python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data source config class for DriveNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.utils.data as data import numpy as np from nvidia_tao_pytorch.cv.deformable_detr.utils.data_source_config import build_data_source_lists_per_gpu, build_data_source_lists from nvidia_tao_pytorch.cv.deformable_detr.dataloader.od_dataset import ODDataset, ConcateODDataset class UniformSampler(object): """Uniform Sampler Class from multi-source data.""" def __init__(self, data_sources, transforms=None): """Initialize Uniform Sampler Class. Only used in distributed training and sharded data, unifrom distribution sampling. Args: data_sources (dict): augmentation configuration. transforms (dict): transforms. """ self.data_sources = data_sources self.transforms = transforms def build_data_source(self, global_rank, num_gpus): """ Build the data source list from multi-source data. Args: global_rank (int): gpu global rank to load the subset of the data. num_gpus (int): total number of gpus to be used. Returns: train_dataset (Dataset): training datsaet. dataset_length (int): length of each dataset (to be used in uniform sampling). total_images_per_gpu (int): total number of images per gpus (to be used in uniform sampling). """ # distribute json files to each GPU data_source_list = build_data_source_lists_per_gpu(self.data_sources, global_rank, num_gpus) # concate the json files per gpu, load only sepecific jsons to each gpu dataset_per_gpu = [] dataset_length = [] total_images_per_gpu = 0 for data_source in data_source_list: image_dir = data_source.image_dir for _json_file in data_source.dataset_files: ds = ODDataset(dataset_dir=image_dir, json_file=_json_file, transforms=self.transforms) dataset_per_gpu.append(ds) dataset_length.append(len(ds)) total_images_per_gpu = total_images_per_gpu + len(ds) if len(dataset_per_gpu) > 1: train_dataset = ConcateODDataset(dataset_per_gpu) else: train_dataset = dataset_per_gpu[0] return train_dataset, dataset_length, total_images_per_gpu def get_sampler(self, global_rank, num_gpus): """ Get uniform sampler from the data source list. Args: global_rank (int): gpu global rank to load the subset of the data. num_gpus (int): total number of gpus to be used. Returns: train_dataset (Dataset): training dataset. train_sampler (Sampler): training sampler. """ train_dataset, dataset_length, total_images_per_gpu = self.build_data_source(global_rank, num_gpus) weights = np.concatenate([[(len(train_dataset) - d_len) / len(train_dataset)] * d_len for d_len in dataset_length]) num_samples = int(total_images_per_gpu) train_sampler = data.WeightedRandomSampler(weights, num_samples, replacement=True) return train_dataset, train_sampler class NonUniformSampler(object): """Non-Uniform Sampler Class from multi-source data.""" def __init__(self, data_sources, transforms=None): """Initialize NonUniform Sampler Class. Only used in distributed training and sharded data, and does not apply unifrom distribution sampling Args: data_sources (dict): augmentation configuration transforms (dict): transforms """ self.data_sources = data_sources self.transforms = transforms def build_data_source(self, global_rank, num_gpus): """ Build the data source list from multi-source data. Args: global_rank (int): gpu global rank to load the subset of the data. num_gpus (int): total number of gpus to be used. Returns: train_dataset (Dataset): training datsaet. dataset_length (int): length of each dataset (to be used in uniform sampling). total_images_per_gpu (int): total number of images per gpus (to be used in uniform sampling). """ # distribute json files to each GPU data_source_list = build_data_source_lists_per_gpu(self.data_sources, global_rank, num_gpus) # concate the json files per gpu, load only sepecific jsons to each gpu dataset_per_gpu = [] dataset_length = [] total_images_per_gpu = 0 for data_source in data_source_list: image_dir = data_source.image_dir for _json_file in data_source.dataset_files: ds = ODDataset(dataset_dir=image_dir, json_file=_json_file, transforms=self.transforms) dataset_per_gpu.append(ds) dataset_length.append(len(ds)) total_images_per_gpu = total_images_per_gpu + len(ds) if len(dataset_per_gpu) > 1: train_dataset = ConcateODDataset(dataset_per_gpu) else: train_dataset = dataset_per_gpu[0] return train_dataset, dataset_length, total_images_per_gpu def get_sampler(self, global_rank, num_gpus): """ Get Default sampler from the data source list. Args: global_rank (int): gpu global rank to load the subset of the data. num_gpus (int): total number of gpus to be used. Returns: train_dataset (Dataset): training dataset. train_sampler (Sampler): training sampler. """ train_dataset, _, _ = self.build_data_source(global_rank, num_gpus) train_sampler = torch.utils.data.RandomSampler(train_dataset) return train_dataset, train_sampler class DefaultSampler(object): """Default Sampler Class from multi or single source data.""" def __init__(self, data_sources, is_distributed=False, transforms=None): """Default Sampler Constructor. Args: data_sources (dict): augmentation configuration. transforms (dict): transforms. is_distributed(bool): flag indicting whether torch is using distributed learning or not. """ self.data_sources = data_sources self.transforms = transforms self.is_distributed = is_distributed def build_data_source(self): """Build the data source list from multi-source data. Returns: train_dataset: training dataset. """ # grab all the json files and concate them into one single dataset data_source_list = build_data_source_lists(self.data_sources) dataset_list = [] for data_source in data_source_list: image_dir = data_source.image_dir for _json_file in data_source.dataset_files: dataset_list.append(ODDataset(dataset_dir=image_dir, json_file=_json_file, transforms=self.transforms)) if len(dataset_list) > 1: train_dataset = ConcateODDataset(dataset_list) else: train_dataset = dataset_list[0] return train_dataset def get_sampler(self): """Get Default sampler from the data source list. Returns: train_dataset (Dataset): training dataset train_sampler (Sampler): training sampler """ train_dataset = self.build_data_source() if self.is_distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True) else: train_sampler = torch.utils.data.RandomSampler(train_dataset) return train_dataset, train_sampler
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/deformable_detr/dataloader/sampler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Init Module for SegFormer. """
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module.""" from .evaluation import * # noqa: F401, F403 from .seg import * # noqa: F401, F403 from .utils import * # noqa: F401, F403
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Misc Module.""" def add_prefix(inputs, prefix): """Add prefix for dict. Args: inputs (dict): The input dict with str keys. prefix (str): The prefix to add. Returns: dict: The dict with keys updated with ``prefix``. """ outputs = dict() for name, value in inputs.items(): outputs[f'{prefix}.{name}'] = value return outputs
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/utils/misc.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer Utils module.""" from .misc import add_prefix __all__ = ['add_prefix']
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric Module.""" import mmcv import numpy as np def intersect_and_union(pred_label, label, num_classes, ignore_index, label_map=dict(), reduce_zero_label=False): """Calculate intersection and Union. Args: pred_label (ndarray): Prediction segmentation map. label (ndarray): Ground truth segmentation map. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. label_map (dict): Mapping old labels to new labels. The parameter will work only when label is str. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. The parameter will work only when label is str. Default: False. Returns: ndarray: The intersection of prediction and ground truth histogram on all classes. ndarray: The union of prediction and ground truth histogram on all classes. ndarray: The prediction histogram on all classes. ndarray: The ground truth histogram on all classes. """ if isinstance(pred_label, str): pred_label = np.load(pred_label) if isinstance(label, str): label = mmcv.imread(label, flag='unchanged', backend='pillow') # modify if custom classes if label_map is not None: for old_id, new_id in label_map.items(): label[label == old_id] = new_id if reduce_zero_label: # avoid using underflow conversion label[label == 0] = 255 label = label - 1 label[label == 254] = 255 mask = (label != ignore_index) pred_label = pred_label[mask] label = label[mask] intersect = pred_label[pred_label == label] area_intersect, _ = np.histogram( intersect, bins=np.arange(num_classes + 1)) area_pred_label, _ = np.histogram( pred_label, bins=np.arange(num_classes + 1)) area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1)) area_union = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index, label_map=dict(), reduce_zero_label=False): """Calculate Total Intersection and Union. Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: ndarray: The intersection of prediction and ground truth histogram on all classes. ndarray: The union of prediction and ground truth histogram on all classes. ndarray: The prediction histogram on all classes. ndarray: The ground truth histogram on all classes. """ num_imgs = len(results) assert len(gt_seg_maps) == num_imgs, "The number of labels:{} is not equal to number of input images:{}.".format(gt_seg_maps, num_imgs) total_area_intersect = np.zeros((num_classes, ), dtype=np.float) total_area_union = np.zeros((num_classes, ), dtype=np.float) total_area_pred_label = np.zeros((num_classes, ), dtype=np.float) total_area_label = np.zeros((num_classes, ), dtype=np.float) for i in range(num_imgs): area_intersect, area_union, area_pred_label, area_label = \ intersect_and_union(results[i], gt_seg_maps[i], num_classes, ignore_index, label_map, reduce_zero_label) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, \ total_area_pred_label, total_area_label def mean_iou(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate Mean Intersection and Union (mIoU) Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category IoU, shape (num_classes, ). """ all_acc, acc, iou = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mIoU'], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label) return all_acc, acc, iou def mean_dice(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate Mean Dice (mDice) Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category dice, shape (num_classes, ). """ all_acc, acc, dice = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mDice'], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label) return all_acc, acc, dice def eval_metrics(results, gt_seg_maps, num_classes, ignore_index, metrics=['mIoU'], nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate evaluation metrics Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category evalution metrics, shape (num_classes, ). """ if isinstance(metrics, str): metrics = [metrics] allowed_metrics = ['mIoU', 'mDice'] if not set(metrics).issubset(set(allowed_metrics)): raise KeyError('metrics {} is not supported'.format(metrics)) total_area_intersect, total_area_union, total_area_pred_label, \ total_area_label = total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index, label_map, reduce_zero_label) all_acc = total_area_intersect.sum() / total_area_label.sum() acc = total_area_intersect / total_area_label ret_metrics = [all_acc, acc] for metric in metrics: if metric == 'mIoU': iou = total_area_intersect / total_area_union ret_metrics.append(iou) elif metric == 'mDice': dice = 2 * total_area_intersect / ( total_area_pred_label + total_area_label) ret_metrics.append(dice) if nan_to_num is not None: ret_metrics = [ np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics ] return ret_metrics
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/evaluation/metrics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Class Names Module.""" import mmcv def cityscapes_classes(): """Cityscapes class names for external use.""" return [ 'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle' ] def ade_classes(): """ADE20K class names for external use.""" return [ 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', 'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', 'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', 'signboard', 'chest of drawers', 'counter', 'sand', 'sink', 'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', 'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', 'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', 'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', 'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', 'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', 'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', 'clock', 'flag' ] def voc_classes(): """Pascal VOC class names for external use.""" return [ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] def cityscapes_palette(): """Cityscapes palette for external use.""" return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]] def ade_palette(): """ADE20K palette for external use.""" return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]] def voc_palette(): """Pascal VOC palette for external use.""" return [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] dataset_aliases = { 'cityscapes': ['cityscapes'], 'ade': ['ade', 'ade20k'], 'voc': ['voc', 'pascal_voc', 'voc12', 'voc12aug'] } def get_classes(dataset): """Get class names of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_classes()') else: raise ValueError(f'Unrecognized dataset: {dataset}') else: raise TypeError(f'dataset must a str, but got {type(dataset)}') return labels def get_palette(dataset): """Get class palette (RGB) of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_palette()') else: raise ValueError(f'Unrecognized dataset: {dataset}') else: raise TypeError(f'dataset must a str, but got {type(dataset)}') return labels
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/evaluation/class_names.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Eval Hooks Module.""" import os.path as osp from mmcv.runner import Hook from torch.utils.data import DataLoader class EvalHook(Hook): """Evaluation hook. Attributes: dataloader (DataLoader): A PyTorch dataloader. interval (int): Evaluation interval (by epochs). Default: 1. """ def __init__(self, dataloader, interval=1, by_epoch=False, **eval_kwargs): """Init Module.""" if not isinstance(dataloader, DataLoader): raise TypeError('dataloader must be a pytorch DataLoader, but got ' f'{type(dataloader)}') self.dataloader = dataloader self.interval = interval self.by_epoch = by_epoch self.eval_kwargs = eval_kwargs def after_train_iter(self, runner): """After train epoch hook.""" if self.by_epoch or not self.every_n_iters(runner, self.interval): return from nvidia_tao_pytorch.cv.segformer.inference.inferencer import single_gpu_test runner.log_buffer.clear() results = single_gpu_test(runner.model, self.dataloader, show=False) self.evaluate(runner, results) def after_train_epoch(self, runner): """After train epoch hook.""" if not self.by_epoch or not self.every_n_epochs(runner, self.interval): return from nvidia_tao_pytorch.cv.segformer.inference.inferencer import single_gpu_test runner.log_buffer.clear() results = single_gpu_test(runner.model, self.dataloader, show=False) self.evaluate(runner, results) def evaluate(self, runner, results): """Call evaluate function of dataset.""" eval_res = self.dataloader.dataset.evaluate( results, logger=runner.logger, **self.eval_kwargs) for name, val in eval_res.items(): runner.log_buffer.output[name] = val runner.log_buffer.ready = True class DistEvalHook(EvalHook): """Distributed evaluation hook. Attributes: dataloader (DataLoader): A PyTorch dataloader. interval (int): Evaluation interval (by epochs). Default: 1. tmpdir (str | None): Temporary directory to save the results of all processes. Default: None. gpu_collect (bool): Whether to use gpu or cpu to collect results. Default: False. """ def __init__(self, dataloader, interval=1, gpu_collect=False, by_epoch=False, **eval_kwargs): """Init Module.""" if not isinstance(dataloader, DataLoader): raise TypeError( 'dataloader must be a pytorch DataLoader, but got {}'.format( type(dataloader))) self.dataloader = dataloader self.interval = interval self.gpu_collect = gpu_collect self.by_epoch = by_epoch self.eval_kwargs = eval_kwargs def after_train_iter(self, runner): """After train epoch hook.""" if self.by_epoch or not self.every_n_iters(runner, self.interval): return from nvidia_tao_pytorch.cv.segformer.inference.inferencer import multi_gpu_test runner.log_buffer.clear() results = multi_gpu_test( runner.model, self.dataloader, tmpdir=osp.join(runner.work_dir, '.eval_hook'), gpu_collect=self.gpu_collect) if runner.rank == 0: print('\n') self.evaluate(runner, results) def after_train_epoch(self, runner): """After train epoch hook.""" if not self.by_epoch or not self.every_n_epochs(runner, self.interval): return from nvidia_tao_pytorch.cv.segformer.inference.inferencer import multi_gpu_test runner.log_buffer.clear() results = multi_gpu_test( runner.model, self.dataloader, tmpdir=osp.join(runner.work_dir, '.eval_hook'), gpu_collect=self.gpu_collect) if runner.rank == 0: print('\n') self.evaluate(runner, results)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/evaluation/eval_hooks.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module.""" from .class_names import get_classes from .eval_hooks import DistEvalHook, EvalHook from .metrics import eval_metrics, mean_dice, mean_iou __all__ = [ 'EvalHook', 'DistEvalHook', 'mean_dice', 'mean_iou', 'eval_metrics', 'get_classes' ]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/evaluation/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module.""" from .builder import build_pixel_sampler from .sampler import BasePixelSampler, OHEMPixelSampler __all__ = ['build_pixel_sampler', 'BasePixelSampler', 'OHEMPixelSampler']
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/seg/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Builder Module.""" from mmcv.utils import Registry, build_from_cfg PIXEL_SAMPLERS = Registry('pixel sampler', scope='xxx') def build_pixel_sampler(cfg, **default_args): """Build pixel sampler for segmentation map.""" return build_from_cfg(cfg, PIXEL_SAMPLERS, default_args)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/seg/builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base Pixel Sampler.""" from abc import ABCMeta, abstractmethod class BasePixelSampler(metaclass=ABCMeta): """Base class of pixel sampler.""" def __init__(self, **kwargs): """Init Function.""" pass @abstractmethod def sample(self, seg_logit, seg_label): """Placeholder for sample function.""" pass
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/seg/sampler/base_pixel_sampler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Sampler Init Module.""" from .base_pixel_sampler import BasePixelSampler from .ohem_pixel_sampler import OHEMPixelSampler __all__ = ['BasePixelSampler', 'OHEMPixelSampler']
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/seg/sampler/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OHEM pixel Sampler.""" import torch import torch.nn.functional as F from nvidia_tao_pytorch.cv.segformer.core.seg.builder import PIXEL_SAMPLERS from nvidia_tao_pytorch.cv.segformer.core.seg.sampler.base_pixel_sampler import BasePixelSampler @PIXEL_SAMPLERS.register_module() class OHEMPixelSampler(BasePixelSampler): """Online Hard Example Mining Sampler for segmentation. Args: context (nn.Module): The context of sampler, subclass of :obj:`BaseDecodeHead`. thresh (float, optional): The threshold for hard example selection. Below which, are prediction with low confidence. If not specified, the hard examples will be pixels of top ``min_kept`` loss. Default: None. min_kept (int, optional): The minimum number of predictions to keep. Default: 100000. """ def __init__(self, context, thresh=None, min_kept=100000): """Init Module.""" super(OHEMPixelSampler, self).__init__() self.context = context assert min_kept > 1, "Min kept should be greater than 1." self.thresh = thresh self.min_kept = min_kept def sample(self, seg_logit, seg_label): """Sample pixels that have high loss or with low prediction confidence. Args: seg_logit (torch.Tensor): segmentation logits, shape (N, C, H, W) seg_label (torch.Tensor): segmentation label, shape (N, 1, H, W) Returns: torch.Tensor: segmentation weight, shape (N, H, W) """ with torch.no_grad(): assert seg_logit.shape[2:] == seg_label.shape[2:], "Seg label last shape should be equal to the seg logit." assert seg_label.shape[1] == 1, "seg_label should have a channel shape of 1." seg_label = seg_label.squeeze(1).long() batch_kept = self.min_kept * seg_label.size(0) valid_mask = seg_label != self.context.ignore_index seg_weight = seg_logit.new_zeros(size=seg_label.size()) valid_seg_weight = seg_weight[valid_mask] if self.thresh is not None: seg_prob = F.softmax(seg_logit, dim=1) tmp_seg_label = seg_label.clone().unsqueeze(1) tmp_seg_label[tmp_seg_label == self.context.ignore_index] = 0 seg_prob = seg_prob.gather(1, tmp_seg_label).squeeze(1) sort_prob, sort_indices = seg_prob[valid_mask].sort() if sort_prob.numel() > 0: min_threshold = sort_prob[min(batch_kept, sort_prob.numel() - 1)] else: min_threshold = 0.0 threshold = max(min_threshold, self.thresh) valid_seg_weight[seg_prob[valid_mask] < threshold] = 1. else: losses = self.context.loss_decode( seg_logit, seg_label, weight=None, ignore_index=self.context.ignore_index, reduction_override='none') # faster than topk according to https://github.com/pytorch/pytorch/issues/22812 # noqa _, sort_indices = losses[valid_mask].sort(descending=True) valid_seg_weight[sort_indices[:batch_kept]] = 1. seg_weight[valid_mask] = valid_seg_weight return seg_weight
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/core/seg/sampler/ohem_pixel_sampler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file""" from typing import Optional, List, Dict, Any from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class NormConfig: """Configuration parameters for Normalization Preprocessing.""" type: str = "SyncBN" # Can be BN or SyncBN requires_grad: bool = True # Whether to train the gamma beta parameters of BN @dataclass class TestModelConfig: """Configuration parameters for Inference.""" mode: str = "whole" crop_size: Optional[List[int]] = None # Configurable stride: Optional[List[int]] = None # Configurable @dataclass class LossDecodeConfig: """Configuration parameters for Loss.""" type: str = "CrossEntropyLoss" use_sigmoid: bool = False loss_weight: float = 1.0 @dataclass class SegformerHeadConfig: """Configuration parameters for Segformer Head.""" # @subha TO DO: Look into align corners in_channels: List[int] = field(default_factory=lambda: [64, 128, 320, 512]) # [64, 128, 320, 512], [32, 64, 160, 256] in_index: List[int] = field(default_factory=lambda: [0, 1, 2, 3]) # No change feature_strides: List[int] = field(default_factory=lambda: [4, 8, 16, 32]) # No change channels: int = 128 # No change dropout_ratio: float = 0.1 norm_cfg: NormConfig = NormConfig() align_corners: bool = False decoder_params: Dict[str, int] = field(default_factory=lambda: {"embed_dim": 768}) # 256, 512, 768 -> Configurable loss_decode: LossDecodeConfig = LossDecodeConfig() # Non-configurable since there is only one loss @dataclass class MultiStepLRConfig: """Configuration parameters for Multi Step Optimizer.""" lr_steps: List[int] = field(default_factory=lambda: [15, 25]) lr_decay: float = 0.1 @dataclass class PolyConfig: """Configuration parameters for Polynomial LR decay.""" # Check what is _delete_ is policy: str = "poly" warmup: str = 'linear' warmup_iters: int = 1500 warmup_ratio: float = 1e-6 power: float = 1.0 min_lr: float = 0.0 by_epoch: bool = False @dataclass class LRConfig: """Configuration parameters for LR Scheduler.""" # Check what is _delete_ is policy: str = "poly" # Non-configurable warmup: str = 'linear' # Non-configurable warmup_iters: int = 1500 warmup_ratio: float = 1e-6 power: float = 1.0 min_lr: float = 0.0 by_epoch: bool = False @dataclass class ParamwiseConfig: """Configuration parameters for Parameters.""" pos_block: Dict[str, float] = field(default_factory=lambda: {"decay_mult": 0.0}) norm: Dict[str, float] = field(default_factory=lambda: {"decay_mult": 0.0}) head: Dict[str, float] = field(default_factory=lambda: {"lr_mult": 10.0}) @dataclass class SFOptimConfig: """Optimizer config.""" type: str = "AdamW" lr: float = 0.00006 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) weight_decay: float = 0.01 paramwise_cfg: ParamwiseConfig = ParamwiseConfig() weight_decay: float = 5e-4 @dataclass class BackboneConfig: """Configuration parameters for Backbone.""" type: str = "mit_b5" @dataclass class SFModelConfig: """SF model config.""" pretrained_model_path: Optional[str] = None backbone: BackboneConfig = BackboneConfig() decode_head: SegformerHeadConfig = SegformerHeadConfig() test_cfg: TestModelConfig = TestModelConfig() input_width: int = 512 input_height: int = 512 # Use the field parameter in order to define as dictionaries @dataclass class RandomCropCfg: """Configuration parameters for Random Crop Aug.""" crop_size: List[int] = field(default_factory=lambda: [512, 512]) # Non - configurable cat_max_ratio: float = 0.75 @dataclass class ResizeCfg: """Configuration parameters for Resize Preprocessing.""" img_scale: Optional[List[int]] = None # configurable ratio_range: List[float] = field(default_factory=lambda: [0.5, 2.0]) keep_ratio: bool = True @dataclass class SFAugmentationConfig: """Augmentation config.""" # @subha: TO Do: Add some more augmentation configurations which were not used in Segformer (later) random_crop: RandomCropCfg = RandomCropCfg() resize: ResizeCfg = ResizeCfg() random_flip: Dict[str, float] = field(default_factory=lambda: {'prob': 0.5}) color_aug: Dict[str, str] = field(default_factory=lambda: {'type': 'PhotoMetricDistortion'}) @dataclass class ImgNormConfig: """Configuration parameters for Img Normalization.""" mean: List[float] = field(default_factory=lambda: [123.675, 116.28, 103.53]) std: List[float] = field(default_factory=lambda: [58.395, 57.12, 57.375]) to_rgb: bool = True @dataclass class PipelineConfig: """Configuration parameters for Validation Pipe.""" img_norm_cfg: ImgNormConfig = ImgNormConfig() multi_scale: Optional[List[int]] = None augmentation_config: SFAugmentationConfig = SFAugmentationConfig() Pad: Dict[str, int] = field(default_factory=lambda: {'size_ht': 1024, 'size_wd': 1024, 'pad_val': 0, 'seg_pad_val': 255}) # Non-configurable. Set based on model_input CollectKeys: List[str] = field(default_factory=lambda: ['img', 'gt_semantic_seg']) @dataclass class seg_class: """Indiv color.""" seg_class: str = "background" mapping_class: str = "background" label_id: int = 0 rgb: List[int] = field(default_factory=lambda: [255, 255, 255]) @dataclass class SFDatasetConfig: """Dataset Config.""" img_dir: Any = MISSING ann_dir: Any = MISSING pipeline: PipelineConfig = PipelineConfig() @dataclass class SFDatasetExpConfig: """Dataset config.""" data_root: str = MISSING img_norm_cfg: ImgNormConfig = ImgNormConfig() train_dataset: SFDatasetConfig = SFDatasetConfig() val_dataset: SFDatasetConfig = SFDatasetConfig() test_dataset: SFDatasetConfig = SFDatasetConfig() palette: Optional[List[seg_class]] = None seg_class_default: seg_class = seg_class() dataloader: str = "Dataloader" img_suffix: Optional[str] = None seg_map_suffix: Optional[str] = None repeat_data_times: int = 2 batch_size: int = 2 workers_per_gpu: int = 2 shuffle: bool = True input_type: str = "rgb" @dataclass class SFExpConfig: """ Overall Exp Config for Segformer. """ manual_seed: int = 47 distributed: bool = True # If needed, the next line can be commented gpu_ids: List[int] = field(default_factory=lambda: [0]) MASTER_ADDR: str = "127.0.0.1" MASTER_PORT: int = 631 @dataclass class TrainerConfig: """Train Config.""" sf_optim: SFOptimConfig = SFOptimConfig() lr_config: LRConfig = LRConfig() grad_clip: float = 0.0 find_unused_parameters: bool = True @dataclass class SFTrainExpConfig: """Train experiment config.""" results_dir: Optional[str] = None encryption_key: str = MISSING exp_config: SFExpConfig = SFExpConfig() trainer: TrainerConfig = TrainerConfig() num_gpus: int = 1 # non configurable here max_iters: int = 10 logging_interval: int = 1 checkpoint_interval: int = 1 resume_training_checkpoint_path: Optional[str] = None validation_interval: Optional[int] = 1 validate: bool = False @dataclass class SFInferenceExpConfig: """Inference experiment config.""" encryption_key: str = MISSING results_dir: Optional[str] = None gpu_id: int = 0 checkpoint: Optional[str] = None exp_config: SFExpConfig = SFExpConfig() num_gpus: int = 1 # non configurable here trt_engine: Optional[str] = None @dataclass class SFEvalExpConfig: """Inference experiment config.""" results_dir: Optional[str] = None encryption_key: str = MISSING gpu_id: int = 0 checkpoint: Optional[str] = None exp_config: SFExpConfig = SFExpConfig() num_gpus: int = 1 # non configurable here trt_engine: Optional[str] = None @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 @dataclass class SFExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None encryption_key: str = MISSING verify: bool = True simplify: bool = False batch_size: int = 1 opset_version: int = 11 trt_engine: Optional[str] = None checkpoint: Optional[str] = None onnx_file: Optional[str] = None exp_config: SFExpConfig = SFExpConfig() trt_config: TrtConfig = TrtConfig() num_gpus: int = 1 # non configurable here input_channel: int = 3 input_width: int = 1024 input_height: int = 1024 @dataclass class GenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: Optional[str] = None trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 224 input_height: int = 224 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: SFModelConfig = SFModelConfig() dataset: SFDatasetExpConfig = SFDatasetExpConfig() train: SFTrainExpConfig = SFTrainExpConfig() evaluate: SFEvalExpConfig = SFEvalExpConfig() inference: SFInferenceExpConfig = SFInferenceExpConfig() gen_trt_engine: GenTrtEngineExpConfig = GenTrtEngineExpConfig() export: SFExportExpConfig = SFExportExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Collect Env Module.""" from mmcv.utils import collect_env as collect_base_env def collect_env(): """Collect the information of the running environments.""" env_info = collect_base_env() # env_info['MMSegmentation'] = f'{mmseg.__version__}+{get_git_hash()[:7]}' return env_info if __name__ == '__main__': """Main Function.""" for name, val in collect_env().items(): print('{}: {}'.format(name, val))
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/utils/collect_env.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils Init Module.""" from .collect_env import collect_env from .logger import get_root_logger, print_log __all__ = ['get_root_logger', 'collect_env', 'print_log']
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logging Module.""" import logging from mmcv.utils import get_logger def get_root_logger(log_file=None, log_level=logging.INFO): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "mmseg". Args: log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ logger = get_logger(name='mmseg', log_file=log_file, log_level=log_level) return logger def print_log(msg, logger=None, level=logging.INFO): """Print a log message. Args: msg (str): The message to be logged. logger (logging.Logger | str | None): The logger to be used. Some special loggers are: - "root": the root logger obtained with `get_root_logger()`. - "silent": no message will be printed. - None: The `print()` method will be used to print log messages. level (int): Logging level. Only available when `logger` is a Logger object or "root". """ if logger is None: print(msg) elif logger == 'root': _logger = get_root_logger() _logger.log(level, msg) elif isinstance(logger, logging.Logger): logger.log(level, msg) elif logger != 'silent': raise TypeError( 'logger should be either a logging.Logger object, "root", ' '"silent" or None, but got {}'.format(logger))
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/utils/logger.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """Utils for Segformer Segmentation""" import os import struct from eff.core.codec import encrypt_stream import shutil def check_and_create(d): """Create a directory.""" if not os.path.isdir(d): os.makedirs(d, exist_ok=True) def check_and_delete(d): """Delete a directory.""" if os.path.isdir(d): shutil.rmtree(d) def encrypt_onnx(tmp_file_name, output_file_name, key): """Encrypt the onnx model.""" with open(tmp_file_name, "rb") as open_temp_file, open(output_file_name, "wb") as open_encoded_file: # set the input name magic number open_encoded_file.write(struct.pack("<i", 0)) encrypt_stream( input_stream=open_temp_file, output_stream=open_encoded_file, passphrase=key, encryption=True )
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/utils/common_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tao status logger for segformer """ import os from collections import OrderedDict from typing import Dict import torch from mmcv.runner.hooks import HOOKS, TextLoggerHook import nvidia_tao_pytorch.core.loggers.api_logging as status_logging import json from time import strftime, gmtime STATUS_JSON_FILENAME = "status.json" @HOOKS.register_module() class TaoTextLoggerHook(TextLoggerHook): """ Logger hook in text. """ def __init__(self, *args, **kwargs): """ init """ self.s_logger = status_logging.get_status_logger() super(TaoTextLoggerHook, self).__init__(*args, **kwargs) def _status_log(self, log_dict: Dict, runner) -> None: """ Status Logging Args: log_dict (Dict): Dictionary with logging values runner (class): MMLab trainer instance """ monitor_data = {} monitor_data["mode"] = log_dict["mode"] if self.by_epoch: monitor_data["cur_epoch"] = log_dict["epoch"] else: monitor_data["cur_iter"] = log_dict["iter"] if log_dict['mode'] == 'val': if int(os.environ['LOCAL_RANK']) == 0: # In multi-GPU setting monitor_data["mIoU"] = log_dict["mIoU"] monitor_data["mAcc"] = log_dict["mAcc"] self.s_logger.kpi = { "Mean IOU": log_dict["mIoU"], "mAcc": log_dict["mAcc"] } if log_dict['mode'] == 'train': running_avg_loss = log_dict["loss"] monitor_data["loss"] = running_avg_loss time_sec_avg = self.time_sec_tot / (runner.iter - self.start_iter + 1) # Per iter monitor_data["time_per_iter"] = strftime("%H:%M:%S", gmtime(time_sec_avg)) monitor_data["train_accuracy"] = log_dict["decode.acc_seg"] self.s_logger.graphical = { "loss": running_avg_loss, "train_accuracy": log_dict["decode.acc_seg"] } try: self.s_logger.write( data=monitor_data, status_level=status_logging.Status.RUNNING) except IOError: # We let this pass because we do not want the json file writing to crash the whole job. pass # Save the json file. filename = os.path.join(runner.work_dir, STATUS_JSON_FILENAME) try: with open(filename, "a+") as f: json.dump(monitor_data, f) f.write('\n') except IOError: # We let this pass because we do not want the json file writing to crash the whole job. pass def log(self, runner) -> OrderedDict: """ log runner """ if 'eval_iter_num' in runner.log_buffer.output: # this doesn't modify runner.iter and is regardless of by_epoch cur_iter = runner.log_buffer.output.pop('eval_iter_num') else: cur_iter = self.get_iter(runner, inner_iter=True) log_dict = OrderedDict( mode=self.get_mode(runner), epoch=self.get_epoch(runner), iter=cur_iter) # only record lr of the first param group cur_lr = runner.current_lr() if isinstance(cur_lr, list): log_dict['lr'] = cur_lr[0] else: assert isinstance(cur_lr, dict) log_dict['lr'] = {} for k, lr_ in cur_lr.items(): assert isinstance(lr_, list) log_dict['lr'].update({k: lr_[0]}) if 'time' in runner.log_buffer.output: # statistic memory if torch.cuda.is_available(): log_dict['memory'] = self._get_max_memory(runner) log_dict = dict(log_dict, **runner.log_buffer.output) # type: ignore self._log_info(log_dict, runner) self._dump_log(log_dict, runner) self._status_log(log_dict, runner) return log_dict
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/hooks/tao_status_logger.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Init Module. """ from nvidia_tao_pytorch.cv.segformer.hooks.tao_status_logger import TaoTextLoggerHook __all__ = ['TaoTextLoggerHook']
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/hooks/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Segformer Scripts File """
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Export of Segformer model. """ import os from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.segformer.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.segformer.utils.common_utils import check_and_create from nvidia_tao_pytorch.cv.segformer.model.sf_model import SFModel from nvidia_tao_pytorch.cv.segformer.dataloader.segformer_dm import SFDataModule from nvidia_tao_pytorch.cv.segformer.model.builder import build_segmentor import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.pointcloud.pointpillars.pcdet.utils import common_utils import datetime import numpy as np from functools import partial import onnxruntime as rt import onnx import torch import torch._C import torch.serialization from mmcv.runner.checkpoint import load_checkpoint from mmcv.runner import get_dist_info, init_dist from mmcv.onnx import register_extra_symbolics def _demo_mm_inputs(input_shape, num_classes): """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions num_classes (int): number of semantic classes """ (N, C, H, W) = input_shape rng = np.random.RandomState(0) imgs = rng.rand(*input_shape) segs = rng.randint( low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) img_metas = [{ 'img_shape': (H, W, C), 'ori_shape': (H, W, C), 'pad_shape': (H, W, C), 'filename': '<demo>.png', 'scale_factor': 1.0, 'flip': False}] mm_inputs = { 'imgs': torch.FloatTensor(imgs), 'img_metas': img_metas, 'gt_semantic_seg': torch.LongTensor(segs) } return mm_inputs def pytorch2onnx(model, input_shape, num_classes, opset_version=11, show=False, output_file='tmp.onnx', verify=False, test_cfg=None, simplify=False, logger=None): """Export Pytorch model to ONNX model and verify the outputs are same between Pytorch and ONNX. Args: model (nn.Module): Pytorch model we want to export. input_shape (tuple): Use this input shape to construct the corresponding dummy input and execute the model. opset_version (int): The onnx op version. Default: 11. show (bool): Whether print the computation graph. Default: False. output_file (string): The path to where we store the output ONNX model. Default: `tmp.onnx`. verify (bool): Whether compare the outputs between Pytorch and ONNX. Default: False. """ model.cuda() model.eval() mm_inputs = _demo_mm_inputs(input_shape, num_classes) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # avoid input splits img_list = [imgs] img_meta_list = [img_metas] # replace original forward function origin_forward = model.forward_export model.forward = partial( model.forward_export, img_meta_list, False) register_extra_symbolics(opset_version) with torch.no_grad(): torch.onnx.export(model, (img_list, ), output_file, export_params=True, input_names=['input'], output_names=["output"], dynamic_axes={"input": {0: "batch_size"}, 'output': {0: 'batch_size'}}, verbose=show, opset_version=opset_version) logger.info('Successfully exported ONNX model.') model.forward = origin_forward final_tmp_onnx_path = output_file if simplify: logger.info('[INFO] Simplifying model...') from onnxsim import simplify onnx_model = onnx.load(output_file) # simplifying dynamic model _, C, H, W = imgs.shape simplified_model, _ = simplify(onnx_model, input_shapes={'input': (1, C, H, W)}, # test bz = 2 dynamic_input_shape=True, check_n=3) simplified_path = output_file[:-5] + "_sim.onnx" onnx.save(simplified_model, simplified_path) final_tmp_onnx_path = simplified_path if verify: # check by onnx onnx_model = onnx.load(final_tmp_onnx_path) onnx.checker.check_model(onnx_model) # check the numerical value # get pytorch output pytorch_result = model(img_meta_list, False, img_list)[0] # get onnx output input_all = [node.name for node in onnx_model.graph.input] input_initializer = [ node.name for node in onnx_model.graph.initializer ] net_feed_input = list(set(input_all) - set(input_initializer)) assert (len(net_feed_input) == 1), "Input dimensions do not match." sess = rt.InferenceSession(output_file) onnx_result = sess.run(None, {net_feed_input[0]: img_list[0].detach().numpy()})[0][0, :, :, 0] if not np.allclose(pytorch_result, onnx_result): raise ValueError( 'The outputs are different between Pytorch and ONNX') logger.info('The outputs are same between Pytorch and ONNX') def run_experiment(experiment_config, results_dir): """Start the Export. Args: experiment_config (Dict): Config dictionary containing epxeriment parameters results_dir (str): Results dir to save the exported ONNX. """ check_and_create(results_dir) # Set the logger log_file = os.path.join(results_dir, 'log_evaluate_{}.txt'.format(datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))) logger = common_utils.create_logger(log_file, rank=0) status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger(status_logging.StatusLogger(filename=status_file, append=True)) status_logger = status_logging.get_status_logger() # log to file logger.info('********************** Start logging for Export.**********************') status_logger.write(message="**********************Start logging for Export**********************.") num_gpus = 1 seed = experiment_config["export"]["exp_config"]["manual_seed"] # Need to change this rank, world_size = get_dist_info() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(0) if "RANK" not in os.environ: os.environ['RANK'] = str(rank) if "WORLD_SIZE" not in os.environ: os.environ['WORLD_SIZE'] = str(world_size) if "MASTER_PORT" not in os.environ: os.environ['MASTER_PORT'] = str(experiment_config["export"]["exp_config"]["MASTER_PORT"]) if "MASTER_ADDR" not in os.environ: os.environ['MASTER_ADDR'] = experiment_config["export"]["exp_config"]["MASTER_ADDR"] init_dist(launcher="pytorch", backend="nccl") dm = SFDataModule(experiment_config["dataset"], num_gpus, seed, logger, "eval", experiment_config["model"]["input_height"], experiment_config["model"]["input_width"]) dm.setup() sf_model = SFModel(experiment_config, phase="eval", num_classes=dm.num_classes) CLASSES = dm.CLASSES PALETTE = dm.PALETTE model_path = experiment_config["export"]["checkpoint"] if not model_path: raise ValueError("You need to provide the model path for Export.") model_to_test = build_segmentor(sf_model.model_cfg, test_cfg=None) model_to_test = sf_model._convert_batchnorm(model_to_test) _ = load_checkpoint(model_to_test, model_path, map_location='cpu') model_to_test.CLASSES = CLASSES model_to_test.PALETTE = PALETTE output_file = experiment_config["export"]["onnx_file"] if not output_file: onnx_path = model_path.replace(".pth", ".onnx") else: onnx_path = output_file input_channel = experiment_config["export"]["input_channel"] input_height = experiment_config["export"]["input_height"] input_width = experiment_config["export"]["input_width"] input_shape = [1] + [input_channel, input_height, input_width] pytorch2onnx(model_to_test, input_shape, opset_version=experiment_config["export"]["opset_version"], show=False, output_file=onnx_path, verify=False, num_classes=dm.num_classes, test_cfg=sf_model.test_cfg, simplify=experiment_config["export"]["simplify"], logger=logger) status_logger.write(message="Completed Export.", status_level=status_logging.Status.SUCCESS) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="export_fan", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the Export.""" try: if cfg.export.results_dir is not None: results_dir = cfg.export.results_dir else: results_dir = os.path.join(cfg.results_dir, "export") run_experiment(experiment_config=cfg, results_dir=results_dir) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Export was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/scripts/export.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train Segformer model.""" import os from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.segformer.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.segformer.utils.common_utils import check_and_create from nvidia_tao_pytorch.cv.segformer.model.sf_model import SFModel from nvidia_tao_pytorch.cv.segformer.dataloader.segformer_dm import SFDataModule from nvidia_tao_pytorch.cv.segformer.utils import collect_env, get_root_logger from nvidia_tao_pytorch.cv.segformer.trainer.trainer import train_segmentor, set_random_seed from nvidia_tao_pytorch.cv.segformer.dataloader.data_utils import build_dataset import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.cv.segformer.model.builder import build_segmentor from nvidia_tao_pytorch.cv.segformer.hooks.tao_status_logger import TaoTextLoggerHook # noqa pylint: disable=W0611 from mmcv.runner import init_dist, get_dist_info from omegaconf import OmegaConf import warnings import datetime import json import time def get_latest_pth_model(results_dir): """Utility function to return the latest pth model in a dir. Args: results_dir (str): Results dir to save the checkpoints. """ trainable_ckpts = [int(item.split('.')[0].split('_')[1]) for item in os.listdir(results_dir) if item.endswith(".pth")] num_ckpts = len(trainable_ckpts) if num_ckpts == 0: return None latest_step = sorted(trainable_ckpts, reverse=True)[0] latest_checkpoint = os.path.join(results_dir, "iter_{}.pth".format(latest_step)) if not os.path.isfile(latest_checkpoint): raise FileNotFoundError("Checkpoint file not found at {}") return latest_checkpoint def run_experiment(experiment_config, results_dir): """Start the training. Args: experiment_config (Dict): Config dictionary containing epxeriment parameters results_dir (str): Results dir to save the trained checkpoints. """ check_and_create(results_dir) # Set the logger log_file = os.path.join(results_dir, 'log_train_{}.txt'.format(datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))) logger = get_root_logger(log_file=log_file, log_level="INFO") meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info exp_params_file = os.path.join(results_dir, "experiment_params.json") try: with open(exp_params_file, 'w') as fp: exp_cfg_dict = OmegaConf.to_container(experiment_config) json.dump(exp_cfg_dict, fp) except Exception as e: warnings.warn("The expeirment spec paras could not be dumped into file due to {}.".format(e)) num_gpus = experiment_config["train"]["num_gpus"] seed = experiment_config["train"]["exp_config"]["manual_seed"] # Need to change this rank, world_size = get_dist_info() # If distributed these env variables are set by torchrun if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(0) if "RANK" not in os.environ: os.environ['RANK'] = str(rank) if "WORLD_SIZE" not in os.environ: os.environ['WORLD_SIZE'] = str(world_size) if "MASTER_PORT" not in os.environ: os.environ['MASTER_PORT'] = str(experiment_config["train"]["exp_config"]["MASTER_PORT"]) if "MASTER_ADDR" not in os.environ: os.environ['MASTER_ADDR'] = experiment_config["train"]["exp_config"]["MASTER_ADDR"] status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger(status_logging.StatusLogger(filename=status_file, append=True)) status_logger = status_logging.get_status_logger() # log to file logger.info('**********************Start logging for Training**********************') status_logger.write(message="**********************Start logging for Training**********************.") distributed = experiment_config["train"]["exp_config"]["distributed"] max_iters = experiment_config["train"]['max_iters'] resume_ckpt = experiment_config["train"]['resume_training_checkpoint_path'] init_dist(launcher="pytorch", backend="nccl") dm = SFDataModule(experiment_config["dataset"], num_gpus, seed, logger, "train", experiment_config["model"]["input_height"], experiment_config["model"]["input_width"]) set_random_seed(seed, deterministic=False) with open(os.path.join(results_dir, 'target_class_id_mapping.json'), 'w') as fp: json.dump(dm.target_classes_train_mapping, fp) logger.info("Completed Data Module Construction") status_logger.write(message="Completed Data Module Construction", status_level=status_logging.Status.RUNNING) sf_model = SFModel(experiment_config, phase="train", num_classes=dm.num_classes) dm.setup() sf_model.max_iters = max_iters if not resume_ckpt: resume_ckpt = get_latest_pth_model(results_dir) sf_model.resume_ckpt = resume_ckpt sf_model.checkpoint_interval = experiment_config["train"]["checkpoint_interval"] dm.log_interval = experiment_config["train"]["logging_interval"] datasets = [build_dataset(dm.train_data, dm.default_args)] model = build_segmentor( sf_model.model_cfg, train_cfg=None, test_cfg=None) timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) model.CLASSES = dm.CLASSES train_segmentor( model, datasets, distributed=distributed, validate=experiment_config["train"]["validate"], timestamp=timestamp, meta=meta, result_dir=results_dir, dm=dm, sf_model=sf_model) status_logger.write(message="Completed Training.", status_level=status_logging.Status.SUCCESS) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="train_isbi", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the training process.""" try: if cfg.train.results_dir is not None: results_dir = cfg.train.results_dir else: results_dir = os.path.join(cfg.results_dir, "train") run_experiment(experiment_config=cfg, results_dir=results_dir) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Train was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/scripts/train.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Evaluation of Segformer model. """ import os import torch from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.cv.segformer.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.segformer.utils.common_utils import check_and_create from nvidia_tao_pytorch.cv.segformer.inference.inferencer import multi_gpu_test, single_gpu_test from nvidia_tao_pytorch.cv.segformer.model.sf_model import SFModel from nvidia_tao_pytorch.cv.segformer.dataloader.segformer_dm import SFDataModule from nvidia_tao_pytorch.cv.segformer.dataloader.data_utils import build_dataloader from nvidia_tao_pytorch.cv.segformer.model.builder import build_segmentor from nvidia_tao_pytorch.cv.segformer.dataloader.data_utils import build_dataset import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.pointcloud.pointpillars.pcdet.utils import common_utils from omegaconf import OmegaConf from mmcv.runner import get_dist_info, init_dist from mmcv.parallel import MMDistributedDataParallel, MMDataParallel from mmcv.runner.checkpoint import load_checkpoint import datetime def run_experiment(experiment_config, results_dir): """Start the inference. Args: experiment_config (Dict): Config dictionary containing epxeriment parameters results_dir (str): Results dir to save the inference images """ check_and_create(results_dir) # Set the logger log_file = os.path.join(results_dir, 'log_inference_{}.txt'.format(datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))) logger = common_utils.create_logger(log_file, rank=0) status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger(status_logging.StatusLogger(filename=status_file, append=True)) status_logger = status_logging.get_status_logger() # log to file logger.info('********************** Start logging for Inference.**********************') status_logger.write(message="**********************Start logging for Inference**********************.") num_gpus = experiment_config["inference"]["num_gpus"] seed = experiment_config["inference"]["exp_config"]["manual_seed"] # Need to change this rank, world_size = get_dist_info() # If distributed these are set by torchrun if "LOCAL_RANK" not in os.environ: os.environ['LOCAL_RANK'] = str(0) if "RANK" not in os.environ: os.environ['RANK'] = str(rank) if "WORLD_SIZE" not in os.environ: os.environ['WORLD_SIZE'] = str(world_size) if "MASTER_PORT" not in os.environ: os.environ['MASTER_PORT'] = str(experiment_config["inference"]["exp_config"]["MASTER_PORT"]) if "MASTER_ADDR" not in os.environ: os.environ['MASTER_ADDR'] = experiment_config["inference"]["exp_config"]["MASTER_ADDR"] init_dist(launcher="pytorch", backend="nccl") dm = SFDataModule(experiment_config["dataset"], num_gpus, seed, logger, "infer", experiment_config["model"]["input_height"], experiment_config["model"]["input_width"]) if experiment_config["dataset"]["palette"]: pallete_colors = OmegaConf.to_container(experiment_config["dataset"]["palette"]) else: pallete_colors dm.setup() # test_dataset = dm.test_dataset sf_model = SFModel(experiment_config, phase="infer", num_classes=dm.num_classes) test_dataset = build_dataset(dm.test_data, dm.default_args) data_loader = build_dataloader( test_dataset, samples_per_gpu=dm.samples_per_gpu, workers_per_gpu=dm.workers_per_gpu, dist=True, shuffle=False) CLASSES = dm.CLASSES PALETTE = dm.PALETTE model_path = experiment_config["inference"]["checkpoint"] if not model_path: raise ValueError("You need to provide the model path for Evaluation.") model_to_test = build_segmentor(sf_model.model_cfg, test_cfg=None) _ = load_checkpoint(model_to_test, model_path, map_location='cpu') model_to_test.CLASSES = CLASSES model_to_test.PALETTE = PALETTE efficient_test = True # False distributed = True if not distributed: model_to_test = MMDataParallel(model_to_test, device_ids=[0]) outputs = single_gpu_test(model_to_test, data_loader, False, results_dir, efficient_test) else: model_to_test = MMDistributedDataParallel( model_to_test.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model_to_test, data_loader, None, gpu_collect=True, efficient_test=True) rank, _ = get_dist_info() kwargs = {} kwargs["imgfile_prefix"] = results_dir if rank == 0: test_dataset.format_results(outputs, **kwargs) status_logger.write(message="Completed Inference.", status_level=status_logging.Status.SUCCESS) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="test_isbi", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the Inference process.""" try: # Obfuscate logs. if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "inference") run_experiment(experiment_config=cfg, results_dir=results_dir) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Inference was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Evaluation of Segformer model. """ import os import torch from nvidia_tao_pytorch.cv.segformer.config.default_config import ExperimentConfig from nvidia_tao_pytorch.cv.segformer.utils.common_utils import check_and_create from nvidia_tao_pytorch.cv.segformer.inference.inferencer import multi_gpu_test, single_gpu_test from nvidia_tao_pytorch.cv.segformer.model.sf_model import SFModel from nvidia_tao_pytorch.cv.segformer.dataloader.segformer_dm import SFDataModule from nvidia_tao_pytorch.cv.segformer.dataloader.data_utils import build_dataloader from nvidia_tao_pytorch.cv.segformer.model.builder import build_segmentor from nvidia_tao_pytorch.cv.segformer.dataloader.data_utils import build_dataset import nvidia_tao_pytorch.core.loggers.api_logging as status_logging from nvidia_tao_pytorch.core.hydra.hydra_runner import hydra_runner from nvidia_tao_pytorch.pointcloud.pointpillars.pcdet.utils import common_utils from mmcv.runner.checkpoint import load_checkpoint from mmcv.runner import get_dist_info, init_dist from mmcv.parallel import MMDistributedDataParallel, MMDataParallel import datetime import json def run_experiment(experiment_config, results_dir): """Start the evaluate. Args: experiment_config (Dict): Config dictionary containing epxeriment parameters results_dir (str): Results dir to save the evaluation result """ check_and_create(results_dir) # Set the logger log_file = os.path.join(results_dir, 'log_evaluate_{}.txt'.format(datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))) logger = common_utils.create_logger(log_file, rank=0) status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger(status_logging.StatusLogger(filename=status_file, append=True)) status_logger = status_logging.get_status_logger() # log to file logger.info('********************** Start logging for Evaluation.**********************') status_logger.write(message="**********************Start logging for Evaluation**********************.") num_gpus = experiment_config["evaluate"]["num_gpus"] seed = experiment_config["evaluate"]["exp_config"]["manual_seed"] # Need to change this rank, world_size = get_dist_info() # If distributed these are set by torchrun if "LOCAL_RANK" not in os.environ: os.environ['LOCAL_RANK'] = str(0) if "RANK" not in os.environ: os.environ['RANK'] = str(rank) if "WORLD_SIZE" not in os.environ: os.environ['WORLD_SIZE'] = str(world_size) if "MASTER_PORT" not in os.environ: os.environ['MASTER_PORT'] = str(experiment_config["evaluate"]["exp_config"]["MASTER_PORT"]) if "MASTER_ADDR" not in os.environ: os.environ['MASTER_ADDR'] = experiment_config["evaluate"]["exp_config"]["MASTER_ADDR"] init_dist(launcher="pytorch", backend="nccl") dm = SFDataModule(experiment_config["dataset"], num_gpus, seed, logger, "eval", experiment_config["model"]["input_height"], experiment_config["model"]["input_width"]) dm.setup() sf_model = SFModel(experiment_config, phase="eval", num_classes=dm.num_classes) test_dataset = build_dataset(dm.test_data, dm.default_args) data_loader = build_dataloader( test_dataset, samples_per_gpu=dm.samples_per_gpu, workers_per_gpu=dm.workers_per_gpu, dist=True, shuffle=False) CLASSES = dm.CLASSES PALETTE = dm.PALETTE model_path = experiment_config["evaluate"]["checkpoint"] if not model_path: raise ValueError("You need to provide the model path for Evaluation.") model_to_test = build_segmentor(sf_model.model_cfg, test_cfg=None) _ = load_checkpoint(model_to_test, model_path, map_location='cpu') model_to_test.CLASSES = CLASSES model_to_test.PALETTE = PALETTE efficient_test = True # False distributed = True if not distributed: model_to_test = MMDataParallel(model_to_test, device_ids=[0]) outputs = single_gpu_test(model_to_test, data_loader, False, results_dir, efficient_test) else: model_to_test = MMDistributedDataParallel( model_to_test.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model_to_test, data_loader, None, gpu_collect=True, efficient_test=True) rank, _ = get_dist_info() kwargs = {} kwargs["imgfile_prefix"] = results_dir results_file = os.path.join(results_dir, "results_tao.json") if rank == 0: eval_results = test_dataset.evaluate(outputs, **kwargs) with open(results_file, 'w') as fp: json.dump(str(eval_results), fp) status_logger.kpi = {"Mean IOU": eval_results["mIoU"], "mAcc": eval_results["mAcc"], "aAcc": eval_results["aAcc"]} status_logger.write(status_level=status_logging.Status.RUNNING) status_logger.write(message="Completed Evaluation.", status_level=status_logging.Status.SUCCESS) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load experiment specification, additially using schema for validation/retrieving the default values. # --config_path and --config_name will be provided by the entrypoint script. @hydra_runner( config_path=os.path.join(spec_root, "experiment_specs"), config_name="test_isbi", schema=ExperimentConfig ) def main(cfg: ExperimentConfig) -> None: """Run the training process.""" try: # Obfuscate logs. if cfg.evaluate.results_dir is not None: results_dir = cfg.evaluate.results_dir else: results_dir = os.path.join(cfg.results_dir, "evaluate") run_experiment(experiment_config=cfg, results_dir=results_dir) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Evaluation was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint script for the Segformer task."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """'Entry point script running subtasks related to Segformer.""" import importlib import os import pkgutil import argparse import subprocess import sys from time import time import nvidia_tao_pytorch.cv.segformer.scripts as scripts from nvidia_tao_pytorch.core.telemetry.nvml_utils import get_device_details from nvidia_tao_pytorch.core.telemetry.telemetry import send_telemetry_data def get_subtasks(package): """Get supported subtasks for a given task. This function lists out the tasks in in the .scripts folder. Returns: subtasks (dict): Dictionary of files. """ module_path = package.__path__ modules = {} # Collect modules dynamically. for _, task, is_package in pkgutil.walk_packages(module_path): if is_package: continue module_name = package.__name__ + '.' + task module_details = { "module_name": module_name, "runner_path": os.path.abspath(importlib.import_module(module_name).__file__), } modules[task] = module_details return modules def launch(parser, subtasks, network=None): """CLI function that executes subtasks. Args: parser: Created parser object for a given task. subtasks: list of subtasks for a given task. network: Name of the network running training. """ if network is None: network = "tao_pytorch" # Subtasks for a given model. parser.add_argument( 'subtask', default='train', choices=subtasks.keys(), help="Subtask for a given task/model.", ) # Add standard TLT arguments. parser.add_argument( "-r", "--results_dir", help="Path to a folder where the experiment outputs should be written.", default=None, required=False, ) parser.add_argument("-e", "--experiment_spec_file", help="Path to the experiment spec file.", default=None) parser.add_argument("--gpus", "-g", type=int, default=1, help="Number of GPUs") # Parse the arguments. args, unknown_args = parser.parse_known_args() script_args = "" # Process spec file for all commands except the one for getting spec files ;) # Make sure the user provides spec file. if args.experiment_spec_file is None: print("ERROR: The subtask `{}` requires the following argument: -e/--experiment_spec_file".format(args.subtask)) exit(1) # Make sure the file exists! if not os.path.exists(args.experiment_spec_file): print("ERROR: The indicated experiment spec file `{}` doesn't exist!".format(args.experiment_spec_file)) exit(1) # Split spec file_path into config path and config name. path, name = os.path.split(args.experiment_spec_file) if path != '': script_args += " --config-path " + os.path.realpath(path) script_args += " --config-name " + name if args.gpus > 1: if args.subtask == "export": raise ValueError("Export does not support multi-gpu") else: script_args += f" {args.subtask}.num_gpus={args.gpus}" # And add other params AFTERWARDS! if args.results_dir: script_args += " results_dir=" + args.results_dir # Find relevant module and pass args. script = subtasks[args.subtask]["runner_path"] # Pass unknown args to call unknown_args_as_str = " ".join(unknown_args) # Create a system call. call = ( f"torchrun --nproc_per_node={args.gpus} " + script + script_args + " " + unknown_args_as_str ) process_passed = True start = time() try: # Run the script. subprocess.check_call(call, shell=True, stdout=sys.stdout, stderr=sys.stdout) except (KeyboardInterrupt, SystemExit): print("Command was interrupted.") process_passed = True except subprocess.CalledProcessError as e: if e.output is not None: print(e.output) process_passed = False end = time() time_lapsed = int(end - start) try: gpu_data = list() for device in get_device_details(): gpu_data.append(device.get_config()) send_telemetry_data( network, args.subtask, gpu_data, num_gpus=1, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: print("Telemetry data couldn't be sent, but the command ran successfully.") print(f"[WARNING]: {e}") pass if not process_passed: print("Execution status: FAIL") exit(1) # returning non zero return code from the process. print("Execution status: PASS") def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "segformer", add_help=True, description="Transfer Learning Toolkit" ) # Build list of subtasks by inspecting the package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="segformer") if __name__ == '__main__': main()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/entrypoint/segformer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model Init Module.""" from .backbones import * # noqa: F401,F403 from .builder import (BACKBONES, HEADS, LOSSES, SEGMENTORS, build_backbone, build_head, build_loss, build_segmentor) from .decode_heads import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .segmentors import * # noqa: F401,F403 __all__ = [ 'BACKBONES', 'HEADS', 'LOSSES', 'SEGMENTORS', 'build_backbone', 'build_head', 'build_loss', 'build_segmentor' ]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model Builder Class.""" import warnings from mmcv.utils import Registry, build_from_cfg from torch import nn BACKBONES = Registry('backbone', scope='xxx') NECKS = Registry('neck', scope='xxx') HEADS = Registry('head', scope='xxx') LOSSES = Registry('loss', scope='xxx') SEGMENTORS = Registry('segmentor', scope='xxx') def build(cfg, registry, default_args=None): """Build a module. Args: cfg (dict, list[dict]): The config of modules, is is either a dict or a list of configs. registry (:obj:`Registry`): A registry the module belongs to. default_args (dict, optional): Default arguments to build the module. Defaults to None. Returns: nn.Module: A built nn module. """ if isinstance(cfg, list): modules = [ build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg ] return nn.Sequential(*modules) return build_from_cfg(cfg, registry, default_args) def build_backbone(cfg): """Build backbone.""" return build(cfg, BACKBONES) def build_neck(cfg): """Build neck.""" return build(cfg, NECKS) def build_head(cfg): """Build head.""" return build(cfg, HEADS) def build_loss(cfg): """Build loss.""" return build(cfg, LOSSES) def build_segmentor(cfg, train_cfg=None, test_cfg=None): """Build segmentor.""" if train_cfg is not None or test_cfg is not None: warnings.warn( 'train_cfg and test_cfg is deprecated, ' 'please specify them in model', UserWarning) assert cfg.get('train_cfg') is None or train_cfg is None, \ 'train_cfg specified in both outer field and model field ' assert cfg.get('test_cfg') is None or test_cfg is None, \ 'test_cfg specified in both outer field and model field ' return build(cfg, SEGMENTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Main model file for SegFormer. """ import torch from omegaconf import OmegaConf class SFModel(object): # pylint: disable=too-many-ancestors """Pytorch Module for SegFormer Model.""" def __init__(self, experiment_spec, phase=None, num_classes=None): """Init Segformer Model module. Args: experiment_spec (Dict): Dictionary of the spec parameters. phase (str): Indicates train, val or test phase. num_classes (int): Number of classes. """ super().__init__() self.experiment_spec = experiment_spec self.dataset_config = experiment_spec["dataset"] self.sf_config = experiment_spec["model"] self.phase = phase if phase == "train": self.sf_optim = experiment_spec["train"]["trainer"]["sf_optim"] self.sf_optim_cfg = OmegaConf.to_container(self.sf_optim) self.lr_config = OmegaConf.to_container(experiment_spec["train"]["trainer"]["lr_config"]) self.validation_interval = experiment_spec["train"]["validation_interval"] self.find_unused_parameters = experiment_spec["train"]["trainer"]["find_unused_parameters"] self.train_cfg = None self.test_cfg = OmegaConf.to_container(self.sf_config["test_cfg"]) self.model_cfg = OmegaConf.to_container(self.sf_config) self.model_cfg["pretrained"] = self.model_cfg["pretrained_model_path"] self.model_cfg.pop("pretrained_model_path") self.model_cfg["type"] = "EncoderDecoder" self.model_cfg["decode_head"]["type"] = "SegFormerHead" self.model_cfg["backbone"]["style"] = "pytorch" self.model_cfg.pop("input_height") self.model_cfg.pop("input_width") self.backbone = self.model_cfg["backbone"]["type"] self.channels_map = {"mit_b0": [32, 64, 160, 256], "fan_tiny_8_p4_hybrid": [128, 256, 192, 192], "fan_large_16_p4_hybrid": [128, 256, 480, 480], "fan_small_12_p4_hybrid": [128, 256, 384, 384], "fan_base_16_p4_hybrid": [128, 256, 448, 448], } if self.backbone in self.channels_map: self.model_cfg["decode_head"]["in_channels"] = self.channels_map[self.backbone] if "fan" in self.backbone: self.model_cfg["decode_head"]["channels"] = 256 self.export = False self.model_cfg["backbone"]["export"] = self.export self.test_cfg["export"] = self.export self.model_cfg["train_cfg"] = self.train_cfg if self.test_cfg["mode"] == "whole": self.test_cfg.pop("crop_size") self.test_cfg.pop("stride") self.model_cfg["test_cfg"] = self.test_cfg self.model_cfg["decode_head"]["export"] = self.export self.model_cfg["decode_head"]["num_classes"] = num_classes self.num_classes = num_classes self.distributed = experiment_spec["train"]["exp_config"]["distributed"] self.checkpoint_loaded = None self.tmp_ckpt = None self.max_iters = 1 self.resume_ckpt = None self.checkpoint_interval = 1000 def _convert_batchnorm(self, module): """ Convert Sync BN during Export.""" module_output = module if isinstance(module, torch.nn.SyncBatchNorm): module_output = torch.nn.BatchNorm2d(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats) if module.affine: module_output.weight.data = module.weight.data.clone().detach() module_output.bias.data = module.bias.data.clone().detach() # keep requires_grad unchanged module_output.weight.requires_grad = module.weight.requires_grad module_output.bias.requires_grad = module.bias.requires_grad module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked for name, child in module.named_children(): module_output.add_module(name, self._convert_batchnorm(child)) del module return module_output
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/sf_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module.""" from .accuracy import Accuracy, accuracy from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .utils import reduce_loss, weight_reduce_loss, weighted_loss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss' ]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/losses/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils Module.""" import functools import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss if reduction_enum == 1: return loss.mean() if reduction_enum == 2: return loss.sum() return None def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: assert weight.dim() == loss.dim(), "The weights and loss dimensions are not equal." if weight.dim() > 1: assert weight.size(1) == 1 or weight.size(1) == loss.size(1), "Weight size and loss size should match." loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': loss = loss.sum() / avg_factor # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/losses/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Cross Entropy Module.""" import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import weight_reduce_loss def cross_entropy(pred, label, weight=None, class_weight=None, reduction='mean', avg_factor=None, ignore_index=-100): """The wrapper function for :func:`F.cross_entropy`""" # class_weight is a manual rescaling weight given to each class. # If given, has to be a Tensor of size C element-wise losses loss = F.cross_entropy( pred, label, weight=class_weight, reduction='none', ignore_index=ignore_index) # apply weights and do the reduction if weight is not None: weight = weight.float() loss = weight_reduce_loss( loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights *= valid_mask return bin_labels, bin_label_weights def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=255): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int | None): The label index to be ignored. Default: 255 Returns: torch.Tensor: The calculated loss """ if pred.dim() != label.dim(): assert (pred.dim() == 2 and label.dim() == 1) or (pred.dim() == 4 and label.dim() == 3), \ 'Only pred shape [N, C], label shape [N] or pred shape [N, C, ' \ 'H, W], label shape [N, H, W] are supported' label, weight = _expand_onehot_labels(label, weight, pred.shape, ignore_index) # weighted element-wise losses if weight is not None: weight = weight.float() loss = F.binary_cross_entropy_with_logits( pred, label.float(), pos_weight=class_weight, reduction='none') # do the reduction for the weighted loss loss = weight_reduce_loss( loss, weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None, class_weight=None, ignore_index=None): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (None): Placeholder, to be consistent with other loss. Default: None. Returns: torch.Tensor: The calculated loss """ assert ignore_index is None, 'BCE loss does not support ignore_index' # TODO: handle these two reserved arguments assert reduction == 'mean' and avg_factor is None, "The average should be mean." num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, weight=class_weight, reduction='mean')[None] @LOSSES.register_module() class CrossEntropyLoss(nn.Module): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float], optional): Weight of each class. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. """ def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, loss_weight=1.0): """Init.""" super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False), "Either use_sigmoid should be true or use_mask should be true." self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = class_weight if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function.""" assert reduction_override in (None, 'none', 'mean', 'sum'), "Provided Reduction Overried is not supported." reduction = ( reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = cls_score.new_tensor(self.class_weight) else: class_weight = None loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_cls
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/losses/cross_entropy_loss.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accuracy Module.""" import torch.nn as nn def accuracy(pred, target, topk=1, thresh=None): """Calculate accuracy according to the prediction and target. Args: pred (torch.Tensor): The model prediction, shape (N, num_class, ...) target (torch.Tensor): The target of each prediction, shape (N, , ...) topk (int | tuple[int], optional): If the predictions in ``topk`` matches the target, the predictions will be regarded as correct ones. Defaults to 1. thresh (float, optional): If not None, predictions with scores under this threshold are considered incorrect. Default to None. Returns: float | tuple[float]: If the input ``topk`` is a single integer, the function will return a single float as accuracy. If ``topk`` is a tuple containing multiple integers, the function will return a tuple containing accuracies of each ``topk`` number. """ assert isinstance(topk, (int, tuple)), "Topk predictions should be int or tuple." if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False maxk = max(topk) if pred.size(0) == 0: accu = [pred.new_tensor(0.) for i in range(len(topk))] return accu[0] if return_single else accu assert pred.ndim == target.ndim + 1, "Prediction dimension should be equal to target dimension" assert pred.size(0) == target.size(0), "The prediction size: {} is different from the target size: {}.".format(pred.size, target.size) assert maxk <= pred.size(1), \ f'maxk {maxk} exceeds pred dimension {pred.size(1)}' pred_value, pred_label = pred.topk(maxk, dim=1) # transpose to shape (maxk, N, ...) pred_label = pred_label.transpose(0, 1) correct = pred_label.eq(target.unsqueeze(0).expand_as(pred_label)) if thresh is not None: # Only prediction values larger than thresh are counted as correct correct = correct & (pred_value > thresh).t() res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / target.numel())) return res[0] if return_single else res class Accuracy(nn.Module): """Accuracy calculation module.""" def __init__(self, topk=(1, ), thresh=None): """Module to calculate the accuracy. Args: topk (tuple, optional): The criterion used to calculate the accuracy. Defaults to (1,). thresh (float, optional): If not None, predictions with scores under this threshold are considered incorrect. Default to None. """ super().__init__() self.topk = topk self.thresh = thresh def forward(self, pred, target): """Forward function to calculate accuracy. Args: pred (torch.Tensor): Prediction of models. target (torch.Tensor): Target for each prediction. Returns: tuple[float]: The accuracies under different topk criterions. """ return accuracy(pred, target, self.topk, self.thresh)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/losses/accuracy.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Se Layer Module.""" import mmcv from mmcv.cnn import ConvModule import torch.nn as nn from .make_divisible import make_divisible class SELayer(nn.Module): """Squeeze-and-Excitation Module. Args: channels (int): The input (and output) channels of the SE layer. ratio (int): Squeeze ratio in SELayer, the intermediate channel will be ``int(channels/ratio)``. Default: 16. conv_cfg (None or dict): Config dict for convolution layer. Default: None, which means using conv2d. act_cfg (dict or Sequence[dict]): Config dict for activation layer. If act_cfg is a dict, two activation layers will be configurated by this dict. If act_cfg is a sequence of dicts, the first activation layer will be configurated by the first dict and the second activation layer will be configurated by the second dict. Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, divisor=6.0)). """ def __init__(self, channels, ratio=16, conv_cfg=None, act_cfg=(dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, divisor=6.0))): """Init Module.""" super(SELayer, self).__init__() if isinstance(act_cfg, dict): act_cfg = (act_cfg, act_cfg) assert len(act_cfg) == 2 assert mmcv.is_tuple_of(act_cfg, dict) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.conv1 = ConvModule( in_channels=channels, out_channels=make_divisible(channels // ratio, 8), kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[0]) self.conv2 = ConvModule( in_channels=make_divisible(channels // ratio, 8), out_channels=channels, kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[1]) def forward(self, x): """Forward Module.""" out = self.global_avgpool(x) out = self.conv1(out) out = self.conv2(out) return x * out
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/se_layer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inverted Resiual.""" from mmcv.cnn import ConvModule from torch import nn from torch.utils import checkpoint as cp from .se_layer import SELayer class InvertedResidual(nn.Module): """InvertedResidual block for MobileNetV2. Args: in_channels (int): The input channels of the InvertedResidual block. out_channels (int): The output channels of the InvertedResidual block. stride (int): Stride of the middle (first) 3x3 convolution. expand_ratio (int): Adjusts number of channels of the hidden layer in InvertedResidual by this amount. dilation (int): Dilation rate of depthwise conv. Default: 1 conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, stride, expand_ratio, dilation=1, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU6'), with_cp=False): """Init Module.""" super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.use_res_connect = self.stride == 1 and in_channels == out_channels hidden_dim = int(round(in_channels * expand_ratio)) layers = [] if expand_ratio != 1: layers.append( ConvModule( in_channels=in_channels, out_channels=hidden_dim, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) layers.extend([ ConvModule( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=hidden_dim, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), ConvModule( in_channels=hidden_dim, out_channels=out_channels, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) ]) self.conv = nn.Sequential(*layers) def forward(self, x): """Forward Module.""" def _inner_forward(x): """Inner forward.""" if self.use_res_connect: return x + self.conv(x) return self.conv(x) if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out class InvertedResidualV3(nn.Module): """Inverted Residual Block for MobileNetV3. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. mid_channels (int): The input channels of the depthwise convolution. kernel_size (int): The kernal size of the depthwise convolution. Default: 3. stride (int): The stride of the depthwise convolution. Default: 1. se_cfg (dict): Config dict for se layer. Defaul: None, which means no se layer. with_expand_conv (bool): Use expand conv or not. If set False, mid_channels must be the same with in_channels. Default: True. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, mid_channels, kernel_size=3, stride=1, se_cfg=None, with_expand_conv=True, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), with_cp=False): """Init Module.""" super(InvertedResidualV3, self).__init__() self.with_res_shortcut = (stride == 1 and in_channels == out_channels) assert stride in [1, 2], "Stride should be 1 or 2." self.with_cp = with_cp self.with_se = se_cfg is not None self.with_expand_conv = with_expand_conv if self.with_se: assert isinstance(se_cfg, dict), "se layer should be a dictionary." if not self.with_expand_conv: assert mid_channels == in_channels, "Mid channels should be equal to in channels." if self.with_expand_conv: self.expand_conv = ConvModule( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.depthwise_conv = ConvModule( in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, conv_cfg=dict( type='Conv2dAdaptivePadding') if stride == 2 else conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if self.with_se: self.se = SELayer(**se_cfg) self.linear_conv = ConvModule( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) def forward(self, x): """Forward Module.""" def _inner_forward(x): """Inner forward.""" out = x if self.with_expand_conv: out = self.expand_conv(out) out = self.depthwise_conv(out) if self.with_se: out = self.se(out) out = self.linear_conv(out) if self.with_res_shortcut: return x + out return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/inverted_residual.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Res Layer Module.""" from mmcv.cnn import build_conv_layer, build_norm_layer from torch import nn class ResLayer(nn.Sequential): """ResLayer to build ResNet style backbone. Args: block (nn.Module): block used to build ResLayer. inplanes (int): inplanes of block. planes (int): planes of block. num_blocks (int): number of blocks. stride (int): stride of the first block. Default: 1 avg_down (bool): Use AvgPool instead of stride conv when downsampling in the bottleneck. Default: False conv_cfg (dict): dictionary to construct and config conv layer. Default: None norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') multi_grid (int | None): Multi grid dilation rates of last stage. Default: None contract_dilation (bool): Whether contract first dilation of each layer Default: False """ def __init__(self, block, inplanes, planes, num_blocks, stride=1, dilation=1, avg_down=False, conv_cfg=None, norm_cfg=dict(type='BN'), multi_grid=None, contract_dilation=False, **kwargs): """Init Module.""" self.block = block downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = [] conv_stride = stride if avg_down: conv_stride = 1 downsample.append( nn.AvgPool2d( kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) downsample.extend([ build_conv_layer( conv_cfg, inplanes, planes * block.expansion, kernel_size=1, stride=conv_stride, bias=False), build_norm_layer(norm_cfg, planes * block.expansion)[1] ]) downsample = nn.Sequential(*downsample) layers = [] if multi_grid is None: if dilation > 1 and contract_dilation: first_dilation = dilation // 2 else: first_dilation = dilation else: first_dilation = multi_grid[0] layers.append( block( inplanes=inplanes, planes=planes, stride=stride, dilation=first_dilation, downsample=downsample, conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) inplanes = planes * block.expansion for i in range(1, num_blocks): layers.append( block( inplanes=inplanes, planes=planes, stride=1, dilation=dilation if multi_grid is None else multi_grid[i], conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) super(ResLayer, self).__init__(*layers)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/res_layer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Up Convolution Block.""" import torch import torch.nn as nn from mmcv.cnn import ConvModule, build_upsample_layer class UpConvBlock(nn.Module): """Upsample convolution block in decoder for UNet. This upsample convolution block consists of one upsample module followed by one convolution block. The upsample module expands the high-level low-resolution feature map and the convolution block fuses the upsampled high-level low-resolution feature map and the low-level high-resolution feature map from encoder. Args: conv_block (nn.Sequential): Sequential of convolutional layers. in_channels (int): Number of input channels of the high-level skip_channels (int): Number of input channels of the low-level high-resolution feature map from encoder. out_channels (int): Number of output channels. num_convs (int): Number of convolutional layers in the conv_block. Default: 2. stride (int): Stride of convolutional layer in conv_block. Default: 1. dilation (int): Dilation rate of convolutional layer in conv_block. Default: 1. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. conv_cfg (dict | None): Config dict for convolution layer. Default: None. norm_cfg (dict | None): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict | None): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). upsample_cfg (dict): The upsample config of the upsample module in decoder. Default: dict(type='InterpConv'). If the size of high-level feature map is the same as that of skip feature map (low-level feature map from encoder), it does not need upsample the high-level feature map and the upsample_cfg is None. dcn (bool): Use deformable convoluton in convolutional layer or not. Default: None. plugins (dict): plugins for convolutional layers. Default: None. """ def __init__(self, conv_block, in_channels, skip_channels, out_channels, num_convs=2, stride=1, dilation=1, with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), upsample_cfg=dict(type='InterpConv'), dcn=None, plugins=None): """Init Module.""" super(UpConvBlock, self).__init__() assert dcn is None, 'Not implemented yet.' assert plugins is None, 'Not implemented yet.' self.conv_block = conv_block( in_channels=2 * skip_channels, out_channels=out_channels, num_convs=num_convs, stride=stride, dilation=dilation, with_cp=with_cp, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, dcn=None, plugins=None) if upsample_cfg is not None: self.upsample = build_upsample_layer( cfg=upsample_cfg, in_channels=in_channels, out_channels=skip_channels, with_cp=with_cp, norm_cfg=norm_cfg, act_cfg=act_cfg) else: self.upsample = ConvModule( in_channels, skip_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) def forward(self, skip, x): """Forward function.""" x = self.upsample(x) out = torch.cat([skip, x], dim=1) out = self.conv_block(out) return out
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/up_conv_block.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Norm Module.""" import torch import math import warnings def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Trunc Normal.""" # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values lower = norm_cdf((a - mean) / std) upper = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * lower - 1, 2 * upper - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/norm.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module.""" from .inverted_residual import InvertedResidual, InvertedResidualV3 from .make_divisible import make_divisible from .res_layer import ResLayer from .self_attention_block import SelfAttentionBlock from .up_conv_block import UpConvBlock __all__ = [ 'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual', 'UpConvBlock', 'InvertedResidualV3' ]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Self-attention Module.""" import torch from torch import nn from torch.nn import functional as F from mmcv.cnn import ConvModule, constant_init class SelfAttentionBlock(nn.Module): """General self-attention block/non-local block. Please refer to https://arxiv.org/abs/1706.03762 for details about key, query and value. Args: key_in_channels (int): Input channels of key feature. query_in_channels (int): Input channels of query feature. channels (int): Output channels of key/query transform. out_channels (int): Output channels. share_key_query (bool): Whether share projection weight between key and query projection. query_downsample (nn.Module): Query downsample module. key_downsample (nn.Module): Key downsample module. key_query_num_convs (int): Number of convs for key/query projection. value_num_convs (int): Number of convs for value projection. matmul_norm (bool): Whether normalize attention map with sqrt of channels with_out (bool): Whether use out projection. conv_cfg (dict|None): Config of conv layers. norm_cfg (dict|None): Config of norm layers. act_cfg (dict|None): Config of activation layers. """ def __init__(self, key_in_channels, query_in_channels, channels, out_channels, share_key_query, query_downsample, key_downsample, key_query_num_convs, value_out_num_convs, key_query_norm, value_out_norm, matmul_norm, with_out, conv_cfg, norm_cfg, act_cfg): """Init Module.""" super(SelfAttentionBlock, self).__init__() if share_key_query: assert key_in_channels == query_in_channels self.key_in_channels = key_in_channels self.query_in_channels = query_in_channels self.out_channels = out_channels self.channels = channels self.share_key_query = share_key_query self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.key_project = self.build_project( key_in_channels, channels, num_convs=key_query_num_convs, use_conv_module=key_query_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if share_key_query: self.query_project = self.key_project else: self.query_project = self.build_project( query_in_channels, channels, num_convs=key_query_num_convs, use_conv_module=key_query_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.value_project = self.build_project( key_in_channels, channels if with_out else out_channels, num_convs=value_out_num_convs, use_conv_module=value_out_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if with_out: self.out_project = self.build_project( channels, out_channels, num_convs=value_out_num_convs, use_conv_module=value_out_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) else: self.out_project = None self.query_downsample = query_downsample self.key_downsample = key_downsample self.matmul_norm = matmul_norm self.init_weights() def init_weights(self): """Initialize weight of later layer.""" if self.out_project is not None: if not isinstance(self.out_project, ConvModule): constant_init(self.out_project, 0) def build_project(self, in_channels, channels, num_convs, use_conv_module, conv_cfg, norm_cfg, act_cfg): """Build projection layer for key/query/value/out.""" if use_conv_module: convs = [ ConvModule( in_channels, channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) ] for _ in range(num_convs - 1): convs.append( ConvModule( channels, channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) else: convs = [nn.Conv2d(in_channels, channels, 1)] for _ in range(num_convs - 1): convs.append(nn.Conv2d(channels, channels, 1)) if len(convs) > 1: convs = nn.Sequential(*convs) else: convs = convs[0] return convs def forward(self, query_feats, key_feats): """Forward function.""" batch_size = query_feats.size(0) query = self.query_project(query_feats) if self.query_downsample is not None: query = self.query_downsample(query) query = query.reshape(*query.shape[:2], -1) query = query.permute(0, 2, 1).contiguous() key = self.key_project(key_feats) value = self.value_project(key_feats) if self.key_downsample is not None: key = self.key_downsample(key) value = self.key_downsample(value) key = key.reshape(*key.shape[:2], -1) value = value.reshape(*value.shape[:2], -1) value = value.permute(0, 2, 1).contiguous() sim_map = torch.matmul(query, key) if self.matmul_norm: sim_map = (self.channels**-.5) * sim_map sim_map = F.softmax(sim_map, dim=-1) context = torch.matmul(sim_map, value) context = context.permute(0, 2, 1).contiguous() context = context.reshape(batch_size, -1, *query_feats.shape[2:]) if self.out_project is not None: context = self.out_project(context) return context
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/self_attention_block.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for Segformer""" import os import csv import torch import shutil import struct import tempfile from eff.core.codec import encrypt_stream from nvidia_tao_pytorch.core.connectors.checkpoint_connector import decrypt_checkpoint def patch_decrypt_checkpoint(checkpoint, key): """Patch decrypt checkpoint. To make it work when using multi-gpu trained model to single-gpu environment """ from functools import partial legacy_load = torch.load torch.load = partial(legacy_load, map_location="cpu") checkpoint = decrypt_checkpoint(checkpoint, key) torch.load = legacy_load # set the encrypted status to be False when it is decrypted checkpoint["state_dict_encrypted"] = False return checkpoint def encrypt_onnx(tmp_file_name, output_file_name, key): """Encrypt the onnx model""" with open(tmp_file_name, "rb") as open_temp_file, open(output_file_name, "wb") as open_encoded_file: # set the input name magic number open_encoded_file.write(struct.pack("<i", 0)) encrypt_stream( input_stream=open_temp_file, output_stream=open_encoded_file, passphrase=key, encryption_type=True ) def check_and_create(d): """Create a directory.""" if not os.path.isdir(d): os.makedirs(d) def data_to_device(data): """Transfer data to GPU.""" if isinstance(data, list): cuda_data = [] for item in data: cuda_item = item.cuda(non_blocking=True) cuda_data.append(cuda_item) else: cuda_data = data.cuda(non_blocking=True) return cuda_data class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): """Init""" self.reset() def reset(self): """reset parameters.""" self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): """update accuracy.""" self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def save_checkpoint(state, is_best, checkpoint, model_best): """Naive checkpoint saver.""" torch.save(state, checkpoint) if is_best: shutil.copyfile(checkpoint, model_best) def record_train_info(info, filename): """Naive log information.""" str_log = "train_loss: {} val_loss: {} train_acc@1: {} val_acc@1: {} lr: {}".format( info['train_loss'], info['val_loss'], info['train_acc@1'], info['val_acc@1'], info['lr']) print(str_log) column_names = ['epoch', 'train_loss', 'val_loss', 'train_acc@1', 'val_acc@1', 'lr'] if not os.path.isfile(filename): with open(filename, "w") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=column_names) writer.writeheader() writer.writerow(info) else: # else it exists so append without writing the header with open(filename, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=column_names) writer.writerow(info) def load_model(model_path): """Load state dict from the model path accounting for mmcls trained models.""" temp = tempfile.NamedTemporaryFile(suffix='.pth', delete=False) tmp_model_path = temp.name new_state_dict = {} checkpoint = torch.load(model_path) for k, v in checkpoint["state_dict"].items(): if k.startswith("backbone."): k = k[9:] new_state_dict[k] = v checkpoint['state_dict'] = new_state_dict torch.save(checkpoint, tmp_model_path) return tmp_model_path
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/common_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Make Divisible Operator.""" def make_divisible(value, divisor, min_value=None, min_ratio=0.9): """Make divisible function. This function rounds the channel number to the nearest value that can be divisible by the divisor. It is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by divisor. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py # noqa Args: value (int): The original channel number. divisor (int): The divisor to fully divide the channel number. min_value (int): The minimum value of the output channel. Default: None, means that the minimum value equal to the divisor. min_ratio (float): The minimum ratio of the rounded channel number to the original channel number. Default: 0.9. Returns: int: The modified output channel number. """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than (1-min_ratio). if new_value < min_ratio * value: new_value += divisor return new_value
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/make_divisible.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DropBlock, DropPath PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. Papers: DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) Code: DropBlock impl inspired by two Tensorflow impl that I liked: - https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 - https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py Hacked together by / Copyright 2020 Ross Wightman """ import torch import torch.nn as nn import torch.nn.functional as F def drop_block_2d( x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf DropBlock with an experimental gaussian noise option. This layer has been tested on a few training runs with success, but needs further validation and possibly optimization for lower runtime impact. """ _, C, H, W = x.shape total_size = W * H clipped_block_size = min(block_size, min(W, H)) # seed_drop_rate, the gamma parameter gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( (W - block_size + 1) * (H - block_size + 1)) # Forces the block to be inside the feature map. w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device)) valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \ ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) if batchwise: # one mask for whole batch, quite a bit faster uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) else: uniform_noise = torch.rand_like(x) block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) block_mask = -F.max_pool2d( -block_mask, kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) if with_noise: normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) if inplace: x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) else: x = x * block_mask + normal_noise * (1 - block_mask) else: normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype) if inplace: x.mul_(block_mask * normalize_scale) else: x = x * block_mask * normalize_scale return x def drop_block_fast_2d( x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid block mask at edges. """ _, C, H, W = x.shape total_size = W * H clipped_block_size = min(block_size, min(W, H)) gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ((W - block_size + 1) * (H - block_size + 1)) if batchwise: # one mask for whole batch, quite a bit faster block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma else: # mask per batch element block_mask = torch.rand_like(x) < gamma block_mask = F.max_pool2d( block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) if with_noise: normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) if inplace: x.mul_(1. - block_mask).add_(normal_noise * block_mask) else: x = x * (1. - block_mask) + normal_noise * block_mask else: block_mask = 1 - block_mask normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype) if inplace: x.mul_(block_mask * normalize_scale) else: x = x * block_mask * normalize_scale return x class DropBlock2d(nn.Module): """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf """ def __init__(self, drop_prob=0.1, block_size=7, gamma_scale=1.0, with_noise=False, inplace=False, batchwise=False, fast=True): """Init Module.""" super(DropBlock2d, self).__init__() self.drop_prob = drop_prob self.gamma_scale = gamma_scale self.block_size = block_size self.with_noise = with_noise self.inplace = inplace self.batchwise = batchwise self.fast = fast # FIXME finish comparisons of fast vs not def forward(self, x): """Forward.""" if not self.training or not self.drop_prob: return x if self.fast: return drop_block_fast_2d( x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) return drop_block_2d( x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): """Init Module.""" super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): """Forward.""" return drop_path(x, self.drop_prob, self.training)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/utils/drop.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/FAN/blob/main/LICENSE # ------------------------------------------------------------------------- # MIT License # # Copyright (c) 2021 Facebook, Inc. and its affiliates. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Modified by Daquan Zhou # ------------------------------------------------------------------------- """ ConvNeXt Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman """ from collections import OrderedDict from functools import partial import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.helpers import named_apply, build_model_with_cfg from timm.models.layers import ClassifierHead, SelectAdaptivePool2d, DropPath from nvidia_tao_pytorch.cv.backbone.convnext_utils import checkpoint_filter_fn, _init_weights, LayerNorm2d, ConvMlp def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs } default_cfgs = dict( convnext_tiny=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth"), convnext_small=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth"), convnext_base=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth"), convnext_large=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth"), convnext_tiny_hnf=_cfg(url=''), convnext_base_in22k=_cfg( # url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841), url="pretrained/convnext_base_22k_224.pth", num_classes=21841), convnext_large_in22k=_cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", num_classes=21841), convnext_xlarge_in22k=_cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", num_classes=21841), ) class Mlp(nn.Module): """MLP Module.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): """Init Function.""" super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.fc2 = nn.Linear(hidden_features, out_features) self.act = act_layer() self.drop = nn.Dropout(drop) def forward(self, x): """Forward Function.""" x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class ConvNeXtBlock(nn.Module): """ ConvNeXt Block There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. """ def __init__(self, dim, drop_path=0., ls_init_value=1e-6, conv_mlp=True, mlp_ratio=4, norm_layer=None): """Initialize ConvNext Block. Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 ls_init_value (float): Init value for Layer Scale. Default: 1e-6. """ super().__init__() if not norm_layer: norm_layer = partial(LayerNorm2d, eps=1e-6) if conv_mlp else partial(nn.LayerNorm, eps=1e-6) mlp_layer = ConvMlp if conv_mlp else Mlp self.use_conv_mlp = conv_mlp self.conv_dw = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = norm_layer(dim) self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=nn.GELU) self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): """Forward function.""" shortcut = x x = self.conv_dw(x) if self.use_conv_mlp: x = self.norm(x) x = self.mlp(x) else: x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.mlp(x) x = x.permute(0, 3, 1, 2) if self.gamma is not None: x = x.mul(self.gamma.reshape(1, -1, 1, 1)) x = self.drop_path(x) + shortcut return x class ConvNeXtStage(nn.Module): """ConvNeXt Stage.""" def __init__( self, in_chs, out_chs, stride=2, depth=2, dp_rates=None, ls_init_value=1.0, conv_mlp=True, norm_layer=None, cl_norm_layer=None, cross_stage=False): """Initialize ConvNext Stage. Args: in_chs (int): Number of input channels. out_chs (int): Number of output channels. """ super().__init__() if in_chs != out_chs or stride > 1: self.downsample = nn.Sequential( norm_layer(in_chs), nn.Conv2d(in_chs, out_chs, kernel_size=stride, stride=stride), ) else: self.downsample = nn.Identity() dp_rates = dp_rates or [0.] * depth self.blocks = nn.Sequential(*[ConvNeXtBlock( dim=out_chs, drop_path=dp_rates[j], ls_init_value=ls_init_value, conv_mlp=conv_mlp, norm_layer=norm_layer if conv_mlp else cl_norm_layer) for j in range(depth)] ) def forward(self, x): """Forward function.""" x = self.downsample(x) x = self.blocks(x) return x class ConvNeXt(nn.Module): """ ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf """ def __init__( self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, patch_size=4, depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), ls_init_value=1e-6, conv_mlp=True, use_head=True, head_init_scale=1., head_norm_first=False, norm_layer=None, drop_rate=0., drop_path_rate=0., ): """ Initialize the ConvNext Class Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (tuple(int)): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_rate (float): Head dropout rate drop_path_rate (float): Stochastic depth rate. Default: 0. ls_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ super().__init__() assert output_stride == 32 if norm_layer is None: norm_layer = partial(LayerNorm2d, eps=1e-6) cl_norm_layer = norm_layer if conv_mlp else partial(nn.LayerNorm, eps=1e-6) else: assert conv_mlp,\ 'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' cl_norm_layer = norm_layer self.num_classes = num_classes self.drop_rate = drop_rate self.feature_info = [] # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size), norm_layer(dims[0]) ) self.stages = nn.Sequential() dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] curr_stride = patch_size prev_chs = dims[0] stages = [] # 4 feature resolution stages, each consisting of multiple residual blocks for i in range(len(depths)): stride = 2 if i > 0 else 1 # FIXME support dilation / output_stride curr_stride *= stride out_chs = dims[i] stages.append(ConvNeXtStage( prev_chs, out_chs, stride=stride, depth=depths[i], dp_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp, norm_layer=norm_layer, cl_norm_layer=cl_norm_layer) ) prev_chs = out_chs # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.num_features = prev_chs if head_norm_first: # norm -> global pool -> fc ordering, like most other nets (not compat with FB weights) self.norm_pre = norm_layer(self.num_features) # final norm layer, before pooling if use_head: self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) else: # pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights) self.norm_pre = nn.Identity() if use_head: self.head = nn.Sequential(OrderedDict([ ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), ('norm', norm_layer(self.num_features)), ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) def get_classifier(self): """Returns classifier of ConvNeXt.""" return self.head.fc def reset_classifier(self, num_classes=0, global_pool='avg'): """Redefine the classification head""" if isinstance(self.head, ClassifierHead): # norm -> global pool -> fc self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) else: # pool -> norm -> fc self.head = nn.Sequential(OrderedDict([ ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), ('norm', self.head.norm), ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) def forward_features(self, x, return_feat=False): """Forward Features.""" x = self.stem(x) out_list = [] # import pdb; pdb.set_trace() for i in range(len(self.stages)): x = self.stages[i](x) out_list.append(x) x = self.norm_pre(x) return x, out_list if return_feat else x def forward(self, x): """Forward Function.""" x = self.forward_features(x) x = self.head(x) return x def _create_hybrid_backbone(variant='convnext_base_in22k', pretrained=False, **kwargs): """Helper function to create the hybrid model.""" model = build_model_with_cfg( ConvNeXt, variant, pretrained, pretrained_cfg=default_cfgs[variant], pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) return model
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/backbones/convnext_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://github.com/NVlabs/FAN/blob/main/LICENSE """FAN Transformer Backbone Module for Segmentation.""" import math from functools import partial import warnings import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from mmcv.runner import load_checkpoint from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.layers import DropPath, trunc_normal_, to_2tuple from nvidia_tao_pytorch.cv.segformer.model.utils.common_utils import load_model from nvidia_tao_pytorch.cv.segformer.model.builder import BACKBONES from nvidia_tao_pytorch.cv.segformer.utils import get_root_logger from nvidia_tao_pytorch.cv.segformer.model.backbones.convnext_utils import _create_hybrid_backbone from nvidia_tao_pytorch.cv.backbone.fan import (PositionalEncodingFourier, Mlp, ConvPatchEmbed, ClassAttentionBlock, adaptive_avg_pool) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj.0.0', 'classifier': 'head', **kwargs } default_cfgs = { 'fan_tiny_12_p4_224': _cfg(url=''), 'fan_small_12_p16_224': _cfg(url=''), 'fan_base_12_p16_224': _cfg(url=''), 'fan_large_12_p16_224': _cfg(url=''), } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution + batch norm""" return torch.nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False), nn.SyncBatchNorm(out_planes) ) class ClassAttn(nn.Module): """Class Attention""" # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to do CA def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): """Init Function""" super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.k = nn.Linear(dim, dim, bias=qkv_bias) self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): """Forward Function""" B, N, C = x.shape q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q = q * self.scale v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C) x_cls = self.proj(x_cls) x_cls = self.proj_drop(x_cls) return x_cls class DWConv(nn.Module): """Depth-wise convolution""" def __init__(self, in_features, out_features=None, act_layer=nn.GELU, kernel_size=3): """Init Function""" super().__init__() out_features = out_features or in_features padding = kernel_size // 2 self.conv1 = torch.nn.Conv2d( in_features, in_features, kernel_size=kernel_size, padding=padding, groups=in_features) self.act = act_layer() self.bn = nn.SyncBatchNorm(in_features) self.conv2 = torch.nn.Conv2d( in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features) def forward(self, x, H: int, W: int): """Forward Function.""" B, N, C = x.shape x = x.permute(0, 2, 1).reshape(B, C, H, W) x = self.conv1(x) x = self.act(x) x = self.bn(x) x = self.conv2(x) x = x.reshape(B, C, N).permute(0, 2, 1) return x class TokenMixing(nn.Module): """Token Mixing""" def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): """Init Function""" super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # config of mlp for v processing self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.apply(self._init_weights) def _init_weights(self, m): """Init Weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): """Forward Function""" B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q * self.scale @ k.transpose(-2, -1)) # * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) Bv, Hd, Nv, Cv = v.shape # noqa pylint: disable=W0612 # v = self.norm_v(self.mlp_v(v.transpose(1, 2).reshape(Bv, Nv, Hd*Cv), H//self.sr_ratio, W//self.sr_ratio)).reshape(Bv, Nv, Hd, Cv).transpose(1, 2) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, patch_size=2, feature_size=None, in_chans=3, embed_dim=384): """Init Function""" super().__init__() assert isinstance(backbone, nn.Module), "Backbone is not of instance Module." img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # NOTE Most reliable way of determining output dims is to run forward pass training = backbone.training if training: backbone.eval() o = self.backbone.forward_features(torch.zeros(1, in_chans, img_size[0], img_size[1])) if isinstance(o, (list, tuple)): o = o[-1] # last feature if backbone outputs list/tuple of features feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) if hasattr(self.backbone, 'feature_info'): feature_dim = self.backbone.feature_info.channels()[-1] else: feature_dim = self.backbone.num_features assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0, "Feature size is not a multiple of patch size." self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, return_feat=False): """Forward Function""" x, out_list = self.backbone.forward_features(x, return_feat=return_feat) _, _, H, W = x.shape if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.proj(x).flatten(2).transpose(1, 2) if return_feat: return x, (H // self.patch_size[0], W // self.patch_size[1]), out_list return x, (H // self.patch_size[0], W // self.patch_size[1]) class ChannelProcessing(nn.Module): """Channel Processing""" def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., drop_path=0., mlp_hidden_dim=None, act_layer=nn.GELU, drop=None, norm_layer=nn.LayerNorm): """Initialize ChannelProcessing class""" super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp_v = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.norm_v = norm_layer(dim) self.q = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.apply(self._init_weights) def _init_weights(self, m): """Initialize weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _gen_attn(self, q, k, mode='none', shift_range=4, sampling_step=4): """Returns attention""" _, _, N, _ = k.shape if torch.onnx.is_in_onnx_export(): # If softmax dim is not the last dimension, then PyTorch decompose the softmax ops into # smaller ops like ReduceMax, ReduceSum, Sub, and Div. # As a result, ONNX export fails for opset_version >= 12. # Here, we rearrange the transpose so that softmax is done over the last dimension. q = q.transpose(-1, -2).softmax(-1) k = k.transpose(-1, -2).softmax(-1) warnings.warn("Replacing default adatpive_avg_pool2d to custom implementation for ONNX export") # adaptive_avg_pool2d is not supported for torch to onnx export k = adaptive_avg_pool(k.transpose(-1, -2), (N, 1)) else: q = q.softmax(-2).transpose(-1, -2) k = torch.nn.functional.adaptive_avg_pool2d(k.softmax(-2), (N, 1)) attn = torch.nn.functional.sigmoid(q @ k) return attn * self.temperature def forward(self, x, H, W, atten=None): """Forward functions """ B, N, C = x.shape v = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = self._gen_attn(q, k) attn = self.attn_drop(attn) Bv, Hd, Nv, Cv = v.shape v = self.norm_v(self.mlp_v(v.transpose(1, 2).reshape(Bv, Nv, Hd * Cv), H, W)).reshape(Bv, Nv, Hd, Cv).transpose(1, 2) repeat_time = N // attn.shape[-1] attn = attn.repeat_interleave(repeat_time, dim=-1) if attn.shape[-1] > 1 else attn x = (attn * v.transpose(-1, -2)).permute(0, 3, 1, 2).reshape(B, N, C) return x, attn * v.transpose(-1, -2) @torch.jit.ignore def no_weight_decay(self): """Ignore during weight decay""" return {'temperature'} class FANBlock(nn.Module): """FAN block from https://arxiv.org/abs/2204.12451""" def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, eta=1.): """Initialize FANBlock class""" super().__init__() self.norm1 = norm_layer(dim) self.attn = TokenMixing(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_block = ChannelProcessing self.mlp = mlp_block(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, drop_path=drop_path, drop=drop, mlp_hidden_dim=int(dim * mlp_ratio)) self.gamma1 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) self.gamma2 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) self.H = None self.W = None def forward(self, x, attn=None, return_attention=False): """Forward Function""" H, W = self.H, self.W x_new, attn = self.attn(self.norm1(x), H, W) x = x + self.drop_path(self.gamma1 * x_new) x_new, attn = self.mlp(self.norm2(x), H, W, atten=attn) x = x + self.drop_path(self.gamma2 * x_new) self.H, self.W = H, W if return_attention: return attn return x class FAN(nn.Module): """Based on timm https://github.com/rwightman/pytorch-image-models/tree/master/timm""" def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., backbone=None, out_idx=-1, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=False, feat_downsample=False, use_checkpoint=False, default_cfg=None): """Init Function""" super().__init__() img_size = to_2tuple(img_size) self.feat_downsample = feat_downsample self.use_checkpoint = use_checkpoint self.default_cfg = default_cfg self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim self.out_idx = out_idx norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU if backbone is None: self.patch_embed = ConvPatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, act_layer=act_layer) else: self.patch_embed = HybridEmbed(backbone=backbone, patch_size=2, embed_dim=embed_dim) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.use_pos_embed = use_pos_embed if use_pos_embed: self.pos_embed = PositionalEncodingFourier(dim=embed_dim) self.pos_drop = nn.Dropout(p=drop_rate) build_block = FANBlock self.blocks = nn.ModuleList([ build_block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate, norm_layer=norm_layer, eta=eta) for i in range(depth)]) self.cls_attn_blocks = nn.ModuleList([ ClassAttentionBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm) for _ in range(cls_attn_layers)]) if isinstance(self.patch_embed, HybridEmbed) and feat_downsample: self.learnable_downsample = nn.Conv2d(in_channels=embed_dim, out_channels=768, kernel_size=3, stride=2, padding=1, dilation=1, groups=1, bias=True) # Init weights trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def init_weights(self, pretrained=None): """Init Weights""" if isinstance(pretrained, str): logger = get_root_logger() update_pretrained = load_model(pretrained) load_checkpoint(self, update_pretrained, map_location='cpu', strict=False, logger=logger) def _init_weights(self, m): """Init Weights""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): """Ignore jit compile""" return {'pos_embed', 'cls_token'} def get_classifier(self): """Function to get classifier head.""" return self.head def reset_classifier(self, num_classes, global_pool=''): """Resets head of classifier with num_classes""" self.num_classes = num_classes self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): """Extract Features.""" outs = [] out_index = [4, 7, 11] B = x.shape[0] # x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches) if isinstance(self.patch_embed, HybridEmbed): x, (Hp, Wp), out_list = self.patch_embed(x, return_feat=True) outs = outs + out_list out_index = [self.out_idx] else: x, (Hp, Wp) = self.patch_embed(x) if self.use_pos_embed: # `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C) pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = self.pos_drop(x) for idx, blk in enumerate(self.blocks): blk.H, blk.W = Hp, Wp if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) Hp, Wp = blk.H, blk.W if idx in out_index: outs.append(x.reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous()) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) for blk in self.cls_attn_blocks: x = blk(x) tmp = x[:, 1:, :].reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous() if isinstance(self.patch_embed, HybridEmbed) and self.feat_downsample: tmp = self.learnable_downsample(tmp) outs.append(tmp) else: outs.append(x[:, 1:, :].reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous()) return outs def forward(self, x): """Forward Function""" x = self.forward_features(x) return x def get_last_selfattention(self, x): """Returns last self-attention""" B = x.shape[0] # x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches) x, (Hp, Wp) = self.patch_embed(x) if self.use_pos_embed: # `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C) pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = self.pos_drop(x) for blk in self.blocks: x = blk(x, Hp, Wp) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) for i, blk in enumerate(self.cls_attn_blocks): if i < len(self.blocks) - 1: x = blk(x) else: return blk(x, return_attention=True) return None # FAN-Hybrid models @BACKBONES.register_module() class fan_tiny_8_p4_hybrid(FAN): """FAN Hybrid Tiny""" def __init__(self, **kwargs): """Init Function""" depth = 8 model_args = dict(depths=[3, 3], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) super(fan_tiny_8_p4_hybrid, self).__init__(patch_size=16, in_chans=3, num_classes=1000, embed_dim=192, depth=depth, backbone=backbone, out_idx=7, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True) @BACKBONES.register_module() class fan_small_12_p4_hybrid(FAN): """FAN Hybrid Small""" def __init__(self, **kwargs): """Init Function""" depth = 10 model_args = dict(depths=[3, 3], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) super(fan_small_12_p4_hybrid, self).__init__(patch_size=16, in_chans=3, num_classes=1000, embed_dim=384, depth=depth, backbone=backbone, out_idx=9, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, feat_downsample=False) @BACKBONES.register_module() class fan_base_16_p4_hybrid(FAN): """FAN Hybrid Base""" def __init__(self, **kwargs): """Init Function""" depth = 16 model_args = dict(depths=[3, 3], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) super(fan_base_16_p4_hybrid, self).__init__(patch_size=16, in_chans=3, num_classes=1000, embed_dim=448, depth=depth, backbone=backbone, out_idx=15, feat_downsample=False, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, default_cfg=None) @BACKBONES.register_module() class fan_large_16_p4_hybrid(FAN): """FAN Hybrid Large""" def __init__(self, **kwargs): """Init Function""" depth = 22 model_args = dict(depths=[3, 5], dims=[128, 256, 512, 1024], use_head=False) backbone = _create_hybrid_backbone(pretrained=False, pretrained_strict=False, **model_args) super(fan_large_16_p4_hybrid, self).__init__(patch_size=16, in_chans=3, num_classes=1000, embed_dim=480, depth=depth, backbone=backbone, out_idx=18, num_heads=10, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, use_checkpoint=False) # FAN-ViT Models @BACKBONES.register_module() class fan_small_12_p16_224(FAN): """FAN ViT Small""" def __init__(self, **kwargs): """Init Function""" depth = 12 super(fan_small_12_p16_224, self).__init__(patch_size=16, in_chans=3, num_classes=1000, embed_dim=384, depth=depth, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True) @BACKBONES.register_module() class fan_base_18_p16_224(FAN): """FAN ViT Base""" def __init__(self, **kwargs): """Init Function""" depth = 18 super(fan_base_18_p16_224, self).__init__(patch_size=16, in_chans=3, num_classes=1000, embed_dim=448, depth=depth, num_heads=8, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., se_style=True, out_idx=16, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=True, use_checkpoint=False)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/backbones/fan.py
# --------------------------------------------------------------- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # --------------------------------------------------------------- """Mix Transformer Module.""" import torch import torch.nn as nn from functools import partial from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from nvidia_tao_pytorch.cv.segformer.model.builder import BACKBONES from nvidia_tao_pytorch.cv.segformer.utils import get_root_logger from nvidia_tao_pytorch.cv.segformer.model.utils.common_utils import load_model from mmcv.runner import load_checkpoint import math class Mlp(nn.Module): """MLP Class.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., export=False): """Init Function.""" super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features, export) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): """Init Function.""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): """Forward.""" x = self.fc1(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): """Attention Class.""" def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): """Init Module.""" super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.sr_ratio = sr_ratio if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) self.apply(self._init_weights) def _init_weights(self, m): """Init Weights.""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): """Forward.""" B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) if self.sr_ratio > 1: x_ = x.permute(0, 2, 1).reshape(B, C, H, W) x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) x_ = self.norm(x_) kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) else: kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): """Block Class.""" def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, export=False): """Init Module.""" super().__init__() self.export = export self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, export=self.export) self.apply(self._init_weights) def _init_weights(self, m): """Init Weights.""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): """ Forward Module.""" x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x class OverlapPatchEmbed(nn.Module): """ Image to Patch Embedding.""" def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768, export=False): """Init Function.""" super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] self.num_patches = self.H * self.W self.export = export self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) self.norm = nn.LayerNorm(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): """Init Weights Function.""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x): """Forward Function.""" x = self.proj(x) _, _, H, W = x.shape if self.export: _, C, H, W = x.shape x = x.reshape(-1, C, H * W).transpose(1, 2) else: x = x.flatten(2).transpose(1, 2) x = self.norm(x) return x, H, W class MixVisionTransformer(nn.Module): """Mix ViT Class.""" def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], export=False): """Init Function.""" super().__init__() self.num_classes = num_classes self.depths = depths self.export = export # patch_embed self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans, embed_dim=embed_dims[0], export=self.export) self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0], embed_dim=embed_dims[1], export=self.export) self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1], embed_dim=embed_dims[2], export=self.export) self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2], embed_dim=embed_dims[3], export=self.export) # transformer encoder dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 self.block1 = nn.ModuleList([Block( dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[0], export=self.export) for i in range(depths[0])]) self.norm1 = norm_layer(embed_dims[0]) cur += depths[0] self.block2 = nn.ModuleList([Block( dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[1], export=self.export) for i in range(depths[1])]) self.norm2 = norm_layer(embed_dims[1]) cur += depths[1] self.block3 = nn.ModuleList([Block( dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[2], export=self.export) for i in range(depths[2])]) self.norm3 = norm_layer(embed_dims[2]) cur += depths[2] self.block4 = nn.ModuleList([Block( dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[3], export=self.export) for i in range(depths[3])]) self.norm4 = norm_layer(embed_dims[3]) # classification head # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): """Init Weights.""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def init_weights(self, pretrained=None): """Init Weights.""" if isinstance(pretrained, str): logger = get_root_logger() update_pretrained = load_model(pretrained) load_checkpoint(self, update_pretrained, map_location='cpu', strict=False, logger=logger) def reset_drop_path(self, drop_path_rate): """Reset Drop Path.""" dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] cur = 0 for i in range(self.depths[0]): self.block1[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[0] for i in range(self.depths[1]): self.block2[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[1] for i in range(self.depths[2]): self.block3[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[2] for i in range(self.depths[3]): self.block4[i].drop_path.drop_prob = dpr[cur + i] def freeze_patch_emb(self): """Freeze Patch Emb.""" self.patch_embed1.requires_grad = False @torch.jit.ignore def no_weight_decay(self): """ No Weight Decay.""" return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better def get_classifier(self): """ Get Classifier.""" return self.head def reset_classifier(self, num_classes, global_pool=''): """Reset Classifier.""" self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): """Forward Features.""" B = x.shape[0] outs = [] # stage 1 x, H, W = self.patch_embed1(x) for _, blk in enumerate(self.block1): x = blk(x, H, W) x = self.norm1(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) # stage 2 x, H, W = self.patch_embed2(x) for _, blk in enumerate(self.block2): x = blk(x, H, W) x = self.norm2(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) # stage 3 x, H, W = self.patch_embed3(x) for _, blk in enumerate(self.block3): x = blk(x, H, W) x = self.norm3(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) # stage 4 x, H, W = self.patch_embed4(x) for _, blk in enumerate(self.block4): x = blk(x, H, W) x = self.norm4(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) return outs def forward(self, x): """Forward.""" x = self.forward_features(x) # x = self.head(x) return x class DWConv(nn.Module): """ Model Class.""" def __init__(self, dim=768, export=False): """ Init Function. """ super(DWConv, self).__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) self.export = export def forward(self, x, H, W): """ Forward.""" B, _, C = x.shape x = x.transpose(1, 2).view(B, C, H, W) x = self.dwconv(x) if self.export: x = x.view(-1, C, H * W).transpose(1, 2) else: x = x.flatten(2).transpose(1, 2) return x @BACKBONES.register_module() class mit_b0(MixVisionTransformer): """ Model Class.""" def __init__(self, **kwargs): """ Init Function. """ super(mit_b0, self).__init__( patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1) self.export = kwargs["export"] @BACKBONES.register_module() class mit_b1(MixVisionTransformer): """ Model Class.""" def __init__(self, **kwargs): """ Init Function. """ super(mit_b1, self).__init__( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, export=kwargs["export"]) @BACKBONES.register_module() class mit_b2(MixVisionTransformer): """ Model Class.""" def __init__(self, **kwargs): """ Init Function. """ super(mit_b2, self).__init__( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, export=kwargs["export"]) @BACKBONES.register_module() class mit_b3(MixVisionTransformer): """ Model Class.""" def __init__(self, **kwargs): """ Init Function. """ super(mit_b3, self).__init__( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, export=kwargs["export"]) @BACKBONES.register_module() class mit_b4(MixVisionTransformer): """ Model Class.""" def __init__(self, **kwargs): """ Init Function. """ super(mit_b4, self).__init__( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, export=kwargs["export"]) @BACKBONES.register_module() class mit_b5(MixVisionTransformer): """ Model Class.""" def __init__(self, **kwargs): """ Init Function. """ super(mit_b5, self).__init__( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, export=kwargs["export"])
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/backbones/mix_transformer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module.""" from .mix_transformer import * # noqa: F403, F401 from .fan import * # noqa: F403, F401
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/backbones/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Encoder Decoder Module.""" import torch import torch.nn as nn import torch.nn.functional as F from nvidia_tao_pytorch.cv.segformer.core import add_prefix from nvidia_tao_pytorch.cv.segformer.ops import resize from nvidia_tao_pytorch.cv.segformer.model import builder from nvidia_tao_pytorch.cv.segformer.model.builder import SEGMENTORS from nvidia_tao_pytorch.cv.segformer.model.segmentors.base import BaseSegmentor @SEGMENTORS.register_module() class EncoderDecoder(BaseSegmentor): """Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be dumped during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, pretrained=None, export=False): """Init Module.""" super(EncoderDecoder, self).__init__() self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self.train_cfg = train_cfg self.test_cfg = test_cfg self.export = export self.init_weights(pretrained=pretrained) assert self.with_decode_head, "The decode head was not built." def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = builder.build_head(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(builder.build_head(head_cfg)) else: self.auxiliary_head = builder.build_head(auxiliary_head) def init_weights(self, pretrained=None): """Initialize the weights in backbone and heads. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ super(EncoderDecoder, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) self.decode_head.init_weights() if self.with_auxiliary_head: if isinstance(self.auxiliary_head, nn.ModuleList): for aux_head in self.auxiliary_head: aux_head.init_weights() else: self.auxiliary_head.init_weights() def extract_feat(self, img): """Extract features from images.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def encode_decode(self, img, img_metas): """Encode images with backbone and decode into a semantic segmentation of the same size as input.""" x = self.extract_feat(img) out = self._decode_head_forward_test(x, img_metas) out = resize( input=out, size=img.shape[2:], mode='bilinear', align_corners=self.align_corners) return out def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def forward_dummy(self, img): """Dummy forward function.""" seg_logit = self.encode_decode(img, None) return seg_logit def forward_train(self, img, img_metas, gt_semantic_seg): """Forward function for training. Args: img (Tensor): Input images. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, gt_semantic_seg) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, img_metas, gt_semantic_seg) losses.update(loss_aux) return losses # TODO refactor def slide_inference(self, img, img_meta, rescale): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. """ h_stride, w_stride = self.test_cfg["stride"] h_crop, w_crop = self.test_cfg["crop_size"] batch_size, _, h_img, w_img = img.size() num_classes = self.num_classes h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] crop_seg_logit = self.encode_decode(crop_img, img_meta) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0, "Count Matrix sum should be zero." if torch.onnx.is_in_onnx_export(): # cast count_mat to constant while exporting to ONNX count_mat = torch.from_numpy( count_mat.cpu().detach().numpy()).to(device=img.device) preds = preds / count_mat if rescale: preds = resize( preds, size=img_meta[0]['ori_shape'][:2], mode='bilinear', align_corners=self.align_corners, warning=False) return preds def whole_inference(self, img, img_meta, rescale): """Inference with full image.""" seg_logit = self.encode_decode(img, img_meta) if rescale: seg_logit = resize( seg_logit, size=img_meta[0]['ori_shape'][:2], mode='bilinear', align_corners=self.align_corners, warning=False) return seg_logit def inference(self, img, img_meta, rescale): """Inference with slide/whole style. Args: img (Tensor): The input image of shape (N, 3, H, W). img_meta (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output segmentation map. """ assert self.test_cfg["mode"] in ['slide', 'whole'], "Test mode should be slide or whole." ori_shape = img_meta[0]['ori_shape'] assert all(_['ori_shape'] == ori_shape for _ in img_meta), "Shape in img_meta do not match the original shape." if self.test_cfg["mode"] == 'slide': seg_logit = self.slide_inference(img, img_meta, rescale) else: seg_logit = self.whole_inference(img, img_meta, rescale) if torch.onnx.is_in_onnx_export(): output = seg_logit.transpose(1, -1) output = output.transpose(1, 2) output = F.softmax(output, dim=-1) output = output.transpose(1, -1) output = output.transpose(-2, -1) else: output = F.softmax(seg_logit, dim=1) flip = img_meta[0]['flip'] if flip: flip_direction = img_meta[0]['flip_direction'] assert flip_direction in ['horizontal', 'vertical'], "flip_direction should be horizontal or vertical." if flip_direction == 'horizontal': output = output.flip(dims=(3, )) elif flip_direction == 'vertical': output = output.flip(dims=(2, )) return output def simple_test(self, img, img_meta, rescale=True): """Simple test with single image.""" seg_logit = self.inference(img, img_meta, rescale) seg_pred = seg_logit.argmax(dim=1) if torch.onnx.is_in_onnx_export(): # our inference backend only support 4D output if self.export: seg_pred = seg_pred.unsqueeze(3) else: seg_pred = seg_pred.unsqueeze(0) return seg_pred seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale, "Rescale shouls not be None." # to save memory, we get augmented seg logit inplace seg_logit = self.inference(imgs[0], img_metas[0], rescale) for i in range(1, len(imgs)): cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(imgs) seg_pred = seg_logit.argmax(dim=1) seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/segmentors/encoder_decoder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init Module.""" from .encoder_decoder import EncoderDecoder __all__ = ['EncoderDecoder']
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/segmentors/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base Model Module.""" import logging import warnings from abc import ABCMeta, abstractmethod from collections import OrderedDict import mmcv from mmcv.runner import auto_fp16 import numpy as np import torch import torch.distributed as dist import torch.nn as nn class BaseSegmentor(nn.Module): """Base class for segmentors.""" __metaclass__ = ABCMeta def __init__(self): """Init Module.""" super(BaseSegmentor, self).__init__() self.fp16_enabled = False @property def with_neck(self): """bool: whether the segmentor has neck""" return hasattr(self, 'neck') and self.neck is not None @property def with_auxiliary_head(self): """bool: whether the segmentor has auxiliary head""" return hasattr(self, 'auxiliary_head') and self.auxiliary_head is not None @property def with_decode_head(self): """bool: whether the segmentor has decode head""" return hasattr(self, 'decode_head') and self.decode_head is not None @abstractmethod def extract_feat(self, imgs): """Placeholder for extract features from images.""" pass @abstractmethod def encode_decode(self, img, img_metas): """Placeholder for encode images with backbone and decode into a semantic segmentation map of the same size as input. """ pass @abstractmethod def forward_train(self, imgs, img_metas, **kwargs): """Placeholder for Forward function for training.""" pass @abstractmethod def simple_test(self, img, img_meta, **kwargs): """Placeholder for single image test.""" pass @abstractmethod def aug_test(self, imgs, img_metas, **kwargs): """Placeholder for augmentation test.""" pass def init_weights(self, pretrained=None): """Initialize the weights in segmentor. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if pretrained is not None: logger = logging.getLogger() logger.info(f'load model from: {pretrained}') def forward_test(self, imgs, img_metas, **kwargs): """ Args: imgs (List[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (List[List[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. """ for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError(f'{name} must be a list, but got ' f'{type(var)}') num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f'num of augmentations ({len(imgs)}) != ' f'num of image meta ({len(img_metas)})') # all images in the same aug batch all of the same ori_shape and pad # shape for img_meta in img_metas: ori_shapes = [_['ori_shape'] for _ in img_meta] assert all(shape == ori_shapes[0] for shape in ori_shapes), "Shape should be equal to original img shape." img_shapes = [_['img_shape'] for _ in img_meta] assert all(shape == img_shapes[0] for shape in img_shapes), "Image shapes are not equal to {}.".format(img_shapes) pad_shapes = [_['pad_shape'] for _ in img_meta] assert all(shape == pad_shapes[0] for shape in pad_shapes), "Pad shapes are not equal to {}.".format(pad_shapes) if torch.cuda.is_available(): input_img = imgs[0].cuda() return self.simple_test(input_img, img_metas[0], **kwargs) @auto_fp16(apply_to=('img', )) def forward(self, img, img_metas, return_loss=True, **kwargs): """Calls either :func:`forward_train` or :func:`forward_test` depending on whether ``return_loss`` is ``True``. Note this setting will change the expected inputs. When ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor and List[dict]), and when ``resturn_loss=False``, img and img_meta should be double nested (i.e. List[Tensor], List[List[dict]]), with the outer list indicating test time augmentations. """ if return_loss: return self.forward_train(img, img_metas, **kwargs) return self.forward_test(img, img_metas, **kwargs) @auto_fp16(apply_to=('img', )) def forward_export(self, img_metas, return_loss, img, **kwargs): """Calls either :func:`forward_train` or :func:`forward_test` depending on whether ``return_loss`` is ``True``. Note this setting will change the expected inputs. When ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor and List[dict]), and when ``resturn_loss=False``, img and img_meta should be double nested (i.e. List[Tensor], List[List[dict]]), with the outer list indicating test time augmentations. """ return self.forward_test(img, img_metas, **kwargs) def train_step(self, data_batch, optimizer, **kwargs): """The iteration step during training. This method defines an iteration step during training, except for the back propagation and optimizer updating, which are done in an optimizer hook. Note that in some complicated cases or models, the whole process including back propagation and optimizer updating is also defined in this method, such as GAN. Args: data (dict): The output of dataloader. optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of runner is passed to ``train_step()``. This argument is unused and reserved. Returns: dict: It should contain at least 3 keys: ``loss``, ``log_vars``, ``num_samples``. ``loss`` is a tensor for back propagation, which can be a weighted sum of multiple losses. ``log_vars`` contains all the variables to be sent to the logger. ``num_samples`` indicates the batch size (when the model is DDP, it means the batch size on each GPU), which is used for averaging the logs. """ losses = self(**data_batch) loss, log_vars = self._parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(data_batch['img'].data)) return outputs def val_step(self, data_batch, **kwargs): """The iteration step during validation. This method shares the same signature as :func:`train_step`, but used during val epochs. Note that the evaluation after training epochs is not implemented with this method, but an evaluation hook. """ output = self(**data_batch, **kwargs) return output @staticmethod def _parse_losses(losses): """Parse the raw outputs (losses) of the network. Args: losses (dict): Raw output of the network, which usually contain losses and other necessary information. Returns: tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor which may be a weighted sum of all losses, log_vars contains all the variables to be sent to the logger. """ log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError( f'{loss_name} is not a tensor or list of tensors') loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for loss_name, loss_value in log_vars.items(): # reduce loss when distributed training if dist.is_available() and dist.is_initialized(): loss_value = loss_value.data.clone() dist.all_reduce(loss_value.div_(dist.get_world_size())) log_vars[loss_name] = loss_value.item() return loss, log_vars def show_result(self, img, result, palette=None, win_name='', show=False, wait_time=0, out_file=None): """Draw `result` over `img`. Args: img (str or Tensor): The image to be displayed. result (Tensor): The semantic segmentation results to draw over `img`. palette (list[list[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, random palette will be generated. Default: None win_name (str): The window name. wait_time (int): Value of waitKey param. Default: 0. show (bool): Whether to show the image. Default: False. out_file (str or None): The filename to write the image. Default: None. Returns: img (Tensor): Only if not `show` or `out_file` """ img = mmcv.imread(img) img = img.copy() seg = result[0] if palette is None: if self.PALETTE is None: palette = np.random.randint( 0, 255, size=(len(self.CLASSES), 3)) else: palette = self.PALETTE palette = np.array(palette) assert palette.shape[0] == len(self.CLASSES), "The colors in palette is not equal to number of classes." assert palette.shape[1] == 3, "The colors in palette should be of shape 3." assert len(palette.shape) == 2, "Palette should be list of colors." color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[seg == label, :] = color # convert to BGR color_seg = color_seg[..., ::-1] # from IPython import embed; embed(header='debug vis') img = img * 0.5 + color_seg * 0.5 img = img.astype(np.uint8) # if out_file specified, do not show image in window if out_file is not None: show = False if show: mmcv.imshow(img, win_name, wait_time) if out_file is not None: mmcv.imwrite(img, out_file) if not (show or out_file): warnings.warn('show==False and out_file is not specified, only ' 'result image will be returned') return img return None
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/segmentors/base.py
# --------------------------------------------------------------- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # --------------------------------------------------------------- """MLP Segformer Head.""" import torch.nn as nn import torch from mmcv.cnn import ConvModule from nvidia_tao_pytorch.cv.segformer.ops import resize from nvidia_tao_pytorch.cv.segformer.model.utils import * # noqa pylint: disable=W0401, W0614 from nvidia_tao_pytorch.cv.segformer.model.builder import HEADS from nvidia_tao_pytorch.cv.segformer.model.decode_heads.decode_head import BaseDecodeHead class MLP(nn.Module): """Linear Embedding.""" def __init__(self, input_dim=2048, embed_dim=768, export=False): """Init.""" super().__init__() self.proj = nn.Linear(input_dim, embed_dim) self.export = export def forward(self, x): """Forward.""" if self.export: _, C, H, W = x.shape x = x.view(-1, C, H * W).transpose(1, 2) else: x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x @HEADS.register_module() class SegFormerHead(BaseDecodeHead): """ SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers """ def __init__(self, feature_strides, **kwargs): """Init Module.""" super(SegFormerHead, self).__init__(input_transform='multiple_select', **kwargs) assert len(feature_strides) == len(self.in_channels), "The number of feature strides:{} should be equal to number of channels: {}".format(feature_strides, len(self.in_channels)) assert min(feature_strides) == feature_strides[0], "Minimum of feature strides is not supported." self.feature_strides = feature_strides self.export = kwargs["export"] c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels decoder_params = kwargs['decoder_params'] embedding_dim = decoder_params['embed_dim'] self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim, export=self.export) self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim, export=self.export) self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim, export=self.export) self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim, export=self.export) self.linear_fuse = ConvModule( in_channels=embedding_dim * 4, out_channels=embedding_dim, kernel_size=1, norm_cfg=dict(type='SyncBN', requires_grad=True) ) self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1) def forward(self, inputs): """Forward.""" x = self._transform_inputs(inputs) # len=4, 1/4,1/8,1/16,1/32 c1, c2, c3, c4 = x # MLP decoder on C1-C4 # n, _, _, _ = c4.shape _c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3]) _c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False) _c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3]) _c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False) _c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3]) _c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False) _c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3]) _c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1)) x = self.dropout(_c) x = self.linear_pred(x) return x
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/decode_heads/segformer_head.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init module.""" from .segformer_head import SegFormerHead __all__ = [ 'SegFormerHead' ]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/decode_heads/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Decode Head.""" from abc import ABCMeta, abstractmethod import torch import torch.nn as nn from mmcv.cnn import normal_init from mmcv.runner import auto_fp16, force_fp32 from nvidia_tao_pytorch.cv.segformer.core import build_pixel_sampler from nvidia_tao_pytorch.cv.segformer.ops import resize from ..builder import build_loss from ..losses import accuracy class BaseDecodeHead(nn.Module, metaclass=ABCMeta): """Base class for BaseDecodeHead. Args: in_channels (int|Sequence[int]): Input channels. channels (int): Channels after modules, before conv_seg. num_classes (int): Number of classes. dropout_ratio (float): Ratio of dropout layer. Default: 0.1. conv_cfg (dict|None): Config of conv layers. Default: None. norm_cfg (dict|None): Config of norm layers. Default: None. act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') in_index (int|Sequence[int]): Input feature index. Default: -1 input_transform (str|None): Transformation type of input features. Options: 'resize_concat', 'multiple_select', None. 'resize_concat': Multiple feature maps will be resize to the same size as first one and than concat together. Usually used in FCN head of HRNet. 'multiple_select': Multiple feature maps will be bundle into a list and passed into decode head. None: Only one select feature map is allowed. Default: None. loss_decode (dict): Config of decode loss. Default: dict(type='CrossEntropyLoss'). ignore_index (int | None): The label index to be ignored. When using masked BCE loss, ignore_index should be set to None. Default: 255 sampler (dict|None): The config of segmentation map sampler. Default: None. align_corners (bool): align_corners argument of F.interpolate. Default: False. """ def __init__(self, in_channels, channels, *, num_classes, dropout_ratio=0.1, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), in_index=-1, input_transform=None, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), decoder_params=None, ignore_index=255, sampler=None, align_corners=False, export=False): """Init Module.""" super(BaseDecodeHead, self).__init__() self._init_inputs(in_channels, in_index, input_transform) self.channels = channels self.num_classes = num_classes self.dropout_ratio = dropout_ratio self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.in_index = in_index self.loss_decode = build_loss(loss_decode) self.ignore_index = ignore_index self.align_corners = align_corners self.export = export if sampler is not None: self.sampler = build_pixel_sampler(sampler, context=self) else: self.sampler = None self.conv_seg = nn.Conv2d(channels, num_classes, kernel_size=1) if dropout_ratio > 0: self.dropout = nn.Dropout2d(dropout_ratio) else: self.dropout = None self.fp16_enabled = False def extra_repr(self): """Extra repr.""" s = f'input_transform={self.input_transform}, ' \ f'ignore_index={self.ignore_index}, ' \ f'align_corners={self.align_corners}' return s def _init_inputs(self, in_channels, in_index, input_transform): """Check and initialize input transforms. The in_channels, in_index and input_transform must match. Specifically, when input_transform is None, only single feature map will be selected. So in_channels and in_index must be of type int. When input_transform Args: in_channels (int|Sequence[int]): Input channels. in_index (int|Sequence[int]): Input feature index. input_transform (str|None): Transformation type of input features. Options: 'resize_concat', 'multiple_select', None. 'resize_concat': Multiple feature maps will be resize to the same size as first one and than concat together. Usually used in FCN head of HRNet. 'multiple_select': Multiple feature maps will be bundle into a list and passed into decode head. None: Only one select feature map is allowed. """ if input_transform is not None: assert input_transform in ['resize_concat', 'multiple_select'], "Input transform:{} is not supported." self.input_transform = input_transform self.in_index = in_index if input_transform is not None: assert isinstance(in_channels, (list, tuple)), "The input channels should be list or tuple." assert isinstance(in_index, (list, tuple)), "The input index should be a list or tuple." assert len(in_channels) == len(in_index), "The number of input channels: {} should be equal to input_index: {}." if input_transform == 'resize_concat': self.in_channels = sum(in_channels) else: self.in_channels = in_channels else: assert isinstance(in_channels, int), "The input channels should be of type int." assert isinstance(in_index, int), "The input index should be integer." self.in_channels = in_channels def init_weights(self): """Initialize weights of classification layer.""" normal_init(self.conv_seg, mean=0, std=0.01) def _transform_inputs(self, inputs): """Transform inputs for decoder. Args: inputs (list[Tensor]): List of multi-level img features. Returns: Tensor: The transformed inputs """ if self.input_transform == 'resize_concat': inputs = [inputs[i] for i in self.in_index] upsampled_inputs = [ resize( input=x, size=inputs[0].shape[2:], mode='bilinear', align_corners=self.align_corners) for x in inputs ] inputs = torch.cat(upsampled_inputs, dim=1) elif self.input_transform == 'multiple_select': inputs = [inputs[i] for i in self.in_index] else: inputs = inputs[self.in_index] return inputs @auto_fp16() @abstractmethod def forward(self, inputs): """Placeholder of forward function.""" pass def forward_train(self, inputs, img_metas, gt_semantic_seg, train_cfg): """Forward function for training. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. train_cfg (dict): The training config. Returns: dict[str, Tensor]: a dictionary of loss components """ seg_logits = self.forward(inputs) losses = self.losses(seg_logits, gt_semantic_seg) return losses def forward_test(self, inputs, img_metas, test_cfg): """Forward function for testing. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. test_cfg (dict): The testing config. Returns: Tensor: Output segmentation map. """ return self.forward(inputs) def cls_seg(self, feat): """Classify each pixel.""" if self.dropout is not None: feat = self.dropout(feat) output = self.conv_seg(feat) return output @force_fp32(apply_to=('seg_logit', )) def losses(self, seg_logit, seg_label): """Compute segmentation loss.""" loss = dict() if len(seg_label.shape) == 3: # BS is 1 , hence unsqueeze seg_label = torch.unsqueeze(seg_label, 0) seg_logit = resize( input=seg_logit, size=seg_label.shape[2:], mode='bilinear', align_corners=self.align_corners) if self.sampler is not None: seg_weight = self.sampler.sample(seg_logit, seg_label) else: seg_weight = None seg_label = seg_label.squeeze(1) loss['loss_seg'] = self.loss_decode( seg_logit, seg_label, weight=seg_weight, ignore_index=self.ignore_index) loss['acc_seg'] = accuracy(seg_logit, seg_label) return loss
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/model/decode_heads/decode_head.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inferencer Module""" import os.path as osp import pickle import shutil import tempfile import numpy as np import torch import torch.distributed as dist import mmcv from mmcv.image import tensor2imgs from mmcv.runner import get_dist_info def np2tmp(array, temp_file_name=None): """Save ndarray to local numpy file. Args: array (ndarray): Ndarray to save. temp_file_name (str): Numpy file name. If 'temp_file_name=None', this function will generate a file name with tempfile.NamedTemporaryFile to save ndarray. Default: None. Returns: str: The numpy file name. """ if temp_file_name is None: temp_file_name = tempfile.NamedTemporaryFile( suffix='.npy', delete=False).name np.save(temp_file_name, array) return temp_file_name def single_gpu_test(model, data_loader, export=False, show=False, out_dir=None, efficient_test=False): """Test with single GPU. Args: model (nn.Module): Model to be tested. data_loader (utils.data.Dataloader): Pytorch data loader. show (bool): Whether show results during infernece. Default: False. out_dir (str, optional): If specified, the results will be dumped into the directory to save output results. efficient_test (bool): Whether save the results as local numpy files to save CPU memory during evaluation. Default: False. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for _, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) if show or out_dir: img_tensor = data['img'][0] img_metas = data['img_metas'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas), "The number of images: {} should be equal to number of image metas: {}".format(len(imgs), len(img_metas)) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] ori_h, ori_w = img_meta['ori_shape'][:-1] img_show = mmcv.imresize(img_show, (ori_w, ori_h)) if isinstance(result, list): if efficient_test: result = [np2tmp(_) for _ in result] results.extend(result) else: if efficient_test: result = np2tmp(result) results.append(result) batch_size = data['img'][0].size(0) for _ in range(batch_size): prog_bar.update() return results def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False, efficient_test=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (utils.data.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. efficient_test (bool): Whether save the results as local numpy files to save CPU memory during evaluation. Default: False. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) for _, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) if isinstance(result, list): if efficient_test: result = [np2tmp(_) for _ in result] results.extend(result) else: if efficient_test: result = np2tmp(result) results.append(result) if rank == 0: batch_size = data['img'][0].size(0) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results def collect_results_cpu(result_part, size, tmpdir=None): """Collect results with CPU.""" rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: tmpdir = tempfile.mkdtemp() tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank))) dist.barrier() # collect all parts if rank != 0: return None # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i)) part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def collect_results_gpu(result_part, size): """Collect results with GPU.""" rank, world_size = get_dist_info() # dump result part to tensor with pickle part_tensor = torch.tensor( bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') # gather all result part tensor shape shape_tensor = torch.tensor(part_tensor.shape, device='cuda') shape_list = [shape_tensor.clone() for _ in range(world_size)] dist.all_gather(shape_list, shape_tensor) # padding result part tensor to max length shape_max = torch.tensor(shape_list).max() part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') part_send[:shape_tensor[0]] = part_tensor part_recv_list = [ part_tensor.new_zeros(shape_max) for _ in range(world_size) ] # gather all result part dist.all_gather(part_recv_list, part_send) if rank == 0: part_list = [] for recv, shape in zip(part_recv_list, shape_list): part_list.append( pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] return ordered_results return None
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/inference/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer inference module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/inference/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Encoding Module.""" import torch from torch import nn from torch.nn import functional as F class Encoding(nn.Module): """Encoding Layer: a learnable residual encoder. Input is of shape (batch_size, channels, height, width). Output is of shape (batch_size, num_codes, channels). Args: channels: dimension of the features or feature channels num_codes: number of code words """ def __init__(self, channels, num_codes): """ Init Module.""" super(Encoding, self).__init__() # init codewords and smoothing factor self.channels, self.num_codes = channels, num_codes std = 1. / ((num_codes * channels)**0.5) # [num_codes, channels] self.codewords = nn.Parameter( torch.empty(num_codes, channels, dtype=torch.float).uniform_(-std, std), requires_grad=True) # [num_codes] self.scale = nn.Parameter( torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0), requires_grad=True) @staticmethod def scaled_l2(x, codewords, scale): """Scale Function.""" num_codes, channels = codewords.size() batch_size = x.size(0) reshaped_scale = scale.view((1, 1, num_codes)) expanded_x = x.unsqueeze(2).expand( (batch_size, x.size(1), num_codes, channels)) reshaped_codewords = codewords.view((1, 1, num_codes, channels)) scaled_l2_norm = reshaped_scale * ( expanded_x - reshaped_codewords).pow(2).sum(dim=3) return scaled_l2_norm @staticmethod def aggregate(assigment_weights, x, codewords): """ Aggregate function.""" num_codes, channels = codewords.size() reshaped_codewords = codewords.view((1, 1, num_codes, channels)) batch_size = x.size(0) expanded_x = x.unsqueeze(2).expand( (batch_size, x.size(1), num_codes, channels)) encoded_feat = (assigment_weights.unsqueeze(3) * (expanded_x - reshaped_codewords)).sum(dim=1) return encoded_feat def forward(self, x): """Forward Function.""" assert x.dim() == 4 and x.size(1) == self.channels, "Input channels should be 3." # [batch_size, channels, height, width] batch_size = x.size(0) # [batch_size, height x width, channels] x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous() # assignment_weights: [batch_size, channels, num_codes] assigment_weights = F.softmax( self.scaled_l2(x, self.codewords, self.scale), dim=2) # aggregate encoded_feat = self.aggregate(assigment_weights, x, self.codewords) return encoded_feat def __repr__(self): """Repr Function.""" repr_str = self.__class__.__name__ repr_str += f'(Nx{self.channels}xHxW =>Nx{self.num_codes}' \ f'x{self.channels})' return repr_str
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/ops/encoding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Ops Init Module.""" from nvidia_tao_pytorch.cv.segformer.ops.encoding import Encoding from nvidia_tao_pytorch.cv.segformer.ops.wrappers import Upsample, resize __all__ = ['Upsample', 'resize', 'Encoding']
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/ops/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrappers Module.""" import warnings import torch import torch.nn as nn import torch.nn.functional as F def resize(input, # pylint: disable=W0622 size=None, scale_factor=None, mode='nearest', align_corners=None, warning=True): """ Resize Function.""" if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: # pylint: disable=R0916 if ((output_h > 1 and output_w > 1 and input_h > 1 and # pylint: disable=R0916 input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1)): # pylint: disable=R0916 warnings.warn( f'When align_corners={align_corners}, ' 'the output would more aligned if ' f'input size {(input_h, input_w)} is `x+1` and ' f'out size {(output_h, output_w)} is `nx+1`') if isinstance(size, torch.Size): size = tuple(int(x) for x in size) return F.interpolate(input, size, scale_factor, mode, align_corners) class Upsample(nn.Module): """Upsampling Layer Class.""" def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None): """Init Module.""" super(Upsample, self).__init__() self.size = size if isinstance(scale_factor, tuple): self.scale_factor = tuple(float(factor) for factor in scale_factor) else: self.scale_factor = float(scale_factor) if scale_factor else None self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward Class.""" if not self.size: size = [int(t * self.scale_factor) for t in x.shape[-2:]] else: size = self.size return resize(x, size, None, self.mode, self.align_corners)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/ops/wrappers.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Trainer Module. """
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/trainer/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train Segformer model.""" import random import warnings import numpy as np import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import build_optimizer, build_runner from mmcv.runner.builder import RUNNERS from mmcv.runner.iter_based_runner import IterBasedRunner from mmcv.runner.checkpoint import save_checkpoint from nvidia_tao_pytorch.cv.segformer.core import DistEvalHook, EvalHook from nvidia_tao_pytorch.cv.segformer.dataloader.data_utils import build_dataloader, build_dataset from nvidia_tao_pytorch.cv.segformer.utils import get_root_logger import os.path as osp from typing import Optional, Dict def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False @RUNNERS.register_module() class TAOIterBasedRunner(IterBasedRunner): """TAO Epoch based runner. Overrides mmcv.runner.epoch_based_runner.EpochBaseRunner to save checkpoints without symlinks which requires root access. """ def save_checkpoint( # type: ignore self, out_dir: str, filename_tmpl: str = 'iter_{}.pth', meta: Optional[Dict] = None, save_optimizer: bool = True, create_symlink: bool = True) -> None: """Save checkpoint to file. Args: out_dir (str): Directory to save checkpoint files. filename_tmpl (str, optional): Checkpoint file template. Defaults to 'iter_{}.pth'. meta (dict, optional): Metadata to be saved in checkpoint. Defaults to None. save_optimizer (bool, optional): Whether save optimizer. Defaults to True. create_symlink (bool, optional): Whether create symlink to the latest checkpoint file. Defaults to True. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError( f'meta should be a dict or None, but got {type(meta)}') if self.meta is not None: meta.update(self.meta) # Note: meta.update(self.meta) should be done before # meta.update(epoch=self.epoch + 1, iter=self.iter) otherwise # there will be problems with resumed checkpoints. # More details in https://github.com/open-mmlab/mmcv/pull/1108 meta.update(epoch=self.epoch + 1, iter=self.iter) filename = filename_tmpl.format(self.iter + 1) filepath = osp.join(out_dir, filename) optimizer = self.optimizer if save_optimizer else None save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta) def train_segmentor(model, dataset, distributed=True, validate=False, timestamp=None, meta=None, result_dir=None, dm=None, sf_model=None): """Launch segmentor training. Args: model (nn.Module): Model instance distributed (Bool): Flag to enable distributed training validate (Bool): Flag to enable validation during training. dm (Class instance): Dataloader parameters class object. sf_model (Model instance): Segformer parameters class object. meta (Dict): Meta data like environment variables. """ logger = get_root_logger("INFO") # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, dm.samples_per_gpu, dm.workers_per_gpu, dm.num_gpus, dist=True, seed=dm.seed, drop_last=True) for ds in dataset ] # put model on gpus if distributed: find_unused_parameters = sf_model.find_unused_parameters # Sets the `find_unused_parameters` parameter in # torch.nn.parallel.DistributedDataParallel model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: model = MMDataParallel( model.cuda(0), device_ids=[0]) # build runner cfg_optimizer = sf_model.sf_optim_cfg lr_config = sf_model.lr_config param_wise = cfg_optimizer["paramwise_cfg"] cfg_optimizer["paramwise_cfg"] = dict(custom_keys=param_wise) optimizer = build_optimizer(model, cfg_optimizer) tao_runner = {'type': 'TAOIterBasedRunner', 'max_iters': sf_model.max_iters, "work_dir": result_dir} warnings.warn( 'config is now expected to have a `runner` section, ' 'please set `runner` in your config.', UserWarning) runner = build_runner( tao_runner, default_args=dict( model=model, batch_processor=None, optimizer=optimizer, work_dir=result_dir, logger=logger, meta=meta)) log_config = dict(interval=dm.log_interval, hooks=[dict(type='TaoTextLoggerHook', by_epoch=False)]) checkpoint_config = dict(by_epoch=False, interval=sf_model.checkpoint_interval) # register hooks checkpoint_config["meta"] = dict(CLASSES=dm.CLASSES, PALETTE=dm.PALETTE) runner.register_training_hooks(lr_config=lr_config, optimizer_config={}, checkpoint_config=checkpoint_config, log_config=log_config, momentum_config=None) # an ugly walkaround to make the .log and .log.json filenames the same runner.timestamp = timestamp # # register eval hooks if validate: val_dataset = build_dataset(dm.val_data, dm.default_args) val_dataloader = build_dataloader( val_dataset, samples_per_gpu=1, workers_per_gpu=1, dist=distributed, shuffle=False) eval_cfg = dict(interval=sf_model.validation_interval, metric='mIoU') eval_cfg['by_epoch'] = False eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg), priority='LOW') resume_from = sf_model.resume_ckpt load_from = None workflow = [('train', 1)] if resume_from: runner.resume(resume_from) elif load_from: runner.load_checkpoint(load_from) runner.run(data_loaders, workflow)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/trainer/trainer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metrics Module.""" import mmcv import numpy as np def intersect_and_union(pred_label, label, num_classes, ignore_index, label_map=dict(), reduce_zero_label=False): """Calculate intersection and Union. Args: pred_label (ndarray): Prediction segmentation map. label (ndarray): Ground truth segmentation map. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. label_map (dict): Mapping old labels to new labels. The parameter will work only when label is str. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. The parameter will work only when label is str. Default: False. Returns: ndarray: The intersection of prediction and ground truth histogram on all classes. ndarray: The union of prediction and ground truth histogram on all classes. ndarray: The prediction histogram on all classes. ndarray: The ground truth histogram on all classes. """ if isinstance(pred_label, str): pred_label = np.load(pred_label) if isinstance(label, str): label = mmcv.imread(label, flag='unchanged', backend='pillow') # modify if custom classes if label_map is not None: for old_id, new_id in label_map.items(): label[label == old_id] = new_id if reduce_zero_label: # avoid using underflow conversion label[label == 0] = 255 label = label - 1 label[label == 254] = 255 mask = (label != ignore_index) pred_label = pred_label[mask] label = label[mask] intersect = pred_label[pred_label == label] area_intersect, _ = np.histogram( intersect, bins=np.arange(num_classes + 1)) area_pred_label, _ = np.histogram( pred_label, bins=np.arange(num_classes + 1)) area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1)) area_union = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index, label_map=dict(), reduce_zero_label=False): """Calculate Total Intersection and Union. Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: ndarray: The intersection of prediction and ground truth histogram on all classes. ndarray: The union of prediction and ground truth histogram on all classes. ndarray: The prediction histogram on all classes. ndarray: The ground truth histogram on all classes. """ num_imgs = len(results) assert len(gt_seg_maps) == num_imgs total_area_intersect = np.zeros((num_classes, ), dtype=np.float) total_area_union = np.zeros((num_classes, ), dtype=np.float) total_area_pred_label = np.zeros((num_classes, ), dtype=np.float) total_area_label = np.zeros((num_classes, ), dtype=np.float) for i in range(num_imgs): area_intersect, area_union, area_pred_label, area_label = \ intersect_and_union(results[i], gt_seg_maps[i], num_classes, ignore_index, label_map, reduce_zero_label) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, \ total_area_pred_label, total_area_label def mean_iou(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate Mean Intersection and Union (mIoU) Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category IoU, shape (num_classes, ). """ all_acc, acc, iou = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mIoU'], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label) return all_acc, acc, iou def mean_dice(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate Mean Dice (mDice) Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category dice, shape (num_classes, ). """ all_acc, acc, dice = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mDice'], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label) return all_acc, acc, dice def eval_metrics(results, gt_seg_maps, num_classes, ignore_index, metrics=['mIoU'], nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate evaluation metrics Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category evalution metrics, shape (num_classes, ). """ if isinstance(metrics, str): metrics = [metrics] allowed_metrics = ['mIoU', 'mDice'] if not set(metrics).issubset(set(allowed_metrics)): raise KeyError('metrics {} is not supported'.format(metrics)) total_area_intersect, total_area_union, total_area_pred_label, \ total_area_label = total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index, label_map, reduce_zero_label) all_acc = total_area_intersect.sum() / total_area_label.sum() acc = total_area_intersect / total_area_label ret_metrics = [all_acc, acc] for metric in metrics: if metric == 'mIoU': iou = total_area_intersect / total_area_union ret_metrics.append(iou) elif metric == 'mDice': dice = 2 * total_area_intersect / ( total_area_pred_label + total_area_label) ret_metrics.append(dice) if nan_to_num is not None: ret_metrics = [ np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics ] return ret_metrics
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/metrics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base Dataset Module.""" import os import os.path as osp from functools import reduce import mmcv from mmcv.utils import print_log import numpy as np from terminaltables import AsciiTable from torch.utils.data import Dataset from metrics import eval_metrics from data_utils import get_root_logger from data_utils import Compose from builder import DATASETS @DATASETS.register_module() class BaseDataset(Dataset): """Custom dataset for semantic segmentation. An example of file structure is as followed. .. code-block:: none ├── data │ ├── my_dataset │ │ ├── img_dir │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── ann_dir │ │ │ ├── train │ │ │ │ ├── xxx{seg_map_suffix} │ │ │ │ ├── yyy{seg_map_suffix} │ │ │ │ ├── zzz{seg_map_suffix} │ │ │ ├── val The img/gt_semantic_seg pair of CustomDataset should be of the same except suffix. A valid img/gt_semantic_seg filename pair should be like ``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included in the suffix). If split is given, then ``xxx`` is specified in txt file. Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded. Please refer to ``docs/tutorials/new_dataset.md`` for more details. Args: pipeline (list[dict]): Processing pipeline img_dir (str): Path to image directory img_suffix (str): Suffix of images. Default: '.jpg' ann_dir (str, optional): Path to annotation directory. Default: None seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' split (str, optional): Split txt file. If split is specified, only file with suffix in the splits will be loaded. Otherwise, all images in img_dir/ann_dir will be loaded. Default: None data_root (str, optional): Data root for img_dir/ann_dir. Default: None. test_mode (bool): If test_mode=True, gt wouldn't be loaded. ignore_index (int): The label index to be ignored. Default: 255 reduce_zero_label (bool): Whether to mark label zero as ignored. Default: False classes (str | Sequence[str], optional): Specify classes to load. If is None, ``cls.CLASSES`` will be used. Default: None. palette (Sequence[Sequence[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, and self.PALETTE is None, random palette will be generated. Default: None """ CLASSES = None PALETTE = None def __init__(self, pipeline, img_dir, img_suffix='.jpg', ann_dir=None, seg_map_suffix='.png', split=None, data_root=None, test_mode=False, ignore_index=255, reduce_zero_label=False, classes=None, palette=None): """Init Module.""" self.pipeline = Compose(pipeline) self.img_dir = img_dir self.img_suffix = img_suffix self.ann_dir = ann_dir self.seg_map_suffix = seg_map_suffix self.split = split self.data_root = data_root self.test_mode = test_mode self.ignore_index = ignore_index self.reduce_zero_label = reduce_zero_label self.label_map = None self.CLASSES, self.PALETTE = self.get_classes_and_palette( classes, palette) # join paths if data_root is specified if self.data_root is not None: if not osp.isabs(self.img_dir): self.img_dir = osp.join(self.data_root, self.img_dir) if not (self.ann_dir is None or osp.isabs(self.ann_dir)): self.ann_dir = osp.join(self.data_root, self.ann_dir) if not (self.split is None or osp.isabs(self.split)): self.split = osp.join(self.data_root, self.split) # load annotations self.img_infos = self.load_annotations(self.img_dir, self.img_suffix, self.ann_dir, self.seg_map_suffix, self.split) def __len__(self): """Total number of samples of data.""" return len(self.img_infos) def load_annotations(self, img_dir, img_suffix, ann_dir, seg_map_suffix, split): """Load annotation from directory. Args: img_dir (str): Path to image directory img_suffix (str): Suffix of images. ann_dir (str|None): Path to annotation directory. seg_map_suffix (str|None): Suffix of segmentation maps. split (str|None): Split txt file. If split is specified, only file with suffix in the splits will be loaded. Otherwise, all images in img_dir/ann_dir will be loaded. Default: None Returns: list[dict]: All image info of dataset. """ img_infos = [] if split is not None: with open(split) as f: for line in f: img_name = line.strip() img_info = dict(filename=img_name + img_suffix) if ann_dir is not None: seg_map = img_name + seg_map_suffix img_info['ann'] = dict(seg_map=seg_map) img_infos.append(img_info) else: for img in mmcv.scandir(img_dir, img_suffix, recursive=True): img_info = dict(filename=img) if ann_dir is not None: seg_map = img.replace(img_suffix, seg_map_suffix) img_info['ann'] = dict(seg_map=seg_map) img_infos.append(img_info) print_log(f'Loaded {len(img_infos)} images', logger=get_root_logger()) return img_infos def get_ann_info(self, idx): """Get annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ return self.img_infos[idx]['ann'] def pre_pipeline(self, results): """Prepare results dict for pipeline.""" results['seg_fields'] = [] results['img_prefix'] = self.img_dir results['seg_prefix'] = self.ann_dir if self.custom_classes: results['label_map'] = self.label_map def __getitem__(self, idx): """Get training/test data after pipeline. Args: idx (int): Index of data. Returns: dict: Training/test data (with annotation if `test_mode` is set False). """ if self.test_mode: return self.prepare_test_img(idx) return self.prepare_train_img(idx) def prepare_train_img(self, idx): """Get training data and annotations after pipeline. Args: idx (int): Index of data. Returns: dict: Training data and annotation after pipeline with new keys introduced by pipeline. """ img_info = self.img_infos[idx] ann_info = self.get_ann_info(idx) results = dict(img_info=img_info, ann_info=ann_info) self.pre_pipeline(results) return self.pipeline(results) def prepare_test_img(self, idx): """Get testing data after pipeline. Args: idx (int): Index of data. Returns: dict: Testing data after pipeline with new keys intorduced by piepline. """ img_info = self.img_infos[idx] results = dict(img_info=img_info) self.pre_pipeline(results) return self.pipeline(results) def format_results(self, results, **kwargs): """Place holder to format result to dataset specific output.""" pass def get_gt_seg_maps(self, efficient_test=False): """Get ground truth segmentation maps for evaluation.""" gt_seg_maps = [] for img_info in self.img_infos: print(img_info['ann']['seg_map']) seg_map = osp.join(self.ann_dir, img_info['ann']['seg_map']) if efficient_test: gt_seg_map = seg_map else: gt_seg_map = mmcv.imread( seg_map, flag='unchanged', backend='pillow') gt_seg_maps.append(gt_seg_map) return gt_seg_maps def get_classes_and_palette(self, classes=None, palette=None): """Get class names of current dataset. Args: classes (Sequence[str] | str | None): If classes is None, use default CLASSES defined by builtin dataset. If classes is a string, take it as a file name. The file contains the name of classes where each line contains one class name. If classes is a tuple or list, override the CLASSES defined by the dataset. palette (Sequence[Sequence[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, random palette will be generated. Default: None """ if classes is None: self.custom_classes = False return self.CLASSES, self.PALETTE self.custom_classes = True if isinstance(classes, str): # take it as a file path class_names = mmcv.list_from_file(classes) elif isinstance(classes, (tuple, list)): class_names = classes else: raise ValueError(f'Unsupported type {type(classes)} of classes.') if self.CLASSES: if not set(classes).issubset(self.CLASSES): raise ValueError('classes is not a subset of CLASSES.') # dictionary, its keys are the old label ids and its values # are the new label ids. # used for changing pixel labels in load_annotations. self.label_map = {} for i, c in enumerate(self.CLASSES): if c not in class_names: self.label_map[i] = -1 else: self.label_map[i] = classes.index(c) palette = self.get_palette_for_custom_classes(class_names, palette) return class_names, palette def get_palette_for_custom_classes(self, class_names, palette=None): """ Get Palette for Custom Classes. """ if self.label_map is not None: # return subset of palette palette = [] for old_id, new_id in sorted( self.label_map.items(), key=lambda x: x[1]): if new_id != -1: palette.append(self.PALETTE[old_id]) palette = type(self.PALETTE)(palette) elif palette is None: if self.PALETTE is None: palette = np.random.randint(0, 255, size=(len(class_names), 3)) else: palette = self.PALETTE return palette def evaluate(self, results, metric='mIoU', logger=None, efficient_test=False, **kwargs): """Evaluate the dataset. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. 'mIoU' and 'mDice' are supported. logger (logging.Logger | None | str): Logger used for printing related information during evaluation. Default: None. Returns: dict[str, float]: Default metrics. """ if isinstance(metric, str): metric = [metric] allowed_metrics = ['mIoU', 'mDice'] if not set(metric).issubset(set(allowed_metrics)): raise KeyError('metric {} is not supported'.format(metric)) eval_results = {} gt_seg_maps = self.get_gt_seg_maps(efficient_test) if self.CLASSES is None: num_classes = len( reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps])) else: num_classes = len(self.CLASSES) ret_metrics = eval_metrics( results, gt_seg_maps, num_classes, self.ignore_index, metric, label_map=self.label_map, reduce_zero_label=self.reduce_zero_label) class_table_data = [['Class'] + [m[1:] for m in metric] + ['Acc']] if self.CLASSES is None: class_names = tuple(range(num_classes)) else: class_names = self.CLASSES ret_metrics_round = [ np.round(ret_metric * 100, 2) for ret_metric in ret_metrics ] for i in range(num_classes): class_table_data.append([class_names[i]] + [m[i] for m in ret_metrics_round[2:]] + [ret_metrics_round[1][i]]) summary_table_data = [['Scope'] + ['m' + head for head in class_table_data[0][1:]] + ['aAcc']] ret_metrics_mean = [ np.round(np.nanmean(ret_metric) * 100, 2) for ret_metric in ret_metrics ] summary_table_data.append(['global'] + ret_metrics_mean[2:] + [ret_metrics_mean[1]] + [ret_metrics_mean[0]]) print_log('per class results:', logger) table = AsciiTable(class_table_data) print_log('\n' + table.table, logger=logger) print_log('Summary:', logger) table = AsciiTable(summary_table_data) print_log('\n' + table.table, logger=logger) for i in range(1, len(summary_table_data[0])): eval_results[summary_table_data[0] [i]] = summary_table_data[1][i] / 100.0 if mmcv.is_list_of(results, str): for file_name in results: os.remove(file_name) return eval_results
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/base_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PNG mask dataset.""" import os from nvidia_tao_pytorch.cv.segformer.dataloader.data_utils import TargetClass, get_train_class_mapping from omegaconf import OmegaConf from omegaconf.listconfig import ListConfig import numpy as np class SFDataModule(object): """ DataModule for Segformer.""" def __init__(self, dataset_config, num_gpus, seed, logger, phase="train", input_height=512, input_width=512): """ DataModule Initialization Args: dataset_config (OmegaConfig): dataset configuration num_gpus (int): num of GPUs seed (int): random init seed logger (class): logger object phase (str): phase of task input_height (int): Input height of the model input_width (int): Input width of the model """ self.phase = phase self.input_height = input_height self.input_width = input_width self.dataset_config = dataset_config self.samples_per_gpu = self.dataset_config["batch_size"] self.dataloader = self.dataset_config["dataloader"] self.shuffle = self.dataset_config["shuffle"] self.num_gpus = num_gpus self.seed = seed self.input_type = self.dataset_config["input_type"] # Paths to the dataset self.data_root = self.dataset_config["data_root"] if self.phase == "train": self.repeat_times = self.dataset_config["repeat_data_times"] self.train_img_dirs = self.dataset_config["train_dataset"]["img_dir"] self.train_ann_dirs = self.dataset_config["train_dataset"]["ann_dir"] self.val_img_dir = self.dataset_config["val_dataset"]["img_dir"] self.val_ann_dir = self.dataset_config["val_dataset"]["ann_dir"] assert (type(self.train_img_dirs) == ListConfig), "Image Directories should be list of directories." assert (type(self.train_ann_dirs) == ListConfig), "Image annotation directories should be a list." assert (type(self.val_img_dir) == str), "Currently Segformer supports only 1 validation directory." assert (type(self.val_ann_dir) == str), "Currently Segformer supports only 1 validation directory." # Setting up pipeline self.train_pipeline = self.dataset_config["train_dataset"]["pipeline"] self.train_pipeline["CollectKeys"] = ["img", "gt_semantic_seg"] self.val_pipeline = self.dataset_config["val_dataset"]["pipeline"] self.train_pipeline["img_norm_cfg"] = self.dataset_config["img_norm_cfg"] self.val_pipeline["img_norm_cfg"] = self.dataset_config["img_norm_cfg"] if self.dataset_config["seg_map_suffix"] and self.dataset_config["img_suffix"]: self.img_suffix = self.dataset_config["img_suffix"] # This allows provide suffixes that are not .png. For e.g., cityscapes self.seg_map_suffix = self.dataset_config["seg_map_suffix"] else: self.img_suffix, self.seg_map_suffix = self.get_extensions(self.train_img_dirs[0], self.train_ann_dirs[0]) else: # Eval / Inference self.test_img_dir = self.dataset_config["test_dataset"]["img_dir"] assert (type(self.test_img_dir) == str), "Currently Segformer supports only 1 test directory." # It is not mandatory to provide the mask path for inference if self.phase == "eval": try: self.test_ann_dir = self.dataset_config["test_dataset"]["ann_dir"] except Exception as e: raise ValueError("Test Annotation dir should be provided for evaluation {}".format(e)) else: self.test_ann_dir = self.test_img_dir self.test_pipeline = self.dataset_config["test_dataset"]["pipeline"] self.test_pipeline["img_norm_cfg"] = self.dataset_config["img_norm_cfg"] self.img_suffix, self.seg_map_suffix = self.get_extensions(self.test_img_dir, self.test_ann_dir) self.train_dataset = None self.val_dataset = None self.workers_per_gpu = self.dataset_config["workers_per_gpu"] self.num_workers = None self.sampler_train = None self.sampler_test = None self.sampler_val = None self.batch_size = self.num_gpus * self.samples_per_gpu self.num_workers = self.num_gpus * self.workers_per_gpu self.logger = logger self.target_classes = self.build_target_class_list() self.train_data = None self.val_data = None self.test_data = None self.log_interval = 50 # This needs to be implemented self.PALETTE, self.CLASSES, self.label_map, self.id_color_map = self.build_palette() self.default_args = {"classes": tuple(self.CLASSES), "palette": self.PALETTE, "label_map": self.label_map, "img_suffix": self.img_suffix, "seg_map_suffix": self.seg_map_suffix, "id_color_map": self.id_color_map, "input_type": self.input_type, "logger": self.logger} self.target_classes_train_mapping = get_train_class_mapping(self.target_classes) self.num_classes = self.get_num_unique_train_ids() def setup(self): """ Function to initlaize the samplers and datasets. """ if self.phase == "train": train_dic = {} train_dic["type"] = "SFDataset" train_dic["data_root"] = self.data_root train_dic["img_dir"] = OmegaConf.to_container(self.train_img_dirs) train_dic["ann_dir"] = OmegaConf.to_container(self.train_ann_dirs) updated_train_pipeline = self.build_train_pipeline(self.train_pipeline) train_dic["pipeline"] = updated_train_pipeline train_data = {} train_data["type"] = "RepeatDataset" train_data["times"] = self.repeat_times train_data["dataset"] = train_dic train_data["img_suffix"] = self.img_suffix train_data["seg_map_suffix"] = self.seg_map_suffix # Val Dictionary val_dic = {} val_dic["type"] = "SFDataset" val_dic["data_root"] = self.data_root val_dic["img_dir"] = self.val_img_dir val_dic["ann_dir"] = self.val_ann_dir updated_val_pipeline = self.build_test_pipeline(self.val_pipeline) val_dic["pipeline"] = updated_val_pipeline val_data = val_dic self.train_data = train_data self.val_data = val_data else: # Test Dictionary test_dic = {} test_dic["type"] = "SFDataset" test_dic["data_root"] = self.data_root test_dic["img_dir"] = self.test_img_dir test_dic["ann_dir"] = self.test_ann_dir updated_test_pipeline = self.build_test_pipeline(self.test_pipeline) test_dic["pipeline"] = updated_test_pipeline test_data = test_dic self.test_data = test_data def get_extensions(self, img_dir, ann_dir): """ Function to automatically get the image and mask extensions. """ img_suffix = os.listdir(img_dir)[0].split(".")[-1] seg_map_suffix = os.listdir(ann_dir)[0].split(".")[-1] return img_suffix, seg_map_suffix def build_target_class_list(self): """Build a list of TargetClasses based on proto.""" target_classes = [] orig_class_label_id_map = {} color_mapping = {} for target_class in self.dataset_config.palette: orig_class_label_id_map[target_class.seg_class] = target_class.label_id color_mapping[target_class.seg_class] = target_class.rgb class_label_id_calibrated_map = orig_class_label_id_map.copy() for target_class in self.dataset_config.palette: label_name = target_class.seg_class train_name = target_class.mapping_class class_label_id_calibrated_map[label_name] = orig_class_label_id_map[train_name] train_ids = sorted(list(set(class_label_id_calibrated_map.values()))) train_id_calibrated_map = {} for idx, tr_id in enumerate(train_ids): train_id_calibrated_map[tr_id] = idx class_train_id_calibrated_map = {} for label_name, train_id in class_label_id_calibrated_map.items(): class_train_id_calibrated_map[label_name] = train_id_calibrated_map[train_id] for target_class in self.dataset_config.palette: target_classes.append( TargetClass(target_class.seg_class, label_id=target_class.label_id, train_id=class_train_id_calibrated_map[target_class.seg_class], color=color_mapping[target_class.mapping_class], train_name=target_class.mapping_class )) for target_class in target_classes: self.logger.info("Label Id {}: Train Id {}".format(target_class.label_id, target_class.train_id)) return target_classes def build_palette(self): """Build palette, classes and label_map.""" label_map = {} classes_color = {} id_color_map = {} classes = [] palette = [] for target_class in self.target_classes: label_map[target_class.label_id] = target_class.train_id if target_class.train_name not in classes_color.keys(): classes_color[target_class.train_id] = (target_class.train_name, target_class.color) id_color_map[target_class.train_id] = target_class.color keylist = list(classes_color.keys()) keylist.sort() for train_id in keylist: classes.append(classes_color[train_id][0]) palette.append(classes_color[train_id][1]) return palette, classes, label_map, id_color_map def get_num_unique_train_ids(self): """Return the final number classes used for training. Arguments: target_classes: The target classes object that contain the train_id and label_id. Returns: Number of classes to be segmented. """ train_ids = [target.train_id for target in self.target_classes] train_ids = np.array(train_ids) train_ids_unique = np.unique(train_ids) return len(train_ids_unique) def build_train_pipeline(self, train_pipeline): """ Function to Build Train Pipeline. Args: train_pipeline (Dict): dictionary having the parameters for training augmentation """ augmentation_config = train_pipeline["augmentation_config"] if not augmentation_config["resize"]["img_scale"]: img_scale_min = min(self.input_height, self.input_width) img_scale_max = 1024 if img_scale_min < 1024 else 2048 augmentation_config["resize"]["img_scale"] = [img_scale_min, img_scale_max] updated_train_pipeline = [dict(type="LoadImageFromFile"), dict(type="LoadAnnotations", input_type=self.input_type), dict(type="Resize", img_scale=tuple(augmentation_config["resize"]["img_scale"]), ratio_range=tuple(augmentation_config["resize"]["ratio_range"])), dict(type="RandomCrop", crop_size=tuple([self.input_height, self.input_width]), cat_max_ratio=augmentation_config["random_crop"]["cat_max_ratio"]), dict(type="RandomFlip", prob=augmentation_config["random_flip"]["prob"]), dict(type='PhotoMetricDistortion'), dict(type="Normalize", mean=train_pipeline["img_norm_cfg"]["mean"], std=train_pipeline["img_norm_cfg"]["std"], to_rgb=train_pipeline["img_norm_cfg"]["to_rgb"]), dict(type="Pad", size=(self.input_height, self.input_width), pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=train_pipeline["CollectKeys"]), ] return updated_train_pipeline def build_test_pipeline(self, test_pipeline): """ Function to Build Test Pipeline. Args: test_pipeline (Dict): dictionary having the parameters for testing parameters """ augmentation_config = test_pipeline["augmentation_config"] keep_ar = augmentation_config["resize"]["keep_ratio"] if not test_pipeline["multi_scale"]: test_pipeline["multi_scale"] = [self.input_height, 2048] transforms = [ dict(type='Resize', keep_ratio=keep_ar), dict(type='RandomFlip'), dict(type="Normalize", mean=test_pipeline["img_norm_cfg"]["mean"], std=test_pipeline["img_norm_cfg"]["std"], to_rgb=test_pipeline["img_norm_cfg"]["to_rgb"]), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] updated_test_pipeline = [dict(type="LoadImageFromFile"), dict(type='MultiScaleFlipAug', img_scale=tuple(test_pipeline["multi_scale"]), flip=False, transforms=transforms)] return updated_test_pipeline
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/segformer_dm.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Custom Dataset Module.""" import os import os.path as osp from functools import reduce import mmcv from mmcv.utils import print_log import numpy as np from terminaltables import AsciiTable from torch.utils.data import Dataset from nvidia_tao_pytorch.cv.segformer.core import eval_metrics from nvidia_tao_pytorch.cv.segformer.utils import get_root_logger from nvidia_tao_pytorch.cv.segformer.dataloader.builder import DATASETS from nvidia_tao_pytorch.cv.segformer.dataloader.pipelines import Compose @DATASETS.register_module() class CustomDataset(Dataset): """Custom dataset for semantic segmentation. An example of file structure is as followed. .. code-block:: none ├── data │ ├── my_dataset │ │ ├── img_dir │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── ann_dir │ │ │ ├── train │ │ │ │ ├── xxx{seg_map_suffix} │ │ │ │ ├── yyy{seg_map_suffix} │ │ │ │ ├── zzz{seg_map_suffix} │ │ │ ├── val The img/gt_semantic_seg pair of CustomDataset should be of the same except suffix. A valid img/gt_semantic_seg filename pair should be like ``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included in the suffix). If split is given, then ``xxx`` is specified in txt file. Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded. Please refer to ``docs/tutorials/new_dataset.md`` for more details. Args: pipeline (list[dict]): Processing pipeline img_dir (str): Path to image directory img_suffix (str): Suffix of images. Default: '.jpg' ann_dir (str, optional): Path to annotation directory. Default: None seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' split (str, optional): Split txt file. If split is specified, only file with suffix in the splits will be loaded. Otherwise, all images in img_dir/ann_dir will be loaded. Default: None data_root (str, optional): Data root for img_dir/ann_dir. Default: None. test_mode (bool): If test_mode=True, gt wouldn't be loaded. ignore_index (int): The label index to be ignored. Default: 255 reduce_zero_label (bool): Whether to mark label zero as ignored. Default: False classes (str | Sequence[str], optional): Specify classes to load. If is None, ``cls.CLASSES`` will be used. Default: None. palette (Sequence[Sequence[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, and self.PALETTE is None, random palette will be generated. Default: None """ CLASSES = None PALETTE = None def __init__(self, pipeline, img_dir, img_suffix='.png', ann_dir=None, seg_map_suffix='.png', split=None, data_root=None, test_mode=False, ignore_index=255, reduce_zero_label=False, classes=None, palette=None, label_map=None, id_color_map=None, input_type="rgb", logger=None): """Initialize.""" self.pipeline = Compose(pipeline) self.img_dir = img_dir self.img_suffix = img_suffix self.ann_dir = ann_dir self.seg_map_suffix = seg_map_suffix self.split = split self.data_root = data_root self.test_mode = test_mode self.ignore_index = ignore_index self.reduce_zero_label = reduce_zero_label self.label_map = label_map self.CLASSES, self.PALETTE = classes, palette self.id_color_map = id_color_map self.input_type = input_type self.logger = logger # join paths if data_root is specified if self.data_root is not None: if not osp.isabs(self.img_dir): self.img_dir = osp.join(self.data_root, self.img_dir) if not (self.ann_dir is None or osp.isabs(self.ann_dir)): self.ann_dir = osp.join(self.data_root, self.ann_dir) if not (self.split is None or osp.isabs(self.split)): self.split = osp.join(self.data_root, self.split) # load annotations self.img_infos = self.load_annotations(self.img_dir, self.img_suffix, self.ann_dir, self.seg_map_suffix, self.split) def __len__(self): """Total number of samples of data.""" return len(self.img_infos) def load_annotations(self, img_dir, img_suffix, ann_dir, seg_map_suffix, split): """Load annotation from directory. Args: img_dir (str): Path to image directory img_suffix (str): Suffix of images. ann_dir (str|None): Path to annotation directory. seg_map_suffix (str|None): Suffix of segmentation maps. split (str|None): Split txt file. If split is specified, only file with suffix in the splits will be loaded. Otherwise, all images in img_dir/ann_dir will be loaded. Default: None Returns: list[dict]: All image info of dataset. """ img_infos = [] if split is not None: with open(split) as f: for line in f: img_name = line.strip() img_info = dict(filename=img_name + img_suffix) if ann_dir is not None: seg_map = img_name + seg_map_suffix img_info['ann'] = dict(seg_map=seg_map) img_infos.append(img_info) else: for img in mmcv.scandir(img_dir, img_suffix, recursive=True): img_info = dict(filename=img) if ann_dir is not None: seg_map = img.replace(img_suffix, seg_map_suffix) img_info['ann'] = dict(seg_map=seg_map) img_infos.append(img_info) print_log(f'Loaded {len(img_infos)} images', logger=get_root_logger()) return img_infos def get_ann_info(self, idx): """Get annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ return self.img_infos[idx]['ann'] def pre_pipeline(self, results): """Prepare results dict for pipeline.""" results['seg_fields'] = [] results['img_prefix'] = self.img_dir results['seg_prefix'] = self.ann_dir results['label_map'] = self.label_map def __getitem__(self, idx): """Get training/test data after pipeline. Args: idx (int): Index of data. Returns: dict: Training/test data (with annotation if `test_mode` is set False). """ if self.test_mode: return self.prepare_test_img(idx) return self.prepare_train_img(idx) def prepare_train_img(self, idx): """Get training data and annotations after pipeline. Args: idx (int): Index of data. Returns: dict: Training data and annotation after pipeline with new keys introduced by pipeline. """ img_info = self.img_infos[idx] ann_info = self.get_ann_info(idx) results = dict(img_info=img_info, ann_info=ann_info) self.pre_pipeline(results) return self.pipeline(results) def prepare_test_img(self, idx): """Get testing data after pipeline. Args: idx (int): Index of data. Returns: dict: Testing data after pipeline with new keys intorduced by piepline. """ img_info = self.img_infos[idx] results = dict(img_info=img_info) self.pre_pipeline(results) return self.pipeline(results) def format_results(self, results, **kwargs): """Place holder to format result to dataset specific output.""" pass def get_gt_seg_maps(self, efficient_test=False): """Get ground truth segmentation maps for evaluation.""" gt_seg_maps = [] for img_info in self.img_infos: seg_map = osp.join(self.ann_dir, img_info['ann']['seg_map']) if efficient_test: gt_seg_map = seg_map else: gt_seg_map = mmcv.imread( seg_map, flag='unchanged', backend='pillow') if self.input_type == "grayscale": gt_seg_map = gt_seg_map / 255 gt_seg_map = np.where(gt_seg_map > 0.5, 1, 0) gt_seg_maps.append(gt_seg_map) return gt_seg_maps # We are not using this function def get_classes_and_palette(self, classes=None, palette=None): """Get class names of current dataset. Args: classes (Sequence[str] | str | None): If classes is None, use default CLASSES defined by builtin dataset. If classes is a string, take it as a file name. The file contains the name of classes where each line contains one class name. If classes is a tuple or list, override the CLASSES defined by the dataset. palette (Sequence[Sequence[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, random palette will be generated. Default: None """ if classes is None: self.custom_classes = False return self.CLASSES, self.PALETTE self.custom_classes = True if isinstance(classes, str): # take it as a file path class_names = mmcv.list_from_file(classes) elif isinstance(classes, (tuple, list)): class_names = classes else: raise ValueError(f'Unsupported type {type(classes)} of classes.') if self.CLASSES: if not set(classes).issubset(self.CLASSES): raise ValueError('classes is not a subset of CLASSES.') # dictionary, its keys are the old label ids and its values # are the new label ids. # used for changing pixel labels in load_annotations. self.label_map = {} for i, c in enumerate(self.CLASSES): if c not in class_names: self.label_map[i] = -1 else: self.label_map[i] = classes.index(c) palette = self.get_palette_for_custom_classes(class_names, palette) return class_names, palette def get_palette_for_custom_classes(self, class_names, palette=None): """Function To Get Custom Classes.""" if self.label_map is not None: # return subset of palette palette = [] for old_id, new_id in sorted( self.label_map.items(), key=lambda x: x[1]): if new_id != -1: palette.append(self.PALETTE[old_id]) palette = type(self.PALETTE)(palette) elif palette is None: if self.PALETTE is None: palette = np.random.randint(0, 255, size=(len(class_names), 3)) else: palette = self.PALETTE return palette def evaluate(self, results, metric='mIoU', logger=None, efficient_test=False, **kwargs): """Evaluate the dataset. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. 'mIoU' and 'mDice' are supported. logger (logging.Logger | None | str): Logger used for printing related information during evaluation. Default: None. Returns: dict[str, float]: Default metrics. """ if isinstance(metric, str): metric = [metric] allowed_metrics = ['mIoU', 'mDice'] if not set(metric).issubset(set(allowed_metrics)): raise KeyError('metric {} is not supported'.format(metric)) eval_results = {} gt_seg_maps = self.get_gt_seg_maps(efficient_test) if self.CLASSES is None: num_classes = len( reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps])) else: num_classes = len(self.CLASSES) ret_metrics = eval_metrics( results, gt_seg_maps, num_classes, self.ignore_index, metric, label_map=self.label_map, reduce_zero_label=self.reduce_zero_label) class_table_data = [['Class'] + [m[1:] for m in metric] + ['Acc']] if self.CLASSES is None: class_names = tuple(range(num_classes)) else: class_names = self.CLASSES ret_metrics_round = [ np.round(ret_metric * 100, 2) for ret_metric in ret_metrics ] for i in range(num_classes): class_table_data.append([class_names[i]] + [m[i] for m in ret_metrics_round[2:]] + [ret_metrics_round[1][i]]) summary_table_data = [['Scope'] + ['m' + head for head in class_table_data[0][1:]] + ['aAcc']] ret_metrics_mean = [ np.round(np.nanmean(ret_metric) * 100, 2) for ret_metric in ret_metrics ] summary_table_data.append(['global'] + ret_metrics_mean[2:] + [ret_metrics_mean[1]] + [ret_metrics_mean[0]]) print_log('per class results:', logger) table = AsciiTable(class_table_data) print_log('\n' + table.table, logger=logger) print_log('Summary:', logger) table = AsciiTable(summary_table_data) print_log('\n' + table.table, logger=logger) for i in range(1, len(summary_table_data[0])): eval_results[summary_table_data[0] [i]] = summary_table_data[1][i] / 100.0 if mmcv.is_list_of(results, str): for file_name in results: os.remove(file_name) return eval_results
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/custom_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer dataloader module.""" from .segformer_dataset import SFDataset from .custom_dataset import CustomDataset from .data_utils import ConcatDataset, RepeatDataset __all__ = ["SFDataset", "CustomDataset", "ConcatDataset", "RepeatDataset"]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Builder Module.""" import copy import platform import random import numpy as np from mmcv.utils import Registry, build_from_cfg if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) hard_limit = rlimit[1] soft_limit = min(4096, hard_limit) resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) DATASETS = Registry('dataset', scope='xxx') PIPELINES = Registry('pipeline', scope='xxx') def _concat_dataset(cfg, default_args=None): """Build :obj:`ConcatDataset by.""" from .dataset_wrappers import ConcatDataset img_dir = cfg['img_dir'] ann_dir = cfg.get('ann_dir', None) split = cfg.get('split', None) num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1 if ann_dir is not None: num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1 else: num_ann_dir = 0 if split is not None: num_split = len(split) if isinstance(split, (list, tuple)) else 1 else: num_split = 0 if num_img_dir > 1: assert num_ann_dir in (num_img_dir, 0) assert num_split in (num_img_dir, 0) else: assert num_split == num_ann_dir or num_ann_dir <= 1 num_dset = max(num_split, num_img_dir) datasets = [] for i in range(num_dset): data_cfg = copy.deepcopy(cfg) if isinstance(img_dir, (list, tuple)): data_cfg['img_dir'] = img_dir[i] if isinstance(ann_dir, (list, tuple)): data_cfg['ann_dir'] = ann_dir[i] if isinstance(split, (list, tuple)): data_cfg['split'] = split[i] datasets.append(build_dataset(data_cfg, default_args)) return ConcatDataset(datasets) def build_dataset(cfg, default_args=None): """Build datasets.""" from .dataset_wrappers import ConcatDataset, RepeatDataset if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( build_dataset(cfg['dataset'], default_args), cfg['times']) elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance( cfg.get('split', None), (list, tuple)): print("Concatenating datasets") dataset = _concat_dataset(cfg, default_args) else: dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset def worker_init_fn(worker_id, num_workers, rank, seed): """Worker init func for dataloader. The seed of each worker equals to num_worker * rank + worker_id + user_seed Args: worker_id (int): Worker id. num_workers (int): Number of workers. rank (int): The rank of current process. seed (int): The random seed to use. """ worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data Utils Module.""" from torch.utils.data.dataset import ConcatDataset as _ConcatDataset import torch.distributed as dist from torch.utils.data import DistributedSampler from nvidia_tao_pytorch.cv.segformer.dataloader.builder import DATASETS import copy import random from functools import partial import numpy as np from mmcv.parallel import collate from mmcv.runner import get_dist_info from mmcv.utils import build_from_cfg from mmcv.utils.parrots_wrapper import DataLoader, PoolDataLoader def _concat_dataset(cfg, default_args=None): """Build :obj:`ConcatDataset by.""" img_dir = cfg['img_dir'] ann_dir = cfg.get('ann_dir', None) split = cfg.get('split', None) num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1 if ann_dir is not None: num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1 else: num_ann_dir = 0 if split is not None: num_split = len(split) if isinstance(split, (list, tuple)) else 1 else: num_split = 0 if num_img_dir > 1: assert num_ann_dir in (num_img_dir, 0) assert num_split in (num_img_dir, 0) else: assert num_split == num_ann_dir or num_ann_dir <= 1 num_dset = max(num_split, num_img_dir) datasets = [] for i in range(num_dset): data_cfg = copy.deepcopy(cfg) if isinstance(img_dir, (list, tuple)): data_cfg['img_dir'] = img_dir[i] if isinstance(ann_dir, (list, tuple)): data_cfg['ann_dir'] = ann_dir[i] if isinstance(split, (list, tuple)): data_cfg['split'] = split[i] datasets.append(build_dataset(data_cfg, default_args)) return ConcatDataset(datasets) class TargetClass(object): """Target class parameters.""" def __init__(self, name, label_id, train_id=None, color=None, train_name=None): """Constructor. Args: name (str): Name of the target class. label_id (str):original label id of every pixel of the mask train_id (str): The mapped train id of every pixel in the mask Raises: ValueError: On invalid input args. """ self.name = name self.train_id = train_id self.label_id = label_id self.color = color self.train_name = train_name def get_train_class_mapping(target_classes): """Utility function that returns the mapping of the train id to orig class.""" train_id_name_mapping = {} for target_class in target_classes: if target_class.train_id not in train_id_name_mapping.keys(): train_id_name_mapping[target_class.train_id] = [target_class.name] else: train_id_name_mapping[target_class.train_id].append(target_class.name) return train_id_name_mapping @DATASETS.register_module() class ConcatDataset(_ConcatDataset): """A wrapper of concatenated dataset. Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but concat the group flag for image aspect ratio. Args: datasets (list[:obj:`Dataset`]): A list of datasets. """ def __init__(self, datasets): """Init Module.""" super(ConcatDataset, self).__init__(datasets) self.CLASSES = datasets[0].CLASSES self.PALETTE = datasets[0].PALETTE @DATASETS.register_module() class RepeatDataset(object): """A wrapper of repeated dataset. The length of repeated dataset will be `times` larger than the original dataset. This is useful when the data loading time is long but the dataset is small. Using RepeatDataset can reduce the data loading time between epochs. Args: dataset (:obj:`Dataset`): The dataset to be repeated. times (int): Repeat times. """ def __init__(self, dataset, times): """Init Module.""" self.dataset = dataset self.times = times self.CLASSES = dataset.CLASSES self.PALETTE = dataset.PALETTE self._ori_len = len(self.dataset) def __getitem__(self, idx): """Get item from original dataset.""" return self.dataset[idx % self._ori_len] def __len__(self): """The length is multiplied by ``times``""" return self.times * self._ori_len def is_dist_avail_and_initialized(): """is dist initialized""" is_dist = True if not dist.is_available(): is_dist = False else: is_dist = dist.is_initialized() or False return is_dist def build_dataset(cfg, default_args=None): """Build datasets.""" if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( build_dataset(cfg['dataset'], default_args), cfg['times']) elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance( cfg.get('split', None), (list, tuple)): print("Concatenating datasets") dataset = _concat_dataset(cfg, default_args) else: dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset def build_dataloader(dataset, samples_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, seed=None, drop_last=False, pin_memory=True, dataloader_type='PoolDataLoader', **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. samples_per_gpu (int): Number of training samples on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. seed (int | None): Seed to be used. Default: None. drop_last (bool): Whether to drop the last incomplete batch in epoch. Default: False pin_memory (bool): Whether to use pin_memory in DataLoader. Default: True dataloader_type (str): Type of dataloader. Default: 'PoolDataLoader' kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() if dist: sampler = DistributedSampler( dataset, world_size, rank, shuffle=shuffle) shuffle = False batch_size = samples_per_gpu num_workers = workers_per_gpu else: sampler = None batch_size = num_gpus * samples_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None assert dataloader_type in ( 'DataLoader', 'PoolDataLoader'), f'unsupported dataloader {dataloader_type}' if dataloader_type == 'PoolDataLoader': dataloader = PoolDataLoader elif dataloader_type == 'DataLoader': dataloader = DataLoader data_loader = dataloader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), pin_memory=pin_memory, shuffle=shuffle, worker_init_fn=init_fn, drop_last=drop_last, **kwargs) return data_loader def worker_init_fn(worker_id, num_workers, rank, seed): """Worker init func for dataloader. The seed of each worker equals to num_worker * rank + worker_id + user_seed Args: worker_id (int): Worker id. num_workers (int): Number of workers. rank (int): The rank of current process. seed (int): The random seed to use. """ worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/data_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer dataset module.""" import os import os.path as osp import tempfile import mmcv from mmcv.utils import print_log import numpy as np from PIL import Image from nvidia_tao_pytorch.cv.segformer.dataloader.builder import DATASETS from nvidia_tao_pytorch.cv.segformer.dataloader.custom_dataset import CustomDataset from nvidia_tao_pytorch.cv.segformer.utils.common_utils import check_and_create @DATASETS.register_module() class SFDataset(CustomDataset): """SF dataset. Custom SegFormer Dataset """ # The suffix to be used can be made configurable def __init__(self, **kwargs): """Initialize.""" super(SFDataset, self).__init__( **kwargs) self.img_suffix = kwargs["img_suffix"] self.seg_map_suffix = kwargs["seg_map_suffix"] @staticmethod def _convert_to_label_id(result): """Convert trainId to id for cityscapes.""" if isinstance(result, str): result = np.load(result) import cityscapesscripts.helpers.labels as CSLabels result_copy = result.copy() for trainId, label in CSLabels.trainId2label.items(): result_copy[result == trainId] = label.id return result_copy def results2img(self, results, imgfile_prefix, to_label_id): """Write the segmentation results to images. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. imgfile_prefix (str): The filename prefix of the png files. If the prefix is "somepath/xxx", the png files will be named "somepath/xxx.png". to_label_id (bool): whether convert output to label_id for submission Returns: list[str: str]: result txt files which contains corresponding semantic segmentation images. """ mmcv.mkdir_or_exist(imgfile_prefix) result_files = [] prog_bar = mmcv.ProgressBar(len(self)) for idx in range(len(self)): result = results[idx] if isinstance(result, str): result = np.load(result) filename = os.path.join(self.img_dir, self.img_infos[idx]['filename']) input_img = Image.open(filename).convert('RGB') # For now, the visualized inference image will have the train id's filename = self.img_infos[idx]['filename'] basename = osp.splitext(osp.basename(filename))[0] vis_dir = osp.join(imgfile_prefix, "vis_tao") mask_dir = osp.join(imgfile_prefix, "mask_tao") check_and_create(vis_dir) check_and_create(mask_dir) png_filename = osp.join(mask_dir, f'{basename}.png') overlay_fn = osp.join(vis_dir, f'{basename}.jpg') output = Image.fromarray(result.astype(np.uint8)).convert('P') output.save(png_filename) output_palette = np.zeros((len(self.CLASSES), 3), dtype=np.uint8) for id, color in self.id_color_map.items(): # noqa pylint: disable=W0622 output_palette[id] = color output.putpalette(output_palette) output = output.convert("RGB") if self.input_type == "grayscale": output = Image.fromarray(np.asarray(output).astype('uint8')) else: overlay_img = (np.asarray(input_img) / 2 + np.asarray(output) / 2).astype('uint8') output = Image.fromarray(overlay_img) output.save(overlay_fn) result_files.append(png_filename) prog_bar.update() return result_files def format_results(self, results, imgfile_prefix="/results", to_label_id=True): """Format the results into dir (standard format for Cityscapes evaluation). Args: results (list): Testing results of the dataset. imgfile_prefix (str | None): The prefix of images files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. to_label_id (bool): whether convert output to label_id for submission. Default: False Returns: tuple: (result_files, tmp_dir), result_files is a list containing the image paths, tmp_dir is the temporal directory created for saving json/png files when img_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: ' f'{len(results)} != {len(self)}') if imgfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() imgfile_prefix = tmp_dir.name else: tmp_dir = None result_files = self.results2img(results, imgfile_prefix, to_label_id) return result_files, tmp_dir def evaluate(self, results, metric='mIoU', logger=None, imgfile_prefix=None, efficient_test=False): """Evaluation in Cityscapes/default protocol. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | None | str): Logger used for printing related information during evaluation. Default: None. imgfile_prefix (str | None): The prefix of output image file, for cityscapes evaluation only. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If results are evaluated with cityscapes protocol, it would be the prefix of output png files. The output files would be png images under folder "a/b/prefix/xxx.png", where "xxx" is the image name of cityscapes. If not specified, a temp file will be created for evaluation. Default: None. Returns: dict[str, float]: Cityscapes/default metrics. """ eval_results = dict() metrics = metric.copy() if isinstance(metric, list) else [metric] if 'cityscapes' in metrics: eval_results.update( self._evaluate_cityscapes(results, logger, imgfile_prefix)) metrics.remove('cityscapes') if len(metrics) > 0: eval_results.update( super(SFDataset, self).evaluate(results, metrics, logger, efficient_test)) return eval_results def _evaluate_cityscapes(self, results, logger, imgfile_prefix): """Evaluation in Cityscapes protocol. Args: results (list): Testing results of the dataset. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. imgfile_prefix (str | None): The prefix of output image file Returns: dict[str: float]: Cityscapes evaluation results. """ try: import cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling as CSEval # noqa except ImportError: raise ImportError('Please run "pip install cityscapesscripts" to ' 'install cityscapesscripts first.') msg = 'Evaluating in Cityscapes style' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) _, tmp_dir = self.format_results(results, imgfile_prefix) if tmp_dir is None: result_dir = imgfile_prefix else: result_dir = tmp_dir.name eval_results = dict() print_log(f'Evaluating results under {result_dir} ...', logger=logger) CSEval.args.evalInstLevelScore = True CSEval.args.predictionPath = osp.abspath(result_dir) CSEval.args.evalPixelAccuracy = True CSEval.args.JSONOutput = False seg_map_list = [] pred_list = [] # when evaluating with official cityscapesscripts, # **_gtFine_labelIds.png is used for seg_map in mmcv.scandir( self.ann_dir, 'gtFine_labelIds.png', recursive=True): seg_map_list.append(osp.join(self.ann_dir, seg_map)) pred_list.append(CSEval.getPrediction(CSEval.args, seg_map)) eval_results.update( CSEval.evaluateImgLists(pred_list, seg_map_list, CSEval.args)) if tmp_dir is not None: tmp_dir.cleanup() return eval_results
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/segformer_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file # pylint: disable-all """Transforms Module.""" import mmcv from mmcv.utils import deprecated_api_warning, is_tuple_of from numpy import random import numpy as np from nvidia_tao_pytorch.cv.segformer.dataloader.builder import PIPELINES @PIPELINES.register_module() class AlignedResize(object): """Resize images & seg. Align """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, size_divisor=32): """ Init Module.""" if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] assert mmcv.is_list_of(self.img_scale, tuple), "Image scale should be a tuple." if ratio_range is not None: # mode 1: given img_scale=None and a range of image ratio # mode 2: given a scale and a range of image ratio assert self.img_scale is None or len(self.img_scale) == 1, "length of img_scale should be 1." else: # mode 3 and 4: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'], "Provided multiscale_mode: {} not in [value, range]".format(multiscale_mode) self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.size_divisor = size_divisor @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple), "Image scales are not list or tuple." scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2, "Length of Image scales is less than 2." img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2, "img_scale is not tuple/ length of img_scale should be 2." min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio, "Max ratio for image scale should not be greater than Min ratio." ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: if self.img_scale is None: h, w = results['img'].shape[:2] scale, scale_idx = self.random_sample_ratio((w, h), self.ratio_range) else: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _align(self, img, size_divisor, interpolation=None): """Align.""" align_h = int(np.ceil(img.shape[0] / size_divisor)) * size_divisor align_w = int(np.ceil(img.shape[1] / size_divisor)) * size_divisor if interpolation == None: # noqa pylint: disable=C0121 img = mmcv.imresize(img, (align_w, align_h)) else: img = mmcv.imresize(img, (align_w, align_h), interpolation=interpolation) return img def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) # align # img = self._align(img, self.size_divisor) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) h, w = img.shape[:2] assert int(np.ceil(h / self.size_divisor)) * self.size_divisor == h and \ int(np.ceil(w / self.size_divisor)) * self.size_divisor == w, "img size not align. h:{} w:{}".format(h, w) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') gt_seg = self._align(gt_seg, self.size_divisor, interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') h, w = gt_seg.shape[:2] assert int(np.ceil(h / self.size_divisor)) * self.size_divisor == h and \ int(np.ceil(w / self.size_divisor)) * self.size_divisor == w, "gt_seg size not align. h:{} w:{}".format(h, w) results[key] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): """Reproduce str.""" repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str @PIPELINES.register_module() class Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can be Nong, a tuple (single-scale) or a list of tuple (multi-scale). There are 4 multiscale modes: - ``ratio_range is not None``: 1. When img_scale is None, img_scale is the shape of image in results (img_scale = results['img'].shape[:2]) and the image is resized based on the original size. (mode 1) 2. When img_scale is a tuple (single-scale), randomly sample a ratio from the ratio range and multiply it with the image scale. (mode 2) - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. (mode 3) - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. (mode 4) Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True): """Init Module.""" if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] assert mmcv.is_list_of(self.img_scale, tuple), "Image scale should be a tuple." if ratio_range is not None: # mode 1: given img_scale=None and a range of image ratio # mode 2: given a scale and a range of image ratio assert self.img_scale is None or len(self.img_scale) == 1, "Length of img_scale should be 1.Img scale is {}".format(len(self.img_scale)) else: # mode 3 and 4: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'], "Provided multiscale_mode: {} not in [value, range]".format(multiscale_mode) self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple), "Image scale should be tuple." scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2, "Image scales should be tuple." img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2, "Image scale should be a tuple." min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio, "Max ration should not be lesser than min_ratio." ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: if self.img_scale is None: h, w = results['img'].shape[:2] scale, scale_idx = self.random_sample_ratio((w, h), self.ratio_range) else: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') results[key] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): """Reproduce.""" repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str @PIPELINES.register_module() class RandomFlip(object): """Flip the image & seg. If the input dict contains the key "flip", then the flag will be used, otherwise it will be randomly decided by a ratio specified in the init method. Args: prob (float, optional): The flipping probability. Default: None. direction(str, optional): The flipping direction. Options are 'horizontal' and 'vertical'. Default: 'horizontal'. """ @deprecated_api_warning({'flip_ratio': 'prob'}, cls_name='RandomFlip') def __init__(self, prob=None, direction='horizontal'): """ Init Module.""" self.prob = prob self.direction = direction if prob is not None: assert prob >= 0 and prob <= 1 # noqa pylint: disable=R1716 assert direction in ['horizontal', 'vertical'], "Direction should be horizontal or vertical." def __call__(self, results): """Call function to flip bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Flipped results, 'flip', 'flip_direction' keys are added into result dict. """ if 'flip' not in results: flip = True if np.random.rand() < self.prob else False # noqa pylint: disable=R1719 results['flip'] = flip if 'flip_direction' not in results: results['flip_direction'] = self.direction if results['flip']: # flip image results['img'] = mmcv.imflip( results['img'], direction=results['flip_direction']) # flip segs for key in results.get('seg_fields', []): # use copy() to make numpy stride positive results[key] = mmcv.imflip( results[key], direction=results['flip_direction']).copy() return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + f'(prob={self.prob})' @PIPELINES.register_module() class Pad(object): """Pad the image & mask. There are two padding modes: (1) pad to a fixed size and (2) pad to the minimum size that is divisible by some number. Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", Args: size (tuple, optional): Fixed padding size. size_divisor (int, optional): The divisor of padded size. pad_val (float, optional): Padding value. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. """ def __init__(self, size=None, size_divisor=None, pad_val=0, seg_pad_val=255): """Init Module.""" self.size = size self.size_divisor = size_divisor self.pad_val = pad_val self.seg_pad_val = seg_pad_val # only one of size and size_divisor should be valid assert size is not None or size_divisor is not None, "Size and size divisor both cannot be None." assert size is None or size_divisor is None, "Size and size divisor both cannot be None." def _pad_img(self, results): """Pad images according to ``self.size``.""" if self.size is not None: padded_img = mmcv.impad( results['img'], shape=self.size, pad_val=self.pad_val) elif self.size_divisor is not None: padded_img = mmcv.impad_to_multiple( results['img'], self.size_divisor, pad_val=self.pad_val) results['img'] = padded_img results['pad_shape'] = padded_img.shape results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor def _pad_seg(self, results): """Pad masks according to ``results['pad_shape']``.""" for key in results.get('seg_fields', []): results[key] = mmcv.impad( results[key], shape=results['pad_shape'][:2], pad_val=self.seg_pad_val) def __call__(self, results): """Call function to pad images, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Updated result dict. """ self._pad_img(results) self._pad_seg(results) return results def __repr__(self): """ Reproduce class.""" repr_str = self.__class__.__name__ repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \ f'pad_val={self.pad_val})' return repr_str @PIPELINES.register_module() class Normalize(object): """Normalize the image. Added key is "img_norm_cfg". Args: mean (sequence): Mean values of 3 channels. std (sequence): Std values of 3 channels. to_rgb (bool): Whether to convert the image from BGR to RGB, default is true. """ def __init__(self, mean, std, to_rgb=True): """Init Module.""" self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb def __call__(self, results): """Call function to normalize images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Normalized results, 'img_norm_cfg' key is added into result dict. """ results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std, self.to_rgb) results['img_norm_cfg'] = dict( mean=self.mean, std=self.std, to_rgb=self.to_rgb) return results def __repr__(self): """Reproduce string.""" repr_str = self.__class__.__name__ repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \ f'{self.to_rgb})' return repr_str @PIPELINES.register_module() class Rerange(object): """Rerange the image pixel value. Args: min_value (float or int): Minimum value of the reranged image. Default: 0. max_value (float or int): Maximum value of the reranged image. Default: 255. """ def __init__(self, min_value=0, max_value=255): """ Init Module.""" assert isinstance(min_value, (float, int)), "min_value of images should be float or int." assert isinstance(max_value, (float, int)), "max_value of images should be float or int." assert min_value < max_value, "max_value of the pixels should not be lesser than the min_value." self.min_value = min_value self.max_value = max_value def __call__(self, results): """Call function to rerange images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Reranged results. """ img = results['img'] img_min_value = np.min(img) img_max_value = np.max(img) assert img_min_value < img_max_value, "max_value of the pixels should not be lesser than the min_value." # rerange to [0, 1] img = (img - img_min_value) / (img_max_value - img_min_value) # rerange to [min_value, max_value] img = img * (self.max_value - self.min_value) + self.min_value results['img'] = img return results def __repr__(self): """Reproduce string.""" repr_str = self.__class__.__name__ repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' return repr_str @PIPELINES.register_module() class CLAHE(object): """Use CLAHE method to process the image. See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. Graphics Gems, 1994:474-485.` for more information. Args: clip_limit (float): Threshold for contrast limiting. Default: 40.0. tile_grid_size (tuple[int]): Size of grid for histogram equalization. Input image will be divided into equally sized rectangular tiles. It defines the number of tiles in row and column. Default: (8, 8). """ def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): """ Init Module.""" assert isinstance(clip_limit, (float, int)), "Clip Limit should be int or float." self.clip_limit = clip_limit assert is_tuple_of(tile_grid_size, int), "Tile Grid size should be of int type." assert len(tile_grid_size) == 2, "Tile Grid size should be 2." self.tile_grid_size = tile_grid_size def __call__(self, results): """Call function to Use CLAHE method process images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ for i in range(results['img'].shape[2]): results['img'][:, :, i] = mmcv.clahe( np.array(results['img'][:, :, i], dtype=np.uint8), self.clip_limit, self.tile_grid_size) return results def __repr__(self): """Reproduce string.""" repr_str = self.__class__.__name__ repr_str += f'(clip_limit={self.clip_limit}, '\ f'tile_grid_size={self.tile_grid_size})' return repr_str @PIPELINES.register_module() class RandomCrop(object): """Random crop the image & seg. Args: crop_size (tuple): Expected size after cropping, (h, w). cat_max_ratio (float): The maximum ratio that single category could occupy. """ def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255): """Init Module.""" assert crop_size[0] > 0 and crop_size[1] > 0., "Crop size values should be greater than 0." self.crop_size = crop_size self.cat_max_ratio = cat_max_ratio self.ignore_index = ignore_index def get_crop_bbox(self, img): """Randomly get a crop bounding box.""" margin_h = max(img.shape[0] - self.crop_size[0], 0) margin_w = max(img.shape[1] - self.crop_size[1], 0) offset_h = np.random.randint(0, margin_h + 1) offset_w = np.random.randint(0, margin_w + 1) crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] return crop_y1, crop_y2, crop_x1, crop_x2 def crop(self, img, crop_bbox): """Crop from ``img``""" crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] return img def __call__(self, results): """Call function to randomly crop images, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. """ img = results['img'] crop_bbox = self.get_crop_bbox(img) if self.cat_max_ratio < 1.: # Repeat 10 times for _ in range(10): seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) labels, cnt = np.unique(seg_temp, return_counts=True) cnt = cnt[labels != self.ignore_index] if len(cnt) > 1 and np.max(cnt) / np.sum( cnt) < self.cat_max_ratio: break crop_bbox = self.get_crop_bbox(img) # crop the image img = self.crop(img, crop_bbox) img_shape = img.shape results['img'] = img results['img_shape'] = img_shape # crop semantic seg for key in results.get('seg_fields', []): results[key] = self.crop(results[key], crop_bbox) return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + f'(crop_size={self.crop_size})' @PIPELINES.register_module() class CenterCrop(object): """Center crop the image & seg. Args: crop_size (tuple): Expected size after cropping, (h, w). """ def __init__(self, crop_size, ignore_index=255): """Init Module.""" assert crop_size[0] > 0 and crop_size[1] > 0, "Crop size should be greater than 0." self.crop_size = crop_size self.ignore_index = ignore_index def get_crop_bbox(self, img): """Randomly get a crop bounding box.""" margin_h = max(img.shape[0] - self.crop_size[0], 0) margin_w = max(img.shape[1] - self.crop_size[1], 0) offset_h = margin_h // 2 # np.random.randint(0, margin_h + 1) offset_w = margin_w // 2 # np.random.randint(0, margin_w + 1) crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] return crop_y1, crop_y2, crop_x1, crop_x2 def crop(self, img, crop_bbox): """Crop from ``img``""" crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] return img def __call__(self, results): """Call function to randomly crop images, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. """ img = results['img'] crop_bbox = self.get_crop_bbox(img) # crop the image img = self.crop(img, crop_bbox) img_shape = img.shape results['img'] = img results['img_shape'] = img_shape # crop semantic seg for key in results.get('seg_fields', []): results[key] = self.crop(results[key], crop_bbox) return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + f'(crop_size={self.crop_size})' @PIPELINES.register_module() class RandomRotate(object): """Rotate the image & seg. Args: prob (float): The rotation probability. degree (float, tuple[float]): Range of degrees to select from. If degree is a number instead of tuple like (min, max), the range of degree will be (``-degree``, ``+degree``) pad_val (float, optional): Padding value of image. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. center (tuple[float], optional): Center point (w, h) of the rotation in the source image. If not specified, the center of the image will be used. Default: None. auto_bound (bool): Whether to adjust the image size to cover the whole rotated image. Default: False """ def __init__(self, prob, degree, pad_val=0, seg_pad_val=255, center=None, auto_bound=False): """Init Module.""" self.prob = prob assert prob >= 0 and prob <= 1 # noqa pylint: disable=R1716 if isinstance(degree, (float, int)): assert degree > 0, f'degree {degree} should be positive' self.degree = (-degree, degree) else: self.degree = degree assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ f'tuple of (min, max)' self.pal_val = pad_val self.seg_pad_val = seg_pad_val self.center = center self.auto_bound = auto_bound def __call__(self, results): """Call function to rotate image, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Rotated results. """ rotate = True if np.random.rand() < self.prob else False # noqa pylint: disable=R1719 degree = np.random.uniform(min(*self.degree), max(*self.degree)) if rotate: # rotate image results['img'] = mmcv.imrotate( results['img'], angle=degree, border_value=self.pal_val, center=self.center, auto_bound=self.auto_bound) # rotate segs for key in results.get('seg_fields', []): results[key] = mmcv.imrotate( results[key], angle=degree, border_value=self.seg_pad_val, center=self.center, auto_bound=self.auto_bound, interpolation='nearest') return results def __repr__(self): """Reproduce string.""" repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' \ f'degree={self.degree}, ' \ f'pad_val={self.pal_val}, ' \ f'seg_pad_val={self.seg_pad_val}, ' \ f'center={self.center}, ' \ f'auto_bound={self.auto_bound})' return repr_str @PIPELINES.register_module() class RGB2Gray(object): """Convert RGB image to grayscale image. This transform calculate the weighted mean of input image channels with ``weights`` and then expand the channels to ``out_channels``. When ``out_channels`` is None, the number of output channels is the same as input channels. Args: out_channels (int): Expected number of output channels after transforming. Default: None. weights (tuple[float]): The weights to calculate the weighted mean. Default: (0.299, 0.587, 0.114). """ def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): """ Init Module.""" assert out_channels is None or out_channels > 0, "Out Channels should be greater than 0." self.out_channels = out_channels assert isinstance(weights, tuple), "Weights should not be tuple." for item in weights: assert isinstance(item, (float, int)), "Item should be a float or int." self.weights = weights def __call__(self, results): """Call function to convert RGB image to grayscale image. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with grayscale image. """ img = results['img'] assert len(img.shape) == 3, "Image shape should be 3." assert img.shape[2] == len(self.weights), "Image shape does not match weights shape." weights = np.array(self.weights).reshape((1, 1, -1)) img = (img * weights).sum(2, keepdims=True) if self.out_channels is None: img = img.repeat(weights.shape[2], axis=2) else: img = img.repeat(self.out_channels, axis=2) results['img'] = img results['img_shape'] = img.shape return results def __repr__(self): """Reproduce string.""" repr_str = self.__class__.__name__ repr_str += f'(out_channels={self.out_channels}, ' \ f'weights={self.weights})' return repr_str @PIPELINES.register_module() class AdjustGamma(object): """Using gamma correction to process the image. Args: gamma (float or int): Gamma value used in gamma correction. Default: 1.0. """ def __init__(self, gamma=1.0): """Init Module.""" assert isinstance(gamma, (float, int)), "Gamma should be a float." assert gamma > 0, "Gamma should be greater than 0." self.gamma = gamma inv_gamma = 1.0 / gamma self.table = np.array([(i / 255.0)**inv_gamma * 255 for i in np.arange(256)]).astype('uint8') def __call__(self, results): """Call function to process the image with gamma correction. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ results['img'] = mmcv.lut_transform( np.array(results['img'], dtype=np.uint8), self.table) return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + f'(gamma={self.gamma})' @PIPELINES.register_module() class MaillaryHack(object): """ map MV 65 class to 19 class like Cityscapes """ def __init__(self): """Init module.""" self.map = [[13, 24, 41], [2, 15], [17], [6], [3], [45, 47], [48], [50], [30], [29], [27], [19], [20, 21, 22], [55], [61], [54], [58], [57], [52]] self.others = [i for i in range(66)] for i in self.map: for j in i: if j in self.others: self.others.remove(j) def __call__(self, results): """Call function to process the image with gamma correction. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ gt_map = results['gt_semantic_seg'] # others -> 255 for value in self.others: gt_map[gt_map == value] = 255 for index, map in enumerate(self.map): # noqa pylint: disable=W0622 for value in map: # noqa pylint: disable=W0622 gt_map[gt_map == value] = index results['gt_semantic_seg'] = gt_map return results def __repr__(self): """Reproduce string.""" return 'MaillaryHack' @PIPELINES.register_module() class SegRescale(object): """Rescale semantic segmentation maps. Args: scale_factor (float): The scale factor of the final output. """ def __init__(self, scale_factor=1): """ Init Module.""" self.scale_factor = scale_factor def __call__(self, results): """Call function to scale the semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with semantic segmentation map scaled. """ for key in results.get('seg_fields', []): if self.scale_factor != 1: results[key] = mmcv.imrescale( results[key], self.scale_factor, interpolation='nearest') return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' @PIPELINES.register_module() class PhotoMetricDistortion(object): """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) 8. randomly swap channels Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): """Init Module.""" self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def convert(self, img, alpha=1, beta=0): """Multiple with alpha and add beat with clip.""" img = img.astype(np.float32) * alpha + beta img = np.clip(img, 0, 255) return img.astype(np.uint8) def brightness(self, img): """Brightness distortion.""" if random.randint(2): return self.convert( img, beta=random.uniform(-self.brightness_delta, self.brightness_delta)) return img def contrast(self, img): """Contrast distortion.""" if random.randint(2): return self.convert( img, alpha=random.uniform(self.contrast_lower, self.contrast_upper)) return img def saturation(self, img): """Saturation distortion.""" if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 1] = self.convert( img[:, :, 1], alpha=random.uniform(self.saturation_lower, self.saturation_upper)) img = mmcv.hsv2bgr(img) return img def hue(self, img): """Hue distortion.""" if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 0] = (img[:, :, 0].astype(int) + random.randint(-self.hue_delta, self.hue_delta)) % 180 img = mmcv.hsv2bgr(img) return img def __call__(self, results): """Call function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ img = results['img'] # random brightness img = self.brightness(img) # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: img = self.contrast(img) # random saturation img = self.saturation(img) # random hue img = self.hue(img) # random contrast if mode == 0: img = self.contrast(img) results['img'] = img return results def __repr__(self): """Reproduce string.""" repr_str = self.__class__.__name__ repr_str += (f'(brightness_delta={self.brightness_delta}, ' f'contrast_range=({self.contrast_lower}, ' f'{self.contrast_upper}), ' f'saturation_range=({self.saturation_lower}, ' f'{self.saturation_upper}), ' f'hue_delta={self.hue_delta})') return repr_str
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/pipelines/transforms.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import mmcv from ..builder import PIPELINES from .compose import Compose @PIPELINES.register_module() class MultiScaleFlipAug(object): """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=(2048, 1024), img_ratios=[0.5, 1.0], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1024, 512), (1024, 512), (2048, 1024), (2048, 1024)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (None | tuple | list[tuple]): Images scales for resizing. img_ratios (float | list[float]): Image ratios for resizing flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal" and "vertical". If flip_direction is list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale, img_ratios=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) if img_ratios is not None: img_ratios = img_ratios if isinstance(img_ratios, list) else [img_ratios] assert mmcv.is_list_of(img_ratios, float), "Image ratios should be float." if img_scale is None: # mode 1: given img_scale=None and a range of image ratio self.img_scale = None assert mmcv.is_list_of(img_ratios, float), "Image ratios should be float." elif isinstance(img_scale, tuple) and mmcv.is_list_of( img_ratios, float): assert len(img_scale) == 2, "Image scale length should be 2." # mode 2: given a scale and a range of image ratio self.img_scale = [(int(img_scale[0] * ratio), int(img_scale[1] * ratio)) for ratio in img_ratios] else: # mode 3: given multiple scales self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] assert mmcv.is_list_of(self.img_scale, tuple) or self.img_scale is None, "Image scale should be a tuple." self.flip = flip self.img_ratios = img_ratios self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str), "Flip direction should be a string." if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] if self.img_scale is None and mmcv.is_list_of(self.img_ratios, float): h, w = results['img'].shape[:2] img_scale = [(int(w * ratio), int(h * ratio)) for ratio in self.img_ratios] else: img_scale = self.img_scale flip_aug = [False, True] if self.flip else [False] for scale in img_scale: for flip in flip_aug: for direction in self.flip_direction: _results = results.copy() _results['scale'] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip})' repr_str += f'flip_direction={self.flip_direction}' return repr_str
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/pipelines/test_time_aug.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmskeleton # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pipeline Loading Pipeline.""" import os.path as osp import mmcv import numpy as np from ..builder import PIPELINES @PIPELINES.register_module() class LoadImageFromFile(object): """Load an image from file. Required keys are "img_prefix" and "img_info" (a dict that must contain the key "filename"). Added or updated keys are "filename", "img", "img_shape", "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): The flag argument for :func:`mmcv.imfrombytes`. Defaults to 'color'. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'cv2' """ def __init__(self, to_float32=False, color_type='color', file_client_args=dict(backend='disk'), imdecode_backend='cv2'): """Init Module.""" self.to_float32 = to_float32 self.color_type = color_type self.file_client_args = file_client_args.copy() self.file_client = None self.imdecode_backend = "cv2" def __call__(self, results): """Call functions to load image and get image meta information. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded image and meta information. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results.get('img_prefix') is not None: filename = osp.join(results['img_prefix'], results['img_info']['filename']) else: filename = results['img_info']['filename'] img_bytes = self.file_client.get(filename) img = mmcv.imfrombytes( img_bytes, flag=self.color_type, backend=self.imdecode_backend) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['ori_filename'] = results['img_info']['filename'] results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape # Set initial values for default meta_keys results['pad_shape'] = img.shape results['scale_factor'] = 1.0 num_channels = 1 if len(img.shape) < 3 else img.shape[2] results['img_norm_cfg'] = dict( mean=np.zeros(num_channels, dtype=np.float32), std=np.ones(num_channels, dtype=np.float32), to_rgb=False) return results def __repr__(self): """Reproduce Function.""" repr_str = self.__class__.__name__ repr_str += f'(to_float32={self.to_float32},' repr_str += f"color_type='{self.color_type}'," repr_str += f"imdecode_backend='{self.imdecode_backend}')" return repr_str @PIPELINES.register_module() class LoadAnnotations(object): """Load annotations for semantic segmentation. Args: reduce_zero_label (bool): Whether reduce all label value by 1. Usually used for datasets where 0 is background label. Default: False. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'pillow' """ def __init__(self, reduce_zero_label=False, file_client_args=dict(backend='disk'), imdecode_backend='pillow', input_type="rgb"): """Init Module.""" self.reduce_zero_label = reduce_zero_label self.file_client_args = file_client_args.copy() self.file_client = None self.imdecode_backend = imdecode_backend self.input_type = input_type def __call__(self, results): """Call function to load multiple types annotations. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded semantic segmentation annotations. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results.get('seg_prefix', None) is not None: filename = osp.join(results['seg_prefix'], results['ann_info']['seg_map']) else: filename = results['ann_info']['seg_map'] img_bytes = self.file_client.get(filename) gt_semantic_seg = mmcv.imfrombytes( img_bytes, flag='unchanged', backend=self.imdecode_backend).squeeze().astype(np.uint8) if self.input_type == "grayscale": gt_semantic_seg = gt_semantic_seg / 255 gt_semantic_seg = np.where(gt_semantic_seg > 0.5, 1, 0) # modify if custom classes if results.get('label_map', None) is not None: for old_id, new_id in results['label_map'].items(): gt_semantic_seg[gt_semantic_seg == old_id] = new_id # reduce zero_label if self.reduce_zero_label: # avoid using underflow conversion gt_semantic_seg[gt_semantic_seg == 0] = 255 gt_semantic_seg = gt_semantic_seg - 1 gt_semantic_seg[gt_semantic_seg == 254] = 255 # converting labelId to trainId # check if the filename has autolabel `refinement_final` - then use the following # Convert the labels to train id # We need to change this to do generic mapping # Find a way to map for cityscapes # Uncomment if needed especially for cityscapes results['gt_semantic_seg'] = gt_semantic_seg results['seg_fields'].append('gt_semantic_seg') return results def __repr__(self): """Reproduce Function.""" repr_str = self.__class__.__name__ repr_str += f'(reduce_zero_label={self.reduce_zero_label},' repr_str += f"imdecode_backend='{self.imdecode_backend}')" return repr_str
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/pipelines/loading.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compose module for transforms.""" import collections from mmcv.utils import build_from_cfg from ..builder import PIPELINES @PIPELINES.register_module() class Compose(object): """Compose multiple transforms sequentially. Args: transforms (Sequence[dict | callable]): Sequence of transform object or config dict to be composed. """ def __init__(self, transforms): """Init Module.""" assert isinstance(transforms, collections.abc.Sequence), "Transforms should be of type Sequence." self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError('transform must be callable or a dict') def __call__(self, data): """Call function to apply transforms sequentially. Args: data (dict): A result dict contains the data to transform. Returns: dict: Transformed data. """ for t in self.transforms: data = t(data) if data is None: return None return data def __repr__(self): """Reproduce string.""" format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += f' {t}' format_string += '\n)' return format_string
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/pipelines/compose.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dataloader Pipeline.""" from .compose import Compose from .formating import (Collect, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .loading import LoadAnnotations, LoadImageFromFile from .test_time_aug import MultiScaleFlipAug from .transforms import (AlignedResize, CLAHE, AdjustGamma, Normalize, Pad, PhotoMetricDistortion, RandomCrop, RandomFlip, RandomRotate, Rerange, Resize, RGB2Gray, SegRescale) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'LoadAnnotations', 'LoadImageFromFile', 'MultiScaleFlipAug', 'AlignedResize', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'PhotoMetricDistortion', 'RandomRotate', 'AdjustGamma', 'CLAHE', 'Rerange', 'RGB2Gray' ]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/pipelines/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Original source taken from https://github.com/open-mmlab/mmsegmentation # Copyright 2019 OpenMMLAB # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Formatting Module.""" from collections.abc import Sequence import mmcv from mmcv.parallel import DataContainer as DC import numpy as np import torch from nvidia_tao_pytorch.cv.segformer.dataloader.builder import PIPELINES def to_tensor(data): """Convert objects of various python types to :obj:`torch.Tensor`. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int` and :class:`float`. Args: data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to be converted. """ if isinstance(data, torch.Tensor): return data if isinstance(data, np.ndarray): return torch.from_numpy(data) if isinstance(data, Sequence) and not mmcv.is_str(data): return torch.tensor(data) if isinstance(data, int): return torch.LongTensor([data]) if isinstance(data, float): return torch.FloatTensor([data]) raise TypeError(f'type {type(data)} cannot be converted to tensor.') @PIPELINES.register_module() class ToTensor(object): """Convert some results to :obj:`torch.Tensor` by given keys. Args: keys (Sequence[str]): Keys that need to be converted to Tensor. """ def __init__(self, keys): """Init Module.""" self.keys = keys def __call__(self, results): """Call function to convert data in results to :obj:`torch.Tensor`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to :obj:`torch.Tensor`. """ for key in self.keys: results[key] = to_tensor(results[key]) return results def __repr__(self): """Repr Function.""" return self.__class__.__name__ + f'(keys={self.keys})' @PIPELINES.register_module() class ImageToTensor(object): """Convert image to :obj:`torch.Tensor` by given keys. The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W). Args: keys (Sequence[str]): Key of images to be converted to Tensor. """ def __init__(self, keys): """Init Module.""" self.keys = keys def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and transposed to (C, H, W) order. """ for key in self.keys: img = results[key] if len(img.shape) < 3: img = np.expand_dims(img, -1) results[key] = to_tensor(img.transpose(2, 0, 1)) return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + f'(keys={self.keys})' @PIPELINES.register_module() class Transpose(object): """Transpose some results by given keys. Args: keys (Sequence[str]): Keys of results to be transposed. order (Sequence[int]): Order of transpose. """ def __init__(self, keys, order): """Init Module.""" self.keys = keys self.order = order def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and transposed to (C, H, W) order. """ for key in self.keys: results[key] = results[key].transpose(self.order) return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + \ f'(keys={self.keys}, order={self.order})' @PIPELINES.register_module() class ToDataContainer(object): """Convert results to :obj:`mmcv.DataContainer` by given fields. Args: fields (Sequence[dict]): Each field is a dict like ``dict(key='xxx', **kwargs)``. The ``key`` in result will be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. Default: ``(dict(key='img', stack=True), dict(key='gt_semantic_seg'))``. """ def __init__(self, fields=(dict(key='img', stack=True), dict(key='gt_semantic_seg'))): """Init module.""" self.fields = fields def __call__(self, results): """Call function to convert data in results to :obj:`mmcv.DataContainer`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to :obj:`mmcv.DataContainer`. """ for field in self.fields: field = field.copy() key = field.pop('key') results[key] = DC(results[key], **field) return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ + f'(fields={self.fields})' @PIPELINES.register_module() class DefaultFormatBundle(object): """Default formatting bundle. It simplifies the pipeline of formatting common fields, including "img" and "gt_semantic_seg". These fields are formatted as follows. - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, (3)to DataContainer (stack=True) """ def __call__(self, results): """Call function to transform and format common fields in results. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data that is formatted with default bundle. """ if 'img' in results: img = results['img'] if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)) results['img'] = DC(to_tensor(img), stack=True) if 'gt_semantic_seg' in results: # convert to long results['gt_semantic_seg'] = DC( to_tensor(results['gt_semantic_seg'][None, ...].astype(np.int64)), stack=True) return results def __repr__(self): """Reproduce string.""" return self.__class__.__name__ @PIPELINES.register_module() class Collect(object): """Collect data from the loader relevant to the specific task. This is usually the last stage of the data loader pipeline. Typically keys is set to some subset of "img", "gt_semantic_seg". The "img_meta" item is always populated. The contents of the "img_meta" dictionary depends on "meta_keys". By default this includes: - "img_shape": shape of the image input to the network as a tuple (h, w, c). Note that images may be zero padded on the bottom/right if the batch tensor is larger than this shape. - "scale_factor": a float indicating the preprocessing scale - "flip": a boolean indicating if image flip transform was used - "filename": path to the image file - "ori_shape": original shape of the image as a tuple (h, w, c) - "pad_shape": image shape after padding - "img_norm_cfg": a dict of normalization information: - mean - per channel mean subtraction - std - per channel std divisor - to_rgb - bool indicating if bgr was converted to rgb Args: keys (Sequence[str]): Keys of results to be collected in ``data``. meta_keys (Sequence[str], optional): Meta keys to be converted to ``mmcv.DataContainer`` and collected in ``data[img_metas]``. Default: ``('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')`` """ def __init__(self, keys, meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')): """Init Module.""" self.keys = keys self.meta_keys = meta_keys def __call__(self, results): """Call function to collect keys in results. The keys in ``meta_keys`` will be converted to :obj:mmcv.DataContainer. Args: results (dict): Result dict contains the data to collect. Returns: dict: The result dict contains the following keys - keys in``self.keys`` - ``img_metas`` """ data = {} img_meta = {} for key in self.meta_keys: img_meta[key] = results[key] data['img_metas'] = DC(img_meta, cpu_only=True) for key in self.keys: data[key] = results[key] return data def __repr__(self): """Repr Function.""" return self.__class__.__name__ + \ f'(keys={self.keys}, meta_keys={self.meta_keys})'
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/segformer/dataloader/pipelines/formating.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OCDnet root module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ************************************************************************** # Modified from github (https://github.com/WenmuZhou/DBNet.pytorch) # Copyright (c) WenmuZhou # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # https://github.com/WenmuZhou/DBNet.pytorch/blob/master/LICENSE.md # ************************************************************************** """Segmentation Detector Representer.""" import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon def get_post_processing(config): """Run post processing.""" try: cls = globals()[config['type']](**config['args']) return cls except Exception: return None class SegDetectorRepresenter(): """SegDetector Representer class.""" def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=1.5): """Initialize. Args: thresh (float): The threshold for binarization, which is used in generating an approximate binary map. box_thresh (float): The bounding box threshold. If the effective area is lower than this threshold, the prediction will be ignored, which means no text is detected. max_candidates (int): The maximum candidate output. unclip_ratio (float): The unclip ratio using the Vatti clipping algorithm in the probability map. """ self.min_size = 3 self.thresh = thresh self.box_thresh = box_thresh self.max_candidates = max_candidates self.unclip_ratio = unclip_ratio def __call__(self, batch, pred, is_output_polygon=False): """Generate final bbox and score. Args: batch (dict): Produced by dataloaders. It is a dict contains: - image, a tensor of shape (N, C, H, W). - polygons, the polygons of objective regions, tensor of shape (N, K, 4, 2) - ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not. - shape: the original shape of images. - filename: the original filenames of images. pred (list): Prediction result. """ pred = pred[:, 0, :, :] segmentation = self.binarize(pred) boxes_batch = [] scores_batch = [] for batch_index in range(pred.size(0)): height = batch['img'].shape[2] width = batch['img'].shape[3] if is_output_polygon: boxes, scores = self.polygons_from_bitmap(pred[batch_index], segmentation[batch_index], width, height) else: boxes, scores = self.boxes_from_bitmap(pred[batch_index], segmentation[batch_index], width, height) boxes_batch.append(boxes) scores_batch.append(scores) return boxes_batch, scores_batch def binarize(self, pred): """Binarize.""" return pred > self.thresh def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height): """Generate the polygon according to the approximate binary map.""" assert len(_bitmap.shape) == 2 bitmap = _bitmap.cpu().numpy() pred = pred.cpu().detach().numpy() height, width = bitmap.shape boxes = [] scores = [] contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for contour in contours[:self.max_candidates]: epsilon = 0.0001 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) points = approx.reshape((-1, 2)) if points.shape[0] < 4: continue score = self.box_score_fast(pred, contour.squeeze(1)) if self.box_thresh > score: continue if points.shape[0] > 2: box = self.unclip(points, unclip_ratio=self.unclip_ratio) if len(box) > 1: continue else: continue box = box.reshape(-1, 2) _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2))) if sside < self.min_size + 2: continue if not isinstance(dest_width, int): dest_width = dest_width.item() dest_height = dest_height.item() box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box) scores.append(score) return boxes, scores def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): """Generate the bbox according to the approximate binary map.""" assert len(_bitmap.shape) == 2 bitmap = _bitmap.cpu().numpy() pred = pred.cpu().detach().numpy() height, width = bitmap.shape # Find contours from the approximate binary map contours, _ = cv2.findContours( (bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # keep contours less then max candidates num_contours = min(len(contours), self.max_candidates) boxes = np.zeros((num_contours, 4, 2), dtype=np.int16) scores = np.zeros((num_contours,), dtype=np.float32) for index in range(num_contours): contour = contours[index].squeeze(1) points, sside = self.get_mini_boxes(contour) # Ignore the bbox which is too small if sside < self.min_size: continue points = np.array(points) # Calculate the score score = self.box_score_fast(pred, points) if self.box_thresh > score: continue box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < self.min_size + 2: continue box = np.array(box) if not isinstance(dest_width, int): dest_width = dest_width.item() dest_height = dest_height.item() box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes[index, :, :] = box.astype(np.int16) scores[index] = score return boxes, scores def unclip(self, box, unclip_ratio=1.5): """Expand the bbox.""" poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() # pylint: disable=I1101 offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) # pylint: disable=I1101 expanded = np.array(offset.Execute(distance)) return expanded def get_mini_boxes(self, contour): """Generate the bbox with minimum area, get its coordinates and the short size of height/width.""" bounding_box = cv2.minAreaRect(contour) points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) index_1, index_2, index_3, index_4 = 0, 1, 2, 3 if points[1][1] > points[0][1]: index_1 = 0 index_4 = 1 else: index_1 = 1 index_4 = 0 if points[3][1] > points[2][1]: index_2 = 2 index_3 = 3 else: index_2 = 3 index_3 = 2 box = [points[index_1], points[index_2], points[index_3], points[index_4]] return box, min(bounding_box[1]) def box_score_fast(self, bitmap, _box): """Calculate the bbox score according to bbox's coordinate and bitmap.""" h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/post_processing/seg_detector_representer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/post_processing/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OCDnet config module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file""" from typing import Optional, List from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class ModelConfig: """Model config.""" backbone: str = "deformable_resnet18" pretrained: bool = False in_channels: int = 3 neck: str = "FPN" inner_channels: int = 256 head: str = "DBHead" out_channels: int = 2 k: int = 50 load_pruned_graph: bool = MISSING pruned_graph_path: Optional[str] = None pretrained_model_path: Optional[str] = None @dataclass class Optimargs: """Optimargs config.""" lr: float = 0.001 weight_decay: float = 0.0 amsgrad: bool = True @dataclass class Optimizer: """Optimizer config.""" type: str = "Adam" args: Optimargs = Optimargs() @dataclass class Loss: """Loss config.""" type: str = "DBLoss" alpha: int = 5 beta: int = 10 ohem_ratio: int = 3 @dataclass class Postprocessingargs: """Postprocessingargs config.""" thresh: float = MISSING box_thresh: float = MISSING max_candidates: int = MISSING unclip_ratio: float = MISSING @dataclass class Postprocessing: """Postprocessing config.""" type: str = "SegDetectorRepresenter" args: Postprocessingargs = Postprocessingargs() @dataclass class Metricargs: """Metricargs config.""" is_output_polygon: bool = MISSING @dataclass class Metric: """Metric config.""" type: str = "QuadMetric" args: Metricargs = Metricargs() @dataclass class LRSchedulerargs: """LRSchedulerargs config.""" warmup_epoch: int = MISSING @dataclass class LRScheduler: """LRScheduler config.""" type: str = "WarmupPolyLR" args: LRSchedulerargs = LRSchedulerargs() @dataclass class Trainer: """Trainer config.""" is_output_polygon: bool = False warmup_epoch: int = 3 seed: int = 2 log_iter: int = 10 clip_grad_norm: float = 5.0 show_images_iter: int = 50 tensorboard: bool = False @dataclass class Trainargs: """Train args config.""" img_mode: str = "BGR" filter_keys: List[str] = field(default_factory=lambda: ['img_path', 'img_name', 'text_polys', 'texts', 'ignore_tags', 'shape']) ignore_tags: List[str] = field(default_factory=lambda: ['*', '###']) pre_processes: Optional[List[str]] = None @dataclass class Dataloader: """Train args config.""" batch_size: int = 32 shuffle: bool = True pin_memory: bool = False num_workers: int = 0 collate_fn: Optional[str] = "" @dataclass class TrainDataset: """Train Dataset config.""" data_name: str = "ICDAR2015Dataset" data_path: List[str] = MISSING args: Trainargs = Trainargs() loader: Dataloader = Dataloader() @dataclass class Validateargs: """Validate args config.""" img_mode: str = "BGR" filter_keys: List[str] = field(default_factory=lambda: ['']) ignore_tags: List[str] = field(default_factory=lambda: ['*', '###']) pre_processes: Optional[List[str]] = None @dataclass class Validateloader: """Validate args config.""" batch_size: int = 1 shuffle: bool = False pin_memory: bool = False num_workers: int = 0 collate_fn: Optional[str] = "ICDARCollateFN" @dataclass class ValidateDataset: """Validate Dataset config.""" data_name: str = "ICDAR2015Dataset" data_path: List[str] = MISSING args: Validateargs = Validateargs() loader: Validateloader = Validateloader() @dataclass class DataConfig: """Dataset config.""" train_dataset: TrainDataset = TrainDataset() validate_dataset: ValidateDataset = ValidateDataset() @dataclass class TrainConfig: """Train experiment config.""" results_dir: Optional[str] = None resume_training_checkpoint_path: Optional[str] = None num_epochs: int = 50 checkpoint_interval: int = 1 validation_interval: int = 1 gpu_id: List[int] = field(default_factory=lambda: [0]) post_processing: Postprocessing = Postprocessing() metric: Metric = Metric() trainer: Trainer = Trainer() loss: Loss = Loss() optimizer: Optimizer = Optimizer() lr_scheduler: LRScheduler = LRScheduler() @dataclass class InferenceConfig: """Inference experiment config.""" results_dir: Optional[str] = None checkpoint: str = MISSING trt_engine: Optional[str] = None input_folder: str = MISSING width: int = MISSING height: int = MISSING img_mode: str = MISSING polygon: bool = True show: bool = False gpu_id: int = 0 post_processing: Postprocessing = Postprocessing() @dataclass class EvalConfig: """Evaluation experiment config.""" results_dir: Optional[str] = None checkpoint: str = MISSING trt_engine: Optional[str] = None gpu_id: int = 0 batch_size: int = 1 post_processing: Postprocessing = Postprocessing() metric: Metric = Metric() @dataclass class PruneConfig: """Prune experiment config.""" results_dir: Optional[str] = None checkpoint: str = MISSING gpu_id: int = 0 batch_size: int = 1 pruning_thresh: float = MISSING @dataclass class ExportConfig: """Export experiment config.""" results_dir: Optional[str] = None checkpoint: str = MISSING onnx_file: Optional[str] = None gpu_id: int = 0 width: int = MISSING height: int = MISSING opset_version: int = 11 @dataclass class CalibrationConfig: """Calibration config.""" cal_image_dir: str = MISSING cal_cache_file: str = MISSING cal_batch_size: int = 1 cal_num_batches: int = 1 @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class GenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: str = MISSING width: int = MISSING height: int = MISSING img_mode: str = "BGR" tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" train: TrainConfig = TrainConfig() model: ModelConfig = ModelConfig() evaluate: EvalConfig = EvalConfig() dataset: DataConfig = DataConfig() export: ExportConfig = ExportConfig() gen_trt_engine: GenTrtEngineExpConfig = GenTrtEngineExpConfig() inference: InferenceConfig = InferenceConfig() prune: PruneConfig = PruneConfig() name: str = MISSING num_gpus: int = 1 results_dir: str = MISSING
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """learning rate schedulers module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/lr_schedulers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ************************************************************************** # Modified from github (https://github.com/WenmuZhou/DBNet.pytorch) # Copyright (c) WenmuZhou # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # https://github.com/WenmuZhou/DBNet.pytorch/blob/master/LICENSE.md # ************************************************************************** """Popular Learning Rate Schedulers""" from __future__ import division import torch class WarmupPolyLR(torch.optim.lr_scheduler._LRScheduler): """WarmupPolyLR. Decays the learning rate via a polynomial function. The learning rate increases to initial value during warmup stage and is reduced from the initial value to zero during the training stage. """ def __init__(self, optimizer, target_lr=0, max_iters=0, power=0.9, warmup_factor=1.0 / 3, warmup_iters=500, warmup_method='linear', last_epoch=-1, warmup_epochs=0, epochs=0, **kwargs): """Initialize.""" if warmup_method not in ("constant", "linear"): raise ValueError( "Only 'constant' or 'linear' warmup_method accepted " "got {}".format(warmup_method)) self.target_lr = target_lr self.max_iters = max_iters self.power = power self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method self.warmup_epochs = warmup_epochs self.total_epochs = epochs super(WarmupPolyLR, self).__init__(optimizer, last_epoch) def get_lr(self): """Calculate learning rate.""" N = self.max_iters - self.warmup_iters T = self.last_epoch * self.max_iters / self.total_epochs - self.warmup_iters if self.last_epoch < self.warmup_epochs: if self.warmup_method == 'constant': warmup_factor = self.warmup_factor elif self.warmup_method == 'linear': alpha = float(self.last_epoch) / self.warmup_epochs warmup_factor = self.warmup_factor * (1 - alpha) + alpha else: raise ValueError("Unknown warmup type.") return [self.target_lr + (base_lr - self.target_lr) * warmup_factor for base_lr in self.base_lrs] factor = pow(1 - T / N, self.power) return [self.target_lr + (base_lr - self.target_lr) * factor for base_lr in self.base_lrs]
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/lr_schedulers/schedulers.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ************************************************************************** # Modified from github (https://github.com/WenmuZhou/DBNet.pytorch) # Copyright (c) WenmuZhou # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # https://github.com/WenmuZhou/DBNet.pytorch/blob/master/LICENSE.md # ************************************************************************** """Metrics module.""" import numpy as np class RunningScore(object): """Calcuate accuracy score.""" def __init__(self, n_classes): """Initialize.""" self.n_classes = n_classes self.confusion_matrix = np.zeros((n_classes, n_classes)) def _fast_hist(self, label_true, label_pred, n_class): mask = (label_true >= 0) & (label_true < n_class) if np.sum((label_pred[mask] < 0)) > 0: print(label_pred[label_pred < 0]) hist = np.bincount(n_class * label_true[mask].astype(int) + label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class) return hist def update(self, label_trues, label_preds): """Print label_trues.dtype, label_preds.dtype.""" for lt, lp in zip(label_trues, label_preds): try: self.confusion_matrix += self._fast_hist(lt.flatten(), lp.flatten(), self.n_classes) except Exception: pass def get_scores(self): """Returns accuracy score evaluation result.""" hist = self.confusion_matrix acc = np.diag(hist).sum() / (hist.sum() + 0.0001) acc_cls = np.diag(hist) / (hist.sum(axis=1) + 0.0001) acc_cls = np.nanmean(acc_cls) iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist) + 0.0001) mean_iu = np.nanmean(iu) freq = hist.sum(axis=1) / (hist.sum() + 0.0001) fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() cls_iu = dict(zip(range(self.n_classes), iu)) return {'Overall Acc': acc, 'Mean Acc': acc_cls, 'FreqW Acc': fwavacc, 'Mean IoU': mean_iu, }, cls_iu def reset(self): """Reset confusion matrix.""" self.confusion_matrix = np.zeros((self.n_classes, self.n_classes))
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/metrics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ************************************************************************** # Modified from github (https://github.com/WenmuZhou/DBNet.pytorch) # Copyright (c) WenmuZhou # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # https://github.com/WenmuZhou/DBNet.pytorch/blob/master/LICENSE.md # ************************************************************************** """utility module.""" import json import logging import pathlib import time import tempfile import os import glob from natsort import natsorted import cv2 import matplotlib.pyplot as plt import numpy as np from eff.codec import encrypt_stream, decrypt_stream import torch from nvidia_tao_pytorch.core.path_utils import expand_path def get_file_list(folder_path: str, p_postfix: list = None, sub_dir: bool = True) -> list: """Get file list Args: folder_path: the folder path p_postfix: postfix sub_dir: check the subfolder Returns: Return file list """ assert os.path.exists(folder_path) and os.path.isdir(folder_path), "Please set valid input_folder in yaml file." if p_postfix is None: p_postfix = ['.jpg'] if isinstance(p_postfix, str): p_postfix = [p_postfix] file_list = [x for x in glob.glob(folder_path + '/*.*') if os.path.splitext(x)[-1] in p_postfix or '.*' in p_postfix] return natsorted(file_list) def setup_logger(log_file_path: str = None): """setup logger.""" logging._warn_preinit_stderr = 0 logger = logging.getLogger('OCDNet.pytorch') formatter = logging.Formatter('%(asctime)s %(name)s %(levelname)s: %(message)s') ch = logging.StreamHandler() ch.setFormatter(formatter) logger.addHandler(ch) if log_file_path is not None: file_handle = logging.FileHandler(log_file_path) file_handle.setFormatter(formatter) logger.addHandler(file_handle) logger.setLevel(logging.INFO) return logger def exe_time(func): """exe time.""" def newFunc(*args, **args2): t0 = time.time() back = func(*args, **args2) print("{} cost {:.3f}s".format(func.__name__, time.time() - t0)) return back return newFunc def load(file_path: str): """load file.""" file_path = pathlib.Path(file_path) func_dict = {'.txt': _load_txt, '.json': _load_json, '.list': _load_txt} assert file_path.suffix in func_dict return func_dict[file_path.suffix](file_path) def _load_txt(file_path: str): with open(file_path, 'r', encoding='utf8') as f: content = [x.strip().strip('\ufeff').strip('\xef\xbb\xbf') for x in f.readlines()] return content def _load_json(file_path: str): with open(file_path, 'r', encoding='utf8') as f: content = json.load(f) return content def save(data, file_path): """save file.""" file_path = pathlib.Path(file_path) func_dict = {'.txt': _save_txt, '.json': _save_json} assert file_path.suffix in func_dict return func_dict[file_path.suffix](data, file_path) def _save_txt(data, file_path): """Write the list into a txt file""" if not isinstance(data, list): data = [data] with open(file_path, mode='w', encoding='utf8') as f: f.write('\n'.join(data)) def _save_json(data, file_path): with open(file_path, 'w', encoding='utf-8') as json_file: json.dump(data, json_file, ensure_ascii=False, indent=4) def show_img(imgs: np.ndarray, title='img'): """show img.""" color = (len(imgs.shape) == 3 and imgs.shape[-1] == 3) imgs = np.expand_dims(imgs, axis=0) for i, img in enumerate(imgs): plt.figure() plt.title('{}_{}'.format(title, i)) plt.imshow(img, cmap=None if color else 'gray') plt.show() def draw_bbox(img_path, result, color=(255, 0, 0), thickness=2): """draw bbox.""" if isinstance(img_path, str): img_path = cv2.imread(img_path) img_path = img_path.copy() for point in result: point = point.astype(int) cv2.polylines(img_path, [point], True, color, thickness) return img_path def cal_text_score(texts, gt_texts, training_masks, running_metric_text, thred=0.5): """cal text score.""" training_masks = training_masks.data.cpu().numpy() pred_text = texts.data.cpu().numpy() * training_masks pred_text[pred_text <= thred] = 0 pred_text[pred_text > thred] = 1 pred_text = pred_text.astype(np.int32) gt_text = gt_texts.data.cpu().numpy() * training_masks gt_text = gt_text.astype(np.int32) running_metric_text.update(gt_text, pred_text) score_text, _ = running_metric_text.get_scores() return score_text def order_points_clockwise(pts): """order points clockwise.""" rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def order_points_clockwise_list(pts): """order points clockwise list.""" pts = pts.tolist() pts.sort(key=lambda x: (x[1], x[0])) pts[:2] = sorted(pts[:2], key=lambda x: x[0]) pts[2:] = sorted(pts[2:], key=lambda x: -x[0]) pts = np.array(pts) return pts def get_datalist(train_data_path): """Get train data list and val data list""" train_data = [] for p in train_data_path: if os.path.isfile(p): with open(p, 'r', encoding='utf-8') as f: for line in f.readlines(): line = line.strip('\n').replace('.jpg ', '.jpg\t').split('\t') if len(line) > 1: img_path = pathlib.Path(expand_path(line[0].strip(' '))) label_path = pathlib.Path(expand_path(line[1].strip(' '))) if img_path.exists() and img_path.stat().st_size > 0 and label_path.exists() and label_path.stat().st_size > 0: train_data.append((str(img_path), str(label_path))) else: img_dir = os.path.join(p, "img") label_dir = os.path.join(p, "gt") for img in os.listdir(img_dir): img_file = os.path.join(img_dir, img) label = "gt_" + img.split('.')[0] + ".txt" label_file = os.path.join(label_dir, label) assert os.path.exists(label_file), ( f"Cannot find label file for image: {img_file}" ) train_data.append((img_file, label_file)) return sorted(train_data) def get_datalist_uber(train_data_path): """Get uber train data list and val data list""" train_data = [] for p in train_data_path: if os.path.isfile(p): with open(p, 'r', encoding='utf-8') as f: for line in f.readlines(): line = line.strip('\n').replace('.jpg ', '.jpg\t').split('\t') if len(line) > 1: img_path = pathlib.Path(expand_path(line[0].strip(' '))) label_path = pathlib.Path(expand_path(line[1].strip(' '))) if img_path.exists() and img_path.stat().st_size > 0 and label_path.exists() and label_path.stat().st_size > 0: train_data.append((str(img_path), str(label_path))) else: img_dir = os.path.join(p, "img") label_dir = os.path.join(p, "gt") for img in os.listdir(img_dir): img_file = os.path.join(img_dir, img) label = "truth_" + img.split('.')[0] + ".txt" label_file = os.path.join(label_dir, label) assert os.path.exists(label_file), ( f"Cannot find label file for image: {img_file}" ) train_data.append((img_file, label_file)) return sorted(train_data) def parse_config(config: dict) -> dict: """parse config.""" import anyconfig base_file_list = config.pop('base') base_config = {} for base_file in base_file_list: tmp_config = anyconfig.load(open(base_file, 'rb')) if 'base' in tmp_config: tmp_config = parse_config(tmp_config) anyconfig.merge(tmp_config, base_config) base_config = tmp_config anyconfig.merge(base_config, config) return base_config def save_result(result_path, box_list, score_list, is_output_polygon): """save result.""" if is_output_polygon: with open(result_path, 'wt') as res: for i, box in enumerate(box_list): box = box.reshape(-1).tolist() result = ",".join([str(int(x)) for x in box]) score = score_list[i] res.write(result + ',' + str(score) + "\n") else: with open(result_path, 'wt') as res: for i, box in enumerate(box_list): score = score_list[i] box = box.reshape(-1).tolist() result = ",".join([str(int(x)) for x in box]) res.write(result + ',' + str(score) + "\n") def expand_polygon(polygon): """Expand bbox which has only one character.""" (x, y), (w, h), angle = cv2.minAreaRect(np.float32(polygon)) if angle < -45: w, h = h, w angle += 90 new_w = w + h box = ((x, y), (new_w, h), angle) points = cv2.boxPoints(box) return order_points_clockwise(points) def mkdir(path): """ make directory if not existing """ if not os.path.exists(path): os.makedirs(path) def encrypt_pytorch(tmp_file_name, output_file_name, key): """Encrypt the pytorch model""" with open(tmp_file_name, "rb") as open_temp_file, open(output_file_name, "wb") as open_encoded_file: encrypt_stream( input_stream=open_temp_file, output_stream=open_encoded_file, passphrase=key, encryption=True ) def save_checkpoint(state, filename, key): """Save the checkpoint.""" handle, temp_name = tempfile.mkstemp(".tlt") os.close(handle) torch.save(state, temp_name) encrypt_pytorch(temp_name, filename, key) os.remove(temp_name) def decrypt_pytorch(input_file_name, output_file_name, key): """Decrypt the TLT model to Pytorch model""" with open(input_file_name, "rb") as open_temp_file, open(output_file_name, "wb") as open_encoded_file: decrypt_stream( input_stream=open_temp_file, output_stream=open_encoded_file, passphrase=key, encryption=True ) def load_checkpoint(model_path, to_cpu=False): """Helper function to load a saved checkpoint.""" loc_type = torch.device('cpu') if to_cpu else None loaded_state = torch.load(model_path, map_location=loc_type) return loaded_state def create_logger(log_file=None, rank=0, log_level=logging.INFO): """Create logger.""" logger = logging.getLogger(__name__) logger.setLevel(log_level if rank == 0 else 'ERROR') formatter = logging.Formatter('%(asctime)s %(levelname)5s %(message)s') if log_file is not None: file_handler = logging.FileHandler(filename=log_file) file_handler.setLevel(log_level if rank == 0 else 'ERROR') file_handler.setFormatter(formatter) logger.addHandler(file_handler) return logger
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/util.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Initialize.""" # flake8: noqa: F401, F403 from .util import * from .metrics import * from .common_utils import *
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for ocdnet.""" import os import torch import struct import json import numpy as np import tempfile from eff.codec import encrypt_stream def encrypt_onnx(tmp_file_name, output_file_name, key): """Encrypt the onnx model.""" with open(tmp_file_name, "rb") as open_temp_file, open(output_file_name, "wb") as open_encoded_file: # set the input name magic number open_encoded_file.write(struct.pack("<i", 0)) encrypt_stream( input_stream=open_temp_file, output_stream=open_encoded_file, passphrase=key, encryption=True ) def encrypt_pytorch(tmp_file_name, output_file_name, key): """Encrypt the pytorch model""" with open(tmp_file_name, "rb") as open_temp_file, open(output_file_name, "wb") as open_encoded_file: encrypt_stream( input_stream=open_temp_file, output_stream=open_encoded_file, passphrase=key, encryption=True ) def save_checkpoint(state, filename, key): """Save the checkpoint.""" if False and 'optimizer_state' in state: optimizer_state = state['optimizer_state'] state.pop('optimizer_state', None) optimizer_filename = '{}_optim.pth'.format(filename) torch.save({'optimizer_state': optimizer_state}, optimizer_filename) handle, temp_name = tempfile.mkstemp(".tlt") os.close(handle) torch.save(state, temp_name) encrypt_pytorch(temp_name, filename, key) os.remove(temp_name) def check_and_create(d): """Create a directory.""" if not os.path.isdir(d): os.makedirs(d) def load_json_from_file(file_path): """Load data from a JSON file.""" with open(file_path, 'r') as f: data = json.load(f) return data def write_np_to_file(file_path, data): """Write Numpy array to file.""" np.save(file=file_path, arr=data, allow_pickle=False) def data_to_device(data): """Transfer data to GPU.""" if isinstance(data, list): cuda_data = [] for item in data: cuda_item = item.cuda(non_blocking=True) cuda_data.append(cuda_item) else: cuda_data = data.cuda(non_blocking=True) return cuda_data
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/common_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """get_metric module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/ocr_metric/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """icdar2015 module.""" # flake8: noqa: F401 from .quad_metric import QuadMetric
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/ocr_metric/icdar2015/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ************************************************************************** # Modified from github (https://github.com/WenmuZhou/DBNet.pytorch) # Copyright (c) WenmuZhou # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # https://github.com/WenmuZhou/DBNet.pytorch/blob/master/LICENSE.md # ************************************************************************** """quad_metric module.""" import numpy as np from .detection.iou import DetectionIoUEvaluator def get_metric(config): """get metric.""" try: if 'args' not in config: args = {} else: args = config['args'] if isinstance(args, dict): cls = globals()[config['type']](**args) else: cls = globals()[config['type']](args) return cls except Exception: return None class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): """Initialize.""" self.reset() def reset(self): """reset.""" self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): """update.""" self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count return self class QuadMetric(): """QuadMetric class.""" def __init__(self, is_output_polygon=False): """Initialize.""" self.is_output_polygon = is_output_polygon self.evaluator = DetectionIoUEvaluator(is_output_polygon=is_output_polygon) def measure(self, batch, output, box_thresh=0.6): """Measure the quad metric Args: batch (dict): Produced by dataloaders. It is a dict of image, polygons and ignore_tags. The image is a tensor with shape (N, C, H, W). The polygons is a tensor of shape (N, K, 4, 2). The ignore_tags is a tensor of shape (N, K), indicates whether a region is ignorable or not. The shape is the original shape of images. The filename is the original filenames of images. output: The prediction polygons and scores. """ results = [] gt_polyons_batch = batch['text_polys'] ignore_tags_batch = batch['ignore_tags'] pred_polygons_batch = np.array(output[0]) pred_scores_batch = np.array(output[1]) for polygons, pred_polygons, pred_scores, ignore_tags in zip(gt_polyons_batch, pred_polygons_batch, pred_scores_batch, ignore_tags_batch): gt = [dict(points=np.int64(polygons[i]), ignore=ignore_tags[i]) for i in range(len(polygons))] if self.is_output_polygon: pred = [dict(points=pred_polygons[i]) for i in range(len(pred_polygons))] else: pred = [] for i in range(pred_polygons.shape[0]): if pred_scores[i] >= box_thresh: pred.append(dict(points=pred_polygons[i, :, :].astype(np.int))) res = self.evaluator.evaluate_image(gt, pred) results.append(res) return results def validate_measure(self, batch, output, box_thresh=0.6): """validate measure.""" return self.measure(batch, output, box_thresh) def evaluate_measure(self, batch, output): """evaluate measure.""" return self.measure(batch, output), np.linspace(0, batch['image'].shape[0]).tolist() def gather_measure(self, raw_metrics): """gather measure.""" raw_metrics = [image_metrics for batch_metrics in raw_metrics for image_metrics in batch_metrics] result = self.evaluator.combine_results(raw_metrics) precision = AverageMeter() recall = AverageMeter() hmean = AverageMeter() precision.update(result['precision'], n=len(raw_metrics)) recall.update(result['recall'], n=len(raw_metrics)) hmean_score = 2 * precision.val * recall.val / (precision.val + recall.val + 1e-8) hmean.update(hmean_score) return { 'precision': precision, 'recall': recall, 'hmean': hmean }
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/ocr_metric/icdar2015/quad_metric.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """icdar2015 detection module."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/ocr_metric/icdar2015/detection/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ************************************************************************** # Modified from github (https://github.com/WenmuZhou/DBNet.pytorch) # Copyright (c) WenmuZhou # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # https://github.com/WenmuZhou/DBNet.pytorch/blob/master/LICENSE.md # ************************************************************************** """Detection IOU module.""" # pylint: disable=W0612,R1705 import numpy as np from shapely.geometry import Polygon import cv2 def iou_rotate(box_a, box_b, method='union'): """iou rotate.""" rect_a = cv2.minAreaRect(box_a) rect_b = cv2.minAreaRect(box_b) r1 = cv2.rotatedRectangleIntersection(rect_a, rect_b) if r1[0] == 0: return 0 else: inter_area = cv2.contourArea(r1[1]) area_a = cv2.contourArea(box_a) area_b = cv2.contourArea(box_b) union_area = area_a + area_b - inter_area if union_area == 0 or inter_area == 0: return 0 if method == 'union': iou = inter_area / union_area elif method == 'intersection': iou = inter_area / min(area_a, area_b) else: raise NotImplementedError return iou class DetectionIoUEvaluator(object): """Define the evaluator. The evaluator will - Iterate through the ground truth, save the ones which are valid and not_care. - Iterate through the predicted polygon, save the ones which are valid and not_care. - Calculate the number of valid ground truth and predicted polygons - Calculate the number when ground truth and predicted polygons are matched - Calculate recall, precision and hmean """ def __init__(self, is_output_polygon=False, iou_constraint=0.5, area_precision_constraint=0.5): """Initialize.""" self.is_output_polygon = is_output_polygon self.iou_constraint = iou_constraint self.area_precision_constraint = area_precision_constraint def evaluate_image(self, gt, pred): """evaluate image.""" def get_union(pD, pG): return Polygon(pD).union(Polygon(pG)).area def get_intersection_over_union(pD, pG): return get_intersection(pD, pG) / get_union(pD, pG) def get_intersection(pD, pG): return Polygon(pD).intersection(Polygon(pG)).area def compute_ap(conf_list, match_list, num_gt_care): correct = 0 AP = 0 if len(conf_list) > 0: conf_list = np.array(conf_list) match_list = np.array(match_list) sorted_ind = np.argsort(-conf_list) conf_list = conf_list[sorted_ind] match_list = match_list[sorted_ind] for n in range(len(conf_list)): match = match_list[n] if match: correct += 1 AP += float(correct) / (n + 1) if num_gt_care > 0: AP /= num_gt_care return AP per_sample_metrics = {} matched_sum = 0 num_globalcare_gt = 0 num_globalcare_det = 0 recall = 0 precision = 0 hmean = 0 det_matched = 0 iou_mat = np.empty([1, 1]) gt_pols = [] det_pols = [] gt_pol_points = [] det_pol_points = [] # Array of Ground Truth Polygons' keys marked as don't Care gt_dontcare_pols_mum = [] # Array of Detected Polygons' matched with a don't Care GT det_dontcare_pols_num = [] pairs = [] det_matched_nums = [] evaluation_log = "" # Iterate through the ground truth for n in range(len(gt)): points = gt[n]['points'] dont_care = gt[n]['ignore'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue # Save the valid polygon gt_pol = points gt_pols.append(gt_pol) gt_pol_points.append(points) # Save the dont_care polygon if dont_care: gt_dontcare_pols_mum.append(len(gt_pols) - 1) evaluation_log += "GT polygons: " + str(len(gt_pols)) + (" (" + str(len( gt_dontcare_pols_mum)) + " don't care)\n" if len(gt_dontcare_pols_mum) > 0 else "\n") # Iterate through the predicted polygons for n in range(len(pred)): points = pred[n]['points'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue # Save the valid polygon det_pol = points det_pols.append(det_pol) det_pol_points.append(points) if len(gt_dontcare_pols_mum) > 0: # Iterate through the dont_care polygons, calculate the intersection against predicted polygon for dontcare_pol in gt_dontcare_pols_mum: # Find the dont_care polygon dontcare_pol = gt_pols[dontcare_pol] # Calculate the intersection between dont_care polygon and predicted polygon intersected_area = get_intersection(dontcare_pol, det_pol) # Calculate the area of predicted polygon pd_dimensions = Polygon(det_pol).area # Calcuate precision precision = 0 if pd_dimensions == 0 else intersected_area / pd_dimensions # Save the polygon number if precision is higher than the constraint if (precision > self.area_precision_constraint): det_dontcare_pols_num.append(len(det_pols) - 1) break evaluation_log += "DET polygons: " + str(len(det_pols)) + (" (" + str(len( det_dontcare_pols_num)) + " don't care)\n" if len(det_dontcare_pols_num) > 0 else "\n") # If both groud truth polygon and predicted polygon are valid and available if len(gt_pols) > 0 and len(det_pols) > 0: # Calculate IoU and precision matrixs output_shape = [len(gt_pols), len(det_pols)] iou_mat = np.empty(output_shape) gt_rect_mat = np.zeros(len(gt_pols), np.int8) det_rect_mat = np.zeros(len(det_pols), np.int8) # Iterate through the ground truth and the predicted polygons, then calculate the IOU for gt_num in range(len(gt_pols)): for det_num in range(len(det_pols)): pG = gt_pols[gt_num] pD = det_pols[det_num] iou_mat[gt_num, det_num] = get_intersection_over_union(pD, pG) for gt_num in range(len(gt_pols)): for det_num in range(len(det_pols)): if gt_rect_mat[gt_num] == 0 and det_rect_mat[det_num] == 0 and gt_num not in gt_dontcare_pols_mum and det_num not in det_dontcare_pols_num: # Check if ground truth and predicted polygons are matched, and save the number if iou_mat[gt_num, det_num] > self.iou_constraint: gt_rect_mat[gt_num] = 1 det_rect_mat[det_num] = 1 det_matched += 1 pairs.append({'gt': gt_num, 'det': det_num}) det_matched_nums.append(det_num) evaluation_log += "Match GT #" + \ str(gt_num) + " with Det #" + str(det_num) + "\n" # Calcuate number of valid ground truth and predicted polygons num_gt_care = (len(gt_pols) - len(gt_dontcare_pols_mum)) num_det_care = (len(det_pols) - len(det_dontcare_pols_num)) # Calcuate recall, precision and hmean if num_gt_care == 0: recall = float(1) precision = float(0) if num_det_care > 0 else float(1) else: recall = float(det_matched) / num_gt_care precision = 0 if num_det_care == 0 else float( det_matched) / num_det_care hmean = 0 if (precision + recall) == 0 else 2.0 * \ precision * recall / (precision + recall) matched_sum += det_matched num_globalcare_gt += num_gt_care num_globalcare_det += num_det_care per_sample_metrics = { 'precision': precision, 'recall': recall, 'hmean': hmean, 'pairs': pairs, 'iou_mat': [] if len(det_pols) > 100 else iou_mat.tolist(), 'gt_pol_points': gt_pol_points, 'det_pol_points': det_pol_points, 'gt_care': num_gt_care, 'det_care': num_det_care, 'gt_dontcare': gt_dontcare_pols_mum, 'det_dontcare': det_dontcare_pols_num, 'det_matched': det_matched, 'evaluation_log': evaluation_log } return per_sample_metrics def combine_results(self, results): """combine results.""" num_globalcare_gt = 0 num_globalcare_det = 0 matched_sum = 0 for result in results: num_globalcare_gt += result['gt_care'] num_globalcare_det += result['det_care'] matched_sum += result['det_matched'] method_recall = 0 if num_globalcare_gt == 0 else float( matched_sum) / num_globalcare_gt method_precision = 0 if num_globalcare_det == 0 else float( matched_sum) / num_globalcare_det method_hmean = 0 if method_recall + method_precision == 0 else 2 * \ method_recall * method_precision / (method_recall + method_precision) method_metrics = {'precision': method_precision, 'recall': method_recall, 'hmean': method_hmean} return method_metrics
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/utils/ocr_metric/icdar2015/detection/iou.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Version string for the PyTorch pruning.""" __version__ = "0.2.7"
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/pruning/version.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Root module for PyTorch model pruning."""
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/pruning/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Importance module.""" # pylint: disable=R1710 import torch import torch.nn as nn from . import functional class Importance: """Importance class.""" pass def rescale(x): """Rescale.""" return (x - x.min()) / (x.max() - x.min()) class MagnitudeImportance(Importance): """Magnitude Importance.""" def __init__(self, p=1, local=False, reduction="mean"): """Initialize.""" self.p = p self.local = local self.reduction = reduction @torch.no_grad() def __call__(self, plan): """Call function.""" importance_mat = [] non_importance = True for dep, idxs in plan: layer = dep.target.module prune_fn = dep.handler if prune_fn in [ functional.prune_conv_out_channel, functional.prune_linear_out_channel, ]: w = (layer.weight)[idxs] this_importance = torch.norm(torch.flatten(w, 1), dim=1, p=self.p) importance_mat.append(this_importance) non_importance = False elif prune_fn in [ functional.prune_conv_in_channel, functional.prune_linear_in_channel, ]: w = (layer.weight)[:, idxs].transpose(0, 1) w = torch.flatten(w, 1) if w.shape[0] != importance_mat[0].shape[0]: # for conv-flatten-linear if ( w.shape[0] % importance_mat[0].shape[0] != 0 ): # TODO: support Group Convs continue w = w.view( importance_mat[0].shape[0], w.shape[0] // importance_mat[0].shape[0], w.shape[1], ) this_importance = torch.norm(torch.flatten(w, 1), dim=1, p=self.p) importance_mat.append(this_importance) non_importance = False elif prune_fn == functional.prune_batchnorm: if layer.affine is not None: w = (layer.weight)[idxs].view(-1, 1) this_importance = torch.norm(w, dim=1, p=self.p) importance_mat.append(this_importance) if self.local: break importance_mat = torch.stack(importance_mat, dim=0) if non_importance: return None if self.reduction == "sum": return importance_mat.sum(dim=0) if self.reduction == "mean": return importance_mat.mean(dim=0) if self.reduction == "max": return importance_mat.max(dim=0)[0] if self.reduction == "min": return importance_mat.min(dim=0)[0] if self.reduction == "prod": return importance_mat.prod(dim=0) class RandomImportance(Importance): """Random Importance.""" @torch.no_grad() def __call__(self, plan): """Call function.""" _, idxs = plan[0] return torch.randn((len(idxs), )) class SensitivityImportance(Importance): """Sensitivity Importance.""" def __init__(self, local=False, reduction="mean") -> None: """Initialize.""" self.local = local self.reduction = reduction def __call__(self, loss, plan): """Call function.""" loss.backward() with torch.no_grad(): importance = 0 n_layers = 0 for dep, idxs in plan: layer = dep.target.module prune_fn = dep.handler n_layers += 1 if prune_fn in [ functional.prune_conv_out_channel, functional.prune_linear_in_channel, ]: w_dw = (layer.weight * layer.weight.grad)[idxs] importance += torch.norm(torch.flatten(w_dw, 1), dim=1) if layer.bias: w_dw = (layer.bias * layer.bias.grad)[idxs].view(-1, 1) importance += torch.norm(w_dw, dim=1) elif prune_fn in [ functional.prune_conv_in_channel, functional.prune_linear_in_channel, ]: w_dw = (layer.weight * layer.weight.grad)[:, idxs].transpose(0, 1) importance += torch.norm(torch.flatten(w_dw, 1), dim=1) elif prune_fn == functional.prune_batchnorm: if layer.affine: w_dw = (layer.weight * layer.weight.grad)[idxs].view(-1, 1) importance += torch.norm(w_dw, dim=1) w_dw = (layer.bias * layer.bias.grad)[idxs].view(-1, 1) importance += torch.norm(w_dw, dim=1) else: n_layers -= 1 if self.local: break if self.reduction == "sum": return importance if self.reduction == "mean": return importance / n_layers class HessianImportance(Importance): """Hessian Importance.""" def __init__(self) -> None: """Initialize.""" pass class BNScaleImportance(Importance): """BNScale Importance.""" def __init__(self, group_level=False, reduction='mean'): """Initialize.""" self.group_level = group_level self.reduction = reduction def __call__(self, plan): """Call function.""" importance_mat = [] for dep, _ in plan: # Conv-BN module = dep.target.module if isinstance(module, nn.BatchNorm2d) and module.affine: imp = torch.abs(module.weight.data) importance_mat.append(imp) if not self.group_level: return imp importance_mat = torch.stack(importance_mat, dim=0) if self.reduction == "sum": return importance_mat.sum(dim=0) if self.reduction == "mean": return importance_mat.mean(dim=0) if self.reduction == "max": return importance_mat.max(dim=0)[0] if self.reduction == "min": return importance_mat.min(dim=0)[0] class StrcuturalImportance(Importance): """Strcutural Importance.""" def __init__(self, p=1, local=False, reduction="mean"): """Initialize.""" self.p = p self.local = local self.reduction = reduction @torch.no_grad() def __call__(self, plan): """Call function.""" importance_mat = [] non_importance = True for dep, idxs in plan: layer = dep.target.module prune_fn = dep.handler if prune_fn in [ functional.prune_conv_out_channel, functional.prune_linear_out_channel, ]: w = (layer.weight)[idxs] this_importance = torch.norm(torch.flatten(w, 1), dim=1, p=self.p) importance_mat.append(rescale(this_importance)) non_importance = False elif prune_fn in [ functional.prune_conv_in_channel, functional.prune_linear_in_channel, ]: w = (layer.weight)[:, idxs].transpose(0, 1) w = torch.flatten(w, 1) if w.shape[0] != importance_mat[0].shape[0]: # for conv-flatten-linear if ( w.shape[0] % importance_mat[0].shape[0] != 0 ): # TODO: support Group Convs continue w = w.view( importance_mat[0].shape[0], w.shape[0] // importance_mat[0].shape[0], w.shape[1], ) this_importance = torch.norm(torch.flatten(w, 1), dim=1, p=self.p) importance_mat.append(rescale(this_importance)) non_importance = False elif prune_fn == functional.prune_batchnorm: if layer.affine is not None: w = (layer.weight)[idxs].view(-1, 1) this_importance = torch.norm(w, dim=1, p=self.p) importance_mat.append(rescale(this_importance)) if self.local: break importance_mat = torch.stack(importance_mat, dim=0) if non_importance: return None if self.reduction == "sum": return importance_mat.sum(dim=0) if self.reduction == "mean": return importance_mat.mean(dim=0) if self.reduction == "max": return importance_mat.max(dim=0)[0] if self.reduction == "min": return importance_mat.min(dim=0)[0] if self.reduction == "prod": return importance_mat.prod(dim=0) class LAMPImportance(Importance): """LAMP Importance.""" def __init__(self, p=2, local=False, reduction="mean"): """Initialize.""" self.p = p self.local = local self.reduction = reduction @torch.no_grad() def __call__(self, plan): """Call function.""" importance = 0 n_layers = 0 non_importance = True for dep, idxs in plan: layer = dep.target.module prune_fn = dep.handler n_layers += 1 if prune_fn in [ functional.prune_conv_out_channel, functional.prune_linear_out_channel, ]: w = (layer.weight)[idxs] this_importance = torch.norm(torch.flatten(w, 1), dim=1, p=self.p) this_importance = rescale(this_importance) importance += this_importance non_importance = False elif prune_fn in [ functional.prune_conv_in_channel, functional.prune_linear_in_channel, ]: w = (layer.weight)[:, idxs].transpose(0, 1) w = torch.flatten(w, 1) if w.shape[0] != importance.shape[0]: # for conv-flatten-linear if ( w.shape[0] % importance.shape[0] != 0 ): # TODO: support Group Convs continue w = w.view( importance.shape[0], w.shape[0] // importance.shape[0], w.shape[1], ) this_importance = torch.norm(torch.flatten(w, 1), dim=1, p=self.p) this_importance = rescale(this_importance) importance += this_importance non_importance = False elif prune_fn == functional.prune_batchnorm: continue if layer.affine is not None: w = (layer.weight)[idxs].view(-1, 1) importance += rescale(torch.norm(w, dim=1, p=self.p)) else: n_layers -= 1 if self.local: break argsort_idx = torch.argsort(importance).tolist()[::-1] # [7, 5, 2, 3, 1, ...] sorted_importance = importance[argsort_idx] cumsum_importance = torch.cumsum(sorted_importance, dim=0) sorted_importance = sorted_importance / cumsum_importance inversed_idx = torch.arange(len(sorted_importance))[argsort_idx].tolist() # [0, 1, 2, 3, ..., ] importance = sorted_importance[inversed_idx] if non_importance: return None if self.reduction == "sum": return importance if self.reduction == "mean": return importance / n_layers
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/pruning/torch_pruning/importance.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init module.""" # flake8: noqa: F401, F403 from .dependency import * from .functional import * from . import metric, utils, strategy, helpers, importance, pruner
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/pruning/torch_pruning/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Strategy module.""" import torch from abc import abstractclassmethod, ABC from typing import Sequence import random def round_pruning_amount(total_parameters, n_to_prune, round_to): """round the parameter amount after pruning to an integer multiple of `round_to`.""" n_remain = round_to * max(int(total_parameters - n_to_prune) // round_to, 1) return max(total_parameters - n_remain, 0) class BaseStrategy(ABC): """Base Strategy class.""" def __call__(self, *args, **kwargs): """Use Base Strategy.""" return self.apply(*args, **kwargs) @abstractclassmethod def apply(cls, weights, amount=0.0, round_to=1) -> Sequence[int]: """ Apply the strategy on weights with user specified pruning percentage. Args: amount (float): the percentage of weights to be pruned (amount<1.0) or the amount of weights to be pruned (amount>=1.0) round_to (int): the number to which the number of pruned channels is rounded. """ raise NotImplementedError class RandomStrategy(BaseStrategy): """Random Strategy class.""" def apply(self, weights, amount=0.0, round_to=1) -> Sequence[int]: """Return indices.""" if amount <= 0: return [] n = len(weights) n_to_prune = int(amount * n) if amount < 1.0 else amount n_to_prune = round_pruning_amount(n, n_to_prune, round_to) if n_to_prune == 0: return [] indices = random.sample(list(range(n)), k=n_to_prune) return indices class LNStrategy(BaseStrategy): """LNStrategy class.""" def __init__(self, p): """Initialize.""" self.p = p def apply(self, weights, amount=0.0, round_to=1) -> Sequence[int]: """Return indices.""" if amount <= 0: return [] n = len(weights) l1_norm = torch.norm(weights.view(n, -1), p=self.p, dim=1) n_to_prune = int(amount * n) if amount < 1.0 else amount n_to_prune = round_pruning_amount(n, n_to_prune, round_to) if n_to_prune == 0: return [] threshold = torch.kthvalue(l1_norm, k=n_to_prune).values indices = torch.nonzero(l1_norm <= threshold).view(-1).tolist() return indices class L1Strategy(LNStrategy): """L1Strategy class.""" def __init__(self): """Initialize.""" super(L1Strategy, self).__init__(p=1) class L2Strategy(LNStrategy): """L2Strategy class.""" def __init__(self): """Initialize.""" super(L2Strategy, self).__init__(p=2) class GroupLNStrategy(ABC): """GroupLNStrategy class.""" def __call__(self, *args, **kwargs): """Call function.""" return self.apply(*args, **kwargs) @abstractclassmethod def apply(cls, group, amount=0.0, round_to=1) -> Sequence[int]: """ Apply the strategy on weights with user specified pruning percentage. Args: amount (float): the percentage of weights to be pruned (amount<1.0) or the amount of weights to be pruned (amount>=1.0) round_to (int): the number to which the number of pruned channels is rounded. """ for dep, idxs in cls._plans: _, __ = dep.handler(dep.target.module, idxs, dry_run=True)
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/pruning/torch_pruning/strategy.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric module.""" # pylint: disable=R1705 import torch from .dependency import TORCH_CONV, TORCH_BATCHNORM, TORCH_PRELU, TORCH_LINEAR def norm(weights, p=1, norm_dim=0, idxs=None, reduction='sum'): """Norm.""" l1_norm = torch.norm(weights.transpose(0, norm_dim).flatten(1), p=p, dim=1) if idxs is not None: l1_norm = l1_norm[idxs] if reduction == 'sum': return l1_norm.sum() return l1_norm class NormMetric: """Norm Metric class.""" def __init__(self, p, reduction='sum'): """Initilize.""" self.p = p self.reduction = reduction @torch.no_grad() def __call__(self, layer, idxs): """Call function.""" if isinstance(layer, (TORCH_CONV, TORCH_LINEAR)): weight_norm = norm(layer.weight, p=self.p, norm_dim=0, idxs=idxs, reduction=self.reduction) if layer.bias is not None: weight_norm += norm(layer.bias.unsqueeze(-1), p=self.p, norm_dim=0, idxs=idxs, reduction=self.reduction) return weight_norm elif isinstance(layer, TORCH_BATCHNORM): if layer.weight is not None: weight_norm = norm(layer.weight.unsqueeze(-1), p=self.p, norm_dim=0, idxs=idxs, reduction=self.reduction) \ + norm(layer.bias.unsqueeze(-1), p=self.p, norm_dim=0, idxs=idxs, reduction=self.reduction) else: weight_norm = 0 return weight_norm elif isinstance(layer, TORCH_PRELU): if layer.num_parameters == 1: return 0 else: return norm(layer.weight.unsqueeze(-1), p=self.p, norm_dim=0, idxs=idxs, reduction=self.reduction) else: raise NotImplementedError()
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/pruning/torch_pruning/metric.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility module.""" # pylint: disable=R1705 from .dependency import TORCH_CONV, TORCH_BATCHNORM, TORCH_PRELU, TORCH_LINEAR import torch import thop def count_prunable_params_of_modules(module): """Count prunable params of moduls.""" if isinstance(module, (TORCH_CONV, TORCH_LINEAR)): num_params = module.weight.numel() if module.bias is not None: num_params += module.bias.numel() return num_params elif isinstance(module, TORCH_BATCHNORM): num_params = module.running_mean.numel() + module.running_var.numel() if module.affine: num_params += module.weight.numel() + module.bias.numel() return num_params elif isinstance(module, TORCH_PRELU): if len(module.weight) == 1: return 0 else: return module.weight.numel else: return 0 def count_prunable_in_channels(module): """Count prunable in-channels.""" if isinstance(module, TORCH_CONV): return module.weight.shape[1] elif isinstance(module, TORCH_LINEAR): return module.in_features elif isinstance(module, TORCH_BATCHNORM): return module.num_features elif isinstance(module, TORCH_PRELU): if len(module.weight) == 1: return 0 else: return len(module.weight) else: return 0 def count_prunable_out_channels(module): """Count prunable out-channels.""" if isinstance(module, TORCH_CONV): return module.weight.shape[0] elif isinstance(module, TORCH_LINEAR): return module.out_features elif isinstance(module, TORCH_BATCHNORM): return module.num_features elif isinstance(module, TORCH_PRELU): if len(module.weight) == 1: return 0 else: return len(module.weight) else: return 0 def count_params(module): """Count params""" return sum([p.numel() for p in module.parameters()]) def count_macs_and_params(model, input_size, example_inputs=None): """Count macs and params.""" if example_inputs is None: example_inputs = torch.randn(*input_size) macs, params = thop.profile(model, inputs=(example_inputs, ), verbose=False) return macs, params def count_total_prunable_channels(model): """Count total prunable channels.""" in_ch = 0 out_ch = 0 for m in model.modules(): out_ch += count_prunable_out_channels(m) in_ch += count_prunable_in_channels(m) return out_ch, in_ch
tao_pytorch_backend-main
nvidia_tao_pytorch/cv/ocdnet/pruning/torch_pruning/utils.py