num_dn_groups
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/criterion.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DINO model. """ import copy import math import warnings import torch import torch.nn.functional as F from torch import nn from nvidia_tao_pytorch.cv.dino.model.dn_components import prepare_for_cdn, dn_post_process from nvidia_tao_pytorch.cv.dino.model.model_utils import MLP from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import (tensor_from_tensor_list, inverse_sigmoid) class DINO(nn.Module): """ This is the Cross-Attention Detector module that performs object detection """ def __init__(self, backbone, position_embedding, transformer, num_classes, num_queries, aux_loss=False, random_refpoints_xy=False, fix_refpoints_hw=-1, num_feature_levels=1, nheads=8, # two stage two_stage_type='no', # ['no', 'standard'] two_stage_add_query_num=0, dec_pred_class_embed_share=True, dec_pred_bbox_embed_share=True, two_stage_class_embed_share=True, two_stage_bbox_embed_share=True, decoder_sa_type='sa', num_patterns=0, dn_number=100, dn_box_noise_scale=0.4, dn_label_noise_ratio=0.5, dn_labelbook_size=100, export=False): """ Initializes the model. Args: backbone (torch.Tensor): torch module of the backbone to be used. See backbone.py. transformer (torch.Tensor): torch module of the transformer architecture. See deformable_transformer.py. num_classes (int): number of object classes. num_queries (int): number of object queries, ie detection slot. This is the maximal number of objects. DINO can detect in a single image. For COCO, we recommend 300 queries. aux_loss (bool): True if auxiliary decoding losses (loss at each decoder layer) are to be used. random_refpoints_xy (bool): whether to randomly initialize reference point embedding. fix_refpoints_hw (int): -1(default): learn w and h for each box seperately >0 : given fixed number -2 : learn a shared w and h num_feature_levels (int): Number of levels to extract from the backbone feature maps. nheads (int): number of heads. two_stage_type (str): type of two stage in DINO. two_stage_add_query_num (int): size of the target embedding. dec_pred_class_embed_share (bool): whether to share embedding for decoder classification prediction. dec_pred_bbox_embed_share (bool): whether to share embedding for decoder bounding box prediction. two_stage_bbox_embed_share (bool): whether to share embedding for two stage bounding box. two_stage_class_embed_share (bool): whether to share embedding for two stage classification. decoder_layer_noise (bool): a flag to add random perturbation to decoder query. num_patterns (int): number of patterns in encoder-decoder. dn_number (bool): the number of de-noising queries in DINO dn_box_noise_scale (float): the scale of noise applied to boxes during contrastive de-noising. If this value is 0, noise is not applied. dn_label_noise_ratio (float): the scale of noise applied to labels during contrastive de-noising. If this value is 0, noise is not applied. dn_labelbook_size (int): de-nosing labelbook size. should be same as number of classes export (bool): flag to indicate if the current model is being used for ONNX export. """ super().__init__() self.num_queries = num_queries self.transformer = transformer self.num_classes = num_classes self.hidden_dim = hidden_dim = transformer.d_model self.num_feature_levels = num_feature_levels self.nheads = nheads self.label_enc = nn.Embedding(dn_labelbook_size + 1, hidden_dim) # setting query dim self.query_dim = 4 self.random_refpoints_xy = random_refpoints_xy self.fix_refpoints_hw = fix_refpoints_hw # for dn training self.num_patterns = num_patterns self.dn_number = dn_number self.dn_box_noise_scale = dn_box_noise_scale self.dn_label_noise_ratio = dn_label_noise_ratio self.dn_labelbook_size = dn_labelbook_size # prepare input projection layers if num_feature_levels > 1: num_backbone_outs = len(backbone.num_channels) input_proj_list = [] for _ in range(num_backbone_outs): in_channels = backbone.num_channels[_] input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )) for _ in range(num_feature_levels - num_backbone_outs): input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, hidden_dim), )) in_channels = hidden_dim self.input_proj = nn.ModuleList(input_proj_list) else: assert two_stage_type == 'no', "two_stage_type should be no if num_feature_levels=1 !!!" self.input_proj = nn.ModuleList([ nn.Sequential( nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )]) self.position_embedding = position_embedding self.export = export self.backbone = backbone self.aux_loss = aux_loss self.export = export if self.export: warnings.warn("Setting aux_loss to be False for export") self.aux_loss = False self.box_pred_damping = None self.iter_update = True # prepare pred layers self.dec_pred_class_embed_share = dec_pred_class_embed_share self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share # prepare class & box embed _class_embed = nn.Linear(hidden_dim, num_classes) _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) # init the two embed layers prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) _class_embed.bias.data = torch.ones(self.num_classes) * bias_value nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0) if dec_pred_bbox_embed_share: box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)] else: box_embed_layerlist = [copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)] if dec_pred_class_embed_share: class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)] else: class_embed_layerlist = [copy.deepcopy(_class_embed) for i in range(transformer.num_decoder_layers)] self.bbox_embed = nn.ModuleList(box_embed_layerlist) self.class_embed = nn.ModuleList(class_embed_layerlist) self.transformer.decoder.bbox_embed = self.bbox_embed self.transformer.decoder.class_embed = self.class_embed # two stage self.two_stage_type = two_stage_type self.two_stage_add_query_num = two_stage_add_query_num assert two_stage_type in ['no', 'standard'], "unknown param {} of two_stage_type".format(two_stage_type) if two_stage_type != 'no': if two_stage_bbox_embed_share: if not (dec_pred_class_embed_share and dec_pred_bbox_embed_share): raise ValueError("two_stage_bbox_embed_share was set to true but " f"dec_pred_class_embed_share was set to {dec_pred_class_embed_share} " f"dec_pred_bbox_embed_share was set to {dec_pred_bbox_embed_share}") self.transformer.enc_out_bbox_embed = _bbox_embed else: self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed) if two_stage_class_embed_share: assert dec_pred_class_embed_share and dec_pred_bbox_embed_share self.transformer.enc_out_class_embed = _class_embed else: self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed) self.refpoint_embed = None if self.two_stage_add_query_num > 0: self.init_ref_points(two_stage_add_query_num) self.decoder_sa_type = decoder_sa_type assert decoder_sa_type in ['sa', 'ca_label', 'ca_content'] if decoder_sa_type == 'ca_label': self.label_embedding = nn.Embedding(num_classes, hidden_dim) for layer in self.transformer.decoder.layers: layer.label_embedding = self.label_embedding else: for layer in self.transformer.decoder.layers: layer.label_embedding = None self.label_embedding = None self._reset_parameters() def _reset_parameters(self): # init input_proj for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) def init_ref_points(self, use_num_queries): """Initialize reference points""" self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim) if self.random_refpoints_xy: self.refpoint_embed.weight.data[:, :2].uniform_(0, 1) self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2]) self.refpoint_embed.weight.data[:, :2].requires_grad = False if self.fix_refpoints_hw > 0: print("fix_refpoints_hw: {}".format(self.fix_refpoints_hw)) assert self.random_refpoints_xy self.refpoint_embed.weight.data[:, 2:] = self.fix_refpoints_hw self.refpoint_embed.weight.data[:, 2:] = inverse_sigmoid(self.refpoint_embed.weight.data[:, 2:]) self.refpoint_embed.weight.data[:, 2:].requires_grad = False elif int(self.fix_refpoints_hw) == -1: pass elif int(self.fix_refpoints_hw) == -2: print('learn a shared h and w') assert self.random_refpoints_xy self.refpoint_embed = nn.Embedding(use_num_queries, 2) self.refpoint_embed.weight.data[:, :2].uniform_(0, 1) self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2]) self.refpoint_embed.weight.data[:, :2].requires_grad = False self.hw_embed = nn.Embedding(1, 1) else: raise NotImplementedError('Unknown fix_refpoints_hw {}'.format(self.fix_refpoints_hw)) def forward(self, samples, targets=None): """ Forward function of DINO Model Args: samples (torch.Tensor): batched images, of shape [batch_size x 3 x H x W] targets (dict): batched annotations Returns: pred_logits (torch.Tensor): the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x (num_classes + 1)] pred_boxes (torch.Tensor): The normalized boxes coordinates for all queries, represented as(center_x, center_y, height, width) """ if not isinstance(samples, torch.Tensor): samples = tensor_from_tensor_list(samples) features = self.backbone(samples) srcs = [] masks = [] for level, feat in enumerate(features): src = feat[0] mask = (feat[1].float()[:, 0].bool()) srcs.append(self.input_proj[level](src)) masks.append(mask) if self.num_feature_levels > len(srcs): _len_srcs = len(srcs) for li in range(_len_srcs, self.num_feature_levels): if li == _len_srcs: src = self.input_proj[li](features[-1][0]) else: src = self.input_proj[li](srcs[-1]) srcs.append(src) if self.export: m = torch.zeros((src.shape[0], 1, src.shape[2], src.shape[3]), dtype=src.dtype, device=src.device) else: m = samples[:, 3:4] mask = F.interpolate(m.float(), size=src.shape[-2:]).to(torch.bool) masks.append(mask.float()[:, 0].bool()) # build positional embedding pos = [] for mask in masks: if self.export: N, H, W = mask.shape tensor_shape = torch.tensor([N, H, W], device=src.device) pos.append(self.position_embedding(tensor_shape, src.device)) else: not_mask = ~mask pos.append(self.position_embedding(not_mask, src.device)) if self.dn_number > 0 or targets is not None: input_query_label, input_query_bbox, attn_mask, dn_meta =\ prepare_for_cdn(dn_args=(targets, self.dn_number, self.dn_label_noise_ratio, self.dn_box_noise_scale), training=self.training, num_queries=self.num_queries, num_classes=self.num_classes, hidden_dim=self.hidden_dim, label_enc=self.label_enc) else: assert targets is None input_query_bbox = input_query_label = attn_mask = dn_meta = None hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(srcs, masks, input_query_bbox, pos, input_query_label, attn_mask) # In case num object=0 hs[0] += self.label_enc.weight[0, 0] * 0.0 # deformable-detr-like anchor update # reference_before_sigmoid = inverse_sigmoid(reference[:-1]) # n_dec, bs, nq, 4 outputs_coord_list = [] for layer_ref_sig, layer_bbox_embed, layer_hs in zip(reference[:-1], self.bbox_embed, hs): layer_delta_unsig = layer_bbox_embed(layer_hs) layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig) layer_outputs_unsig = layer_outputs_unsig.sigmoid() outputs_coord_list.append(layer_outputs_unsig) outputs_coord_list = torch.stack(outputs_coord_list) outputs_class = torch.stack([layer_cls_embed(layer_hs) for layer_cls_embed, layer_hs in zip(self.class_embed, hs)]) if self.dn_number > 0 and dn_meta is not None: outputs_class, outputs_coord_list = \ dn_post_process(outputs_class, outputs_coord_list, dn_meta, self.aux_loss, self._set_aux_loss) out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord_list[-1]} if self.aux_loss: out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list) # for encoder output if hs_enc is not None: # prepare intermediate outputs interm_coord = ref_enc[-1] interm_class = self.transformer.enc_out_class_embed(hs_enc[-1]) if not self.export: out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord} out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal} # prepare enc outputs if hs_enc.shape[0] > 1: enc_outputs_coord = [] enc_outputs_class = [] for layer_box_embed, layer_class_embed, layer_hs_enc, layer_ref_enc in zip(self.enc_bbox_embed, self.enc_class_embed, hs_enc[:-1], ref_enc[:-1]): layer_enc_delta_unsig = layer_box_embed(layer_hs_enc) layer_enc_outputs_coord_unsig = layer_enc_delta_unsig + inverse_sigmoid(layer_ref_enc) layer_enc_outputs_coord = layer_enc_outputs_coord_unsig.sigmoid() layer_enc_outputs_class = layer_class_embed(layer_hs_enc) enc_outputs_coord.append(layer_enc_outputs_coord) enc_outputs_class.append(layer_enc_outputs_class) if not self.export: out['enc_outputs'] = [ {'pred_logits': a, 'pred_boxes': b} for a, b in zip(enc_outputs_class, enc_outputs_coord) ] if not self.export: out['dn_meta'] = dn_meta return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): """This is a workaround to make torchscript happy, as torchscript doesn't support dictionary with non-homogeneous values, such as a dict having both a Tensor and a list. """ return [{'pred_logits': a, 'pred_boxes': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/dino.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The build nn module model.""" import torch.nn as nn from nvidia_tao_pytorch.cv.dino.model.backbone import Backbone, Joiner from nvidia_tao_pytorch.cv.dino.model.deformable_transformer import DeformableTransformer from nvidia_tao_pytorch.cv.dino.model.dino import DINO from nvidia_tao_pytorch.cv.dino.model.position_encoding import PositionEmbeddingSineHW, PositionEmbeddingSineHWExport class DINOModel(nn.Module): """DINO model module.""" def __init__(self, num_classes=4, hidden_dim=256, pretrained_backbone_path=None, backbone='resnet50', train_backbone=True, num_feature_levels=2, nheads=8, enc_layers=6, dec_layers=6, dim_feedforward=1024, dec_n_points=4, enc_n_points=4, num_queries=300, aux_loss=True, dilation=False, dropout_ratio=0.3, export=False, activation_checkpoint=True, return_interm_indices=[1, 2, 3, 4], pre_norm=False, num_patterns=0, decoder_layer_noise=False, dln_xy_noise=0.2, dln_hw_noise=0.2, add_channel_attention=False, random_refpoints_xy=False, two_stage_type='standard', two_stage_pat_embed=0, two_stage_add_query_num=0, two_stage_learn_wh=False, two_stage_keep_all_tokens=False, decoder_sa_type='sa', embed_init_tgt=True, use_detached_boxes_dec_out=False, fix_refpoints_hw=-1, dec_pred_class_embed_share=True, dec_pred_bbox_embed_share=True, two_stage_bbox_embed_share=False, two_stage_class_embed_share=False, use_dn=True, dn_number=100, dn_box_noise_scale=1.0, dn_label_noise_ratio=0.5, pe_temperatureH=20, pe_temperatureW=20 ): """Initialize DINO Model. Args: num_classes (int): number of classes for the model. hidden_dim (int): size of the hidden dimension. pretrained_backbone_path (str): pretrained backbone path. If not provided, train from scratch. backbone (str): type of backbone architecture. train_backbone (bool): whether to train backbone or not. num_feature_levels (int): Number of levels to extract from the backbone feature maps. nheads (int): number of heads. enc_layers (int): number of encoder layers. dec_layers (int): number of decoder layers. dim_feedforward (int): dimension of the feedforward layer. dec_n_points (int): number of reference points in the decoder. enc_n_points (int): number of reference points in the encoder. num_queries (int): number of queries to be used in D-DETR encoder-decoder. aux_loss (bool): flag to indicate if auxiliary loss is used. dilation (bool): flag to indicate if dilation is used (only for ResNet). dropout_ratio (float): probability for the dropout layer. export (bool): flag to indicate if the current model is being used for ONNX export. activation_checkpoint (bool): flag to indicate if activation checkpointing is used. return_interm_indices (list): indices of feature level to use. pre_norm (bool): whether to add LayerNorm before the encoder. num_patterns (int): number of patterns in encoder-decoder. decoder_layer_noise (bool): a flag to add random perturbation to decoder query. dln_xy_noise (float): scale of noise applied along xy dimension during random perturbation. dln_hw_noise (float): scale of noise applied along wh dimension during random perturbation. add_channel_attention (bool): whether to add channel attention. random_refpoints_xy (bool): whether to randomly initialize reference point embedding. two_stage_type (str): type of two stage in DINO. two_stage_pat_embed (int): size of the patch embedding for the second stage. two_stage_add_query_num (int): size of the target embedding. two_stage_learn_wh (bool): add embedding for learnable w and h. two_stage_keep_all_tokens (bool): whether to keep all tokens in the second stage. decoder_sa_type (str): type of self-attention in the decoder. embed_init_tgt (bool): whether to add target embedding. use_detached_boxes_dec_out (bool): use detached box decoder output in the reference points. fix_refpoints_hw (int): If this value is -1, width and height are learned seperately for each box. If this value is -2, a shared w and h are learned. A value greater than 0 specifies learning with a fixed number. dec_pred_class_embed_share (bool): whether to share embedding for decoder classification prediction. dec_pred_bbox_embed_share (bool): whether to share embedding for decoder bounding box prediction. two_stage_bbox_embed_share (bool): whether to share embedding for two stage bounding box. two_stage_class_embed_share (bool): whether to share embedding for two stage classification. use_dn (bool): a flag specifying whether to enbable contrastive de-noising training in DINO. dn_number (bool): the number of de-noising queries in DINO dn_box_noise_scale (float): the scale of noise applied to boxes during contrastive de-noising. If this value is 0, noise is not applied. dn_label_noise_ratio (float): the scale of noise applied to labels during contrastive de-noising. If this value is 0, noise is not applied. pe_temperatureH (int): the temperature applied to the height dimension of Positional Sine Embedding. pe_temperatureW (int): the temperature applied to the width dimension of Positional Sine Embedding """ super(__class__, self).__init__() # pylint:disable=undefined-variable # TODO: Update position_embedding in the build stage # build positional encoding. only support PositionEmbeddingSine if export: position_embedding = PositionEmbeddingSineHWExport(hidden_dim // 2, temperatureH=pe_temperatureH, temperatureW=pe_temperatureW, normalize=True) else: position_embedding = PositionEmbeddingSineHW(hidden_dim // 2, temperatureH=pe_temperatureH, temperatureW=pe_temperatureW, normalize=True) # build backbone if num_feature_levels != len(return_interm_indices): raise ValueError(f"num_feature_levels: {num_feature_levels} does not match the size of " f"return_interm_indices: {return_interm_indices}") # Index 4 is not part of the backbone but taken from index 3 with conv 3x3 stride 2 return_interm_indices = [r for r in return_interm_indices if r != 4] backbone_only = Backbone(backbone, pretrained_backbone_path, train_backbone, return_interm_indices, dilation, export, activation_checkpoint) # Keep joiner for backward compatibility joined_backbone = Joiner(backbone_only) decoder_query_perturber = None if decoder_layer_noise: from nvidia_tao_pytorch.cv.dino.model.model_utils import RandomBoxPerturber decoder_query_perturber = RandomBoxPerturber(x_noise_scale=dln_xy_noise, y_noise_scale=dln_xy_noise, w_noise_scale=dln_hw_noise, h_noise_scale=dln_hw_noise) # build tranformer transformer = DeformableTransformer( d_model=hidden_dim, nhead=nheads, export=export, activation_checkpoint=activation_checkpoint, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, dim_feedforward=dim_feedforward, dropout=dropout_ratio, activation="relu", return_intermediate_dec=True, num_feature_levels=num_feature_levels, enc_n_points=enc_n_points, dec_n_points=dec_n_points, num_queries=num_queries, normalize_before=pre_norm, num_patterns=num_patterns, modulate_hw_attn=True, deformable_decoder=True, decoder_query_perturber=decoder_query_perturber, add_channel_attention=add_channel_attention, random_refpoints_xy=random_refpoints_xy, # two stage two_stage_type=two_stage_type, # ['no', 'standard', 'early'] two_stage_pat_embed=two_stage_pat_embed, two_stage_add_query_num=two_stage_add_query_num, two_stage_learn_wh=two_stage_learn_wh, two_stage_keep_all_tokens=two_stage_keep_all_tokens, dec_layer_number=None, rm_self_attn_layers=None, key_aware_type=None, layer_share_type=None, rm_detach=None, decoder_sa_type=decoder_sa_type, module_seq=['sa', 'ca', 'ffn'], embed_init_tgt=embed_init_tgt, use_detached_boxes_dec_out=use_detached_boxes_dec_out ) # build deformable detr model self.model = DINO(joined_backbone, position_embedding, transformer, num_classes=num_classes, num_queries=num_queries, aux_loss=aux_loss, export=export, random_refpoints_xy=random_refpoints_xy, fix_refpoints_hw=fix_refpoints_hw, num_feature_levels=num_feature_levels, nheads=nheads, dec_pred_class_embed_share=dec_pred_class_embed_share, dec_pred_bbox_embed_share=dec_pred_bbox_embed_share, # two stage two_stage_type=two_stage_type, # box_share two_stage_bbox_embed_share=two_stage_bbox_embed_share, two_stage_class_embed_share=two_stage_class_embed_share, decoder_sa_type=decoder_sa_type, num_patterns=num_patterns, dn_number=dn_number if use_dn else 0, dn_box_noise_scale=dn_box_noise_scale, dn_label_noise_ratio=dn_label_noise_ratio, dn_labelbook_size=num_classes) def forward(self, x, targets=None): """model forward function""" x = self.model(x, targets) return x def build_model(experiment_config, export=False): """ Build dino model according to configuration. Args: experiment_config (OmegaConf): experiment configuration. export (bool): flag to indicate onnx export. Returns: model (nn.Module): DINO model. """ model_config = experiment_config.model dataset_config = experiment_config.dataset num_classes = dataset_config.num_classes backbone = model_config.backbone dropout_ratio = model_config.dropout_ratio hidden_dim = model_config.hidden_dim num_feature_levels = model_config.num_feature_levels nheads = model_config.nheads enc_layers = model_config.enc_layers dec_layers = model_config.dec_layers dim_feedforward = model_config.dim_feedforward dec_n_points = model_config.dec_n_points enc_n_points = model_config.enc_n_points num_queries = model_config.num_queries aux_loss = model_config.aux_loss dilation = model_config.dilation train_backbone = model_config.train_backbone pretrained_backbone = model_config.pretrained_backbone_path # DINO specific return_interm_indices = model_config.return_interm_indices pre_norm = model_config.pre_norm two_stage_type = model_config.two_stage_type decoder_sa_type = model_config.decoder_sa_type embed_init_tgt = model_config.embed_init_tgt fix_refpoints_hw = model_config.fix_refpoints_hw use_dn = model_config.use_dn dn_number = model_config.dn_number dn_box_noise_scale = model_config.dn_box_noise_scale dn_label_noise_ratio = model_config.dn_label_noise_ratio pe_temperatureH = model_config.pe_temperatureH pe_temperatureW = model_config.pe_temperatureW activation_checkpoint = experiment_config.train.activation_checkpoint model = DINOModel(num_classes=num_classes, hidden_dim=hidden_dim, pretrained_backbone_path=pretrained_backbone, backbone=backbone, train_backbone=train_backbone, num_feature_levels=num_feature_levels, nheads=nheads, enc_layers=enc_layers, dec_layers=dec_layers, dim_feedforward=dim_feedforward, dec_n_points=dec_n_points, enc_n_points=enc_n_points, num_queries=num_queries, aux_loss=aux_loss, dilation=dilation, dropout_ratio=dropout_ratio, export=export, activation_checkpoint=activation_checkpoint, return_interm_indices=return_interm_indices, decoder_sa_type=decoder_sa_type, embed_init_tgt=embed_init_tgt, use_dn=use_dn, dn_number=dn_number, dn_box_noise_scale=dn_box_noise_scale, dn_label_noise_ratio=dn_label_noise_ratio, pe_temperatureH=pe_temperatureH, pe_temperatureW=pe_temperatureW, pre_norm=pre_norm, two_stage_type=two_stage_type, fix_refpoints_hw=fix_refpoints_hw, ) return model
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/dino/model/build_nn_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """optical inspection root module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Action recognition config module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file""" from typing import Optional, List, Dict from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class OIModelConfig: """Optical recognition model config.""" model_type: str = "Siamese_3" margin: float = 2.0 model_backbone: str = "custom" embedding_vectors: int = 5 imagenet_pretrained: bool = False @dataclass class OptimConfig: """Optimizer config.""" type: str = "Adam" lr: float = 5e-4 momentum: float = 0.9 weight_decay: float = 5e-4 @dataclass class OIAugmentationConfig: """Augmentation config.""" rgb_input_mean: List[float] = field(default_factory=lambda: [0.485, 0.456, 0.406]) rgb_input_std: List[float] = field(default_factory=lambda: [0.229, 0.224, 0.225]) @dataclass class DataPathFormat: """Dataset Path experiment config.""" csv_path: str = MISSING images_dir: str = MISSING @dataclass class OIDatasetConfig: """Dataset config.""" train_dataset: DataPathFormat = DataPathFormat() validation_dataset: DataPathFormat = DataPathFormat() test_dataset: DataPathFormat = DataPathFormat() infer_dataset: DataPathFormat = DataPathFormat() image_ext: Optional[str] = None batch_size: int = 32 workers: int = 8 fpratio_sampling: float = 0.1 num_input: int = 8 input_map: Optional[Dict[str, int]] = None grid_map: Optional[Dict[str, int]] = None concat_type: Optional[str] = None output_shape: List[int] = field(default_factory=lambda: [100, 100]) augmentation_config: OIAugmentationConfig = OIAugmentationConfig() @dataclass class TensorBoardLogger: """Configuration for the tensorboard logger.""" enabled: bool = False infrequent_logging_frequency: int = 2 # Defined per epoch @dataclass class OITrainExpConfig: """Train experiment config.""" optim: OptimConfig = OptimConfig() num_epochs: int = 10 checkpoint_interval: int = 2 validation_interval: int = 2 loss: Optional[str] = None clip_grad_norm: float = 0.0 gpu_ids: List[int] = field(default_factory=lambda: [0]) results_dir: Optional[str] = None tensorboard: Optional[TensorBoardLogger] = TensorBoardLogger() resume_training_checkpoint_path: Optional[str] = None pretrained_model_path: Optional[str] = None @dataclass class OIInferenceExpConfig: """Inference experiment config.""" checkpoint: str = MISSING trt_engine: str = MISSING gpu_id: int = 0 results_dir: Optional[str] = None batch_size: int = 1 @dataclass class OIEvalExpConfig: """Evaluation experiment config.""" checkpoint: str = MISSING gpu_id: int = 0 batch_size: int = 1 results_dir: Optional[str] = None @dataclass class OIExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None checkpoint: str = MISSING onnx_file: Optional[str] = None opset_version: Optional[int] = 12 gpu_id: int = 0 on_cpu: bool = False input_height: int = 400 input_width: int = 100 input_channel: int = 3 batch_size: int = -1 do_constant_folding: bool = False @dataclass class CalibrationConfig: """Calibration config.""" cal_image_dir: List[str] = MISSING cal_cache_file: str = MISSING cal_batch_size: int = 1 cal_batches: int = 1 @dataclass class TrtConfig: """Trt config.""" data_type: str = "fp16" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class OIGenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 400 input_height: int = 100 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class OIDatasetConvertConfig: """Dataset Convert experiment config.""" root_dataset_dir: Optional[str] = None data_convert_output_dir: Optional[str] = None train_pcb_dataset_dir: Optional[str] = None val_pcb_dataset_dir: Optional[str] = None all_pcb_dataset_dir: Optional[str] = None golden_csv_dir: Optional[str] = None project_name: Optional[str] = None bot_top: Optional[str] = None @dataclass class OIExperimentConfig: """Experiment config.""" model: OIModelConfig = OIModelConfig() dataset: OIDatasetConfig = OIDatasetConfig() train: OITrainExpConfig = OITrainExpConfig() evaluate: OIEvalExpConfig = OIEvalExpConfig() export: OIExportExpConfig = OIExportExpConfig() inference: OIInferenceExpConfig = OIInferenceExpConfig() dataset_convert: OIDatasetConvertConfig = OIDatasetConvertConfig() gen_trt_engine: OIGenTrtEngineExpConfig = OIGenTrtEngineExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Group transformation for action recognition""" import numpy as np from PIL import Image import random import torch class GroupWorker(object): """Wrapper for group transformation using torchvision.""" def __init__(self, worker): """Init worker.""" self.worker = worker def __call__(self, img_group): """img_group: PIL Images list.""" return [self.worker(img) for img in img_group] class GroupRandomCrop(object): """RandomCrop for the group of frames.""" def __init__(self, size): """Init.""" self.size = size def __call__(self, img_group): """img_group: PIL Images list.""" w, h = img_group[0].size th, tw = self.size out_images = [] x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) for img in img_group: assert (img.size[0] == w and img.size[1] == h) if w == tw and h == th: out_images.append(img) else: out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) return out_images class MultiScaleCrop(object): """ Crop images with a list of randomly selected scales. Args: input_size (int | tuple[int]): (w, h) of network input. scales (list[float]): width and height scales to be selected. """ def __init__(self, input_size, scales=[1, 0.875, 0.75, 0.66], max_distort=0, fix_crop=True, more_fix_crop=True): """max_distort: introducing aspect-ratio augmentation.""" self.scales = scales self.max_distort = max_distort self.fix_crop = fix_crop self.more_fix_crop = more_fix_crop self.input_size = input_size self.interpolation = Image.BILINEAR def __call__(self, img_group): """img_group: PIL Images list.""" im_size = img_group[0].size crop_w, crop_h, offset_w, offset_h = self._sample_crop_patch(im_size) crop_img_group = [img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in img_group] ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation) for img in crop_img_group] return ret_img_group def _fill_crop_size(self, img_w, img_h): """Generate crop size collections.""" base_size = min(img_w, img_h) crop_sizes = [int(base_size * s) for s in self.scales] crop_w = [self.input_size[0] if abs(x - self.input_size[0]) < 3 else x for x in crop_sizes] crop_h = [self.input_size[1] if abs(x - self.input_size[1]) < 3 else x for x in crop_sizes] candidate_sizes = [] for i, h in enumerate(crop_h): for j, w in enumerate(crop_w): if abs(i - j) <= self.max_distort: candidate_sizes.append((w, h)) return candidate_sizes def _fill_fix_offset(self, image_w, image_h, crop_w, crop_h): """Generate crop offset collections.""" w_step = (image_w - crop_w) // 4 h_step = (image_h - crop_h) // 4 ret = [] ret.append((0, 0)) # upper left ret.append((4 * w_step, 0)) # upper right ret.append((0, 4 * h_step)) # lower left ret.append((4 * w_step, 4 * h_step)) # lower right ret.append((2 * w_step, 2 * h_step)) # center if self.more_fix_crop: ret.append((0, 2 * h_step)) # center left ret.append((4 * w_step, 2 * h_step)) # center right ret.append((2 * w_step, 4 * h_step)) # lower center ret.append((2 * w_step, 0 * h_step)) # upper center ret.append((1 * w_step, 1 * h_step)) # upper left quarter ret.append((3 * w_step, 1 * h_step)) # upper right quarter ret.append((1 * w_step, 3 * h_step)) # lower left quarter ret.append((3 * w_step, 3 * h_step)) # lower righ quarter return ret def _sample_crop_patch(self, im_size): """Random choose crop patch.""" img_w, img_h = im_size # find a crop size candidate_sizes = self._fill_crop_size(img_w, img_h) crop_width, crop_height = random.choice(candidate_sizes) if not self.fix_crop: w_offset = random.randint(0, img_w - crop_width) h_offset = random.randint(0, img_h - crop_height) else: offsets = self._fill_fix_offset(img_w, img_h, crop_width, crop_height) w_offset, h_offset = random.choice(offsets) return crop_width, crop_height, w_offset, h_offset class GroupRandomHorizontalFlip(object): """Random horizontal flip group of frames.""" def __init__(self, flip_prob=0.5, is_flow=False): """Init.""" self.flip_prob = flip_prob self.is_flow = is_flow def __call__(self, img_group): """img_group: PIL Images list.""" if random.random() < self.flip_prob: ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group] # @TODO(tylerz): figure out the right way to flip optical flow else: ret = img_group return ret class GroupNormalize(object): """Normalize the group of frames. substract mean -> divide std.""" def __init__(self, mean, std): """Init.""" self.mean = mean self.std = std def __call__(self, tensor): """tensor: torch tensor CTHW.""" if len(self.mean) != 0 and len(self.std) != 0: rep_mean = self.mean * (tensor.size()[0] // len(self.mean)) rep_std = self.std * (tensor.size()[0] // len(self.std)) # TODO: make efficient for t, m, s in zip(tensor, rep_mean, rep_std): t.sub_(m).div_(s) elif len(self.mean) != 0 and len(self.std) == 0: rep_mean = self.mean * (tensor.size()[0] // len(self.mean)) # TODO: make efficient for t, m in zip(tensor, rep_mean): t.sub_(m) elif len(self.std) != 0 and len(self.mean) == 0: rep_std = self.std * (tensor.size()[0] // len(self.std)) # TODO: make efficient for t, s in zip(tensor, rep_std): t.div_(s) return tensor class GroupThreeCrop(object): """Crop group of frames. Crop three parts of each frames.""" def __init__(self, size): """Init.""" self.size = size def __call__(self, img_group): """img_group: PIL Images list.""" w, h = img_group[0].size th, tw = self.size assert th == h or tw == w if th == h: w_step = (w - tw) // 2 offsets = [] offsets.append((0, 0)) # left offsets.append((2 * w_step, 0)) # right offsets.append((w_step, 0)) # middle elif tw == w: h_step = (h - th) // 2 offsets = [] offsets.append((0, 0)) # top offsets.append((0, 2 * h_step)) # down offsets.append((0, h_step)) # middle new_clips = [] for ow, oh in offsets: for cur_img in img_group: # crop_img = cur_img[oh:oh+th, ow:ow+tw, :] crop_img = cur_img.crop((ow, oh, ow + tw, oh + th)) new_clips.append(crop_img) return new_clips class ToTorchFormatTensor(object): """ Converts numpy.ndarray (T x H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x T x H x W) in the range [0.0, 1.0] """ def __init__(self, div=True): """Init.""" self.div = div def __call__(self, pic): """pic: ndarray (THWC)""" if isinstance(pic, np.ndarray): # handle numpy array # put it from THWC to CTHW format imgs = torch.from_numpy(pic).permute(3, 0, 1, 2).contiguous() else: raise TypeError("pic should be numpy.ndarray") return imgs.float().div(255) if self.div else imgs.float() class ToNumpyNDArray(object): """Convert PIL Images to nd array.""" def __call__(self, img_group): """img_group: PIL Images list.""" if img_group[0].mode == 'L': return np.array([np.stack((np.array(img_group[x]), np.array(img_group[x + 1])), axis=-1) for x in range(0, len(img_group), 2)]) if img_group[0].mode == 'RGB': return np.array([np.array(x) for x in img_group]) return np.array([]) class GroupJointWorker(object): """Wrapper for joint group transformation using torchvision.""" def __init__(self, worker): """Init.""" self.worker = worker def __call__(self, img_group): """img_group: two PIL Images lists for rgb and of respectively.""" rgb_group, of_group = img_group rgb_group = [self.worker(img) for img in rgb_group] of_group = [self.worker(img) for img in of_group] return [rgb_group, of_group] class JointWorker(object): """Wrapper for joint group transformation using other group op.""" def __init__(self, worker): """Init.""" self.worker = worker def __call__(self, img_group): """img_group: two PIL Images lists or ndarray for rgb and of respectively.""" rgb_group, of_group = img_group rgb_ret_group = self.worker(rgb_group) of_ret_group = self.worker(of_group) return [rgb_ret_group, of_ret_group] class GroupJointRandomCrop(object): """Group random crop for joint training.""" def __init__(self, size): """init.""" self.size = size def __call__(self, img_group): """img_group: two PIL Images lists for rgb and of respectively.""" rgb_group, of_group = img_group w, h = rgb_group[0].size th, tw = self.size out_rgb_images = [] out_of_images = [] x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) for img in rgb_group: assert (img.size[0] == w and img.size[1] == h) if w == tw and h == th: out_rgb_images.append(img) else: out_rgb_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) for img in of_group: assert (img.size[0] == w and img.size[1] == h) if w == tw and h == th: out_of_images.append(img) else: out_of_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) return [out_rgb_images, out_of_images] class JointMultiScaleCrop(MultiScaleCrop): """MultiScaleCrop for joint training.""" def __call__(self, img_group): """img_group: two PIL Images lists for rgb and of respectively.""" rgb_group, of_group = img_group im_size = rgb_group[0].size crop_w, crop_h, offset_w, offset_h = self._sample_crop_patch(im_size) rgb_crop_img_group = [img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in rgb_group] rgb_ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation) for img in rgb_crop_img_group] of_crop_img_group = [img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in of_group] of_ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation) for img in of_crop_img_group] return [rgb_ret_img_group, of_ret_img_group] class GroupJointRandomHorizontalFlip(object): """Group random horizontal flip for joint training.""" def __init__(self, flip_prob=0.5): """Init.""" self.flip_prob = flip_prob def __call__(self, img_group): """img_group: two PIL Images lists for rgb and of respectively.""" rgb_group, of_group = img_group if random.random() < self.flip_prob: rgb_ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in rgb_group] of_ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in of_group] else: rgb_ret = rgb_group of_ret = of_group return [rgb_ret, of_ret] class GroupJointNormalize(object): """Group normalization for joint training.""" def __init__(self, rgb_input_mean, rgb_input_std, of_input_mean, of_input_std): """Init""" self.rgb_normalize = GroupNormalize(rgb_input_mean, rgb_input_std) self.of_normalize = GroupNormalize(of_input_mean, of_input_std) def __call__(self, img_group): """img_group: two torch tensors for rgb and of respectively.""" rgb_group, of_group = img_group rgb_ret_group = self.rgb_normalize(rgb_group) of_ret_group = self.of_normalize(of_group) return [rgb_ret_group, of_ret_group]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/utils/group_transforms.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Daatset Preprocess - Integrates into Factory camera system pipeline""" import pandas as pd import os import numpy as np import shutil from nvidia_tao_pytorch.core.tlt_logging import logging def get_boards_perproject(df, project_name, top_bot, compare_csv_path): """Get Golden boards per project Args: df (pd.DataFrame): The input DataFrame containing board projects information. top_bot (str): The top/bottom configuration. compare_csv_path (str): The path to the compare CSV files. project_name (str): The name of the project to get information for. """ files_project = df[(df['project'] == project_name) & (df['TB'] == top_bot)]['Files'] project_boards_csv = pd.DataFrame() for fname in files_project: train0 = pd.read_csv(compare_csv_path + fname) project_boards_csv = pd.concat([train0, project_boards_csv], axis=0) project_boards_csv = project_boards_csv.reset_index() return files_project, project_boards_csv def copy_golden_images(comparefile, proj_name, top_bot, golden_main_path, image_root, goldencsv_fname): """Copy golden images for a specific project and top/bottom configuration. Args: comparefile (pd.DataFrame): The DataFrame containing the project information. proj_name (str): The name of the project. top_bot (str): The top/bottom configuration. golden_main_path (str): The path to the golden main directory to save the golden images at. image_root (str): The root path to the image directory. goldencsv_fname (str): The file name for the output golden CSV. """ golden_path = '/'.join([golden_main_path, 'images', proj_name + top_bot, '']) if not os.path.exists(golden_path): os.mkdir(golden_path) lighting_conditions = list(comparefile['LightingCondition'].unique()) cnt_df = comparefile.groupby( ['CompName', 'TB_Panel', 'BoardSN']).size().reset_index(name='counts') comparefile = pd.merge( comparefile, cnt_df, how='left', on=['CompName', 'TB_Panel', 'BoardSN']) comparefile = comparefile.loc[comparefile['counts'] == 4] comparefile = comparefile.loc[(comparefile['MachineDefect'] == 'PASS') & (comparefile['ConfirmDefect'] == 'PASS')] goldenclean = comparefile.drop_duplicates( subset=['CompName', 'TB_Panel'], keep="last").reset_index() goldenclean = goldenclean[['CompName', 'directory', 'TB_Panel', 'BoardSN', 'Project', 'TOP_BOT']] for row in range(0, goldenclean.shape[0], 1): records = goldenclean.iloc[row, :] image_name = records['CompName'] + '@' + str(records['TB_Panel']) image_loc = image_root + records['directory'] for light in lighting_conditions: img_light_path = image_loc + '/' + image_name + '_' + light + '.jpg' shutil.copy(img_light_path, golden_path) goldenclean.rename({'boardSN': 'boardSN_used'}, axis=1, inplace=True) goldenclean['directory'] = golden_path goldenclean.to_csv(goldencsv_fname, index=False, encoding='utf-8', header=True) def create_golden_forprojects(df, root_data_path, golden_csv_path, compare_csv_path, project_list): """Create golden paths for multiple projects. Args: df (pd.DataFrame): The input DataFrame containing board information. root_data_path (str): The root path to the data directory. golden_csv_path (str): The path where the golden CSV files will be saved. compare_csv_path (str): The path to the compare CSV files. project_list (list): A list of projects to copy golden images for. """ projects_list = project_list for proj_info in projects_list: project_name = proj_info.name top_bot = proj_info.top_bot _, csvfiles_concat = get_boards_perproject(df, project_name, top_bot, compare_csv_path) goldencsv_fname = golden_csv_path + project_name + top_bot + '.csv' if os.path.exists(goldencsv_fname): continue logging.info('creating Golden for {}{}'.format(project_name, top_bot)) golden_main_path = root_data_path + 'dlout/' image_root = root_data_path + 'images/' copy_golden_images(csvfiles_concat, project_name, top_bot, golden_main_path, image_root, goldencsv_fname) def preprocess_boards_cam(summaryfiles_path, top_bot): """Pre-process boards""" def get_top_bot(x): # print(x) if x.find('~') != -1: return x.split('_')[1].split('~')[1] return x.split('_')[2] def get_boardsn(x): # print(x) if x.find('~') != -1: return x.split('_')[2] return x.split('_')[3] df = pd.DataFrame(os.listdir(summaryfiles_path), columns=['Files']) df = df.loc[df['Files'].str.endswith('.csv')] df['project'] = df['Files'].apply(lambda x: x.split('_')[1].split('~')[0]) df['boardname'] = df['Files'].apply(lambda x: get_boardsn(x)) df['TB'] = df['Files'].apply(lambda x: get_top_bot(x)) if top_bot != 'all': if (top_bot[0] in ['TOP', 'BOT']): df = df.loc[(df['TB'].isin(top_bot))] else: logging.error("INPUT VALID VALUE FOR top_bot") return df def aggr(ser_): """Checking PASS FAIL files and aggregating""" allpass = all([x == 'PASS' for x in ser_]) if allpass: return 'PASS' return '_'.join(np.unique([x for x in ser_ if x != 'PASS'])) def get_top_bot(topbot): """Get Top Bot""" if topbot == 'BOT': return 'AOI_B' return 'AOI_T' def aggr_status_across_lights(df): """Aggregating status across lights""" comp_board_cnst_cols = ['CompName', 'directory'] for col in ['ConfirmDefect', 'MachineDefect', 'Status']: combined = df.groupby(comp_board_cnst_cols)[col].apply(aggr).reset_index() df = df.drop(col, axis=1) df = pd.merge(df, combined, how='left', on=comp_board_cnst_cols) return df def get_allcomp_csv(df_, compare_csv_path, data_path): """Getting all components CSV Args: df_ (pd.DataFrame): The input DataFrame containing the project information. data_path (str): The path to the data directory. compare_csv_path (str): The path to the CSV file containing compare images. """ files = df_['Files'] match_csv = pd.DataFrame() for fname in files: train0 = pd.read_csv(data_path + compare_csv_path + fname) checkprojectpath = True if checkprojectpath: dir_tuple = train0.iloc[0, :] project = dir_tuple['Project'] top_bot = dir_tuple['TOP_BOT'] if dir_tuple.directory.split('/')[0] != project: train0['directory'] = project + '/' + get_top_bot(top_bot) + '/' + dir_tuple['directory'] match_csv = pd.concat([train0, match_csv], axis=0) comp_on_board_cols = ['Project', 'BoardSN', 'TOP_BOT', 'CompName', 'TB_Panel', 'directory'] cnt = match_csv.groupby(comp_on_board_cols).size().reset_index(name='light_count') match_csv = pd.merge(match_csv, cnt, how='left', on=comp_on_board_cols) num_img = match_csv.shape[0] match_csv = match_csv.loc[match_csv['light_count'] == 4] print('Out of {}, dropped {} images due to != 4 lighting conditions'.format( num_img, num_img - match_csv.shape[0])) false_call_idx = match_csv['ConfirmDefect'].isna() print("In ConfirmDefect, for {} rows, NaN replaced with PASS".format( match_csv[false_call_idx].shape[0])) match_csv.loc[false_call_idx, 'ConfirmDefect'] = 'PASS' return match_csv def move_golden(data_path, goldencsv, savemaplight): """Moving golden images to images directory Args: data_path (str): The path to the data directory. goldencsv (str): The golden CSV dataframe. savemaplight (str): Flag indicating whether {SaveMapLight} is present in original image paths before pre-processing the dataset paths. """ golden_path = data_path + 'images/golden' if not os.path.exists(golden_path): os.mkdir(golden_path) golden_path = data_path + 'images/golden/images' if not os.path.exists(golden_path): os.mkdir(golden_path) golden_path = data_path + 'images/' + goldencsv.directory[0] if not os.path.exists(golden_path): os.mkdir(golden_path) for row in range(0, goldencsv.shape[0], 1): records = goldencsv.iloc[row, :] image_name = records['CompName'] + '@' + str(records['TB_Panel']) pre_golden_path = data_path + 'dlout/' + records['directory'] post_golden_path = data_path + 'images/' + records['directory'] for light in ['LowAngleLight', 'SolderLight', 'UniformLight', 'WhiteLight']: if savemaplight: pre_img_light_path = pre_golden_path + image_name + '{SaveMapLight}' + '_' + light + '.jpg' post_img_light_path = post_golden_path + image_name + '_' + light + '.jpg' else: pre_img_light_path = pre_golden_path + image_name + '_' + light + '.jpg' post_img_light_path = post_golden_path + image_name + '_' + light + '.jpg' shutil.copy(pre_img_light_path, post_img_light_path) def getgoldenpaths(goldencsv): """Get golden paths""" listG = goldencsv.directory[0].split('/') listG = listG[listG.index('golden'):] gpath = '/'.join(listG) return gpath def getgolden(project_name, top_bot, golden_csv_path, data_path, movegoldenimgs, savemaplight): """Getting Golden Boards for a specific project and top/bottom configuration. Args: project_name (str): The name of the project. top_bot (str): The top/bottom configuration. data_path (str): The path to the data directory. golden_csv_path (str): The path to the golden CSV file. movegoldenimgs (bool): Flag indicating whether to move golden images to images directory. savemaplight (str): Flag indicating whether {SaveMapLight} is present in original image paths before pre-processing the dataset paths. Returns: pandas.DataFrame: A DataFrame containing the golden board information. """ goldencsv = pd.read_csv(data_path + golden_csv_path + project_name + top_bot + '.csv') if goldencsv.directory[0].split('/')[0] == 'golden': if movegoldenimgs: move_golden(data_path, goldencsv, savemaplight) return goldencsv goldencsv['directory'] = getgoldenpaths(goldencsv) if movegoldenimgs: move_golden(data_path, goldencsv, savemaplight) return goldencsv def getboards_mergedw_golden(df_, golden_csv_path, compare_csv_path, data_path, movegoldenimgs, savemaplight): """Getting boards merged with Golden Args: df_ (pd.DataFrame): The input DataFrame containing the dataset. data_path (str): The path to the data directory. golden_csv_path (str): The path to the golden CSV file. compare_csv_path (str): The path to the CSV file containing compare images. movegoldenimgs (bool): Flag indicating whether to move golden images to images directory. savemaplight (str): Flag indicating whether {SaveMapLight} is present in original image paths before pre-processing the dataset paths. Returns: pandas.DataFrame: A DataFrame containing merged information from the golden and compare files. """ merged_df = pd.DataFrame() for proj, tb in df_.groupby(['project', 'TB']).groups.keys(): goldencsv = getgolden(proj, tb, golden_csv_path, data_path, movegoldenimgs, savemaplight) df_proj_tb = df_.loc[(df_['project'] == proj) & (df_['TB'] == tb)] comparefile = get_allcomp_csv(df_proj_tb, compare_csv_path, data_path) comparefile = aggr_status_across_lights(comparefile) comp_on_board_cols = ['CompName', 'directory', 'TOP_BOT'] compare_light = comparefile.groupby(comp_on_board_cols)[ 'LightingCondition'].apply(' '.join).reset_index() comparefile.drop(['LightingCondition'], axis=1, inplace=True) if 'Type' in comparefile.columns.tolist(): comparefile.drop(['Type'], axis=1, inplace=True) # comparefile.drop(['Type', 'LightingCondition'], axis=1, inplace=True) comparefile = pd.merge(comparefile, compare_light, how='left', on=comp_on_board_cols) comparefile = comparefile.drop_duplicates(subset=['CompName', 'BoardSN', 'TOP_BOT', 'directory']) comp_const_cols = ['CompName', 'TOP_BOT', 'TB_Panel'] merged = pd.merge(comparefile, goldencsv[comp_const_cols + ['directory']], how='left', on=comp_const_cols) merged['TB_Panel_x'], merged['TB_Panel_y'] = merged['TB_Panel'].copy(), merged['TB_Panel'].copy() merged.drop('TB_Panel', axis=1, inplace=True) merged['project_name'] = proj merged['TB'] = tb merged_df = pd.concat([merged_df, merged], axis=0) return merged_df def output_combined_dataset(df_, sampling=False, data_path=None, golden_csv_path=None, compare_csv_path=None, output_dir=None, valid=None, movegoldenimgs=None, project_name=None, savemaplight=None): """ Generate a combined dataset for a specific project and save it as a CSV file. Args: df_ (pd.DataFrame): The input DataFrame containing the dataset. sampling (bool): Flag indicating whether to perform sampling on the dataset. data_path (str): The path to the data directory. golden_csv_path (str): The path to the golden CSV file. compare_csv_path (str): The path to the CSV file containing compare images. output_dir (str): The directory where the generated CSV file will be saved. valid (bool): Flag indicating whether the dataframe corresponds to train or validation data. movegoldenimgs (bool): Flag indicating whether to move golden images to images directory. project_name (str): The name of the project. savemaplight (str): Flag indicating whether {SaveMapLight} is present in original image paths before pre-processing the dataset paths. Returns: None """ max_rows = 15000 if valid: df_ = df_[df_['isValid'] == 1] else: df_ = df_[df_['isValid'] == 0] merged_file = getboards_mergedw_golden(df_, golden_csv_path, compare_csv_path, data_path, movegoldenimgs, savemaplight) if sampling and merged_file.shape[0] > max_rows: merged_filep = merged_file.loc[ merged_file['ConfirmDefect'] == 'PASS'].sample(axis=0, n=max_rows) merged_filef = merged_file.loc[merged_file['ConfirmDefect'] != 'PASS'] merged_file = pd.concat([merged_filep, merged_filef], axis=0) if merged_file[merged_file['directory_y'].isna()].shape[0]: num_na_rows = merged_file[merged_file['directory_y'].isna()].shape[0] logging.warning( f"\n\nFound {num_na_rows} rows with no golden directory. Removing them" ) prev_rows = merged_file.shape[0] merged_file.dropna(how='any', inplace=True) logging.warning("Dropped {} Rows due to NA".format(prev_rows - merged_file.shape[0])) col = ['directory_x', 'directory_y', 'ConfirmDefect', 'image_name'] merged_subset = merged_file[col] merged_subset['image_name'] = merged_subset.image_name.str.split('_').str[0] merged_subset.rename(columns={'directory_x': 'input_path', 'directory_y': 'golden_path', 'image_name': 'object_name', 'ConfirmDefect': 'label'}, inplace=True) if valid: merged_subset.to_csv(output_dir + '/' + 'valid_combined.csv', index=False) else: merged_subset.to_csv(output_dir + '/' + 'train_combined.csv', index=False) def unzip_tars(root_path, projs, top_bot, zip_tar): """UnZip Tar files""" for proj in projs: for tb in top_bot: idx = 0 path = '/'.join([root_path, proj, tb, '']) if zip_tar == "zip": tars = [x for x in os.listdir(path) if x.endswith('.zip')] else: tars = [x for x in os.listdir(path) if x.endswith('.tar.gz')] for tar in tars: fulltar = path + tar if os.path.isdir(fulltar[:-7]): continue if zip_tar == "zip": shutil.unpack_archive(fulltar, path) # file = tarfile.open(fulltar) # file.extractall(path) # file.close() else: import tarfile file = tarfile.open(fulltar) file.extractall(path) file.close() idx += 1 if idx: print("Extracted {} tars in {}_{}".format(idx, proj, tb)) else: print("All tars already unzipped ") def zip_tar_images(df, BOT_TOP, root_data_path): """Zip Tar files""" if BOT_TOP == 'all': # tb_suffs = ['AOI_T', 'AOI_B'] tb_suffs = ['AOI_T'] df_combined = df.loc[df['TB'] == 'TOP'] unzip_tars(root_data_path + 'images', df_combined['project'].unique(), tb_suffs, "zip") tb_suffs = ['AOI_B'] df_combined = df.loc[df['TB'] == 'BOT'] unzip_tars(root_data_path + 'images', df_combined['project'].unique(), tb_suffs, "zip") elif BOT_TOP == 'TOP': tb_suffs = ['AOI_T'] df_combined = df.loc[df['TB'] == 'TOP'] unzip_tars(root_data_path + 'images', df_combined['project'].unique(), tb_suffs, "tar") else: tb_suffs = ['AOI_B'] df_combined = df.loc[df['TB'] == 'BOT'] unzip_tars(root_data_path + 'images', df_combined['project'].unique(), tb_suffs, "tar")
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/utils/data_preprocess.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Action recognition utils module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for action recognition""" import os import csv import torch import shutil import struct from eff.core.codec import encrypt_stream from nvidia_tao_pytorch.core.connectors.checkpoint_connector import decrypt_checkpoint def patch_decrypt_checkpoint(checkpoint, key): """Patch decrypt checkpoint. To make it work when using multi-gpu trained model to single-gpu environment Args: checkpoint: The encrypted checkpoint dictionary. key: The decryption key. """ from functools import partial legacy_load = torch.load torch.load = partial(legacy_load, map_location="cpu") checkpoint = decrypt_checkpoint(checkpoint, key) torch.load = legacy_load # set the encrypted status to be False when it is decrypted checkpoint["state_dict_encrypted"] = False return checkpoint def encrypt_onnx(tmp_file_name, output_file_name, key): """Encrypt the onnx model""" with open(tmp_file_name, "rb") as open_temp_file, open(output_file_name, "wb") as open_encoded_file: # set the input name magic number open_encoded_file.write(struct.pack("<i", 0)) encrypt_stream( input_stream=open_temp_file, output_stream=open_encoded_file, passphrase=key, encryption=True ) def check_and_create(d): """Create a directory.""" if not os.path.isdir(d): os.makedirs(d) def data_to_device(data): """Transfer data to GPU.""" if isinstance(data, list): cuda_data = [] for item in data: cuda_item = item.cuda(non_blocking=True) cuda_data.append(cuda_item) else: cuda_data = data.cuda(non_blocking=True) return cuda_data class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): """Init""" self.reset() def reset(self): """reset parameters.""" self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): """update accuracy.""" self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k Args: output (torch.Tensor): The predicted output tensor. target (torch.Tensor): The target tensor with true labels. topk (list): A tuple of integers specifying the top-k values for precision calculation. Returns: list: A list of precision values at each specified k. """ maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def save_checkpoint(state, is_best, checkpoint, model_best): """Naive checkpoint saver.""" torch.save(state, checkpoint) if is_best: shutil.copyfile(checkpoint, model_best) def record_train_info(info, filename): """Naive log information.""" str_log = "train_loss: {} val_loss: {} train_acc@1: {} val_acc@1: {} lr: {}".format( info['train_loss'], info['val_loss'], info['train_acc@1'], info['val_acc@1'], info['lr']) print(str_log) column_names = ['epoch', 'train_loss', 'val_loss', 'train_acc@1', 'val_acc@1', 'lr'] if not os.path.isfile(filename): with open(filename, "w") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=column_names) writer.writeheader() writer.writerow(info) else: # else it exists so append without writing the header with open(filename, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=column_names) writer.writerow(info)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/utils/common_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optical Inspection scripts module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Export Optical Inspection model to ONNX.""" import os import torch from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.cv.optical_inspection.config.default_config import OIExperimentConfig from nvidia_tao_pytorch.cv.optical_inspection.model.pl_oi_model import OpticalInspectionModel from nvidia_tao_pytorch.cv.optical_inspection.utils.common_utils import check_and_create spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="experiment", schema=OIExperimentConfig ) def main(cfg: OIExperimentConfig) -> None: """CLI wrapper to run export. This function parses the command line interface for tlt-export, instantiates the respective exporter and serializes the trained model to an etlt file. The tools also runs optimization to the int8 backend. Args: cl_args(list): Arguments to parse. Returns: No explicit returns. """ try: run_export(cfg) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Export finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Export was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e def run_export(args): """Wrapper to run export of tlt models. Args: args (dict): Dictionary of parsed arguments to run export. Returns: No explicit returns. """ if args.export.results_dir is not None: results_dir = args.export.results_dir else: results_dir = os.path.join(args.results_dir, "export") check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting Optical Inspection export" ) gpu_id = args.export.gpu_id torch.cuda.set_device(gpu_id) model_path = args.export.checkpoint on_cpu = args.export.on_cpu key = args.encryption_key output_file = args.export.onnx_file batch_size = args.export.batch_size input_channel = args.export.input_channel input_width = args.export.input_width input_height = args.export.input_height opset_version = args.export.opset_version do_constant_folding = args.export.do_constant_folding experiment_config = args if batch_size is None or batch_size == -1: input_batch_size = 1 else: input_batch_size = batch_size # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) # Set default output filename if the filename # isn't provided over the command line. if output_file is None: split_name = os.path.splitext(model_path)[0] output_file = "{}.onnx".format(split_name) assert not os.path.exists(output_file), "Default output file {} already "\ "exists.".format(output_file) # Make an output directory if necessary. output_root = os.path.dirname(os.path.realpath(output_file)) if not os.path.exists(output_root): os.makedirs(output_root) # load model pl_model = OpticalInspectionModel.load_from_checkpoint( model_path, map_location="cpu", experiment_spec=experiment_config, export=True ) model = pl_model.model model.eval() model.cuda() output_names = ["output_1", "output_2"] input_names = ["input_1", "input_2"] if on_cpu: dummy_input_1 = torch.randn( input_batch_size, input_channel, input_height, input_width, device="cpu") dummy_input_2 = torch.randn( input_batch_size, input_channel, input_height, input_width, device="cpu") else: dummy_input_1 = torch.randn( input_batch_size, input_channel, input_height, input_width, device="cuda") dummy_input_2 = torch.randn( input_batch_size, input_channel, input_height, input_width, device="cuda") dummy_input = (dummy_input_1, dummy_input_2) if batch_size is None or batch_size == -1: dynamic_axes = { "input_1": {0: "batch"}, "input_2": {0: "batch"} } else: dynamic_axes = None # export torch.onnx.export(model, dummy_input, output_file, input_names=input_names, output_names=output_names, dynamic_axes=dynamic_axes, opset_version=opset_version, do_constant_folding=do_constant_folding, verbose=True) if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/scripts/export.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset convert - Integrates into Factory camera system pipeline""" import pandas as pd import os import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.core.tlt_logging import logging from nvidia_tao_pytorch.cv.optical_inspection.config.default_config import OIExperimentConfig from nvidia_tao_pytorch.cv.optical_inspection.utils.data_preprocess import output_combined_dataset, preprocess_boards_cam def run_experiment(experiment_config): """Run Experiment""" dataset_convert_config = experiment_config["dataset_convert"] root_data_path = dataset_convert_config["root_dataset_dir"] train_csv_path = dataset_convert_config["train_pcb_dataset_dir"] test_csv_path = dataset_convert_config["val_pcb_dataset_dir"] all_csv_path = dataset_convert_config["all_pcb_dataset_dir"] output_dir = dataset_convert_config['data_convert_output_dir'] golden_csv_path = dataset_convert_config["golden_csv_dir"] project_name = dataset_convert_config["project_name"] BOT_TOP = dataset_convert_config["bot_top"] df = preprocess_boards_cam(root_data_path + train_csv_path, BOT_TOP) df_0 = preprocess_boards_cam(root_data_path + test_csv_path, BOT_TOP) df['isValid'], df_0['isValid'] = 0, 1 df = pd.concat([df, df_0], axis=0) if project_name != 'all': df = df.loc[df['project'] == project_name] logging.info("Using projects:\n {}".format('\n'.join(df['project'].unique()))) df_combined = df # create_golden_forprojects(df_combined, root_data_path, golden_csv_path,all_csv_path, project_list) output_combined_dataset(df_combined, data_path=root_data_path, golden_csv_path=golden_csv_path, compare_csv_path=all_csv_path, output_dir=output_dir, movegoldenimgs=False, savemaplight=False, valid=False, project_name=project_name) output_combined_dataset(df_combined, data_path=root_data_path, golden_csv_path=golden_csv_path, compare_csv_path=all_csv_path, output_dir=output_dir, movegoldenimgs=False, savemaplight=False, valid=True, project_name=project_name ) # zip_tar_images(df_combined, BOT_TOP, root_data_path) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="experiment", schema=OIExperimentConfig ) def main(cfg: OIExperimentConfig) -> None: """Run the dataset conversion process.""" try: run_experiment(experiment_config=cfg) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Dataset convert finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Dataset convert was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/scripts/dataset_convert.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train Optical Inspection Siamese Network model.""" import os import re from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger from nvidia_tao_pytorch.core.callbacks.loggers import TAOStatusLogger import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.core.tlt_logging import logging from nvidia_tao_pytorch.core.utilities import get_last_generated_file from nvidia_tao_pytorch.cv.optical_inspection.config.default_config import OIExperimentConfig from nvidia_tao_pytorch.cv.optical_inspection.model.pl_oi_model import OpticalInspectionModel from nvidia_tao_pytorch.cv.optical_inspection.utils.common_utils import check_and_create CHECKPOINT_FILE_EXT = "pth" def run_experiment(experiment_config, results_dir, key): """Start the training.""" # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) # Load pretrained model as starting point if pretrained path is provided, pretrained_path = experiment_config.train.pretrained_model_path if pretrained_path is not None: oi_model = OpticalInspectionModel.load_from_checkpoint(pretrained_path, map_location="cpu", experiment_spec=experiment_config) else: oi_model = OpticalInspectionModel(experiment_config) check_and_create(results_dir) total_epochs = experiment_config['train']['num_epochs'] clip_grad = experiment_config['train']['clip_grad_norm'] gpus_ids = experiment_config['train']['gpu_ids'] validation_interval = experiment_config.train.validation_interval checkpoint_interval = experiment_config.train.checkpoint_interval enable_tensorboard = experiment_config.train.tensorboard.enabled assert checkpoint_interval <= total_epochs, ( f"Checkpoint interval {checkpoint_interval} > Number of epochs {total_epochs}." f"Please set experiment_config.train.checkpoint_interval < {total_epochs}" ) assert validation_interval <= total_epochs, ( f"Validation interval {validation_interval} > Number of epochs {total_epochs}." f"Please set experiment_config.train.validation_interval < {total_epochs}" ) status_logger_callback = TAOStatusLogger(results_dir, append=True, num_epochs=total_epochs) status_logging.set_status_logger(status_logger_callback.logger) trainer_kwargs = {} if enable_tensorboard: trainer_kwargs["logger"] = TensorBoardLogger( save_dir=results_dir ) infrequent_logging_frequency = experiment_config.train.tensorboard.infrequent_logging_frequency assert max(0, infrequent_logging_frequency) <= total_epochs, ( f"infrequent_logging_frequency {infrequent_logging_frequency} must be < num_epochs {total_epochs}" ) logging.info("Tensorboard logging enabled.") else: logging.info("Tensorboard logging disabled.") acc_flag = None if len(gpus_ids) > 1: acc_flag = "ddp" trainer = Trainer( gpus=gpus_ids, max_epochs=total_epochs, check_val_every_n_epoch=validation_interval, default_root_dir=results_dir, accelerator='gpu', strategy=acc_flag, gradient_clip_val=clip_grad, **trainer_kwargs ) resume_ckpt = None if experiment_config['train']['resume_training_checkpoint_path']: resume_ckpt = experiment_config['train']['resume_training_checkpoint_path'] else: # Get the latest checkpoint file to resume training from by default. resume_ckpt = get_last_generated_file( results_dir, extension=CHECKPOINT_FILE_EXT ) logging.info("Setting resume checkpoint to {}".format(resume_ckpt)) logging.info( "Results directory {} Checkpoint Interval {}".format(results_dir, checkpoint_interval) ) # Setup model checkpoint callback. ModelCheckpoint.FILE_EXTENSION = f".{CHECKPOINT_FILE_EXT}" checkpoint_callback = ModelCheckpoint( every_n_epochs=checkpoint_interval, dirpath=results_dir, save_on_train_epoch_end=True, monitor=None, save_top_k=-1, filename='oi_model_{epoch:03d}' ) trainer.callbacks.append(checkpoint_callback) if resume_ckpt: status_logging.get_status_logger().write( message=f"Resuming training from checkpoint: {resume_ckpt}", status_level=status_logging.Status.STARTED ) resumed_epoch = re.search('epoch=(\\d+)', resume_ckpt) if resumed_epoch: resumed_epoch = int(resumed_epoch.group(1)) else: resumed_epoch = 0 status_logger_callback.epoch_counter = resumed_epoch + 1 trainer.callbacks.append(status_logger_callback) trainer.fit(oi_model, ckpt_path=resume_ckpt or None) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="experiment", schema=OIExperimentConfig ) def main(cfg: OIExperimentConfig) -> None: """Run the training process.""" try: if cfg.train.results_dir is not None: results_dir = cfg.train.results_dir else: results_dir = os.path.join(cfg.results_dir, "train") run_experiment(experiment_config=cfg, results_dir=results_dir, key=cfg.encryption_key) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Training finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Training was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/scripts/train.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Inference on inspection images """ import os import torch import pandas as pd from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.core.tlt_logging import logging from nvidia_tao_pytorch.cv.optical_inspection.config.default_config import OIExperimentConfig from nvidia_tao_pytorch.cv.optical_inspection.dataloader.build_data_loader import ( build_dataloader) from nvidia_tao_pytorch.cv.optical_inspection.inference.inferencer import Inferencer from nvidia_tao_pytorch.cv.optical_inspection.model.pl_oi_model import OpticalInspectionModel from nvidia_tao_pytorch.cv.optical_inspection.utils.common_utils import check_and_create import nvidia_tao_pytorch.core.loggers.api_logging as status_logging def run_experiment(experiment_config, model_path, key, results_dir): """Start the inference.""" check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger(status_logging.StatusLogger(filename=status_file, append=True)) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting Optical Inspection inference" ) gpu_id = experiment_config.inference.gpu_id torch.cuda.set_device(gpu_id) # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) infer_data_path = experiment_config["dataset"]["infer_dataset"]["csv_path"] if not os.path.exists(infer_data_path): raise FileNotFoundError(f"No inference csv file was found at {infer_data_path}") logging.info("Loading inference csv from : {}".format(infer_data_path)) df = pd.read_csv(infer_data_path) model = OpticalInspectionModel.load_from_checkpoint( model_path, map_location="cpu", experiment_spec=experiment_config ) inferencer = Inferencer(model, ret_prob=False) with torch.no_grad(): # Building dataloader without weighted sampling for inference. dataloader = build_dataloader( df=df, weightedsampling=False, split='infer', data_config=experiment_config["dataset"] ) data_frame = dataloader.dataset.data_frame for i, data in enumerate(dataloader, 0): euclidean_distance = inferencer.inference(data) if i == 0: euclid = euclidean_distance else: euclid = torch.cat((euclid, euclidean_distance), 0) siamese_score = 'siamese_score' data_frame[siamese_score] = euclid.cpu().numpy() data_frame.to_csv( os.path.join(results_dir, "inference.csv"), header=True, index=False ) logging.info("Completed") spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="experiment", schema=OIExperimentConfig ) def main(cfg: OIExperimentConfig) -> None: """Run the training process.""" if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "inference") try: run_experiment(experiment_config=cfg, key=cfg.encryption_key, model_path=cfg.inference.checkpoint, results_dir=results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Inference finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Inference was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluate a trained Optical Inspection model.""" import os import torch import pandas as pd from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.core.tlt_logging import logging from nvidia_tao_pytorch.cv.optical_inspection.config.default_config import OIExperimentConfig from nvidia_tao_pytorch.cv.optical_inspection.model.pl_oi_model import OpticalInspectionModel from nvidia_tao_pytorch.cv.optical_inspection.inference.inferencer import Inferencer from nvidia_tao_pytorch.cv.optical_inspection.dataloader.build_data_loader import build_dataloader from nvidia_tao_pytorch.cv.optical_inspection.model.build_nn_model import AOIMetrics from nvidia_tao_pytorch.cv.optical_inspection.utils.common_utils import check_and_create import nvidia_tao_pytorch.core.loggers.api_logging as status_logging def run_experiment(experiment_config, model_path, key, results_dir): """Run experiment.""" check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger(status_logging.StatusLogger(filename=status_file, append=True)) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting Optical Inspection evaluate" ) gpu_id = experiment_config.evaluate.gpu_id torch.cuda.set_device(gpu_id) # Set the encryption key: TLTPyTorchCookbook.set_passphrase(key) eval_data_path = experiment_config["dataset"]["test_dataset"]["csv_path"] margin = experiment_config["model"]["margin"] df = pd.read_csv(eval_data_path) # infer_results_path = experiment_config['inference']["results_dir"] logging.info("test_csv_path {}".format(eval_data_path)) # build inferencer @TODO TRT support model = OpticalInspectionModel.load_from_checkpoint( model_path, map_location="cpu", experiment_spec=experiment_config ) infer = Inferencer(model, ret_prob=False) with torch.no_grad(): dataloader = build_dataloader( df=df, weightedsampling=True, split='test', data_config=experiment_config["dataset"] ) valid_AOIMetrics = AOIMetrics(margin) for i, data in enumerate(dataloader, 0): euclidean_distance = infer.inference(data) valid_AOIMetrics.update(euclidean_distance, data[2]) if i == 0: euclid = euclidean_distance else: euclid = torch.cat((euclid, euclidean_distance), 0) total_accuracy = valid_AOIMetrics.compute()['total_accuracy'].item() false_alarm = valid_AOIMetrics.compute()['false_alarm'].item() defect_accuracy = valid_AOIMetrics.compute()['defect_accuracy'].item() false_negative = valid_AOIMetrics.compute()['false_negative'].item() logging.info( "Tot Comp {} Total Accuracy {} False Negative {} False Alarm {} Defect Correctly Captured {} for Margin {}".format( len(euclid), round(total_accuracy, 2), round(false_negative, 2), round(false_alarm, 2), round(defect_accuracy, 2), margin ) ) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="experiment", schema=OIExperimentConfig ) def main(cfg: OIExperimentConfig) -> None: """Run the Evaluate process.""" if cfg.evaluate.results_dir is not None: results_dir = cfg.evaluate.results_dir else: results_dir = os.path.join(cfg.results_dir, "evaluate") try: run_experiment(experiment_config=cfg, key=cfg.encryption_key, model_path=cfg.evaluate.checkpoint, results_dir=results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Evaluation finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Evaluation was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script for the action recognition task."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """'Entry point' script running subtasks related to action recognition. """ import importlib import os import pkgutil import argparse import subprocess import sys from time import time import nvidia_tao_pytorch.cv.optical_inspection.scripts as scripts from nvidia_tao_pytorch.core.telemetry.nvml_utils import get_device_details from nvidia_tao_pytorch.core.telemetry.telemetry import send_telemetry_data def get_subtasks(package): """Get supported subtasks for a given task. This function lists out the tasks in in the .scripts folder. Returns: subtasks (dict): Dictionary of files. """ module_path = package.__path__ modules = {} # Collect modules dynamically. for _, task, is_package in pkgutil.walk_packages(module_path): if is_package: continue module_name = package.__name__ + '.' + task module_details = { "module_name": module_name, "runner_path": os.path.abspath(importlib.import_module(module_name).__file__), } modules[task] = module_details return modules def launch(parser, subtasks, network=None): """CLI function that executes subtasks. Args: parser: Created parser object for a given task. subtasks: list of subtasks for a given task. network (str): Name of the network. """ # Subtasks for a given model. parser.add_argument( 'subtask', default='train', choices=subtasks.keys(), help="Subtask for a given task/model.", ) # Add standard TLT arguments. parser.add_argument( "-r", "--results_dir", help="Path to a folder where the experiment outputs should be written.", default=None, required=False, ) parser.add_argument( "--gpus", help="Number of GPUs to run the train subtask.", default=None, type=int, ) parser.add_argument("-k", "--key", help="User specific encoding key to save or load a .tlt model.") parser.add_argument("-e", "--experiment_spec_file", help="Path to the experiment spec file.", default=None) # Parse the arguments. args, unknown_args = parser.parse_known_args() script_args = "" # Process spec file for all commands except the one for getting spec files ;) # Make sure the user provides spec file. if args.experiment_spec_file is None: print("ERROR: The subtask `{}` requires the following argument: -e/--experiment_spec_file".format(args.subtask)) exit(1) # Make sure the file exists! if not os.path.exists(args.experiment_spec_file): print("ERROR: The indicated experiment spec file `{}` doesn't exist!".format(args.experiment_spec_file)) exit(1) # Split spec file_path into config path and config name. path, name = os.path.split(args.experiment_spec_file) if path != '': script_args += " --config-path " + os.path.realpath(path) script_args += " --config-name " + name # And add other params AFTERWARDS! if args.subtask in ["train"]: if args.results_dir: script_args += " results_dir=" + args.results_dir if args.subtask in ["train", "evaluate", "inference"]: if args.gpus: script_args += f" {args.subtask}.num_gpus={args.gpus}" if args.subtask in ["train", "evaluate", "inference", "export"]: if args.key is not None: script_args += " encryption_key=" + args.key # Find relevant module and pass args. script = subtasks[args.subtask]["runner_path"] # Pass unknown args to call unknown_args_as_str = " ".join(unknown_args) # Create a system call. call = "python " + script + script_args + " " + unknown_args_as_str process_passed = True start = time() try: # Run the script. subprocess.check_call(call, shell=True, stdout=sys.stdout, stderr=sys.stdout) # nosec B602 except (KeyboardInterrupt, SystemExit): print("Command was interrupted.") process_passed = True except subprocess.CalledProcessError as e: if e.output is not None: print(e.output) process_passed = False end = time() time_lapsed = int(end - start) try: gpu_data = list() for device in get_device_details(): gpu_data.append(device.get_config()) send_telemetry_data( network, args.subtask, gpu_data, num_gpus=args.gpus, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: print("Telemetry data couldn't be sent, but the command ran successfully.") print(f"[WARNING]: {e}") pass if not process_passed: print("Execution status: FAIL") exit(1) # returning non zero return code from the process. print("Execution status: PASS") def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "optical_inspection", add_help=True, description="Transfer Learning Toolkit" ) # Build list of subtasks by inspecting the package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="optical_inspection") if __name__ == '__main__': main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/entrypoint/optical_inspection.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Main PTL model file for optical inspection""" import math import torch from torch.nn import functional as F import pandas as pd import pytorch_lightning as pl from typing import Optional, Dict, Any from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.tlt_logging import logging from nvidia_tao_pytorch.cv.optical_inspection.dataloader.build_data_loader import build_dataloader from nvidia_tao_pytorch.cv.optical_inspection.model.build_nn_model import (build_oi_model, ContrastiveLoss1, AOIMetrics) from nvidia_tao_pytorch.cv.optical_inspection.utils.common_utils import patch_decrypt_checkpoint class OpticalInspectionModel(pl.LightningModule): """Pytorch Lighting for Optical Inspection Args: experiment_config (OmegaConf.DictConf): The experiment configuration. export (bool): Flag indicating whether to export the model. """ def __init__(self, experiment_spec, export=False, **kwargs): """Initialize""" super().__init__(**kwargs) self.experiment_spec = experiment_spec # init the model self._build_model(experiment_spec, export) self.tensorboard = experiment_spec.train.tensorboard self.status_logging_dict = {"train_loss": 0.0, "train_acc": 0.0, "train_fpr": 0.0, "val_loss": 0.0, "val_acc": 0.0, "val_fpr": 0.0} self.train_metrics = AOIMetrics() self.val_metrics = AOIMetrics() self.num_train_steps_per_epoch = None self.num_val_steps_per_epoch = None def _build_model(self, experiment_spec, export=False): self.model = build_oi_model( experiment_config=experiment_spec, export=export ) print(self.model) def setup(self, stage: Optional[str] = None): """ Set up the dataset for train and val""" dataset_config = self.experiment_spec["dataset"] train_data_path = dataset_config["train_dataset"]["csv_path"] val_data_path = dataset_config["validation_dataset"]["csv_path"] self.df_train = pd.read_csv(train_data_path) self.df_valid = pd.read_csv(val_data_path) def train_dataloader(self): """Build the dataloader for training.""" train_loader = build_dataloader(df=self.df_train, weightedsampling=True, split='train', data_config=self.experiment_spec["dataset"]) self.num_train_steps_per_epoch = math.ceil(len(train_loader.dataset) / train_loader.batch_size) logging.info("Number of steps for training: {}".format(self.num_train_steps_per_epoch)) return train_loader def val_dataloader(self): """Build the dataloader for training.""" val_loader = build_dataloader(df=self.df_valid, weightedsampling=False, split='valid', data_config=self.experiment_spec["dataset"]) self.num_val_steps_per_epoch = math.ceil(len(val_loader.dataset) / val_loader.batch_size) logging.info("Number of steps for validation: {}".format(self.num_val_steps_per_epoch)) return val_loader def configure_optimizers(self): """Configure optimizers for training""" optim_dict = {} train_config = self.experiment_spec["train"] if train_config['optim']['type'] == 'Adam': optim = torch.optim.Adam(self.parameters(), train_config['optim']['lr']) else: optim = torch.optim.SGD(params=self.parameters(), lr=train_config['optim']['lr'], momentum=train_config['optim']['momentum'], weight_decay=train_config['optim']['weight_decay']) optim_dict["optimizer"] = optim return optim_dict def training_step(self, batch, batch_idx): """Perform a single training step. Args: batch: The input batch containing img0, img1, and label tensors. batch_idx: Index of the current batch. Returns: The computed loss value for the training step. """ margin = self.experiment_spec["model"]["margin"] img0, img1, label = batch self.visualize_image( "compare_sample", img0, logging_frequency=self.tensorboard.infrequent_logging_frequency ) self.visualize_image( "golden_sample", img1, logging_frequency=self.tensorboard.infrequent_logging_frequency ) criterion = ContrastiveLoss1(margin) output1, output2 = self.model(img0, img1) loss = criterion(output1, output2, label) euclidean_distance = F.pairwise_distance(output1, output2) self.train_metrics.update(euclidean_distance, label) self.log("train_loss", loss, on_step=True, on_epoch=False, prog_bar=True, sync_dist=True) return loss def visualize_histogram(self, logging_frequency=2): """Visualize histograms of model parameters. Args: logging_frequency (int): The frequency at which to log the histograms. """ if self.current_epoch % logging_frequency == 0 and self.tensorboard.enabled: for name, params in self.named_parameters(): self.logger.experiment.add_histogram(f"histogram/{name}", params, self.current_epoch) def visualize_image(self, name, tensor, logging_frequency=10): """Visualize images during training. Args: name (str): The name for the image to be visualized. tensor (torch.Tensor): The input tensor containing the image. logging_frequency (int): The frequency at which to log the images. """ logging_frequency_in_steps = self.num_train_steps_per_epoch * logging_frequency is_log_step = self.global_step % logging_frequency_in_steps == 0 if is_log_step and self.tensorboard.enabled: self.logger.experiment.add_images( f"image/{name}", tensor, global_step=self.global_step ) def visualize_metrics(self, metrics_dict): """Visualize metrics from during train/val. Args: metrics_dict (dict): Dictionary of metric tensors to be visualized. Returns: No returns. """ # Make sure the scalars are logged in TensorBoard always. if self.logger: self.logger.log_metrics(metrics_dict, step=self.current_epoch) def training_epoch_end(self, training_step_outputs): """Log Training metrics to status.json Args: training_step_outputs: List of outputs from training steps in the epoch. """ average_train_loss = 0.0 for out in training_step_outputs: if isinstance(out, tuple): average_train_loss += out[0].item() else: average_train_loss += out['loss'].item() average_train_loss /= len(training_step_outputs) train_accuracy = self.train_metrics.compute()['total_accuracy'].item() train_false_positive_rate = self.train_metrics.compute()['false_alarm'].item() self.status_logging_dict["train_loss"] = average_train_loss self.status_logging_dict["train_acc"] = train_accuracy self.status_logging_dict["train_fpr"] = train_false_positive_rate tensorboard_logging_dict = { "train_acc": train_accuracy, "train_fpr": train_false_positive_rate } self.visualize_histogram( logging_frequency=self.tensorboard.infrequent_logging_frequency ) self.visualize_metrics(tensorboard_logging_dict) self.train_metrics.reset() status_logging.get_status_logger().kpi = self.status_logging_dict status_logging.get_status_logger().write( message="Train and Val metrics generated.", status_level=status_logging.Status.RUNNING ) def validation_step(self, batch, batch_idx): """Validation step. Args: batch: The input batch containing img0, img1, and label tensors. batch_idx: Index of the current batch. Returns: loss: Validation loss value. """ margin = self.experiment_spec["model"]["margin"] img0, img1, label = batch criterion = ContrastiveLoss1(margin) output1, output2 = self.model(img0, img1) loss = criterion(output1, output2, label) euclidean_distance = F.pairwise_distance(output1, output2) self.val_metrics.update(euclidean_distance, label) self.log("val_loss", loss, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True) return loss def validation_epoch_end(self, validation_step_outputs): """Log Validation metrics to status.json Args: validation_step_outputs: List of outputs from validation steps in the epoch. """ average_val_loss = 0.0 for out in validation_step_outputs: if isinstance(out, tuple): average_val_loss += out[0].item() else: average_val_loss += out.item() average_val_loss /= len(validation_step_outputs) val_accuracy = self.val_metrics.compute()['total_accuracy'].item() val_fpr = self.val_metrics.compute()['false_alarm'].item() self.status_logging_dict["val_loss"] = average_val_loss self.status_logging_dict["val_acc"] = val_accuracy self.status_logging_dict["val_fpr"] = val_fpr validation_logging_dict = { "val_acc": val_accuracy, "val_fpr": val_fpr } self.visualize_metrics(validation_logging_dict) self.val_metrics.reset() def forward(self, x): """Forward of the Optical Inspection model. Args: x (torch.Tensor): Input data containing two images. Returns: output (torch.Tensor): Output of the model. """ x1 = x[0] x2 = x[1] output = self.model(x1, x2) return output def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """Encrpyt the checkpoint. The encryption is done in TLTCheckpointConnector.""" pass def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """Decrpyt the checkpoint""" if checkpoint.get("state_dict_encrypted", False): # Retrieve encryption key from TLTPyTorchCookbook. key = TLTPyTorchCookbook.get_passphrase() if key is None: raise PermissionError("Cannot access model state dict without the encryption key") checkpoint = patch_decrypt_checkpoint(checkpoint, key) def load_final_model(self) -> None: """Loading a pre-trained network weights""" model_path = self.experiment_spec['inference']['checkpoint'] gpu_device = self.experiment_spec['inference']['gpu_id'] siamese_inf = self.model.cuda().load_state_dict(torch.load(model_path, map_location='cuda:' + str(gpu_device))) return siamese_inf
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/model/pl_oi_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Action recognition dataloader module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/model/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The top model builder interface.""" import torch.nn as nn import torch from torch.nn import functional as F from torchmetrics import Metric from nvidia_tao_pytorch.core.tlt_logging import logging class SiameseNetwork3(nn.Module): """Siamese Network model for finding defects.""" def __init__(self, embedding_vectorsize=None, num_lights=4, output_shape=[100, 100]): """Initialize the SiameseNetwork3 model. Args: embedding_vectorsize (int): The size of the embedding vector. num_lights (int): The number of lighting conditions. output_shape (list): The output shape of the model [height, width]. """ super(SiameseNetwork3, self).__init__() self.embedding = embedding_vectorsize self.cnn1 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(3, 4, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(4), nn.ReflectionPad2d(1), nn.Conv2d(4, 8, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(8), nn.ReflectionPad2d(1), nn.Conv2d(8, 8, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(8), ) fc_ip_dim = 8 * num_lights * int(output_shape[0]) * int(output_shape[1]) self.fc1 = nn.Sequential( nn.Linear(fc_ip_dim, 512), nn.ReLU(inplace=True), nn.BatchNorm1d(512), nn.Linear(512, 512), nn.ReLU(inplace=True), nn.BatchNorm1d(512), nn.Linear(512, self.embedding)) def forward_once(self, x): """Forward pass using one image. Args: x (torch.Tensor): The input image. Returns: torch.Tensor: The output of the forward pass. """ output = self.cnn1(x) output = output.view(output.size()[0], -1) output = self.fc1(output) return output def forward(self, input1, input2): """Forward pass using two images. Args: input1 (torch.Tensor): The first input image. input2 (torch.Tensor): The second input image. Returns: tuple: Tuple of output tensors from the forward pass. """ output1 = self.forward_once(input1) output2 = self.forward_once(input2) return output1, output2 class SiameseNetwork1(nn.Module): """Siamese Network model for finding defects.""" def __init__(self, embedding_vectorsize=None, num_lights=4, output_shape=[100, 100]): """Initialize the SiameseNetwork1 model. Args: embedding_vectorsize (int): The size of the embedding vector. num_lights (int): The number of lighting conditions. output_shape (list): The output shape of the model [height, width]. """ super(SiameseNetwork1, self).__init__() self.embedding = embedding_vectorsize self.cnn1 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(3, 4, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(4), nn.ReflectionPad2d(1), nn.Conv2d(4, 8, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(8), nn.ReflectionPad2d(1), nn.Conv2d(8, 8, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(8), ) fc_ip_dim = 8 * num_lights * int(output_shape[0]) * int(output_shape[1]) self.fc1 = nn.Sequential( nn.Linear(fc_ip_dim, 500), nn.ReLU(inplace=True), nn.Linear(500, 500), nn.ReLU(inplace=True), nn.Linear(500, self.embedding)) def forward_once(self, x): """Forward pass using one image. Args: x (torch.Tensor): The input image. Returns: torch.Tensor: The output of the forward pass. """ output = self.cnn1(x) output = output.view(output.size()[0], -1) output = self.fc1(output) return output def forward(self, input1, input2): """Forward pass using two images. Args: input1 (torch.Tensor): The first input image. input2 (torch.Tensor): The second input image. Returns: tuple: Tuple of output tensors from the forward pass. """ output1 = self.forward_once(input1) output2 = self.forward_once(input2) return output1, output2 class ContrastiveLoss1(torch.nn.Module): """Contrastive Loss for comparing image embeddings. Args: margin (float): The margin used for contrastive loss. """ def __init__(self, margin=2.0): """Initialize""" super(ContrastiveLoss1, self).__init__() self.margin = margin def forward(self, output1, output2, label): """ Compute the contrastive loss. Args: output1 (torch.Tensor): Embedding vector of the first image. output2 (torch.Tensor): Embedding vector of the second image. label (torch.Tensor): Label indicating if the images are similar or dissimilar. Returns: torch.Tensor: Contrastive loss value. """ euclidean_distance = F.pairwise_distance(output1, output2, keepdim=True) loss_contrastive = torch.mean( (1 - label) * torch.pow(euclidean_distance, 2) + (label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2) ) return loss_contrastive class AOIMetrics(Metric): """AOI Metrics""" def __init__(self, margin=2.0): """Intialize metrics""" super().__init__() self.add_state("match_fail", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("tot_fail", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("match_pass", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("tot_pass", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("mismatch_fail", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("mismatch_pass", default=torch.tensor(0), dist_reduce_fx="sum") self.margin = margin def update(self, preds: torch.Tensor, target: torch.Tensor): """Update the metrics based on the predictions and targets. Args: preds (torch.Tensor): Predicted distances. target (torch.Tensor): Target labels. """ preds, target = self._input_format(preds, target) # assert preds.shape == target.shape # self.correct += torch.sum(preds == target) # self.total += target.numel() for k, euc_dist in enumerate(preds, 0): if euc_dist > float(self.margin): # Model Classified as FAIL # totmodelfail += 1 if target.data[k].item() == 1: self.match_fail += 1 self.tot_fail += 1 else: self.mismatch_pass += 1 self.tot_pass += 1 else: # totmodelpass += 1 # Model Classified as PASS if target.data[k].item() == 0: self.match_pass += 1 self.tot_pass += 1 else: self.mismatch_fail += 1 self.tot_fail += 1 def compute(self): """Compute the metrics. Returns: dict: Dictionary containing the computed metrics. """ metric_collect = {} metric_collect['total_accuracy'] = ((self.match_pass + self.match_fail) / (self.tot_pass + self.tot_fail)) * 100 metric_collect['defect_accuracy'] = 0 if self.tot_fail == 0 else (self.match_fail / self.tot_fail) * 100 metric_collect['false_alarm'] = (self.mismatch_pass / (self.tot_pass + self.tot_fail)) * 100 metric_collect['false_negative'] = (self.mismatch_fail / (self.tot_pass + self.tot_fail)) * 100 return metric_collect def _input_format(self, preds, target): return preds, target def cal_model_accuracy(euclidean_distance, label, match_cnts, total_cnts, margin): """Calculate Siamese model accuracy""" for j in range(euclidean_distance.size()[0]): if ((euclidean_distance.data[j].item() < margin)): if label.data[j].item() == 0: match_cnts += 1 total_cnts += 1 else: total_cnts += 1 else: if label.data[j].item() == 1: match_cnts += 1 total_cnts += 1 else: total_cnts += 1 return (match_cnts / total_cnts) * 100, match_cnts, total_cnts def build_oi_model(experiment_config, imagenet_pretrained=True, export=False): """Select and build the Siamese model based on the experiment configuration. Args: experiment_config (OmegaConf.DictConf): The experiment configuration. imagenet_pretrained (bool): Flag indicating whether to use ImageNet pre-trained weights. # TODO: @pgurumurthy to add support export (bool): Flag indicating whether to export the model. Returns: torch.nn.Module: The built Siamese model. """ model_config = experiment_config["model"] embedding_vectorsize = model_config["embedding_vectors"] model_type = model_config["model_type"] output_shape = experiment_config["dataset"]["output_shape"] num_lights = experiment_config["dataset"]["num_input"] model_backbone = model_config["model_backbone"] if model_backbone == "custom": logging.info("Starting training with custom backbone") if model_type == 'Siamese_3': model = SiameseNetwork3(embedding_vectorsize, num_lights, output_shape).cuda() else: model = SiameseNetwork1(embedding_vectorsize, num_lights, output_shape).cuda() # TODO: @pgurumurthy to add resnet/efficientnet support. # elif model_backbone == "resnet": # print("Starting Siamese with ResNet backbone") # # PlaceHolder for adding ResNet backbone#### # elif model_backbone == "efficientet": # print("Starting Siamese with EfficientNet backbone") # # PlaceHolder for adding EfficientNet backbone#### else: raise NotImplementedError(f"Invalid model backbone requested.: {model_backbone}") return model
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/model/build_nn_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inferencer""" from nvidia_tao_pytorch.cv.optical_inspection.utils.common_utils import data_to_device import torch.nn.functional as F from torch.autograd import Variable class Inferencer(): """Pytorch model inferencer.""" def __init__(self, model, ret_prob=False): """Initialize the Inferencer with a PyTorch model. Args: model (torch.nn.Module): The PyTorch model. """ self.model = model self.model.eval() self.model.cuda() def inference(self, data): """ Perform inference using the model. Args: data (Tuple[torch.Tensor, torch.Tensor]): The input data tuple. Returns: torch.Tensor: The Siamese score tensor. """ cuda_data = [] cuda_data0 = data_to_device(Variable(data[0])) cuda_data1 = data_to_device(Variable(data[1])) cuda_data.append(cuda_data0) cuda_data.append(cuda_data1) # output1, output2 = self.model(cuda_data0, cuda_data1) output1, output2 = self.model(cuda_data) siam_score = F.pairwise_distance(output1, output2) # score = euclidean_distance.detach().cpu().numpy() return siam_score # @TODO(tylerz): TRT inference class TRTInferencer(): """TRT engine inferencer.""" pass
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/inference/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Action recognition inference module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/inference/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Action recognition dataloader module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/dataloader/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optical Inspection dataset.""" import os import numpy as np from PIL import Image import torch from torch.utils.data import Dataset, WeightedRandomSampler from nvidia_tao_pytorch.core.tlt_logging import logging class SiameseNetworkTRIDataset(Dataset): """Siamese Model Dataset Class""" def __init__(self, data_frame=None, transform=None, input_data_path=None, train=True, data_config=None): """Initialize the SiameseNetworkTRIDataset. Args: data_frame (pd.DataFrame): The input data frame. transform (transforms.Compose): transformation to be applied to the input image samples. input_data_path (str): The path to the input data root directory. train (bool): Flag indicating whether the dataset is for training. data_config (OmegaConf.DictConf): Configuration for the dataset. """ self.data_frame = data_frame self.transform = transform # self.data_path = data_path # self.input_images = data_config["validation_dataset"]["images_dir"] self.input_image_root = input_data_path self.train = train self.num_inputs = data_config["num_input"] self.concat_type = data_config["concat_type"] self.lighting = data_config["input_map"] self.grid_map = data_config["grid_map"] self.output_shape = data_config["output_shape"] self.ext = data_config["image_ext"] if self.concat_type == "grid": print("Using {} input types and {} type {} X {} for comparison ".format( self.num_inputs, self.concat_type, self.grid_map["x"], self.grid_map["y"] )) else: print("Using {} input types and {} type 1 X {} for comparison".format( self.num_inputs, self.concat_type, self.num_inputs )) # self.tensorBR = tensorBR self.ext = '.jpg' def get_absolute_image_path(self, prefix, light=None): """ Get the absolute image path. Args: prefix (str): The prefix of the image path. light (str): The lighting condition suffix to be appended to image name. Returns: str: The absolute image path. """ image_path = prefix if light: image_path += f"_{light}" image_path += self.ext if not os.path.exists(image_path): raise FileNotFoundError(f"Image file wasn't found at {image_path}") return image_path def __getitem__(self, index): """Get the item at a specific index.""" img_tuple = self.data_frame.iloc[index, :] img0, img1 = [], [] if self.lighting: for i, light in enumerate(self.lighting): img0.append( Image.open( self.get_absolute_image_path( self.getComparePathsV1(img_tuple), light ) ) ) img1.append( Image.open( self.get_absolute_image_path( self.getGoldenPathsV1(img_tuple), light ) ) ) else: img0.append( Image.open( self.get_absolute_image_path( self.getComparePathsV1(img_tuple) ) ) ) img1.append( Image.open( self.get_absolute_image_path( self.getGoldenPathsV1(img_tuple) ) ) ) if self.train: for i in range(len(img0)): img0[i] = img0[i].convert("RGB") for i in range(len(img1)): img1[i] = img1[i].convert("RGB") if self.transform is not None: img0T = [self.transform(img) for img in img0] img1T = [self.transform(img) for img in img1] else: if self.transform is not None: img0T = [self.transform(img) for img in img0] img1T = [self.transform(img) for img in img1] if self.concat_type == "grid" and int(self.num_inputs) % 2 == 0: img0 = self.get_grid_concat(img0T) img1 = self.get_grid_concat(img1T) else: img0 = torch.cat(img0T, 1) img1 = torch.cat(img1T, 1) # if self.train: label = torch.from_numpy( np.array([int(img_tuple['label'] != 'PASS')], dtype=np.float32) ) return img0, img1, label def __len__(self): """Length of Dataset""" return len(self.data_frame) def get_grid_concat(self, img_list): """Grid Concat""" x, y = int(self.grid_map["x"]), int(self.grid_map["y"]) combined_y = [] cnt = 0 for _ in range(0, y, 1): combined_x = [] for j in range(0, x, 1): combined_x.append(img_list[cnt]) cnt += 1 if j == (x - 1): combined_y.append(torch.cat(combined_x, 2)) img_grid = torch.cat(combined_y, 1) return img_grid def getTotFail(self): """Total FAIL in dataset""" return len(self.data_frameFAIL) def getTotPass(self): """Total PASS in dataset""" return len(self.data_framePASS) def getComparePathsV1(self, img_tuple): """Get compare file Path""" return os.path.join(self.input_image_root, img_tuple['input_path'], img_tuple['object_name']) def getGoldenPathsV1(self, img_tuple): """Get golden file Path""" return os.path.join(self.input_image_root, img_tuple['golden_path'], img_tuple['object_name']) def get_sampler(dataset, train_sampl_ratio=0.1): """ Returns a weighted sampler for imbalanced dataset. The weighted sampler increases the sampling rate of FAIL instances relative to PASS instances. Args: dataset (SiameseNetworkTRIDataset): The input dataset. train_sampl_ratio (float): The ratio to increase the sampling rate of FAIL instances. Returns: WeightedRandomSampler: The weighted random sampler object. """ n = dataset.data_frame.shape[0] target_list = [0] * n df_ = dataset.data_frame.copy() fail_indices = [i for i in range(df_.shape[0]) if df_['label'].iloc[i] != 'PASS'] for i in fail_indices: target_list[i] = 1 num_pass = dataset.data_frame.shape[0] - len(fail_indices) pf_ratio = num_pass / len(fail_indices) fail_wt = pf_ratio * train_sampl_ratio logging.info('\nSampling Defective components at {:05.2f}:1 rate'.format(fail_wt)) class_weights = torch.tensor([1, fail_wt], dtype=torch.float) class_weights_all = class_weights[target_list] weighted_sampler = WeightedRandomSampler( weights=class_weights_all, num_samples=len(class_weights_all), replacement=True) return weighted_sampler
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/dataloader/oi_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build torch data loader.""" import torchvision.transforms as transforms from torch.utils.data import DataLoader # from nvidia_tao_pytorch.core.tlt_logging import logging from nvidia_tao_pytorch.cv.optical_inspection.dataloader.oi_dataset import SiameseNetworkTRIDataset, get_sampler # START SIAMESE DATALOADER def build_dataloader(df, weightedsampling, split, data_config): """Build torch dataloader. Args: df (pd.DataFrame): The input data frame. weightedsampling (bool): Flag indicating whether to use weighted sampling. split (str): The split type ('train', 'valid', 'test', 'infer'). data_config (OmegaConf.DictConf): Configuration spec for data loading. Returns: DataLoader: The built torch DataLoader object. """ workers = data_config["workers"] batch_size = data_config["batch_size"] output_shape = data_config["output_shape"] rgb_mean = data_config["augmentation_config"]["rgb_input_mean"] rgb_std = data_config["augmentation_config"]["rgb_input_std"] train_transforms = transforms.Compose( [ transforms.Resize((output_shape[0], output_shape[1])), transforms.ToTensor(), transforms.Normalize(rgb_mean, rgb_std) ] ) test_transforms = transforms.Compose( [ transforms.Resize((output_shape[0], output_shape[1])), transforms.ToTensor(), transforms.Normalize(rgb_mean, rgb_std) ] ) dataloader_kwargs = { "pin_memory": True, "batch_size": batch_size, "num_workers": workers } if split == 'train': input_data_path = data_config["train_dataset"]["images_dir"] dataset = SiameseNetworkTRIDataset(data_frame=df, train=True, input_data_path=input_data_path, transform=train_transforms, data_config=data_config) if weightedsampling: fpratio_sampling = data_config['fpratio_sampling'] wt_sampler = get_sampler(dataset, fpratio_sampling) dataloader_kwargs["sampler"] = wt_sampler else: dataloader_kwargs["shuffle"] = True assert batch_size > 1, "Training batch size must be greater than 1." dataloader_kwargs["drop_last"] = True elif split == 'valid': input_data_path = data_config["validation_dataset"]["images_dir"] dataset = SiameseNetworkTRIDataset(data_frame=df, train=False, input_data_path=input_data_path, transform=test_transforms, data_config=data_config) dataloader_kwargs["shuffle"] = False elif split == 'test': input_data_path = data_config["test_dataset"]["images_dir"] dataset = SiameseNetworkTRIDataset(data_frame=df, train=False, input_data_path=input_data_path, transform=test_transforms, data_config=data_config) dataloader_kwargs["shuffle"] = False elif split == 'infer': input_data_path = data_config["infer_dataset"]["images_dir"] dataset = SiameseNetworkTRIDataset(data_frame=df, train=False, input_data_path=input_data_path, transform=test_transforms, data_config=data_config) dataloader_kwargs["shuffle"] = False # Build dataloader dataloader = DataLoader( dataset, **dataloader_kwargs ) return dataloader
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/optical_inspection/dataloader/build_data_loader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable DETR module.""" # Temporarily override torch versioning from DLFW so that we disable warning from fairscale # about torch version during ddp_sharded training. Fairscale doesn't handle commit versions well # E.g. 1.13.0a0+d0d6b1f import torch import re numbering = re.search(r"^(\d+).(\d+).(\d+)([^\+]*)(\+\S*)?$", torch.__version__) torch.__version__ = ".".join([str(numbering.group(n)) for n in range(1, 4)])
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable DETR config module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from typing import Optional, List, Dict from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class DDDatasetConvertConfig: """Dataset Convert config.""" input_source: Optional[str] = None data_root: Optional[str] = None results_dir: str = MISSING image_dir_name: Optional[str] = None label_dir_name: Optional[str] = None val_split: int = 0 num_shards: int = 20 num_partitions: int = 1 partition_mode: Optional[str] = None image_extension: str = ".jpg" mapping_path: Optional[str] = None @dataclass class DDAugmentationConfig: """Augmentation config.""" scales: List[int] = field(default_factory=lambda: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800], metadata={"description": "Random Scales for Augmentation"}) input_mean: List[float] = field(default_factory=lambda: [0.485, 0.456, 0.406], metadata={"description": "Pixel mean value"}) input_std: List[float] = field(default_factory=lambda: [0.229, 0.224, 0.225], metadata={"description": "Pixel Standard deviation value"}) train_random_resize: List[int] = field(default_factory=lambda: [400, 500, 600], metadata={"description": "Training Random Resize"}) horizontal_flip_prob: float = 0.5 train_random_crop_min: int = 384 train_random_crop_max: int = 600 random_resize_max_size: int = 1333 test_random_resize: int = 800 fixed_padding: bool = True @dataclass class DDDatasetConfig: """Dataset config.""" train_sampler: str = "default_sampler" train_data_sources: Optional[List[Dict[str, str]]] = None val_data_sources: Optional[List[Dict[str, str]]] = None test_data_sources: Optional[Dict[str, str]] = None infer_data_sources: Optional[Dict[str, str]] = None batch_size: int = 4 workers: int = 8 pin_memory: bool = True num_classes: int = 91 dataset_type: str = "serialized" eval_class_ids: Optional[List[int]] = None augmentation: DDAugmentationConfig = DDAugmentationConfig() @dataclass class DDModelConfig: """Deformable DETR model config.""" pretrained_backbone_path: Optional[str] = None backbone: str = "resnet_50" num_queries: int = 300 num_feature_levels: int = 4 return_interm_indices: List[int] = field(default_factory=lambda: [1, 2, 3, 4], metadata={"description": "Indices to return from backbone"}) with_box_refine: bool = True cls_loss_coef: float = 2.0 bbox_loss_coef: float = 5.0 giou_loss_coef: float = 2.0 focal_alpha: float = 0.25 clip_max_norm: float = 0.1 dropout_ratio: float = 0.3 hidden_dim: int = 256 nheads: int = 8 enc_layers: int = 6 dec_layers: int = 6 dim_feedforward: int = 1024 dec_n_points: int = 4 enc_n_points: int = 4 aux_loss: bool = True dilation: bool = False train_backbone: bool = True loss_types: List[str] = field(default_factory=lambda: ['labels', 'boxes'], metadata={"description": "Losses to be used during training"}) backbone_names: List[str] = field(default_factory=lambda: ["backbone.0"], metadata={"description": "Backbone name"}) linear_proj_names: List[str] = field(default_factory=lambda: ['reference_points', 'sampling_offsets'], metadata={"description": "Linear Projection names"}) @dataclass class OptimConfig: """Optimizer config.""" optimizer: str = "AdamW" monitor_name: str = "val_loss" # {val_loss, train_loss} lr: float = 2e-4 lr_backbone: float = 2e-5 lr_linear_proj_mult: float = 0.1 momentum: float = 0.9 weight_decay: float = 1e-4 lr_scheduler: str = "MultiStep" lr_steps: List[int] = field(default_factory=lambda: [40], metadata={"description": "learning rate decay steps"}) lr_step_size: int = 40 lr_decay: float = 0.1 @dataclass class DDTrainExpConfig: """Train experiment config.""" num_gpus: int = 1 num_nodes: int = 1 resume_training_checkpoint_path: Optional[str] = None pretrained_model_path: Optional[str] = None validation_interval: int = 1 clip_grad_norm: float = 0.1 is_dry_run: bool = False results_dir: Optional[str] = None num_epochs: int = 50 checkpoint_interval: int = 1 optim: OptimConfig = OptimConfig() precision: str = "fp32" distributed_strategy: str = "ddp" activation_checkpoint: bool = True @dataclass class DDInferenceExpConfig: """Inference experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None color_map: Dict[str, str] = MISSING conf_threshold: float = 0.5 is_internal: bool = False input_width: Optional[int] = None input_height: Optional[int] = None @dataclass class DDEvalExpConfig: """Evaluation experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None input_width: Optional[int] = None input_height: Optional[int] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None conf_threshold: float = 0.0 @dataclass class CalibrationConfig: """Calibration config.""" cal_image_dir: List[str] = MISSING cal_cache_file: str = MISSING cal_batch_size: int = 1 cal_batches: int = 1 @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class DDExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 checkpoint: str = MISSING onnx_file: str = MISSING on_cpu: bool = False input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False @dataclass class DDGenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: DDModelConfig = DDModelConfig() dataset: DDDatasetConfig = DDDatasetConfig() train: DDTrainExpConfig = DDTrainExpConfig() evaluate: DDEvalExpConfig = DDEvalExpConfig() inference: DDInferenceExpConfig = DDInferenceExpConfig() export: DDExportExpConfig = DDExportExpConfig() gen_trt_engine: DDGenTrtEngineExpConfig = DDGenTrtEngineExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Original source taken from https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py # Copyright (c) 2020 SenseTime. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modified COCO Dataset Class """ import json import numpy as np import copy import itertools from collections import defaultdict def _isArrayLike(obj): """_isArrayLike""" return hasattr(obj, '__iter__') and hasattr(obj, '__len__') # pylint:disable=R1718, W0622 class COCO: """ COCO class """ def __init__(self, dataset=None): """COCO Constructor. Args: dataset (json data): json data after loading the json file """ # load dataset - loaded json data self.dataset = dataset self.anns, self.cats, self.imgs = {}, {}, {} self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) assert type(dataset) == dict, f'annotation file format {type(dataset)} not supported' self.createIndex() def createIndex(self): """createIndex""" anns, cats, imgs = {}, {}, {} imgToAnns, catToImgs = defaultdict(list), defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats def info(self): """print info""" for key, value in self.dataset['info'].items(): print('{}: {}'.format(key, value)) def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): """ Get ann ids that satisfy given filter conditions. default skips that filter :param imgIds (int array) : get anns for given imgs catIds (int array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) iscrowd (boolean) : get anns for given crowd label (False or True) :return: ids (int array) : integer array of ann ids """ imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(imgIds) == len(catIds) == len(areaRng) == 0: anns = self.dataset['annotations'] else: if not len(imgIds) == 0: lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] anns = list(itertools.chain.from_iterable(lists)) else: anns = self.dataset['annotations'] anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] if iscrowd is not None: ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] else: ids = [ann['id'] for ann in anns] return ids def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if _isArrayLike(catNms) else [catNms] supNms = supNms if _isArrayLike(supNms) else [supNms] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids def getImgIds(self, imgIds=[], catIds=[]): """ Get img ids that satisfy given filter conditions. :param imgIds (int array) : get imgs for given ids :param catIds (int array) : get imgs with all given cats :return: ids (int array) : integer array of img ids """ imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(imgIds) == len(catIds) == 0: ids = self.imgs.keys() else: ids = set(imgIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToImgs[catId]) else: ids &= set(self.catToImgs[catId]) return list(ids) def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ output = [] if _isArrayLike(ids): output = [self.anns[id] for id in ids] elif type(ids) == int: output = [self.anns[ids]] return output def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ output = [] if _isArrayLike(ids): output = [self.cats[id] for id in ids] elif type(ids) == int: output = [self.cats[ids]] return output def loadImgs(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects """ output = [] if _isArrayLike(ids): output = [self.imgs[id] for id in ids] elif type(ids) == int: output = [self.imgs[ids]] return output def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] if type(resFile) == str: with open(resFile) as f: anns = json.load(f) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id + 1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]] if 'segmentation' not in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2] * bb[3] ann['id'] = id + 1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1 - x0) * (y1 - y0) ann['id'] = id + 1 ann['bbox'] = [x0, y0, x1 - x0, y1 - y0] res.dataset['annotations'] = anns res.createIndex() return res def loadNumpyAnnotations(self, data): """ Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list) """ # print('Converting ndarray to lists...') assert (type(data) == np.ndarray) # print(data.shape) assert (data.shape[1] == 7) N = data.shape[0] ann = [] for i in range(N): if i % 1000000 == 0: print('{}/{}'.format(i, N)) ann += [{'image_id': int(data[i, 0]), 'bbox': [data[i, 1], data[i, 2], data[i, 3], data[i, 4]], 'score': data[i, 5], 'category_id': int(data[i, 6])}] return ann
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/coco.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Misc functions. """ import os import pickle # nosec B403 import torch import torch.distributed as dist from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.cv.action_recognition.utils.common_utils import patch_decrypt_checkpoint DEFAULT_TARGET_CLASS_MAPPING = { "Person": "person", "Person Group": "person", "Rider": "person", "backpack": "bag", "face": "face", "large_bag": "bag", "person": "person", "person group": "person", "person_group": "person", "personal_bag": "bag", "rider": "person", "rolling_bag": "bag", "rollingbag": "bag", "largebag": "bag", "personalbag": "bag" } DEFAULT_CLASS_LOOKUP_TABLE = {'person': 1, 'face': 2, 'bag': 3} def get_categories(cat_map): """ Function to convert the category map to COCO annotation format Args: cat_map (dict): Category map Returns: categories_info (list): COCO annotation format of the category map categories_dict (dict): In a format of {"class_name": "id"} """ categories_info = [] categories_dict = {} for i, class_name in enumerate(sorted(set(cat_map.values()), reverse=True)): category = { 'id': i + 1, 'name': class_name } categories_info.append(category) categories_dict[class_name] = i + 1 return categories_info, categories_dict def check_and_create(d): """Create a directory.""" if not os.path.isdir(d): os.makedirs(d, exist_ok=True) def load_pretrained_weights(pretrained_path): """To get over pytorch lightning module in the checkpoint state_dict.""" temp = torch.load(pretrained_path, map_location="cpu") if temp.get("state_dict_encrypted", False): # Retrieve encryption key from TLTPyTorchCookbook. key = TLTPyTorchCookbook.get_passphrase() if key is None: raise PermissionError("Cannot access model state dict without the encryption key") temp = patch_decrypt_checkpoint(temp, key) # for loading pretrained I3D weights released on # https://github.com/piergiaj/pytorch-i3d if "state_dict" not in temp: return temp state_dict = {} for key, value in list(temp["state_dict"].items()): if "module" in key: new_key = ".".join(key.split(".")[1:]) state_dict[new_key] = value elif key.startswith("backbone."): # MMLab compatible weight loading new_key = key[9:] state_dict[new_key] = value elif key.startswith("ema_"): # Do not include ema params from MMLab continue else: state_dict[key] = value return state_dict def match_name_keywords(n, name_keywords): """match_name_keywords""" out = False for b in name_keywords: if b in n: out = True break return out def all_gather(data): """Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object. Returns: list[data]: list of data gathered from each rank. """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to('cuda') # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device='cuda') size_list = [torch.tensor([0], device='cuda') for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device='cuda')) if local_size != max_size: padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device='cuda') tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) # nosec B301 return data_list def collate_fn(batch): """Custom collate function for DETR-like models. DETR models use mutli-scale resize and random cropping which results in the varying input resolution of a single image. Hence, we need a custom collate_fn to pad additional regions and pass that as mask to transformer. Args: batch (tuple): tuple of a single batch. Contains image and label tensors Returns: batch (tuple): tuple of a single batch with uniform image resolution after padding. """ batch = list(zip(*batch)) batch[0] = tensor_from_tensor_list(batch[0], batch[1]) return tuple(batch) def _max_by_axis(the_list): """Get maximum image shape for padding.""" maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes def tensor_from_tensor_list(tensor_list, targets): """Convert list of tensors with different size to fixed resolution. The final size is determined by largest height and width. In theory, the batch could become [3, 1333, 1333] on dataset with different aspect ratio, e.g. COCO A fourth channel dimension is the mask region in which 0 represents the actual image and 1 means the padded region. This is to give size information to the transformer archicture. If transform-padding is applied, then only the pre-padded regions gets mask value of 1. Args: tensor_list (List[Tensor]): list of image tensors targets (List[dict]): list of labels that contain the size information Returns: tensors (torch.Tensor): list of image tensors in shape of (B, 4, H, W) """ if tensor_list[0].ndim == 3: max_size = _max_by_axis([list(img.shape) for img in tensor_list]) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device temp_tensors = torch.zeros((b, c, h, w), dtype=dtype, device=device) mask = torch.ones((b, 1, h, w), dtype=dtype, device=device) tensors = torch.concat((temp_tensors, mask), 1) for img, target, pad_img in zip(tensor_list, targets, tensors): # Get original image size before transform-padding # If no transform-padding has been applied, # then height == img.shape[1] and width == img.shape[2] actual_height, actual_width = target['size'] pad_img[:img.shape[0], :actual_height, :actual_width].copy_(img[:, :actual_height, :actual_width]) pad_img[c, :actual_height, :actual_width] = 0 # set zeros for mask in non-padded area else: raise ValueError('Channel size other than 3 is not supported') return tensors @torch.no_grad() def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k.""" if target.numel() == 0: return [torch.zeros([], device=output.device)] maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def get_total_grad_norm(parameters, norm_type=2): """Get toal gradient norm.""" parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) device = parameters[0].grad.device total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def inverse_sigmoid(x, eps=1e-5): """Inverse sigmoid.""" x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) def is_dist_avail_and_initialized(): """Check if DDP is initialized.""" is_dist = True if not dist.is_available(): is_dist = False else: is_dist = dist.is_initialized() or False return is_dist def get_world_size(): """Get world size.""" if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_global_rank(): """Get global rank.""" if not is_dist_avail_and_initialized(): return 0 return dist.get_rank()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/misc.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Generates TRT compatible DDETR onnx model. """ import torch from torch.onnx import register_custom_op_symbolic import onnx import numpy as np import onnx_graphsurgeon as gs # register plugin def nvidia_msda(g, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights): """Returns nvidia_msda.""" return g.op("nvidia::MultiscaleDeformableAttnPlugin_TRT", value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) class ONNXExporter(object): """Onnx Exporter.""" @classmethod def setUpClass(cls): """SetUpclass to set the manual seed for reproduceability""" torch.manual_seed(123) def export_model(self, model, batch_size, onnx_file, dummy_input, do_constant_folding=False, opset_version=12, output_names=None, input_names=None, verbose=False): """ Export_model. The do_constant_folding = False avoids MultiscaleDeformableAttnPlugin_TRT error (tensors on 2 devices) when torch > 1.9.0. However, it would cause tensorrt 8.0.3.4 (nvcr.io/nvidia/pytorch:21.11-py3 env) reports clip node error. This error is fixed in tensorrt >= 8.2.1.8 (nvcr.io/nvidia/tensorrt:22.01-py3). Args: model (nn.Module): torch model to export. batch_size (int): batch size of the ONNX model. -1 means dynamic batch size. onnx_file (str): output path of the onnx file. dummy_input (torch.Tensor): input tensor. do_constant_folding (bool): flag to indicate whether to fold constants in the ONNX model. opset_version (int): opset_version of the ONNX file. output_names (str): output names of the ONNX file. input_names (str): input names of the ONNX file. verbose (bool): verbosity level. """ if batch_size is None or batch_size == -1: dynamic_axes = {"inputs": {0: "batch"}, "pred_logits": {0: "batch"}, "pred_boxes": {0: "batch"}} else: dynamic_axes = None # CPU version requires opset_version > 16 if not next(model.parameters()).is_cuda and opset_version < 16: print(f"CPU version of Deformable MHA requires opset version larger than 16. Overriding provided opset {opset_version} to 16.") opset_version = 16 register_custom_op_symbolic('nvidia::MultiscaleDeformableAttnPlugin_TRT', nvidia_msda, opset_version) torch.onnx.export(model, dummy_input, onnx_file, input_names=input_names, output_names=output_names, export_params=True, training=torch.onnx.TrainingMode.EVAL, opset_version=opset_version, do_constant_folding=do_constant_folding, custom_opsets={"nvidia": 1}, verbose=verbose, dynamic_axes=dynamic_axes) @staticmethod def check_onnx(onnx_file): """Check onnx file. Args: onnx_file (str): path to ONNX file. """ model = onnx.load(onnx_file) onnx.checker.check_model(model) @staticmethod def onnx_change(onnx_file): """Make ddetr onnx compatible with TRT. Additionally, fold constants. Args: onnx_file (str): path to ONNX file. """ graph = gs.import_onnx(onnx.load(onnx_file)) for node in graph.nodes: if node.op == "MultiscaleDeformableAttnPlugin_TRT": node.attrs = {"name": "MultiscaleDeformableAttnPlugin_TRT", "version": "1", "namespace": ""} new_inputs = [] for i, inp in enumerate(node.inputs): if i in (1, 2) and hasattr(inp, "values"): new_inp = gs.Constant(name=inp.name, values=inp.values.astype(np.int32)) new_inputs.append(new_inp) else: new_inputs.append(inp) node.inputs = new_inputs # Setting constant folding in torch result in error due to some layers still in CPU # Limit workspace size to 1GB to disable folding for MatMul graph.fold_constants(size_threshold=1024 * 1024 * 1024) graph.cleanup().toposort() onnx.save(gs.export_onnx(graph), onnx_file)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/onnx_export.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area def box_cxcywh_to_xyxy(x): """Convert cxcywh format to xyxy.""" x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): """Convert xyxy format to cxcywh.""" x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) def box_iou(boxes1, boxes2): """Calculate box IoU. Args: boxes1 (torch.Tensor): boxes 1. boxes2 (torch.Tensor): boxes 2. Returns: iou (torch.Tensor): IoU values. union (torch.Tensor): Union values. """ area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] format. Args: boxes1 (torch.Tensor): boxes 1. boxes2 (torch.Tensor): boxes 2. Returns: A [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2). Raises: Degenerate boxes gives inf / nan results, so do an early check. """ assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/box_ops.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data source config class for DriveNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os class DataSourceConfig(object): """Hold all data source related parameters.""" def __init__(self, dataset_type, dataset_files, image_dir, minimum_target_class_imbalance=None, num_duplicates=0, skip_empty_frames=False, ignored_classifiers_for_skip=None, additional_conditions=None): """Constructor. Args: dataset_type (string): Currently only 'tfrecord' and 'sqlite' are supported. dataset_files (list): A list of absolute paths to dataset files. In case of tfrecords, a list of absolute paths to .tfrecord files. image_dir (string): Absolute path to images directory. minimum_target_class_imbalance (map<string, float>): Minimum ratio (#dominant_class_instances/#target_class_instances) criteria for duplication of frames. The string is the non-dominant class name and the float is the ratio for duplication. num_duplicates (int): Number of duplicates of frames to be added, if the frame satifies the minimum_target_class_imbalance. skip_empty_frames (bool): Whether to ignore empty frames (i.e frames without relevant features. By default, False, i.e all frames are returned. ignored_classifiers_for_skip (set): Names of classifiers to ignore when considering if frame is empty. I.e if frame only has these classes, it is still regarded as empty. additional_conditions (list): List of additional sql conditions for a 'where' clause. It's only for SqliteDataSource, and other data sources will ignore it. """ self.dataset_type = dataset_type self.dataset_files = dataset_files self.image_dir = image_dir self.minimum_target_class_imbalance = minimum_target_class_imbalance self.num_duplicates = num_duplicates self.skip_empty_frames = skip_empty_frames self.ignored_classifiers_for_skip = ignored_classifiers_for_skip self.additional_conditions = additional_conditions def build_data_source_lists(data_sources): # Non-sharding data """Build training and validation data source lists from proto. Args: dataset_config Returns: training_data_source_list (list): List of tuples (tfrecord_file_pattern, image_directory_path) to use for training. validation_data_source_list (list): List of tuples (tfrecord_file_pattern, image_directory_path) to use for validation. Can be None. """ # Prepare data source data_source_list = [] if type(data_sources).__name__ == "DictConfig": data_sources = [data_sources] for data_source in data_sources: image_dir = data_source["image_dir"] _files = data_source["json_file"] extension = os.path.splitext(os.path.basename(_files))[1] if extension == '.json': # use specific json file provided in spec file json_files = [_files] elif extension == "": # grab all json file under the directory json_files = glob.glob(_files) else: raise NotImplementedError("Need to provide json_file in dataset_config with the format of either '/path/to/json_file/.json' or '/path/to/json_files/*' ") data_source_list.append(DataSourceConfig( dataset_type='json', dataset_files=json_files, image_dir=image_dir)) return data_source_list def build_data_source_lists_per_gpu(data_sources, global_rank, num_gpus): # Sharded data """Build training and validation data source lists from proto. Args: data_sources Returns: training_data_source_list (list): List of tuples (tfrecord_file_pattern, image_directory_path) to use for training. validation_data_source_list (list): List of tuples (tfrecord_file_pattern, image_directory_path) to use for validation. Can be None. """ # Prepare training and validation data source data_source_list = [] if type(data_sources).__name__ == "DictConfig": data_sources = [data_sources] for data_source in data_sources: image_dir = data_source["image_dir"] _files = data_source["json_file"] extension = os.path.splitext(os.path.basename(_files))[1] if extension == '.json': # use specific json file provided json_files = [_files] elif extension == "": # grab all json file under the directory json_files = glob.glob(_files) else: raise NotImplementedError("Need to provide json_file in dataset_config with the format of either '/path/to/json_file/.json' or '/path/to/json_files/*' ") training_jsons_per_seq = [] for shard_idx, json_file in enumerate(json_files): if (shard_idx % num_gpus) == global_rank: training_jsons_per_seq.append(json_file) data_source_list.append(DataSourceConfig( dataset_type='json', dataset_files=training_jsons_per_seq, image_dir=image_dir)) return data_source_list
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/data_source_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for converting datasets to json""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABCMeta from abc import abstractmethod import logging import os import random import six import numpy as np from PIL import Image import json from json.decoder import JSONDecodeError import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.cv.deformable_detr.utils.converter_lib import _shard, _shuffle from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import DEFAULT_TARGET_CLASS_MAPPING, DEFAULT_CLASS_LOOKUP_TABLE, get_categories logger = logging.getLogger(__name__) def create_info_images(image_id, file_name, img_size): """create image info in COCO format""" images = { "id": image_id, "file_name": file_name, "height": img_size[1], "width": img_size[0] } return images def create_info_categories(): """create categories info in COCO format""" categories = [{"supercategory": "person", "id": 1, "name": "person"}, {"supercategory": "face", "id": 2, "name": "face"}, {"supercategory": "bag", "id": 3, "name": "bag"}] return categories def create_info_annotations(image_id, category_id, annotation_id, bbox, area): """create annotation info in COCO format""" annotation = { 'image_id': image_id, 'category_id': category_id, 'id': annotation_id, 'bbox': bbox, 'area': area, 'iscrowd': 0 } return annotation class DatasetConverter(six.with_metaclass(ABCMeta, object)): """Converts an object detection dataset to Json. This class needs to be subclassed, and the convert() and create_example_proto() methods overridden to do the dataset conversion. Splitting of partitions to shards, shuffling and writing Json are implemented here. """ @abstractmethod def __init__(self, data_root, input_source, num_partitions, num_shards, output_dir, mapping_path=None): """Initialize the converter. Args: input_source (string): Dataset directory path relative to data root. num_partitions (int): Number of partitions (folds). num_shards (int): Number of shards. output_dir (str): Path for the output file. mapping_path (str): Path to a JSON file containing the class mapping. """ if data_root is not None: self.img_root_dir = os.path.join(data_root, input_source) else: self.img_root_dir = input_source self.img_root_dir = os.path.abspath(self.img_root_dir) # data_root/sqeuence_name self.input_source = os.path.basename(input_source) self.output_partitions = num_partitions self.output_shards = num_shards self.output_dir = output_dir self.output_filename = os.path.join(output_dir, self.input_source, self.input_source) # Make the output directory to write the shard. if not os.path.exists(output_dir): logger.info("Creating output directory {}".format(output_dir)) os.makedirs(output_dir) if not os.path.exists(os.path.join(output_dir, self.input_source)): logger.info("Creating output directory {}".format(os.path.join(output_dir, self.input_source))) os.makedirs(os.path.join(output_dir, self.input_source)) self.class_map = {} self.log_warning = {} # check the previous image id and annotation id for offset self.image_id_offset = 0 self.annotation_id_offset = 0 if mapping_path: if not os.path.exists(mapping_path): raise FileNotFoundError(f"Provided class mapping path {mapping_path} does not exist!") with open(mapping_path, "r", encoding='utf-8') as f: self.target_class_mapping = json.load(f) self.category_info, self.class_lookup_table = get_categories(self.target_class_mapping) logger.info("Load category mapping from {}".format(mapping_path)) else: # Use the default values for PeopleNet self.target_class_mapping = DEFAULT_TARGET_CLASS_MAPPING self.class_lookup_table = DEFAULT_CLASS_LOOKUP_TABLE self.category_info = create_info_categories() logger.info("Category mapping: \n {}".format(self.class_lookup_table)) # Set a fixed seed to get a reproducible sequence. random.seed(42) def convert(self): """Do the dataset conversion.""" # Divide dataset into partitions and shuffle them. partitions = self._partition() _shuffle(partitions) # Shard and write the partitions to Json. global_image_id, global_ann_id = self._write_partitions(partitions) stats_filename = os.path.join(self.output_dir, 'stats.txt') with open(stats_filename, 'a+') as f: print('writing') print(stats_filename) out_str = "{},{},{}\n".format(self.input_source, global_image_id, global_ann_id) print(out_str) f.write(out_str) # Log how many objects per class got written in total. logger.info("Cumulative object statistics") s_logger = status_logging.get_status_logger() # Print out the class map log_str = "Class map. \nLabel in GT: Label in Json file " for key, value in six.iteritems(self.class_map): log_str += "\n{}: {}".format(key, value) logger.info(log_str) s_logger.write(message=log_str) note_string = ( "For the dataset_config in the experiment_spec, " "please use labels in the Json file, while writing the classmap.\n" ) print(note_string) s_logger.write(message=note_string) logger.info("Json generation complete.") s_logger.write( status_level=status_logging.Status.SUCCESS, message="Json generation complete." ) # Save labels with error to a JSON file self._save_log_warnings() def _write_partitions(self, partitions): """Shard and write partitions into Json. Args: partitions (list): A list of list of frame IDs. Returns: """ # Divide partitions into shards. sharded_partitions = _shard(partitions, self.output_shards) # Write .Json to disk for each partition and shard. stats_filename = os.path.join(self.output_dir, 'stats.txt') if os.path.exists(stats_filename): with open(stats_filename, 'r') as f: line = f.readlines()[-1].split(",") global_image_id = int(line[1]) global_ann_id = int(line[2]) else: global_image_id = 0 global_ann_id = 0 for p, partition in enumerate(sharded_partitions): for s, shard in enumerate(partition): shard_image_counter, shrad_ann_counter = self._write_shard(shard, p, s, global_image_id, global_ann_id) global_image_id += shard_image_counter global_ann_id += shrad_ann_counter return global_image_id, global_ann_id def _write_shard(self, shard, partition_number, shard_number, global_image_id, global_ann_id): """Write a single shard into the Json file. Note that the dataset-specific part is captured in function create_example_proto() which needs to be overridden for each specific dataset. Args: shard (list): A list of frame IDs for this shard. partition_number (int): Current partition (fold) index. shard_number (int): Current shard index. Returns: """ logger.info('Writing partition {}, shard {}'.format(partition_number, shard_number)) status_logging.get_status_logger().write( message='Writing partition {}, shard {}'.format(partition_number, shard_number) ) output = self.output_filename if self.output_partitions != 0 and self.output_partitions != 1: output = '{}-fold-{:03d}-of-{:03d}'.format(output, partition_number, self.output_partitions) if self.output_shards != 0: output = '{}-shard-{:05d}-of-{:05d}.json'.format(output, shard_number, self.output_shards) # # Store all the data for the shard. json_output = { "images": [], "annotations": [], "categories": self.category_info } image_count = 0 ann_count = 0 for frame_id in shard: image_file = os.path.join(self.input_source, self.images_dir, frame_id + self.extension) width, height = self._get_image_size(frame_id) shard_imgage_id = self.image_id_offset + global_image_id + image_count images_info = create_info_images(shard_imgage_id, image_file, (width, height)) json_output["images"].append(images_info) # Create the Example with all labels for this frame_id. shard_ann_id = self.annotation_id_offset + global_ann_id + ann_count json_output, shard_ann_count = self._create_info_dict(json_output, frame_id, shard_imgage_id, shard_ann_id) image_count = image_count + 1 ann_count = ann_count + shard_ann_count with open(output, 'w+') as outfile: try: json.dump(json_output, outfile) except JSONDecodeError: pass return image_count, ann_count def _get_image_size(self, frame_id): """Read image size from the image file, image sizes vary in KITTI.""" image_file = os.path.join(self.img_root_dir, self.images_dir, frame_id + self.extension) width, height = Image.open(image_file).size return width, height @abstractmethod def _partition(self): """Return dataset partitions.""" pass @abstractmethod def _create_info_dict(self, json_output, frame_id, image_id, ann_id): """Generate the example for this frame.""" pass def _save_log_warnings(self): """Store out of bound bounding boxes to a json file.""" if self.log_warning: logger.info("Writing the log_warning.json") with open(f"{self.output_dir}_warning.json", "w") as f: json.dump(self.log_warning, f, indet=2) logger.info("There were errors in the labels. Details are logged at" " %s_waring.json", self.output_dir) class KITTIConverter(DatasetConverter): """Converts a KITTI detection dataset to jsons.""" def __init__(self, data_root, input_source, num_partitions, num_shards, output_dir, image_dir_name=None, label_dir_name=None, extension='.png', partition_mode='random', val_split=None, mapping_path=None): """Initialize the converter. Args: input_source (string): Dataset directory path relative to data root. num_partitions (int): Number of partitions (folds). num_shards (int): Number of shards. output_dir (str): Path for the output file. image_dir_name (str): Name of the subdirectory containing images. label_dir_name (str): Name of the subdirectory containing the label files for the respective images in image_dir_name extension (str): Extension of the images in the dataset directory. partition_mode (str): Mode to partitition the dataset. We only support sequence or random split mode. In the sequence mode, it is mandatory to instantiate the kitti sequence to frames file. Also, any arbitrary number of partitions maybe used. However, for random split, the sequence map file is ignored and only 2 partitions can every be used. Here, the data is divided into two folds 1. validation fold 2. training fold Validation fold (defaults to fold=0) contains val_split% of data, while train fold contains (100-val_split)% of data. val_split (int): Percentage split for validation. This is used with the random partition mode only. mapping_path (str): Path to a JSON file containing the class mapping. If not specified, default to DEFAULT_TARGET_CLASS_MAPPING """ super(KITTIConverter, self).__init__( data_root=data_root, input_source=input_source, num_partitions=num_partitions, num_shards=num_shards, output_dir=output_dir, mapping_path=mapping_path) # KITTI defaults. self.images_dir = image_dir_name self.labels_dir = label_dir_name self.extension = extension self.partition_mode = partition_mode self.val_split = val_split / 100. # check the previous image id and annotation id for offset self.image_id_offset = 0 self.annotation_id_offset = 0 def _partition(self): """Partition KITTI dataset to self.output_partitions partitions based on sequences. The following code is a modified version of the KITTISplitter class in Rumpy. Returns: partitions (list): A list of lists of frame ids, one list per partition. """ logger.debug("Generating partitions") s_logger = status_logging.get_status_logger() s_logger.write(message="Generating partitions") partitions = [[] for _ in six.moves.range(self.output_partitions)] if self.partition_mode is None and self.output_partitions == 1: images_root = os.path.join(self.img_root_dir, self.images_dir) images_list = [os.path.splitext(imfile)[0] for imfile in os.listdir(images_root) if imfile.endswith(self.extension)] partitions[0].extend(images_list) elif self.partition_mode == 'random': assert self.output_partitions == 2, "Invalid number of partitions ({}) "\ "for random split mode.".format(self.output_partitions) assert 0 <= self.val_split < 1, ( "Validation split must satisfy the criteria, 0 <= val_split < 100. " ) images_root = os.path.join(self.img_root_dir, self.images_dir) images_list = [os.path.splitext(imfile)[0] for imfile in os.listdir(images_root) if imfile.endswith(self.extension)] total_num_images = len(images_list) num_val_images = (int)(self.val_split * total_num_images) logger.debug("Validation percentage: {}".format(self.val_split)) partitions[0].extend(images_list[:num_val_images]) partitions[1].extend(images_list[num_val_images:]) for part in partitions: random.shuffle(part) logger.info("Num images in\nTrain: {}\tVal: {}".format(len(partitions[1]), len(partitions[0]))) s_logger.kpi = { "num_images": total_num_images } s_logger.write( message="Num images in\nTrain: {}\tVal: {}".format( len(partitions[1]), len(partitions[0]) ) ) if self.val_split == 0: logger.info("Skipped validation data...") s_logger.write(message="Skipped validation data.") else: validation_note = ( "Validation data in partition 0. Hence, while choosing the validation" "set during training choose validation_fold 0." ) logger.info(validation_note) s_logger.write(message=validation_note) else: raise NotImplementedError("Unknown partition mode. Please stick to either " "random or sequence") return partitions def _create_info_dict(self, json_output, frame_id, image_id, global_ann_id): """Generate the example proto for this frame. Args: frame_id (string): The frame id. Returns: example : An Example containing all labels for the frame. """ # Create proto for the training example. Populate with frame attributes. json_output = self._process_info(json_output, frame_id, image_id, global_ann_id) return json_output def _get_image_size(self, frame_id): """Read image size from the image file, image sizes vary in KITTI.""" image_file = os.path.join(self.img_root_dir, self.images_dir, frame_id + self.extension) width, height = Image.open(image_file).size return width, height def _process_info(self, json_output, frame_id, image_id, global_ann_id): """Add KITTI target features such as bbox to the Example protobuf. Reads labels from KITTI txt files with following fields: (From Kitti devkit's README) 1 type Describes the type of object: 'Car', 'Van', 'Truck', 'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram', 'Misc' or 'DontCare' 1 truncated Float from 0 (non-truncated) to 1 (truncated), where truncated refers to the object leaving image boundaries 1 occluded Integer (0,1,2,3) indicating occlusion state: 0 = fully visible, 1 = partly occluded 2 = largely occluded, 3 = unknown 1 alpha Observation angle of object, ranging [-pi..pi] 4 bbox 2D bounding box of object in the image (0-based index): contains left, top, right, bottom pixel coordinates 3 dimensions 3D object dimensions: height, width, length (in meters) 3 location 3D object location x,y,z in camera coordinates (in meters) 1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi] Args: example (tf.train.Example): The Example protobuf for this frame. frame_id (string): Frame id. """ # reads the labels as a list of tuples label_file = os.path.join(self.img_root_dir, self.labels_dir, '{}.txt'.format(frame_id)) labels = np.genfromtxt(label_file, dtype=None).tolist() if isinstance(labels, tuple): labels = [labels] ann_counter = 0 for label in labels: assert len(label) == 15, 'Ground truth kitti labels should have only 15 fields.' x1 = label[4] y1 = label[5] x2 = label[6] y2 = label[7] # Map object classes as they are in the dataset to target classes of the model # self.class_map[label[0]] = label[0].lower() object_class = label[0].lower().decode('utf-8') mapped_class = self.target_class_mapping.get(object_class, 'unknown') self.class_map[label[0]] = mapped_class if mapped_class == 'unknown': continue category_id = self.class_lookup_table[mapped_class] # Check to make sure the coordinates are 'ltrb' format. error_string = "Top left coordinate must be less than bottom right."\ "Error in object {} of label_file {}. \nCoordinates: "\ "x1 = {}, x2 = {}, y1: {}, y2: {}".format(labels.index(label), label_file, x1, x2, y1, y2) if not (x1 < x2 and y1 < y2): logger.debug(error_string) logger.debug("Skipping this object") continue # coco bbox format (x1, y1, w, h) bbox = [x1, y1, (x2 - x1), (y2 - y1)] area = bbox[2] * bbox[3] annotation_id = global_ann_id + ann_counter annotation_info = create_info_annotations(image_id, category_id, annotation_id, bbox, area) ann_counter = ann_counter + 1 json_output["annotations"].append(annotation_info) return json_output, ann_counter
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/converter.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DD utils module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ COCO evaluator that works in distributed mode. Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py The difference is that there is less copy-pasting from pycocotools in the end of the file, as python3 can suppress prints with contextlib. """ import os import contextlib import copy import numpy as np import torch import json from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO from collections import defaultdict from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import all_gather class CocoEvaluator(object): """ CocoEvaluator class """ def __init__(self, coco_gt, iou_types, eval_class_ids): """ CocoEval init """ if not isinstance(iou_types, (list, tuple)): raise TypeError(f"Invalid data type for iou_types encountered: {type(iou_types)}") coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.eval_class_ids = eval_class_ids self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): """ update predictions """ img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) # suppress pycocotools prints with open(os.devnull, 'w') as devnull: with contextlib.redirect_stdout(devnull): coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] if self.eval_class_ids is not None: coco_eval.params.catIds = self.eval_class_ids coco_eval.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) img_ids, eval_imgs = evaluate(coco_eval) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): """ synchronize_between_processes """ for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]) def overall_accumulate(self): """ overall_accumulate """ for coco_eval in self.coco_eval.values(): accumulate(coco_eval) def overall_summarize(self, is_print=False): """ overall_summarize """ for _, coco_eval in self.coco_eval.items(): summarize(coco_eval, is_print=is_print) def prepare(self, predictions, iou_type): """ prepare """ if iou_type == "bbox": prepared_data = self.prepare_for_coco_detection(predictions) else: raise NotImplementedError("iou type {} is not implemented".format(iou_type)) return prepared_data def prepare_for_coco_detection(self, predictions): """ prepare_for_coco_detection """ coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return coco_results def convert_to_xywh(boxes): """ convert_to_xywh """ xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def merge(img_ids, eval_imgs): """ merge """ all_img_ids = all_gather(img_ids) all_eval_imgs = all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids = np.array(merged_img_ids) merged_eval_imgs = np.concatenate(merged_eval_imgs, 2) # keep only unique (and in sorted order) images merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) merged_eval_imgs = merged_eval_imgs[..., idx] return merged_img_ids, merged_eval_imgs def create_common_coco_eval(coco_eval, img_ids, eval_imgs): """ create_common_coco_eval """ img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) coco_eval.evalImgs = eval_imgs coco_eval.params.imgIds = img_ids coco_eval._paramsEval = copy.deepcopy(coco_eval.params) def createIndex(self): """ create Index for COCO Class """ anns, cats, imgs = {}, {}, {} imgToAnns, catToImgs = defaultdict(list), defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] if isinstance(resFile, torch._six.string_classes): anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == ( set(annsImgIds) & set(self.getImgIds()) ), 'Results do not correspond to current coco set' if 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for img_id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]] if 'segmentation' not in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2] * bb[3] ann['id'] = img_id + 1 ann['iscrowd'] = 0 res.dataset['annotations'] = anns createIndex(res) return res def evaluate(self): """ Run per image evaluation on given images and store results (a list of dict) in self.evalImgs return: None """ p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) # print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] evalImgs = [ evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # this is NOT in the pycocotools code, but could be done outside evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds)) self._paramsEval = copy.deepcopy(self.params) return p.imgIds, evalImgs def summarize(self, is_print=False): """ Compute summary metrics for evaluation results. Note this functin can *only* be applied on the default parameter setting """ self.is_print = is_print def _summarize(ap=1, iouThr=None, areaRng='all', maxDets=100): """ _summarize, remove prints""" p = self.params if self.is_print: iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' titleStr = 'Average Precision' if ap == 1 else 'Average Recall' typeStr = '(AP)' if ap == 1 else '(AR)' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr) aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] if ap == 1: # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, :, :, aind, mind] else: # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, :, aind, mind] if len(s[s > -1]) == 0: mean_s = -1 else: mean_s = np.mean(s[s > -1]) if self.is_print: print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) return mean_s def _summarizeDets(): """ _summarizeDets """ stats = np.zeros((12,)) stats[0] = _summarize(1) stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2]) stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2]) stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2]) stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2]) stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2]) stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2]) stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2]) stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2]) return stats def _summarizeKps(): """ _summarizeKps """ stats = np.zeros((10,)) stats[0] = _summarize(1, maxDets=20) stats[1] = _summarize(1, maxDets=20, iouThr=.5) stats[2] = _summarize(1, maxDets=20, iouThr=.75) stats[3] = _summarize(1, maxDets=20, areaRng='medium') stats[4] = _summarize(1, maxDets=20, areaRng='large') stats[5] = _summarize(0, maxDets=20) stats[6] = _summarize(0, maxDets=20, iouThr=.5) stats[7] = _summarize(0, maxDets=20, iouThr=.75) stats[8] = _summarize(0, maxDets=20, areaRng='medium') stats[9] = _summarize(0, maxDets=20, areaRng='large') return stats if not self.eval: raise Exception('Please run accumulate() first') iouType = self.params.iouType if iouType in ('segm', 'bbox'): summarize = _summarizeDets elif iouType == 'keypoints': summarize = _summarizeKps self.stats = summarize() def accumulate(self, p=None): """ Accumulate per image evaluation results and store the result in self.eval param p: input params for evaluation return: None """ if not self.evalImgs: print('Please run evaluate() first') # allows input customized parameters if p is None: p = self.params p.catIds = p.catIds if p.useCats == 1 else [-1] T = len(p.iouThrs) R = len(p.recThrs) K = len(p.catIds) if p.useCats else 1 A = len(p.areaRng) M = len(p.maxDets) precision = -np.ones((T, R, K, A, M)) # -1 for the precision of absent categories recall = -np.ones((T, K, A, M)) scores = -np.ones((T, R, K, A, M)) # create dictionary for future indexing _pe = self._paramsEval catIds = _pe.catIds if _pe.useCats else [-1] setK = set(catIds) setA = set(map(tuple, _pe.areaRng)) setM = set(_pe.maxDets) setI = set(_pe.imgIds) # get inds to evaluate k_list = [n for n, k in enumerate(p.catIds) if k in setK] m_list = [m for n, m in enumerate(p.maxDets) if m in setM] a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] i_list = [n for n, i in enumerate(p.imgIds) if i in setI] I0 = len(_pe.imgIds) A0 = len(_pe.areaRng) # retrieve E at each category, area range, and max number of detections for k, k0 in enumerate(k_list): Nk = k0 * A0 * I0 for a, a0 in enumerate(a_list): Na = a0 * I0 for m, maxDet in enumerate(m_list): E = [self.evalImgs[Nk + Na + i] for i in i_list] E = [e for e in E if e is not None] if len(E) == 0: continue dtScores = np.concatenate([e['dtScores'][0: maxDet] for e in E]) # different sorting method generates slightly different results. # mergesort is used to be consistent as Matlab implementation. inds = np.argsort(-dtScores, kind='mergesort') dtScoresSorted = dtScores[inds] dtm = np.concatenate([e['dtMatches'][:, 0:maxDet] for e in E], axis=1)[:, inds] dtIg = np.concatenate([e['dtIgnore'][:, 0:maxDet] for e in E], axis=1)[:, inds] gtIg = np.concatenate([e['gtIgnore'] for e in E]) npig = np.count_nonzero(gtIg == 0) if npig == 0: continue tps = np.logical_and(dtm, np.logical_not(dtIg)) fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg)) tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float32) fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float32) for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): tp = np.array(tp) fp = np.array(fp) nd = len(tp) rc = tp / npig pr = tp / (fp + tp + np.spacing(1)) q = np.zeros((R,)) ss = np.zeros((R,)) if nd: recall[t, k, a, m] = rc[-1] else: recall[t, k, a, m] = 0 # numpy is slow without cython optimization for accessing elements # use python array gets significant speed improvement pr = pr.tolist() q = q.tolist() for i in range(nd - 1, 0, -1): if pr[i] > pr[i - 1]: pr[i - 1] = pr[i] inds = np.searchsorted(rc, p.recThrs, side='left') try: for ri, pi in enumerate(inds): q[ri] = pr[pi] ss[ri] = dtScoresSorted[pi] except Exception: pass precision[t, :, k, a, m] = np.array(q) scores[t, :, k, a, m] = np.array(ss) self.eval = { 'params': p, 'counts': [T, R, K, A, M], # 'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'precision': precision, 'recall': recall, 'scores': scores, }
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/coco_eval.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for converting datasets to json""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import math def _shard(partitions, num_shards): """Shard each partition.""" num_shards = max(num_shards, 1) # 0 means 1 shard. shards = [] for partition in partitions: result = [] if len(partition) == 0: continue shard_size = math.ceil(len(partition) / num_shards) for i in range(num_shards): begin = i * shard_size end = (i + 1) * shard_size if end > len(partition): pad_counter = end - len(partition) pad_samples = random.sample(partition, pad_counter) out_partition = partition[begin: len(partition)] + pad_samples else: out_partition = partition[begin:end] result.append(out_partition) shards.append(result) return shards def _shuffle(partitions): """Shuffle each partition independently.""" for partition in partitions: random.shuffle(partition)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/utils/converter_lib.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ODDataset to sharded json format.""" import os import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.deformable_detr.config.default_config import DDDatasetConvertConfig from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import check_and_create from nvidia_tao_pytorch.cv.deformable_detr.utils.converter import KITTIConverter def build_converter(experiment_config, input_source): """Build a DatasetConverter object. Build and return an object of desired subclass of DatasetConverter based on given dataset convert configuration. Args: experiment_config (DDDatasetConvertConfig): Dataset convert configuration object input_source (string). Return: converter (DatasetConverter): An object of desired subclass of DatasetConverter. """ constructor_kwargs = {'data_root': experiment_config["data_root"], 'input_source': input_source, 'partition_mode': experiment_config["partition_mode"], 'num_partitions': experiment_config["num_partitions"], 'num_shards': experiment_config["num_shards"], 'output_dir': experiment_config["results_dir"], 'mapping_path': experiment_config["mapping_path"]} constructor_kwargs['image_dir_name'] = experiment_config["image_dir_name"] constructor_kwargs['label_dir_name'] = experiment_config["label_dir_name"] # Those two directories are by default empty string in proto # Here we do some check to make them default to None(in constructor) # Otherwise it will raise error if we pass the empty strings # directly to constructors. constructor_kwargs['extension'] = experiment_config["image_extension"] or '.png' constructor_kwargs['val_split'] = experiment_config["val_split"] converter = KITTIConverter(**constructor_kwargs) return converter def run_experiment(experiment_config, results_dir): """Start the Data Converter.""" input_sources = experiment_config["input_source"] check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting DDETR/DINO dataset convert" ) with open(input_sources, 'r') as f: seq_txt = f.readlines() for input_source in seq_txt: print(input_source) input_source = input_source.rstrip('\n') converter = build_converter(experiment_config, input_source) converter.convert() spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="convert", schema=DDDatasetConvertConfig ) def main(cfg: DDDatasetConvertConfig) -> None: """Run the convert dataset process.""" try: run_experiment(experiment_config=cfg, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Dataset convert finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Dataset convert was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/scripts/convert.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable DETR scripts module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Export deformable detr model to ONNX.""" import os import torch import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.utilities import update_results_dir from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.action_recognition.utils.common_utils import check_and_create, encrypt_onnx from nvidia_tao_pytorch.cv.deformable_detr.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.deformable_detr.model.pl_dd_model import DeformableDETRModel from nvidia_tao_pytorch.cv.deformable_detr.utils.onnx_export import ONNXExporter from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="export", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """CLI wrapper to run export. This function parses the command line interface for tlt-export, instantiates the respective exporter and serializes the trained model to an etlt file. The tools also runs optimization to the int8 backend. Args: cl_args(list): Arguments to parse. Returns: No explicit returns. """ try: torch.backends.cudnn.allow_tf32 = False torch.backends.cuda.matmul.allow_tf32 = False cfg = update_results_dir(cfg, task="export") run_export(cfg, cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Export finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Export was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e def run_export(experiment_config, results_dir): """Wrapper to run export of tlt models. Args: args (dict): Dictionary of parsed arguments to run export. Returns: No explicit returns. """ check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting DDETR export" ) gpu_id = experiment_config.export.gpu_id torch.cuda.set_device(gpu_id) # Parsing command line arguments. model_path = experiment_config.export.checkpoint key = experiment_config.encryption_key # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) output_file = experiment_config.export.onnx_file input_channel = experiment_config.export.input_channel input_width = experiment_config.export.input_width input_height = experiment_config.export.input_height opset_version = experiment_config.export.opset_version batch_size = experiment_config.export.batch_size on_cpu = experiment_config.export.on_cpu if batch_size is None or batch_size == -1: input_batch_size = 1 else: input_batch_size = batch_size # Set default output filename if the filename # isn't provided over the command line. if output_file is None: split_name = os.path.splitext(model_path)[0] output_file = "{}.onnx".format(split_name) # Warn the user if an exported file already exists. assert not os.path.exists(output_file), "Default onnx file {} already "\ "exists".format(output_file) # Make an output directory if necessary. output_root = os.path.dirname(os.path.realpath(output_file)) if not os.path.exists(output_root): os.makedirs(output_root) # load model pl_model = DeformableDETRModel.load_from_checkpoint(model_path, map_location='cpu' if on_cpu else 'cuda', experiment_spec=experiment_config, export=True) model = pl_model.model model.eval() if not on_cpu: model.cuda() input_names = ['inputs'] output_names = ["pred_logits", "pred_boxes"] # create dummy input if on_cpu: dummy_input = torch.ones(input_batch_size, input_channel, input_height, input_width, device='cpu') else: dummy_input = torch.ones(input_batch_size, input_channel, input_height, input_width, device='cuda') if output_file.endswith('.etlt'): tmp_onnx_file = output_file.replace('.etlt', '.onnx') else: tmp_onnx_file = output_file onnx_export = ONNXExporter() onnx_export.export_model(model, batch_size, tmp_onnx_file, dummy_input, input_names=input_names, opset_version=opset_version, output_names=output_names, do_constant_folding=False, verbose=experiment_config.export.verbose) onnx_export.check_onnx(tmp_onnx_file) onnx_export.onnx_change(tmp_onnx_file) if output_file.endswith('.etlt') and key: # encrypt the onnx if and only if key is provided and output file name ends with .etlt encrypt_onnx(tmp_file_name=tmp_onnx_file, output_file_name=output_file, key=key) os.remove(tmp_onnx_file) print(f"ONNX file stored at {output_file}") if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/scripts/export.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train deformable detr model.""" import os import re from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from nvidia_tao_pytorch.core.callbacks.loggers import TAOStatusLogger from nvidia_tao_pytorch.core.connectors.checkpoint_connector import TLTCheckpointConnector from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook from nvidia_tao_pytorch.core.utilities import update_results_dir import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.deformable_detr.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_data_module import ODDataModule from nvidia_tao_pytorch.cv.deformable_detr.model.pl_dd_model import DeformableDETRModel from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import check_and_create def run_experiment(experiment_config, results_dir, key): """Start the training.""" # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) dm = ODDataModule(experiment_config.dataset) # find_unuser_parameters=False and activation_checkpoint combination # requires every output in forward function to participate in # loss calculation. When return_interm_indices < 4, we must disable # activation checkpointing if experiment_config.train.activation_checkpoint and \ len(experiment_config.model.return_interm_indices) < 4 and \ experiment_config.train.num_gpus > 1: experiment_config.train.activation_checkpoint = False print("Disabling activation checkpointing since model is smaller") activation_checkpoint = experiment_config.train.activation_checkpoint # Load pretrained model as starting point if pretrained path is provided, pretrained_path = experiment_config.train.pretrained_model_path if pretrained_path is not None: pt_model = DeformableDETRModel.load_from_checkpoint(pretrained_path, map_location="cpu", experiment_spec=experiment_config) else: pt_model = DeformableDETRModel(experiment_config) total_epochs = experiment_config.train.num_epochs check_and_create(results_dir) status_logger_callback = TAOStatusLogger( results_dir, append=True, num_epochs=total_epochs ) status_logging.set_status_logger(status_logger_callback.logger) num_gpus = experiment_config.train.num_gpus num_nodes = experiment_config.train.num_nodes validation_interval = experiment_config.train.validation_interval ckpt_inter = experiment_config.train.checkpoint_interval assert ckpt_inter <= total_epochs, ( f"Checkpoint interval {ckpt_inter} > Number of epochs {total_epochs}." f"Please set experiment_config.train.checkpoint_interval < {total_epochs}" ) assert validation_interval <= total_epochs, ( f"Validation interval {validation_interval} > Number of epochs {total_epochs}." f"Please set experiment_config.train.validation_interval < {total_epochs}" ) clip_grad_norm = experiment_config.train.clip_grad_norm is_dry_run = experiment_config.train.is_dry_run distributed_strategy = experiment_config.train.distributed_strategy if experiment_config.train.precision.lower() in ["fp16", "fp32"]: precision = int(experiment_config.train.precision.replace("fp", "")) else: raise NotImplementedError(f"{experiment_config.train.precision} is not supported. Only fp32 and fp16 are supported") strategy = None if num_gpus > 1: # By default find_unused_parameters is set to True in Lightning for backward compatibility # This introduces extra overhead and can't work with activation checkpointing # Ref: https://pytorch-lightning.readthedocs.io/en/1.8.5/advanced/model_parallel.html#when-using-ddp-strategies-set-find-unused-parameters-false # TODO: Starting from PTL 2.0, find_usued_parameters is set to False by default if distributed_strategy.lower() == "ddp" and activation_checkpoint: strategy = DDPStrategy(find_unused_parameters=False) elif distributed_strategy.lower() == "ddp" and not activation_checkpoint: strategy = 'ddp' elif distributed_strategy.lower() == "ddp_sharded": strategy = 'ddp_sharded' # Override to FP16 for ddp_sharded as there's an error with FP32 during Positional Embedding forward pass print("Overriding Precision to FP16 for ddp_sharded") precision = 16 else: raise NotImplementedError(f"{distributed_strategy} is not implemented. Only ddp and ddp_sharded are supported") trainer = Trainer(devices=num_gpus, num_nodes=num_nodes, max_epochs=total_epochs, check_val_every_n_epoch=validation_interval, default_root_dir=results_dir, accelerator='gpu', strategy=strategy, precision=precision, gradient_clip_val=clip_grad_norm, replace_sampler_ddp=False, fast_dev_run=is_dry_run) # Overload connector to enable intermediate ckpt encryption & decryption. resume_ckpt = experiment_config.train.resume_training_checkpoint_path if resume_ckpt and resume_ckpt.endswith('.tlt'): if resume_ckpt is not None: trainer._checkpoint_connector = TLTCheckpointConnector(trainer, resume_from_checkpoint=resume_ckpt) else: trainer._checkpoint_connector = TLTCheckpointConnector(trainer) resume_ckpt = None # setup checkpointer: ModelCheckpoint.FILE_EXTENSION = ".pth" checkpoint_callback = ModelCheckpoint(every_n_epochs=ckpt_inter, dirpath=results_dir, save_on_train_epoch_end=True, monitor=None, save_top_k=-1, filename='dd_model_{epoch:03d}') if resume_ckpt: status_logging.get_status_logger().write( message=f"Resuming training from checkpoint: {resume_ckpt}", status_level=status_logging.Status.STARTED ) resumed_epoch = re.search('epoch=(\\d+)', resume_ckpt) if resumed_epoch: resumed_epoch = int(resumed_epoch.group(1)) else: resumed_epoch = 0 status_logger_callback.epoch_counter = resumed_epoch + 1 # make sure callback epoch matches resumed epoch trainer.callbacks.append(status_logger_callback) trainer.callbacks.append(checkpoint_callback) trainer.fit(pt_model, dm, ckpt_path=resume_ckpt or None) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="train", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the training process.""" try: cfg = update_results_dir(cfg, task="train") run_experiment(experiment_config=cfg, key=cfg.encryption_key, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Training finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Training was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/scripts/train.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Inference on single patch. """ import os from pytorch_lightning import Trainer import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.utilities import update_results_dir from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.deformable_detr.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_data_module import ODDataModule from nvidia_tao_pytorch.cv.deformable_detr.model.pl_dd_model import DeformableDETRModel from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import check_and_create from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook def run_experiment(experiment_config, model_path, key, results_dir=None): """Start the inference.""" if not model_path: raise FileNotFoundError("inference.checkpoint is not set!") # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting DDETR inference" ) # tlt inference if model_path.endswith('.tlt') or model_path.endswith('.pth'): num_gpus = experiment_config.inference.num_gpus # build data module dm = ODDataModule(experiment_config.dataset) dm.setup(stage="predict") # Run inference using tlt model acc_flag = None if num_gpus > 1: acc_flag = "ddp" model = DeformableDETRModel.load_from_checkpoint(model_path, map_location="cpu", experiment_spec=experiment_config) trainer = Trainer(devices=num_gpus, default_root_dir=results_dir, accelerator='gpu', strategy=acc_flag) trainer.predict(model, datamodule=dm) elif model_path.endswith('.engine'): raise NotImplementedError("TensorRT inference is supported through tao-deploy. " "Please use tao-deploy to generate TensorRT enigne and run inference.") else: raise NotImplementedError("Model path format is only supported for .tlt or .pth") spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="infer", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the inference process.""" try: cfg = update_results_dir(cfg, task="inference") run_experiment(experiment_config=cfg, key=cfg.encryption_key, model_path=cfg.inference.checkpoint, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Inference finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Inference was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluate a trained deformable detr model.""" import os from pytorch_lightning import Trainer import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.utilities import update_results_dir from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.deformable_detr.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_data_module import ODDataModule from nvidia_tao_pytorch.cv.deformable_detr.model.pl_dd_model import DeformableDETRModel from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import check_and_create from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook def run_experiment(experiment_config, model_path, key, results_dir=None): """Run experiment.""" if not model_path: raise FileNotFoundError("evaluate.checkpoint is not set!") # set the encryption key: TLTPyTorchCookbook.set_passphrase(key) check_and_create(results_dir) # Set status logging status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, append=True ) ) status_logging.get_status_logger().write( status_level=status_logging.Status.STARTED, message="Starting DDETR evaluation" ) # tlt inference if model_path.endswith('.tlt') or model_path.endswith('.pth'): # build dataloader dm = ODDataModule(experiment_config.dataset) dm.setup(stage="test") # build model and load from the given checkpoint model = DeformableDETRModel.load_from_checkpoint(model_path, map_location="cpu", experiment_spec=experiment_config) num_gpus = experiment_config.evaluate.num_gpus acc_flag = None if num_gpus > 1: acc_flag = "ddp" trainer = Trainer(devices=num_gpus, default_root_dir=results_dir, accelerator='gpu', strategy=acc_flag) trainer.test(model, datamodule=dm) elif model_path.endswith('.engine'): raise NotImplementedError("TensorRT evaluation is supported through tao-deploy. " "Please use tao-deploy to generate TensorRT enigne and run evaluation.") else: raise NotImplementedError("Model path format is only supported for .tlt or .pth") spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="evaluate", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the evaluate process.""" try: cfg = update_results_dir(cfg, task="evaluate") run_experiment(experiment_config=cfg, key=cfg.encryption_key, model_path=cfg.evaluate.checkpoint, results_dir=cfg.results_dir) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Evaluation finished successfully" ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Evaluation was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script for the deformable detr task."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """'Entry point' script running subtasks related to deformable detr. """ import importlib import os import pkgutil import argparse import subprocess # nosec B404 import sys from time import time import nvidia_tao_pytorch.cv.deformable_detr.scripts as scripts from nvidia_tao_pytorch.core.telemetry.nvml_utils import get_device_details from nvidia_tao_pytorch.core.telemetry.telemetry import send_telemetry_data def get_subtasks(package): """Get supported subtasks for a given task. This function lists out the tasks in in the .scripts folder. Returns: subtasks (dict): Dictionary of files. """ module_path = package.__path__ modules = {} # Collect modules dynamically. for _, task, is_package in pkgutil.walk_packages(module_path): if is_package: continue module_name = package.__name__ + '.' + task module_details = { "module_name": module_name, "runner_path": os.path.abspath(importlib.import_module(module_name).__file__), } modules[task] = module_details return modules def launch(parser, subtasks, network=None): """CLI function that executes subtasks. Args: parser: Created parser object for a given task. subtasks: list of subtasks for a given task. network (str): Name of the network. """ # Subtasks for a given model. parser.add_argument( 'subtask', default='train', choices=subtasks.keys(), help="Subtask for a given task/model.", ) # Add standard TLT arguments. parser.add_argument( "-r", "--results_dir", help="Path to a folder where the experiment outputs should be written.", default=None, required=False, ) parser.add_argument( "--gpus", help="Number of GPUs to run the train subtask.", default=None, type=int, ) parser.add_argument( "--num_nodes", help="Number of nodes to run the train subtask.", default=None, type=int ) parser.add_argument("-k", "--key", help="User specific encoding key to save or load a .tlt model.") parser.add_argument("-e", "--experiment_spec_file", help="Path to the experiment spec file.", default=None) # Parse the arguments. args, unknown_args = parser.parse_known_args() script_args = "" # Process spec file for all commands except the one for getting spec files ;) # Make sure the user provides spec file. if args.experiment_spec_file is None: print("ERROR: The subtask `{}` requires the following argument: -e/--experiment_spec_file".format(args.subtask)) exit(1) # Make sure the file exists! if not os.path.exists(args.experiment_spec_file): print("ERROR: The indicated experiment spec file `{}` doesn't exist!".format(args.experiment_spec_file)) exit(1) # Split spec file_path into config path and config name. path, name = os.path.split(args.experiment_spec_file) if path != '': script_args += " --config-path " + os.path.realpath(path) script_args += " --config-name " + name # And add other params AFTERWARDS! if args.results_dir: script_args += " results_dir=" + args.results_dir if args.subtask in ["train", "evaluate", "inference"]: if args.gpus: script_args += f" {args.subtask}.num_gpus={args.gpus}" if args.subtask in ["train"]: if args.num_nodes: script_args += f" {args.subtask}.num_nodes={args.num_nodes}" # Add encryption key. if args.subtask in ["train", "evaluate", "inference", "export"]: if args.key is not None: script_args += " encryption_key=" + args.key # Find relevant module and pass args. script = subtasks[args.subtask]["runner_path"] # Pass unknown args to call unknown_args_as_str = " ".join(unknown_args) # Create a system call. call = "python " + script + script_args + " " + unknown_args_as_str process_passed = True start = time() try: # Run the script. subprocess.check_call(call, shell=True, stdout=sys.stdout, stderr=sys.stdout) # nosec B602 except (KeyboardInterrupt, SystemExit): print("Command was interrupted.") process_passed = True except subprocess.CalledProcessError as e: if e.output is not None: print(e.output) process_passed = False end = time() time_lapsed = int(end - start) try: gpu_data = list() for device in get_device_details(): gpu_data.append(device.get_config()) send_telemetry_data( network, args.subtask, gpu_data, num_gpus=args.gpus, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: print("Telemetry data couldn't be sent, but the command ran successfully.") print(f"[WARNING]: {e}") pass if not process_passed: print("Execution status: FAIL") exit(1) # returning non zero return code from the process. print("Execution status: PASS") def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "deformable_detr", add_help=True, description="Transfer Learning Toolkit" ) # Build list of subtasks by inspecting the package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="deformable_detr") if __name__ == '__main__': main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/entrypoint/deformable_detr.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Deformable DETR model. """ import torch import torch.nn.functional as F from torch import nn import math import copy import warnings from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import (tensor_from_tensor_list, inverse_sigmoid) def _get_clones(module, N): """Get clones of nn.Module. Args: module (nn.Module): torch module to clone. N (int): number of times to clone. Returns: nn.ModuleList of the cloned module. """ return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class MLP(nn.Module): """Simple multi-layer perceptron (FFN).""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): """FFN Initialization. Args: input_dim (int): input dimension. hidden_dim (int): hidden dimension. output_dim (int): output dimension. num_layers (int): number of layers. """ super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): """Forward function.""" for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x class DeformableDETR(nn.Module): """ This is the Deformable DETR module that performs object detection """ def __init__(self, backbone, position_embedding, transformer, num_classes, num_queries, num_feature_levels, aux_loss=True, with_box_refine=True, export=False): """ Initializes the D-DETR model. Args: backbone (nn.Module): torch module of the backbone to be used. See backbone.py transformer (nn.Module): torch module of the transformer architecture. See transformer.py num_classes (int): number of object classes num_queries (int): number of object queries, ie detection slot. This is the maximal number of objects DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss (bool): True if auxiliary decoding losses (loss at each decoder layer) are to be used. with_box_refine (bool): iterative bounding box refinement. """ super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model self.class_embed = nn.Linear(hidden_dim, num_classes) self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) self.num_feature_levels = num_feature_levels self.query_embed = nn.Embedding(num_queries, hidden_dim * 2) if num_feature_levels > 1: num_backbone_outs = len(backbone.num_channels) input_proj_list = [] for _ in range(num_backbone_outs): in_channels = backbone.num_channels[_] input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )) for _ in range(num_feature_levels - num_backbone_outs): input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, hidden_dim), )) in_channels = hidden_dim self.input_proj = nn.ModuleList(input_proj_list) else: self.input_proj = nn.ModuleList([ nn.Sequential( nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )]) self.position_embedding = position_embedding self.backbone = backbone self.aux_loss = aux_loss self.export = export if self.export: warnings.warn("Setting aux_loss to be False for export") self.aux_loss = False self.with_box_refine = with_box_refine prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(num_classes) * bias_value nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) num_pred = transformer.decoder.num_layers if with_box_refine: self.class_embed = _get_clones(self.class_embed, num_pred) self.bbox_embed = _get_clones(self.bbox_embed, num_pred) nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) # hack implementation for iterative bounding box refinement self.transformer.decoder.bbox_embed = self.bbox_embed else: nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) self.transformer.decoder.bbox_embed = None def forward(self, samples): """ Forward function of DD Model Args: samples (torch.Tensor): batched images, of shape [batch_size x 3 x H x W] Returns: pred_logits (torch.Tensor): the classification logits (including no-object) for all queries. Shape = [batch_size x num_queries x (num_classes + 1)] pred_boxes (torch.Tensor): the normalized boxes coordinates for all queries, represented as (center_x, center_y, height, width). """ if not isinstance(samples, torch.Tensor): samples = tensor_from_tensor_list(samples) features = self.backbone(samples) srcs = [] masks = [] for level, feat in enumerate(features): src = feat[0] mask = (feat[1].float()[:, 0].bool()) srcs.append(self.input_proj[level](src)) masks.append(mask) if self.num_feature_levels > len(srcs): _len_srcs = len(srcs) for li in range(_len_srcs, self.num_feature_levels): if li == _len_srcs: src = self.input_proj[li](features[-1][0]) else: src = self.input_proj[li](srcs[-1]) srcs.append(src) if self.export: m = torch.zeros((src.shape[0], 1, src.shape[2], src.shape[3]), dtype=src.dtype, device=src.device) else: m = samples[:, 3:4] mask = F.interpolate(m.float(), size=src.shape[-2:]).to(torch.bool) masks.append(mask.float()[:, 0].bool()) # build positional embedding pos = [] for mask in masks: if self.export: N, H, W = mask.shape tensor_shape = torch.tensor([N, H, W], device=src.device) pos.append(self.position_embedding(tensor_shape, src.device)) else: not_mask = ~mask pos.append(self.position_embedding(not_mask, src.device)) query_embeds = self.query_embed.weight hs, init_reference, inter_references = self.transformer(srcs, masks, pos, query_embeds) outputs_classes = [] outputs_coords = [] for lvl in range(hs.shape[0]): if lvl == 0: reference = init_reference else: reference = inter_references[lvl - 1] reference = inverse_sigmoid(reference) outputs_class = self.class_embed[lvl](hs[lvl]) tmp = self.bbox_embed[lvl](hs[lvl]) if reference.shape[-1] == 4: tmp += reference else: assert reference.shape[-1] == 2 tmp[..., :2] += reference outputs_coord = tmp.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) outputs_class = torch.stack(outputs_classes) outputs_coord = torch.stack(outputs_coords) out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]} if self.aux_loss: out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): """A workaround as torchscript doesn't support dictionary with non-homogeneous values.""" return [{'pred_logits': a, 'pred_boxes': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/deformable_detr_base.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Main PTL model file for deformable detr. """ import datetime import os import json from typing import Any, Dict import torch from torch.optim.lr_scheduler import MultiStepLR, StepLR from fairscale.optim import OSS import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_only from nvidia_tao_pytorch.core.cookbooks.tlt_pytorch_cookbook import TLTPyTorchCookbook import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.cv.action_recognition.utils.common_utils import patch_decrypt_checkpoint from nvidia_tao_pytorch.pointcloud.pointpillars.pcdet.utils import common_utils from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_dataset import CoCoDataMerge from nvidia_tao_pytorch.cv.deformable_detr.model.build_nn_model import build_model from nvidia_tao_pytorch.cv.deformable_detr.model.matcher import HungarianMatcher from nvidia_tao_pytorch.cv.deformable_detr.model.criterion import SetCriterion from nvidia_tao_pytorch.cv.deformable_detr.model.post_process import PostProcess, save_inference_prediction, threshold_predictions from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import match_name_keywords from nvidia_tao_pytorch.cv.deformable_detr.utils.coco import COCO from nvidia_tao_pytorch.cv.deformable_detr.utils.coco_eval import CocoEvaluator # pylint:disable=too-many-ancestors class DeformableDETRModel(pl.LightningModule): """PTL module for Deformable DETR Object Detection Model.""" def __init__(self, experiment_spec, export=False): """Init training for Deformable DETR Model.""" super().__init__() self.experiment_spec = experiment_spec self.dataset_config = experiment_spec.dataset self.model_config = experiment_spec.model self.eval_class_ids = self.dataset_config["eval_class_ids"] self.dataset_type = self.dataset_config["dataset_type"] if self.dataset_type not in ("serialized", "default"): raise ValueError(f"{self.dataset_type} is not supported. Only serialized and default are supported.") # init the model self._build_model(export) self._build_criterion() self.status_logging_dict = {} def _build_model(self, export): """Internal function to build the model.""" self.model = build_model(experiment_config=self.experiment_spec, export=export) def _build_criterion(self): """Internal function to build the loss function.""" self.matcher = HungarianMatcher(cost_class=self.model_config["cls_loss_coef"], cost_bbox=self.model_config["bbox_loss_coef"], cost_giou=self.model_config["giou_loss_coef"]) self.weight_dict = {'loss_ce': self.model_config["cls_loss_coef"], 'loss_bbox': self.model_config["bbox_loss_coef"], 'loss_giou': self.model_config["giou_loss_coef"]} if self.model_config["aux_loss"]: aux_weight_dict = {} for i in range(self.model_config["dec_layers"] - 1): aux_weight_dict.update({f'{k}_{i}': v for k, v in self.weight_dict.items()}) aux_weight_dict.update({f'{k}_enc': v for k, v in self.weight_dict.items()}) self.weight_dict.update(aux_weight_dict) self.weight_dict = self.weight_dict loss_types = self.model_config["loss_types"] # ['labels', 'boxes'] self.criterion = SetCriterion(self.dataset_config["num_classes"], self.matcher, loss_types, focal_alpha=self.model_config["focal_alpha"]) self.box_processors = PostProcess() def configure_optimizers(self): """Configure optimizers for training.""" self.train_config = self.experiment_spec.train param_dicts = [ { "params": [p for n, p in self.model.named_parameters() if not match_name_keywords(n, self.model_config["backbone_names"]) and not match_name_keywords(n, self.model_config["linear_proj_names"]) and p.requires_grad], "lr": self.train_config['optim']['lr'], }, { "params": [p for n, p in self.model.named_parameters() if match_name_keywords(n, self.model_config["backbone_names"]) and p.requires_grad], "lr": self.train_config['optim']['lr_backbone'], }, { "params": [p for n, p in self.model.named_parameters() if match_name_keywords(n, self.model_config["linear_proj_names"]) and p.requires_grad], "lr": self.train_config['optim']['lr'] * self.train_config['optim']['lr_linear_proj_mult'], } ] if self.train_config.optim.optimizer == 'SGD': base_optimizer = torch.optim.SGD(params=param_dicts, lr=self.train_config.optim.lr, momentum=self.train_config.optim.momentum, weight_decay=self.train_config.optim.weight_decay) elif self.train_config.optim.optimizer == 'AdamW': base_optimizer = torch.optim.AdamW(params=param_dicts, lr=self.train_config.optim.lr, weight_decay=self.train_config.optim.weight_decay) else: raise NotImplementedError(f"Optimizer {self.train_config.optim.optimizer} is not implemented") if self.train_config.distributed_strategy == "ddp_sharded": # Override force_broadcast_object=False in PTL optim = OSS(params=base_optimizer.param_groups, optim=type(base_optimizer), force_broadcast_object=True, **base_optimizer.defaults) else: optim = base_optimizer optim_dict = {} optim_dict["optimizer"] = optim scheduler_type = self.train_config['optim']['lr_scheduler'] if scheduler_type == "MultiStep": lr_scheduler = MultiStepLR(optimizer=optim, milestones=self.train_config['optim']["lr_steps"], gamma=self.train_config['optim']["lr_decay"], verbose=True) elif scheduler_type == "StepLR": lr_scheduler = StepLR(optimizer=optim, step_size=self.train_config['optim']["lr_step_size"], gamma=self.train_config['optim']["lr_decay"], verbose=True) else: raise NotImplementedError("LR Scheduler {} is not implemented".format(scheduler_type)) optim_dict["lr_scheduler"] = lr_scheduler optim_dict['monitor'] = self.train_config['optim']['monitor_name'] return optim_dict def training_step(self, batch, batch_idx): """Training step.""" data, targets, _ = batch batch_size = data.shape[0] outputs = self.model(data) # loss loss_dict = self.criterion(outputs, targets) losses = sum(loss_dict[k] * self.weight_dict[k] for k in loss_dict.keys() if k in self.weight_dict) self.log("train_loss", losses, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True, batch_size=batch_size) self.log("train_class_error", loss_dict['class_error'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("train_loss_ce", loss_dict['loss_ce'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("train_loss_bbox", loss_dict['loss_bbox'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("train_loss_giou", loss_dict['loss_giou'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) return {'loss': losses} def training_epoch_end(self, training_step_outputs): """Log Training metrics to status.json""" average_train_loss = 0.0 for out in training_step_outputs: average_train_loss += out['loss'].item() average_train_loss /= len(training_step_outputs) self.status_logging_dict["train_loss"] = average_train_loss status_logging.get_status_logger().kpi = self.status_logging_dict status_logging.get_status_logger().write( message="Train and Val metrics generated.", status_level=status_logging.Status.RUNNING ) training_step_outputs.clear() def on_validation_epoch_start(self) -> None: """ Validation epoch start. Reset coco evaluator for each epoch. """ if self.dataset_type == "serialized": # Load from scratch since COCO object is not instantiated for SerializedDatasetFromList coco_lists = [] for source in self.dataset_config["val_data_sources"]: with open(source["json_file"], "r") as f: tmp = json.load(f) coco_lists.append(COCO(tmp)) coco = COCO(CoCoDataMerge(coco_lists)) self.val_coco_evaluator = CocoEvaluator(coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) else: self.val_coco_evaluator = CocoEvaluator(self.trainer.datamodule.val_dataset.coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) def validation_step(self, batch, batch_idx): """Validation step.""" data, targets, image_names = batch outputs = self.model(data) batch_size = data.shape[0] loss_dict = self.criterion(outputs, targets) losses = sum(loss_dict[k] * self.weight_dict[k] for k in loss_dict.keys() if k in self.weight_dict) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = self.box_processors(outputs, orig_target_sizes, image_names) res = {target['image_id'].item(): output for target, output in zip(targets, results)} self.val_coco_evaluator.update(res) self.log("val_loss", losses, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True, batch_size=batch_size) self.log("val_class_error", loss_dict['class_error'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("val_loss_ce", loss_dict['loss_ce'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("val_loss_bbox", loss_dict['loss_bbox'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("val_loss_giou", loss_dict['loss_giou'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) return losses def validation_epoch_end(self, outputs): """ Validation epoch end. Compute mAP at the end of epoch. """ self.val_coco_evaluator.synchronize_between_processes() self.val_coco_evaluator.overall_accumulate() self.val_coco_evaluator.overall_summarize(is_print=False) mAP = self.val_coco_evaluator.coco_eval['bbox'].stats[0] mAP50 = self.val_coco_evaluator.coco_eval['bbox'].stats[1] if self.trainer.is_global_zero: print("\n Validation mAP : {}\n".format(mAP)) print("\n Validation mAP50 : {}\n".format(mAP50)) self.log("val_mAP", mAP, rank_zero_only=True, sync_dist=True) self.log("val_mAP50", mAP50, rank_zero_only=True, sync_dist=True) self.status_logging_dict["val_mAP"] = str(mAP) self.status_logging_dict["val_mAP50"] = str(mAP50) average_val_loss = 0.0 for out in outputs: average_val_loss += out.item() average_val_loss /= len(outputs) self.status_logging_dict["val_loss"] = average_val_loss outputs.clear() def on_test_epoch_start(self) -> None: """ Test epoch start. Reset coco evaluator at start. """ if self.dataset_type == "serialized": # Load from scratch since COCO object is not instantiated for SerializedDatasetFromList with open(self.dataset_config["test_data_sources"]["json_file"], "r") as f: tmp = json.load(f) coco = COCO(tmp) self.test_coco_evaluator = CocoEvaluator(coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) else: self.test_coco_evaluator = CocoEvaluator(self.trainer.datamodule.test_dataset.coco, iou_types=['bbox'], eval_class_ids=self.eval_class_ids) def test_step(self, batch, batch_idx): """Test step. Evaluate.""" data, targets, image_names = batch outputs = self.model(data) batch_size = data.shape[0] loss_dict = self.criterion(outputs, targets) losses = sum(loss_dict[k] * self.weight_dict[k] for k in loss_dict.keys() if k in self.weight_dict) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = self.box_processors(outputs, orig_target_sizes, image_names) if self.experiment_spec.evaluate.conf_threshold > 0: filtered_res = threshold_predictions(results, self.experiment_spec.evaluate.conf_threshold) else: filtered_res = results res = {target['image_id'].item(): output for target, output in zip(targets, filtered_res)} self.test_coco_evaluator.update(res) self.log("test_loss", losses, on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_class_error", loss_dict['class_error'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_loss_ce", loss_dict['loss_ce'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_loss_bbox", loss_dict['loss_bbox'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) self.log("test_loss_giou", loss_dict['loss_giou'], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, batch_size=batch_size) def test_epoch_end(self, outputs): """ Test epoch end. Compute mAP at the end of epoch. """ self.test_coco_evaluator.synchronize_between_processes() self.test_coco_evaluator.overall_accumulate() self.test_coco_evaluator.overall_summarize(is_print=True) mAP = self.test_coco_evaluator.coco_eval['bbox'].stats[0] mAP50 = self.test_coco_evaluator.coco_eval['bbox'].stats[1] self.log("test_mAP", mAP, rank_zero_only=True) self.log("test_mAP50", mAP50, rank_zero_only=True) # Log the evaluation results to a file log_file = os.path.join(self.experiment_spec.results_dir, 'log_eval_{}.txt'.format(datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))) logger = common_utils.create_logger(log_file, rank=0) if self.trainer.is_global_zero: logger.info('**********************Start logging Evaluation Results **********************') logger.info('*************** mAP *****************') logger.info('mAP : %2.2f' % mAP) logger.info('*************** mAP50 *****************') logger.info('mAP50 : %2.2f' % mAP50) self.status_logging_dict["test_mAP"] = str(mAP) self.status_logging_dict["test_mAP50"] = str(mAP50) status_logging.get_status_logger().kpi = self.status_logging_dict status_logging.get_status_logger().write( message="Evaluation metrics generated.", status_level=status_logging.Status.RUNNING ) outputs.clear() def predict_step(self, batch, batch_idx): """Predict step. Inference.""" data, targets, image_names = batch outputs = self.model(data) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) pred_results = self.box_processors(outputs, orig_target_sizes, image_names) return pred_results @rank_zero_only def on_predict_batch_end(self, outputs, batch, batch_idx, dataloader_idx): """ Predict batch end. Save the result inferences at the end of batch. """ output_dir = self.experiment_spec.results_dir label_map = self.trainer.datamodule.pred_dataset.label_map color_map = self.experiment_spec.inference.color_map conf_threshold = self.experiment_spec.inference.conf_threshold is_internal = self.experiment_spec.inference.is_internal save_inference_prediction(outputs, output_dir, conf_threshold, label_map, color_map, is_internal) def forward(self, x): """Forward of the deformable detr model.""" outputs = self.model(x) return outputs def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """Encrpyt the checkpoint. The encryption is done in TLTCheckpointConnector.""" pass def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """Decrpyt the checkpoint.""" if checkpoint.get("state_dict_encrypted", False): # Retrieve encryption key from TLTPyTorchCookbook. key = TLTPyTorchCookbook.get_passphrase() if key is None: raise PermissionError("Cannot access model state dict without the encryption key") checkpoint = patch_decrypt_checkpoint(checkpoint, key)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/pl_dd_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modules to compute the matching cost and solve the corresponding LSAP. """ import torch from torch import nn from scipy.optimize import linear_sum_assignment from nvidia_tao_pytorch.cv.deformable_detr.utils.box_ops import box_cxcywh_to_xyxy, generalized_box_iou class HungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1): """Creates the matcher. Args: cost_class (float): This is the relative weight of the classification error in the matching cost. cost_bbox (float): This is the relative weight of the L1 error of the bounding box coordinates in the matching cost. cost_giou (float): This is the relative weight of the giou loss of the bounding box in the matching cost. """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" def forward(self, outputs, targets): """Performs the matching. Args: outputs (dict): This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets (list): This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ with torch.no_grad(): bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = 0.25 gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/matcher.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Backbone modules. """ import torch from torch import nn import torch.nn.functional as F from torchvision.models._utils import IntermediateLayerGetter from typing import Optional from typing import Dict, List import numpy as np from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import get_global_rank, load_pretrained_weights from nvidia_tao_pytorch.cv.deformable_detr.model.resnet import resnet50 from nvidia_tao_pytorch.cv.deformable_detr.model.gc_vit import gc_vit_model_dict class FrozenBatchNorm2d(torch.nn.Module): """BatchNorm2d where the batch statistics and the affine parameters are fixed.""" def __init__(self, n, eps=1e-5): """Initialize the FrozenBatchNorm2d Class. Args: n (int): num_features from an expected input of size eps (float): a value added to the denominator for numerical stability. """ super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) self.eps = eps def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """Load paremeters from state dict. """ num_batches_tracked_key = prefix + 'num_batches_tracked' if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def forward(self, x): """Forward function: move reshapes to the beginning to make it fuser-friendly. Args: x (torch.Tensor): input tensor. Returns: torch.Tensor: output of Frozen Batch Norm. """ w = self.weight.view(1, -1, 1, 1) b = self.bias.view(1, -1, 1, 1) rv = self.running_var.view(1, -1, 1, 1) rm = self.running_mean.view(1, -1, 1, 1) eps = self.eps scale = 1 / (rv + eps).sqrt() scale = w * scale bias = b - rm * scale return x * scale + bias class BackboneBase(nn.Module): """BackboneBase class.""" def __init__(self, model_name, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_indices: list, export: bool): """Initialize the Backbone Base Class. Args: model_name (str): backbone model name. backbone (nn.Module): backbone torch module. train_backbone (bool): flag whether we want to train the backbone or not. num_channels (int): channel size. return_interm_indices (list): list of layer indices to reutrn as backbone features. export (bool): flag to indicate whehter exporting to onnx or not. """ super().__init__() self.export = export self.model_name = model_name if model_name == 'resnet_50': for name, parameter in backbone.named_parameters(): if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: parameter.requires_grad_(False) return_layers = {} # 4 scale: {'layer2': '1', 'layer3': '2', 'layer4': '3'} # 5 scale: {'layer1': '0', 'layer2': '1', 'layer3': '2', 'layer4': '3'} for layer_index in return_interm_indices: return_layers.update({"layer{}".format(layer_index + 1): "{}".format(layer_index)}) self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) elif 'fan' in model_name or 'gc_vit' in model_name: for name, parameter in backbone.named_parameters(): if not train_backbone: parameter.requires_grad_(False) self.body = backbone self.num_channels = num_channels self.return_interm_indices = return_interm_indices def forward(self, input_tensors): """Forward function for Backboone base. Args: input_tensors (torch.Tensor): input tensor. Returns: out (torch.Tensor): output tensor. """ if self.export: batch_shape = input_tensors.shape dtype = input_tensors.dtype device = input_tensors.device # when exporting, the input shape is fixed and no padding mask is needed. masks = torch.zeros((batch_shape[0], 1, batch_shape[2], batch_shape[3]), dtype=dtype, device=device) input_tensor = input_tensors else: masks = input_tensors[:, 3:4] input_tensor = input_tensors[:, :3] xs = self.body(input_tensor) out: Dict[str, torch.Tensor] = {} for name, x in xs.items(): mask = F.interpolate(masks.float(), size=x.shape[-2:]) mask = mask.to(torch.bool) out[name] = (x, mask) return out class Backbone(BackboneBase): """Backbone for D-DETR.""" def __init__(self, name: str, pretrained_backbone_path: Optional[str], train_backbone: bool, return_interm_indices: list, dilation: bool, export: bool, activation_checkpoint: bool): """Initialize the Backbone Class. Args: pretrained_backbone_path (str): optional path to the pretrained backbone. train_backbone (bool): flag whether we want to train the backbone or not. return_interm_indices (list): list of layer indices to reutrn as backbone features. dilation (bool): flag whether we can to use dilation or not. export (bool): flag to indicate whehter exporting to onnx or not. activation_checkpoint (bool): flag to indicate whether to run activation checkpointing during training. Raises: ValueError: If return_interm_indices does not have valid range or has duplicate index. NotImplementedError: If invalid backbone name was provided. """ return_interm_indices = np.array(return_interm_indices) if not np.logical_and(return_interm_indices >= 0, return_interm_indices <= 4).all(): raise ValueError(f"Invalid range for return_interm_indices. " f"Provided return_interm_indices is {return_interm_indices}.") if len(np.unique(return_interm_indices)) != len(return_interm_indices): raise ValueError(f"Duplicate index in the provided return_interm_indices: {return_interm_indices}") if name == 'resnet_50': if export: _norm_layer = nn.BatchNorm2d else: _norm_layer = FrozenBatchNorm2d backbone = resnet50(norm_layer=_norm_layer, replace_stride_with_dilation=[False, False, dilation]) num_channels_all = np.array([256, 512, 1024, 2048]) num_channels = num_channels_all[return_interm_indices] elif 'gc_vit' in name: if name not in gc_vit_model_dict: raise NotImplementedError(f"{name} is not supported GCViT backbone. " f"Supported architecutres: {gc_vit_model_dict.keys()}") backbone = gc_vit_model_dict[name](out_indices=return_interm_indices, activation_checkpoint=activation_checkpoint) num_channels_all = np.array(backbone.num_features) num_channels = num_channels_all[return_interm_indices] else: supported_arch = list(gc_vit_model_dict.keys()) + ["resnet_50"] raise NotImplementedError(f"Backbone {name} is not implemented. Supported architectures {supported_arch}") if pretrained_backbone_path: checkpoint = load_pretrained_weights(pretrained_backbone_path) _tmp_st_output = backbone.load_state_dict(checkpoint, strict=False) if get_global_rank() == 0: print(f"Loaded pretrained weights from {pretrained_backbone_path}") print(f"{_tmp_st_output}") super().__init__(name, backbone, train_backbone, num_channels, return_interm_indices, export) class Joiner(nn.Sequential): """Joiner Class.""" def __init__(self, backbone): """Initialize the Joiner Class. Args: backbone (nn.Module): backbone module. """ super().__init__(backbone) self.num_channels = backbone.num_channels def forward(self, input_tensors): """Forward function for Joiner to prepare the backbone output into transformer input format. Args: input_tensors (torch.Tensor): input tensor. Returns: out (List[Tensor]): list of tensor (feature vectors from backbone). """ xs = self[0](input_tensors) out: List[torch.Tensor] = [] for _, x in sorted(xs.items()): out.append(x) return out
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/backbone.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Positional encodings for the transformer. """ import math import torch from torch import nn class PositionEmbeddingSine(nn.Module): """ A standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): """Initialize PositionEmbeddingSine Class""" super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, not_mask, device): """Forward""" y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingSineExport(nn.Module): """Exportable Positional Bemdding Sine Class.""" def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): """Initialize PositionEmbeddingSineExport Class""" super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, batch_shape, device): """ Forward """ not_mask = torch.ones(batch_shape.tolist(), dtype=torch.bool, device=device) y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/position_encoding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable DETR model module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Original source taken from https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py # Copyright (c) 2020 SenseTime. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Backbone ResNet model definition. """ import torch import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): """BasicBlock for ResNet""" expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): """Init""" super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): """Forward""" identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): """ Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) while original implementation places the stride at the first 1x1 convolution(self.conv1) according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. This variant is also known as ResNet V1.5 and improves accuracy according to https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. """ expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): """Init""" super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): """Forward""" identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): """ Baset ResNet Module class """ def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): """Init""" super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): """Make_layer""" norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): """Forward""" x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def resnet50(norm_layer=None, replace_stride_with_dilation=None, **kwargs): """ ResNet-50 model from Deep Residual Learning for Image Recognition Args: norm_layer (nn.Module): Normalization layer to be used replace_stride_with_dilation (list): list of boolean to indicate whether to replace 2x2 stride with a dilated convolution instead """ return ResNet(block=Bottleneck, layers=[3, 4, 6, 3], norm_layer=norm_layer, replace_stride_with_dilation=replace_stride_with_dilation, **kwargs)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/resnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Deformable Transformer module. """ import torch from torch import nn import torch.nn.functional as F from torch.nn.init import xavier_uniform_, constant_, normal_ import torch.utils.checkpoint as checkpoint from nvidia_tao_pytorch.core.modules.activation.activation import MultiheadAttention from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import inverse_sigmoid from nvidia_tao_pytorch.cv.deformable_detr.model.ops.modules import MSDeformAttn class DeformableTransformer(nn.Module): """Deformable Transfromer module.""" def __init__(self, d_model=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.3, activation="relu", return_intermediate_dec=True, num_feature_levels=4, dec_n_points=4, enc_n_points=4, export=False, activation_checkpoint=True): """Initialize Deformable Transformer Module. Args: d_model (int): size of the hidden dimension. nhead (int): number of heads. num_encoder_layers (int): number of encoder layers. num_decoder_layers (int): number of decoder layers. dim_feedforward (int): dimension of the feedforward layer. dropout (float): probability for the dropout layer. activation (str): type of activation layer. return_intermediate_dec (bool): return intermediate decoder layers. num_feature_levels (int): Number of levels to extract from the backbone feature maps. dec_n_points (int): number of reference points in the decoder. enc_n_points (int): number of reference points in the encoder. export (bool): flag to indicate if the current model is being used for ONNX export. activation_checkpoint (bool): flag to indicate if activation checkpointing is used. """ super().__init__() self.d_model = d_model self.nhead = nhead self.export = export self.activation_checkpoint = activation_checkpoint encoder_args = { "d_model": d_model, "dropout": dropout, "d_ffn": dim_feedforward, "activation": activation, "n_levels": num_feature_levels, "n_heads": nhead, "n_points": enc_n_points, "export": self.export } decoder_args = dict(encoder_args) decoder_args["n_points"] = dec_n_points self.encoder = DeformableTransformerEncoder(num_encoder_layers, encoder_args, export=self.export, activation_checkpoint=self.activation_checkpoint) self.decoder = DeformableTransformerDecoder(num_decoder_layers, decoder_args, return_intermediate=return_intermediate_dec, export=self.export, activation_checkpoint=self.activation_checkpoint) self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) self.reference_points = nn.Linear(d_model, 2) self._reset_parameters() def _reset_parameters(self): """Reset parmaeters.""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MSDeformAttn): m._reset_parameters() xavier_uniform_(self.reference_points.weight.data, gain=1.0) constant_(self.reference_points.bias.data, 0.) normal_(self.level_embed) def get_valid_ratio(self, mask): """Compute the valid ratio from given mask.""" _, H, W = mask.shape temp_mask = mask.bool() valid_H = torch.sum((~temp_mask).float()[:, :, 0], 1) valid_W = torch.sum((~temp_mask).float()[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def forward(self, srcs, masks, pos_embeds, query_embed=None): """Forward function.""" assert query_embed is not None # prepare input for encoder src_flatten = [] lvl_pos_embed_flatten = [] if self.export: spatial_shapes = [] else: spatial_shapes = torch.empty(len(srcs), 2, dtype=torch.int32, device=srcs[0].device) for lvl, (src, pos_embed) in enumerate(zip(srcs, pos_embeds)): bs, c, h, w = src.shape if self.export: # Input shaped is fixed for export in onnx/tensorRT spatial_shapes.append(torch.tensor([[h, w]], dtype=torch.int32, device=srcs[0].device)) else: # Used for dynamic input shape spatial_shapes[lvl, 0], spatial_shapes[lvl, 1] = h, w src = src.flatten(2).transpose(1, 2) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) src_flatten = torch.cat(src_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) if isinstance(spatial_shapes, list): spatial_shapes = torch.cat(spatial_shapes, 0) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])).type(torch.int32) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # encoder memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten) # prepare input for decoder bs, _, c = memory.shape query_embed, tgt = torch.split(query_embed, c, dim=1) query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1) tgt = tgt.unsqueeze(0).expand(bs, -1, -1) reference_points = self.reference_points(query_embed).sigmoid() init_reference_out = reference_points # decoder hs, inter_references = self.decoder(tgt, reference_points, memory, spatial_shapes, level_start_index, valid_ratios, query_embed) inter_references_out = inter_references return hs, init_reference_out, inter_references_out class DeformableTransformerEncoderLayer(nn.Module): """Deformable Transfromer Encoder Layer module.""" def __init__(self, d_model=256, d_ffn=1024, dropout=0.3, activation="relu", n_levels=4, n_heads=8, n_points=4, export=False): """Initializes the Transformer Encoder Layer. Args: d_model (int): size of the hidden dimension. d_ffn (int): dimension of the feedforward layer. dropout (float): probability for the dropout layer. activation (str): type of activation layer. n_heads (int): number of heads. n_points (int): number of encoder layers. export (bool): flag to indicate if the current model is being used for ONNX export. """ super().__init__() self.export = export # self attention self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): """Add positional Embedding to the tensor.""" return tensor if pos is None else tensor + pos def forward_ffn(self, src): """Forward ffn.""" src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward(self, src, pos, reference_points, spatial_shapes, level_start_index): """Forward function for Encoder Layer.""" src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, export=self.export) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class DeformableTransformerEncoder(nn.Module): """Deformable Transfromer Encoder module""" def __init__(self, num_layers, encoder_args={}, export=False, activation_checkpoint=True): """Initializes the Transformer Encoder Module. Args: num_layers (int): number of encoder layers. encoder_args (dict): additional arguments. export (bool): flag to indicate if the current model is being used for ONNX export. activation_checkpoint (bool): flag to indicate if activation checkpointing is used. """ super().__init__() self.layers = _get_clones(DeformableTransformerEncoderLayer, num_layers, **encoder_args) self.num_layers = num_layers self.export = export self.activation_checkpoint = activation_checkpoint @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device, export=False): """Get reference points.""" reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): if export: # Fixed dimensions for export in onnx H_, W_ = int(H_), int(W_) else: H_, W_ = spatial_shapes[lvl, 0], spatial_shapes[lvl, 1] range_y = torch.arange(H_, dtype=torch.int32, device=device).float() + 0.5 range_x = torch.arange(W_, dtype=torch.int32, device=device).float() + 0.5 ref_y, ref_x = torch.meshgrid(range_y, range_x) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None): """Forward function for Encoder Module.""" output = src reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device, export=self.export) for _, layer in enumerate(self.layers): if self.export or not self.activation_checkpoint: output = layer(output, pos, reference_points, spatial_shapes, level_start_index) else: output = checkpoint.checkpoint(layer, output, pos, reference_points, spatial_shapes, level_start_index) return output class DeformableTransformerDecoderLayer(nn.Module): """ Deformable Transfromer Decoder Layer module """ def __init__(self, d_model=256, d_ffn=1024, dropout=0.3, activation="relu", n_levels=4, n_heads=8, n_points=4, export=False): """Initializes the Transformer Decoder Layer. Args: d_model (int): size of the hidden dimension. d_ffn (int): dimension of the feedforward layer. dropout (float): probability for the dropout layer. activation (str): type of activation layer. n_heads (int): number of heads. n_points (int): number of encoder layers. export (bool): flag to indicate if the current model is being used for ONNX export. """ super().__init__() self.export = export # cross attention self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # self attention if self.export: # Starting from PyT 1.14, _scaled_dot_product_attention has been switched to C++ backend # which is not exportable as ONNX operator # However, the training / eval time can be greatly optimized by Torch selecting the optimal # attention mechanism under the hood self.self_attn = MultiheadAttention(d_model, n_heads, dropout=dropout) else: self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) self.dropout2 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout3 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout4 = nn.Dropout(dropout) self.norm3 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): """Add positional Embedding to the tensor.""" return tensor if pos is None else tensor + pos def forward_ffn(self, tgt): """Forward ffn.""" tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout4(tgt2) tgt = self.norm3(tgt) return tgt def forward(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index): """Forward function for Decoder Layer.""" # self attention q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) # cross attention tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos), reference_points, src, src_spatial_shapes, level_start_index, export=self.export) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) # ffn tgt = self.forward_ffn(tgt) return tgt # pylint:disable=E1136 class DeformableTransformerDecoder(nn.Module): """ Deformable Transfromer Decoder module """ def __init__(self, num_layers, decoder_args={}, return_intermediate=False, export=False, activation_checkpoint=True): """Initializes the Transformer Decoder Module. Args: num_layers (int): number of decoder layers. decoder_args (dict): additional arguments. return_intermediate (bool): flat to indicate if intermediate outputs to be returned. export (bool): flag to indicate if the current model is being used for ONNX export. activation_checkpoint (bool): flag to indicate if activation checkpointing is used. """ super().__init__() self.export = export self.activation_checkpoint = activation_checkpoint self.layers = _get_clones(DeformableTransformerDecoderLayer, num_layers, **decoder_args) self.num_layers = num_layers self.return_intermediate = return_intermediate # hack implementation for iterative bounding box refinement Deformable DETR self.bbox_embed = None self.class_embed = None def forward(self, tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios, query_pos=None): """Forward function for Decoder Module.""" output = tgt intermediate = [] intermediate_reference_points = [] for lid, layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = reference_points[:, :, None] * torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None] else: assert reference_points.shape[-1] == 2 reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None] if self.export or not self.activation_checkpoint: output = layer(output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index) else: output = checkpoint.checkpoint(layer, output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index) # hack implementation for iterative bounding box refinement if self.bbox_embed is not None: tmp = self.bbox_embed[lid](output) if reference_points.shape[-1] == 4: new_reference_points = tmp + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() else: assert reference_points.shape[-1] == 2 new_reference_points = tmp new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() reference_points = new_reference_points.detach() if self.return_intermediate: intermediate.append(output) intermediate_reference_points.append(reference_points) if self.return_intermediate: return torch.stack(intermediate), torch.stack(intermediate_reference_points) return output, reference_points def _get_clones(module_class, N, **kwargs): """Get clones of nn.Module. Args: module_class (nn.Module): torch module to clone. N (int): number of times to clone. Returns: nn.ModuleList of the cloned module_class. """ return nn.ModuleList([module_class(**kwargs) for i in range(N)]) def _get_activation_fn(activation): """Return an activation function given a string. Args: activation (str): type of activation function. Returns: PyTorch activation layer. Raises: RuntimeError: if unsupported activation type is provided. """ if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu/glu, not {activation}.")
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/deformable_transformer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Criterion Loss functions. """ import torch import torch.nn.functional as F from torch import nn from nvidia_tao_pytorch.cv.deformable_detr.utils import box_ops from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import (accuracy, get_world_size, is_dist_avail_and_initialized) def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (torch.Tensor): A float tensor of arbitrary shape. The predictions for each example. targets (torch.Tensor): A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha (float): (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma (float): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes class SetCriterion(nn.Module): """ SetCriterion class computes the loss for DETR. 1) Compute hungarian assignment between ground truth boxes and the outputs of the model. 2) Supervise each pair of matched ground-truth / prediction (supervise class and box). """ def __init__(self, num_classes, matcher, losses, focal_alpha=0.25): """ Initialize the criterion class Args: num_classes (int): number of object categories, omitting the special no-object category matcher (nn.Module): module able to compute a matching between targets and proposals losses (list[str]): list of all the losses to be applied. See get_loss for list of available losses. focal_alpha (float): alpha in Focal Loss """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.losses = losses self.focal_alpha = focal_alpha def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """ Classification loss (NLL). Args: outputs (dict[torch.Tensor]): computed outputs targets (List[dict]): target annotations indices (list): matching indices num_boxes (int): number of bounding boxes Returns: classification loss """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] losses = {'loss_ce': loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Args: outputs (dict[torch.Tensor]): computed outputs targets (List[dict]): target annotations indices (list): matching indices num_boxes (int): number of bounding boxes Returns: bbox loss and giou loss """ assert 'pred_boxes' in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou'] = loss_giou.sum() / num_boxes return losses def _get_src_permutation_idx(self, indices): """Permute predictions following indices. Args: indices (list): matching indices. """ batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): """Permute targets following indices. Args: indices (list): matching indices. """ batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Args: loss (str): name of the loss to get outputs (dict[torch.Tensor]): computed outputs targets (List[dict]): target annotations indices (list): matching indices num_boxes (int): number of bounding boxes Returns: the loss value given the loss name """ loss_map = { 'labels': self.loss_labels, 'boxes': self.loss_boxes, } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets): """ Performs the loss computation. Args: outputs (dict[torch.Tensor]): dict of tensors, see the output specification of the model for the format targets (List[dict]): list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc Returns: losses (dict): Dictionary of computed losses """ outputs_without_aux = {k: v for k, v in outputs.items() if k not in ('aux_outputs', 'enc_outputs')} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: kwargs = {} losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if 'aux_outputs' in outputs: for i, aux_outputs in enumerate(outputs['aux_outputs']): indices = self.matcher(aux_outputs, targets) for loss in self.losses: kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs['log'] = False l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_{i}': v for k, v in l_dict.items()} losses.update(l_dict) return losses
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/criterion.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Post processing for inference. """ import torch from torch import nn import os from PIL import Image, ImageDraw from nvidia_tao_pytorch.cv.deformable_detr.utils import box_ops def get_key(label_map, val): """get_key for class label.""" for label in label_map: if label['id'] == val: return label['name'] return None def check_key(my_dict, key): """check_key for classes.""" return bool(key in my_dict.keys()) def save_inference_prediction(predictions, output_dir, conf_threshold, label_map, color_map, is_internal=False): """Save the annotated images and label file to the output directory. Args: predictions (List): List of predictions from the model. output_dir (str) : Output directory to save predictions. conf_threshold (float) : Confidence Score Threshold value. label_map(Dict): Dictonary for the class lables. color_map(Dict): Dictonary for the color mapping to annotate the bounding box per class. is_internal(Bool) : To save the inference results in format of output_dir/sequence/image_name. """ for pred in predictions: image_name = pred['image_names'] image_size = pred['image_size'] pred_boxes = pred['boxes'] pred_labels = pred['labels'] pred_scores = pred['scores'] assert pred_boxes.shape[0] == pred_labels.shape[0] == pred_scores.shape[0] path_list = image_name.split(os.sep) basename, extension = os.path.splitext(path_list[-1]) if is_internal: folder_name = path_list[-3] output_label_root = os.path.join(output_dir, folder_name, 'labels') output_label_name = os.path.join(output_label_root, basename + '.txt') output_annotate_root = os.path.join(output_dir, folder_name, 'images_annotated') output_image_name = os.path.join(output_annotate_root, basename + extension) else: output_label_root = os.path.join(output_dir, 'labels') output_label_name = os.path.join(output_label_root, basename + '.txt') output_annotate_root = os.path.join(output_dir, 'images_annotated') output_image_name = os.path.join(output_annotate_root, basename + extension) if not os.path.exists(output_label_root): os.makedirs(output_label_root) if not os.path.exists(output_annotate_root): os.makedirs(output_annotate_root) pil_input = Image.open(image_name) pil_input = pil_input.resize((image_size[1], image_size[0])) im1 = ImageDraw.Draw(pil_input) with open(output_label_name, 'w') as f: pred_boxes = pred_boxes.tolist() scores = pred_scores.tolist() labels = pred_labels.tolist() for k, box in enumerate(pred_boxes): class_key = get_key(label_map, labels[k]) if class_key is None: continue else: class_name = class_key # Conf score Thresholding if scores[k] < conf_threshold: continue x1 = float(box[0]) y1 = float(box[1]) x2 = float(box[2]) y2 = float(box[3]) label_head = class_name + " 0.00 0 0.00 " bbox_string = f"{x1:.3f} {y1:.3f} {x2:.3f} {y2:.3f}" label_tail = f" 0.00 0.00 0.00 0.00 0.00 0.00 0.00 {scores[k]:.3f}\n" label_string = label_head + bbox_string + label_tail f.write(label_string) if check_key(color_map, class_name): im1.rectangle([int(x1), int(y1), int(x2), int(y2)], fill=None, outline=color_map[class_name], width=1) pil_input.save(output_image_name) f.closed def threshold_predictions(predictions, conf_threshold): """Thresholding the predctions based on the given confidence score threshold. Args: predictions (List): List of predictions from the model. conf_threshold (float) : Confidence Score Threshold value. Returns: filtered_predictions (List): List of thresholded predictions. """ filtered_predictions = [] for pred in predictions: pred_boxes = pred['boxes'] pred_labels = pred['labels'] pred_scores = pred['scores'] assert pred_boxes.shape[0] == pred_labels.shape[0] == pred_scores.shape[0] if len(pred_boxes) == 0: continue pred_boxes = pred_boxes.tolist() scores = pred_scores.tolist() labels = pred_labels.tolist() for k, _ in enumerate(pred_boxes): # Conf score Thresholding if scores[k] < conf_threshold: # remove from list scores.pop(k) labels.pop(k) pred_boxes.pop(k) filtered_predictions.extend( [ { 'image_names': pred['image_names'], 'image_size': pred['image_size'], 'boxes': torch.Tensor(pred_boxes), 'scores': torch.Tensor(scores), 'labels': torch.Tensor(labels) } ] ) return filtered_predictions class PostProcess(nn.Module): """This module converts the model's output into the format expected by the coco api.""" def __init__(self, num_select=100) -> None: """PostProcess constructor. Args: num_select (int): top K predictions to select from """ super().__init__() self.num_select = num_select @torch.no_grad() def forward(self, outputs, target_sizes, image_names): """ Perform the post-processing. Scale back the boxes to the original size. Args: outputs (dict[torch.Tensor]): raw outputs of the model target_sizes (torch.Tensor): tensor of dimension [batch_size x 2] containing the size of each images of the batch. For evaluation, this must be the original image size (before any data augmentation). For visualization, this should be the image size after data augment, but before padding. Returns: results (List[dict]): final predictions compatible with COCOEval format. """ out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = out_logits.sigmoid() topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), self.num_select, dim=1) scores = topk_values topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor") labels = topk_indexes % out_logits.shape[2] boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) # from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{'scores': s, 'labels': l, 'boxes': b, 'image_names': n, 'image_size': i} for s, l, b, n, i in zip(scores, labels, boxes, image_names, target_sizes)] return results
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/post_process.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Backbone GCViT model definition. """ import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath from nvidia_tao_pytorch.cv.backbone.gc_vit import ( _to_channel_first, WindowAttentionGlobal, Mlp, WindowAttention, PatchEmbed, ReduceSize, GlobalQueryGen ) def window_partition(x, window_size): """Window partions. Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """Window reversal. Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ # Casting to int leads to error B = windows.shape[0] // (H * W // window_size // window_size) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class GCViTBlock(nn.Module): """GCViT block based on: "Hatamizadeh et al., Global Context Vision Transformers <https://arxiv.org/abs/2206.09959>" """ def __init__(self, dim, num_heads, window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, attention=WindowAttentionGlobal, norm_layer=nn.LayerNorm, layer_scale=None, use_rel_pos_bias=False ): """Initialize GCViT Block. Args: dim (int): feature size dimension. num_heads (int): number of heads in each stage. window_size (int): window size in each stage. mlp_ratio (float): MLP ratio. qkv_bias (bool): bool argument for query, key, value learnable bias. qk_scale (bool): bool argument to scaling query, key. drop (float): dropout rate. attn_drop (float): attention dropout rate. drop_path (float): drop path rate. act_layer (nn.Module): type of activation layer. attention (nn.Module): type of attention layer norm_layer (nn.Module): normalization layer. layer_scale (float): layer scaling coefficient. use_rel_pos_bias (bool): whether to use relative positional bias. """ super().__init__() self.window_size = window_size self.norm1 = norm_layer(dim) self.attn = attention(dim, num_heads=num_heads, window_size=window_size, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_rel_pos_bias=use_rel_pos_bias ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.layer_scale = False if layer_scale is not None and type(layer_scale) in [int, float]: self.layer_scale = True self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim), requires_grad=True) self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim), requires_grad=True) else: self.gamma1 = 1.0 self.gamma2 = 1.0 def forward(self, x, q_global): """Forward function.""" _, H, W, C = x.shape shortcut = x x = self.norm1(x) pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape shifted_x = x x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) attn_windows = self.attn(x_windows, q_global) shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C x = shifted_x if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = shortcut + self.drop_path(self.gamma1 * x) x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) return x class GCViTLayer(nn.Module): """GCViT layer based on: "Hatamizadeh et al., Global Context Vision Transformers <https://arxiv.org/abs/2206.09959>" """ def __init__(self, dim, depth, input_resolution, image_resolution, num_heads, window_size, downsample=True, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, layer_scale=None, use_rel_pos_bias=False): """Initialize GCViT Layer. Args: dim (int): feature size dimension. depths (int): number of layers in each stage. input_resolution (int): input image resolution image_resolution (int): input image resolution num_heads (int): number of heads in each stage. window_size (tuple): window size in each stage. downsample (bool): bool argument to downsample. mlp_ratio (float): MLP ratio. qkv_bias (bool): bool argument for query, key, value learnable bias. qk_scale (bool): bool argument to scaling query, key. attn_drop (float): attention dropout rate. drop (float): dropout rate. drop_path (float): drop path rate. norm_layer (nn.Module): normalization layer. layer_scale (float): layer scaling coefficient. use_rel_pos_bias (bool): whether to use relative positional bias. """ super().__init__() self.blocks = nn.ModuleList([ GCViTBlock(dim=dim, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, attention=WindowAttention if (i % 2 == 0) else WindowAttentionGlobal, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, layer_scale=layer_scale, use_rel_pos_bias=use_rel_pos_bias) for i in range(depth)]) self.downsample = None if not downsample else ReduceSize(dim=dim, norm_layer=norm_layer) self.q_global_gen = GlobalQueryGen(dim, input_resolution, image_resolution, window_size, num_heads) def forward(self, x): """Foward function.""" q_global = self.q_global_gen(_to_channel_first(x)) for blk in self.blocks: x = blk(x, q_global) if self.downsample is None: return x, x return self.downsample(x), x class GCViT(nn.Module): """GCViT model based on: "Hatamizadeh et al., Global Context Vision Transformers <https://arxiv.org/abs/2206.09959>" """ def __init__(self, dim, depths, mlp_ratio, num_heads, window_size=(7, 7, 14, 7), resolution=224, drop_path_rate=0.2, in_chans=3, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., norm_layer=nn.LayerNorm, layer_scale=None, out_indices=(0, 1, 2, 3), frozen_stages=-1, use_rel_pos_bias=True, activation_checkpoint=True, **kwargs): """Initialize GCViT model. Args: dim (int): feature size dimension. depths (int): number of layers in each stage. mlp_ratio (float): MLP ratio. num_heads (int): number of heads in each stage. window_size (tuple): window size in each stage. resolution (int): input image resolution drop_path_rate (float): drop path rate. qkv_bias (bool): bool argument for query, key, value learnable bias. qk_scale (bool): bool argument to scaling query, key. drop_rate (float): dropout rate. attn_drop_rate (float): attention dropout rate. norm_layer (nn.Module): normalization layer. layer_scale (float): layer scaling coefficient. out_indices (list): list of block indices to return as feature. frozen_stages (int): stage to freeze. use_rel_pos_bias (bool): whether to use relative positional bias. activation_checkpoint (bool): bool argument for activiation checkpointing. """ super().__init__() self.num_levels = len(depths) self.embed_dim = dim self.num_features = [int(dim * 2 ** i) for i in range(self.num_levels)] self.mlp_ratio = mlp_ratio self.activation_checkpoint = activation_checkpoint self.pos_drop = nn.Dropout(p=drop_rate) self.patch_embed = PatchEmbed(in_chans=in_chans, dim=dim) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] self.levels = nn.ModuleList() for i in range(len(depths)): level = GCViTLayer(dim=int(dim * 2 ** i), depth=depths[i], num_heads=num_heads[i], window_size=window_size[i], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])], norm_layer=norm_layer, downsample=(i < len(depths) - 1), layer_scale=layer_scale, input_resolution=int(2 ** (-2 - i) * resolution), image_resolution=resolution, use_rel_pos_bias=use_rel_pos_bias) self.levels.append(level) # add a norm layer for each output self.out_indices = out_indices for i_layer in self.out_indices: layer = norm_layer(self.num_features[i_layer]) layer_name = f'norm{i_layer}' self.add_module(layer_name, layer) self.frozen_stages = frozen_stages for level in self.levels: for block in level.blocks: w_ = block.attn.window_size[0] relative_position_bias_table_pre = block.attn.relative_position_bias_table L1, nH1 = relative_position_bias_table_pre.shape L2 = (2 * w_ - 1) * (2 * w_ - 1) S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( relative_position_bias_table_pre.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') relative_position_bias_table_pretrained_resized = relative_position_bias_table_pretrained_resized.view(nH1, L2).permute(1, 0) block.attn.relative_position_bias_table = torch.nn.Parameter(relative_position_bias_table_pretrained_resized) def _freeze_stages(self): """Freeze some blocks""" if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 2: for i in range(0, self.frozen_stages - 1): m = self.network[i] m.eval() for param in m.parameters(): param.requires_grad = False def train(self, mode=True): """Freeze some blocks during training""" super(GCViT, self).train(mode) self._freeze_stages() def forward_embeddings(self, x): """Compute patch embedding""" x = self.patch_embed(x) return x def forward_tokens(self, x): """Returns features with normalization""" outs = {} for idx, level in enumerate(self.levels): # Disable activation checkpointing during ONNX export if torch.onnx.is_in_onnx_export() or not self.activation_checkpoint: x, xo = level(x) else: x, xo = checkpoint.checkpoint(level, x) if idx in self.out_indices: norm_layer = getattr(self, f'norm{idx}') x_out = norm_layer(xo) outs[f'p{idx}'] = x_out.permute(0, 3, 1, 2).contiguous() return outs def forward(self, x): """Forward function""" x = self.forward_embeddings(x) return self.forward_tokens(x) def forward_features(self, x): """Extract features""" x = self.forward_embeddings(x) return self.forward_tokens(x) def gc_vit_xxtiny(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """GCViT-XXTiny model. Args: out_indices (list): List of block indices to return as feature. activation_checkpoint (bool): flag to indicate if activation checkpoint is used. """ model = GCViT(depths=[2, 2, 6, 2], num_heads=[2, 4, 8, 16], window_size=[7, 7, 14, 7], dim=64, mlp_ratio=3, drop_path_rate=0.2, out_indices=out_indices, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., frozen_stages=-1, activation_checkpoint=activation_checkpoint, **kwargs) return model def gc_vit_xtiny(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """GCViT-XTiny model. Args: out_indices (list): List of block indices to return as feature. activation_checkpoint (bool): flag to indicate if activation checkpoint is used. """ model = GCViT(depths=[3, 4, 6, 5], num_heads=[2, 4, 8, 16], window_size=[7, 7, 14, 7], dim=64, mlp_ratio=3, drop_path_rate=0.2, out_indices=out_indices, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., frozen_stages=-1, activation_checkpoint=activation_checkpoint, **kwargs) return model def gc_vit_tiny(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """GCViT-Tiny model. Args: out_indices (list): List of block indices to return as feature. activation_checkpoint (bool): flag to indicate if activation checkpoint is used. """ model = GCViT(depths=[3, 4, 19, 5], num_heads=[2, 4, 8, 16], window_size=[7, 7, 14, 7], dim=64, mlp_ratio=3, drop_path_rate=0.2, out_indices=out_indices, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., frozen_stages=-1, activation_checkpoint=activation_checkpoint, **kwargs) return model def gc_vit_small(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """GCViT-Small model. Args: out_indices (list): List of block indices to return as feature. activation_checkpoint (bool): flag to indicate if activation checkpoint is used. """ model = GCViT(depths=[3, 4, 19, 5], num_heads=[3, 6, 12, 24], window_size=[7, 7, 14, 7], dim=96, mlp_ratio=2, drop_path_rate=0.2, out_indices=out_indices, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., frozen_stages=-1, layer_scale=1e-5, activation_checkpoint=activation_checkpoint, **kwargs) return model def gc_vit_base(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """GCViT-Base model. Args: out_indices (list): List of block indices to return as feature. activation_checkpoint (bool): flag to indicate if activation checkpoint is used. """ model = GCViT(depths=[3, 4, 19, 5], num_heads=[4, 8, 16, 32], window_size=[7, 7, 14, 7], dim=128, mlp_ratio=2, drop_path_rate=0.2, out_indices=out_indices, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., frozen_stages=-1, layer_scale=1e-5, activation_checkpoint=activation_checkpoint, **kwargs) return model def gc_vit_large(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """GCViT-Large model. Args: out_indices (list): List of block indices to return as feature. activation_checkpoint (bool): flag to indicate if activation checkpoint is used. """ model = GCViT(depths=[3, 4, 19, 5], num_heads=[6, 12, 24, 48], window_size=[7, 7, 14, 7], dim=192, mlp_ratio=2, drop_path_rate=0.2, out_indices=out_indices, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., frozen_stages=-1, layer_scale=1e-5, activation_checkpoint=activation_checkpoint, **kwargs) return model def gc_vit_large_384(out_indices=[0, 1, 2, 3], activation_checkpoint=True, **kwargs): """GCViT-Large Input Resolution 384 model. Args: out_indices (list): List of block indices to return as feature. activation_checkpoint (bool): flag to indicate if activation checkpoint is used. """ model = GCViT(depths=[3, 4, 19, 5], num_heads=[6, 12, 24, 48], window_size=[12, 12, 24, 12], dim=192, mlp_ratio=2, drop_path_rate=0.2, out_indices=out_indices, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., frozen_stages=-1, layer_scale=1e-5, activation_checkpoint=activation_checkpoint, **kwargs) return model gc_vit_model_dict = { 'gc_vit_xxtiny': gc_vit_xxtiny, 'gc_vit_xtiny': gc_vit_xtiny, 'gc_vit_tiny': gc_vit_tiny, 'gc_vit_small': gc_vit_small, 'gc_vit_base': gc_vit_base, 'gc_vit_large': gc_vit_large, 'gc_vit_large_384': gc_vit_large_384, }
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/gc_vit.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The build nn module model.""" import torch.nn as nn from nvidia_tao_pytorch.cv.deformable_detr.model.backbone import Backbone, Joiner from nvidia_tao_pytorch.cv.deformable_detr.model.position_encoding import PositionEmbeddingSine, PositionEmbeddingSineExport from nvidia_tao_pytorch.cv.deformable_detr.model.deformable_transformer import DeformableTransformer from nvidia_tao_pytorch.cv.deformable_detr.model.deformable_detr_base import DeformableDETR class DDModel(nn.Module): """Deformable DETR model module.""" def __init__(self, num_classes=4, hidden_dim=256, pretrained_backbone_path=None, backbone='resnet_50', train_backbone=True, num_feature_levels=4, return_interm_indices=[1, 2, 3, 4], nheads=8, enc_layers=6, dec_layers=6, dim_feedforward=1024, dec_n_points=4, enc_n_points=4, num_queries=300, aux_loss=True, with_box_refine=True, dilation=False, dropout_ratio=0.3, export=False, activation_checkpoint=True): """Initialize D-DETR Model. Args: num_classes (int): number of classes for the model. hidden_dim (int): size of the hidden dimension. pretrained_backbone_path (str): pretrained backbone path. If not provided, train from scratch. backbone (str): type of backbone architecture. train_backbone (bool): whether to train backbone or not. num_feature_levels (int): Number of levels to extract from the backbone feature maps. return_interm_indices (list): indices of feature level to use. nheads (int): number of heads. enc_layers (int): number of encoder layers. dec_layers (int): number of decoder layers. dim_feedforward (int): dimension of the feedforward layer. dec_n_points (int): number of reference points in the decoder. enc_n_points (int): number of reference points in the encoder. num_queries (int): number of queries to be used in D-DETR encoder-decoder. aux_loss (bool): flag to indicate if auxiliary loss is used. with_box_refine (bool): flag to indicate if iterative box refinement is used. dilation (bool): flag to indicate if dilation is used (only for ResNet). dropout_ratio (float): probability for the dropout layer. export (bool): flag to indicate if the current model is being used for ONNX export. activation_checkpoint (bool): flag to indicate if activation checkpointing is used. """ super(__class__, self).__init__() # pylint:disable=undefined-variable # build positional encoding. only support PositionEmbeddingSine if export: position_embedding = PositionEmbeddingSineExport(hidden_dim // 2, normalize=True) else: position_embedding = PositionEmbeddingSine(hidden_dim // 2, normalize=True) # build backbone if num_feature_levels != len(return_interm_indices): raise ValueError(f"num_feature_levels: {num_feature_levels} does not match the size of " f"return_interm_indices: {return_interm_indices}") # Index 4 is not part of the backbone but taken from index 3 with conv 3x3 stride 2 return_interm_indices = [r for r in return_interm_indices if r != 4] backbone_only = Backbone(backbone, pretrained_backbone_path, train_backbone, return_interm_indices, dilation, export, activation_checkpoint) # Keep joiner for backward compatibility joined_backbone = Joiner(backbone_only) # build tranformer transformer = DeformableTransformer(d_model=hidden_dim, nhead=nheads, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, dim_feedforward=dim_feedforward, dropout=dropout_ratio, activation="relu", return_intermediate_dec=True, num_feature_levels=num_feature_levels, dec_n_points=dec_n_points, enc_n_points=enc_n_points, export=export, activation_checkpoint=activation_checkpoint) # build deformable detr model self.model = DeformableDETR(joined_backbone, position_embedding, transformer, num_classes=num_classes, num_queries=num_queries, num_feature_levels=num_feature_levels, aux_loss=aux_loss, with_box_refine=with_box_refine, export=export) def forward(self, x): """model forward function""" x = self.model(x) return x def build_model(experiment_config, export=False): """ Build deformable detr model according to configuration. Args: experiment_config (OmegaConf): experiment configuration. export (bool): flag to indicate onnx export. Returns: model (nn.Module): D-DETR model. """ model_config = experiment_config.model dataset_config = experiment_config.dataset num_classes = dataset_config.num_classes backbone = model_config.backbone dropout_ratio = model_config.dropout_ratio hidden_dim = model_config.hidden_dim num_feature_levels = model_config.num_feature_levels return_interm_indices = model_config.return_interm_indices nheads = model_config.nheads enc_layers = model_config.enc_layers dec_layers = model_config.dec_layers dim_feedforward = model_config.dim_feedforward dec_n_points = model_config.dec_n_points enc_n_points = model_config.enc_n_points num_queries = model_config.num_queries aux_loss = model_config.aux_loss with_box_refine = model_config.with_box_refine dilation = model_config.dilation train_backbone = model_config.train_backbone pretrained_backbone = model_config.pretrained_backbone_path activation_checkpoint = experiment_config.train.activation_checkpoint model = DDModel(num_classes=num_classes, hidden_dim=hidden_dim, pretrained_backbone_path=pretrained_backbone, backbone=backbone, train_backbone=train_backbone, num_feature_levels=num_feature_levels, return_interm_indices=return_interm_indices, nheads=nheads, enc_layers=enc_layers, dec_layers=dec_layers, dim_feedforward=dim_feedforward, dec_n_points=dec_n_points, enc_n_points=enc_n_points, num_queries=num_queries, aux_loss=aux_loss, with_box_refine=with_box_refine, dilation=dilation, dropout_ratio=dropout_ratio, export=export, activation_checkpoint=activation_checkpoint) return model
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/build_nn_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MSDeformAttnFunction modules. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch from torch.autograd import Function from torch.autograd.function import once_differentiable import os def load_ops(ops_dir, lib_name): """Load C++ Ops to PyTorch. Args: ops_dir (str): Path to the C++ src code directory. lib_name (str): Name of the library to load. """ module_path = os.path.join(ops_dir, lib_name) torch.ops.load_library(module_path) class MSDeformAttnFunction(Function): """MSDeformAttnFunction""" @staticmethod def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step): """Forward function. Args: value (torch.Tensor): The value has shape (bs, num_keys, mum_heads, embed_dims//num_heads) value_spatial_shapes (torch.Tensor): Spatial shape of each feature map, has shape (num_levels, 2), last dimension 2 represent (h, w) sampling_locations (torch.Tensor): The location of sampling points, has shape (bs ,num_queries, num_heads, num_levels, num_points, 2), the last dimension 2 represent (x, y). attention_weights (torch.Tensor): The weight of sampling points used when calculate the attention, has shape (bs ,num_queries, num_heads, num_levels, num_points), im2col_step (torch.Tensor): The step used in image to column. Returns: torch.Tensor: has shape (bs, num_queries, embed_dims) """ ctx.im2col_step = im2col_step output = torch.ops.nvidia.MultiscaleDeformableAttnPlugin_TRT( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) return output @staticmethod @once_differentiable def backward(ctx, grad_output): """Backward function. Args: grad_output (torch.Tensor): Gradient of output tensor of forward. Returns: tuple[Tensor]: Gradient of input tensors in forward. """ value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = \ torch.ops.nvidia.DMHA_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/ops/functions.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable DETR model ops module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/ops/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MSDeformAttn modules. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division import warnings import math import torch import torch.nn.functional as F from torch import nn from torch.nn.init import xavier_uniform_, constant_ import os from mmcv.ops.multi_scale_deform_attn import multi_scale_deformable_attn_pytorch from nvidia_tao_pytorch.cv.deformable_detr.model.ops.functions import MSDeformAttnFunction, load_ops def _is_power_of_2(n): """Check if n is power of 2. Args: n (int): input Returns: Boolean on if n is power of 2 or not. """ if (not isinstance(n, int)) or (n < 0): raise ValueError(f"invalid input for _is_power_of_2: {n} (type: {type(n)})") return (n & (n - 1) == 0) and n != 0 class MSDeformAttn(nn.Module): """Multi-Scale Deformable Attention Module.""" def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): """Multi-Scale Deformable Attention Constructor. Args: d_model (int): hidden dimension n_levels (int): number of feature levels n_heads (int): number of attention heads n_points (int): number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation.") self.im2col_step = 64 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, d_model) self.output_proj = nn.Linear(d_model, d_model) self._reset_parameters() # load custom ops ops_dir = os.path.dirname(os.path.abspath(__file__)) lib_name = "MultiScaleDeformableAttention.cpython-38-x86_64-linux-gnu.so" load_ops(ops_dir, lib_name) def _reset_parameters(self): """Reset parameters.""" constant_(self.sampling_offsets.weight.data, 0.) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.) constant_(self.attention_weights.bias.data, 0.) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.) def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None, export=False): """Forward function. Args: query (torch.Tensor): (N, Length_{query}, C) reference_points (torch.Tensor): (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes input_flatten (torch.Tensor): (N, sum_{l=0}^{L-1} H_l cdot W_l, C) input_spatial_shapes (torch.Tensor): (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] input_level_start_index (torch.Tensor): (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] input_padding_mask (torch.Tensor): (N, sum_{l=0}^{L-1} H_l cdot W_l), True for padding elements, False for non-padding elements Returns: output (torch.Tensor): (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) # N, Len_q, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 else: raise ValueError( 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1])) input_spatial_shapes = input_spatial_shapes.long() input_level_start_index = input_level_start_index.long() if export: if torch.cuda.is_available() and value.is_cuda: output = torch.ops.nvidia.MultiscaleDeformableAttnPlugin_TRT( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights) else: # CPU implementation of multi-scale deformable attention # Note that this implementation uses GridSample operator which requires # opset version >= 16 and is much slower in TensorRT warnings.warn("PyTorch native implementation of multi-scale deformable attention is being used. " "Expect slower inference performance until TensorRT further optimizes GridSample.") output = multi_scale_deformable_attn_pytorch( value, input_spatial_shapes, sampling_locations, attention_weights ) else: if torch.cuda.is_available() and value.is_cuda: # For mixed precision training if value.dtype == torch.float16: output = MSDeformAttnFunction.apply( value.to(torch.float32), input_spatial_shapes, input_level_start_index, sampling_locations.to(torch.float32), attention_weights, self.im2col_step) output = output.to(torch.float16) else: output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step) else: # CPU implementation of multi-scale deformable attention output = multi_scale_deformable_attn_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) output = output.view(N, Len_q, self.d_model) output = self.output_proj(output) return output
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/model/ops/modules.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Transformation for people transformer.""" import PIL import torch import random import torchvision.transforms as T import torchvision.transforms.functional as F from nvidia_tao_pytorch.cv.deformable_detr.utils.box_ops import box_xyxy_to_cxcywh def build_transforms(augmentation_config, experiment_config=None, dataset_mode='train'): """Build Augmentations. Args: augmentation_config (dict): augmentation configuration. experiment_config (dict): experiment configuration. dataset_mode (str): data mode (train, val, eval, infer). Returns: transforms (Compose): Final built transforms. Raises: If dataset_mode is set to other than given options (train, val, eval, infer), the code will raise the value error. """ input_mean = list(augmentation_config["input_mean"]) input_std = list(augmentation_config["input_std"]) scales = list(augmentation_config["scales"]) ranom_resize_max_size = augmentation_config["random_resize_max_size"] test_random_size = augmentation_config["test_random_resize"] train_random_sizes = list(augmentation_config["train_random_resize"]) train_random_crop_min = augmentation_config["train_random_crop_min"] train_random_crop_max = augmentation_config["train_random_crop_max"] flip_prob = min(1.0, augmentation_config["horizontal_flip_prob"]) fixed_padding = augmentation_config["fixed_padding"] normalize = Compose([ ToTensor(), Normalize(input_mean, input_std) ]) # Fixed Padding is applied to prevent memory leak # It nees to be applied prior to normalize transform # Padding has same effect as the collate_fn as only the original image is passed as the size if dataset_mode == 'train': if fixed_padding: transforms = Compose([ RandomHorizontalFlip(flip_prob), RandomSelect( RandomResize(scales, max_size=ranom_resize_max_size), Compose([ RandomResize(train_random_sizes), RandomSizeCrop(train_random_crop_min, train_random_crop_max), RandomResize(scales, max_size=ranom_resize_max_size), ]) ), normalize, FixedPad(sorted(scales)[-1], ranom_resize_max_size), ]) else: transforms = Compose([ RandomHorizontalFlip(flip_prob), RandomSelect( RandomResize(scales, max_size=ranom_resize_max_size), Compose([ RandomResize(train_random_sizes), RandomSizeCrop(train_random_crop_min, train_random_crop_max), RandomResize(scales, max_size=ranom_resize_max_size), ]) ), normalize, ]) elif dataset_mode in ('val', 'eval', 'infer'): if fixed_padding: transforms = Compose([ RandomResize([test_random_size], max_size=ranom_resize_max_size), normalize, FixedPad(test_random_size, ranom_resize_max_size), ]) else: transforms = Compose([ RandomResize([test_random_size], max_size=ranom_resize_max_size), normalize, ]) else: raise ValueError('There are only train, val, eval, and infer options in dataset_mode.') return transforms def crop(image, target, region): """Crop image. Args: image (PIL.Image): loaded image. target (dict): loaded target. region (tuple): region to crop. Returns: (cropped_image, taret): cropped image and processed target based on the cropped image """ cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region target["size"] = torch.tensor([h, w]) fields = ["labels"] if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) target["boxes"] = cropped_boxes.reshape(-1, 4) fields.append("boxes") # remove elements for which the boxes that have zero area if "boxes" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target['boxes'].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) for field in fields: target[field] = target[field][keep] return cropped_image, target def hflip(image, target): """Horizontal Flip. Args: image (PIL.image): loaded image. target (dict): loaded target. Returns: (flipped_image, taret): flipped image and processed target based on the flipped image. """ flipped_image = F.hflip(image) w, _ = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) target["boxes"] = boxes return flipped_image, target def resize(image, target, size, max_size=None): """Resize the image. Args: image (PIL.Image): loaded image. target (dict): loaded target. size (int / tuple): size to resize, size can be min_size (scalar) or (w, h) tuple. max_size (int): maximum size to resize. Returns: (rescaled_image, taret): rescaled image and processed target based on the rescaled image. """ def get_size_with_aspect_ratio(image_size, size, max_size=None): """ get size with aspect ratio """ w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): """ get size to resize """ if isinstance(size, (list, tuple)): return_size = size[::-1] else: return_size = get_size_with_aspect_ratio(image_size, size, max_size) return return_size size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) target["boxes"] = scaled_boxes h, w = size target["size"] = torch.tensor([h, w]) return rescaled_image, target def pad(image, target, padding): """Padding the image on the bottom right corners. Args: image (PIL.Image): loaded image. target (dict): loaded target. padding (tuple): size to pad. Returns: (padded_image, taret): padded image and processed target based on the padded image. """ # zero padding padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() # We pass size as pre-padded image so that collate_fn can overwrite the # transform-padded region too if isinstance(image, torch.Tensor): target["size"] = image.shape[1:] else: target["size"] = torch.tensor(image.size[::-1]) return padded_image, target class RandomCrop(object): """Random Crop class.""" def __init__(self, size): """Initialize the RandomCrop Class. Args: size (tuple): size to perform random crop """ self.size = size def __call__(self, img, target): """Call RandomCrop. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Cropped Image. target (dict): Cropped Annotations. """ region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): """Random Size Crop class.""" def __init__(self, min_size: int, max_size: int): """Initialize the RandomCrop Class. Args: min_size (int): minimum size to perform random crop. max_size (int): maximum size to perform random crop. """ self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, target: dict): """Call RandomSizeCrop. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Cropped Image. target (dict): Cropped Annotations. """ w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) return crop(img, target, region) class CenterCrop(object): """Center Crop class.""" def __init__(self, size): """Initialize the CenterCrop Class. Args: size (tuple): size to perform center crop. """ self.size = size def __call__(self, img, target): """Call CenterCrop. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Cropped Image. target (dict): Cropped Annotations. """ image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.)) crop_left = int(round((image_width - crop_width) / 2.)) return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) class RandomHorizontalFlip(object): """Random Horizontal Flip class""" def __init__(self, p=0.5): """Initialize the RandomHorizontalFlip Class. Args: p (float): probability to perform random horizontal flip. """ self.p = p def __call__(self, img, target): """Call RandomHorizontalFlip. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Flipped Image. target (dict): Flipped Annotations. """ if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): """Random Resize class.""" def __init__(self, sizes, max_size=None): """Initialize the RandomResize Class. Args: size (list): size to perform random resize. max_size (int): maximum size to perform random resize. """ assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): """Call RandomResize. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Resized Image. target (dict): Resized Annotations. """ size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class FixedResize(object): """Fixed Size Resize class.""" def __init__(self, sizes): """Initialize the FixedResize Class. Args: sizes (list): size to perform random resize. """ assert isinstance(sizes, (list, tuple)) self.sizes = sizes def __call__(self, img, target=None): """Call FixedResize. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Resized Image. target (dict): Resized Annotations. """ return resize(img, target, self.sizes, None) class RandomPad(object): """Random Pad class.""" def __init__(self, max_pad): """Initialize the RandomPad Class. Args: max_pad (int): max padding size. """ self.max_pad = max_pad def __call__(self, img, target): """Call RandomPad. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Padded Image. target (dict): Padded Annotations. """ pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) return pad(img, target, (pad_x, pad_y)) class FixedPad(object): """Fixed Pad class.""" def __init__(self, target_min, target_max): """Initialize the FixedPad Class. Args: target_width (int): padding size. target_height (int): padding size. """ self.target_min = target_min self.target_max = target_max def __call__(self, img, target): """Call FixedPad. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Padded Image. target (dict): Padded Annotations. """ height, width = target['size'] if height > width: pad_x = self.target_min - width pad_y = self.target_max - height else: pad_x = self.target_max - width pad_y = self.target_min - height tmp = pad(img, target, (pad_x, pad_y)) return tmp class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2. """ def __init__(self, transforms1, transforms2, p=0.5): """Initialize the RandomSelect Class. Args: transforms1 (object): given transform to select. transforms2 (object): given transform to select. p (float): probability to select between transform 1 and 2. """ self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target): """Call RandomSelect. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Image. target (dict): Annotations. """ if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): """Convert PIL.Image to torch.Tensor""" def __call__(self, img, target): """Call ToTensor. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (torch.Tensor): Image Tensor. target (dict): Annotations. """ return F.to_tensor(img), target class RandomErasing(object): """Random Erasing class.""" def __init__(self, *args, **kwargs): """Initialize the RandomErasing Class.""" self.eraser = T.RandomErasing(*args, **kwargs) def __call__(self, img, target): """Call RandomErasing. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (PIL.Image): Randomly erased Image. target (dict): Randomly erased Annotations. """ return self.eraser(img), target class Normalize(object): """ Normalize class """ def __init__(self, mean, std): """Initialize the Normalize Class. Args: mean (list): mean value to normalize. std (list): standard deviation value to normalize. """ self.mean = mean self.std = std def __call__(self, image, target=None): """Call Normalize. Args: image (PIL.Image): Pillow Image. target (dict): Annotations. Returns: image (torch.Tensor): Normalized Tensor. target (dict): Normalized Annotations. """ image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class Compose(object): """Compose class.""" def __init__(self, transforms): """Initialize the Compose Class. Args: transforms (list): transform list to compose. """ self.transforms = transforms def __call__(self, image, target): """Call Compose. Args: image (torch.Tensor): Image in Tensor. target (dict): Annotations. Returns: image (torch.Tensor): Composed Tensor. target (dict): Composed Annotations. """ for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): """ repr """ format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/dataloader/transforms.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Object Detection dataset.""" import torch from typing import Optional from torch.utils.data import DataLoader import pytorch_lightning as pl from nvidia_tao_pytorch.cv.deformable_detr.dataloader.transforms import build_transforms from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import collate_fn, is_dist_avail_and_initialized from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_dataset import ODPredictDataset, ODDataset from nvidia_tao_pytorch.cv.deformable_detr.dataloader.serialized_dataset import build_shm_dataset from nvidia_tao_pytorch.cv.deformable_detr.dataloader.sampler import UniformSampler, NonUniformSampler, DefaultSampler from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import get_world_size, get_global_rank class ODDataModule(pl.LightningDataModule): """Lightning DataModule for Object Detection.""" def __init__(self, dataset_config): """ Lightning DataModule Initialization. Args: dataset_config (OmegaConf): dataset configuration """ super().__init__() self.dataset_config = dataset_config self.augmentation_config = dataset_config["augmentation"] self.batch_size = dataset_config["batch_size"] self.num_workers = dataset_config["workers"] self.num_classes = dataset_config["num_classes"] self.pin_memory = dataset_config["pin_memory"] def setup(self, stage: Optional[str] = None): """ Loads in data from file and prepares PyTorch tensor datasets for each split (train, val, test). Args: stage (str): stage options from fit, test, predict or None. """ is_distributed = is_dist_avail_and_initialized() if stage in ('fit', None): # check pytorch distributed is set or not train_data_sources = self.dataset_config["train_data_sources"] train_transform = build_transforms(self.augmentation_config, dataset_mode='train') val_data_sources = self.dataset_config["val_data_sources"] val_transform = build_transforms(self.augmentation_config, dataset_mode='val') if self.dataset_config["dataset_type"] == "serialized": self.train_dataset = build_shm_dataset(train_data_sources, train_transform) if is_distributed: self.train_sampler = torch.utils.data.distributed.DistributedSampler(self.train_dataset, shuffle=True) else: self.train_sampler = torch.utils.data.RandomSampler(self.train_dataset) # prep validation self.val_dataset = build_shm_dataset(val_data_sources, val_transform) if is_distributed: self.val_sampler = torch.utils.data.distributed.DistributedSampler(self.val_dataset, shuffle=False) else: self.val_sampler = torch.utils.data.SequentialSampler(self.val_dataset) else: data_sampler = self.dataset_config["train_sampler"] self.val_dataset = DefaultSampler(val_data_sources, is_distributed, transforms=val_transform).build_data_source() if is_distributed: # distributed training if data_sampler == "default_sampler": self.train_dataset, self.train_sampler = DefaultSampler(train_data_sources, is_distributed, transforms=train_transform).get_sampler() self.val_sampler = torch.utils.data.distributed.DistributedSampler(self.val_dataset, shuffle=False) elif data_sampler == "non_uniform_sampler": # manual partial data loading for each GPU. Use this for large dataset which can't fit into the memory, sampler is Default sampler global_rank = get_global_rank() num_gpus = get_world_size() self.train_dataset, self.train_sampler = NonUniformSampler(train_data_sources, transforms=train_transform).get_sampler(global_rank, num_gpus) self.val_sampler = torch.utils.data.distributed.DistributedSampler(self.val_dataset, shuffle=False) elif data_sampler == "uniform_sampler": # manual partial data loading for each GPU. Use this for large dataset which can't fit into the memory, sampler is Uniform Distribution Sampler global_rank = get_global_rank() num_gpus = get_world_size() self.train_dataset, self.train_sampler = UniformSampler(train_data_sources, transforms=train_transform).get_sampler(global_rank, num_gpus) self.val_sampler = torch.utils.data.distributed.DistributedSampler(self.val_dataset, shuffle=False) else: raise NotImplementedError("Sampler {} is not implemented. Use DefaultSampler or UniformSampler".format(data_sampler)) else: # Non-distributed learning if data_sampler == "default_sampler": self.train_dataset, self.train_sampler = DefaultSampler(train_data_sources, is_distributed, transforms=train_transform).get_sampler() self.val_sampler = torch.utils.data.SequentialSampler(self.val_dataset) else: raise NotImplementedError("Sampler {} is not implemented for this type of input data. Use DefaultSampler in data_sampler".format(data_sampler)) # Assign test dataset for use in dataloader if stage in ('test', None): test_data_sources = self.dataset_config["test_data_sources"] self.test_root = test_data_sources.get("image_dir", "") test_json = test_data_sources.get("json_file", "") test_transforms = build_transforms(self.augmentation_config, dataset_mode='eval') if self.dataset_config["dataset_type"] == "serialized": self.test_dataset = build_shm_dataset(test_data_sources, transforms=test_transforms) else: self.test_dataset = ODDataset(dataset_dir=self.test_root, json_file=test_json, transforms=test_transforms) # Assign predict dataset for use in dataloader if stage in ('predict', None): pred_data_sources = self.dataset_config["infer_data_sources"] pred_list = pred_data_sources.get("image_dir", []) if isinstance(pred_list, str): pred_list = [pred_list] classmap = pred_data_sources.get("classmap", "") self.pred_dataset = ODPredictDataset(pred_list, classmap, transforms=build_transforms(self.augmentation_config, dataset_mode='infer')) def train_dataloader(self): """Build the dataloader for training. Returns: train_loader: PyTorch DataLoader used for training. """ train_loader = DataLoader( self.train_dataset, num_workers=self.num_workers, pin_memory=self.pin_memory, collate_fn=collate_fn, batch_sampler=torch.utils.data.BatchSampler(self.train_sampler, self.batch_size, drop_last=True) ) return train_loader def val_dataloader(self): """Build the dataloader for validation. Returns: PyTorch DataLoader used for validation. """ return DataLoader( self.val_dataset, num_workers=self.num_workers, batch_size=self.batch_size, pin_memory=self.pin_memory, drop_last=False, collate_fn=collate_fn, sampler=self.val_sampler) def test_dataloader(self): """Build the dataloader for evaluation. Returns: PyTorch DataLoader used for evaluation. """ return DataLoader( self.test_dataset, num_workers=self.num_workers, batch_size=self.batch_size, shuffle=False, pin_memory=self.pin_memory, drop_last=False, collate_fn=collate_fn) def predict_dataloader(self): """Build the dataloader for inference. Returns: PyTorch DataLoader used for inference. """ return DataLoader( self.pred_dataset, num_workers=self.num_workers, batch_size=self.batch_size, shuffle=False, pin_memory=self.pin_memory, drop_last=False, collate_fn=collate_fn)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/dataloader/od_data_module.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable DETR dataloader module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/dataloader/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Object Detection Dataset Class and Related Functions """ import torch from torch.utils.data.dataset import Dataset import os import json import glob import numpy as np from PIL import Image from typing import Any, Tuple, List from nvidia_tao_pytorch.cv.deformable_detr.utils.coco import COCO # List of valid image extensions VALID_IMAGE_EXTENSIONS = (".jpg", ".jpeg", ".png", ".bmp", ".JPEG", ".JPG", ".PNG") class ODDataset(Dataset): """Base Object Detection Dataset Class.""" def __init__(self, json_file: str = None, dataset_dir: str = None, transforms=None): """Initialize the Object Detetion Dataset Class. Note that multiple loading of COCO type JSON files can lead to system memory OOM. In such case, use SerializedDatasetFromList. Args: json_file (str): json_file name to load the data. dataset_dir (str): dataset directory. transforms: augmentations to apply. """ self.dataset_dir = dataset_dir self.transforms = transforms with open(json_file, 'r') as f: json_data = json.load(f) self.coco = COCO(json_data) self.ids = list(sorted(self.coco.imgs.keys())) self.label_map = self.coco.dataset['categories'] def _load_image(self, img_id: int) -> Image.Image: """Load image given image id. Args: img_id (int): image id to load. Returns: Loaded PIL Image. """ path = self.coco.loadImgs(img_id)[0]["file_name"] if not self.dataset_dir == "": img_path = os.path.join(self.dataset_dir, path) return_output = (Image.open(img_path).convert("RGB"), img_path) else: return_output = (Image.open(path).convert("RGB"), path) return return_output def _load_target(self, img_id: int) -> List[Any]: """Load target (annotation) given image id. Args: img_id (int): image id to load. Returns: Loaded COCO annotation list """ return self.coco.loadAnns(self.coco.getAnnIds(img_id)) def _process_image_target(self, image: Image.Image, target: List[Any], img_id: int) -> Tuple[Any, Any]: """Process the image and target given image id. Args: image (PIL.Image): Loaded image given img_id. target (list): Loaded annotation given img_id. img_id (int): image id to load. Returns: (image, target): pre-processed image and target for the model. """ width, height = image.size image_id = torch.tensor([img_id]) boxes = [obj["bbox"] for obj in target] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=width) boxes[:, 1::2].clamp_(min=0, max=height) classes = [obj["category_id"] for obj in target] classes = torch.tensor(classes, dtype=torch.int64) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] area = torch.tensor([obj["area"] for obj in target]) iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in target]) target = {} target["boxes"] = boxes target["labels"] = classes target["image_id"] = image_id # for conversion to coco api target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(height), int(width)]) target["size"] = torch.as_tensor([int(height), int(width)]) return image, target def __getitem__(self, index: int) -> Tuple[Any, Any, Any]: """Get image, target, image_path given index. Args: index (int): index of the image id to load. Returns: (image, target, image_path): pre-processed image, target and image_path for the model. """ img_id = self.ids[index] image, image_path = self._load_image(img_id) target = self._load_target(img_id) image, target = self._process_image_target(image, target, img_id) if self.transforms is not None: image, target = self.transforms(image, target) return image, target, image_path def __len__(self) -> int: """__len__""" return len(self.ids) class ODPredictDataset(Dataset): """Base Object Detection Predict Dataset Class.""" def __init__(self, dataset_list: List[Any], label_map_path: str, transforms=None): """Initialize the Object Detetion Dataset Class for inference. Unlike ODDataset, this class does not require COCO JSON file. Args: dataset_list (list): list of dataset directory. label_map_path (str): label mapping path. transforms: augmentations to apply. Raises: FileNotFoundErorr: If provided classmap, sequence, or image extension does not exist. """ self.dataset_list = dataset_list self.transforms = transforms if not os.path.exists(label_map_path): raise FileNotFoundError(f"Provided class map {label_map_path} does not exist!") # Load classmap and reformat it to COCO categories format with open(label_map_path, "r") as f: classmap = [line.rstrip() for line in f.readlines()] self.label_map = [{"id": i + 1, "name": c} for i, c in enumerate(classmap)] self.ids = [] for seq in dataset_list: if not os.path.exists(seq): raise FileNotFoundError(f"Provided inference directory {seq} does not exist!") for ext in VALID_IMAGE_EXTENSIONS: self.ids.extend(glob.glob(seq + f"/*{ext}")) if len(self.ids) == 0: raise FileNotFoundError(f"No valid image with extensions {VALID_IMAGE_EXTENSIONS} found in the provided directories") def _load_image(self, img_path: int) -> Image.Image: """Load image given image path. Args: img_path (str): image path to load. Returns: Loaded PIL.Image. """ return_output = (Image.open(img_path).convert("RGB"), img_path) return return_output def __getitem__(self, index: int) -> Tuple[Any, Any, Any]: """Get image, target, image_path given index. Args: index (int): index of the image id to load. Returns: (image, target, image_path): pre-processed image, target and image_path for the model. """ img_path = self.ids[index] image, image_path = self._load_image(img_path) width, height = image.size target = {} target["orig_size"] = torch.as_tensor([int(height), int(width)]) target["size"] = torch.as_tensor([int(height), int(width)]) if self.transforms is not None: image, target = self.transforms(image, target) return image, target, image_path def __len__(self) -> int: """__len__""" return len(self.ids) def CoCoDataMerge(coco_list): """ Concatenate COCO Dataset. We assume that the sharded JSON files were generated using `deformable_detr convert` where the ids of the sharded JSON are ensured to be unique. We do not perform ID deduplication for faster data loading. Args: coco_list (list): list of COCO Datasets. Returns: merged_coco_data (dict) : Merged dictionary in COCO format. """ merged_coco_data = {"images": [], "annotations": [], "categories": None} for idx, coco in enumerate(coco_list): # Merge all the annotations to single dict merged_coco_data["images"].extend(coco.dataset["images"]) merged_coco_data["annotations"].extend(coco.dataset["annotations"]) if idx == 0: merged_coco_data["categories"] = coco.dataset["categories"] return merged_coco_data class ConcateODDataset(torch.utils.data.ConcatDataset): """ Concatenate ODDataset """ def __init__(self, datasets): """Initialize the ConcateODDataset Class. Args: datasets (iterable): List of datasets to be concatenated. """ super(ConcateODDataset, self).__init__(datasets) self.datasets = list(datasets) assert len(datasets) > 0, 'datasets should not be an empty iterable' self.cum_sizes = np.cumsum([len(x) for x in self.datasets]) coco_list = [] for dataset in datasets: coco_list.append(dataset.coco) self.coco = COCO(CoCoDataMerge(coco_list)) self.label_map = self.coco.dataset['categories'] def __len__(self) -> int: """Returns length of the concatenated dataset.""" return self.cum_sizes[-1] def __getitem__(self, idx): """Get sub-dataset from ConcateODDataset. Args: idx (int): index to retrieve. Returns: Sub dataset from the list. """ super(ConcateODDataset, self).__getitem__(idx) dataset_index = self.cum_sizes.searchsorted(idx, 'right') if dataset_index == 0: dataset_idx = idx else: dataset_idx = idx - self.cum_sizes[dataset_index - 1] return self.datasets[dataset_index][dataset_idx]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/dataloader/od_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ List serialization code adopted from https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/common.py """ import os import contextlib import io import pickle # nosec B403 import torch from typing import Dict, List, Any from pycocotools.coco import COCO from PIL import Image import numpy as np from nvidia_tao_pytorch.pointcloud.pointpillars.pcdet.utils.safe_unpickler import SafeUnpickler from nvidia_tao_pytorch.cv.deformable_detr.utils.data_source_config import build_data_source_lists from nvidia_tao_pytorch.cv.deformable_detr.utils.misc import get_global_rank def load_coco_json(json_file: str, image_root: str) -> List[Dict]: """Load COCO json file and return list of dictionaries. Referenced from detectron2: https://detectron2.readthedocs.io/en/latest/_modules/detectron2/data/datasets/coco.html Args: json_file (str): Path to the JSON annotation file. image_root (str): Path to root directory of images from the annotations. Returns: List of COCO annotation dicts. """ with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file) img_ids = sorted(coco_api.imgs.keys()) # imgs is a list of dicts, each looks something like: # {'license': 4, # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', # 'file_name': 'COCO_val2014_000000001268.jpg', # 'height': 427, # 'width': 640, # 'date_captured': '2013-11-17 05:57:24', # 'id': 1268} imgs = coco_api.loadImgs(img_ids) # anns is a list[list[dict]], where each dict is an annotation # record for an object. The inner list enumerates the objects in an image # and the outer list enumerates over images. Example of anns[0]: # [{'segmentation': [[192.81, # 247.09, # ... # 219.03, # 249.06]], # 'area': 1035.749, # 'iscrowd': 0, # 'image_id': 1268, # 'bbox': [192.81, 224.8, 74.73, 33.43], # 'category_id': 16, # 'id': 42986}, # ...] anns = [coco_api.imgToAnns[img_id] for img_id in img_ids] imgs_anns = list(zip(imgs, anns)) dataset_dicts = [] ann_keys = ["iscrowd", "bbox", "keypoints", "category_id", "area"] for (img_dict, anno_dict_list) in imgs_anns: record = {} record["file_name"] = os.path.join(image_root, img_dict["file_name"]) record["height"] = img_dict["height"] record["width"] = img_dict["width"] image_id = record["image_id"] = img_dict["id"] objs = [] for anno in anno_dict_list: # Check that the image_id in this annotation is the same as # the image_id we're looking at. # This fails only when the data parsing logic or the annotation file is buggy. # The original COCO valminusminival2014 & minival2014 annotation files # actually contains bugs that, together with certain ways of using COCO API, # can trigger this assertion. assert anno["image_id"] == image_id assert anno.get("ignore", 0) == 0, '"ignore" in COCO json file is not supported.' obj = {key: anno[key] for key in ann_keys if key in anno} if "bbox" in obj and len(obj["bbox"]) == 0: raise ValueError( f"One annotation of image {image_id} contains empty 'bbox' value! " "This json does not have valid COCO format." ) objs.append(obj) record["annotations"] = objs dataset_dicts.append(record) return dataset_dicts def build_shm_dataset(data_sources, transforms): """Preload the COCO ann lists to prevent memory leakage from Python. Args: data_sources (str): list of different data sources. transforms (dict): augmentations to apply. """ # grab all the json files and concate them into one single dataset data_source_list = build_data_source_lists(data_sources) dataset_list = [] for data_source in data_source_list: image_dir = data_source.image_dir for _json_file in data_source.dataset_files: dl = load_coco_json(_json_file, image_root=image_dir) dataset_list.extend(dl) dataset = SerializedDatasetFromList(dataset_list, transforms=transforms) return dataset class SerializedDatasetFromList(torch.utils.data.Dataset): """ Hold memory using serialized objects so that data loader workers can use shared RAM from master process instead of making a copy in each subprocess. """ def __init__(self, lst, transforms=None): """Initialize the Serialized Shared Memory COCO-based Dataset. Reference from this blog: https://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/ Args: lst (list): list of dataset dicts. transforms (dict): augmentations to apply. """ def _serialize(data): buffer = pickle.dumps(data, protocol=4) return np.frombuffer(buffer, dtype=np.uint8) if get_global_rank() == 0: print(f"Serializing {len(lst)} elements to byte tensors and concatenating them all ...") self._lst = [_serialize(x) for x in lst] self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64) self._addr = np.cumsum(self._addr) self._lst = np.concatenate(self._lst) if get_global_rank() == 0: print(f"Serialized dataset takes {len(self._lst) / 1024 ** 2:.2f} MiB") self._addr = torch.from_numpy(self._addr) self._lst = torch.from_numpy(self._lst) self.transforms = transforms def __len__(self): """__len__""" return len(self._addr) def _process_image_target(self, image: Image.Image, target: List[Any], img_id: int): """Process the image and target given image id. Args: image (PIL.Image): Loaded Pillow Image . target (list): Loaded annotation given img_id. img_id (int): image id to load. Returns: target (dict): pre-processed target. """ width, height = image.size image_id = torch.tensor([img_id]) boxes = [obj["bbox"] for obj in target] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=width) boxes[:, 1::2].clamp_(min=0, max=height) classes = [obj["category_id"] for obj in target] classes = torch.tensor(classes, dtype=torch.int64) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] area = torch.tensor([obj["area"] for obj in target]) iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in target]) target = {} target["boxes"] = boxes target["labels"] = classes target["image_id"] = image_id # for conversion to coco api target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(height), int(width)]) target["size"] = torch.as_tensor([int(height), int(width)]) return target def __getitem__(self, idx: int): """Get image, target, image_path given index, Args: index (int): index of the image id to load Returns: (image, target, image_path): pre-processed image, target and image_path for the model """ start_addr = 0 if idx == 0 else self._addr[idx - 1].item() end_addr = self._addr[idx].item() data_bytes = memoryview(self._lst[start_addr:end_addr].numpy()) # Secure pickle unloading record = SafeUnpickler(data_bytes, SerializedDatasetFromList).load() image_path = record['file_name'] image = Image.open(image_path).convert("RGB") img_id = record["image_id"] target = record['annotations'] target = self._process_image_target(image, target, img_id) if self.transforms is not None: image, target = self.transforms(image, target) return image, target, image_path
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/dataloader/serialized_dataset.py