python_code
stringlengths
0
869k
import os import uuid from typing import Dict, List, Optional from grpc._channel import _InactiveRpcError from qdrant_client.http.exceptions import UnexpectedResponse from qdrant_client.http.models import PayloadSchemaType from datastore.datastore import DataStore from models.models import ( DocumentChunk, DocumentMetadataFilter, QueryResult, QueryWithEmbedding, DocumentChunkWithScore, ) from qdrant_client.http import models as rest import qdrant_client from services.date import to_unix_timestamp QDRANT_URL = os.environ.get("QDRANT_URL", "http://localhost") QDRANT_PORT = os.environ.get("QDRANT_PORT", "6333") QDRANT_GRPC_PORT = os.environ.get("QDRANT_GRPC_PORT", "6334") QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY") QDRANT_COLLECTION = os.environ.get("QDRANT_COLLECTION", "document_chunks") class QdrantDataStore(DataStore): UUID_NAMESPACE = uuid.UUID("3896d314-1e95-4a3a-b45a-945f9f0b541d") def __init__( self, collection_name: Optional[str] = None, vector_size: int = 1536, distance: str = "Cosine", recreate_collection: bool = False, ): """ Args: collection_name: Name of the collection to be used vector_size: Size of the embedding stored in a collection distance: Any of "Cosine" / "Euclid" / "Dot". Distance function to measure similarity """ self.client = qdrant_client.QdrantClient( url=QDRANT_URL, port=int(QDRANT_PORT), grpc_port=int(QDRANT_GRPC_PORT), api_key=QDRANT_API_KEY, prefer_grpc=True, timeout=10, ) self.collection_name = collection_name or QDRANT_COLLECTION # Set up the collection so the points might be inserted or queried self._set_up_collection(vector_size, distance, recreate_collection) async def _upsert(self, chunks: Dict[str, List[DocumentChunk]]) -> List[str]: """ Takes in a list of document chunks and inserts them into the database. Return a list of document ids. """ points = [ self._convert_document_chunk_to_point(chunk) for _, chunks in chunks.items() for chunk in chunks ] self.client.upsert( collection_name=self.collection_name, points=points, # type: ignore wait=True, ) return list(chunks.keys()) async def _query( self, queries: List[QueryWithEmbedding], ) -> List[QueryResult]: """ Takes in a list of queries with embeddings and filters and returns a list of query results with matching document chunks and scores. """ search_requests = [ self._convert_query_to_search_request(query) for query in queries ] results = self.client.search_batch( collection_name=self.collection_name, requests=search_requests, ) return [ QueryResult( query=query.query, results=[ self._convert_scored_point_to_document_chunk_with_score(point) for point in result ], ) for query, result in zip(queries, results) ] async def delete( self, ids: Optional[List[str]] = None, filter: Optional[DocumentMetadataFilter] = None, delete_all: Optional[bool] = None, ) -> bool: """ Removes vectors by ids, filter, or everything in the datastore. Returns whether the operation was successful. """ if ids is None and filter is None and delete_all is None: raise ValueError( "Please provide one of the parameters: ids, filter or delete_all." ) if delete_all: points_selector = rest.Filter() else: points_selector = self._convert_metadata_filter_to_qdrant_filter( filter, ids ) response = self.client.delete( collection_name=self.collection_name, points_selector=points_selector, # type: ignore ) return "COMPLETED" == response.status def _convert_document_chunk_to_point( self, document_chunk: DocumentChunk ) -> rest.PointStruct: created_at = ( to_unix_timestamp(document_chunk.metadata.created_at) if document_chunk.metadata.created_at is not None else None ) return rest.PointStruct( id=self._create_document_chunk_id(document_chunk.id), vector=document_chunk.embedding, # type: ignore payload={ "id": document_chunk.id, "text": document_chunk.text, "metadata": document_chunk.metadata.dict(), "created_at": created_at, }, ) def _create_document_chunk_id(self, external_id: Optional[str]) -> str: if external_id is None: return uuid.uuid4().hex return uuid.uuid5(self.UUID_NAMESPACE, external_id).hex def _convert_query_to_search_request( self, query: QueryWithEmbedding ) -> rest.SearchRequest: return rest.SearchRequest( vector=query.embedding, filter=self._convert_metadata_filter_to_qdrant_filter(query.filter), limit=query.top_k, # type: ignore with_payload=True, with_vector=False, ) def _convert_metadata_filter_to_qdrant_filter( self, metadata_filter: Optional[DocumentMetadataFilter] = None, ids: Optional[List[str]] = None, ) -> Optional[rest.Filter]: if metadata_filter is None and ids is None: return None must_conditions, should_conditions = [], [] # Filtering by document ids if ids and len(ids) > 0: for document_id in ids: should_conditions.append( rest.FieldCondition( key="metadata.document_id", match=rest.MatchValue(value=document_id), ) ) # Equality filters for the payload attributes if metadata_filter: meta_attributes_keys = { "document_id": "metadata.document_id", "source": "metadata.source", "source_id": "metadata.source_id", "author": "metadata.author", } for meta_attr_name, payload_key in meta_attributes_keys.items(): attr_value = getattr(metadata_filter, meta_attr_name) if attr_value is None: continue must_conditions.append( rest.FieldCondition( key=payload_key, match=rest.MatchValue(value=attr_value) ) ) # Date filters use range filtering start_date = metadata_filter.start_date end_date = metadata_filter.end_date if start_date or end_date: gte_filter = ( to_unix_timestamp(start_date) if start_date is not None else None ) lte_filter = ( to_unix_timestamp(end_date) if end_date is not None else None ) must_conditions.append( rest.FieldCondition( key="created_at", range=rest.Range( gte=gte_filter, lte=lte_filter, ), ) ) if 0 == len(must_conditions) and 0 == len(should_conditions): return None return rest.Filter(must=must_conditions, should=should_conditions) def _convert_scored_point_to_document_chunk_with_score( self, scored_point: rest.ScoredPoint ) -> DocumentChunkWithScore: payload = scored_point.payload or {} return DocumentChunkWithScore( id=payload.get("id"), text=scored_point.payload.get("text"), # type: ignore metadata=scored_point.payload.get("metadata"), # type: ignore embedding=scored_point.vector, # type: ignore score=scored_point.score, ) def _set_up_collection( self, vector_size: int, distance: str, recreate_collection: bool ): distance = rest.Distance[distance.upper()] if recreate_collection: self._recreate_collection(distance, vector_size) try: collection_info = self.client.get_collection(self.collection_name) current_distance = collection_info.config.params.vectors.distance # type: ignore current_vector_size = collection_info.config.params.vectors.size # type: ignore if current_distance != distance: raise ValueError( f"Collection '{self.collection_name}' already exists in Qdrant, " f"but it is configured with a similarity '{current_distance.name}'. " f"If you want to use that collection, but with a different " f"similarity, please set `recreate_collection=True` argument." ) if current_vector_size != vector_size: raise ValueError( f"Collection '{self.collection_name}' already exists in Qdrant, " f"but it is configured with a vector size '{current_vector_size}'. " f"If you want to use that collection, but with a different " f"vector size, please set `recreate_collection=True` argument." ) except (UnexpectedResponse, _InactiveRpcError): self._recreate_collection(distance, vector_size) def _recreate_collection(self, distance: rest.Distance, vector_size: int): self.client.recreate_collection( self.collection_name, vectors_config=rest.VectorParams( size=vector_size, distance=distance, ), ) # Create the payload index for the document_id metadata attribute, as it is # used to delete the document related entries self.client.create_payload_index( self.collection_name, field_name="metadata.document_id", field_type=PayloadSchemaType.KEYWORD, ) # Create the payload index for the created_at attribute, to make the lookup # by range filters faster self.client.create_payload_index( self.collection_name, field_name="created_at", field_schema=PayloadSchemaType.INTEGER, )
import os from typing import Any, List from datetime import datetime from supabase import Client from datastore.providers.pgvector_datastore import PGClient, PgVectorDataStore from models.models import ( DocumentMetadataFilter, ) SUPABASE_URL = os.environ.get("SUPABASE_URL") assert SUPABASE_URL is not None, "SUPABASE_URL is not set" SUPABASE_ANON_KEY = os.environ.get("SUPABASE_ANON_KEY") # use service role key if you want this app to be able to bypass your Row Level Security policies SUPABASE_SERVICE_ROLE_KEY = os.environ.get("SUPABASE_SERVICE_ROLE_KEY") assert ( SUPABASE_ANON_KEY is not None or SUPABASE_SERVICE_ROLE_KEY is not None ), "SUPABASE_ANON_KEY or SUPABASE_SERVICE_ROLE_KEY must be set" # class that implements the DataStore interface for Supabase Datastore provider class SupabaseDataStore(PgVectorDataStore): def create_db_client(self): return SupabaseClient() class SupabaseClient(PGClient): def __init__(self) -> None: super().__init__() if not SUPABASE_SERVICE_ROLE_KEY: self.client = Client(SUPABASE_URL, SUPABASE_ANON_KEY) else: self.client = Client(SUPABASE_URL, SUPABASE_SERVICE_ROLE_KEY) async def upsert(self, table: str, json: dict[str, Any]): """ Takes in a list of documents and inserts them into the table. """ if "created_at" in json: json["created_at"] = json["created_at"][0].isoformat() self.client.table(table).upsert(json).execute() async def rpc(self, function_name: str, params: dict[str, Any]): """ Calls a stored procedure in the database with the given parameters. """ if "in_start_date" in params: params["in_start_date"] = params["in_start_date"].isoformat() if "in_end_date" in params: params["in_end_date"] = params["in_end_date"].isoformat() response = self.client.rpc(function_name, params=params).execute() return response.data async def delete_like(self, table: str, column: str, pattern: str): """ Deletes rows in the table that match the pattern. """ self.client.table(table).delete().like(column, pattern).execute() async def delete_in(self, table: str, column: str, ids: List[str]): """ Deletes rows in the table that match the ids. """ self.client.table(table).delete().in_(column, ids).execute() async def delete_by_filters(self, table: str, filter: DocumentMetadataFilter): """ Deletes rows in the table that match the filter. """ builder = self.client.table(table).delete() if filter.document_id: builder = builder.eq( "document_id", filter.document_id, ) if filter.source: builder = builder.eq("source", filter.source) if filter.source_id: builder = builder.eq("source_id", filter.source_id) if filter.author: builder = builder.eq("author", filter.author) if filter.start_date: builder = builder.gte( "created_at", filter.start_date[0].isoformat(), ) if filter.end_date: builder = builder.lte( "created_at", filter.end_date[0].isoformat(), ) builder.execute()
import asyncio import os import re import time import base64 from typing import Dict, List, Optional, Union from datastore.datastore import DataStore from models.models import DocumentChunk, DocumentChunkMetadata, DocumentChunkWithScore, DocumentMetadataFilter, Query, QueryResult, QueryWithEmbedding from loguru import logger from azure.search.documents.aio import SearchClient from azure.search.documents.models import Vector, QueryType from azure.search.documents.indexes import SearchIndexClient from azure.search.documents.indexes.models import * from azure.core.credentials import AzureKeyCredential from azure.identity import DefaultAzureCredential as DefaultAzureCredentialSync from azure.identity.aio import DefaultAzureCredential AZURESEARCH_SERVICE = os.environ.get("AZURESEARCH_SERVICE") AZURESEARCH_INDEX = os.environ.get("AZURESEARCH_INDEX") AZURESEARCH_API_KEY = os.environ.get("AZURESEARCH_API_KEY") AZURESEARCH_SEMANTIC_CONFIG = os.environ.get("AZURESEARCH_SEMANTIC_CONFIG") AZURESEARCH_LANGUAGE = os.environ.get("AZURESEARCH_LANGUAGE", "en-us") AZURESEARCH_DISABLE_HYBRID = os.environ.get("AZURESEARCH_DISABLE_HYBRID") AZURESEARCH_DIMENSIONS = os.environ.get("AZURESEARCH_DIMENSIONS", 1536) # Default to OpenAI's ada-002 embedding model vector size assert AZURESEARCH_SERVICE is not None assert AZURESEARCH_INDEX is not None # Allow overriding field names for Azure Search FIELDS_ID = os.environ.get("AZURESEARCH_FIELDS_ID", "id") FIELDS_TEXT = os.environ.get("AZURESEARCH_FIELDS_TEXT", "text") FIELDS_EMBEDDING = os.environ.get("AZURESEARCH_FIELDS_EMBEDDING", "embedding") FIELDS_DOCUMENT_ID = os.environ.get("AZURESEARCH_FIELDS_DOCUMENT_ID", "document_id") FIELDS_SOURCE = os.environ.get("AZURESEARCH_FIELDS_SOURCE", "source") FIELDS_SOURCE_ID = os.environ.get("AZURESEARCH_FIELDS_SOURCE_ID", "source_id") FIELDS_URL = os.environ.get("AZURESEARCH_FIELDS_URL", "url") FIELDS_CREATED_AT = os.environ.get("AZURESEARCH_FIELDS_CREATED_AT", "created_at") FIELDS_AUTHOR = os.environ.get("AZURESEARCH_FIELDS_AUTHOR", "author") MAX_UPLOAD_BATCH_SIZE = 1000 MAX_DELETE_BATCH_SIZE = 1000 class AzureSearchDataStore(DataStore): def __init__(self): self.client = SearchClient( endpoint=f"https://{AZURESEARCH_SERVICE}.search.windows.net", index_name=AZURESEARCH_INDEX, credential=AzureSearchDataStore._create_credentials(True), user_agent="retrievalplugin" ) mgmt_client = SearchIndexClient( endpoint=f"https://{AZURESEARCH_SERVICE}.search.windows.net", credential=AzureSearchDataStore._create_credentials(False), user_agent="retrievalplugin" ) if AZURESEARCH_INDEX not in [name for name in mgmt_client.list_index_names()]: self._create_index(mgmt_client) else: logger.info(f"Using existing index {AZURESEARCH_INDEX} in service {AZURESEARCH_SERVICE}") async def _upsert(self, chunks: Dict[str, List[DocumentChunk]]) -> List[str]: azdocuments: List[Dict] = [] async def upload(): r = await self.client.upload_documents(documents=azdocuments) count = sum(1 for rr in r if rr.succeeded) logger.info(f"Upserted {count} chunks out of {len(azdocuments)}") if count < len(azdocuments): raise Exception(f"Failed to upload {len(azdocuments) - count} chunks") ids = [] for document_id, document_chunks in chunks.items(): ids.append(document_id) for chunk in document_chunks: azdocuments.append({ # base64-encode the id string to stay within Azure Search's valid characters for keys FIELDS_ID: base64.urlsafe_b64encode(bytes(chunk.id, "utf-8")).decode("ascii"), FIELDS_TEXT: chunk.text, FIELDS_EMBEDDING: chunk.embedding, FIELDS_DOCUMENT_ID: document_id, FIELDS_SOURCE: chunk.metadata.source, FIELDS_SOURCE_ID: chunk.metadata.source_id, FIELDS_URL: chunk.metadata.url, FIELDS_CREATED_AT: chunk.metadata.created_at, FIELDS_AUTHOR: chunk.metadata.author, }) if len(azdocuments) >= MAX_UPLOAD_BATCH_SIZE: await upload() azdocuments = [] if len(azdocuments) > 0: await upload() return ids async def delete(self, ids: Optional[List[str]] = None, filter: Optional[DocumentMetadataFilter] = None, delete_all: Optional[bool] = None) -> bool: filter = None if delete_all else self._translate_filter(filter) if delete_all or filter is not None: deleted = set() while True: search_result = await self.client.search(None, filter=filter, top=MAX_DELETE_BATCH_SIZE, include_total_count=True, select=FIELDS_ID) if await search_result.get_count() == 0: break documents = [{ FIELDS_ID: d[FIELDS_ID] } async for d in search_result if d[FIELDS_ID] not in deleted] if len(documents) > 0: logger.info(f"Deleting {len(documents)} chunks " + ("using a filter" if filter is not None else "using delete_all")) del_result = await self.client.delete_documents(documents=documents) if not all([rr.succeeded for rr in del_result]): raise Exception("Failed to delete documents") deleted.update([d[FIELDS_ID] for d in documents]) else: # All repeats, delay a bit to let the index refresh and try again time.sleep(0.25) if ids is not None and len(ids) > 0: for id in ids: logger.info(f"Deleting chunks for document id {id}") await self.delete(filter=DocumentMetadataFilter(document_id=id)) return True async def _query(self, queries: List[QueryWithEmbedding]) -> List[QueryResult]: """ Takes in a list of queries with embeddings and filters and returns a list of query results with matching document chunks and scores. """ return await asyncio.gather(*(self._single_query(query) for query in queries)) async def _single_query(self, query: QueryWithEmbedding) -> QueryResult: """ Takes in a single query and filters and returns a query result with matching document chunks and scores. """ filter = self._translate_filter(query.filter) if query.filter is not None else None try: vector_top_k = query.top_k if filter is None else query.top_k * 2 q = query.query if not AZURESEARCH_DISABLE_HYBRID else None if AZURESEARCH_SEMANTIC_CONFIG != None and not AZURESEARCH_DISABLE_HYBRID: # Ensure we're feeding a good number of candidates to the L2 reranker vector_top_k = max(50, vector_top_k) r = await self.client.search( q, filter=filter, top=query.top_k, vector=Vector(value=query.embedding, k=vector_top_k, fields=FIELDS_EMBEDDING), query_type=QueryType.SEMANTIC, query_language=AZURESEARCH_LANGUAGE, semantic_configuration_name=AZURESEARCH_SEMANTIC_CONFIG) else: r = await self.client.search( q, filter=filter, top=query.top_k, vector=Vector(value=query.embedding, k=vector_top_k, fields=FIELDS_EMBEDDING)) results: List[DocumentChunkWithScore] = [] async for hit in r: f = lambda field: hit.get(field) if field != "-" else None results.append(DocumentChunkWithScore( id=hit[FIELDS_ID], text=hit[FIELDS_TEXT], metadata=DocumentChunkMetadata( document_id=f(FIELDS_DOCUMENT_ID), source=f(FIELDS_SOURCE), source_id=f(FIELDS_SOURCE_ID), url=f(FIELDS_URL), created_at=f(FIELDS_CREATED_AT), author=f(FIELDS_AUTHOR) ), score=hit["@search.score"] )) return QueryResult(query=query.query, results=results) except Exception as e: raise Exception(f"Error querying the index: {e}") @staticmethod def _translate_filter(filter: DocumentMetadataFilter) -> str: """ Translates a DocumentMetadataFilter into an Azure Search filter string """ if filter is None: return None escape = lambda s: s.replace("'", "''") # regex to validate dates are in OData format date_re = re.compile(r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}Z") filter_list = [] if filter.document_id is not None: filter_list.append(f"{FIELDS_DOCUMENT_ID} eq '{escape(filter.document_id)}'") if filter.source is not None: filter_list.append(f"{FIELDS_SOURCE} eq '{escape(filter.source)}'") if filter.source_id is not None: filter_list.append(f"{FIELDS_SOURCE_ID} eq '{escape(filter.source_id)}'") if filter.author is not None: filter_list.append(f"{FIELDS_AUTHOR} eq '{escape(filter.author)}'") if filter.start_date is not None: if not date_re.match(filter.start_date): raise ValueError(f"start_date must be in OData format, got {filter.start_date}") filter_list.append(f"{FIELDS_CREATED_AT} ge {filter.start_date}") if filter.end_date is not None: if not date_re.match(filter.end_date): raise ValueError(f"end_date must be in OData format, got {filter.end_date}") filter_list.append(f"{FIELDS_CREATED_AT} le {filter.end_date}") return " and ".join(filter_list) if len(filter_list) > 0 else None def _create_index(self, mgmt_client: SearchIndexClient): """ Creates an Azure Cognitive Search index, including a semantic search configuration if a name is specified for it """ logger.info( f"Creating index {AZURESEARCH_INDEX} in service {AZURESEARCH_SERVICE}" + (f" with semantic search configuration {AZURESEARCH_SEMANTIC_CONFIG}" if AZURESEARCH_SEMANTIC_CONFIG is not None else "") ) mgmt_client.create_index( SearchIndex( name=AZURESEARCH_INDEX, fields=[ SimpleField(name=FIELDS_ID, type=SearchFieldDataType.String, key=True), SearchableField(name=FIELDS_TEXT, type=SearchFieldDataType.String, analyzer_name="standard.lucene"), SearchField(name=FIELDS_EMBEDDING, type=SearchFieldDataType.Collection(SearchFieldDataType.Single), hidden=False, searchable=True, filterable=False, sortable=False, facetable=False, dimensions=AZURESEARCH_DIMENSIONS, vector_search_configuration="default"), SimpleField(name=FIELDS_DOCUMENT_ID, type=SearchFieldDataType.String, filterable=True, sortable=True), SimpleField(name=FIELDS_SOURCE, type=SearchFieldDataType.String, filterable=True, sortable=True), SimpleField(name=FIELDS_SOURCE_ID, type=SearchFieldDataType.String, filterable=True, sortable=True), SimpleField(name=FIELDS_URL, type=SearchFieldDataType.String), SimpleField(name=FIELDS_CREATED_AT, type=SearchFieldDataType.DateTimeOffset, filterable=True, sortable=True), SimpleField(name=FIELDS_AUTHOR, type=SearchFieldDataType.String, filterable=True, sortable=True) ], semantic_settings=None if AZURESEARCH_SEMANTIC_CONFIG is None else SemanticSettings( configurations=[SemanticConfiguration( name=AZURESEARCH_SEMANTIC_CONFIG, prioritized_fields=PrioritizedFields( title_field=None, prioritized_content_fields=[SemanticField(field_name=FIELDS_TEXT)] ) )] ), vector_search=VectorSearch( algorithm_configurations=[ VectorSearchAlgorithmConfiguration( name="default", kind="hnsw", # Could change to dotproduct for OpenAI's embeddings since they normalize vectors to unit length hnsw_parameters=HnswParameters(metric="cosine") ) ] ) ) ) @staticmethod def _create_credentials(use_async: bool) -> Union[AzureKeyCredential, DefaultAzureCredential, DefaultAzureCredentialSync]: if AZURESEARCH_API_KEY is None: logger.info("Using DefaultAzureCredential for Azure Search, make sure local identity or managed identity are set up appropriately") credential = DefaultAzureCredential() if use_async else DefaultAzureCredentialSync() else: logger.info("Using an API key to authenticate with Azure Search") credential = AzureKeyCredential(AZURESEARCH_API_KEY) return credential
import os from typing import Dict, List, Any, Optional import elasticsearch from elasticsearch import Elasticsearch, helpers from loguru import logger from datastore.datastore import DataStore from models.models import ( DocumentChunk, DocumentChunkWithScore, DocumentMetadataFilter, QueryResult, QueryWithEmbedding, ) from services.date import to_unix_timestamp ELASTICSEARCH_URL = os.environ.get("ELASTICSEARCH_URL", "http://localhost:9200") ELASTICSEARCH_CLOUD_ID = os.environ.get("ELASTICSEARCH_CLOUD_ID") ELASTICSEARCH_USERNAME = os.environ.get("ELASTICSEARCH_USERNAME") ELASTICSEARCH_PASSWORD = os.environ.get("ELASTICSEARCH_PASSWORD") ELASTICSEARCH_API_KEY = os.environ.get("ELASTICSEARCH_API_KEY") ELASTICSEARCH_INDEX = os.environ.get("ELASTICSEARCH_INDEX") ELASTICSEARCH_REPLICAS = int(os.environ.get("ELASTICSEARCH_REPLICAS", "1")) ELASTICSEARCH_SHARDS = int(os.environ.get("ELASTICSEARCH_SHARDS", "1")) VECTOR_SIZE = 1536 UPSERT_BATCH_SIZE = 100 class ElasticsearchDataStore(DataStore): def __init__( self, index_name: Optional[str] = None, vector_size: int = VECTOR_SIZE, similarity: str = "cosine", replicas: int = ELASTICSEARCH_REPLICAS, shards: int = ELASTICSEARCH_SHARDS, recreate_index: bool = True, ): """ Args: index_name: Name of the index to be used vector_size: Size of the embedding stored in a collection similarity: Any of "cosine" / "l2_norm" / "dot_product". """ assert similarity in [ "cosine", "l2_norm", "dot_product", ], "Similarity must be one of 'cosine' / 'l2_norm' / 'dot_product'." assert replicas > 0, "Replicas must be greater than or equal to 0." assert shards > 0, "Shards must be greater than or equal to 0." self.client = connect_to_elasticsearch( ELASTICSEARCH_URL, ELASTICSEARCH_CLOUD_ID, ELASTICSEARCH_API_KEY, ELASTICSEARCH_USERNAME, ELASTICSEARCH_PASSWORD, ) assert ( index_name != "" or ELASTICSEARCH_INDEX != "" ), "Please provide an index name." self.index_name = index_name or ELASTICSEARCH_INDEX or "" replicas = replicas or ELASTICSEARCH_REPLICAS shards = shards or ELASTICSEARCH_SHARDS # Set up the collection so the documents might be inserted or queried self._set_up_index(vector_size, similarity, replicas, shards, recreate_index) async def _upsert(self, chunks: Dict[str, List[DocumentChunk]]) -> List[str]: """ Takes in a list of document chunks and inserts them into the database. Return a list of document ids. """ actions = [] for _, chunkList in chunks.items(): for chunk in chunkList: actions = ( actions + self._convert_document_chunk_to_es_document_operation(chunk) ) self.client.bulk(operations=actions, index=self.index_name) return list(chunks.keys()) async def _query( self, queries: List[QueryWithEmbedding], ) -> List[QueryResult]: """ Takes in a list of queries with embeddings and filters and returns a list of query results with matching document chunks and scores. """ searches = self._convert_queries_to_msearch_query(queries) results = self.client.msearch(searches=searches) return [ QueryResult( query=query.query, results=[ self._convert_hit_to_document_chunk_with_score(hit) for hit in result["hits"]["hits"] ], ) for query, result in zip(queries, results["responses"]) ] async def delete( self, ids: Optional[List[str]] = None, filter: Optional[DocumentMetadataFilter] = None, delete_all: Optional[bool] = None, ) -> bool: """ Removes vectors by ids, filter, or everything in the datastore. Returns whether the operation was successful. """ # Delete all vectors from the index if delete_all is True if delete_all: try: logger.info(f"Deleting all vectors from index") self.client.delete_by_query( index=self.index_name, query={"match_all": {}} ) logger.info(f"Deleted all vectors successfully") return True except Exception as e: logger.error(f"Error deleting all vectors: {e}") raise e # Convert the metadata filter object to a dict with elasticsearch filter expressions es_filters = self._get_es_filters(filter) # Delete vectors that match the filter from the index if the filter is not empty if es_filters != {}: try: logger.info(f"Deleting vectors with filter {es_filters}") self.client.delete_by_query(index=self.index_name, query=es_filters) logger.info(f"Deleted vectors with filter successfully") except Exception as e: logger.error(f"Error deleting vectors with filter: {e}") raise e if ids: try: documents_to_delete = [doc_id for doc_id in ids] logger.info(f"Deleting {len(documents_to_delete)} documents") res = self.client.delete_by_query( index=self.index_name, query={"terms": {"metadata.document_id": documents_to_delete}}, ) logger.info(f"Deleted documents successfully") except Exception as e: logger.error(f"Error deleting documents: {e}") raise e return True def _get_es_filters( self, filter: Optional[DocumentMetadataFilter] = None ) -> Dict[str, Any]: if filter is None: return {} es_filters = { "bool": { "must": [], } } # For each field in the MetadataFilter, check if it has a value and add the corresponding pinecone filter expression # For start_date and end_date, uses the range query - gte and lte operators respectively # For other fields, uses the term query for field, value in filter.dict().items(): if value is not None: if field == "start_date": es_filters["bool"]["must"].append( {"range": {"created_at": {"gte": to_unix_timestamp(value)}}} ) elif field == "end_date": es_filters["bool"]["must"].append( {"range": {"created_at": {"lte": to_unix_timestamp(value)}}} ) else: es_filters["bool"]["must"].append( {"term": {f"metadata.{field}": value}} ) return es_filters def _convert_document_chunk_to_es_document_operation( self, document_chunk: DocumentChunk ) -> List[Dict]: created_at = ( to_unix_timestamp(document_chunk.metadata.created_at) if document_chunk.metadata.created_at is not None else None ) action_and_metadata = { "index": { "_index": self.index_name, "_id": document_chunk.id, } } source = { "id": document_chunk.id, "text": document_chunk.text, "metadata": document_chunk.metadata.dict(), "created_at": created_at, "embedding": document_chunk.embedding, } return [action_and_metadata, source] def _convert_queries_to_msearch_query(self, queries: List[QueryWithEmbedding]): searches = [] for query in queries: searches.append({"index": self.index_name}) searches.append( { "_source": True, "knn": { "field": "embedding", "query_vector": query.embedding, "k": query.top_k, "num_candidates": query.top_k, }, "size": query.top_k, } ) return searches def _convert_hit_to_document_chunk_with_score(self, hit) -> DocumentChunkWithScore: return DocumentChunkWithScore( id=hit["_id"], text=hit["_source"]["text"], # type: ignore metadata=hit["_source"]["metadata"], # type: ignore embedding=hit["_source"]["embedding"], # type: ignore score=hit["_score"], ) def _set_up_index( self, vector_size: int, similarity: str, replicas: int, shards: int, recreate_index: bool, ) -> None: if recreate_index: self._recreate_index(similarity, vector_size, replicas, shards) try: index_mapping = self.client.indices.get_mapping(index=self.index_name) current_similarity = index_mapping[self.index_name]["mappings"]["properties"]["embedding"]["similarity"] # type: ignore current_vector_size = index_mapping[self.index_name]["mappings"]["properties"]["embedding"]["dims"] # type: ignore if current_similarity != similarity: raise ValueError( f"Collection '{self.index_name}' already exists in Elasticsearch, " f"but it is configured with a similarity '{current_similarity}'. " f"If you want to use that collection, but with a different " f"similarity, please set `recreate_index=True` argument." ) if current_vector_size != vector_size: raise ValueError( f"Collection '{self.index_name}' already exists in Elasticsearch, " f"but it is configured with a vector size '{current_vector_size}'. " f"If you want to use that collection, but with a different " f"vector size, please set `recreate_index=True` argument." ) except elasticsearch.exceptions.NotFoundError: self._recreate_index(similarity, vector_size, replicas, shards) def _recreate_index( self, similarity: str, vector_size: int, replicas: int, shards: int ) -> None: settings = { "index": { "number_of_shards": shards, "number_of_replicas": replicas, "refresh_interval": "1s", } } mappings = { "properties": { "embedding": { "type": "dense_vector", "dims": vector_size, "index": True, "similarity": similarity, } } } self.client.indices.delete( index=self.index_name, ignore_unavailable=True, allow_no_indices=True ) self.client.indices.create( index=self.index_name, mappings=mappings, settings=settings ) def connect_to_elasticsearch( elasticsearch_url=None, cloud_id=None, api_key=None, username=None, password=None ): # Check if both elasticsearch_url and cloud_id are defined if elasticsearch_url and cloud_id: raise ValueError( "Both elasticsearch_url and cloud_id are defined. Please provide only one." ) # Initialize connection parameters dictionary connection_params = {} # Define the connection based on the provided parameters if elasticsearch_url: connection_params["hosts"] = [elasticsearch_url] elif cloud_id: connection_params["cloud_id"] = cloud_id else: raise ValueError("Please provide either elasticsearch_url or cloud_id.") # Add authentication details based on the provided parameters if api_key: connection_params["api_key"] = api_key elif username and password: connection_params["basic_auth"] = (username, password) else: logger.warning( "No authentication details provided. Please consider using an api_key or username and password to secure your connection." ) # Establish the Elasticsearch client connection es_client = Elasticsearch(**connection_params) try: es_client.info() except Exception as e: logger.error(f"Error connecting to Elasticsearch: {e}") raise e return es_client
import os from typing import Any, Dict, List, Optional import pinecone from tenacity import retry, wait_random_exponential, stop_after_attempt import asyncio from loguru import logger from datastore.datastore import DataStore from models.models import ( DocumentChunk, DocumentChunkMetadata, DocumentChunkWithScore, DocumentMetadataFilter, QueryResult, QueryWithEmbedding, Source, ) from services.date import to_unix_timestamp # Read environment variables for Pinecone configuration PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY") PINECONE_ENVIRONMENT = os.environ.get("PINECONE_ENVIRONMENT") PINECONE_INDEX = os.environ.get("PINECONE_INDEX") assert PINECONE_API_KEY is not None assert PINECONE_ENVIRONMENT is not None assert PINECONE_INDEX is not None # Initialize Pinecone with the API key and environment pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT) # Set the batch size for upserting vectors to Pinecone UPSERT_BATCH_SIZE = 100 class PineconeDataStore(DataStore): def __init__(self): # Check if the index name is specified and exists in Pinecone if PINECONE_INDEX and PINECONE_INDEX not in pinecone.list_indexes(): # Get all fields in the metadata object in a list fields_to_index = list(DocumentChunkMetadata.__fields__.keys()) # Create a new index with the specified name, dimension, and metadata configuration try: logger.info( f"Creating index {PINECONE_INDEX} with metadata config {fields_to_index}" ) pinecone.create_index( PINECONE_INDEX, dimension=1536, # dimensionality of OpenAI ada v2 embeddings metadata_config={"indexed": fields_to_index}, ) self.index = pinecone.Index(PINECONE_INDEX) logger.info(f"Index {PINECONE_INDEX} created successfully") except Exception as e: logger.error(f"Error creating index {PINECONE_INDEX}: {e}") raise e elif PINECONE_INDEX and PINECONE_INDEX in pinecone.list_indexes(): # Connect to an existing index with the specified name try: logger.info(f"Connecting to existing index {PINECONE_INDEX}") self.index = pinecone.Index(PINECONE_INDEX) logger.info(f"Connected to index {PINECONE_INDEX} successfully") except Exception as e: logger.error(f"Error connecting to index {PINECONE_INDEX}: {e}") raise e @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(3)) async def _upsert(self, chunks: Dict[str, List[DocumentChunk]]) -> List[str]: """ Takes in a dict from document id to list of document chunks and inserts them into the index. Return a list of document ids. """ # Initialize a list of ids to return doc_ids: List[str] = [] # Initialize a list of vectors to upsert vectors = [] # Loop through the dict items for doc_id, chunk_list in chunks.items(): # Append the id to the ids list doc_ids.append(doc_id) logger.info(f"Upserting document_id: {doc_id}") for chunk in chunk_list: # Create a vector tuple of (id, embedding, metadata) # Convert the metadata object to a dict with unix timestamps for dates pinecone_metadata = self._get_pinecone_metadata(chunk.metadata) # Add the text and document id to the metadata dict pinecone_metadata["text"] = chunk.text pinecone_metadata["document_id"] = doc_id vector = (chunk.id, chunk.embedding, pinecone_metadata) vectors.append(vector) # Split the vectors list into batches of the specified size batches = [ vectors[i : i + UPSERT_BATCH_SIZE] for i in range(0, len(vectors), UPSERT_BATCH_SIZE) ] # Upsert each batch to Pinecone for batch in batches: try: logger.info(f"Upserting batch of size {len(batch)}") self.index.upsert(vectors=batch) logger.info(f"Upserted batch successfully") except Exception as e: logger.error(f"Error upserting batch: {e}") raise e return doc_ids @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(3)) async def _query( self, queries: List[QueryWithEmbedding], ) -> List[QueryResult]: """ Takes in a list of queries with embeddings and filters and returns a list of query results with matching document chunks and scores. """ # Define a helper coroutine that performs a single query and returns a QueryResult async def _single_query(query: QueryWithEmbedding) -> QueryResult: logger.debug(f"Query: {query.query}") # Convert the metadata filter object to a dict with pinecone filter expressions pinecone_filter = self._get_pinecone_filter(query.filter) try: # Query the index with the query embedding, filter, and top_k query_response = self.index.query( # namespace=namespace, top_k=query.top_k, vector=query.embedding, filter=pinecone_filter, include_metadata=True, ) except Exception as e: logger.error(f"Error querying index: {e}") raise e query_results: List[DocumentChunkWithScore] = [] for result in query_response.matches: score = result.score metadata = result.metadata # Remove document id and text from metadata and store it in a new variable metadata_without_text = ( {key: value for key, value in metadata.items() if key != "text"} if metadata else None ) # If the source is not a valid Source in the Source enum, set it to None if ( metadata_without_text and "source" in metadata_without_text and metadata_without_text["source"] not in Source.__members__ ): metadata_without_text["source"] = None # Create a document chunk with score object with the result data result = DocumentChunkWithScore( id=result.id, score=score, text=metadata["text"] if metadata and "text" in metadata else None, metadata=metadata_without_text, ) query_results.append(result) return QueryResult(query=query.query, results=query_results) # Use asyncio.gather to run multiple _single_query coroutines concurrently and collect their results results: List[QueryResult] = await asyncio.gather( *[_single_query(query) for query in queries] ) return results @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(3)) async def delete( self, ids: Optional[List[str]] = None, filter: Optional[DocumentMetadataFilter] = None, delete_all: Optional[bool] = None, ) -> bool: """ Removes vectors by ids, filter, or everything from the index. """ # Delete all vectors from the index if delete_all is True if delete_all: try: logger.info(f"Deleting all vectors from index") self.index.delete(delete_all=True) logger.info(f"Deleted all vectors successfully") return True except Exception as e: logger.error(f"Error deleting all vectors: {e}") raise e # Convert the metadata filter object to a dict with pinecone filter expressions pinecone_filter = self._get_pinecone_filter(filter) # Delete vectors that match the filter from the index if the filter is not empty if pinecone_filter != {}: try: logger.info(f"Deleting vectors with filter {pinecone_filter}") self.index.delete(filter=pinecone_filter) logger.info(f"Deleted vectors with filter successfully") except Exception as e: logger.error(f"Error deleting vectors with filter: {e}") raise e # Delete vectors that match the document ids from the index if the ids list is not empty if ids is not None and len(ids) > 0: try: logger.info(f"Deleting vectors with ids {ids}") pinecone_filter = {"document_id": {"$in": ids}} self.index.delete(filter=pinecone_filter) # type: ignore logger.info(f"Deleted vectors with ids successfully") except Exception as e: logger.error(f"Error deleting vectors with ids: {e}") raise e return True def _get_pinecone_filter( self, filter: Optional[DocumentMetadataFilter] = None ) -> Dict[str, Any]: if filter is None: return {} pinecone_filter = {} # For each field in the MetadataFilter, check if it has a value and add the corresponding pinecone filter expression # For start_date and end_date, uses the $gte and $lte operators respectively # For other fields, uses the $eq operator for field, value in filter.dict().items(): if value is not None: if field == "start_date": pinecone_filter["date"] = pinecone_filter.get("date", {}) pinecone_filter["date"]["$gte"] = to_unix_timestamp(value) elif field == "end_date": pinecone_filter["date"] = pinecone_filter.get("date", {}) pinecone_filter["date"]["$lte"] = to_unix_timestamp(value) else: pinecone_filter[field] = value return pinecone_filter def _get_pinecone_metadata( self, metadata: Optional[DocumentChunkMetadata] = None ) -> Dict[str, Any]: if metadata is None: return {} pinecone_metadata = {} # For each field in the Metadata, check if it has a value and add it to the pinecone metadata dict # For fields that are dates, convert them to unix timestamps for field, value in metadata.dict().items(): if value is not None: if field in ["created_at"]: pinecone_metadata[field] = to_unix_timestamp(value) else: pinecone_metadata[field] = value return pinecone_metadata
import os from typing import Any, List from datetime import datetime import numpy as np from psycopg2 import connect from psycopg2.extras import DictCursor from pgvector.psycopg2 import register_vector from services.date import to_unix_timestamp from datastore.providers.pgvector_datastore import PGClient, PgVectorDataStore from models.models import ( DocumentMetadataFilter, ) PG_HOST = os.environ.get("PG_HOST", "localhost") PG_PORT = int(os.environ.get("PG_PORT", 5432)) PG_DB = os.environ.get("PG_DB", "postgres") PG_USER = os.environ.get("PG_USER", "postgres") PG_PASSWORD = os.environ.get("PG_PASSWORD", "postgres") # class that implements the DataStore interface for Postgres Datastore provider class PostgresDataStore(PgVectorDataStore): def create_db_client(self): return PostgresClient() class PostgresClient(PGClient): def __init__(self) -> None: super().__init__() self.client = connect( dbname=PG_DB, user=PG_USER, password=PG_PASSWORD, host=PG_HOST, port=PG_PORT ) register_vector(self.client) def __del__(self): # close the connection when the client is destroyed self.client.close() async def upsert(self, table: str, json: dict[str, Any]): """ Takes in a list of documents and inserts them into the table. """ with self.client.cursor() as cur: if not json.get("created_at"): json["created_at"] = datetime.now() json["embedding"] = np.array(json["embedding"]) cur.execute( f"INSERT INTO {table} (id, content, embedding, document_id, source, source_id, url, author, created_at) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s) ON CONFLICT (id) DO UPDATE SET content = %s, embedding = %s, document_id = %s, source = %s, source_id = %s, url = %s, author = %s, created_at = %s", ( json["id"], json["content"], json["embedding"], json["document_id"], json["source"], json["source_id"], json["url"], json["author"], json["created_at"], json["content"], json["embedding"], json["document_id"], json["source"], json["source_id"], json["url"], json["author"], json["created_at"], ), ) self.client.commit() async def rpc(self, function_name: str, params: dict[str, Any]): """ Calls a stored procedure in the database with the given parameters. """ data = [] params["in_embedding"] = np.array(params["in_embedding"]) with self.client.cursor(cursor_factory=DictCursor) as cur: cur.callproc(function_name, params) rows = cur.fetchall() self.client.commit() for row in rows: row["created_at"] = to_unix_timestamp(row["created_at"]) data.append(dict(row)) return data async def delete_like(self, table: str, column: str, pattern: str): """ Deletes rows in the table that match the pattern. """ with self.client.cursor() as cur: cur.execute( f"DELETE FROM {table} WHERE {column} LIKE %s", (f"%{pattern}%",), ) self.client.commit() async def delete_in(self, table: str, column: str, ids: List[str]): """ Deletes rows in the table that match the ids. """ with self.client.cursor() as cur: cur.execute( f"DELETE FROM {table} WHERE {column} IN %s", (tuple(ids),), ) self.client.commit() async def delete_by_filters(self, table: str, filter: DocumentMetadataFilter): """ Deletes rows in the table that match the filter. """ filters = "WHERE" if filter.document_id: filters += f" document_id = '{filter.document_id}' AND" if filter.source: filters += f" source = '{filter.source}' AND" if filter.source_id: filters += f" source_id = '{filter.source_id}' AND" if filter.author: filters += f" author = '{filter.author}' AND" if filter.start_date: filters += f" created_at >= '{filter.start_date}' AND" if filter.end_date: filters += f" created_at <= '{filter.end_date}' AND" filters = filters[:-4] with self.client.cursor() as cur: cur.execute(f"DELETE FROM {table} {filters}") self.client.commit()
import json import os import asyncio from loguru import logger from typing import Dict, List, Optional from pymilvus import ( Collection, connections, utility, FieldSchema, DataType, CollectionSchema, MilvusException, ) from uuid import uuid4 from services.date import to_unix_timestamp from datastore.datastore import DataStore from models.models import ( DocumentChunk, DocumentChunkMetadata, Source, DocumentMetadataFilter, QueryResult, QueryWithEmbedding, DocumentChunkWithScore, ) MILVUS_COLLECTION = os.environ.get("MILVUS_COLLECTION") or "c" + uuid4().hex MILVUS_HOST = os.environ.get("MILVUS_HOST") or "localhost" MILVUS_PORT = os.environ.get("MILVUS_PORT") or 19530 MILVUS_USER = os.environ.get("MILVUS_USER") MILVUS_PASSWORD = os.environ.get("MILVUS_PASSWORD") MILVUS_USE_SECURITY = False if MILVUS_PASSWORD is None else True MILVUS_INDEX_PARAMS = os.environ.get("MILVUS_INDEX_PARAMS") MILVUS_SEARCH_PARAMS = os.environ.get("MILVUS_SEARCH_PARAMS") MILVUS_CONSISTENCY_LEVEL = os.environ.get("MILVUS_CONSISTENCY_LEVEL") UPSERT_BATCH_SIZE = 100 OUTPUT_DIM = 1536 EMBEDDING_FIELD = "embedding" class Required: pass # The fields names that we are going to be storing within Milvus, the field declaration for schema creation, and the default value SCHEMA_V1 = [ ( "pk", FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True), Required, ), ( EMBEDDING_FIELD, FieldSchema(name=EMBEDDING_FIELD, dtype=DataType.FLOAT_VECTOR, dim=OUTPUT_DIM), Required, ), ( "text", FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=65535), Required, ), ( "document_id", FieldSchema(name="document_id", dtype=DataType.VARCHAR, max_length=65535), "", ), ( "source_id", FieldSchema(name="source_id", dtype=DataType.VARCHAR, max_length=65535), "", ), ( "id", FieldSchema( name="id", dtype=DataType.VARCHAR, max_length=65535, ), "", ), ( "source", FieldSchema(name="source", dtype=DataType.VARCHAR, max_length=65535), "", ), ("url", FieldSchema(name="url", dtype=DataType.VARCHAR, max_length=65535), ""), ("created_at", FieldSchema(name="created_at", dtype=DataType.INT64), -1), ( "author", FieldSchema(name="author", dtype=DataType.VARCHAR, max_length=65535), "", ), ] # V2 schema, remomve the "pk" field SCHEMA_V2 = SCHEMA_V1[1:] SCHEMA_V2[4][1].is_primary = True class MilvusDataStore(DataStore): def __init__( self, create_new: Optional[bool] = False, consistency_level: str = "Bounded", ): """Create a Milvus DataStore. The Milvus Datastore allows for storing your indexes and metadata within a Milvus instance. Args: create_new (Optional[bool], optional): Whether to overwrite if collection already exists. Defaults to True. consistency_level(str, optional): Specify the collection consistency level. Defaults to "Bounded" for search performance. Set to "Strong" in test cases for result validation. """ # Overwrite the default consistency level by MILVUS_CONSISTENCY_LEVEL self._consistency_level = MILVUS_CONSISTENCY_LEVEL or consistency_level self._create_connection() self._create_collection(MILVUS_COLLECTION, create_new) # type: ignore self._create_index() def _get_schema(self): return SCHEMA_V1 if self._schema_ver == "V1" else SCHEMA_V2 def _create_connection(self): try: self.alias = "" # Check if the connection already exists for x in connections.list_connections(): addr = connections.get_connection_addr(x[0]) if x[1] and ('address' in addr) and (addr['address'] == "{}:{}".format(MILVUS_HOST, MILVUS_PORT)): self.alias = x[0] logger.info("Reuse connection to Milvus server '{}:{}' with alias '{:s}'" .format(MILVUS_HOST, MILVUS_PORT, self.alias)) break # Connect to the Milvus instance using the passed in Environment variables if len(self.alias) == 0: self.alias = uuid4().hex connections.connect( alias=self.alias, host=MILVUS_HOST, port=MILVUS_PORT, user=MILVUS_USER, # type: ignore password=MILVUS_PASSWORD, # type: ignore secure=MILVUS_USE_SECURITY, ) logger.info("Create connection to Milvus server '{}:{}' with alias '{:s}'" .format(MILVUS_HOST, MILVUS_PORT, self.alias)) except Exception as e: logger.error("Failed to create connection to Milvus server '{}:{}', error: {}" .format(MILVUS_HOST, MILVUS_PORT, e)) def _create_collection(self, collection_name, create_new: bool) -> None: """Create a collection based on environment and passed in variables. Args: create_new (bool): Whether to overwrite if collection already exists. """ try: self._schema_ver = "V1" # If the collection exists and create_new is True, drop the existing collection if utility.has_collection(collection_name, using=self.alias) and create_new: utility.drop_collection(collection_name, using=self.alias) # Check if the collection doesnt exist if utility.has_collection(collection_name, using=self.alias) is False: # If it doesnt exist use the field params from init to create a new schem schema = [field[1] for field in SCHEMA_V2] schema = CollectionSchema(schema) # Use the schema to create a new collection self.col = Collection( collection_name, schema=schema, using=self.alias, consistency_level=self._consistency_level, ) self._schema_ver = "V2" logger.info("Create Milvus collection '{}' with schema {} and consistency level {}" .format(collection_name, self._schema_ver, self._consistency_level)) else: # If the collection exists, point to it self.col = Collection( collection_name, using=self.alias ) # type: ignore # Which sechma is used for field in self.col.schema.fields: if field.name == "id" and field.is_primary: self._schema_ver = "V2" break logger.info("Milvus collection '{}' already exists with schema {}" .format(collection_name, self._schema_ver)) except Exception as e: logger.error("Failed to create collection '{}', error: {}".format(collection_name, e)) def _create_index(self): # TODO: verify index/search params passed by os.environ self.index_params = MILVUS_INDEX_PARAMS or None self.search_params = MILVUS_SEARCH_PARAMS or None try: # If no index on the collection, create one if len(self.col.indexes) == 0: if self.index_params is not None: # Convert the string format to JSON format parameters passed by MILVUS_INDEX_PARAMS self.index_params = json.loads(self.index_params) logger.info("Create Milvus index: {}".format(self.index_params)) # Create an index on the 'embedding' field with the index params found in init self.col.create_index(EMBEDDING_FIELD, index_params=self.index_params) else: # If no index param supplied, to first create an HNSW index for Milvus try: i_p = { "metric_type": "IP", "index_type": "HNSW", "params": {"M": 8, "efConstruction": 64}, } logger.info("Attempting creation of Milvus '{}' index".format(i_p["index_type"])) self.col.create_index(EMBEDDING_FIELD, index_params=i_p) self.index_params = i_p logger.info("Creation of Milvus '{}' index successful".format(i_p["index_type"])) # If create fails, most likely due to being Zilliz Cloud instance, try to create an AutoIndex except MilvusException: logger.info("Attempting creation of Milvus default index") i_p = {"metric_type": "IP", "index_type": "AUTOINDEX", "params": {}} self.col.create_index(EMBEDDING_FIELD, index_params=i_p) self.index_params = i_p logger.info("Creation of Milvus default index successful") # If an index already exists, grab its params else: # How about if the first index is not vector index? for index in self.col.indexes: idx = index.to_dict() if idx["field"] == EMBEDDING_FIELD: logger.info("Index already exists: {}".format(idx)) self.index_params = idx['index_param'] break self.col.load() if self.search_params is not None: # Convert the string format to JSON format parameters passed by MILVUS_SEARCH_PARAMS self.search_params = json.loads(self.search_params) else: # The default search params metric_type = "IP" if "metric_type" in self.index_params: metric_type = self.index_params["metric_type"] default_search_params = { "IVF_FLAT": {"metric_type": metric_type, "params": {"nprobe": 10}}, "IVF_SQ8": {"metric_type": metric_type, "params": {"nprobe": 10}}, "IVF_PQ": {"metric_type": metric_type, "params": {"nprobe": 10}}, "HNSW": {"metric_type": metric_type, "params": {"ef": 10}}, "RHNSW_FLAT": {"metric_type": metric_type, "params": {"ef": 10}}, "RHNSW_SQ": {"metric_type": metric_type, "params": {"ef": 10}}, "RHNSW_PQ": {"metric_type": metric_type, "params": {"ef": 10}}, "IVF_HNSW": {"metric_type": metric_type, "params": {"nprobe": 10, "ef": 10}}, "ANNOY": {"metric_type": metric_type, "params": {"search_k": 10}}, "AUTOINDEX": {"metric_type": metric_type, "params": {}}, } # Set the search params self.search_params = default_search_params[self.index_params["index_type"]] logger.info("Milvus search parameters: {}".format(self.search_params)) except Exception as e: logger.error("Failed to create index, error: {}".format(e)) async def _upsert(self, chunks: Dict[str, List[DocumentChunk]]) -> List[str]: """Upsert chunks into the datastore. Args: chunks (Dict[str, List[DocumentChunk]]): A list of DocumentChunks to insert Raises: e: Error in upserting data. Returns: List[str]: The document_id's that were inserted. """ try: # The doc id's to return for the upsert doc_ids: List[str] = [] # List to collect all the insert data, skip the "pk" for schema V1 offset = 1 if self._schema_ver == "V1" else 0 insert_data = [[] for _ in range(len(self._get_schema()) - offset)] # Go through each document chunklist and grab the data for doc_id, chunk_list in chunks.items(): # Append the doc_id to the list we are returning doc_ids.append(doc_id) # Examine each chunk in the chunklist for chunk in chunk_list: # Extract data from the chunk list_of_data = self._get_values(chunk) # Check if the data is valid if list_of_data is not None: # Append each field to the insert_data for x in range(len(insert_data)): insert_data[x].append(list_of_data[x]) # Slice up our insert data into batches batches = [ insert_data[i : i + UPSERT_BATCH_SIZE] for i in range(0, len(insert_data), UPSERT_BATCH_SIZE) ] # Attempt to insert each batch into our collection # batch data can work with both V1 and V2 schema for batch in batches: if len(batch[0]) != 0: try: logger.info(f"Upserting batch of size {len(batch[0])}") self.col.insert(batch) logger.info(f"Upserted batch successfully") except Exception as e: logger.error(f"Failed to insert batch records, error: {e}") raise e # This setting perfoms flushes after insert. Small insert == bad to use # self.col.flush() return doc_ids except Exception as e: logger.error("Failed to insert records, error: {}".format(e)) return [] def _get_values(self, chunk: DocumentChunk) -> List[any] | None: # type: ignore """Convert the chunk into a list of values to insert whose indexes align with fields. Args: chunk (DocumentChunk): The chunk to convert. Returns: List (any): The values to insert. """ # Convert DocumentChunk and its sub models to dict values = chunk.dict() # Unpack the metadata into the same dict meta = values.pop("metadata") values.update(meta) # Convert date to int timestamp form if values["created_at"]: values["created_at"] = to_unix_timestamp(values["created_at"]) # If source exists, change from Source object to the string value it holds if values["source"]: values["source"] = values["source"].value # List to collect data we will return ret = [] # Grab data responding to each field, excluding the hidden auto pk field for schema V1 offset = 1 if self._schema_ver == "V1" else 0 for key, _, default in self._get_schema()[offset:]: # Grab the data at the key and default to our defaults set in init x = values.get(key) or default # If one of our required fields is missing, ignore the entire entry if x is Required: logger.info("Chunk " + values["id"] + " missing " + key + " skipping") return None # Add the corresponding value if it passes the tests ret.append(x) return ret async def _query( self, queries: List[QueryWithEmbedding], ) -> List[QueryResult]: """Query the QueryWithEmbedding against the MilvusDocumentSearch Search the embedding and its filter in the collection. Args: queries (List[QueryWithEmbedding]): The list of searches to perform. Returns: List[QueryResult]: Results for each search. """ # Async to perform the query, adapted from pinecone implementation async def _single_query(query: QueryWithEmbedding) -> QueryResult: try: filter = None # Set the filter to expression that is valid for Milvus if query.filter is not None: # Either a valid filter or None will be returned filter = self._get_filter(query.filter) # Perform our search return_from = 2 if self._schema_ver == "V1" else 1 res = self.col.search( data=[query.embedding], anns_field=EMBEDDING_FIELD, param=self.search_params, limit=query.top_k, expr=filter, output_fields=[ field[0] for field in self._get_schema()[return_from:] ], # Ignoring pk, embedding ) # Results that will hold our DocumentChunkWithScores results = [] # Parse every result for our search for hit in res[0]: # type: ignore # The distance score for the search result, falls under DocumentChunkWithScore score = hit.score # Our metadata info, falls under DocumentChunkMetadata metadata = {} # Grab the values that correspond to our fields, ignore pk and embedding. for x in [field[0] for field in self._get_schema()[return_from:]]: metadata[x] = hit.entity.get(x) # If the source isn't valid, convert to None if metadata["source"] not in Source.__members__: metadata["source"] = None # Text falls under the DocumentChunk text = metadata.pop("text") # Id falls under the DocumentChunk ids = metadata.pop("id") chunk = DocumentChunkWithScore( id=ids, score=score, text=text, metadata=DocumentChunkMetadata(**metadata), ) results.append(chunk) # TODO: decide on doing queries to grab the embedding itself, slows down performance as double query occurs return QueryResult(query=query.query, results=results) except Exception as e: logger.error("Failed to query, error: {}".format(e)) return QueryResult(query=query.query, results=[]) results: List[QueryResult] = await asyncio.gather( *[_single_query(query) for query in queries] ) return results async def delete( self, ids: Optional[List[str]] = None, filter: Optional[DocumentMetadataFilter] = None, delete_all: Optional[bool] = None, ) -> bool: """Delete the entities based either on the chunk_id of the vector, Args: ids (Optional[List[str]], optional): The document_ids to delete. Defaults to None. filter (Optional[DocumentMetadataFilter], optional): The filter to delete by. Defaults to None. delete_all (Optional[bool], optional): Whether to drop the collection and recreate it. Defaults to None. """ # If deleting all, drop and create the new collection if delete_all: coll_name = self.col.name logger.info("Delete the entire collection {} and create new one".format(coll_name)) # Release the collection from memory self.col.release() # Drop the collection self.col.drop() # Recreate the new collection self._create_collection(coll_name, True) self._create_index() return True # Keep track of how many we have deleted for later printing delete_count = 0 batch_size = 100 pk_name = "pk" if self._schema_ver == "V1" else "id" try: # According to the api design, the ids is a list of document_id, # document_id is not primary key, use query+delete to workaround, # in future version we can delete by expression if (ids is not None) and len(ids) > 0: # Add quotation marks around the string format id ids = ['"' + str(id) + '"' for id in ids] # Query for the pk's of entries that match id's ids = self.col.query(f"document_id in [{','.join(ids)}]") # Convert to list of pks pks = [str(entry[pk_name]) for entry in ids] # type: ignore # for schema V2, the "id" is varchar, rewrite the expression if self._schema_ver != "V1": pks = ['"' + pk + '"' for pk in pks] # Delete by ids batch by batch(avoid too long expression) logger.info("Apply {:d} deletions to schema {:s}".format(len(pks), self._schema_ver)) while len(pks) > 0: batch_pks = pks[:batch_size] pks = pks[batch_size:] # Delete the entries batch by batch res = self.col.delete(f"{pk_name} in [{','.join(batch_pks)}]") # Increment our deleted count delete_count += int(res.delete_count) # type: ignore except Exception as e: logger.error("Failed to delete by ids, error: {}".format(e)) try: # Check if empty filter if filter is not None: # Convert filter to milvus expression filter = self._get_filter(filter) # type: ignore # Check if there is anything to filter if len(filter) != 0: # type: ignore # Query for the pk's of entries that match filter res = self.col.query(filter) # type: ignore # Convert to list of pks pks = [str(entry[pk_name]) for entry in res] # type: ignore # for schema V2, the "id" is varchar, rewrite the expression if self._schema_ver != "V1": pks = ['"' + pk + '"' for pk in pks] # Check to see if there are valid pk's to delete, delete batch by batch(avoid too long expression) while len(pks) > 0: # type: ignore batch_pks = pks[:batch_size] pks = pks[batch_size:] # Delete the entries batch by batch res = self.col.delete(f"{pk_name} in [{','.join(batch_pks)}]") # type: ignore # Increment our delete count delete_count += int(res.delete_count) # type: ignore except Exception as e: logger.error("Failed to delete by filter, error: {}".format(e)) logger.info("{:d} records deleted".format(delete_count)) # This setting performs flushes after delete. Small delete == bad to use # self.col.flush() return True def _get_filter(self, filter: DocumentMetadataFilter) -> Optional[str]: """Converts a DocumentMetdataFilter to the expression that Milvus takes. Args: filter (DocumentMetadataFilter): The Filter to convert to Milvus expression. Returns: Optional[str]: The filter if valid, otherwise None. """ filters = [] # Go through all the fields and their values for field, value in filter.dict().items(): # Check if the Value is empty if value is not None: # Convert start_date to int and add greater than or equal logic if field == "start_date": filters.append( "(created_at >= " + str(to_unix_timestamp(value)) + ")" ) # Convert end_date to int and add less than or equal logic elif field == "end_date": filters.append( "(created_at <= " + str(to_unix_timestamp(value)) + ")" ) # Convert Source to its string value and check equivalency elif field == "source": filters.append("(" + field + ' == "' + str(value.value) + '")') # Check equivalency of rest of string fields else: filters.append("(" + field + ' == "' + str(value) + '")') # Join all our expressions with `and`` return " and ".join(filters)
# This is a version of the main.py file found in ../../server/main.py that also gives ChatGPT access to the upsert endpoint # (allowing it to save information from the chat back to the vector) database. # Copy and paste this into the main file at ../../server/main.py if you choose to give the model access to the upsert endpoint # and want to access the openapi.json when you run the app locally at http://0.0.0.0:8000/sub/openapi.json. import os from typing import Optional import uvicorn from fastapi import FastAPI, File, Form, HTTPException, Depends, Body, UploadFile from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from fastapi.staticfiles import StaticFiles from loguru import logger from models.api import ( DeleteRequest, DeleteResponse, QueryRequest, QueryResponse, UpsertRequest, UpsertResponse, ) from datastore.factory import get_datastore from services.file import get_document_from_file from models.models import DocumentMetadata, Source bearer_scheme = HTTPBearer() BEARER_TOKEN = os.environ.get("BEARER_TOKEN") assert BEARER_TOKEN is not None def validate_token(credentials: HTTPAuthorizationCredentials = Depends(bearer_scheme)): if credentials.scheme != "Bearer" or credentials.credentials != BEARER_TOKEN: raise HTTPException(status_code=401, detail="Invalid or missing token") return credentials app = FastAPI() app.mount("/.well-known", StaticFiles(directory=".well-known"), name="static") # Create a sub-application, in order to access just the upsert and query endpoints in the OpenAPI schema, found at http://0.0.0.0:8000/sub/openapi.json when the app is running locally sub_app = FastAPI( title="Retrieval Plugin API", description="A retrieval API for querying and filtering documents based on natural language queries and metadata", version="1.0.0", servers=[{"url": "https://your-app-url.com"}], dependencies=[Depends(validate_token)], ) app.mount("/sub", sub_app) @app.post( "/upsert-file", response_model=UpsertResponse, ) async def upsert_file( file: UploadFile = File(...), metadata: Optional[str] = Form(None), ): try: metadata_obj = ( DocumentMetadata.parse_raw(metadata) if metadata else DocumentMetadata(source=Source.file) ) except: metadata_obj = DocumentMetadata(source=Source.file) document = await get_document_from_file(file, metadata_obj) try: ids = await datastore.upsert([document]) return UpsertResponse(ids=ids) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail=f"str({e})") @app.post( "/upsert", response_model=UpsertResponse, ) async def upsert_main( request: UpsertRequest = Body(...), token: HTTPAuthorizationCredentials = Depends(validate_token), ): try: ids = await datastore.upsert(request.documents) return UpsertResponse(ids=ids) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @sub_app.post( "/upsert", response_model=UpsertResponse, # NOTE: We are describing the shape of the API endpoint input due to a current limitation in parsing arrays of objects from OpenAPI schemas. This will not be necessary in the future. description="Save chat information. Accepts an array of documents with text (potential questions + conversation text), metadata (source 'chat' and timestamp, no ID as this will be generated). Confirm with the user before saving, ask for more details/context.", ) async def upsert( request: UpsertRequest = Body(...), token: HTTPAuthorizationCredentials = Depends(validate_token), ): try: ids = await datastore.upsert(request.documents) return UpsertResponse(ids=ids) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @app.post( "/query", response_model=QueryResponse, ) async def query_main( request: QueryRequest = Body(...), token: HTTPAuthorizationCredentials = Depends(validate_token), ): try: results = await datastore.query( request.queries, ) return QueryResponse(results=results) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @sub_app.post( "/query", response_model=QueryResponse, # NOTE: We are describing the shape of the API endpoint input due to a current limitation in parsing arrays of objects from OpenAPI schemas. This will not be necessary in the future. description="Accepts search query objects array each with query and optional filter. Break down complex questions into sub-questions. Refine results by criteria, e.g. time / source, don't do this often. Split queries if ResponseTooLargeError occurs.", ) async def query( request: QueryRequest = Body(...), token: HTTPAuthorizationCredentials = Depends(validate_token), ): try: results = await datastore.query( request.queries, ) return QueryResponse(results=results) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @app.delete( "/delete", response_model=DeleteResponse, ) async def delete( request: DeleteRequest = Body(...), token: HTTPAuthorizationCredentials = Depends(validate_token), ): if not (request.ids or request.filter or request.delete_all): raise HTTPException( status_code=400, detail="One of ids, filter, or delete_all is required", ) try: success = await datastore.delete( ids=request.ids, filter=request.filter, delete_all=request.delete_all, ) return DeleteResponse(success=success) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @app.on_event("startup") async def startup(): global datastore datastore = await get_datastore() def start(): uvicorn.run("server.main:app", host="0.0.0.0", port=8000, reload=True)
# This is a version of the main.py file found in ../../../server/main.py without authentication. # Copy and paste this into the main file at ../../../server/main.py if you choose to use no authentication for your retrieval plugin. from typing import Optional import uvicorn from fastapi import FastAPI, File, Form, HTTPException, Body, UploadFile from fastapi.staticfiles import StaticFiles from loguru import logger from models.api import ( DeleteRequest, DeleteResponse, QueryRequest, QueryResponse, UpsertRequest, UpsertResponse, ) from datastore.factory import get_datastore from services.file import get_document_from_file from models.models import DocumentMetadata, Source app = FastAPI() app.mount("/.well-known", StaticFiles(directory=".well-known"), name="static") # Create a sub-application, in order to access just the query endpoints in the OpenAPI schema, found at http://0.0.0.0:8000/sub/openapi.json when the app is running locally sub_app = FastAPI( title="Retrieval Plugin API", description="A retrieval API for querying and filtering documents based on natural language queries and metadata", version="1.0.0", servers=[{"url": "https://your-app-url.com"}], ) app.mount("/sub", sub_app) @app.post( "/upsert-file", response_model=UpsertResponse, ) async def upsert_file( file: UploadFile = File(...), metadata: Optional[str] = Form(None), ): try: metadata_obj = ( DocumentMetadata.parse_raw(metadata) if metadata else DocumentMetadata(source=Source.file) ) except: metadata_obj = DocumentMetadata(source=Source.file) document = await get_document_from_file(file, metadata_obj) try: ids = await datastore.upsert([document]) return UpsertResponse(ids=ids) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail=f"str({e})") @app.post( "/upsert", response_model=UpsertResponse, ) async def upsert( request: UpsertRequest = Body(...), ): try: ids = await datastore.upsert(request.documents) return UpsertResponse(ids=ids) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @app.post( "/query", response_model=QueryResponse, ) async def query_main( request: QueryRequest = Body(...), ): try: results = await datastore.query( request.queries, ) return QueryResponse(results=results) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @sub_app.post( "/query", response_model=QueryResponse, description="Accepts search query objects with query and optional filter. Break down complex questions into sub-questions. Refine results by criteria, e.g. time / source, don't do this often. Split queries if ResponseTooLargeError occurs.", ) async def query( request: QueryRequest = Body(...), ): try: results = await datastore.query( request.queries, ) return QueryResponse(results=results) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @app.delete( "/delete", response_model=DeleteResponse, ) async def delete( request: DeleteRequest = Body(...), ): if not (request.ids or request.filter or request.delete_all): raise HTTPException( status_code=400, detail="One of ids, filter, or delete_all is required", ) try: success = await datastore.delete( ids=request.ids, filter=request.filter, delete_all=request.delete_all, ) return DeleteResponse(success=success) except Exception as e: logger.error(e) raise HTTPException(status_code=500, detail="Internal Service Error") @app.on_event("startup") async def startup(): global datastore datastore = await get_datastore() def start(): uvicorn.run("server.main:app", host="0.0.0.0", port=8000, reload=True)
import uuid import json import argparse import asyncio from loguru import logger from models.models import Document, DocumentMetadata from datastore.datastore import DataStore from datastore.factory import get_datastore from services.extract_metadata import extract_metadata_from_document from services.pii_detection import screen_text_for_pii DOCUMENT_UPSERT_BATCH_SIZE = 50 async def process_jsonl_dump( filepath: str, datastore: DataStore, custom_metadata: dict, screen_for_pii: bool, extract_metadata: bool, ): # open the jsonl file as a generator of dictionaries with open(filepath) as jsonl_file: data = [json.loads(line) for line in jsonl_file] documents = [] skipped_items = [] # iterate over the data and create document objects for item in data: if len(documents) % 20 == 0: logger.info(f"Processed {len(documents)} documents") try: # get the id, text, source, source_id, url, created_at and author from the item # use default values if not specified id = item.get("id", None) text = item.get("text", None) source = item.get("source", None) source_id = item.get("source_id", None) url = item.get("url", None) created_at = item.get("created_at", None) author = item.get("author", None) if not text: logger.info("No document text, skipping...") continue # create a metadata object with the source, source_id, url, created_at and author metadata = DocumentMetadata( source=source, source_id=source_id, url=url, created_at=created_at, author=author, ) # update metadata with custom values for key, value in custom_metadata.items(): if hasattr(metadata, key): setattr(metadata, key, value) # screen for pii if requested if screen_for_pii: pii_detected = screen_text_for_pii(text) # if pii detected, print a warning and skip the document if pii_detected: logger.info("PII detected in document, skipping") skipped_items.append(item) # add the skipped item to the list continue # extract metadata if requested if extract_metadata: # extract metadata from the document text extracted_metadata = extract_metadata_from_document( f"Text: {text}; Metadata: {str(metadata)}" ) # get a Metadata object from the extracted metadata metadata = DocumentMetadata(**extracted_metadata) # create a document object with the id, text and metadata document = Document( id=id, text=text, metadata=metadata, ) documents.append(document) except Exception as e: # log the error and continue with the next item logger.error(f"Error processing {item}: {e}") skipped_items.append(item) # add the skipped item to the list # do this in batches, the upsert method already batches documents but this allows # us to add more descriptive logging for i in range(0, len(documents), DOCUMENT_UPSERT_BATCH_SIZE): # Get the text of the chunks in the current batch batch_documents = documents[i : i + DOCUMENT_UPSERT_BATCH_SIZE] logger.info(f"Upserting batch of {len(batch_documents)} documents, batch {i}") await datastore.upsert(batch_documents) # print the skipped items logger.info(f"Skipped {len(skipped_items)} items due to errors or PII detection") for item in skipped_items: logger.info(item) async def main(): # parse the command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--filepath", required=True, help="The path to the jsonl dump") parser.add_argument( "--custom_metadata", default="{}", help="A JSON string of key-value pairs to update the metadata of the documents", ) parser.add_argument( "--screen_for_pii", default=False, type=bool, help="A boolean flag to indicate whether to try the PII detection function (using a language model)", ) parser.add_argument( "--extract_metadata", default=False, type=bool, help="A boolean flag to indicate whether to try to extract metadata from the document (using a language model)", ) args = parser.parse_args() # get the arguments filepath = args.filepath custom_metadata = json.loads(args.custom_metadata) screen_for_pii = args.screen_for_pii extract_metadata = args.extract_metadata # initialize the db instance once as a global variable datastore = await get_datastore() # process the jsonl dump await process_jsonl_dump( filepath, datastore, custom_metadata, screen_for_pii, extract_metadata ) if __name__ == "__main__": asyncio.run(main())
import uuid import json import argparse import asyncio from loguru import logger from models.models import Document, DocumentMetadata from datastore.datastore import DataStore from datastore.factory import get_datastore from services.extract_metadata import extract_metadata_from_document from services.pii_detection import screen_text_for_pii DOCUMENT_UPSERT_BATCH_SIZE = 50 async def process_json_dump( filepath: str, datastore: DataStore, custom_metadata: dict, screen_for_pii: bool, extract_metadata: bool, ): # load the json file as a list of dictionaries with open(filepath) as json_file: data = json.load(json_file) documents = [] skipped_items = [] # iterate over the data and create document objects for item in data: if len(documents) % 20 == 0: logger.info(f"Processed {len(documents)} documents") try: # get the id, text, source, source_id, url, created_at and author from the item # use default values if not specified id = item.get("id", None) text = item.get("text", None) source = item.get("source", None) source_id = item.get("source_id", None) url = item.get("url", None) created_at = item.get("created_at", None) author = item.get("author", None) if not text: logger.info("No document text, skipping...") continue # create a metadata object with the source, source_id, url, created_at and author metadata = DocumentMetadata( source=source, source_id=source_id, url=url, created_at=created_at, author=author, ) logger.info("metadata: ", str(metadata)) # update metadata with custom values for key, value in custom_metadata.items(): if hasattr(metadata, key): setattr(metadata, key, value) # screen for pii if requested if screen_for_pii: pii_detected = screen_text_for_pii(text) # if pii detected, print a warning and skip the document if pii_detected: logger.info("PII detected in document, skipping") skipped_items.append(item) # add the skipped item to the list continue # extract metadata if requested if extract_metadata: # extract metadata from the document text extracted_metadata = extract_metadata_from_document( f"Text: {text}; Metadata: {str(metadata)}" ) # get a Metadata object from the extracted metadata metadata = DocumentMetadata(**extracted_metadata) # create a document object with the id or a random id, text and metadata document = Document( id=id or str(uuid.uuid4()), text=text, metadata=metadata, ) documents.append(document) except Exception as e: # log the error and continue with the next item logger.error(f"Error processing {item}: {e}") skipped_items.append(item) # add the skipped item to the list # do this in batches, the upsert method already batches documents but this allows # us to add more descriptive logging for i in range(0, len(documents), DOCUMENT_UPSERT_BATCH_SIZE): # Get the text of the chunks in the current batch batch_documents = documents[i : i + DOCUMENT_UPSERT_BATCH_SIZE] logger.info(f"Upserting batch of {len(batch_documents)} documents, batch {i}") logger.info("documents: ", documents) await datastore.upsert(batch_documents) # print the skipped items logger.info(f"Skipped {len(skipped_items)} items due to errors or PII detection") for item in skipped_items: logger.info(item) async def main(): # parse the command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--filepath", required=True, help="The path to the json dump") parser.add_argument( "--custom_metadata", default="{}", help="A JSON string of key-value pairs to update the metadata of the documents", ) parser.add_argument( "--screen_for_pii", default=False, type=bool, help="A boolean flag to indicate whether to try the PII detection function (using a language model)", ) parser.add_argument( "--extract_metadata", default=False, type=bool, help="A boolean flag to indicate whether to try to extract metadata from the document (using a language model)", ) args = parser.parse_args() # get the arguments filepath = args.filepath custom_metadata = json.loads(args.custom_metadata) screen_for_pii = args.screen_for_pii extract_metadata = args.extract_metadata # initialize the db instance once as a global variable datastore = await get_datastore() # process the json dump await process_json_dump( filepath, datastore, custom_metadata, screen_for_pii, extract_metadata ) if __name__ == "__main__": asyncio.run(main())
import uuid import zipfile import os import json import argparse import asyncio from loguru import logger from models.models import Document, DocumentMetadata, Source from datastore.datastore import DataStore from datastore.factory import get_datastore from services.extract_metadata import extract_metadata_from_document from services.file import extract_text_from_filepath from services.pii_detection import screen_text_for_pii DOCUMENT_UPSERT_BATCH_SIZE = 50 async def process_file_dump( filepath: str, datastore: DataStore, custom_metadata: dict, screen_for_pii: bool, extract_metadata: bool, ): # create a ZipFile object and extract all the files into a directory named 'dump' with zipfile.ZipFile(filepath) as zip_file: zip_file.extractall("dump") documents = [] skipped_files = [] # use os.walk to traverse the dump directory and its subdirectories for root, dirs, files in os.walk("dump"): for filename in files: if len(documents) % 20 == 0: logger.info(f"Processed {len(documents)} documents") filepath = os.path.join(root, filename) try: extracted_text = extract_text_from_filepath(filepath) logger.info(f"extracted_text from {filepath}") # create a metadata object with the source and source_id fields metadata = DocumentMetadata( source=Source.file, source_id=filename, ) # update metadata with custom values for key, value in custom_metadata.items(): if hasattr(metadata, key): setattr(metadata, key, value) # screen for pii if requested if screen_for_pii: pii_detected = screen_text_for_pii(extracted_text) # if pii detected, print a warning and skip the document if pii_detected: logger.info("PII detected in document, skipping") skipped_files.append( filepath ) # add the skipped file to the list continue # extract metadata if requested if extract_metadata: # extract metadata from the document text extracted_metadata = extract_metadata_from_document( f"Text: {extracted_text}; Metadata: {str(metadata)}" ) # get a Metadata object from the extracted metadata metadata = DocumentMetadata(**extracted_metadata) # create a document object with a random id, text and metadata document = Document( id=str(uuid.uuid4()), text=extracted_text, metadata=metadata, ) documents.append(document) except Exception as e: # log the error and continue with the next file logger.error(f"Error processing {filepath}: {e}") skipped_files.append(filepath) # add the skipped file to the list # do this in batches, the upsert method already batches documents but this allows # us to add more descriptive logging for i in range(0, len(documents), DOCUMENT_UPSERT_BATCH_SIZE): # Get the text of the chunks in the current batch batch_documents = [doc for doc in documents[i : i + DOCUMENT_UPSERT_BATCH_SIZE]] logger.info(f"Upserting batch of {len(batch_documents)} documents, batch {i}") logger.info("documents: ", documents) await datastore.upsert(batch_documents) # delete all files in the dump directory for root, dirs, files in os.walk("dump", topdown=False): for filename in files: filepath = os.path.join(root, filename) os.remove(filepath) for dirname in dirs: dirpath = os.path.join(root, dirname) os.rmdir(dirpath) # delete the dump directory os.rmdir("dump") # print the skipped files logger.info(f"Skipped {len(skipped_files)} files due to errors or PII detection") for file in skipped_files: logger.info(file) async def main(): # parse the command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--filepath", required=True, help="The path to the file dump") parser.add_argument( "--custom_metadata", default="{}", help="A JSON string of key-value pairs to update the metadata of the documents", ) parser.add_argument( "--screen_for_pii", default=False, type=bool, help="A boolean flag to indicate whether to try the PII detection function (using a language model)", ) parser.add_argument( "--extract_metadata", default=False, type=bool, help="A boolean flag to indicate whether to try to extract metadata from the document (using a language model)", ) args = parser.parse_args() # get the arguments filepath = args.filepath custom_metadata = json.loads(args.custom_metadata) screen_for_pii = args.screen_for_pii extract_metadata = args.extract_metadata # initialize the db instance once as a global variable datastore = await get_datastore() # process the file dump await process_file_dump( filepath, datastore, custom_metadata, screen_for_pii, extract_metadata ) if __name__ == "__main__": asyncio.run(main())
from models.models import Source from services.openai import get_chat_completion import json from typing import Dict import os from loguru import logger def extract_metadata_from_document(text: str) -> Dict[str, str]: sources = Source.__members__.keys() sources_string = ", ".join(sources) # This prompt is just an example, change it to fit your use case messages = [ { "role": "system", "content": f""" Given a document from a user, try to extract the following metadata: - source: string, one of {sources_string} - url: string or don't specify - created_at: string or don't specify - author: string or don't specify Respond with a JSON containing the extracted metadata in key value pairs. If you don't find a metadata field, don't specify it. """, }, {"role": "user", "content": text}, ] # NOTE: Azure Open AI requires deployment id # Read environment variable - if not set - not used completion = get_chat_completion( messages, "gpt-4", os.environ.get("OPENAI_METADATA_EXTRACTIONMODEL_DEPLOYMENTID") ) # TODO: change to your preferred model name logger.info(f"completion: {completion}") try: metadata = json.loads(completion) except: metadata = {} return metadata
import os from services.openai import get_chat_completion def screen_text_for_pii(text: str) -> bool: # This prompt is just an example, change it to fit your use case messages = [ { "role": "system", "content": f""" You can only respond with the word "True" or "False", where your answer indicates whether the text in the user's message contains PII. Do not explain your answer, and do not use punctuation. Your task is to identify whether the text extracted from your company files contains sensitive PII information that should not be shared with the broader company. Here are some things to look out for: - An email address that identifies a specific person in either the local-part or the domain - The postal address of a private residence (must include at least a street name) - The postal address of a public place (must include either a street name or business name) - Notes about hiring decisions with mentioned names of candidates. The user will send a document for you to analyze. """, }, {"role": "user", "content": text}, ] completion = get_chat_completion( messages, deployment_id=os.environ.get("OPENAI_COMPLETIONMODEL_DEPLOYMENTID") ) if completion.startswith("True"): return True return False
import os from io import BufferedReader from typing import Optional from fastapi import UploadFile import mimetypes from PyPDF2 import PdfReader import docx2txt import csv import pptx from loguru import logger from models.models import Document, DocumentMetadata async def get_document_from_file( file: UploadFile, metadata: DocumentMetadata ) -> Document: extracted_text = await extract_text_from_form_file(file) doc = Document(text=extracted_text, metadata=metadata) return doc def extract_text_from_filepath(filepath: str, mimetype: Optional[str] = None) -> str: """Return the text content of a file given its filepath.""" if mimetype is None: # Get the mimetype of the file based on its extension mimetype, _ = mimetypes.guess_type(filepath) if not mimetype: if filepath.endswith(".md"): mimetype = "text/markdown" else: raise Exception("Unsupported file type") try: with open(filepath, "rb") as file: extracted_text = extract_text_from_file(file, mimetype) except Exception as e: logger.error(e) raise e return extracted_text def extract_text_from_file(file: BufferedReader, mimetype: str) -> str: if mimetype == "application/pdf": # Extract text from pdf using PyPDF2 reader = PdfReader(file) extracted_text = " ".join([page.extract_text() for page in reader.pages]) elif mimetype == "text/plain" or mimetype == "text/markdown": # Read text from plain text file extracted_text = file.read().decode("utf-8") elif ( mimetype == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" ): # Extract text from docx using docx2txt extracted_text = docx2txt.process(file) elif mimetype == "text/csv": # Extract text from csv using csv module extracted_text = "" decoded_buffer = (line.decode("utf-8") for line in file) reader = csv.reader(decoded_buffer) for row in reader: extracted_text += " ".join(row) + "\n" elif ( mimetype == "application/vnd.openxmlformats-officedocument.presentationml.presentation" ): # Extract text from pptx using python-pptx extracted_text = "" presentation = pptx.Presentation(file) for slide in presentation.slides: for shape in slide.shapes: if shape.has_text_frame: for paragraph in shape.text_frame.paragraphs: for run in paragraph.runs: extracted_text += run.text + " " extracted_text += "\n" else: # Unsupported file type raise ValueError("Unsupported file type: {}".format(mimetype)) return extracted_text # Extract text from a file based on its mimetype async def extract_text_from_form_file(file: UploadFile): """Return the text content of a file.""" # get the file body from the upload file object mimetype = file.content_type logger.info(f"mimetype: {mimetype}") logger.info(f"file.file: {file.file}") logger.info("file: ", file) file_stream = await file.read() temp_file_path = "/tmp/temp_file" # write the file to a temporary location with open(temp_file_path, "wb") as f: f.write(file_stream) try: extracted_text = extract_text_from_filepath(temp_file_path, mimetype) except Exception as e: logger.error(e) os.remove(temp_file_path) raise e # remove file from temp location os.remove(temp_file_path) return extracted_text
from typing import List import openai import os from loguru import logger from tenacity import retry, wait_random_exponential, stop_after_attempt @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(3)) def get_embeddings(texts: List[str]) -> List[List[float]]: """ Embed texts using OpenAI's ada model. Args: texts: The list of texts to embed. Returns: A list of embeddings, each of which is a list of floats. Raises: Exception: If the OpenAI API call fails. """ # Call the OpenAI API to get the embeddings # NOTE: Azure Open AI requires deployment id deployment = os.environ.get("OPENAI_EMBEDDINGMODEL_DEPLOYMENTID") response = {} if deployment == None: response = openai.Embedding.create(input=texts, model="text-embedding-ada-002") else: response = openai.Embedding.create(input=texts, deployment_id=deployment) # Extract the embedding data from the response data = response["data"] # type: ignore # Return the embeddings as a list of lists of floats return [result["embedding"] for result in data] @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(3)) def get_chat_completion( messages, model="gpt-3.5-turbo", # use "gpt-4" for better results deployment_id = None ): """ Generate a chat completion using OpenAI's chat completion API. Args: messages: The list of messages in the chat history. model: The name of the model to use for the completion. Default is gpt-3.5-turbo, which is a fast, cheap and versatile model. Use gpt-4 for higher quality but slower results. Returns: A string containing the chat completion. Raises: Exception: If the OpenAI API call fails. """ # call the OpenAI chat completion API with the given messages # Note: Azure Open AI requires deployment id response = {} if deployment_id == None: response = openai.ChatCompletion.create( model=model, messages=messages, ) else: response = openai.ChatCompletion.create( deployment_id = deployment_id, messages=messages, ) choices = response["choices"] # type: ignore completion = choices[0].message.content.strip() logger.info(f"Completion: {completion}") return completion
import arrow from loguru import logger def to_unix_timestamp(date_str: str) -> int: """ Convert a date string to a unix timestamp (seconds since epoch). Args: date_str: The date string to convert. Returns: The unix timestamp corresponding to the date string. If the date string cannot be parsed as a valid date format, returns the current unix timestamp and prints a warning. """ # Try to parse the date string using arrow, which supports many common date formats try: date_obj = arrow.get(date_str) return int(date_obj.timestamp()) except arrow.parser.ParserError: # If the parsing fails, return the current unix timestamp and print a warning logger.info(f"Invalid date format: {date_str}") return int(arrow.now().timestamp())
from typing import Dict, List, Optional, Tuple import uuid import os from models.models import Document, DocumentChunk, DocumentChunkMetadata import tiktoken from services.openai import get_embeddings # Global variables tokenizer = tiktoken.get_encoding( "cl100k_base" ) # The encoding scheme to use for tokenization # Constants CHUNK_SIZE = 200 # The target size of each text chunk in tokens MIN_CHUNK_SIZE_CHARS = 350 # The minimum size of each text chunk in characters MIN_CHUNK_LENGTH_TO_EMBED = 5 # Discard chunks shorter than this EMBEDDINGS_BATCH_SIZE = int(os.environ.get("OPENAI_EMBEDDING_BATCH_SIZE", 128)) # The number of embeddings to request at a time MAX_NUM_CHUNKS = 10000 # The maximum number of chunks to generate from a text def get_text_chunks(text: str, chunk_token_size: Optional[int]) -> List[str]: """ Split a text into chunks of ~CHUNK_SIZE tokens, based on punctuation and newline boundaries. Args: text: The text to split into chunks. chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE. Returns: A list of text chunks, each of which is a string of ~CHUNK_SIZE tokens. """ # Return an empty list if the text is empty or whitespace if not text or text.isspace(): return [] # Tokenize the text tokens = tokenizer.encode(text, disallowed_special=()) # Initialize an empty list of chunks chunks = [] # Use the provided chunk token size or the default one chunk_size = chunk_token_size or CHUNK_SIZE # Initialize a counter for the number of chunks num_chunks = 0 # Loop until all tokens are consumed while tokens and num_chunks < MAX_NUM_CHUNKS: # Take the first chunk_size tokens as a chunk chunk = tokens[:chunk_size] # Decode the chunk into text chunk_text = tokenizer.decode(chunk) # Skip the chunk if it is empty or whitespace if not chunk_text or chunk_text.isspace(): # Remove the tokens corresponding to the chunk text from the remaining tokens tokens = tokens[len(chunk) :] # Continue to the next iteration of the loop continue # Find the last period or punctuation mark in the chunk last_punctuation = max( chunk_text.rfind("."), chunk_text.rfind("?"), chunk_text.rfind("!"), chunk_text.rfind("\n"), ) # If there is a punctuation mark, and the last punctuation index is before MIN_CHUNK_SIZE_CHARS if last_punctuation != -1 and last_punctuation > MIN_CHUNK_SIZE_CHARS: # Truncate the chunk text at the punctuation mark chunk_text = chunk_text[: last_punctuation + 1] # Remove any newline characters and strip any leading or trailing whitespace chunk_text_to_append = chunk_text.replace("\n", " ").strip() if len(chunk_text_to_append) > MIN_CHUNK_LENGTH_TO_EMBED: # Append the chunk text to the list of chunks chunks.append(chunk_text_to_append) # Remove the tokens corresponding to the chunk text from the remaining tokens tokens = tokens[len(tokenizer.encode(chunk_text, disallowed_special=())) :] # Increment the number of chunks num_chunks += 1 # Handle the remaining tokens if tokens: remaining_text = tokenizer.decode(tokens).replace("\n", " ").strip() if len(remaining_text) > MIN_CHUNK_LENGTH_TO_EMBED: chunks.append(remaining_text) return chunks def create_document_chunks( doc: Document, chunk_token_size: Optional[int] ) -> Tuple[List[DocumentChunk], str]: """ Create a list of document chunks from a document object and return the document id. Args: doc: The document object to create chunks from. It should have a text attribute and optionally an id and a metadata attribute. chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE. Returns: A tuple of (doc_chunks, doc_id), where doc_chunks is a list of document chunks, each of which is a DocumentChunk object with an id, a document_id, a text, and a metadata attribute, and doc_id is the id of the document object, generated if not provided. The id of each chunk is generated from the document id and a sequential number, and the metadata is copied from the document object. """ # Check if the document text is empty or whitespace if not doc.text or doc.text.isspace(): return [], doc.id or str(uuid.uuid4()) # Generate a document id if not provided doc_id = doc.id or str(uuid.uuid4()) # Split the document text into chunks text_chunks = get_text_chunks(doc.text, chunk_token_size) metadata = ( DocumentChunkMetadata(**doc.metadata.__dict__) if doc.metadata is not None else DocumentChunkMetadata() ) metadata.document_id = doc_id # Initialize an empty list of chunks for this document doc_chunks = [] # Assign each chunk a sequential number and create a DocumentChunk object for i, text_chunk in enumerate(text_chunks): chunk_id = f"{doc_id}_{i}" doc_chunk = DocumentChunk( id=chunk_id, text=text_chunk, metadata=metadata, ) # Append the chunk object to the list of chunks for this document doc_chunks.append(doc_chunk) # Return the list of chunks and the document id return doc_chunks, doc_id def get_document_chunks( documents: List[Document], chunk_token_size: Optional[int] ) -> Dict[str, List[DocumentChunk]]: """ Convert a list of documents into a dictionary from document id to list of document chunks. Args: documents: The list of documents to convert. chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE. Returns: A dictionary mapping each document id to a list of document chunks, each of which is a DocumentChunk object with text, metadata, and embedding attributes. """ # Initialize an empty dictionary of lists of chunks chunks: Dict[str, List[DocumentChunk]] = {} # Initialize an empty list of all chunks all_chunks: List[DocumentChunk] = [] # Loop over each document and create chunks for doc in documents: doc_chunks, doc_id = create_document_chunks(doc, chunk_token_size) # Append the chunks for this document to the list of all chunks all_chunks.extend(doc_chunks) # Add the list of chunks for this document to the dictionary with the document id as the key chunks[doc_id] = doc_chunks # Check if there are no chunks if not all_chunks: return {} # Get all the embeddings for the document chunks in batches, using get_embeddings embeddings: List[List[float]] = [] for i in range(0, len(all_chunks), EMBEDDINGS_BATCH_SIZE): # Get the text of the chunks in the current batch batch_texts = [ chunk.text for chunk in all_chunks[i : i + EMBEDDINGS_BATCH_SIZE] ] # Get the embeddings for the batch texts batch_embeddings = get_embeddings(batch_texts) # Append the batch embeddings to the embeddings list embeddings.extend(batch_embeddings) # Update the document chunk objects with the embeddings for i, chunk in enumerate(all_chunks): # Assign the embedding from the embeddings list to the chunk object chunk.embedding = embeddings[i] return chunks
from setuptools import setup, find_packages setup( name="neuron_explainer", packages=find_packages(), version="0.0.1", author="OpenAI", install_requires=[ "httpx>=0.22", "scikit-learn", "boostedblob>=0.13.0", "tiktoken", "blobfile", "numpy", "pytest", "orjson", ], url="", description="", python_requires='>=3.7', )
def standardize_azure_url(url): """Make sure url is converted to url format, not an azure path""" if url.startswith("az://openaipublic/"): url = url.replace("az://openaipublic/", "https://openaipublic.blob.core.windows.net/") return url
import asyncio import contextlib import os import random import traceback from asyncio import Semaphore from functools import wraps from typing import Any, Callable, Optional import httpx import orjson def is_api_error(err: Exception) -> bool: if isinstance(err, httpx.HTTPStatusError): response = err.response error_data = response.json().get("error", {}) error_message = error_data.get("message") if response.status_code in [400, 404, 415]: if error_data.get("type") == "idempotency_error": print(f"Retrying after idempotency error: {error_message} ({response.url})") return True else: # Invalid request return False else: print(f"Retrying after API error: {error_message} ({response.url})") return True elif isinstance(err, httpx.ConnectError): print(f"Retrying after connection error... ({err.request.url})") return True elif isinstance(err, httpx.TimeoutException): print(f"Retrying after a timeout error... ({err.request.url})") return True elif isinstance(err, httpx.ReadError): print(f"Retrying after a read error... ({err.request.url})") return True print(f"Retrying after an unexpected error: {repr(err)}") traceback.print_tb(err.__traceback__) return True def exponential_backoff( retry_on: Callable[[Exception], bool] = lambda err: True ) -> Callable[[Callable], Callable]: """ Returns a decorator which retries the wrapped function as long as the specified retry_on function returns True for the exception, applying exponential backoff with jitter after failures, up to a retry limit. """ init_delay_s = 1.0 max_delay_s = 10.0 # Roughly 30 minutes before we give up. max_tries = 200 backoff_multiplier = 2.0 jitter = 0.2 def decorate(f: Callable) -> Callable: assert asyncio.iscoroutinefunction(f) @wraps(f) async def f_retry(*args: Any, **kwargs: Any) -> None: delay_s = init_delay_s for i in range(max_tries): try: return await f(*args, **kwargs) except Exception as err: if not retry_on(err) or i == max_tries - 1: raise jittered_delay = random.uniform(delay_s * (1 - jitter), delay_s * (1 + jitter)) await asyncio.sleep(jittered_delay) delay_s = min(delay_s * backoff_multiplier, max_delay_s) return f_retry return decorate API_KEY = os.getenv("OPENAI_API_KEY") assert API_KEY, "Please set the OPENAI_API_KEY environment variable" API_HTTP_HEADERS = { "Content-Type": "application/json", "Authorization": "Bearer " + API_KEY, } BASE_API_URL = "https://api.openai.com/v1" class ApiClient: """Performs inference using the OpenAI API. Supports response caching and concurrency limits.""" def __init__( self, model_name: str, # If set, no more than this number of HTTP requests will be made concurrently. max_concurrent: Optional[int] = None, # Whether to cache request/response pairs in memory to avoid duplicating requests. cache: bool = False, ): self.model_name = model_name if max_concurrent is not None: self._concurrency_check: Optional[Semaphore] = Semaphore(max_concurrent) else: self._concurrency_check = None if cache: self._cache: Optional[dict[str, Any]] = {} else: self._cache = None @exponential_backoff(retry_on=is_api_error) async def make_request( self, timeout_seconds: Optional[int] = None, **kwargs: Any ) -> dict[str, Any]: if self._cache is not None: key = orjson.dumps(kwargs) if key in self._cache: return self._cache[key] async with contextlib.AsyncExitStack() as stack: if self._concurrency_check is not None: await stack.enter_async_context(self._concurrency_check) http_client = await stack.enter_async_context( httpx.AsyncClient(timeout=timeout_seconds) ) # If the request has a "messages" key, it should be sent to the /chat/completions # endpoint. Otherwise, it should be sent to the /completions endpoint. url = BASE_API_URL + ("/chat/completions" if "messages" in kwargs else "/completions") kwargs["model"] = self.model_name response = await http_client.post(url, headers=API_HTTP_HEADERS, json=kwargs) # The response json has useful information but the exception doesn't include it, so print it # out then reraise. try: response.raise_for_status() except Exception as e: print(response.json()) raise e if self._cache is not None: self._cache[key] = response.json() return response.json() if __name__ == "__main__": async def main() -> None: client = ApiClient(model_name="gpt-3.5-turbo", max_concurrent=1) print(await client.make_request(prompt="Why did the chicken cross the road?", max_tokens=9)) asyncio.run(main())
"""Utilities for formatting activation records into prompts.""" import math from typing import Optional, Sequence from neuron_explainer.activations.activations import ActivationRecord UNKNOWN_ACTIVATION_STRING = "unknown" def relu(x: float) -> float: return max(0.0, x) def calculate_max_activation(activation_records: Sequence[ActivationRecord]) -> float: """Return the maximum activation value of the neuron across all the activation records.""" flattened = [ # Relu is used to assume any values less than 0 are indicating the neuron is in the resting # state. This is a simplifying assumption that works with relu/gelu. max(relu(x) for x in activation_record.activations) for activation_record in activation_records ] return max(flattened) def normalize_activations(activation_record: list[float], max_activation: float) -> list[int]: """Convert raw neuron activations to integers on the range [0, 10].""" if max_activation <= 0: return [0 for x in activation_record] # Relu is used to assume any values less than 0 are indicating the neuron is in the resting # state. This is a simplifying assumption that works with relu/gelu. return [min(10, math.floor(10 * relu(x) / max_activation)) for x in activation_record] def _format_activation_record( activation_record: ActivationRecord, max_activation: float, omit_zeros: bool, hide_activations: bool = False, start_index: int = 0, ) -> str: """Format neuron activations into a string, suitable for use in prompts.""" tokens = activation_record.tokens normalized_activations = normalize_activations(activation_record.activations, max_activation) if omit_zeros: assert (not hide_activations) and start_index == 0, "Can't hide activations and omit zeros" tokens = [ token for token, activation in zip(tokens, normalized_activations) if activation > 0 ] normalized_activations = [x for x in normalized_activations if x > 0] entries = [] assert len(tokens) == len(normalized_activations) for index, token, activation in zip(range(len(tokens)), tokens, normalized_activations): activation_string = str(int(activation)) if hide_activations or index < start_index: activation_string = UNKNOWN_ACTIVATION_STRING entries.append(f"{token}\t{activation_string}") return "\n".join(entries) def format_activation_records( activation_records: Sequence[ActivationRecord], max_activation: float, *, omit_zeros: bool = False, start_indices: Optional[list[int]] = None, hide_activations: bool = False, ) -> str: """Format a list of activation records into a string.""" return ( "\n<start>\n" + "\n<end>\n<start>\n".join( [ _format_activation_record( activation_record, max_activation, omit_zeros=omit_zeros, hide_activations=hide_activations, start_index=0 if start_indices is None else start_indices[i], ) for i, activation_record in enumerate(activation_records) ] ) + "\n<end>\n" ) def _format_tokens_for_simulation(tokens: Sequence[str]) -> str: """ Format tokens into a string with each token marked as having an "unknown" activation, suitable for use in prompts. """ entries = [] for token in tokens: entries.append(f"{token}\t{UNKNOWN_ACTIVATION_STRING}") return "\n".join(entries) def format_sequences_for_simulation( all_tokens: Sequence[Sequence[str]], ) -> str: """ Format a list of lists of tokens into a string with each token marked as having an "unknown" activation, suitable for use in prompts. """ return ( "\n<start>\n" + "\n<end>\n<start>\n".join( [_format_tokens_for_simulation(tokens) for tokens in all_tokens] ) + "\n<end>\n" ) def non_zero_activation_proportion( activation_records: Sequence[ActivationRecord], max_activation: float ) -> float: """Return the proportion of activation values that aren't zero.""" total_activations_count = sum( [len(activation_record.activations) for activation_record in activation_records] ) normalized_activations = [ normalize_activations(activation_record.activations, max_activation) for activation_record in activation_records ] non_zero_activations_count = sum( [len([x for x in activations if x != 0]) for activations in normalized_activations] ) return non_zero_activations_count / total_activations_count
# Dataclasses and enums for storing neuron-indexed information about activations. Also, related # helper functions. import math from dataclasses import dataclass, field from typing import List, Optional, Union import urllib.request import blobfile as bf import boostedblob as bbb from neuron_explainer.fast_dataclasses import FastDataclass, loads, register_dataclass from neuron_explainer.azure import standardize_azure_url @register_dataclass @dataclass class ActivationRecord(FastDataclass): """Collated lists of tokens and their activations for a single neuron.""" tokens: List[str] """Tokens in the text sequence, represented as strings.""" activations: List[float] """Raw activation values for the neuron on each token in the text sequence.""" @register_dataclass @dataclass class NeuronId(FastDataclass): """Identifier for a neuron in an artificial neural network.""" layer_index: int """The index of layer the neuron is in. The first layer used during inference has index 0.""" neuron_index: int """The neuron's index within in its layer. Indices start from 0 in each layer.""" def _check_slices( slices_by_split: dict[str, slice], expected_num_values: int, ) -> None: """Assert that the slices are disjoint and fully cover the intended range.""" indices = set() sum_of_slice_lengths = 0 n_splits = len(slices_by_split.keys()) for s in slices_by_split.values(): subrange = range(expected_num_values)[s] sum_of_slice_lengths += len(subrange) indices |= set(subrange) assert ( sum_of_slice_lengths == expected_num_values ), f"{sum_of_slice_lengths=} != {expected_num_values=}" stride = n_splits expected_indices = set.union( *[set(range(start_index, expected_num_values, stride)) for start_index in range(n_splits)] ) assert indices == expected_indices, f"{indices=} != {expected_indices=}" def get_slices_for_splits( splits: list[str], num_activation_records_per_split: int, ) -> dict[str, slice]: """ Get equal-sized interleaved subsets for each of a list of splits, given the number of elements to include in each split. """ stride = len(splits) num_activation_records_for_even_splits = num_activation_records_per_split * stride slices_by_split = { split: slice(split_index, num_activation_records_for_even_splits, stride) for split_index, split in enumerate(splits) } _check_slices( slices_by_split=slices_by_split, expected_num_values=num_activation_records_for_even_splits, ) return slices_by_split @dataclass class ActivationRecordSliceParams: """How to select splits (train, valid, etc.) of activation records.""" n_examples_per_split: Optional[int] """The number of examples to include in each split.""" @register_dataclass @dataclass class NeuronRecord(FastDataclass): """Neuron-indexed activation data, including summary stats and notable activation records.""" neuron_id: NeuronId """Identifier for the neuron.""" random_sample: list[ActivationRecord] = field(default_factory=list) """ Random activation records for this neuron. The random sample is independent from those used for other neurons. """ random_sample_by_quantile: Optional[list[list[ActivationRecord]]] = None """ Random samples of activation records in each of the specified quantiles. None if quantile tracking is disabled. """ quantile_boundaries: Optional[list[float]] = None """Boundaries of the quantiles used to generate the random_sample_by_quantile field.""" # Moments of activations mean: Optional[float] = math.nan variance: Optional[float] = math.nan skewness: Optional[float] = math.nan kurtosis: Optional[float] = math.nan most_positive_activation_records: list[ActivationRecord] = field(default_factory=list) """ Activation records with the most positive figure of merit value for this neuron over all dataset examples. """ @property def max_activation(self) -> float: """Return the maximum activation value over all top-activating activation records.""" return max([max(ar.activations) for ar in self.most_positive_activation_records]) def _get_top_activation_slices( self, activation_record_slice_params: ActivationRecordSliceParams ) -> dict[str, slice]: splits = ["train", "calibration", "valid", "test"] n_examples_per_split = activation_record_slice_params.n_examples_per_split if n_examples_per_split is None: n_examples_per_split = len(self.most_positive_activation_records) // len(splits) assert len(self.most_positive_activation_records) >= n_examples_per_split * len(splits) return get_slices_for_splits(splits, n_examples_per_split) def _get_random_activation_slices( self, activation_record_slice_params: ActivationRecordSliceParams ) -> dict[str, slice]: splits = ["calibration", "valid", "test"] n_examples_per_split = activation_record_slice_params.n_examples_per_split if n_examples_per_split is None: n_examples_per_split = len(self.random_sample) // len(splits) # NOTE: this assert could trigger on some old datasets with only 10 random samples, in which case you may have to remove "test" from the set of splits assert len(self.random_sample) >= n_examples_per_split * len(splits) return get_slices_for_splits(splits, n_examples_per_split) def train_activation_records( self, activation_record_slice_params: ActivationRecordSliceParams, ) -> list[ActivationRecord]: """ Train split, typically used for generating explanations. Consists exclusively of top-activating records since context window limitations make it difficult to include random records. """ return self.most_positive_activation_records[ self._get_top_activation_slices(activation_record_slice_params)["train"] ] def calibration_activation_records( self, activation_record_slice_params: ActivationRecordSliceParams, ) -> list[ActivationRecord]: """ Calibration split, typically used for calibrating neuron simulations. See http://go/neuron_explanation_methodology for an explanation of calibration. Consists of top-activating records and random records in a 1:1 ratio. """ return ( self.most_positive_activation_records[ self._get_top_activation_slices(activation_record_slice_params)["calibration"] ] + self.random_sample[ self._get_random_activation_slices(activation_record_slice_params)["calibration"] ] ) def valid_activation_records( self, activation_record_slice_params: ActivationRecordSliceParams, ) -> list[ActivationRecord]: """ Validation split, typically used for evaluating explanations, either automatically with simulation + correlation coefficient scoring, or manually by humans. Consists of top-activating records and random records in a 1:1 ratio. """ return ( self.most_positive_activation_records[ self._get_top_activation_slices(activation_record_slice_params)["valid"] ] + self.random_sample[ self._get_random_activation_slices(activation_record_slice_params)["valid"] ] ) def test_activation_records( self, activation_record_slice_params: ActivationRecordSliceParams, ) -> list[ActivationRecord]: """ Test split, typically used for explanation evaluations that can't use the validation split. Consists of top-activating records and random records in a 1:1 ratio. """ return ( self.most_positive_activation_records[ self._get_top_activation_slices(activation_record_slice_params)["test"] ] + self.random_sample[ self._get_random_activation_slices(activation_record_slice_params)["test"] ] ) def neuron_exists( dataset_path: str, layer_index: Union[str, int], neuron_index: Union[str, int] ) -> bool: """Return whether the specified neuron exists.""" file = bf.join(dataset_path, "neurons", str(layer_index), f"{neuron_index}.json") return bf.exists(file) def load_neuron( layer_index: Union[str, int], neuron_index: Union[str, int], dataset_path: str = "https://openaipublic.blob.core.windows.net/neuron-explainer/data/collated-activations", ) -> NeuronRecord: """Load the NeuronRecord for the specified neuron.""" url = "/".join([dataset_path, str(layer_index), f"{neuron_index}.json"]) url = standardize_azure_url(url) with urllib.request.urlopen(url) as f: neuron_record = loads(f.read()) if not isinstance(neuron_record, NeuronRecord): raise ValueError( f"Stored data incompatible with current version of NeuronRecord dataclass." ) return neuron_record @bbb.ensure_session async def load_neuron_async( layer_index: Union[str, int], neuron_index: Union[str, int], dataset_path: str = "az://openaipublic/neuron-explainer/data/collated-activations", ) -> NeuronRecord: """Async version of load_neuron.""" file = bf.join(dataset_path, str(layer_index), f"{neuron_index}.json") return await read_neuron_file(file) @bbb.ensure_session async def read_neuron_file(neuron_filename: str) -> NeuronRecord: """Like load_neuron_async, but takes a raw neuron filename.""" raw_contents = await bbb.read.read_single(neuron_filename) neuron_record = loads(raw_contents.decode("utf-8")) if not isinstance(neuron_record, NeuronRecord): raise ValueError( f"Stored data incompatible with current version of NeuronRecord dataclass." ) return neuron_record def get_sorted_neuron_indices(dataset_path: str, layer_index: Union[str, int]) -> List[int]: """Returns the indices of all neurons in this layer, in ascending order.""" layer_dir = bf.join(dataset_path, "neurons", str(layer_index)) return sorted( [int(f.split(".")[0]) for f in bf.listdir(layer_dir) if f.split(".")[0].isnumeric()] ) def get_sorted_layers(dataset_path: str) -> List[str]: """ Return the indices of all layers in this dataset, in ascending numerical order, as strings. """ return [ str(x) for x in sorted( [int(x) for x in bf.listdir(bf.join(dataset_path, "neurons")) if x.isnumeric()] ) ]
from dataclasses import dataclass from typing import List, Union import blobfile as bf from neuron_explainer.fast_dataclasses import FastDataclass, loads, register_dataclass from neuron_explainer.azure import standardize_azure_url import urllib.request @register_dataclass @dataclass class TokensAndWeights(FastDataclass): tokens: List[str] strengths: List[float] @register_dataclass @dataclass class WeightBasedSummaryOfNeuron(FastDataclass): input_positive: TokensAndWeights input_negative: TokensAndWeights output_positive: TokensAndWeights output_negative: TokensAndWeights def load_token_weight_connections_of_neuron( layer_index: Union[str, int], neuron_index: Union[str, int], dataset_path: str = "https://openaipublic.blob.core.windows.net/neuron-explainer/data/related-tokens/weight-based", ) -> WeightBasedSummaryOfNeuron: """Load the TokenLookupTableSummaryOfNeuron for the specified neuron.""" url = "/".join([dataset_path, str(layer_index), f"{neuron_index}.json"]) url = standardize_azure_url(url) with urllib.request.urlopen(url) as f: return loads(f.read(), backwards_compatible=False) @register_dataclass @dataclass class TokenLookupTableSummaryOfNeuron(FastDataclass): """List of tokens and the average activations of a given neuron in response to each respective token. These are selected from among the tokens in the vocabulary with the highest average activations across an internet text dataset, with the highest activations first.""" tokens: List[str] average_activations: List[float] def load_token_lookup_table_connections_of_neuron( layer_index: Union[str, int], neuron_index: Union[str, int], dataset_path: str = "https://openaipublic.blob.core.windows.net/neuron-explainer/data/related-tokens/activation-based", ) -> TokenLookupTableSummaryOfNeuron: """Load the TokenLookupTableSummaryOfNeuron for the specified neuron.""" url = "/".join([dataset_path, str(layer_index), f"{neuron_index}.json"]) url = standardize_azure_url(url) with urllib.request.urlopen(url) as f: return loads(f.read(), backwards_compatible=False)
from neuron_explainer.explanations.few_shot_examples import FewShotExampleSet from neuron_explainer.explanations.prompt_builder import HarmonyMessage, PromptFormat, Role from neuron_explainer.explanations.simulator import ( ExplanationNeuronSimulator, ExplanationTokenByTokenSimulator, ) def test_make_explanation_simulation_prompt_if_format() -> None: expected_prompt = """We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at summary of what the neuron does, and try to predict how it will fire on each token. The activation format is token<tab>activation, activations go from 0 to 10, "unknown" indicates an unknown activation. Most activations will be 0. Neuron 1 Explanation of neuron 1 behavior: the main thing this neuron does is find vowels Activations: <start> a 10 b 0 c 0 <end> <start> d unknown e 10 f 0 <end> Neuron 2 Explanation of neuron 2 behavior: the main thing this neuron does is find EXPLANATION<|endofprompt|> Activations: <start> 0 unknown 1 unknown 2 unknown <end> """ prompt = ExplanationNeuronSimulator( model_name="text-davinci-003", explanation="EXPLANATION", few_shot_example_set=FewShotExampleSet.TEST, prompt_format=PromptFormat.INSTRUCTION_FOLLOWING, ).make_simulation_prompt( tokens=[str(x) for x in range(3)], ) assert prompt == expected_prompt def test_make_explanation_simulation_prompt_harmony_format() -> None: expected_prompt = [ HarmonyMessage( role=Role.SYSTEM, content="""We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at summary of what the neuron does, and try to predict how it will fire on each token. The activation format is token<tab>activation, activations go from 0 to 10, "unknown" indicates an unknown activation. Most activations will be 0. """, ), HarmonyMessage( role=Role.USER, content=""" Neuron 1 Explanation of neuron 1 behavior: the main thing this neuron does is find vowels""", ), HarmonyMessage( role=Role.ASSISTANT, content=""" Activations: <start> a 10 b 0 c 0 <end> <start> d unknown e 10 f 0 <end> """, ), HarmonyMessage( role=Role.USER, content=""" Neuron 2 Explanation of neuron 2 behavior: the main thing this neuron does is find EXPLANATION""", ), HarmonyMessage( role=Role.ASSISTANT, content=""" Activations: <start> 0 unknown 1 unknown 2 unknown <end> """, ), ] prompt = ExplanationNeuronSimulator( model_name="gpt-4", explanation="EXPLANATION", few_shot_example_set=FewShotExampleSet.TEST, prompt_format=PromptFormat.HARMONY_V4, ).make_simulation_prompt( tokens=[str(x) for x in range(3)], ) assert isinstance(prompt, list) assert isinstance(prompt[0], dict) # Really a HarmonyMessage for actual_message, expected_message in zip(prompt, expected_prompt): assert actual_message["role"] == expected_message["role"] assert actual_message["content"] == expected_message["content"] assert prompt == expected_prompt def test_make_token_by_token_simulation_prompt_if_format() -> None: expected_prompt = """We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at an explanation of what the neuron does, and try to predict its activations on a particular token. The activation format is token<tab>activation, and activations range from 0 to 10. Most activations will be 0. Neuron 1 Explanation of neuron 1 behavior: the main thing this neuron does is find vowels Activations: <start> a 10 b 0 c 0 <end> <start> d 0 e 10 f 0 <end> Now, we're going predict the activation of a new neuron on a single token, following the same rules as the examples above. Activations still range from 0 to 10. Neuron 2 Explanation of neuron 2 behavior: the main thing this neuron does is find numbers and nothing else Text: ghi Last token in the text: i Last token activation, considering the token in the context in which it appeared in the text: 10 Neuron 3 Explanation of neuron 3 behavior: the main thing this neuron does is find numbers and nothing else Text: 01 Last token in the text: 1 Last token activation, considering the token in the context in which it appeared in the text: <|endofprompt|>""" prompt = ExplanationTokenByTokenSimulator( model_name="text-davinci-003", explanation="EXPLANATION", few_shot_example_set=FewShotExampleSet.TEST, prompt_format=PromptFormat.INSTRUCTION_FOLLOWING, ).make_single_token_simulation_prompt( tokens=[str(x) for x in range(3)], explanation="numbers and nothing else", token_index_to_score=1, ) assert prompt == expected_prompt def test_make_token_by_token_simulation_prompt_harmony_format() -> None: expected_prompt = [ HarmonyMessage( role=Role.SYSTEM, content="""We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at an explanation of what the neuron does, and try to predict its activations on a particular token. The activation format is token<tab>activation, and activations range from 0 to 10. Most activations will be 0. """, ), HarmonyMessage( role=Role.USER, content="""Neuron 1 Explanation of neuron 1 behavior: the main thing this neuron does is find vowels """, ), HarmonyMessage( role=Role.ASSISTANT, content="""Activations: <start> a 10 b 0 c 0 <end> <start> d 0 e 10 f 0 <end> """, ), HarmonyMessage( role=Role.SYSTEM, content="Now, we're going predict the activation of a new neuron on a single token, following the same rules as the examples above. Activations still range from 0 to 10.", ), HarmonyMessage( role=Role.USER, content=""" Neuron 2 Explanation of neuron 2 behavior: the main thing this neuron does is find numbers and nothing else Text: ghi Last token in the text: i Last token activation, considering the token in the context in which it appeared in the text: """, ), HarmonyMessage( role=Role.ASSISTANT, content="""10 """, ), HarmonyMessage( role=Role.USER, content=""" Neuron 3 Explanation of neuron 3 behavior: the main thing this neuron does is find numbers and nothing else Text: 01 Last token in the text: 1 Last token activation, considering the token in the context in which it appeared in the text: """, ), ] prompt = ExplanationTokenByTokenSimulator( model_name="gpt-4", explanation="EXPLANATION", few_shot_example_set=FewShotExampleSet.TEST, prompt_format=PromptFormat.HARMONY_V4, ).make_single_token_simulation_prompt( tokens=[str(x) for x in range(3)], explanation="numbers and nothing else", token_index_to_score=1, ) assert isinstance(prompt, list) assert isinstance(prompt[0], dict) # Really a HarmonyMessage for actual_message, expected_message in zip(prompt, expected_prompt): assert actual_message["role"] == expected_message["role"] assert actual_message["content"] == expected_message["content"] assert prompt == expected_prompt
import json import os from dataclasses import dataclass from neuron_explainer.activations.activations import ActivationRecord @dataclass(frozen=True) class Puzzle: """A puzzle is a ground truth explanation, a collection of sentences (stored as ActivationRecords) with activations according to that explanation, and a collection of false explanations""" name: str explanation: str activation_records: list[ActivationRecord] false_explanations: list[str] def convert_puzzle_to_tokenized_sentences(puzzle: Puzzle) -> list[list[str]]: """Converts a puzzle to a list of tokenized sentences.""" return [record.tokens for record in puzzle.activation_records] def convert_puzzle_dict_to_puzzle(puzzle_dict: dict) -> Puzzle: """Converts a json dictionary representation of a puzzle to the Puzzle class.""" puzzle_activation_records = [] for sentence in puzzle_dict["sentences"]: # Token-activation pairs are listed as either a string or a list of a string and a float. If it is a list, the float is the activation. # If it is only a string, the activation is assumed to be 0. This is useful for readability and reducing redundancy in the data. tokens = [t[0] if type(t) is list else t for t in sentence] assert all([type(t) is str for t in tokens]), "All tokens must be strings" activations = [float(t[1]) if type(t) is list else 0.0 for t in sentence] assert all([type(t) is float for t in activations]), "All activations must be floats" puzzle_activation_records.append(ActivationRecord(tokens=tokens, activations=activations)) return Puzzle( name=puzzle_dict["name"], explanation=puzzle_dict["explanation"], activation_records=puzzle_activation_records, false_explanations=puzzle_dict["false_explanations"], ) PUZZLES_BY_NAME: dict[str, Puzzle] = dict() script_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(script_dir, "puzzles.json"), "r") as f: puzzle_dicts = json.loads(f.read()) for name in puzzle_dicts.keys(): PUZZLES_BY_NAME[name] = convert_puzzle_dict_to_puzzle(puzzle_dicts[name])
from __future__ import annotations from enum import Enum from typing import TypedDict, Union import tiktoken HarmonyMessage = TypedDict( "HarmonyMessage", { "role": str, "content": str, }, ) class PromptFormat(str, Enum): """ Different ways of formatting the components of a prompt into the format accepted by the relevant API server endpoint. """ NONE = "none" """Suitable for use with models that don't use special tokens for instructions.""" INSTRUCTION_FOLLOWING = "instruction_following" """Suitable for IF models that use <|endofprompt|>.""" HARMONY_V4 = "harmony_v4" """ Suitable for Harmony models that use a structured turn-taking role+content format. Generates a list of HarmonyMessage dicts that can be sent to the /chat/completions endpoint. """ @classmethod def from_string(cls, s: str) -> PromptFormat: for prompt_format in cls: if prompt_format.value == s: return prompt_format raise ValueError(f"{s} is not a valid PromptFormat") class Role(str, Enum): """See https://platform.openai.com/docs/guides/chat""" SYSTEM = "system" USER = "user" ASSISTANT = "assistant" class PromptBuilder: """Class for accumulating components of a prompt and then formatting them into an output.""" def __init__(self) -> None: self._messages: list[HarmonyMessage] = [] def add_message(self, role: Role, message: str) -> None: self._messages.append(HarmonyMessage(role=role, content=message)) def prompt_length_in_tokens(self, prompt_format: PromptFormat) -> int: # TODO(sbills): Make the model/encoding configurable. This implementation assumes GPT-4. encoding = tiktoken.get_encoding("cl100k_base") if prompt_format == PromptFormat.HARMONY_V4: # Approximately-correct implementation adapted from this documentation: # https://platform.openai.com/docs/guides/chat/introduction num_tokens = 0 for message in self._messages: num_tokens += ( 4 # every message follows <|im_start|>{role/name}\n{content}<|im_end|>\n ) num_tokens += len(encoding.encode(message["content"], allowed_special="all")) num_tokens += 2 # every reply is primed with <|im_start|>assistant return num_tokens else: prompt_str = self.build(prompt_format) assert isinstance(prompt_str, str) return len(encoding.encode(prompt_str, allowed_special="all")) def build( self, prompt_format: PromptFormat, *, allow_extra_system_messages: bool = False ) -> Union[str, list[HarmonyMessage]]: """ Validates the messages added so far (reasonable alternation of assistant vs. user, etc.) and returns either a regular string (maybe with <|endofprompt|> tokens) or a list of HarmonyMessages suitable for use with the /chat/completions endpoint. The `allow_extra_system_messages` parameter allows the caller to specify that the prompt should be allowed to contain system messages after the very first one. """ # Create a deep copy of the messages so we can modify it and so that the caller can't # modify the internal state of this object. messages = [message.copy() for message in self._messages] expected_next_role = Role.SYSTEM for message in messages: role = message["role"] assert role == expected_next_role or ( allow_extra_system_messages and role == Role.SYSTEM ), f"Expected message from {expected_next_role} but got message from {role}" if role == Role.SYSTEM: expected_next_role = Role.USER elif role == Role.USER: expected_next_role = Role.ASSISTANT elif role == Role.ASSISTANT: expected_next_role = Role.USER if prompt_format == PromptFormat.INSTRUCTION_FOLLOWING: last_user_message = None for message in messages: if message["role"] == Role.USER: last_user_message = message assert last_user_message is not None last_user_message["content"] += "<|endofprompt|>" if prompt_format == PromptFormat.HARMONY_V4: return messages elif prompt_format in [PromptFormat.NONE, PromptFormat.INSTRUCTION_FOLLOWING]: return "".join(message["content"] for message in messages) else: raise ValueError(f"Unknown prompt format: {prompt_format}")
"""Uses API calls to generate explanations of neuron behavior.""" from __future__ import annotations import logging import re from abc import ABC, abstractmethod from enum import Enum from typing import Any, Optional, Sequence, Union from neuron_explainer.activations.activation_records import ( calculate_max_activation, format_activation_records, non_zero_activation_proportion, ) from neuron_explainer.activations.activations import ActivationRecord from neuron_explainer.api_client import ApiClient from neuron_explainer.explanations.few_shot_examples import FewShotExampleSet from neuron_explainer.explanations.prompt_builder import ( HarmonyMessage, PromptBuilder, PromptFormat, Role, ) from neuron_explainer.explanations.token_space_few_shot_examples import ( TokenSpaceFewShotExampleSet, ) logger = logging.getLogger(__name__) # TODO(williamrs): This prefix may not work well for some things, like predicting the next token. # Try other options like "this neuron activates for". EXPLANATION_PREFIX = "the main thing this neuron does is find" def _split_numbered_list(text: str) -> list[str]: """Split a numbered list into a list of strings.""" lines = re.split(r"\n\d+\.", text) # Strip the leading whitespace from each line. return [line.lstrip() for line in lines] def _remove_final_period(text: str) -> str: """Strip a final period or period-space from a string.""" if text.endswith("."): return text[:-1] elif text.endswith(". "): return text[:-2] return text class ContextSize(int, Enum): TWO_K = 2049 FOUR_K = 4097 @classmethod def from_int(cls, i: int) -> ContextSize: for context_size in cls: if context_size.value == i: return context_size raise ValueError(f"{i} is not a valid ContextSize") HARMONY_V4_MODELS = ["gpt-3.5-turbo", "gpt-4"] class NeuronExplainer(ABC): """ Abstract base class for Explainer classes that generate explanations from subclass-specific input data. """ def __init__( self, model_name: str, prompt_format: PromptFormat = PromptFormat.HARMONY_V4, # This parameter lets us adjust the length of the prompt when we're generating explanations # using older models with shorter context windows. In the future we can use it to experiment # with longer context windows. context_size: ContextSize = ContextSize.FOUR_K, max_concurrent: Optional[int] = 10, cache: bool = False, ): if prompt_format == PromptFormat.HARMONY_V4: assert model_name in HARMONY_V4_MODELS elif prompt_format in [PromptFormat.NONE, PromptFormat.INSTRUCTION_FOLLOWING]: assert model_name not in HARMONY_V4_MODELS else: raise ValueError(f"Unhandled prompt format {prompt_format}") self.model_name = model_name self.prompt_format = prompt_format self.context_size = context_size self.client = ApiClient(model_name=model_name, max_concurrent=max_concurrent, cache=cache) async def generate_explanations( self, *, num_samples: int = 5, max_tokens: int = 60, temperature: float = 1.0, top_p: float = 1.0, **prompt_kwargs: Any, ) -> list[Any]: """Generate explanations based on subclass-specific input data.""" prompt = self.make_explanation_prompt(max_tokens_for_completion=max_tokens, **prompt_kwargs) generate_kwargs: dict[str, Any] = { "n": num_samples, "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p, } if self.prompt_format == PromptFormat.HARMONY_V4: assert isinstance(prompt, list) assert isinstance(prompt[0], dict) # Really a HarmonyMessage generate_kwargs["messages"] = prompt else: assert isinstance(prompt, str) generate_kwargs["prompt"] = prompt response = await self.client.make_request(**generate_kwargs) logger.debug("response in generate_explanations is %s", response) if self.prompt_format == PromptFormat.HARMONY_V4: explanations = [x["message"]["content"] for x in response["choices"]] elif self.prompt_format in [PromptFormat.NONE, PromptFormat.INSTRUCTION_FOLLOWING]: explanations = [x["text"] for x in response["choices"]] else: raise ValueError(f"Unhandled prompt format {self.prompt_format}") return self.postprocess_explanations(explanations, prompt_kwargs) @abstractmethod def make_explanation_prompt(self, **kwargs: Any) -> Union[str, list[HarmonyMessage]]: """ Create a prompt to send to the API to generate one or more explanations. A prompt can be a simple string, or a list of HarmonyMessages, depending on the PromptFormat used by this instance. """ ... def postprocess_explanations( self, completions: list[str], prompt_kwargs: dict[str, Any] ) -> list[Any]: """Postprocess the completions returned by the API into a list of explanations.""" return completions # no-op by default def _prompt_is_too_long( self, prompt_builder: PromptBuilder, max_tokens_for_completion: int ) -> bool: # We'll get a context size error if the prompt itself plus the maximum number of tokens for # the completion is longer than the context size. prompt_length = prompt_builder.prompt_length_in_tokens(self.prompt_format) if prompt_length + max_tokens_for_completion > self.context_size.value: print( f"Prompt is too long: {prompt_length} + {max_tokens_for_completion} > " f"{self.context_size.value}" ) return True return False class TokenActivationPairExplainer(NeuronExplainer): """ Generate explanations of neuron behavior using a prompt with lists of token/activation pairs. """ def __init__( self, model_name: str, prompt_format: PromptFormat = PromptFormat.HARMONY_V4, # This parameter lets us adjust the length of the prompt when we're generating explanations # using older models with shorter context windows. In the future we can use it to experiment # with 8k+ context windows. context_size: ContextSize = ContextSize.FOUR_K, few_shot_example_set: FewShotExampleSet = FewShotExampleSet.ORIGINAL, repeat_non_zero_activations: bool = True, max_concurrent: Optional[int] = 10, cache: bool = False, ): super().__init__( model_name=model_name, prompt_format=prompt_format, max_concurrent=max_concurrent, cache=cache, ) self.context_size = context_size self.few_shot_example_set = few_shot_example_set self.repeat_non_zero_activations = repeat_non_zero_activations def make_explanation_prompt(self, **kwargs: Any) -> Union[str, list[HarmonyMessage]]: original_kwargs = kwargs.copy() all_activation_records: Sequence[ActivationRecord] = kwargs.pop("all_activation_records") max_activation: float = kwargs.pop("max_activation") kwargs.setdefault("numbered_list_of_n_explanations", None) numbered_list_of_n_explanations: Optional[int] = kwargs.pop( "numbered_list_of_n_explanations" ) if numbered_list_of_n_explanations is not None: assert numbered_list_of_n_explanations > 0, numbered_list_of_n_explanations # This parameter lets us dynamically shrink the prompt if our initial attempt to create it # results in something that's too long. It's only implemented for the 4k context size. kwargs.setdefault("omit_n_activation_records", 0) omit_n_activation_records: int = kwargs.pop("omit_n_activation_records") max_tokens_for_completion: int = kwargs.pop("max_tokens_for_completion") assert not kwargs, f"Unexpected kwargs: {kwargs}" prompt_builder = PromptBuilder() prompt_builder.add_message( Role.SYSTEM, "We're studying neurons in a neural network. Each neuron looks for some particular " "thing in a short document. Look at the parts of the document the neuron activates for " "and summarize in a single sentence what the neuron is looking for. Don't list " "examples of words.\n\nThe activation format is token<tab>activation. Activation " "values range from 0 to 10. A neuron finding what it's looking for is represented by a " "non-zero activation value. The higher the activation value, the stronger the match.", ) few_shot_examples = self.few_shot_example_set.get_examples() num_omitted_activation_records = 0 for i, few_shot_example in enumerate(few_shot_examples): few_shot_activation_records = few_shot_example.activation_records if self.context_size == ContextSize.TWO_K: # If we're using a 2k context window, we only have room for one activation record # per few-shot example. (Two few-shot examples with one activation record each seems # to work better than one few-shot example with two activation records, in local # testing.) few_shot_activation_records = few_shot_activation_records[:1] elif ( self.context_size == ContextSize.FOUR_K and num_omitted_activation_records < omit_n_activation_records ): # Drop the last activation record for this few-shot example to save tokens, assuming # there are at least two activation records. if len(few_shot_activation_records) > 1: print(f"Warning: omitting activation record from few-shot example {i}") few_shot_activation_records = few_shot_activation_records[:-1] num_omitted_activation_records += 1 self._add_per_neuron_explanation_prompt( prompt_builder, few_shot_activation_records, i, calculate_max_activation(few_shot_example.activation_records), numbered_list_of_n_explanations=numbered_list_of_n_explanations, explanation=few_shot_example.explanation, ) self._add_per_neuron_explanation_prompt( prompt_builder, # If we're using a 2k context window, we only have room for two of the activation # records. all_activation_records[:2] if self.context_size == ContextSize.TWO_K else all_activation_records, len(few_shot_examples), max_activation, numbered_list_of_n_explanations=numbered_list_of_n_explanations, explanation=None, ) # If the prompt is too long *and* we omitted the specified number of activation records, try # again, omitting one more. (If we didn't make the specified number of omissions, we're out # of opportunities to omit records, so we just return the prompt as-is.) if ( self._prompt_is_too_long(prompt_builder, max_tokens_for_completion) and num_omitted_activation_records == omit_n_activation_records ): original_kwargs["omit_n_activation_records"] = omit_n_activation_records + 1 return self.make_explanation_prompt(**original_kwargs) return prompt_builder.build(self.prompt_format) def _add_per_neuron_explanation_prompt( self, prompt_builder: PromptBuilder, activation_records: Sequence[ActivationRecord], index: int, max_activation: float, # When set, this indicates that the prompt should solicit a numbered list of the given # number of explanations, rather than a single explanation. numbered_list_of_n_explanations: Optional[int], explanation: Optional[str], # None means this is the end of the full prompt. ) -> None: max_activation = calculate_max_activation(activation_records) user_message = f""" Neuron {index + 1} Activations:{format_activation_records(activation_records, max_activation, omit_zeros=False)}""" # We repeat the non-zero activations only if it was requested and if the proportion of # non-zero activations isn't too high. if ( self.repeat_non_zero_activations and non_zero_activation_proportion(activation_records, max_activation) < 0.2 ): user_message += ( f"\nSame activations, but with all zeros filtered out:" f"{format_activation_records(activation_records, max_activation, omit_zeros=True)}" ) if numbered_list_of_n_explanations is None: user_message += f"\nExplanation of neuron {index + 1} behavior:" assistant_message = "" # For the IF format, we want <|endofprompt|> to come before the explanation prefix. if self.prompt_format == PromptFormat.INSTRUCTION_FOLLOWING: assistant_message += f" {EXPLANATION_PREFIX}" else: user_message += f" {EXPLANATION_PREFIX}" prompt_builder.add_message(Role.USER, user_message) if explanation is not None: assistant_message += f" {explanation}." if assistant_message: prompt_builder.add_message(Role.ASSISTANT, assistant_message) else: if explanation is None: # For the final neuron, we solicit a numbered list of explanations. prompt_builder.add_message( Role.USER, f"""\nHere are {numbered_list_of_n_explanations} possible explanations for neuron {index + 1} behavior, each beginning with "{EXPLANATION_PREFIX}":\n1. {EXPLANATION_PREFIX}""", ) else: # For the few-shot examples, we only present one explanation, but we present it as a # numbered list. prompt_builder.add_message( Role.USER, f"""\nHere is 1 possible explanation for neuron {index + 1} behavior, beginning with "{EXPLANATION_PREFIX}":\n1. {EXPLANATION_PREFIX}""", ) prompt_builder.add_message(Role.ASSISTANT, f" {explanation}.") def postprocess_explanations( self, completions: list[str], prompt_kwargs: dict[str, Any] ) -> list[Any]: """Postprocess the explanations returned by the API""" numbered_list_of_n_explanations = prompt_kwargs.get("numbered_list_of_n_explanations") if numbered_list_of_n_explanations is None: return completions else: all_explanations = [] for completion in completions: for explanation in _split_numbered_list(completion): if explanation.startswith(EXPLANATION_PREFIX): explanation = explanation[len(EXPLANATION_PREFIX) :] all_explanations.append(explanation.strip()) return all_explanations class TokenSpaceRepresentationExplainer(NeuronExplainer): """ Generate explanations of arbitrary lists of tokens which disproportionately activate a particular neuron. These lists of tokens can be generated in various ways. As an example, in one set of experiments, we compute the average activation for each neuron conditional on each token that appears in an internet text corpus. We then sort the tokens by their average activation, and show 50 of the top 100 tokens. Other techniques that could be used include taking the top tokens in the logit lens or tuned lens representations of a neuron. """ def __init__( self, model_name: str, prompt_format: PromptFormat = PromptFormat.HARMONY_V4, context_size: ContextSize = ContextSize.FOUR_K, few_shot_example_set: TokenSpaceFewShotExampleSet = TokenSpaceFewShotExampleSet.ORIGINAL, use_few_shot: bool = False, output_numbered_list: bool = False, max_concurrent: Optional[int] = 10, cache: bool = False, ): super().__init__( model_name=model_name, prompt_format=prompt_format, context_size=context_size, max_concurrent=max_concurrent, cache=cache, ) self.use_few_shot = use_few_shot self.output_numbered_list = output_numbered_list if self.use_few_shot: assert few_shot_example_set is not None self.few_shot_examples: Optional[TokenSpaceFewShotExampleSet] = few_shot_example_set else: self.few_shot_examples = None self.prompt_prefix = ( "We're studying neurons in a neural network. Each neuron looks for some particular " "kind of token (which can be a word, or part of a word). Look at the tokens the neuron " "activates for (listed below) and summarize in a single sentence what the neuron is " "looking for. Don't list examples of words." ) def make_explanation_prompt(self, **kwargs: Any) -> Union[str, list[HarmonyMessage]]: tokens: list[str] = kwargs.pop("tokens") max_tokens_for_completion = kwargs.pop("max_tokens_for_completion") assert not kwargs, f"Unexpected kwargs: {kwargs}" # Note that this does not preserve the precise tokens, as e.g. # f" {token_with_no_leading_space}" may be tokenized as "f{token_with_leading_space}". # TODO(dan): Try out other variants, including "\n".join(...) and ",".join(...) stringified_tokens = ", ".join([f"'{t}'" for t in tokens]) prompt_builder = PromptBuilder() prompt_builder.add_message(Role.SYSTEM, self.prompt_prefix) if self.use_few_shot: self._add_few_shot_examples(prompt_builder) self._add_neuron_specific_prompt(prompt_builder, stringified_tokens, explanation=None) if self._prompt_is_too_long(prompt_builder, max_tokens_for_completion): raise ValueError(f"Prompt too long: {prompt_builder.build(self.prompt_format)}") else: return prompt_builder.build(self.prompt_format) def _add_few_shot_examples(self, prompt_builder: PromptBuilder) -> None: """ Append few-shot examples to the prompt. Each one consists of a comma-delimited list of tokens and corresponding explanations, as saved in alignment/neuron_explainer/weight_explainer/token_space_few_shot_examples.py. """ assert self.few_shot_examples is not None few_shot_example_list = self.few_shot_examples.get_examples() if self.output_numbered_list: raise NotImplementedError("Numbered list output not supported for few-shot examples") else: for few_shot_example in few_shot_example_list: self._add_neuron_specific_prompt( prompt_builder, ", ".join([f"'{t}'" for t in few_shot_example.tokens]), explanation=few_shot_example.explanation, ) def _add_neuron_specific_prompt( self, prompt_builder: PromptBuilder, stringified_tokens: str, explanation: Optional[str], ) -> None: """ Append a neuron-specific prompt to the prompt builder. The prompt consists of a list of tokens followed by either an explanation (if one is passed, for few shot examples) or by the beginning of a completion, to be completed by the model with an explanation. """ user_message = f"\n\n\n\nTokens:\n{stringified_tokens}\n\nExplanation:\n" assistant_message = "" looking_for = "This neuron is looking for" if self.prompt_format == PromptFormat.INSTRUCTION_FOLLOWING: # We want <|endofprompt|> to come before "This neuron is looking for" in the IF format. assistant_message += looking_for else: user_message += looking_for if self.output_numbered_list: start_of_list = "\n1." if self.prompt_format == PromptFormat.INSTRUCTION_FOLLOWING: assistant_message += start_of_list else: user_message += start_of_list if explanation is not None: assistant_message += f"{explanation}." prompt_builder.add_message(Role.USER, user_message) if assistant_message: prompt_builder.add_message(Role.ASSISTANT, assistant_message) def postprocess_explanations( self, completions: list[str], prompt_kwargs: dict[str, Any] ) -> list[str]: if self.output_numbered_list: # Each list in the top-level list will have multiple explanations (multiple strings). all_explanations = [] for completion in completions: for explanation in _split_numbered_list(completion): if explanation.startswith(EXPLANATION_PREFIX): explanation = explanation[len(EXPLANATION_PREFIX) :] all_explanations.append(explanation.strip()) return all_explanations else: # Each element in the top-level list will be an explanation as a string. return [_remove_final_period(explanation) for explanation in completions]
# Dataclasses and enums for storing neuron explanations, their scores, and related data. Also, # related helper functions. from __future__ import annotations import json from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import blobfile as bf import boostedblob as bbb from neuron_explainer.activations.activations import NeuronId from neuron_explainer.fast_dataclasses import FastDataclass, loads, register_dataclass class ActivationScale(str, Enum): """Which "units" are stored in the expected_activations/distribution_values fields of a SequenceSimulation. This enum identifies whether the values represent real activations of the neuron or something else. Different scales are not necessarily related by a linear transformation. """ NEURON_ACTIVATIONS = "neuron_activations" """Values represent real activations of the neuron.""" SIMULATED_NORMALIZED_ACTIVATIONS = "simulated_normalized_activations" """ Values represent simulated activations of the neuron, normalized to the range [0, 10]. This scale is arbitrary and should not be interpreted as a neuron activation. """ @register_dataclass @dataclass class SequenceSimulation(FastDataclass): """The result of a simulation of neuron activations on one text sequence.""" tokens: list[str] """The sequence of tokens that was simulated.""" expected_activations: list[float] """Expected value of the possibly-normalized activation for each token in the sequence.""" activation_scale: ActivationScale """What scale is used for values in the expected_activations field.""" distribution_values: list[list[float]] """ For each token in the sequence, a list of values from the discrete distribution of activations produced from simulation. Tokens will be included here if and only if they are in the top K=15 tokens predicted by the simulator, and excluded otherwise. May be transformed to another unit by calibration. When we simulate a neuron, we produce a discrete distribution with values in the arbitrary discretized space of the neuron, e.g. 10% chance of 0, 70% chance of 1, 20% chance of 2. Which we store as distribution_values = [0, 1, 2], distribution_probabilities = [0.1, 0.7, 0.2]. When we transform the distribution to the real activation units, we can correspondingly transform the values of this distribution to get a distribution in the units of the neuron. e.g. if the mapping from the discretized space to the real activation unit of the neuron is f(x) = x/2, then the distribution becomes 10% chance of 0, 70% chance of 0.5, 20% chance of 1. Which we store as distribution_values = [0, 0.5, 1], distribution_probabilities = [0.1, 0.7, 0.2]. """ distribution_probabilities: list[list[float]] """ For each token in the sequence, the probability of the corresponding value in distribution_values. """ uncalibrated_simulation: Optional["SequenceSimulation"] = None """The result of the simulation before calibration.""" @register_dataclass @dataclass class ScoredSequenceSimulation(FastDataclass): """ SequenceSimulation result with a score (for that sequence only) and ground truth activations. """ simulation: SequenceSimulation """The result of a simulation of neuron activations.""" true_activations: List[float] """Ground truth activations on the sequence (not normalized)""" ev_correlation_score: float """ Correlation coefficient between the expected values of the normalized activations from the simulation and the unnormalized true activations of the neuron on the text sequence. """ rsquared_score: Optional[float] = None """R^2 of the simulated activations.""" absolute_dev_explained_score: Optional[float] = None """ Score based on absolute difference between real and simulated activations. absolute_dev_explained_score = 1 - mean(abs(real-predicted))/ mean(abs(real)) """ @register_dataclass @dataclass class ScoredSimulation(FastDataclass): """Result of scoring a neuron simulation on multiple sequences.""" scored_sequence_simulations: List[ScoredSequenceSimulation] """ScoredSequenceSimulation for each sequence""" ev_correlation_score: Optional[float] = None """ Correlation coefficient between the expected values of the normalized activations from the simulation and the unnormalized true activations on a dataset created from all score_results. (Note that this is not equivalent to averaging across sequences.) """ rsquared_score: Optional[float] = None """R^2 of the simulated activations.""" absolute_dev_explained_score: Optional[float] = None """ Score based on absolute difference between real and simulated activations. absolute_dev_explained_score = 1 - mean(abs(real-predicted))/ mean(abs(real)). """ def get_preferred_score(self) -> Optional[float]: """ This method may return None in cases where the score is undefined, for example if the normalized activations were all zero, yielding a correlation coefficient of NaN. """ return self.ev_correlation_score @register_dataclass @dataclass class ScoredExplanation(FastDataclass): """Simulator parameters and the results of scoring it on multiple sequences""" explanation: str """The explanation used for simulation.""" scored_simulation: ScoredSimulation """Result of scoring the neuron simulator on multiple sequences.""" def get_preferred_score(self) -> Optional[float]: """ This method may return None in cases where the score is undefined, for example if the normalized activations were all zero, yielding a correlation coefficient of NaN. """ return self.scored_simulation.get_preferred_score() @register_dataclass @dataclass class NeuronSimulationResults(FastDataclass): """Simulation results and scores for a neuron.""" neuron_id: NeuronId scored_explanations: list[ScoredExplanation] def load_neuron_explanations( explanations_path: str, layer_index: Union[str, int], neuron_index: Union[str, int] ) -> Optional[NeuronSimulationResults]: """Load scored explanations for the specified neuron.""" file = bf.join(explanations_path, str(layer_index), f"{neuron_index}.jsonl") if not bf.exists(file): return None with bf.BlobFile(file) as f: for line in f: return loads(line) return None @bbb.ensure_session async def load_neuron_explanations_async( explanations_path: str, layer_index: Union[str, int], neuron_index: Union[str, int] ) -> Optional[NeuronSimulationResults]: """Load scored explanations for the specified neuron, asynchronously.""" return await read_explanation_file( bf.join(explanations_path, str(layer_index), f"{neuron_index}.jsonl") ) @bbb.ensure_session async def read_file(filename: str) -> Optional[str]: """Read the contents of the given file as a string, asynchronously.""" try: raw_contents = await bbb.read.read_single(filename) except FileNotFoundError: print(f"Could not read {filename}") return None lines = [] for line in raw_contents.decode("utf-8").split("\n"): if len(line) > 0: lines.append(line) assert len(lines) == 1, filename return lines[0] @bbb.ensure_session async def read_explanation_file(explanation_filename: str) -> Optional[NeuronSimulationResults]: """Load scored explanations from the given filename, asynchronously.""" line = await read_file(explanation_filename) return loads(line) if line is not None else None @bbb.ensure_session async def read_json_file(filename: str) -> Optional[dict]: """Read the contents of the given file as a JSON object, asynchronously.""" line = await read_file(filename) return json.loads(line) if line is not None else None def get_numerical_subdirs(dataset_path: str) -> list[str]: """Return the names of all numbered subdirectories in the specified directory. Used to get all layer directories in an explanation directory. """ return [ str(x) for x in sorted( [ int(x) for x in bf.listdir(dataset_path) if bf.isdir(bf.join(dataset_path, x)) and x.isnumeric() ] ) ] def get_sorted_neuron_indices_from_explanations( explanations_path: str, layer: Union[str, int] ) -> list[int]: """Return the indices of all neurons in this layer, in ascending order.""" layer_dir = bf.join(explanations_path, str(layer)) return sorted( [int(f.split(".")[0]) for f in bf.listdir(layer_dir) if f.split(".")[0].isnumeric()] )
from __future__ import annotations import asyncio import logging from typing import Any, Callable, Coroutine, Sequence import numpy as np from neuron_explainer.activations.activations import ActivationRecord from neuron_explainer.explanations.calibrated_simulator import ( CalibratedNeuronSimulator, LinearCalibratedNeuronSimulator, ) from neuron_explainer.explanations.explanations import ( ScoredSequenceSimulation, ScoredSimulation, SequenceSimulation, ) from neuron_explainer.explanations.simulator import ExplanationNeuronSimulator, NeuronSimulator def flatten_list(list_of_lists: Sequence[Sequence[Any]]) -> list[Any]: return [item for sublist in list_of_lists for item in sublist] def correlation_score( real_activations: Sequence[float] | np.ndarray, predicted_activations: Sequence[float] | np.ndarray, ) -> float: return np.corrcoef(real_activations, predicted_activations)[0, 1] def score_from_simulation( real_activations: ActivationRecord, simulation: SequenceSimulation, score_function: Callable[[Sequence[float] | np.ndarray, Sequence[float] | np.ndarray], float], ) -> float: return score_function(real_activations.activations, simulation.expected_activations) def rsquared_score_from_sequences( real_activations: Sequence[float] | np.ndarray, predicted_activations: Sequence[float] | np.ndarray, ) -> float: return float( 1 - np.mean(np.square(np.array(real_activations) - np.array(predicted_activations))) / np.mean(np.square(np.array(real_activations))) ) def absolute_dev_explained_score_from_sequences( real_activations: Sequence[float] | np.ndarray, predicted_activations: Sequence[float] | np.ndarray, ) -> float: return float( 1 - np.mean(np.abs(np.array(real_activations) - np.array(predicted_activations))) / np.mean(np.abs(np.array(real_activations))) ) async def make_explanation_simulator( explanation: str, calibration_activation_records: Sequence[ActivationRecord], model_name: str, calibrated_simulator_class: type[CalibratedNeuronSimulator] = LinearCalibratedNeuronSimulator, ) -> CalibratedNeuronSimulator: """ Make a simulator that uses an explanation to predict activations and calibrates it on the given activation records. """ simulator = ExplanationNeuronSimulator(model_name, explanation) calibrated_simulator = calibrated_simulator_class(simulator) await calibrated_simulator.calibrate(calibration_activation_records) return calibrated_simulator async def _simulate_and_score_sequence( simulator: NeuronSimulator, activations: ActivationRecord ) -> ScoredSequenceSimulation: """Score an explanation of a neuron by how well it predicts activations on a sentence.""" simulation = await simulator.simulate(activations.tokens) logging.debug(simulation) rsquared_score = score_from_simulation(activations, simulation, rsquared_score_from_sequences) absolute_dev_explained_score = score_from_simulation( activations, simulation, absolute_dev_explained_score_from_sequences ) scored_sequence_simulation = ScoredSequenceSimulation( simulation=simulation, true_activations=activations.activations, ev_correlation_score=score_from_simulation(activations, simulation, correlation_score), rsquared_score=rsquared_score, absolute_dev_explained_score=absolute_dev_explained_score, ) return scored_sequence_simulation def aggregate_scored_sequence_simulations( scored_sequence_simulations: list[ScoredSequenceSimulation], ) -> ScoredSimulation: """ Aggregate a list of scored sequence simulations. The logic for doing this is non-trivial for EV scores, since we want to calculate the correlation over all activations from all sequences at once rather than simply averaging per-sequence correlations. """ all_true_activations: list[float] = [] all_expected_values: list[float] = [] for scored_sequence_simulation in scored_sequence_simulations: all_true_activations.extend(scored_sequence_simulation.true_activations or []) all_expected_values.extend(scored_sequence_simulation.simulation.expected_activations) ev_correlation_score = ( correlation_score(all_true_activations, all_expected_values) if len(all_true_activations) > 0 else None ) rsquared_score = rsquared_score_from_sequences(all_true_activations, all_expected_values) absolute_dev_explained_score = absolute_dev_explained_score_from_sequences( all_true_activations, all_expected_values ) return ScoredSimulation( scored_sequence_simulations=scored_sequence_simulations, ev_correlation_score=ev_correlation_score, rsquared_score=rsquared_score, absolute_dev_explained_score=absolute_dev_explained_score, ) async def simulate_and_score( simulator: NeuronSimulator, activation_records: Sequence[ActivationRecord], ) -> ScoredSimulation: """ Score an explanation of a neuron by how well it predicts activations on the given text sequences. """ scored_sequence_simulations = await asyncio.gather( *[ _simulate_and_score_sequence( simulator, activation_record, ) for activation_record in activation_records ] ) return aggregate_scored_sequence_simulations(scored_sequence_simulations) async def make_simulator_and_score( make_simulator: Coroutine[None, None, NeuronSimulator], activation_records: Sequence[ActivationRecord], ) -> ScoredSimulation: """Chain together creating the simulator and using it to score activation records.""" simulator = await make_simulator return await simulate_and_score(simulator, activation_records)
from dataclasses import dataclass from enum import Enum from typing import List from neuron_explainer.fast_dataclasses import FastDataclass @dataclass class Example(FastDataclass): """ An example list of tokens as strings corresponding to top token space inputs of a neuron, with a string explanation of the neuron's behavior on these tokens. """ tokens: List[str] explanation: str class TokenSpaceFewShotExampleSet(Enum): """Determines which few-shot examples to use when sampling explanations.""" ORIGINAL = "original" TEST = "test" def get_examples(self) -> list[Example]: """Returns regular examples for use in a few-shot prompt.""" if self is TokenSpaceFewShotExampleSet.ORIGINAL: return ORIGINAL_EXAMPLES elif self is TokenSpaceFewShotExampleSet.TEST: return TEST_EXAMPLES else: raise ValueError(f"Unhandled example set: {self}") ORIGINAL_EXAMPLES = [ Example( tokens=[ "actual", " literal", " actual", " hyper", " real", " EX", " Real", "^", "Full", " full", " optical", " style", "any", "ALL", "extreme", " miniature", " Optical", " faint", "~", " Physical", " REAL", "*", "virtual", "TYPE", " technical", "otally", " physic", "Type", "<", "images", "atic", " sheer", " Style", " partial", " natural", "Hyper", " Any", " theoretical", "|", " ultimate", "oing", " constant", "ANY", "antically", "ishly", " ex", " visual", "special", "omorphic", "visual", ], explanation=" adjectives related to being real, or to physical properties and evidence", ), Example( tokens=[ "cephal", "aeus", " coma", "bered", "abetes", "inflamm", "rugged", "alysed", "azine", "hered", "cells", "aneously", "fml", "igm", "culosis", "iani", "CTV", "disabled", "heric", "ulo", "geoning", "awi", "translation", "iral", "govtrack", "mson", "cloth", "nesota", " Dise", " Lyme", " dementia", "agn", " reversible", " susceptibility", "esthesia", "orf", " inflamm", " Obesity", " tox", " Disorders", "uberty", "blind", "ALTH", "avier", " Immunity", " Hurt", "ulet", "ueless", " sluggish", "rosis", ], explanation=" words related to physical medical conditions", ), Example( tokens=[ " January", "terday", "cember", " April", " July", "September", "December", "Thursday", "quished", "November", "Tuesday", "uesday", " Sept", "ruary", " March", ";;;;;;;;;;;;", " Monday", "Wednesday", " Saturday", " Wednesday", "Reloaded", "aturday", " August", "Feb", "Sunday", "Reviewed", "uggest", " Dhabi", "ACTED", "tten", "Year", "August", "alogue", "MX", " Janeiro", "yss", " Leilan", " Fiscal", " referen", "semb", "eele", "wcs", "detail", "ertation", " Reborn", " Sunday", "itially", "aturdays", " Dise", "essage", ], explanation=" nouns related to time and dates", ), ] TEST_EXAMPLES = [ Example( tokens=[ "these", " are", " tokens", ], explanation=" this is a test explanation", ), ]
""" Code for calibrating simulations of neuron behavior. Calibration refers to a process of mapping from a space of predicted activation values (e.g. [0, 10]) to the real activation distribution for a neuron. See http://go/neuron_explanation_methodology for description of calibration step. Necessary for simulating neurons in the context of ablate-to-simulation, but can be skipped when using correlation scoring. (Calibration may still improve quality for scoring, at least for non-linear calibration methods.) """ from __future__ import annotations import asyncio from abc import abstractmethod from typing import Optional, Sequence import numpy as np from neuron_explainer.activations.activations import ActivationRecord from neuron_explainer.explanations.explanations import ActivationScale from neuron_explainer.explanations.simulator import NeuronSimulator, SequenceSimulation from sklearn import linear_model class CalibratedNeuronSimulator(NeuronSimulator): """ Wrap a NeuronSimulator and calibrate it to map from the predicted activation space to the actual neuron activation space. """ def __init__(self, uncalibrated_simulator: NeuronSimulator): self.uncalibrated_simulator = uncalibrated_simulator @classmethod async def create( cls, uncalibrated_simulator: NeuronSimulator, calibration_activation_records: Sequence[ActivationRecord], ) -> CalibratedNeuronSimulator: """ Create and calibrate a calibrated simulator (so initialization and calibration can be done in one call). """ calibrated_simulator = cls(uncalibrated_simulator) await calibrated_simulator.calibrate(calibration_activation_records) return calibrated_simulator async def calibrate(self, calibration_activation_records: Sequence[ActivationRecord]) -> None: """ Determine parameters to map from the predicted activation space to the real neuron activation space, based on a calibration set. Use when simulated sequences haven't already been produced on the calibration set. """ simulations = await asyncio.gather( *[ self.uncalibrated_simulator.simulate(activations.tokens) for activations in calibration_activation_records ] ) self.calibrate_from_simulations(calibration_activation_records, simulations) def calibrate_from_simulations( self, calibration_activation_records: Sequence[ActivationRecord], simulations: Sequence[SequenceSimulation], ) -> None: """ Determine parameters to map from the predicted activation space to the real neuron activation space, based on a calibration set. Use when simulated sequences have already been produced on the calibration set. """ flattened_activations = [] flattened_simulated_activations: list[float] = [] for activations, simulation in zip(calibration_activation_records, simulations): flattened_activations.extend(activations.activations) flattened_simulated_activations.extend(simulation.expected_activations) self._calibrate_from_flattened_activations( np.array(flattened_activations), np.array(flattened_simulated_activations) ) @abstractmethod def _calibrate_from_flattened_activations( self, true_activations: np.ndarray, uncalibrated_activations: np.ndarray, ) -> None: """ Determine parameters to map from the predicted activation space to the real neuron activation space, based on a calibration set. Take numpy arrays of all true activations and all uncalibrated activations on the calibration set over all sequences. """ @abstractmethod def apply_calibration(self, values: Sequence[float]) -> list[float]: """Apply the learned calibration to a sequence of values.""" async def simulate(self, tokens: Sequence[str]) -> SequenceSimulation: uncalibrated_seq_simulation = await self.uncalibrated_simulator.simulate(tokens) calibrated_activations = self.apply_calibration( uncalibrated_seq_simulation.expected_activations ) calibrated_distribution_values = [ self.apply_calibration(dv) for dv in uncalibrated_seq_simulation.distribution_values ] return SequenceSimulation( tokens=uncalibrated_seq_simulation.tokens, expected_activations=calibrated_activations, activation_scale=ActivationScale.NEURON_ACTIVATIONS, distribution_values=calibrated_distribution_values, distribution_probabilities=uncalibrated_seq_simulation.distribution_probabilities, uncalibrated_simulation=uncalibrated_seq_simulation, ) class UncalibratedNeuronSimulator(CalibratedNeuronSimulator): """Pass through the activations without trying to calibrate.""" def __init__(self, uncalibrated_simulator: NeuronSimulator): super().__init__(uncalibrated_simulator) async def calibrate(self, calibration_activation_records: Sequence[ActivationRecord]) -> None: pass def _calibrate_from_flattened_activations( self, true_activations: np.ndarray, uncalibrated_activations: np.ndarray, ) -> None: pass def apply_calibration(self, values: Sequence[float]) -> list[float]: return values if isinstance(values, list) else list(values) class LinearCalibratedNeuronSimulator(CalibratedNeuronSimulator): """Find a linear mapping from uncalibrated activations to true activations. Should not change ev_correlation_score because it is invariant to linear transformations. """ def __init__(self, uncalibrated_simulator: NeuronSimulator): super().__init__(uncalibrated_simulator) self._regression: Optional[linear_model.LinearRegression] = None def _calibrate_from_flattened_activations( self, true_activations: np.ndarray, uncalibrated_activations: np.ndarray, ) -> None: self._regression = linear_model.LinearRegression() self._regression.fit(uncalibrated_activations.reshape(-1, 1), true_activations) def apply_calibration(self, values: Sequence[float]) -> list[float]: if self._regression is None: raise ValueError("Must call calibrate() before apply_calibration") if len(values) == 0: return [] return self._regression.predict(np.reshape(np.array(values), (-1, 1))).tolist() class PercentileMatchingCalibratedNeuronSimulator(CalibratedNeuronSimulator): """ Map the nth percentile of the uncalibrated activations to the nth percentile of the true activations for all n. This will match the distribution of true activations on the calibration set, but will be overconfident outside of the calibration set. """ def __init__(self, uncalibrated_simulator: NeuronSimulator): super().__init__(uncalibrated_simulator) self._uncalibrated_activations: Optional[np.ndarray] = None self._true_activations: Optional[np.ndarray] = None def _calibrate_from_flattened_activations( self, true_activations: np.ndarray, uncalibrated_activations: np.ndarray, ) -> None: self._uncalibrated_activations = np.sort(uncalibrated_activations) self._true_activations = np.sort(true_activations) def apply_calibration(self, values: Sequence[float]) -> list[float]: if self._true_activations is None or self._uncalibrated_activations is None: raise ValueError("Must call calibrate() before apply_calibration") if len(values) == 0: return [] return np.interp( np.array(values), self._uncalibrated_activations, self._true_activations ).tolist()
import asyncio from typing import Any from neuron_explainer.explanations.explainer import ( TokenActivationPairExplainer, TokenSpaceRepresentationExplainer, ) from neuron_explainer.explanations.few_shot_examples import TEST_EXAMPLES, FewShotExampleSet from neuron_explainer.explanations.prompt_builder import HarmonyMessage, PromptFormat, Role from neuron_explainer.explanations.token_space_few_shot_examples import ( TokenSpaceFewShotExampleSet, ) def setup_module(unused_module: Any) -> None: # Make sure we have an event loop, since the attempt to create the Semaphore in # ResearchApiClient will fail without it. loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) def test_if_formatting() -> None: expected_prompt = """We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at the parts of the document the neuron activates for and summarize in a single sentence what the neuron is looking for. Don't list examples of words. The activation format is token<tab>activation. Activation values range from 0 to 10. A neuron finding what it's looking for is represented by a non-zero activation value. The higher the activation value, the stronger the match. Neuron 1 Activations: <start> a 10 b 0 c 0 <end> <start> d 0 e 10 f 0 <end> Explanation of neuron 1 behavior: the main thing this neuron does is find vowels. Neuron 2 Activations: <start> a 10 b 0 c 0 <end> <start> d 0 e 10 f 0 <end> Explanation of neuron 2 behavior:<|endofprompt|> the main thing this neuron does is find""" explainer = TokenActivationPairExplainer( model_name="text-davinci-003", prompt_format=PromptFormat.INSTRUCTION_FOLLOWING, few_shot_example_set=FewShotExampleSet.TEST, ) prompt = explainer.make_explanation_prompt( all_activation_records=TEST_EXAMPLES[0].activation_records, max_activation=1.0, max_tokens_for_completion=20, ) assert prompt == expected_prompt def test_harmony_format() -> None: expected_prompt = [ HarmonyMessage( role=Role.SYSTEM, content="""We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at the parts of the document the neuron activates for and summarize in a single sentence what the neuron is looking for. Don't list examples of words. The activation format is token<tab>activation. Activation values range from 0 to 10. A neuron finding what it's looking for is represented by a non-zero activation value. The higher the activation value, the stronger the match.""", ), HarmonyMessage( role=Role.USER, content=""" Neuron 1 Activations: <start> a 10 b 0 c 0 <end> <start> d 0 e 10 f 0 <end> Explanation of neuron 1 behavior: the main thing this neuron does is find""", ), HarmonyMessage( role=Role.ASSISTANT, content=" vowels.", ), HarmonyMessage( role=Role.USER, content=""" Neuron 2 Activations: <start> a 10 b 0 c 0 <end> <start> d 0 e 10 f 0 <end> Explanation of neuron 2 behavior: the main thing this neuron does is find""", ), ] explainer = TokenActivationPairExplainer( model_name="gpt-4", prompt_format=PromptFormat.HARMONY_V4, few_shot_example_set=FewShotExampleSet.TEST, ) prompt = explainer.make_explanation_prompt( all_activation_records=TEST_EXAMPLES[0].activation_records, max_activation=1.0, max_tokens_for_completion=20, ) assert isinstance(prompt, list) assert isinstance(prompt[0], dict) # Really a HarmonyMessage for actual_message, expected_message in zip(prompt, expected_prompt): assert actual_message["role"] == expected_message["role"] assert actual_message["content"] == expected_message["content"] assert prompt == expected_prompt def test_token_space_explainer_if_formatting() -> None: expected_prompt = """We're studying neurons in a neural network. Each neuron looks for some particular kind of token (which can be a word, or part of a word). Look at the tokens the neuron activates for (listed below) and summarize in a single sentence what the neuron is looking for. Don't list examples of words. Tokens: 'these', ' are', ' tokens' Explanation: This neuron is looking for this is a test explanation. Tokens: 'foo', 'bar', 'baz' Explanation: <|endofprompt|>This neuron is looking for""" explainer = TokenSpaceRepresentationExplainer( model_name="text-davinci-002", prompt_format=PromptFormat.INSTRUCTION_FOLLOWING, use_few_shot=True, few_shot_example_set=TokenSpaceFewShotExampleSet.TEST, ) prompt = explainer.make_explanation_prompt( tokens=["foo", "bar", "baz"], max_tokens_for_completion=20, ) assert prompt == expected_prompt def test_token_space_explainer_harmony_formatting() -> None: expected_prompt = [ HarmonyMessage( role=Role.SYSTEM, content="We're studying neurons in a neural network. Each neuron looks for some particular kind of token (which can be a word, or part of a word). Look at the tokens the neuron activates for (listed below) and summarize in a single sentence what the neuron is looking for. Don't list examples of words.", ), HarmonyMessage( role=Role.USER, content=""" Tokens: 'these', ' are', ' tokens' Explanation: This neuron is looking for""", ), HarmonyMessage( role=Role.ASSISTANT, content=" this is a test explanation.", ), HarmonyMessage( role=Role.USER, content=""" Tokens: 'foo', 'bar', 'baz' Explanation: This neuron is looking for""", ), ] explainer = TokenSpaceRepresentationExplainer( model_name="gpt-4", prompt_format=PromptFormat.HARMONY_V4, use_few_shot=True, few_shot_example_set=TokenSpaceFewShotExampleSet.TEST, ) prompt = explainer.make_explanation_prompt( tokens=["foo", "bar", "baz"], max_tokens_for_completion=20, ) assert isinstance(prompt, list) assert isinstance(prompt[0], dict) # Really a HarmonyMessage for actual_message, expected_message in zip(prompt, expected_prompt): assert actual_message["role"] == expected_message["role"] assert actual_message["content"] == expected_message["content"] assert prompt == expected_prompt
# Few-shot examples for generating and simulating neuron explanations. from __future__ import annotations from dataclasses import dataclass from enum import Enum from typing import List, Optional from neuron_explainer.activations.activations import ActivationRecord from neuron_explainer.fast_dataclasses import FastDataclass @dataclass class Example(FastDataclass): activation_records: List[ActivationRecord] explanation: str first_revealed_activation_indices: List[int] """ For each activation record, the index of the first token for which the activation value in the prompt should be an actual number rather than "unknown". Examples all start with the activations rendered as "unknown", then transition to revealing specific normalized activation values. The goal is to lead the model to predict that activation sequences will eventually transition to predicting specific activation values instead of just "unknown". This lets us cheat and get predictions of activation values for every token in a single round of inference by having the activations in the sequence we're predicting always be "unknown" in the prompt: the model will always think that maybe the next token will be a real activation. """ token_index_to_score: Optional[int] = None """ If the prompt is used as an example for one-token-at-a-time scoring, this is the index of the token to score. """ class FewShotExampleSet(Enum): """Determines which few-shot examples to use when sampling explanations.""" ORIGINAL = "original" NEWER = "newer" TEST = "test" @classmethod def from_string(cls, string: str) -> FewShotExampleSet: for example_set in FewShotExampleSet: if example_set.value == string: return example_set raise ValueError(f"Unrecognized example set: {string}") def get_examples(self) -> list[Example]: """Returns regular examples for use in a few-shot prompt.""" if self is FewShotExampleSet.ORIGINAL: return ORIGINAL_EXAMPLES elif self is FewShotExampleSet.NEWER: return NEWER_EXAMPLES elif self is FewShotExampleSet.TEST: return TEST_EXAMPLES else: raise ValueError(f"Unhandled example set: {self}") def get_single_token_prediction_example(self) -> Example: """ Returns an example suitable for use in a subprompt for predicting a single token's normalized activation, for use with the "one token at a time" scoring approach. """ if self is FewShotExampleSet.NEWER: return NEWER_SINGLE_TOKEN_EXAMPLE elif self is FewShotExampleSet.TEST: return TEST_SINGLE_TOKEN_EXAMPLE else: raise ValueError(f"Unhandled example set: {self}") TEST_EXAMPLES = [ Example( activation_records=[ ActivationRecord( tokens=["a", "b", "c"], activations=[1.0, 0.0, 0.0], ), ActivationRecord( tokens=["d", "e", "f"], activations=[0.0, 1.0, 0.0], ), ], explanation="vowels", first_revealed_activation_indices=[0, 1], ), ] TEST_SINGLE_TOKEN_EXAMPLE = Example( activation_records=[ ActivationRecord( activations=[0.0, 0.0, 1.0], tokens=["g", "h", "i"], ), ], first_revealed_activation_indices=[], token_index_to_score=2, explanation="test explanation", ) ORIGINAL_EXAMPLES = [ Example( activation_records=[ ActivationRecord( tokens=[ "t", "urt", "ur", "ro", " is", " fab", "ulously", " funny", " and", " over", " the", " top", " as", " a", " '", "very", " sneaky", "'", " but", "ler", " who", " excel", "s", " in", " the", " art", " of", " impossible", " disappearing", "/", "re", "app", "earing", " acts", ], activations=[ -0.71, -1.85, -2.39, -2.58, -1.34, -1.92, -1.69, -0.84, -1.25, -1.75, -1.42, -1.47, -1.51, -0.8, -1.89, -1.56, -1.63, 0.44, -1.87, -2.55, -2.09, -1.76, -1.33, -0.88, -1.63, -2.39, -2.63, -0.99, 2.83, -1.11, -1.19, -1.33, 4.24, -1.51, ], ), ActivationRecord( tokens=[ "esc", "aping", " the", " studio", " ,", " pic", "col", "i", " is", " warm", "ly", " affecting", " and", " so", " is", " this", " ad", "roit", "ly", " minimalist", " movie", " .", ], activations=[ -0.69, 4.12, 1.83, -2.28, -0.28, -0.79, -2.2, -2.03, -1.77, -1.71, -2.44, 1.6, -1, -0.38, -1.93, -2.09, -1.63, -1.94, -1.82, -1.64, -1.32, -1.92, ], ), ], first_revealed_activation_indices=[10, 3], explanation="present tense verbs ending in 'ing'", ), Example( activation_records=[ ActivationRecord( tokens=[ "as", " sac", "char", "ine", " movies", " go", " ,", " this", " is", " likely", " to", " cause", " massive", " cardiac", " arrest", " if", " taken", " in", " large", " doses", " .", ], activations=[ -0.14, -1.37, -0.68, -2.27, -1.46, -1.11, -0.9, -2.48, -2.07, -3.49, -2.16, -1.79, -0.23, -0.04, 4.46, -1.02, -2.26, -2.95, -1.49, -1.46, -0.6, ], ), ActivationRecord( tokens=[ "shot", " perhaps", " '", "art", "istically", "'", " with", " handheld", " cameras", " and", " apparently", " no", " movie", " lights", " by", " jo", "aquin", " b", "aca", "-", "as", "ay", " ,", " the", " low", "-", "budget", " production", " swings", " annoy", "ingly", " between", " vert", "igo", " and", " opacity", " .", ], activations=[ -0.09, -3.53, -0.72, -2.36, -1.05, -1.12, -2.49, -2.14, -1.98, -1.59, -2.62, -2, -2.73, -2.87, -3.23, -1.11, -2.23, -0.97, -2.28, -2.37, -1.5, -2.81, -1.73, -3.14, -2.61, -1.7, -3.08, -4, -0.71, -2.48, -1.39, -1.96, -1.09, 4.37, -0.74, -0.5, -0.62, ], ), ], first_revealed_activation_indices=[5, 20], explanation="words related to physical medical conditions", ), Example( activation_records=[ ActivationRecord( tokens=[ "the", " sense", " of", " together", "ness", " in", " our", " town", " is", " strong", " .", ], activations=[ 0, 0, 0, 1, 2, 0, 0.23, 0.5, 0, 0, 0, ], ), ActivationRecord( tokens=[ "a", " buoy", "ant", " romantic", " comedy", " about", " friendship", " ,", " love", " ,", " and", " the", " truth", " that", " we", "'re", " all", " in", " this", " together", " .", ], activations=[ -0.15, -2.33, -1.4, -2.17, -2.53, -0.85, 0.23, -1.89, 0.09, -0.47, -0.5, -0.58, -0.87, 0.22, 0.58, 1.34, 0.98, 2.21, 2.84, 1.7, -0.89, ], ), ], first_revealed_activation_indices=[0, 10], explanation="phrases related to community", ), ] NEWER_EXAMPLES = [ Example( activation_records=[ ActivationRecord( tokens=[ "The", " editors", " of", " Bi", "opol", "ym", "ers", " are", " delighted", " to", " present", " the", " ", "201", "8", " Murray", " Goodman", " Memorial", " Prize", " to", " Professor", " David", " N", ".", " Ber", "atan", " in", " recognition", " of", " his", " seminal", " contributions", " to", " bi", "oph", "ysics", " and", " their", " impact", " on", " our", " understanding", " of", " charge", " transport", " in", " biom", "olecules", ".\n\n", "In", "aug", "ur", "ated", " in", " ", "200", "7", " in", " honor", " of", " the", " Bi", "opol", "ym", "ers", " Found", "ing", " Editor", ",", " the", " prize", " is", " awarded", " for", " outstanding", " accomplishments", ], activations=[ 0, 0.01, 0.01, 0, 0, 0, -0.01, 0, -0.01, 0, 0, 0, 0, 0, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.39, 0.12, 0, -0.01, 0, 0, 0, 0, -0, 0, -0, 0, 0, -0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0, 0, 0, -0.01, 0, 0.41, 0, 0, 0, -0.01, 0, 0, 0, 0, 0, ], ), # We sometimes exceed the max context size when this is included :( # ActivationRecord( # tokens=[ # " We", # " are", # " proud", # " of", # " our", # " national", # " achievements", # " in", # " mastering", # " all", # " aspects", # " of", # " the", # " fuel", # " cycle", # ".", # " The", # " current", # " international", # " interest", # " in", # " closing", # " the", # " fuel", # " cycle", # " is", # " a", # " vind", # "ication", # " of", # " Dr", # ".", # " B", # "hab", # "ha", # "’s", # " pioneering", # " vision", # " and", # " genius", # ], # activations=[ # -0, # -0, # 0, # -0, # -0, # 0, # 0, # 0, # -0, # 0, # 0, # -0, # 0, # -0.01, # 0, # 0, # -0, # -0, # 0, # 0, # 0, # -0, # -0, # -0.01, # 0, # 0, # -0, # 0, # 0, # 0, # 0, # 0, # -0, # 0, # 0, # 0, # 2.15, # 0, # 0, # 0.03, # ], # ), ], first_revealed_activation_indices=[7], # , 19], explanation="language related to something being groundbreaking", ), Example( activation_records=[ ActivationRecord( tokens=[ '{"', "widget", "Class", '":"', "Variant", "Matrix", "Widget", '","', "back", "order", "Message", '":"', "Back", "ordered", '","', "back", "order", "Message", "Single", "Variant", '":"', "This", " item", " is", " back", "ordered", '.","', "ordered", "Selection", '":', "true", ',"', "product", "Variant", "Id", '":', "0", ',"', "variant", "Id", "Field", '":"', "product", "196", "39", "_V", "ariant", "Id", '","', "back", "order", "To", "Message", "Single", "Variant", '":"', "This", " item", " is", " back", "ordered", " and", " is", " expected", " by", " {", "0", "}.", '","', "low", "Price", '":', "999", "9", ".", "0", ',"', "attribute", "Indexes", '":[', '],"', "productId", '":', "196", "39", ',"', "price", "V", "ariance", '":', "true", ',"', ], activations=[ -0.03, 0, 0, 0, 4.2, 0, 0, 0, 0, -0, 0, -0, 0, 0, 0, 0, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0, 0, 0, 0, 0, 0, 0, -0.03, 0, 0, 0, 0, -0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0, -0, 0, 0, 0, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.02, 0, 0, 0, 0, 0, 1.24, 0, 0, 0, ], ), ActivationRecord( tokens=[ "A", " regular", " look", " at", " the", " ups", " and", " downs", " of", " variant", " covers", " in", " the", " comics", " industry", "…\n\n", "Here", " are", " the", " Lego", " variant", " sketch", " covers", " by", " Leon", "el", " Cast", "ell", "ani", " for", " a", " variety", " of", " Marvel", " titles", ",", ], activations=[ 0, -0.01, 0, 0, 0, 0, 0, 0, 0, 6.52, 0, 0, 0, -0, 0, 0, 0, 0, 0, 0, 1.62, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0, 0, 0, 0, -0, 0, ], ), ], first_revealed_activation_indices=[2, 8], explanation="the word “variant” and other words with the same ”vari” root", ), ] NEWER_SINGLE_TOKEN_EXAMPLE = Example( activation_records=[ ActivationRecord( tokens=[ "B", "10", " ", "111", " MON", "DAY", ",", " F", "EB", "RU", "ARY", " ", "11", ",", " ", "201", "9", " DON", "ATE", "fake higher scoring token", # See below. ], activations=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.37, # This fake activation makes the previous token's activation normalize to 8, which # might help address overconfidence in "10" activations for the one-token-at-a-time # scoring prompt. This value and the associated token don't actually appear anywhere # in the prompt. 0.45, ], ), ], first_revealed_activation_indices=[], token_index_to_score=18, explanation="instances of the token 'ate' as part of another word", )
"""Uses API calls to simulate neuron activations based on an explanation.""" from __future__ import annotations import asyncio import logging from abc import ABC, abstractmethod from collections import OrderedDict from enum import Enum from typing import Any, Optional, Sequence, Union import numpy as np from neuron_explainer.activations.activation_records import ( calculate_max_activation, format_activation_records, format_sequences_for_simulation, normalize_activations, ) from neuron_explainer.activations.activations import ActivationRecord from neuron_explainer.api_client import ApiClient from neuron_explainer.explanations.explainer import EXPLANATION_PREFIX from neuron_explainer.explanations.explanations import ActivationScale, SequenceSimulation from neuron_explainer.explanations.few_shot_examples import FewShotExampleSet from neuron_explainer.explanations.prompt_builder import ( HarmonyMessage, PromptBuilder, PromptFormat, Role, ) logger = logging.getLogger(__name__) # Our prompts use normalized activation values, which map any range of positive activations to the # integers from 0 to 10. MAX_NORMALIZED_ACTIVATION = 10 VALID_ACTIVATION_TOKENS_ORDERED = list(str(i) for i in range(MAX_NORMALIZED_ACTIVATION + 1)) VALID_ACTIVATION_TOKENS = set(VALID_ACTIVATION_TOKENS_ORDERED) class SimulationType(str, Enum): """How to simulate neuron activations. Values correspond to subclasses of NeuronSimulator.""" ALL_AT_ONCE = "all_at_once" """ Use a single prompt with <unknown> tokens; calculate EVs using logprobs. Implemented by ExplanationNeuronSimulator. """ ONE_AT_A_TIME = "one_at_a_time" """ Use a separate prompt for each token being simulated; calculate EVs using logprobs. Implemented by ExplanationTokenByTokenSimulator. """ @classmethod def from_string(cls, s: str) -> SimulationType: for simulation_type in SimulationType: if simulation_type.value == s: return simulation_type raise ValueError(f"Invalid simulation type: {s}") def compute_expected_value( norm_probabilities_by_distribution_value: OrderedDict[int, float] ) -> float: """ Given a map from distribution values (integers on the range [0, 10]) to normalized probabilities, return an expected value for the distribution. """ return np.dot( np.array(list(norm_probabilities_by_distribution_value.keys())), np.array(list(norm_probabilities_by_distribution_value.values())), ) def parse_top_logprobs(top_logprobs: dict[str, float]) -> OrderedDict[int, float]: """ Given a map from tokens to logprobs, return a map from distribution values (integers on the range [0, 10]) to unnormalized probabilities (in the sense that they may not sum to 1). """ probabilities_by_distribution_value = OrderedDict() for token, logprob in top_logprobs.items(): if token in VALID_ACTIVATION_TOKENS: token_as_int = int(token) probabilities_by_distribution_value[token_as_int] = np.exp(logprob) return probabilities_by_distribution_value def compute_predicted_activation_stats_for_token( top_logprobs: dict[str, float], ) -> tuple[OrderedDict[int, float], float]: probabilities_by_distribution_value = parse_top_logprobs(top_logprobs) total_p_of_distribution_values = sum(probabilities_by_distribution_value.values()) norm_probabilities_by_distribution_value = OrderedDict( { distribution_value: p / total_p_of_distribution_values for distribution_value, p in probabilities_by_distribution_value.items() } ) expected_value = compute_expected_value(norm_probabilities_by_distribution_value) return ( norm_probabilities_by_distribution_value, expected_value, ) # Adapted from tether/tether/core/encoder.py. def convert_to_byte_array(s: str) -> bytearray: byte_array = bytearray() assert s.startswith("bytes:"), s s = s[6:] while len(s) > 0: if s[0] == "\\": # Hex encoding. assert s[1] == "x" assert len(s) >= 4 byte_array.append(int(s[2:4], 16)) s = s[4:] else: # Regular ascii encoding. byte_array.append(ord(s[0])) s = s[1:] return byte_array def handle_byte_encoding( response_tokens: Sequence[str], merged_response_index: int ) -> tuple[str, int]: """ Handle the case where the current token is a sequence of bytes. This may involve merging multiple response tokens into a single token. """ response_token = response_tokens[merged_response_index] if response_token.startswith("bytes:"): byte_array = bytearray() while True: byte_array = convert_to_byte_array(response_token) + byte_array try: # If we can decode the byte array as utf-8, then we're done. response_token = byte_array.decode("utf-8") break except UnicodeDecodeError: # If not, then we need to merge the previous response token into the byte # array. merged_response_index -= 1 response_token = response_tokens[merged_response_index] return response_token, merged_response_index def was_token_split(current_token: str, response_tokens: Sequence[str], start_index: int) -> bool: """ Return whether current_token (a token from the subject model) was split into multiple tokens by the simulator model (as represented by the tokens in response_tokens). start_index is the index in response_tokens at which to begin looking backward to form a complete token. It is usually the first token *before* the delimiter that separates the token from the normalized activation, barring some unusual cases. This mainly happens if the subject model uses a different tokenizer than the simulator model. But it can also happen in cases where Unicode characters are split. This function handles both cases. """ merged_response_tokens = "" merged_response_index = start_index while len(merged_response_tokens) < len(current_token): response_token = response_tokens[merged_response_index] response_token, merged_response_index = handle_byte_encoding( response_tokens, merged_response_index ) merged_response_tokens = response_token + merged_response_tokens merged_response_index -= 1 # It's possible that merged_response_tokens is longer than current_token at this point, # since the between-lines delimiter may have been merged into the original token. But it # should always be the case that merged_response_tokens ends with current_token. assert merged_response_tokens.endswith(current_token) num_merged_tokens = start_index - merged_response_index token_was_split = num_merged_tokens > 1 if token_was_split: logger.debug( "Warning: token from the subject model was split into 2+ tokens by the simulator model." ) return token_was_split def parse_simulation_response( response: dict[str, Any], prompt_format: PromptFormat, tokens: Sequence[str], ) -> SequenceSimulation: """ Parse an API response to a simulation prompt. Args: response: response from the API prompt_format: how the prompt was formatted tokens: list of tokens as strings in the sequence where the neuron is being simulated """ choice = response["choices"][0] if prompt_format == PromptFormat.HARMONY_V4: text = choice["message"]["content"] elif prompt_format in [ PromptFormat.NONE, PromptFormat.INSTRUCTION_FOLLOWING, ]: text = choice["text"] else: raise ValueError(f"Unhandled prompt format {prompt_format}") response_tokens = choice["logprobs"]["tokens"] choice["logprobs"]["token_logprobs"] top_logprobs = choice["logprobs"]["top_logprobs"] token_text_offset = choice["logprobs"]["text_offset"] # This only works because the sequence "<start>" tokenizes into multiple tokens if it appears in # a text sequence in the prompt. scoring_start = text.rfind("<start>") expected_values = [] original_sequence_tokens: list[str] = [] distribution_values: list[list[float]] = [] distribution_probabilities: list[list[float]] = [] for i in range(2, len(response_tokens)): if len(original_sequence_tokens) == len(tokens): # Make sure we haven't hit some sort of off-by-one error. # TODO(sbills): Generalize this to handle different tokenizers. reached_end = response_tokens[i + 1] == "<" and response_tokens[i + 2] == "end" assert reached_end, f"{response_tokens[i-3:i+3]}" break if token_text_offset[i] >= scoring_start: # We're looking for the first token after a tab. This token should be the text # "unknown" if hide_activations=True or a normalized activation (0-10) otherwise. # If it isn't, that means that the tab is not appearing as a delimiter, but rather # as a token, in which case we should move on to the next response token. if response_tokens[i - 1] == "\t": if response_tokens[i] != "unknown": logger.debug("Ignoring tab token that is not followed by an 'unknown' token.") continue # j represents the index of the token in a "token<tab>activation" line, barring # one of the unusual cases handled below. j = i - 2 current_token = tokens[len(original_sequence_tokens)] if current_token == response_tokens[j] or was_token_split( current_token, response_tokens, j ): # We're in the normal case where the tokenization didn't throw off the # formatting or in the token-was-split case, which we handle the usual way. current_top_logprobs = top_logprobs[i] ( norm_probabilities_by_distribution_value, expected_value, ) = compute_predicted_activation_stats_for_token( current_top_logprobs, ) current_distribution_values = list( norm_probabilities_by_distribution_value.keys() ) current_distribution_probabilities = list( norm_probabilities_by_distribution_value.values() ) else: # We're in a case where the tokenization resulted in a newline being folded into # the token. We can't do our usual prediction of activation stats for the token, # since the model did not observe the original token. Instead, we use dummy # values. See the TODO elsewhere in this file about coming up with a better # prompt format that avoids this situation. newline_folded_into_token = "\n" in response_tokens[j] assert ( newline_folded_into_token ), f"`{current_token=}` {response_tokens[j-3:j+3]=}" logger.debug( "Warning: newline before a token<tab>activation line was folded into the token" ) current_distribution_values = [] current_distribution_probabilities = [] expected_value = 0.0 original_sequence_tokens.append(current_token) distribution_values.append([float(v) for v in current_distribution_values]) distribution_probabilities.append(current_distribution_probabilities) expected_values.append(expected_value) return SequenceSimulation( tokens=original_sequence_tokens, expected_activations=expected_values, activation_scale=ActivationScale.SIMULATED_NORMALIZED_ACTIVATIONS, distribution_values=distribution_values, distribution_probabilities=distribution_probabilities, ) class NeuronSimulator(ABC): """Abstract base class for simulating neuron behavior.""" @abstractmethod async def simulate(self, tokens: Sequence[str]) -> SequenceSimulation: """Simulate the behavior of a neuron based on an explanation.""" ... class ExplanationNeuronSimulator(NeuronSimulator): """ Simulate neuron behavior based on an explanation. This class uses a few-shot prompt with examples of other explanations and activations. This prompt allows us to score all of the tokens at once using a nifty trick involving logprobs. """ def __init__( self, model_name: str, explanation: str, max_concurrent: Optional[int] = 10, few_shot_example_set: FewShotExampleSet = FewShotExampleSet.ORIGINAL, prompt_format: PromptFormat = PromptFormat.INSTRUCTION_FOLLOWING, cache: bool = False, ): self.api_client = ApiClient( model_name=model_name, max_concurrent=max_concurrent, cache=cache ) self.explanation = explanation self.few_shot_example_set = few_shot_example_set self.prompt_format = prompt_format async def simulate( self, tokens: Sequence[str], ) -> SequenceSimulation: prompt = self.make_simulation_prompt(tokens) generate_kwargs: dict[str, Any] = { "max_tokens": 0, "echo": True, "logprobs": 15, } if self.prompt_format == PromptFormat.HARMONY_V4: assert isinstance(prompt, list) assert isinstance(prompt[0], dict) # Really a HarmonyMessage generate_kwargs["messages"] = prompt else: assert isinstance(prompt, str) generate_kwargs["prompt"] = prompt response = await self.api_client.make_request(**generate_kwargs) logger.debug("response in score_explanation_by_activations is %s", response) result = parse_simulation_response(response, self.prompt_format, tokens) logger.debug("result in score_explanation_by_activations is %s", result) return result # TODO(sbills): The current token<tab>activation format can result in improper tokenization. # In particular, if the token is itself a tab, we may get a single "\t\t" token rather than two # "\t" tokens. Consider using a separator that does not appear in any multi-character tokens. def make_simulation_prompt(self, tokens: Sequence[str]) -> Union[str, list[HarmonyMessage]]: """Create a few-shot prompt for predicting neuron activations for the given tokens.""" # TODO(sbills): The prompts in this file are subtly different from the ones in explainer.py. # Consider reconciling them. prompt_builder = PromptBuilder() prompt_builder.add_message( Role.SYSTEM, """We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at summary of what the neuron does, and try to predict how it will fire on each token. The activation format is token<tab>activation, activations go from 0 to 10, "unknown" indicates an unknown activation. Most activations will be 0. """, ) few_shot_examples = self.few_shot_example_set.get_examples() for i, example in enumerate(few_shot_examples): prompt_builder.add_message( Role.USER, f"\n\nNeuron {i + 1}\nExplanation of neuron {i + 1} behavior: {EXPLANATION_PREFIX} " f"{example.explanation}", ) formatted_activation_records = format_activation_records( example.activation_records, calculate_max_activation(example.activation_records), start_indices=example.first_revealed_activation_indices, ) prompt_builder.add_message( Role.ASSISTANT, f"\nActivations: {formatted_activation_records}\n" ) prompt_builder.add_message( Role.USER, f"\n\nNeuron {len(few_shot_examples) + 1}\nExplanation of neuron " f"{len(few_shot_examples) + 1} behavior: {EXPLANATION_PREFIX} " f"{self.explanation.strip()}", ) prompt_builder.add_message( Role.ASSISTANT, f"\nActivations: {format_sequences_for_simulation([tokens])}" ) return prompt_builder.build(self.prompt_format) class ExplanationTokenByTokenSimulator(NeuronSimulator): """ Simulate neuron behavior based on an explanation. Unlike ExplanationNeuronSimulator, this class uses one few-shot prompt per token to calculate expected activations. This is slower. This class gets a one-token completion and calculates an expected value from that token's logprobs. """ def __init__( self, model_name: str, explanation: str, max_concurrent: Optional[int] = 10, few_shot_example_set: FewShotExampleSet = FewShotExampleSet.NEWER, prompt_format: PromptFormat = PromptFormat.INSTRUCTION_FOLLOWING, cache: bool = False, ): assert ( few_shot_example_set != FewShotExampleSet.ORIGINAL ), "This simulator doesn't support the ORIGINAL few-shot example set." self.api_client = ApiClient( model_name=model_name, max_concurrent=max_concurrent, cache=cache ) self.explanation = explanation self.few_shot_example_set = few_shot_example_set self.prompt_format = prompt_format async def simulate( self, tokens: Sequence[str], ) -> SequenceSimulation: responses_by_token = await asyncio.gather( *[ self._get_activation_stats_for_single_token(tokens, self.explanation, token_index) for token_index in range(len(tokens)) ] ) expected_values, distribution_values, distribution_probabilities = [], [], [] for response in responses_by_token: activation_logprobs = response["choices"][0]["logprobs"]["top_logprobs"][0] ( norm_probabilities_by_distribution_value, expected_value, ) = compute_predicted_activation_stats_for_token( activation_logprobs, ) distribution_values.append( [float(v) for v in norm_probabilities_by_distribution_value.keys()] ) distribution_probabilities.append( list(norm_probabilities_by_distribution_value.values()) ) expected_values.append(expected_value) result = SequenceSimulation( tokens=list(tokens), # SequenceSimulation expects List type expected_activations=expected_values, activation_scale=ActivationScale.SIMULATED_NORMALIZED_ACTIVATIONS, distribution_values=distribution_values, distribution_probabilities=distribution_probabilities, ) logger.debug("result in score_explanation_by_activations is %s", result) return result async def _get_activation_stats_for_single_token( self, tokens: Sequence[str], explanation: str, token_index_to_score: int, ) -> dict: prompt = self.make_single_token_simulation_prompt( tokens, explanation, token_index_to_score=token_index_to_score, ) return await self.api_client.make_request( prompt=prompt, max_tokens=1, echo=False, logprobs=15 ) def _add_single_token_simulation_subprompt( self, prompt_builder: PromptBuilder, activation_record: ActivationRecord, neuron_index: int, explanation: str, token_index_to_score: int, end_of_prompt: bool, ) -> None: trimmed_activation_record = ActivationRecord( tokens=activation_record.tokens[: token_index_to_score + 1], activations=activation_record.activations[: token_index_to_score + 1], ) prompt_builder.add_message( Role.USER, f""" Neuron {neuron_index} Explanation of neuron {neuron_index} behavior: {EXPLANATION_PREFIX} {explanation.strip()} Text: {"".join(trimmed_activation_record.tokens)} Last token in the text: {trimmed_activation_record.tokens[-1]} Last token activation, considering the token in the context in which it appeared in the text: """, ) if not end_of_prompt: normalized_activations = normalize_activations( trimmed_activation_record.activations, calculate_max_activation([activation_record]) ) prompt_builder.add_message( Role.ASSISTANT, str(normalized_activations[-1]) + ("" if end_of_prompt else "\n\n") ) def make_single_token_simulation_prompt( self, tokens: Sequence[str], explanation: str, token_index_to_score: int, ) -> Union[str, list[HarmonyMessage]]: """Make a few-shot prompt for predicting the neuron's activation on a single token.""" assert explanation != "" prompt_builder = PromptBuilder() prompt_builder.add_message( Role.SYSTEM, """We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at an explanation of what the neuron does, and try to predict its activations on a particular token. The activation format is token<tab>activation, and activations range from 0 to 10. Most activations will be 0. """, ) few_shot_examples = self.few_shot_example_set.get_examples() for i, example in enumerate(few_shot_examples): prompt_builder.add_message( Role.USER, f"Neuron {i + 1}\nExplanation of neuron {i + 1} behavior: {EXPLANATION_PREFIX} " f"{example.explanation}\n", ) formatted_activation_records = format_activation_records( example.activation_records, calculate_max_activation(example.activation_records), start_indices=None, ) prompt_builder.add_message( Role.ASSISTANT, f"Activations: {formatted_activation_records}\n\n", ) prompt_builder.add_message( Role.SYSTEM, "Now, we're going predict the activation of a new neuron on a single token, " "following the same rules as the examples above. Activations still range from 0 to 10.", ) single_token_example = self.few_shot_example_set.get_single_token_prediction_example() assert single_token_example.token_index_to_score is not None self._add_single_token_simulation_subprompt( prompt_builder, single_token_example.activation_records[0], len(few_shot_examples) + 1, explanation, token_index_to_score=single_token_example.token_index_to_score, end_of_prompt=False, ) activation_record = ActivationRecord( tokens=list(tokens[: token_index_to_score + 1]), # ActivationRecord expects List type. activations=[0.0] * len(tokens), ) self._add_single_token_simulation_subprompt( prompt_builder, activation_record, len(few_shot_examples) + 2, explanation, token_index_to_score, end_of_prompt=True, ) return prompt_builder.build(self.prompt_format, allow_extra_system_messages=True)
# Utilities for dataclasses that are very fast to serialize and deserialize, with limited data # validation. Fields must not be tuples, since they get serialized and then deserialized as lists. # # The unit tests for this library show how to use it. import json from dataclasses import dataclass, field, fields, is_dataclass from functools import partial from typing import Any, Union import orjson dataclasses_by_name = {} dataclasses_by_fieldnames = {} @dataclass class FastDataclass: dataclass_name: str = field(init=False) def __post_init__(self) -> None: self.dataclass_name = self.__class__.__name__ def register_dataclass(cls): # type: ignore assert is_dataclass(cls), "Only dataclasses can be registered." dataclasses_by_name[cls.__name__] = cls name_set = frozenset(f.name for f in fields(cls) if f.name != "dataclass_name") dataclasses_by_fieldnames[name_set] = cls return cls def dumps(obj: Any) -> bytes: return orjson.dumps(obj, option=orjson.OPT_SERIALIZE_NUMPY) def _object_hook(d: Any, backwards_compatible: bool = True) -> Any: # If d is a list, recurse. if isinstance(d, list): return [_object_hook(x, backwards_compatible=backwards_compatible) for x in d] # If d is not a dict, return it as is. if not isinstance(d, dict): return d cls = None if "dataclass_name" in d: if d["dataclass_name"] in dataclasses_by_name: cls = dataclasses_by_name[d["dataclass_name"]] else: assert backwards_compatible, ( f"Dataclass {d['dataclass_name']} not found, set backwards_compatible=True if you " f"are okay with that." ) # Load objects created without dataclass_name set. else: # Try our best to find a dataclass if backwards_compatible is True. if backwards_compatible: d_fields = frozenset(d.keys()) if d_fields in dataclasses_by_fieldnames: cls = dataclasses_by_fieldnames[d_fields] elif len(d_fields) > 0: # Check if the fields are a subset of a dataclass (if the dataclass had extra fields # added since the data was created). Note that this will fail if fields were removed # from the dataclass. for key, possible_cls in dataclasses_by_fieldnames.items(): if d_fields.issubset(key): cls = possible_cls break else: print(f"Could not find dataclass for {d_fields} {cls}") new_d = { k: _object_hook(v, backwards_compatible=backwards_compatible) for k, v in d.items() if k != "dataclass_name" } if cls is not None: return cls(**new_d) else: return new_d def loads(s: Union[str, bytes], backwards_compatible: bool = True) -> Any: return json.loads( s, object_hook=partial(_object_hook, backwards_compatible=backwards_compatible), )
from .fast_dataclasses import FastDataclass, dumps, loads, register_dataclass __all__ = ["FastDataclass", "dumps", "loads", "register_dataclass"]
from dataclasses import dataclass import pytest from .fast_dataclasses import FastDataclass, dumps, loads, register_dataclass # Inheritance is a bit tricky with our setup. dataclass_name must be set for instances of these # classes to serialize and deserialize correctly, but if it's given a default value, then subclasses # can't have any fields that don't have default values, because of how constructors are generated # for dataclasses (fields with no default value can't follow those with default values). To work # around this, we set dataclass_name in __post_init__ on the base class, which is called after the # constructor. The implementation does the right thing for both the base class and the subclass. @register_dataclass @dataclass class DataclassC(FastDataclass): ints: list[int] @register_dataclass @dataclass class DataclassC_ext(DataclassC): s: str @register_dataclass @dataclass class DataclassB(FastDataclass): str_to_c: dict[str, DataclassC] cs: list[DataclassC] @register_dataclass @dataclass class DataclassA(FastDataclass): floats: list[float] strings: list[str] bs: list[DataclassB] @register_dataclass @dataclass class DataclassD(FastDataclass): s1: str s2: str = "default" def test_dataclasses() -> None: a = DataclassA( floats=[1.0, 2.0], strings=["a", "b"], bs=[ DataclassB( str_to_c={"a": DataclassC(ints=[1, 2]), "b": DataclassC(ints=[3, 4])}, cs=[DataclassC(ints=[5, 6]), DataclassC_ext(ints=[7, 8], s="s")], ), DataclassB( str_to_c={"c": DataclassC_ext(ints=[9, 10], s="t"), "d": DataclassC(ints=[11, 12])}, cs=[DataclassC(ints=[13, 14]), DataclassC(ints=[15, 16])], ), ], ) assert loads(dumps(a)) == a def test_c_and_c_ext() -> None: c_ext = DataclassC_ext(ints=[3, 4], s="s") assert loads(dumps(c_ext)) == c_ext c = DataclassC(ints=[1, 2]) assert loads(dumps(c)) == c def test_bad_serialized_data() -> None: assert type(loads(dumps(DataclassC(ints=[3, 4])))) == DataclassC assert type(loads('{"ints": [3, 4]}', backwards_compatible=False)) == dict assert type(loads('{"ints": [3, 4], "dataclass_name": "DataclassC"}')) == DataclassC with pytest.raises(TypeError): loads('{"ints": [3, 4], "bogus_extra_field": "foo", "dataclass_name": "DataclassC"}') with pytest.raises(TypeError): loads('{"ints_field_is_missing": [3, 4], "dataclass_name": "DataclassC"}') assert type(loads('{"s1": "test"}', backwards_compatible=False)) == dict assert type(loads('{"s1": "test"}', backwards_compatible=True)) == DataclassD
# %% import logging from flask import Flask, request from flask_cors import CORS import json import urllib.request def load_az_json(url): with urllib.request.urlopen(url) as f: return json.load(f) def start( dev: bool = False, host_name: str = "0.0.0.0", port: int = 80, ): app = Flask("interpretability chat") app.logger.setLevel(logging.INFO) # app.logger.disabled = True CORS(app) @app.after_request def after_request(response): response.headers.add("Access-Control-Allow-Origin", "*") response.headers.add( "Access-Control-Allow-Headers", "Content-Type,Authorization" ) response.headers.add( "Access-Control-Allow-Methods", "GET,PUT,POST,DELETE,OPTIONS" ) return response @app.route("/load_az", methods=["GET", "POST"]) async def load_az(): args = request.get_json() path = args["path"] result = load_az_json(path) return result app.run(debug=dev, host=host_name, port=port, use_reloader=False) def main(dev: bool = True, host_name: str = "0.0.0.0", port: int = 8000): start(dev=dev, host_name=host_name, port=port) if __name__ == "__main__": main()
import multiprocessing import os import sys import subprocess from distutils import sysconfig from distutils.command.build import build as DistutilsBuild from setuptools import setup def build_common(dynamic_library_extension, cmake_arg_list=None): # On OSX CMake's FindPythonLibs is flaky; we need to supply lib and include # dirs otherwise it sometimes fails to pull up the correct versions (see # https://cmake.org/Bug/view.php?id=14809) def find_python_library(): for var in ['LIBPL', 'LIBDIR']: python_library = os.path.join(sysconfig.get_config_var(var), 'libpython{}.{}'.format(sysconfig.get_python_version(), dynamic_library_extension)) if os.path.exists(python_library): return python_library cores_to_use = max(1, multiprocessing.cpu_count() - 1) cmake_arg_list = cmake_arg_list if cmake_arg_list is not None else [] python_library = find_python_library() python_include = sysconfig.get_python_inc() if python_library is not None: cmake_arg_list.append('-DPYTHON_LIBRARY={}'.format(python_library)) cmake_arg_list.append('-DPYTHON_INCLUDE_DIR={}'.format(python_include)) subprocess.check_call(['cmake', '-DCMAKE_BUILD_TYPE=Release', '-DBUILD_PYTHON=ON', '-DBUILD_JAVA=OFF', '-DPYTHON_EXECUTABLE:FILEPATH={}'.format(sys.executable)] + cmake_arg_list, cwd='doom_py') subprocess.check_call(['make', '-j', str(cores_to_use)], cwd='doom_py') subprocess.check_call(['rm', '-f', 'vizdoom.so'], cwd='doom_py') subprocess.check_call(['ln', '-s', 'bin/python/vizdoom.so', 'vizdoom.so'], cwd='doom_py') def build_osx(): build_common('dylib', cmake_arg_list=['-DOSX_COCOA_BACKEND=OFF']) # Symlink to the correct vizdoom binary subprocess.check_call(['rm', '-f', 'bin/vizdoom'], cwd='doom_py') subprocess.check_call(['ln', '-s', 'vizdoom.app/Contents/MacOS/vizdoom', 'bin/vizdoom'], cwd='doom_py') def build_linux(): build_common('so') def build_windows(): # THIS IS UNTESTED build_common('dll') if sys.platform.startswith("darwin"): platname = "osx" build_func = build_osx elif sys.platform.startswith("linux"): platname = "linux" build_func = build_linux elif sys.platform.startswith("win"): platname = "win" build_func = build_windows else: raise RuntimeError("Unrecognized platform: {}".format(sys.platform)) # For building Doom class BuildDoom(DistutilsBuild): def run(self): try: build_func() except subprocess.CalledProcessError as e: if platname == 'osx': library_str = "doom_py requires boost, boost-python, sdl2 on OSX (installable via 'brew install boost boost-python sdl2')" elif platname == 'linux': library_str = "Try running 'apt-get install -y python-numpy cmake zlib1g-dev libjpeg-dev libboost-all-dev gcc libsdl2-dev wget unzip'" else: library_str = '' sys.stderr.write("\033[1m" + "\nCould not build doom-py: %s. (HINT: are you sure cmake is installed? You might also be missing a library. %s\n\n" % (e, library_str) + "\033[0m") raise DistutilsBuild.run(self) setup(name='doom-py', version='0.0.14', description='Python bindings to ViZDoom', url='https://github.com/openai/doom-py', author='OpenAI Community', author_email='[email protected]', packages=['doom_py'], cmdclass={'build': BuildDoom}, setup_requires=['numpy'], install_requires=['numpy'], tests_require=['nose2'], classifiers=['License :: OSI Approved :: MIT License'], include_package_data=True, )
from doom_py.vizdoom import * import os class Loader(): """ This class converts file name to full paths to be imported by the DoomGame """ def get_vizdoom_path(self): package_directory = os.path.dirname(os.path.abspath(__file__)) return os.path.join(package_directory, 'bin/vizdoom') def get_freedoom_path(self): package_directory = os.path.dirname(os.path.abspath(__file__)) return os.path.join(package_directory, 'scenarios/freedoom2.wad') def get_scenario_path(self, name): package_directory = os.path.dirname(os.path.abspath(__file__)) return os.path.join(package_directory, 'scenarios/{}'.format(name))
#!/usr/bin/python ##################################################################### # This script presents how to run some scenarios. # Configuration is loaded from "../../examples/config/<SCENARIO_NAME>.cfg" file. # <episodes> number of episodes are played. # Random combination of buttons is chosen for every action. # Game variables from state and last reward are printed. # To see the scenario description go to "../../scenarios/README.md" # ##################################################################### from __future__ import print_function from vizdoom import DoomGame, ScreenResolution from random import choice import itertools as it from time import sleep game = DoomGame() # Choose scenario config file you wish to watch. # Don't load two configs cause the second will overrite the first one. # Multiple config files are ok but combining these ones doesn't make much sense. game.load_config("../../examples/config/basic.cfg") #game.load_config("../../examples/config/deadly_corridor.cfg") #game.load_config("../../examples/config/deathmatch.cfg") #game.load_config("../../examples/config/defend_the_center.cfg") #game.load_config("../../examples/config/defend_the_line.cfg") #game.load_config("../../examples/config/health_gathering.cfg") #game.load_config("../../examples/config/my_way_home.cfg") #game.load_config("../../examples/config/predict_position.cfg") #game.load_config("../../examples/config/take_cover.cfg") # Makes the screen bigger to see more details. game.set_screen_resolution(ScreenResolution.RES_640X480) game.init() # Creates all possible actions depending on how many buttons there are. actions_num = game.get_available_buttons_size() actions = [] for perm in it.product([False, True], repeat=actions_num): actions.append(list(perm)) episodes = 10 sleep_time = 0.028 for i in range(episodes): print("Episode #" +str(i+1)) # Not needed for the first episdoe but the loop is nicer. game.new_episode() while not game.is_episode_finished(): # Gets the state and possibly to something with it s = game.get_state() img = s.image_buffer misc = s.game_variables # Makes a random action and save the reward. r = game.make_action(choice(actions)) # Makes a "prolonged" action and skip frames: # skiprate = 3 # r = game.make_action(choice(actions), skiprate) # The same could be achieved with: # game.set_action(choice(actions)) # skiprate = 3 # game.advance_action(skiprate) # r = game.get_last_reward() print("State #" +str(s.number)) print("Game Variables:", misc) print("Performed action:",game.get_last_action()) print("Last Reward:",r) print("=====================") # Sleep some time because processing is too fast to watch. if sleep_time>0: sleep(sleep_time) print("Episode finished!") print("total reward:", game.get_total_reward()) print("************************")
#!/usr/bin/python ##################################################################### # This script presents how to make use of game variables to implement # shaping using health_guided.wad scenario # Health_guided scenario is just like health_gathering # (see "../../scenarios/README.md") but for each collected medkit global # variable number 1 in acs script (coresponding to USER1) is increased # by 100.0. It is not considered a part of reward but will possibly # reduce learning time. # <episodes> number of episodes are played. # Random combination of buttons is chosen for every action. # Game variables from state and last reward are printed. # ##################################################################### from __future__ import print_function from vizdoom import * from random import choice import itertools as it from time import sleep import cv2 game = DoomGame() # Choose scenario config file you wish to watch. # Don't load two configs cause the second will overrite the first one. # Multiple config files are ok but combining these ones doesn't make much sense. game.load_config("../../examples/config/health_gathering.cfg") game.set_screen_resolution(ScreenResolution.RES_640X480) game.init() # Creates all possible actions. actions_num = game.get_available_buttons_size() actions = [] for perm in it.product([False, True], repeat=actions_num): actions.append(list(perm)) episodes = 10 sleep_time = 0.028 last_total_shaping_reward = 0 for i in range(episodes): print("Episode #" + str(i+1)) # Not needed for the first episdoe but the loop is nicer. game.new_episode() while not game.is_episode_finished(): # Gets the state and possibly to something with it s = game.get_state() img = s.image_buffer misc = s.game_variables # Makes a random action and save the reward. r = game.make_action(choice(actions)) # Retrieve the shaping reward sr = doom_fixed_to_double(game.get_game_variable(GameVariable.USER1)) sr = sr - last_total_shaping_reward last_total_shaping_reward += sr print("State #" +str(s.number)) print("Health:", misc[0]) print("Last Reward:", r) print("Last Shaping Reward:", sr) print("=====================") # Sleep some time because processing is too fast to watch. if sleep_time>0: sleep(sleep_time) print("Episode finished!") print("total reward:", game.get_total_reward()) print("************************") game.close()
#!/usr/bin/python from __future__ import print_function from vizdoom import * from random import choice from time import sleep from time import time game = DoomGame() game.set_vizdoom_path("../../bin/vizdoom") game.set_doom_game_path("../../scenarios/freedoom2.wad") #game.set_doom_game_path("../../scenarios/doom2.wad") # Not provided with environment due to licences. game.set_doom_map("map01") game.set_screen_resolution(ScreenResolution.RES_640X480) # Adds delta buttons that will be allowed and set the maximum allowed value (optional). game.add_available_button(Button.MOVE_FORWARD_BACKWARD_DELTA, 10) game.add_available_button(Button.MOVE_LEFT_RIGHT_DELTA, 5) game.add_available_button(Button.TURN_LEFT_RIGHT_DELTA, 5) game.add_available_button(Button.LOOK_UP_DOWN_DELTA) # For normal buttons (binary) all values other than 0 are interpreted as pushed. # For delta buttons values determine a precision/speed. # # For TURN_LEFT_RIGHT_DELTA and LOOK_UP_DOWN_DELTA value is the angle (in degrees) # of which the viewing angle will change. # # For MOVE_FORWARD_BACKWARD_DELTA, MOVE_LEFT_RIGHT_DELTA, MOVE_UP_DOWN_DELTA (rarely used) # value is the speed of movement in a given direction (100 is close to the maximum speed). action = [100, 10, 10, 1] # If button's absolute value > max button's value then value = max value with original value sign. # Delta buttons in spectator modes correspond to mouse movements. # Maximum allowed values also apply to spectator modes. # game.add_game_args("+freelook 1") # Use this to enable looking around with the mouse. # game.set_mode(Mode.SPECTATOR) game.set_window_visible(True) game.init() episodes = 10 sleep_time = 0.028 for i in range(episodes): print("Episode #" + str(i+1)) game.new_episode() while not game.is_episode_finished(): s = game.get_state() r = game.make_action(action) t = game.get_episode_time() action[0] = t % 100 - 50 action[1] = t % 100 - 50 action[2] = t % 100 - 50 if not t % 25: action[3] = -action[3] print("State #" + str(s.number)) print("=====================") if sleep_time>0: sleep(sleep_time) print("Episode finished.") print("************************") game.close()
#!/usr/bin/python ##################################################################### # This script presents SPECTATOR mode. In SPECTATOR mode you play and # your agent can learn from it. # Configuration is loaded from "../../examples/config/<SCENARIO_NAME>.cfg" file. # # To see the scenario description go to "../../scenarios/README.md" # ##################################################################### from __future__ import print_function from vizdoom import * from time import sleep game = DoomGame() # Choose scenario config file you wish to watch. # Don't load two configs cause the second will overrite the first one. # Multiple config files are ok but combining these ones doesn't make much sense. #game.load_config("../../examples/config/basic.cfg") #game.load_config("../../examples/config/deadly_corridor.cfg") game.load_config("../../examples/config/deathmatch.cfg") #game.load_config("../../examples/config/defend_the_center.cfg") #game.load_config("../../examples/config/defend_the_line.cfg") #game.load_config("../../examples/config/health_gathering.cfg") #game.load_config("../../examples/config/my_way_home.cfg") #game.load_config("../../examples/config/predict_position.cfg") #game.load_config("../../examples/config/take_cover.cfg") # Enables freelook in engine game.add_game_args("+freelook 1") game.set_screen_resolution(ScreenResolution.RES_640X480) # Enables spectator mode, so you can play. Sounds strange but it is agent who is supposed to watch not you. game.set_window_visible(True) game.set_mode(Mode.SPECTATOR) game.init() episodes = 10 print("") for i in range(episodes): print("Episode #" +str(i+1)) game.new_episode() while not game.is_episode_finished(): s = game.get_state() img = s.image_buffer misc = s.game_variables game.advance_action() a = game.get_last_action() r = game.get_last_reward() print("state #"+str(s.number)) print("game variables: ", misc) print("action:", a) print("reward:",r) print("=====================") print("episode finished!") print("total reward:", game.get_total_reward()) print("************************") sleep(2.0) game.close()
#!/usr/bin/python ##################################################################### # This script tests performance in frames per second. # Change iters, resolution, window visibility, use get_ state or not. # It should give you some idea how fast the framework can work on # your hardware. The test involes copying the state to make it more # simillar to any reasonable usage. Comment the line with get_state # to exclude copying process. ##################################################################### from __future__ import print_function from vizdoom import * from random import choice from vizdoom import ScreenResolution as res from time import time # Some options: resolution =res.RES_320X240 screen_format = ScreenFormat.DEPTH_BUFFER8 iterations = 10000 game = DoomGame() game.load_config("../../examples/config/basic.cfg") game.set_screen_resolution(resolution) game.set_screen_format(screen_format) game.set_window_visible(False) game.init() actions = [[True,False,False],[False,True,False],[False,False,True]] left = actions[0] right = actions[1] shoot = actions[2] idle = [False,False,False] iterations = 10000 start = time() print("Checking FPS rating. It may take some time. Be patient.") for i in range(iterations): if game.is_episode_finished(): game.new_episode() # Copying happens here s = game.get_state() game.make_action(choice(actions)) end=time() t = end-start print("Results:") print("Iterations:", iterations) print("Resolution:", resolution) print("time:",round(t,3)) print("fps: ",round(iterations/t,2)) game.close()
#!/usr/bin/python ##################################################################### # This script presents different formats of the screen buffer. # OpenCV is used here to display images, install it or remove any # references to cv2 # Configuration is loaded from "../../examples/config/basic.cfg" file. # <episodes> number of episodes are played. # Random combination of buttons is chosen for every action. # Game variables from state and last reward are printed. # To see the scenario description go to "../../scenarios/README.md" # ##################################################################### from __future__ import print_function from vizdoom import * from time import sleep from time import time from random import choice import cv2 game = DoomGame() # Use other config file if you wish. game.load_config("../../examples/config/basic.cfg") #game.set_window_visible(False) # Just umcomment desired format. The last uncommented will be applied. # Formats with C were ommited cause they are not cv2 friendly #game.set_screen_format(ScreenFormat.RGB24) #game.set_screen_format(ScreenFormat.ARGB32) #game.set_screen_format(ScreenFormat.GRAY8) # This is most fun. It looks best if you inverse colors. game.set_screen_format(ScreenFormat.DEPTH_BUFFER8) #These formats can be use bet they do not make much sense for cv2, you'll just get mixed up colors. #game.set_screen_format(ScreenFormat.BGR24) #game.set_screen_format(ScreenFormat.RGBA32) #game.set_screen_format(ScreenFormat.BGRA32) #game.set_screen_format(ScreenFormat.ABGR32) #This one makes no sense in particular #game.set_screen_format(ScreenFormat.DOOM_256_COLORS) game.set_screen_resolution(ScreenResolution.RES_640X480) game.init() actions = [[True,False,False],[False,True,False],[False,False,True]] episodes = 10 # sleep time in ms sleep_time = 20 for i in range(episodes): print("Episode #" +str(i+1)) # Not needed for the first episdoe but the loop is nicer. game.new_episode() while not game.is_episode_finished(): # Gets the state and possibly to something with it s = game.get_state() img = s.image_buffer misc = s.game_variables # Gray8 shape is not cv2 compliant if game.get_screen_format() in [ScreenFormat.GRAY8, ScreenFormat.DEPTH_BUFFER8]: img = img.reshape(img.shape[1],img.shape[2],1) # Display the image here! cv2.imshow('Doom Buffer',img) cv2.waitKey(sleep_time) # Makes a random action and save the reward. r = game.make_action(choice(actions)) print("State #" +str(s.number)) print("Game Variables:", misc) print("Last Reward:",r) print("=====================") print("Episode finished!") print("total reward:", game.get_total_reward()) print("************************") cv2.destroyAllWindows()
#!/usr/bin/python ##################################################################### # This script presents how to run deterministic episodes by setting # seed. After setting the seed every episode will look the same (if # agent will behave deterministicly of course). # Configuration is loaded from "../../examples/config/<SCENARIO_NAME>.cfg" file. # <episodes> number of episodes are played. # Random combination of buttons is chosen for every action. # #Game variables from state and last reward are printed. # # To see the scenario description go to "../../scenarios/README.md" # ##################################################################### from __future__ import print_function from vizdoom import * from random import choice import itertools as it from time import sleep game = DoomGame() # Choose the scenario config file you wish to watch. # Don't load two configs cause the second will overrite the first one. # Multiple config files are ok but combining these ones doesn't make much sense. game.load_config("../../examples/config/basic.cfg") #game.load_config("../../examples/config/deadly_corridor.cfg") #game.load_config("../../examples/config/defend_the_center.cfg") #game.load_config("../../examples/config/defend_the_line.cfg") #game.load_config("../../examples/config/health_gathering.cfg") #game.load_config("../../examples/config/my_way_home.cfg") #game.load_config("../../examples/config/predict_position.cfg") game.set_screen_resolution(ScreenResolution.RES_640X480) seed = 1234 # Sets the seed. It could be after init as well. game.set_seed(seed) game.init() # Creates all possible actions depending on how many buttons there are. actions_num = game.get_available_buttons_size() actions = [] for perm in it.product([False, True], repeat=actions_num): actions.append(list(perm)) episodes = 10 sleep_time = 0.028 for i in range(episodes): print("Episode #" + str(i+1)) # Seed can be changed anytime. It will affect next episodes. # game.set_seed(seed) game.new_episode() while not game.is_episode_finished(): # Gets the state and possibly to something with it s = game.get_state() img = s.image_buffer misc = s.game_variables # Check which action you chose! r = game.make_action(choice(actions)) print("State #" + str(s.number)) print("Game Variables:", misc) print("Last Reward:", r) print("Seed:", game.get_seed()) print("=====================") # Sleep some time because processing is too fast to watch. if sleep_time>0: sleep(sleep_time) print("Episode finished!") print("total reward:", game.get_total_reward()) print("************************") game.close()
#!/usr/bin/python ##################################################################### # This script presents how to use the most basic features of the environment. # It configures the engine, and makes the agent perform random actions. # It also gets current state and reward earned with the action. # <episodes> number of episodes are played. # Random combination of buttons is chosen for every action. # Game variables from state and last reward are printed. # To see the scenario description go to "../../scenarios/README.md" # ##################################################################### from __future__ import print_function from vizdoom import DoomGame from vizdoom import Mode from vizdoom import Button from vizdoom import GameVariable from vizdoom import ScreenFormat from vizdoom import ScreenResolution # Or just use from vizdoom import * from random import choice from time import sleep from time import time # Create DoomGame instance. It will run the game and communicate with you. game = DoomGame() # Now it's time for configuration! # load_config could be used to load configuration instead of doing it here with code. # If load_config is used in-code configuration will work. Note that the most recent changes will add to previous ones. #game.load_config("../../examples/config/basic.cfg") # Sets path to vizdoom engine executive which will be spawned as a separate process. Default is "./vizdoom". game.set_vizdoom_path("../../bin/vizdoom") # Sets path to doom2 iwad resource file which contains the actual doom game. Default is "./doom2.wad". game.set_doom_game_path("../../scenarios/freedoom2.wad") #game.set_doom_game_path("../../scenarios/doom2.wad") # Not provided with environment due to licences. # Sets path to additional resources iwad file which is basically your scenario iwad. # If not specified default doom2 maps will be used and it's pretty much useles... unless you want to play doom. game.set_doom_scenario_path("../../scenarios/basic.wad") # Sets map to start (scenario .wad files can contain many maps). game.set_doom_map("map01") # Sets resolution. Default is 320X240 game.set_screen_resolution(ScreenResolution.RES_640X480) # Sets the screen buffer format. Not used here but now you can change it. Defalut is CRCGCB. game.set_screen_format(ScreenFormat.RGB24) # Sets other rendering options game.set_render_hud(False) game.set_render_crosshair(False) game.set_render_weapon(True) game.set_render_decals(False) game.set_render_particles(False) # Adds buttons that will be allowed. game.add_available_button(Button.MOVE_LEFT) game.add_available_button(Button.MOVE_RIGHT) game.add_available_button(Button.ATTACK) # Adds game variables that will be included in state. game.add_available_game_variable(GameVariable.AMMO2) # Causes episodes to finish after 200 tics (actions) game.set_episode_timeout(200) # Makes episodes start after 10 tics (~after raising the weapon) game.set_episode_start_time(10) # Makes the window appear (turned on by default) game.set_window_visible(True) # Turns on the sound. (turned off by default) game.set_sound_enabled(True) # Sets the livin reward (for each move) to -1 game.set_living_reward(-1) # Sets ViZDoom mode (PLAYER, ASYNC_PLAYER, SPECTATOR, ASYNC_SPECTATOR, PLAYER mode is default) game.set_mode(Mode.PLAYER) # Initialize the game. Further configuration won't take any effect from now on. game.init() # Define some actions. Each list entry corresponds to declared buttons: # MOVE_LEFT, MOVE_RIGHT, ATTACK # 5 more combinations are naturally possible but only 3 are included for transparency when watching. actions = [[True,False,False],[False,True,False],[False,False,True]] # Run this many episodes episodes = 10 # Sets time that will pause the engine after each action. # Without this everything would go too fast for you to keep track of what's happening. # 0.05 is quite arbitrary, nice to watch with my hardware setup. sleep_time = 0.028 for i in range(episodes): print("Episode #" + str(i+1)) # Starts a new episode. It is not needed right after init() but it doesn't cost much. At least the loop is nicer. game.new_episode() while not game.is_episode_finished(): # Gets the state s = game.get_state() # Makes a random action and get remember reward. r = game.make_action(choice(actions)) # Prints state's game variables. Printing the image is quite pointless. print("State #" + str(s.number)) print("Game variables:", s.game_variables[0]) print("Reward:", r) print("=====================") if sleep_time>0: sleep(sleep_time) # Check how the episode went. print("Episode finished.") print("total reward:", game.get_total_reward()) print("************************") # It will be done automatically anyway but sometimes you need to do it in the middle of the program... game.close()
#!/usr/bin/python from __future__ import print_function from vizdoom import * from random import choice game = DoomGame() game.set_vizdoom_path("../../bin/vizdoom") # Use CIG example config or Your own. game.load_config("../../examples/config/cig.cfg") # Select game and map You want to use. game.set_doom_game_path("../../scenarios/freedoom2.wad") #game.set_doom_game_path("../../scenarios/doom2.wad") # Not provided with environment due to licences game.set_doom_map("map01") # Limited deathmatch. #game.set_doom_map("map02") # Full deathmatch. # Start multiplayer game only with Your AI (with options that will be used in the competition, details in cig_host example). game.add_game_args("-host 1 -deathmatch +timelimit 10.0 " "+sv_forcerespawn 1 +sv_noautoaim 1 +sv_respawnprotect 1 +sv_spawnfarthest 1") # Name Your AI. game.add_game_args("+name AI") # Multiplayer requires the use of asynchronous modes, but when playing only with bots, synchronous modes can also be used. game.set_mode(Mode.PLAYER) # game.set_window_visible(false) game.init() # Three example sample actions actions = [[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0]] # Add bots (file examples/bots.cfg must be placed in the same directory as the Doom executable file). bots_number = 7 for i in range(bots_number): game.send_game_command("addbot") # Play until the game (episode) is over. while not game.is_episode_finished(): if game.is_player_dead(): # Use this to respawn immediately after death, new state will be available. game.respawn_player() # Or observe the game until automatic respawn. #game.advance_action(); #continue; s = game.get_state() # Analyze the state. game.make_action(choice(actions)) # Make your action. print("Frags:", game.get_game_variable(GameVariable.FRAGCOUNT)) game.close()
#!/usr/bin/python from __future__ import print_function from vizdoom import * from random import choice game = DoomGame() # Use CIG example config or Your own. game.load_config("../../examples/config/cig.cfg") # Select game and map You want to use. game.set_doom_game_path("../../scenarios/freedoom2.wad") #game.set_doom_game_path("../../scenarios/doom2.wad") # Not provided with environment due to licences game.set_doom_map("map01") # Limited deathmatch. #game.set_doom_map("map02") # Full deathmatch. # Host game with options that will be used in the competition. # game.add_game_args("-host 2 " # This machine will function as a host for a multiplayer game with this many players (including this machine). It will wait for other machines to connect using the -join parameter and then start the game when everyone is connected. "-deathmatch " # Deathmatch rules are used for the game. "+timelimit 10.0 " # The game (episode) will end after this many minutes have elapsed. "+sv_forcerespawn 1 " # Players will respawn automatically after they die. "+sv_noautoaim 1 " # Autoaim is disabled for all players. "+sv_respawnprotect 1 " # Players will be invulnerable for two second after spawning. "+sv_spawnfarthest 1 " # Players will be spawned as far as possible from any other players. "+vizdoom_nocheat 1") # Disables depth buffer and the ability to use commands that could interfere with multiplayer game. # Name Your AI. game.add_game_args("+name AI") # Multiplayer requires the use of asynchronous modes. game.set_mode(Mode.ASYNC_PLAYER) # game.set_window_visible(false) game.init() # Three example sample actions actions = [[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0]] # Play until the game (episode) is over. while not game.is_episode_finished(): if game.is_player_dead(): # Use this to respawn immediately after death, new state will be available. game.respawn_player() # Or observe the game until automatic respawn. #game.advance_action(); #continue; s = game.get_state() # Analyze the state. game.make_action(choice(actions)) # Make your action. print("Frags:", game.get_game_variable(GameVariable.FRAGCOUNT)) game.close()
#!/usr/bin/python import itertools as it import pickle from random import sample, randint, random from time import time from vizdoom import * import cv2 import numpy as np import theano from lasagne.init import GlorotUniform, Constant from lasagne.layers import Conv2DLayer, InputLayer, DenseLayer, MaxPool2DLayer, get_output, get_all_params, \ get_all_param_values, set_all_param_values from lasagne.nonlinearities import rectify from lasagne.objectives import squared_error from lasagne.updates import rmsprop from theano import tensor from tqdm import * from time import sleep # Q-learning settings: replay_memory_size = 10000 discount_factor = 0.99 start_epsilon = float(1.0) end_epsilon = float(0.1) epsilon = start_epsilon static_epsilon_steps = 5000 epsilon_decay_steps = 20000 epsilon_decay_stride = (start_epsilon - end_epsilon) / epsilon_decay_steps # Max reward is about 100 (for killing) so it'll be normalized reward_scale = 0.01 # Some of the network's and learning settings: learning_rate = 0.00001 batch_size = 32 epochs = 20 training_steps_per_epoch = 5000 test_episodes_per_epoch = 100 # Other parameters skiprate = 7 downsampled_x = 60 downsampled_y = int(2/3.0*downsampled_x) episodes_to_watch = 10 # Where to save and load network's weights. params_savefile = "basic_params" params_loadfile = None # Function for converting images def convert(img): img = img[0].astype(np.float32) / 255.0 img = cv2.resize(img, (downsampled_x, downsampled_y)) return img # Replay memory: class ReplayMemory: def __init__(self, capacity): state_shape = (capacity, 1, downsampled_y, downsampled_x) self.s1 = np.zeros(state_shape, dtype=np.float32) self.s2 = np.zeros(state_shape, dtype=np.float32) self.a = np.zeros(capacity, dtype=np.int32) self.r = np.zeros(capacity, dtype=np.float32) self.nonterminal = np.zeros(capacity, dtype=np.bool_) self.size = 0 self.capacity = capacity self.oldest_index = 0 def add_transition(self, s1, action, s2, reward): self.s1[self.oldest_index, 0] = s1 if s2 is None: self.nonterminal[self.oldest_index] = False else: self.s2[self.oldest_index, 0] = s2 self.nonterminal[self.oldest_index] = True self.a[self.oldest_index] = action self.r[self.oldest_index] = reward self.oldest_index = (self.oldest_index + 1) % self.capacity self.size = min(self.size + 1, self.capacity) def get_sample(self, sample_size): i = sample(range(0, self.size), sample_size) return self.s1[i], self.s2[i], self.a[i], self.r[i], self.nonterminal[i] # Creates the network: def create_network(available_actions_num): # Creates the input variables s1 = tensor.tensor4("States") a = tensor.vector("Actions", dtype="int32") q2 = tensor.vector("Next State best Q-Value") r = tensor.vector("Rewards") nonterminal = tensor.vector("Nonterminal", dtype="int8") # Creates the input layer of the network. dqn = InputLayer(shape=[None, 1, downsampled_y, downsampled_x], input_var=s1) # Adds 3 convolutional layers, each followed by a max pooling layer. dqn = Conv2DLayer(dqn, num_filters=32, filter_size=[8, 8], nonlinearity=rectify, W=GlorotUniform("relu"), b=Constant(.1)) dqn = MaxPool2DLayer(dqn, pool_size=[2, 2]) dqn = Conv2DLayer(dqn, num_filters=64, filter_size=[4, 4], nonlinearity=rectify, W=GlorotUniform("relu"), b=Constant(.1)) dqn = MaxPool2DLayer(dqn, pool_size=[2, 2]) dqn = Conv2DLayer(dqn, num_filters=64, filter_size=[3, 3], nonlinearity=rectify, W=GlorotUniform("relu"), b=Constant(.1)) dqn = MaxPool2DLayer(dqn, pool_size=[2, 2]) # Adds a single fully connected layer. dqn = DenseLayer(dqn, num_units=512, nonlinearity=rectify, W=GlorotUniform("relu"), b=Constant(.1)) # Adds a single fully connected layer which is the output layer. # (no nonlinearity as it is for approximating an arbitrary real function) dqn = DenseLayer(dqn, num_units=available_actions_num, nonlinearity=None) # Theano stuff q = get_output(dqn) # Only q for the chosen actions is updated more or less according to following formula: # target Q(s,a,t) = r + gamma * max Q(s2,_,t+1) target_q = tensor.set_subtensor(q[tensor.arange(q.shape[0]), a], r + discount_factor * nonterminal * q2) loss = squared_error(q, target_q).mean() # Updates the parameters according to the computed gradient using rmsprop. params = get_all_params(dqn, trainable=True) updates = rmsprop(loss, params, learning_rate) # Compiles theano functions print "Compiling the network ..." function_learn = theano.function([s1, q2, a, r, nonterminal], loss, updates=updates, name="learn_fn") function_get_q_values = theano.function([s1], q, name="eval_fn") function_get_best_action = theano.function([s1], tensor.argmax(q), name="test_fn") print "Network compiled." # Returns Theano objects for the net and functions. # We wouldn't need the net anymore but it is nice to save your model. return dqn, function_learn, function_get_q_values, function_get_best_action # Creates and initializes the environment. print "Initializing doom..." game = DoomGame() game.load_config("../../examples/config/learning.cfg") game.init() print "Doom initialized." # Creates all possible actions. n = game.get_available_buttons_size() actions = [] for perm in it.product([0, 1], repeat=n): actions.append(list(perm)) # Creates replay memory which will store the transitions memory = ReplayMemory(capacity=replay_memory_size) net, learn, get_q_values, get_best_action = create_network(len(actions)) # Loads the network's parameters if the loadfile was specified if params_loadfile is not None: params = pickle.load(open(params_loadfile, "r")) set_all_param_values(net, params) # Makes an action according to epsilon greedy policy and performs a single backpropagation on the network. def perform_learning_step(): # Checks the state and downsamples it. s1 = convert(game.get_state().image_buffer) # With probability epsilon makes a random action. if random() <= epsilon: a = randint(0, len(actions) - 1) else: # Chooses the best action according to the network. a = get_best_action(s1.reshape([1, 1, downsampled_y, downsampled_x])) reward = game.make_action(actions[a], skiprate + 1) reward *= reward_scale if game.is_episode_finished(): s2 = None else: s2 = convert(game.get_state().image_buffer) # Remember the transition that was just experienced. memory.add_transition(s1, a, s2, reward) # Gets a single, random minibatch from the replay memory and learns from it. if memory.size > batch_size: s1, s2, a, reward, nonterminal = memory.get_sample(batch_size) q2 = np.max(get_q_values(s2), axis=1) loss = learn(s1, q2, a, reward, nonterminal) else: loss = 0 return loss print "Starting the training!" steps = 0 for epoch in range(epochs): print "\nEpoch", epoch train_time = 0 train_episodes_finished = 0 train_loss = [] train_rewards = [] train_start = time() print "\nTraining ..." game.new_episode() for learning_step in tqdm(range(training_steps_per_epoch)): # Learning and action is here. train_loss.append(perform_learning_step()) # I if game.is_episode_finished(): r = game.get_total_reward() train_rewards.append(r) game.new_episode() train_episodes_finished += 1 steps += 1 if steps > static_epsilon_steps: epsilon = max(end_epsilon, epsilon - epsilon_decay_stride) train_end = time() train_time = train_end - train_start mean_loss = np.mean(train_loss) print train_episodes_finished, "training episodes played." print "Training results:" train_rewards = np.array(train_rewards) print "mean:", train_rewards.mean(), "std:", train_rewards.std(), "max:", train_rewards.max(), "min:", train_rewards.min(), "mean_loss:", mean_loss, "epsilon:", epsilon print "t:", str(round(train_time, 2)) + "s" # Testing test_episode = [] test_rewards = [] test_start = time() print "Testing..." for test_episode in tqdm(range(test_episodes_per_epoch)): game.new_episode() while not game.is_episode_finished(): state = convert(game.get_state().image_buffer).reshape([1, 1, downsampled_y, downsampled_x]) best_action_index = get_best_action(state) game.make_action(actions[best_action_index], skiprate + 1) r = game.get_total_reward() test_rewards.append(r) test_end = time() test_time = test_end - test_start print "Test results:" test_rewards = np.array(test_rewards) print "mean:", test_rewards.mean(), "std:", test_rewards.std(), "max:", test_rewards.max(), "min:", test_rewards.min() print "t:", str(round(test_time, 2)) + "s" if params_savefile: print "Saving network weigths to:", params_savefile pickle.dump(get_all_param_values(net), open(params_savefile, "w")) print "=========================" print "Training finished! Time to watch!" game.close() game.set_window_visible(True) game.set_mode(Mode.ASYNC_PLAYER) game.init() # Sleeping time between episodes, for convenience. episode_sleep = 0.5 for i in range(episodes_to_watch): game.new_episode() while not game.is_episode_finished(): state = convert(game.get_state().image_buffer).reshape([1, 1, downsampled_y, downsampled_x]) best_action_index = get_best_action(state) game.set_action(actions[best_action_index]) for i in range(skiprate+1): game.advance_action() sleep(episode_sleep) r = game.get_total_reward() print "Total reward: ", r
#!/usr/bin/python from __future__ import print_function from vizdoom import * from random import choice game = DoomGame() # Use CIG example config or Your own. game.load_config("../../examples/config/cig.cfg") # Select game and map You want to use. game.set_doom_game_path("../../scenarios/freedoom2.wad") #game.set_doom_game_path("../../scenarios/doom2.wad") # Not provided with environment due to licences game.set_doom_map("map01") # Limited deathmatch. #game.set_doom_map("map02") # Full deathmatch. # Join existing game. game.add_game_args("-join 127.0.0.1") # Connect to a host for a multiplayer game. # Name Your AI. game.add_game_args("+name AI") # Multiplayer requires the use of asynchronous modes. game.set_mode(Mode.ASYNC_PLAYER) # game.set_window_visible(false) game.init() # Three example sample actions actions = [[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0]] # Play until the game (episode) is over. while not game.is_episode_finished(): if game.is_player_dead(): # Use this to respawn immediately after death, new state will be available. game.respawn_player() # Or observe the game until automatic respawn. #game.advance_action(); #continue; s = game.get_state() # Analyze the state. game.make_action(choice(actions)) # Make your action. print("Frags:", game.get_game_variable(GameVariable.FRAGCOUNT)) game.close()
import os import pkg_resources from setuptools import setup, find_packages setup( name="clip", py_modules=["clip"], version="1.0", description="", author="OpenAI", packages=find_packages(exclude=["tests*"]), install_requires=[ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], include_package_data=True, extras_require={'dev': ['pytest']}, )
from clip.clip import tokenize as _tokenize, load as _load, available_models as _available_models import re import string dependencies = ["torch", "torchvision", "ftfy", "regex", "tqdm"] # For compatibility (cannot include special characters in function name) model_functions = { model: re.sub(f'[{string.punctuation}]', '_', model) for model in _available_models()} def _create_hub_entrypoint(model): def entrypoint(**kwargs): return _load(model, **kwargs) entrypoint.__doc__ = f"""Loads the {model} CLIP model Parameters ---------- device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The {model} CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ return entrypoint def tokenize(): return _tokenize _entrypoints = {model_functions[model]: _create_hub_entrypoint(model) for model in _available_models()} globals().update(_entrypoints)
from .clip import *
from collections import OrderedDict from typing import Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.relu2 = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu3 = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu1(self.bn1(self.conv1(x))) out = self.relu2(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu3(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x[:1], key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x.squeeze(0) class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.relu3 = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(2) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): def stem(x): x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisionTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int ): super().__init__() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisionTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] convert_weights(model) model.load_state_dict(state_dict) return model.eval()
import hashlib import os import urllib import warnings from typing import Any, Union, List from pkg_resources import packaging import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer try: from torchvision.transforms import InterpolationMode BICUBIC = InterpolationMode.BICUBIC except ImportError: BICUBIC = Image.BICUBIC if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] _tokenizer = _Tokenizer() _MODELS = { "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", } def _download(url: str, root: str): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") return download_target def _convert_image_to_rgb(image): return image.convert("RGB") def _transform(n_px): return Compose([ Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") with open(model_path, 'rb') as opened_file: try: # loading JIT archive model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(opened_file, map_location="cpu") if not jit: model = build_model(state_dict or model.state_dict()).to(device) if str(device) == "cpu": model.float() return model, _transform(model.visual.input_resolution) # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def _node_get(node: torch._C.Node, key: str): """Gets attributes of a node which is polymorphic over return type. From https://github.com/pytorch/pytorch/pull/82628 """ sel = node.kindOf(key) return getattr(node, sel)(key) def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if _node_get(inputs[i].node(), "value") == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform(model.input_resolution.item()) def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length truncate: bool Whether to truncate the text in case its encoding is longer than the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) else: result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
import numpy as np import pytest import torch from PIL import Image import clip @pytest.mark.parametrize('model_name', clip.available_models()) def test_consistency(model_name): device = "cpu" jit_model, transform = clip.load(model_name, device=device, jit=True) py_model, _ = clip.load(model_name, device=device, jit=False) image = transform(Image.open("CLIP.png")).unsqueeze(0).to(device) text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) with torch.no_grad(): logits_per_image, _ = jit_model(image, text) jit_probs = logits_per_image.softmax(dim=-1).cpu().numpy() logits_per_image, _ = py_model(image, text) py_probs = logits_per_image.softmax(dim=-1).cpu().numpy() assert np.allclose(jit_probs, py_probs, atol=0.01, rtol=0.1)
from setuptools import setup, find_packages setup( name="jcm", version="0.1", packages=find_packages(), package_dir={"jcm": "jcm"}, install_requires=[ "wandb", "clean-fid", "torchvision", "torch", "tensorflow", "tensorboard", "absl-py", "flax", "jax==0.4.10", "dm-haiku", "optax", "diffrax", "ml-collections", "requests", "scikit-image", "termcolor", "mpi4py", "smart-open[all]", "azure-identity", "azure-storage-blob", "pandas", "seaborn", "tqdm", "huggingface_hub", "h5py", "flaxmodels", "torch-fidelity", ], )
# Code modified from https://github.com/GaParmar/clean-fid/blob/main/cleanfid/fid.py # Original license below: # MIT License # # Copyright (c) 2021 Gaurav Parmar # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch from cleanfid import fid import torchvision import numpy as np import flax import logging from . import checkpoints import tqdm import time import jax import os import io import blobfile import json import uuid import requests import torch_fidelity class ResizeDataset(torch.utils.data.Dataset): """ A placeholder Dataset that enables parallelizing the resize operation using multiple CPU cores files: list of all files in the folder fn_resize: function that takes an np_array as input [0,255] """ def __init__(self, files, mode, size=(299, 299), fdir=None): self.files = files self.fdir = fdir self.transforms = torchvision.transforms.ToTensor() self.size = size self.fn_resize = fid.build_resizer(mode) self.custom_image_tranform = lambda x: x def __len__(self): return len(self.files) def __getitem__(self, i): img_np = self.files[i] # apply a custom image transform before resizing the image to 299x299 img_np = self.custom_image_tranform(img_np) # fn_resize expects a np array and returns a np array img_resized = self.fn_resize(img_np) # ToTensor() converts to [0,1] only if input in uint8 if img_resized.dtype == "uint8": img_t = self.transforms(np.array(img_resized)) * 255 elif img_resized.dtype == "float32": img_t = self.transforms(img_resized) return img_t class TorchDataset(torch.utils.data.Dataset): """ A placeholder Dataset that enables parallelizing the resize operation using multiple CPU cores files: list of all files in the folder fn_resize: function that takes an np_array as input [0,255] """ def __init__(self, files, mode, size=(299, 299), fdir=None): self.files = files self.fdir = fdir self.transforms = torchvision.transforms.ToTensor() self.size = size self.fn_resize = fid.build_resizer(mode) self.custom_image_tranform = lambda x: x def __len__(self): return len(self.files) def __getitem__(self, i): img_np = self.files[i] # apply a custom image transform before resizing the image to 299x299 img_np = self.custom_image_tranform(img_np) # fn_resize expects a np array and returns a np array img_resized = self.fn_resize(img_np) # ToTensor() converts to [0,1] only if input in uint8 assert img_resized.dtype == "uint8" img_t = (self.transforms(np.array(img_resized)) * 255).to(torch.uint8) return img_t def compute_fid( samples, feat_model, dataset_name="cifar10", dataset_res=32, dataset_split="train", batch_size=1024, num_workers=12, mode="legacy_tensorflow", device=torch.device("cuda:0"), ): dataset = ResizeDataset(samples, mode=mode) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers, ) l_feats = [] for batch in tqdm.tqdm(dataloader): l_feats.append(fid.get_batch_features(batch, feat_model, device)) np_feats = np.concatenate(l_feats) mu = np.mean(np_feats, axis=0) sigma = np.cov(np_feats, rowvar=False) ref_mu, ref_sigma = fid.get_reference_statistics( dataset_name, dataset_res, mode=mode, seed=0, split=dataset_split ) score = fid.frechet_distance(mu, sigma, ref_mu, ref_sigma) return score def compute_all_metrics( samples, dataset_name="cifar10-train", mode="legacy_tensorflow", batch_size=1024, num_workers=12, ): dataset = TorchDataset(samples, mode=mode) metrics_dict = torch_fidelity.calculate_metrics( input1=dataset, input2=dataset_name, cuda=True, isc=True, fid=True, verbose=False, ) return metrics_dict def get_samples_from_ckpt(folder, ckpt): files = list( blobfile.glob(os.path.join(folder, f"ckpt_{ckpt}_host_*", "samples_*.npz")) ) all_samples = [] for file in files: with blobfile.BlobFile(file, "rb") as fin: all_samples.append(np.load(fin)["samples"]) if len(all_samples) >= 1: all_samples = np.concatenate(all_samples) else: all_samples = np.zeros((0, 32, 32, 3), dtype=np.uint8) return all_samples def get_fids(folder, ckpt_range, mode, device): ckpts = [] fids = [] feat_model = fid.build_feature_extractor(mode, device) for ckpt in ckpt_range: ckpts.append(ckpt) print("Loading samples from ckpt", ckpt) data = get_samples_from_ckpt(folder, ckpt) print(f"data.shape: {data.shape}") fids.append( compute_fid( data[:50000], mode="legacy_tensorflow", device=device, feat_model=feat_model, ) ) print("FID", fids[-1]) return ckpts, fids def compute_metrics( config, workdir, eval_folder, mode="legacy_tensorflow", device=torch.device("cuda:0"), ): """Compute the FID metrics from given samples. Args: config (dict): The config dict. workdir (str): The working directory. eval_folder (str): The folder to store the evaluation results. """ eval_dir = os.path.join(workdir, eval_folder) blobfile.makedirs(eval_dir) @flax.struct.dataclass class MetricsMeta: ckpt_id: int metrics_meta = MetricsMeta( ckpt_id=config.eval.begin_ckpt, ) metrics_meta = checkpoints.restore_checkpoint( eval_dir, metrics_meta, step=None, prefix="metrics_meta_" ) feat_model = fid.build_feature_extractor(mode, device) begin_ckpt = max(metrics_meta.ckpt_id, config.eval.begin_ckpt) for ckpt in range(begin_ckpt, config.eval.end_ckpt + 1): print(f"Start metric evaluation for ckpt {ckpt}") all_samples = get_samples_from_ckpt(eval_dir, ckpt) waiting_message_printed = False while all_samples.shape[0] < config.eval.num_samples: if not waiting_message_printed and jax.process_index() == 0: logging.warning(f"Waiting for the arrival of samples for ckpt {ckpt}") waiting_message_printed = True time.sleep(100) all_samples = get_samples_from_ckpt(eval_dir, ckpt) fid_score = compute_fid( all_samples[: config.eval.num_samples], mode=mode, device=device, feat_model=feat_model, ) with blobfile.BlobFile( os.path.join(eval_dir, f"metrics_{ckpt}.npz"), "wb", ) as fout: io_buffer = io.BytesIO() np.savez_compressed(io_buffer, fid=fid_score) fout.write(io_buffer.getvalue()) metrics_meta = metrics_meta.replace(ckpt_id=ckpt + 1) checkpoints.save_checkpoint( eval_dir, metrics_meta, step=ckpt, keep=1, prefix="metrics_meta_" ) meta_files = blobfile.glob(os.path.join(eval_dir, "metrics_meta_*.npz")) for file in meta_files: blobfile.remove(file) def obtain_feature_extractor(mode="legacy_tensorflow", device=torch.device("cuda:0")): return fid.build_feature_extractor(mode, device) def compute_fid_jupyter( all_samples, feature_extractor, mode="legacy_tensorflow", device=torch.device("cuda:0"), ): """Compute the FID metrics from given samples. Args: config (dict): The config dict. workdir (str): The working directory. eval_folder (str): The folder to store the evaluation results. """ feat_model = feature_extractor fid_score = compute_fid( all_samples, mode=mode, device=device, feat_model=feat_model, ) return fid_score
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Return training and evaluation/test datasets from config files.""" import jax from torchvision.datasets import CIFAR10 from torchvision.transforms import ToTensor, RandomHorizontalFlip, Compose, Normalize from torch.utils.data import DataLoader import torch import numpy as np import blobfile def get_dataset( config, additional_dim=None, uniform_dequantization=False, evaluation=False, drop_last=True, ): """Create data loaders for training and evaluation. Args: config: A ml_collection.ConfigDict parsed from config files. additional_dim: An integer or `None`. If present, add one additional dimension to the output data, which equals the number of steps jitted together. uniform_dequantization: If `True`, add uniform dequantization to images. evaluation: If `True`, fix number of epochs to 1. Default is `False`. drop_last: If `True`, drop the last batch if it is smaller than the batch size. Default is `True`. if `False`, the last batch will be padded with zeros and a mask will be returned. Returns: train_ds, eval_ds, dataset_builder. """ # Compute batch size for this worker. batch_size = ( config.training.batch_size if not evaluation else config.eval.batch_size ) if batch_size % jax.device_count() != 0: raise ValueError( f"Batch sizes ({batch_size} must be divided by" f"the number of devices ({jax.device_count()})" ) per_device_batch_size = batch_size // jax.device_count() # Create additional data dimension when jitting multiple steps together if additional_dim is None: batch_dims = [jax.local_device_count(), per_device_batch_size] else: batch_dims = [jax.local_device_count(), additional_dim, per_device_batch_size] # Create dataset builders for each dataset. # assert config.data.dataset == "CIFAR10", "Only CIFAR10 is supported for now." if config.data.dataset.upper() == "CIFAR10": def uniform_deq(image_th): if uniform_dequantization: return (image_th * 255.0 + torch.rand_like(image_th)) / 256.0 else: return image_th def data_augmentation(image): if config.data.random_flip is True and not evaluation: return RandomHorizontalFlip(p=0.5)(image) else: return image transforms = Compose( [ data_augmentation, ToTensor(), uniform_deq, Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) train_ds = CIFAR10("./data", train=True, download=True, transform=transforms) eval_ds = CIFAR10("./data", train=False, download=True, transform=transforms) @torch.no_grad() def collate_fn(batch): image_tensor = torch.stack([x[0] for x in batch], dim=0) label_tensor = torch.tensor([x[1] for x in batch]) if image_tensor.shape[0] == int(np.prod(batch_dims)): image_tensor = ( image_tensor.reshape(batch_dims + [3, 32, 32]) .transpose(-3, -2) .transpose(-2, -1) ) label_tensor = label_tensor.reshape(batch_dims) return { "image": image_tensor, "label": label_tensor, "mask": torch.ones_like(label_tensor), } # If the batch size is not a multiple of the batch dimension, pad the batch with zeros. else: pad_size = int(np.prod(batch_dims)) - image_tensor.shape[0] padded_image = torch.concat( [ image_tensor, torch.zeros(pad_size, 3, 32, 32, dtype=image_tensor.dtype), ], axis=0, ) padded_label = torch.concat( [ label_tensor, torch.zeros(pad_size, dtype=label_tensor.dtype), ], axis=0, ) mask = torch.ones(int(np.prod(batch_dims))) mask[image_tensor.shape[0] :] = 0.0 padded_image = ( padded_image.reshape(batch_dims + [3, 32, 32]) .transpose(-3, -2) .transpose(-2, -1) ) padded_label = padded_label.reshape(batch_dims) mask = mask.reshape(batch_dims) return {"image": padded_image, "label": padded_label, "mask": mask} train_ds_loader = DataLoader( train_ds, batch_size=int(np.prod(batch_dims)), shuffle=not evaluation, num_workers=16, drop_last=drop_last, collate_fn=collate_fn, ) eval_ds_loader = DataLoader( eval_ds, batch_size=int(np.prod(batch_dims)), shuffle=not evaluation, num_workers=16, drop_last=drop_last, collate_fn=collate_fn, ) return train_ds_loader, eval_ds_loader
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2021 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Checkpointing helper functions. Handles saving and restoring optimizer checkpoints based on step-number or other numerical metric in filename. Cleans up older / worse-performing checkpoint files. Ported from Tensorflow GFile to blobfile by Yang Song. """ from concurrent.futures import thread import os import re from absl import logging from flax import serialization import blobfile # Single-group reg-exps for int or float numerical substrings. # captures sign: SIGNED_FLOAT_RE = re.compile(r"([-+]?(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][-+]?\d+)?)") # does not capture sign: UNSIGNED_FLOAT_RE = re.compile(r"[-+]?((?:\d+(?:\.\d*)?|\.\d+)(?:[eE][-+]?\d+)?)") def _checkpoint_path(ckpt_dir, step, prefix="checkpoint_"): return os.path.join(ckpt_dir, f"{prefix}{step}") def natural_sort(file_list, signed=True): """Natural sort for filenames with numerical substrings. Args: file_list: List[str]: list of paths to sort containing numerical substrings. signed: bool: if leading '-' (or '+') signs should be included in numerical substrings as a sign or treated as a separator. Returns: List of filenames sorted 'naturally', not lexicographically: any integer substrings are used to subsort numerically. e.g. file_1, file_10, file_2 --> file_1, file_2, file_10 file_0.1, file_-0.2, file_2.0 --> file_-0.2, file_0.1, file_2.0 """ float_re = SIGNED_FLOAT_RE if signed else UNSIGNED_FLOAT_RE def maybe_num(s): if float_re.match(s): return float(s) else: return s def split_keys(s): return [maybe_num(c) for c in float_re.split(s)] return sorted(file_list, key=split_keys) def save_checkpoint(ckpt_dir, target, step, prefix="checkpoint_", keep=1): """Save a checkpoint of the model. Attempts to be pre-emption safe by writing to temporary before a final rename and cleanup of past files. Args: ckpt_dir: str: path to store checkpoint files in. target: serializable flax object, usually a flax optimizer. step: int or float: training step number or other metric number. prefix: str: checkpoint file name prefix. keep: number of past checkpoint files to keep. Returns: Filename of saved checkpoint. """ # Write temporary checkpoint file. logging.info("Saving checkpoint at step: %s", step) ckpt_tmp_path = _checkpoint_path(ckpt_dir, "tmp", prefix) ckpt_path = _checkpoint_path(ckpt_dir, step, prefix) blobfile.makedirs(os.path.dirname(ckpt_path)) with blobfile.BlobFile(ckpt_tmp_path, "wb") as fp: fp.write(serialization.to_bytes(target)) # Rename once serialization and writing finished. blobfile.copy(ckpt_tmp_path, ckpt_path, overwrite=True) blobfile.remove(ckpt_tmp_path) logging.info("Saved checkpoint at %s", ckpt_path) # Remove old checkpoint files. base_path = os.path.join(ckpt_dir, f"{prefix}") checkpoint_files = natural_sort(blobfile.glob(base_path + "*")) if len(checkpoint_files) > keep: old_ckpts = checkpoint_files[:-keep] for path in old_ckpts: logging.info("Removing checkpoint at %s", path) blobfile.remove(path) return ckpt_path def latest_checkpoint(ckpt_dir, prefix="checkpoint_"): """Retrieve the path of the latest checkpoint in a directory. Args: ckpt_dir: str: directory of checkpoints to restore from. prefix: str: name prefix of checkpoint files. Returns: The latest checkpoint path or None if no checkpoints were found. """ glob_path = os.path.join(ckpt_dir, f"{prefix}*") checkpoint_files = natural_sort(blobfile.glob(glob_path)) ckpt_tmp_path = _checkpoint_path(ckpt_dir, "tmp", prefix) checkpoint_files = [f for f in checkpoint_files if f != ckpt_tmp_path] if checkpoint_files: return checkpoint_files[-1] else: return None def restore_checkpoint( ckpt_dir, target, step=None, prefix="checkpoint_", parallel=True ): """Restore last/best checkpoint from checkpoints in path. Sorts the checkpoint files naturally, returning the highest-valued file, e.g.: ckpt_1, ckpt_2, ckpt_3 --> ckpt_3 ckpt_0.01, ckpt_0.1, ckpt_0.001 --> ckpt_0.1 ckpt_-1.0, ckpt_1.0, ckpt_1e5 --> ckpt_1e5 Args: ckpt_dir: str: checkpoint file or directory of checkpoints to restore from. target: matching object to rebuild via deserialized state-dict. If None, the deserialized state-dict is returned as-is. step: int: step number to load or None to load latest. If specified, ckpt_dir must be a directory. prefix: str: name prefix of checkpoint files. parallel: bool: whether to load seekable checkpoints in parallel, for speed. Returns: Restored `target` updated from checkpoint file, or if no step specified and no checkpoint files present, returns the passed-in `target` unchanged. If a file path is specified and is not found, the passed-in `target` will be returned. This is to match the behavior of the case where a directory path is specified but the directory has not yet been created. """ if step: ckpt_path = _checkpoint_path(ckpt_dir, step, prefix) if not blobfile.exists(ckpt_path): raise ValueError(f"Matching checkpoint not found: {ckpt_path}") else: if blobfile.isdir(ckpt_dir): ckpt_path = latest_checkpoint(ckpt_dir, prefix) if not ckpt_path: logging.info(f"Found no checkpoint files in {ckpt_dir}") return target else: ckpt_path = ckpt_dir if not blobfile.exists(ckpt_path): logging.info(f"Found no checkpoint file at {ckpt_path}") return target logging.info("Restoring checkpoint from %s", ckpt_path) with blobfile.BlobFile(ckpt_path, "rb") as fp: if parallel and fp.seekable(): buf_size = 128 << 20 # 128M buffer. fp.seek(0, 2) fp_size = fp.tell() fp.seek(0) num_bufs = fp_size / buf_size logging.debug("num_bufs: %d", num_bufs) checkpoint_contents = bytearray(fp_size) def read_chunk(i): # NOTE: We have to re-open the file to read each chunk, otherwise the # parallelism has no effect. But we could reuse the file pointers # within each thread. # with gfile.GFile(ckpt_path, "rb") as f: with blobfile.BlobFile(ckpt_path, "rb") as f: f.seek(i * buf_size) buf = f.read(buf_size) if buf: checkpoint_contents[ i * buf_size : i * buf_size + len(buf) ] = buf return len(buf) / buf_size pool_size = 32 pool = thread.ThreadPoolExecutor(pool_size) results = pool.map(read_chunk, range(int(num_bufs) + 1)) results = list(results) pool.shutdown(wait=False) logging.debug("results: %s", results) else: checkpoint_contents = fp.read() if target is None: return serialization.msgpack_restore(checkpoint_contents) else: return serialization.from_bytes(target, checkpoint_contents)
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Abstract SDE classes, Reverse SDE, and VE/VP SDEs.""" import abc import jax.numpy as jnp import jax import numpy as np from .utils import batch_mul def get_sde(config): if config.training.sde.lower() == "vpsde": sde = VPSDE( beta_min=config.model.beta_min, beta_max=config.model.beta_max, N=config.model.num_scales, ) elif config.training.sde.lower() == "subvpsde": sde = subVPSDE( beta_min=config.model.beta_min, beta_max=config.model.beta_max, N=config.model.num_scales, ) elif config.training.sde.lower() == "vesde": sde = VESDE( sigma_min=config.model.sigma_min, sigma_max=config.model.sigma_max, N=config.model.num_scales, ) elif config.training.sde.lower() == "kvesde": sde = KVESDE( t_min=config.model.t_min, t_max=config.model.t_max, N=config.model.num_scales, rho=config.model.rho, data_std=config.model.data_std, ) else: raise NotImplementedError(f"SDE {config.training.sde} unknown.") return sde class SDE(abc.ABC): """SDE abstract class. Functions are designed for a mini-batch of inputs.""" def __init__(self, N): """Construct an SDE. Args: N: number of discretization time steps. """ super().__init__() self.N = N @property @abc.abstractmethod def T(self): """End time of the SDE.""" pass @abc.abstractmethod def sde(self, x, t): pass @abc.abstractmethod def marginal_prob(self, x, t): """Parameters to determine the marginal distribution of the SDE, $p_t(x)$.""" pass @abc.abstractmethod def prior_sampling(self, rng, shape): """Generate one sample from the prior distribution, $p_T(x)$.""" pass @abc.abstractmethod def prior_logp(self, z): """Compute log-density of the prior distribution. Useful for computing the log-likelihood via probability flow ODE. Args: z: latent code Returns: log probability density """ pass def discretize(self, x, t): """Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i. Useful for reverse diffusion sampling and probabiliy flow sampling. Defaults to Euler-Maruyama discretization. Args: x: a JAX tensor. t: a JAX float representing the time step (from 0 to `self.T`) Returns: f, G """ dt = 1 / self.N drift, diffusion = self.sde(x, t) f = drift * dt G = diffusion * jnp.sqrt(dt) return f, G def reverse(self, score_fn, probability_flow=False): """Create the reverse-time SDE/ODE. Args: score_fn: A time-dependent score-based model that takes x and t and returns the score. probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling. """ N = self.N T = self.T sde_fn = self.sde discretize_fn = self.discretize # Build the class for reverse-time SDE. class RSDE(self.__class__): def __init__(self): self.N = N self.probability_flow = probability_flow @property def T(self): return T def sde(self, x, t): """Create the drift and diffusion functions for the reverse SDE/ODE.""" drift, diffusion = sde_fn(x, t) score = score_fn(x, t) drift = drift - batch_mul( diffusion**2, score * (0.5 if self.probability_flow else 1.0) ) # Set the diffusion function to zero for ODEs. diffusion = jnp.zeros_like(t) if self.probability_flow else diffusion return drift, diffusion def discretize(self, x, t): """Create discretized iteration rules for the reverse diffusion sampler.""" f, G = discretize_fn(x, t) rev_f = f - batch_mul( G**2, score_fn(x, t) * (0.5 if self.probability_flow else 1.0) ) rev_G = jnp.zeros_like(t) if self.probability_flow else G return rev_f, rev_G return RSDE() class VPSDE(SDE): def __init__(self, beta_min=0.1, beta_max=20, N=1000): """Construct a Variance Preserving SDE. Args: beta_min: value of beta(0) beta_max: value of beta(1) N: number of discretization steps """ super().__init__(N) self.beta_0 = beta_min self.beta_1 = beta_max self.N = N self.discrete_betas = jnp.linspace(beta_min / N, beta_max / N, N) self.alphas = 1.0 - self.discrete_betas self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) self.sqrt_alphas_cumprod = jnp.sqrt(self.alphas_cumprod) self.sqrt_1m_alphas_cumprod = jnp.sqrt(1.0 - self.alphas_cumprod) @property def T(self): return 1 def sde(self, x, t): beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0) drift = -0.5 * batch_mul(beta_t, x) diffusion = jnp.sqrt(beta_t) return drift, diffusion def marginal_prob(self, x, t, high_precision=True): log_mean_coeff = ( -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 ) if high_precision: mean = batch_mul( jnp.where( jnp.abs(log_mean_coeff) <= 1e-3, 1 + log_mean_coeff, jnp.exp(log_mean_coeff), ), x, ) std = jnp.where( jnp.abs(log_mean_coeff) <= 1e-3, jnp.sqrt(-2.0 * log_mean_coeff), jnp.sqrt(1 - jnp.exp(2.0 * log_mean_coeff)), ) else: mean = batch_mul(jnp.exp(log_mean_coeff), x) std = jnp.sqrt(1 - jnp.exp(2 * log_mean_coeff)) return mean, std def prior_sampling(self, rng, shape): return jax.random.normal(rng, shape) def prior_logp(self, z): shape = z.shape N = np.prod(shape[1:]) logp_fn = lambda z: -N / 2.0 * jnp.log(2 * np.pi) - jnp.sum(z**2) / 2.0 return jax.vmap(logp_fn)(z) def prior_entropy(self, z): shape = z.shape entropy = jnp.ones(shape) * (0.5 * jnp.log(2 * np.pi) + 0.5) entropy = entropy.reshape((z.shape[0], -1)) return jnp.sum(entropy, axis=-1) def discretize(self, x, t): """DDPM discretization.""" timestep = (t * (self.N - 1) / self.T).astype(jnp.int32) beta = self.discrete_betas[timestep] alpha = self.alphas[timestep] sqrt_beta = jnp.sqrt(beta) f = batch_mul(jnp.sqrt(alpha), x) - x G = sqrt_beta return f, G def likelihood_importance_cum_weight(self, t, eps=1e-5): exponent1 = 0.5 * eps * (eps - 2) * self.beta_0 - 0.5 * eps**2 * self.beta_1 exponent2 = 0.5 * t * (t - 2) * self.beta_0 - 0.5 * t**2 * self.beta_1 term1 = jnp.where( jnp.abs(exponent1) <= 1e-3, -exponent1, 1.0 - jnp.exp(exponent1) ) term2 = jnp.where( jnp.abs(exponent2) <= 1e-3, -exponent2, 1.0 - jnp.exp(exponent2) ) return 0.5 * ( -2 * jnp.log(term1) + 2 * jnp.log(term2) + self.beta_0 * (-2 * eps + eps**2 - (t - 2) * t) + self.beta_1 * (-(eps**2) + t**2) ) def sample_importance_weighted_time_for_likelihood( self, rng, shape, quantile=None, eps=1e-5, steps=100 ): Z = self.likelihood_importance_cum_weight(self.T, eps=eps) if quantile is None: quantile = jax.random.uniform(rng, shape, minval=0, maxval=Z) lb = jnp.ones_like(quantile) * eps ub = jnp.ones_like(quantile) * self.T def bisection_func(carry, idx): lb, ub = carry mid = (lb + ub) / 2.0 value = self.likelihood_importance_cum_weight(mid, eps=eps) lb = jnp.where(value <= quantile, mid, lb) ub = jnp.where(value <= quantile, ub, mid) return (lb, ub), idx (lb, ub), _ = jax.lax.scan(bisection_func, (lb, ub), jnp.arange(0, steps)) return (lb + ub) / 2.0 class subVPSDE(SDE): def __init__(self, beta_min=0.1, beta_max=20, N=1000): """Construct the sub-VP SDE that excels at likelihoods. Args: beta_min: value of beta(0) beta_max: value of beta(1) N: number of discretization steps """ super().__init__(N) self.beta_0 = beta_min self.beta_1 = beta_max self.N = N @property def T(self): return 1 def sde(self, x, t, high_precision=True): beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0) drift = -0.5 * batch_mul(beta_t, x) exponent = -2 * self.beta_0 * t - (self.beta_1 - self.beta_0) * t**2 discount = 1.0 - jnp.exp(exponent) if high_precision: discount = jnp.where(jnp.abs(exponent) <= 1e-3, -exponent, discount) diffusion = jnp.sqrt(beta_t * discount) return drift, diffusion def marginal_prob(self, x, t, high_precision=True): log_mean_coeff = ( -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 ) if high_precision: mean = batch_mul( jnp.where( jnp.abs(log_mean_coeff) <= 1e-3, 1.0 + log_mean_coeff, jnp.exp(log_mean_coeff), ), x, ) std = jnp.where( jnp.abs(log_mean_coeff) <= 1e-3, -2.0 * log_mean_coeff, 1 - jnp.exp(2.0 * log_mean_coeff), ) else: mean = batch_mul(jnp.exp(log_mean_coeff), x) std = 1 - jnp.exp(2.0 * log_mean_coeff) return mean, std def prior_sampling(self, rng, shape): return jax.random.normal(rng, shape) def prior_logp(self, z): shape = z.shape N = np.prod(shape[1:]) logp_fn = lambda z: -N / 2.0 * jnp.log(2 * np.pi) - jnp.sum(z**2) / 2.0 return jax.vmap(logp_fn)(z) def prior_entropy(self, z): shape = z.shape entropy = jnp.ones(shape) * (0.5 * jnp.log(2 * np.pi) + 0.5) entropy = entropy.reshape((z.shape[0], -1)) return jnp.sum(entropy, axis=-1) def likelihood_importance_cum_weight(self, t, eps=1e-5): exponent1 = 0.5 * eps * (eps * self.beta_1 - (eps - 2) * self.beta_0) exponent2 = 0.5 * t * (self.beta_1 * t - (t - 2) * self.beta_0) term1 = jnp.where( exponent1 <= 1e-3, jnp.log(exponent1), jnp.log(jnp.exp(exponent1) - 1.0) ) term2 = jnp.where( exponent2 <= 1e-3, jnp.log(exponent2), jnp.log(jnp.exp(exponent2) - 1.0) ) return 0.5 * ( -4 * term1 + 4 * term2 + (2 * eps - eps**2 + t * (t - 2)) * self.beta_0 + (eps**2 - t**2) * self.beta_1 ) def sample_importance_weighted_time_for_likelihood( self, rng, shape, quantile=None, eps=1e-5, steps=100 ): Z = self.likelihood_importance_cum_weight(self.T, eps=eps) if quantile is None: quantile = jax.random.uniform(rng, shape, minval=0, maxval=Z) lb = jnp.ones_like(quantile) * eps ub = jnp.ones_like(quantile) * self.T def bisection_func(carry, idx): lb, ub = carry mid = (lb + ub) / 2.0 value = self.likelihood_importance_cum_weight(mid, eps=eps) lb = jnp.where(value <= quantile, mid, lb) ub = jnp.where(value <= quantile, ub, mid) return (lb, ub), idx (lb, ub), _ = jax.lax.scan(bisection_func, (lb, ub), jnp.arange(0, steps)) return (lb + ub) / 2.0 class VESDE(SDE): def __init__(self, sigma_min=0.01, sigma_max=50, N=1000, linear=False): """Construct a Variance Exploding SDE. Args: sigma_min: smallest sigma. sigma_max: largest sigma. N: number of discretization steps """ super().__init__(N) self.sigma_min = sigma_min self.sigma_max = sigma_max self.linear = linear if not linear: self.discrete_sigmas = jnp.exp( np.linspace(np.log(self.sigma_min), np.log(self.sigma_max), N) ) else: self.discrete_sigmas = jnp.linspace(self.sigma_min, self.sigma_max, N) self.N = N @property def T(self): return 1 def sde(self, x, t): drift = jnp.zeros_like(x) if not self.linear: sigma = self.sigma_min * (self.sigma_max / self.sigma_min) ** t diffusion = sigma * jnp.sqrt( 2 * (jnp.log(self.sigma_max) - jnp.log(self.sigma_min)) ) else: diffusion = self.sigma_max * jnp.sqrt(2 * t) return drift, diffusion def marginal_prob(self, x, t): mean = x if not self.linear: std = self.sigma_min * (self.sigma_max / self.sigma_min) ** t else: std = t * self.sigma_max return mean, std def prior_sampling(self, rng, shape): return jax.random.normal(rng, shape) * self.sigma_max def prior_logp(self, z): shape = z.shape N = np.prod(shape[1:]) logp_fn = lambda z: -N / 2.0 * jnp.log( 2 * np.pi * self.sigma_max**2 ) - jnp.sum(z**2) / (2 * self.sigma_max**2) return jax.vmap(logp_fn)(z) def prior_entropy(self, z): shape = z.shape entropy = jnp.ones(shape) * ( 0.5 * jnp.log(2 * np.pi * self.sigma_max**2) + 0.5 ) entropy = entropy.reshape((z.shape[0], -1)) return jnp.sum(entropy, axis=-1) def discretize(self, x, t): """SMLD(NCSN) discretization.""" if not self.linear: timestep = (t * (self.N - 1) / self.T).astype(jnp.int32) sigma = self.discrete_sigmas[timestep] adjacent_sigma = jnp.where( timestep == 0, jnp.zeros_like(timestep), self.discrete_sigmas[timestep - 1], ) f = jnp.zeros_like(x) G = jnp.sqrt(sigma**2 - adjacent_sigma**2) return f, G else: return super().discretize(x, t) class KVESDE(SDE): def __init__(self, t_min=0.002, t_max=80.0, N=1000, rho=7.0, data_std=0.5): """Construct a Variance Exploding SDE as in Kerras et al. Args: t_min: smallest time t_max: largest time. N: number of discretization steps rho: parameter for time steps. """ super().__init__(N) self.t_min = t_min self.t_max = t_max self.rho = rho self.N = N self.data_std = data_std @property def T(self): return self.t_max def sde(self, x, t): drift = jnp.zeros_like(x) diffusion = jnp.sqrt(2 * t) return drift, diffusion def marginal_prob(self, x, t): mean = x std = t return mean, std def prior_sampling(self, rng, shape): return jax.random.normal(rng, shape) * self.t_max def prior_logp(self, z): shape = z.shape N = np.prod(shape[1:]) logp_fn = lambda z: -N / 2.0 * jnp.log(2 * np.pi * self.t_max**2) - jnp.sum( z**2 ) / (2 * self.t_max**2) return jax.vmap(logp_fn)(z) def prior_entropy(self, z): shape = z.shape entropy = jnp.ones(shape) * (0.5 * jnp.log(2 * np.pi * self.t_max**2) + 0.5) entropy = entropy.reshape((z.shape[0], -1)) return jnp.sum(entropy, axis=-1)
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Utility code for generating and saving image grids and checkpointing. The `save_image` code is copied from https://github.com/google/flax/blob/master/examples/vae/utils.py, which is a JAX equivalent to the same function in TorchVision (https://github.com/pytorch/vision/blob/master/torchvision/utils.py) """ import math from typing import Any, Dict, Optional, TypeVar import flax import jax import jax.numpy as jnp import numpy as np from PIL import Image import blobfile T = TypeVar("T") def batch_add(a, b): return jax.vmap(lambda a, b: a + b)(a, b) def batch_mul(a, b): return jax.vmap(lambda a, b: a * b)(a, b) def load_training_state(filepath, state): with blobfile.open(filepath, "rb") as f: state = flax.serialization.from_bytes(state, f.read()) return state def save_image(ndarray, fp, nrow=8, padding=2, pad_value=0.0, format=None): """Make a grid of images and save it into an image file. Pixel values are assumed to be within [0, 1]. Args: ndarray (array_like): 4D mini-batch images of shape (B x H x W x C). fp: A filename(string) or file object. nrow (int, optional): Number of images displayed in each row of the grid. The final grid size is ``(B / nrow, nrow)``. Default: ``8``. padding (int, optional): amount of padding. Default: ``2``. pad_value (float, optional): Value for the padded pixels. Default: ``0``. format(Optional): If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. """ if not ( isinstance(ndarray, jnp.ndarray) or ( isinstance(ndarray, list) and all(isinstance(t, jnp.ndarray) for t in ndarray) ) ): raise TypeError("array_like of tensors expected, got {}".format(type(ndarray))) ndarray = jnp.asarray(ndarray) if ndarray.ndim == 4 and ndarray.shape[-1] == 1: # single-channel images ndarray = jnp.concatenate((ndarray, ndarray, ndarray), -1) # make the mini-batch of images into a grid nmaps = ndarray.shape[0] xmaps = min(nrow, nmaps) ymaps = int(math.ceil(float(nmaps) / xmaps)) height, width = int(ndarray.shape[1] + padding), int(ndarray.shape[2] + padding) num_channels = ndarray.shape[3] grid = jnp.full( (height * ymaps + padding, width * xmaps + padding, num_channels), pad_value ).astype(jnp.float32) k = 0 for y in range(ymaps): for x in range(xmaps): if k >= nmaps: break grid = grid.at[ y * height + padding : (y + 1) * height, x * width + padding : (x + 1) * width, ].set(ndarray[k]) k = k + 1 # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer ndarr = np.asarray(jnp.clip(grid * 255.0 + 0.5, 0, 255).astype(jnp.uint8)) im = Image.fromarray(ndarr.copy()) im.save(fp, format=format) def flatten_dict(config): """Flatten a hierarchical dict to a simple dict.""" new_dict = {} for key, value in config.items(): if isinstance(value, dict): sub_dict = flatten_dict(value) for subkey, subvalue in sub_dict.items(): new_dict[key + "/" + subkey] = subvalue elif isinstance(value, tuple): new_dict[key] = str(value) else: new_dict[key] = value return new_dict
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Various sampling methods.""" import functools import jax import jax.numpy as jnp import jax.random as random import abc import flax import haiku as hk import numpy as np from .models.utils import ( from_flattened_numpy, to_flattened_numpy, get_score_fn, get_model_fn, ) from scipy import integrate from . import sde_lib from .utils import batch_mul, batch_add from .models import utils as mutils from .losses import get_ema_scales_fn _CORRECTORS = {} _PREDICTORS = {} def register_predictor(cls=None, *, name=None): """A decorator for registering predictor classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _PREDICTORS: raise ValueError(f"Already registered model with name: {local_name}") _PREDICTORS[local_name] = cls return cls if cls is None: return _register else: return _register(cls) def register_corrector(cls=None, *, name=None): """A decorator for registering corrector classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _CORRECTORS: raise ValueError(f"Already registered model with name: {local_name}") _CORRECTORS[local_name] = cls return cls if cls is None: return _register else: return _register(cls) def get_predictor(name): return _PREDICTORS[name] def get_corrector(name): return _CORRECTORS[name] def get_sampling_fn(config, sde, model, shape, eps=1e-3): """Create a sampling function. Args: config: A `ml_collections.ConfigDict` object that contains all configuration information. sde: A `sde_lib.SDE` object that represents the forward SDE. model: A `flax.linen.Module` object that represents the architecture of a time-dependent score-based model. shape: A sequence of integers representing the expected shape of a single sample. eps: A `float` number. The reverse-time SDE is only integrated to `eps` for numerical stability. Returns: A function that takes random states and a replicated training state and outputs samples with the trailing dimensions matching `shape`. """ sampler_name = config.sampling.method # Probability flow ODE sampling with black-box ODE solvers if sampler_name.lower() == "ode": sampling_fn = get_ode_sampler( sde=sde, model=model, shape=shape, denoise=config.sampling.noise_removal, eps=eps, ) # Predictor-Corrector sampling. Predictor-only and Corrector-only samplers are special cases. elif sampler_name.lower() == "pc": predictor = get_predictor(config.sampling.predictor.lower()) corrector = get_corrector(config.sampling.corrector.lower()) sampling_fn = get_pc_sampler( sde=sde, model=model, shape=shape, predictor=predictor, corrector=corrector, snr=config.sampling.snr, n_steps=config.sampling.n_steps_each, probability_flow=config.sampling.probability_flow, denoise=config.sampling.noise_removal, eps=eps, ) elif sampler_name.lower() == "heun": sampling_fn = get_heun_sampler( sde=sde, model=model, shape=shape, denoise=config.sampling.denoise ) elif sampler_name.lower() == "euler": sampling_fn = get_euler_sampler( sde=sde, model=model, shape=shape, denoise=config.sampling.denoise ) elif sampler_name.lower() == "onestep": sampling_fn = get_onestep_sampler( config=config, sde=sde, model=model, shape=shape, ) elif sampler_name.lower() == "seeded_sampler": sampling_fn = get_seeded_sampler( config=config, sde=sde, model=model, shape=shape, ) elif sampler_name.lower() == "progressive_distillation": sampling_fn = get_progressive_distillation_sampler( config=config, sde=sde, model=model, shape=shape, denoise=config.sampling.denoise, ) else: raise ValueError(f"Sampler name {sampler_name} unknown.") return sampling_fn class Predictor(abc.ABC): """The abstract class for a predictor algorithm.""" def __init__(self, sde, score_fn, probability_flow=False): super().__init__() self.sde = sde # Compute the reverse SDE/ODE self.rsde = sde.reverse(score_fn, probability_flow) self.score_fn = score_fn @abc.abstractmethod def update_fn(self, rng, x, t): """One update of the predictor. Args: rng: A JAX random state. x: A JAX array representing the current state t: A JAX array representing the current time step. Returns: x: A JAX array of the next state. x_mean: A JAX array. The next state without random noise. Useful for denoising. """ pass class Corrector(abc.ABC): """The abstract class for a corrector algorithm.""" def __init__(self, sde, score_fn, snr, n_steps): super().__init__() self.sde = sde self.score_fn = score_fn self.snr = snr self.n_steps = n_steps @abc.abstractmethod def update_fn(self, rng, x, t): """One update of the corrector. Args: rng: A JAX random state. x: A JAX array representing the current state t: A JAX array representing the current time step. Returns: x: A JAX array of the next state. x_mean: A JAX array. The next state without random noise. Useful for denoising. """ pass @register_predictor(name="euler_maruyama") class EulerMaruyamaPredictor(Predictor): def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow) def update_fn(self, rng, x, t): dt = -1.0 / self.rsde.N z = random.normal(rng, x.shape) drift, diffusion = self.rsde.sde(x, t) x_mean = x + drift * dt x = x_mean + batch_mul(diffusion, jnp.sqrt(-dt) * z) return x, x_mean @register_predictor(name="reverse_diffusion") class ReverseDiffusionPredictor(Predictor): def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow) def update_fn(self, rng, x, t): f, G = self.rsde.discretize(x, t) z = random.normal(rng, x.shape) x_mean = x - f x = x_mean + batch_mul(G, z) return x, x_mean @register_predictor(name="ancestral_sampling") class AncestralSamplingPredictor(Predictor): """The ancestral sampling predictor. Currently only supports VE/VP SDEs.""" def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow) if not isinstance(sde, sde_lib.VPSDE) and not isinstance(sde, sde_lib.VESDE): raise NotImplementedError( f"SDE class {sde.__class__.__name__} not yet supported." ) assert ( not probability_flow ), "Probability flow not supported by ancestral sampling" def vesde_update_fn(self, rng, x, t): sde = self.sde timestep = (t * (sde.N - 1) / sde.T).astype(jnp.int32) sigma = sde.discrete_sigmas[timestep] adjacent_sigma = jnp.where( timestep == 0, jnp.zeros(t.shape), sde.discrete_sigmas[timestep - 1] ) score = self.score_fn(x, t) x_mean = x + batch_mul(score, sigma**2 - adjacent_sigma**2) std = jnp.sqrt( (adjacent_sigma**2 * (sigma**2 - adjacent_sigma**2)) / (sigma**2) ) noise = random.normal(rng, x.shape) x = x_mean + batch_mul(std, noise) return x, x_mean def vpsde_update_fn(self, rng, x, t): sde = self.sde timestep = (t * (sde.N - 1) / sde.T).astype(jnp.int32) beta = sde.discrete_betas[timestep] score = self.score_fn(x, t) x_mean = batch_mul((x + batch_mul(beta, score)), 1.0 / jnp.sqrt(1.0 - beta)) noise = random.normal(rng, x.shape) x = x_mean + batch_mul(jnp.sqrt(beta), noise) return x, x_mean def update_fn(self, rng, x, t): if isinstance(self.sde, sde_lib.VESDE): return self.vesde_update_fn(rng, x, t) elif isinstance(self.sde, sde_lib.VPSDE): return self.vpsde_update_fn(rng, x, t) @register_predictor(name="none") class NonePredictor(Predictor): """An empty predictor that does nothing.""" def __init__(self, sde, score_fn, probability_flow=False): pass def update_fn(self, rng, x, t): return x, x @register_corrector(name="langevin") class LangevinCorrector(Corrector): def __init__(self, sde, score_fn, snr, n_steps): super().__init__(sde, score_fn, snr, n_steps) if ( not isinstance(sde, sde_lib.VPSDE) and not isinstance(sde, sde_lib.VESDE) and not isinstance(sde, sde_lib.subVPSDE) ): raise NotImplementedError( f"SDE class {sde.__class__.__name__} not yet supported." ) def update_fn(self, rng, x, t): sde = self.sde score_fn = self.score_fn n_steps = self.n_steps target_snr = self.snr if isinstance(sde, sde_lib.VPSDE) or isinstance(sde, sde_lib.subVPSDE): timestep = (t * (sde.N - 1) / sde.T).astype(jnp.int32) alpha = sde.alphas[timestep] else: alpha = jnp.ones_like(t) def loop_body(step, val): rng, x, x_mean = val grad = score_fn(x, t) rng, step_rng = jax.random.split(rng) noise = jax.random.normal(step_rng, x.shape) grad_norm = jnp.linalg.norm( grad.reshape((grad.shape[0], -1)), axis=-1 ).mean() grad_norm = jax.lax.pmean(grad_norm, axis_name="batch") noise_norm = jnp.linalg.norm( noise.reshape((noise.shape[0], -1)), axis=-1 ).mean() noise_norm = jax.lax.pmean(noise_norm, axis_name="batch") step_size = (target_snr * noise_norm / grad_norm) ** 2 * 2 * alpha x_mean = x + batch_mul(step_size, grad) x = x_mean + batch_mul(noise, jnp.sqrt(step_size * 2)) return rng, x, x_mean _, x, x_mean = jax.lax.fori_loop(0, n_steps, loop_body, (rng, x, x)) return x, x_mean @register_corrector(name="ald") class AnnealedLangevinDynamics(Corrector): """The original annealed Langevin dynamics predictor in NCSN/NCSNv2. We include this corrector only for completeness. It was not directly used in our paper. """ def __init__(self, sde, score_fn, snr, n_steps): super().__init__(sde, score_fn, snr, n_steps) if ( not isinstance(sde, sde_lib.VPSDE) and not isinstance(sde, sde_lib.VESDE) and not isinstance(sde, sde_lib.subVPSDE) ): raise NotImplementedError( f"SDE class {sde.__class__.__name__} not yet supported." ) def update_fn(self, rng, x, t): sde = self.sde score_fn = self.score_fn n_steps = self.n_steps target_snr = self.snr if isinstance(sde, sde_lib.VPSDE) or isinstance(sde, sde_lib.subVPSDE): timestep = (t * (sde.N - 1) / sde.T).astype(jnp.int32) alpha = sde.alphas[timestep] else: alpha = jnp.ones_like(t) std = self.sde.marginal_prob(x, t)[1] def loop_body(step, val): rng, x, x_mean = val grad = score_fn(x, t) rng, step_rng = jax.random.split(rng) noise = jax.random.normal(step_rng, x.shape) step_size = (target_snr * std) ** 2 * 2 * alpha x_mean = x + batch_mul(step_size, grad) x = x_mean + batch_mul(noise, jnp.sqrt(step_size * 2)) return rng, x, x_mean _, x, x_mean = jax.lax.fori_loop(0, n_steps, loop_body, (rng, x, x)) return x, x_mean @register_corrector(name="none") class NoneCorrector(Corrector): """An empty corrector that does nothing.""" def __init__(self, sde, score_fn, snr, n_steps): pass def update_fn(self, rng, x, t): return x, x def shared_predictor_update_fn( rng, state, x, t, sde, model, predictor, probability_flow ): """A wrapper that configures and returns the update function of predictors.""" score_fn = mutils.get_score_fn( sde, model, state.params_ema, state.model_state, train=False, ) if predictor is None: # Corrector-only sampler predictor_obj = NonePredictor(sde, score_fn, probability_flow) else: predictor_obj = predictor(sde, score_fn, probability_flow) return predictor_obj.update_fn(rng, x, t) def shared_corrector_update_fn(rng, state, x, t, sde, model, corrector, snr, n_steps): """A wrapper tha configures and returns the update function of correctors.""" score_fn = mutils.get_score_fn( sde, model, state.params_ema, state.model_state, train=False, ) if corrector is None: # Predictor-only sampler corrector_obj = NoneCorrector(sde, score_fn, snr, n_steps) else: corrector_obj = corrector(sde, score_fn, snr, n_steps) return corrector_obj.update_fn(rng, x, t) def get_pc_sampler( sde, model, shape, predictor, corrector, snr, n_steps=1, probability_flow=False, denoise=True, eps=1e-3, ): """Create a Predictor-Corrector (PC) sampler. Args: sde: An `sde_lib.SDE` object representing the forward SDE. model: A `flax.linen.Module` object that represents the architecture of a time-dependent score-based model. shape: A sequence of integers. The expected shape of a single sample. predictor: A subclass of `sampling.Predictor` representing the predictor algorithm. corrector: A subclass of `sampling.Corrector` representing the corrector algorithm. snr: A `float` number. The signal-to-noise ratio for configuring correctors. n_steps: An integer. The number of corrector steps per predictor update. probability_flow: If `True`, solve the reverse-time probability flow ODE when running the predictor. denoise: If `True`, add one-step denoising to the final samples. eps: A `float` number. The reverse-time SDE and ODE are integrated to `epsilon` to avoid numerical issues. Returns: A sampling function that takes random states, and a replcated training state and returns samples as well as the number of function evaluations during sampling. """ # Create predictor & corrector update functions predictor_update_fn = functools.partial( shared_predictor_update_fn, sde=sde, model=model, predictor=predictor, probability_flow=probability_flow, ) corrector_update_fn = functools.partial( shared_corrector_update_fn, sde=sde, model=model, corrector=corrector, snr=snr, n_steps=n_steps, ) def pc_sampler(rng, state): """The PC sampler funciton. Args: rng: A JAX random state state: A `flax.struct.dataclass` object that represents the training state of a score-based model. Returns: Samples, number of function evaluations """ # Initial sample rng, step_rng = random.split(rng) x = sde.prior_sampling(step_rng, shape) timesteps = jnp.linspace(sde.T, eps, sde.N) def loop_body(i, val): rng, x, x_mean = val t = timesteps[i] vec_t = jnp.ones(shape[0]) * t rng, step_rng = random.split(rng) x, x_mean = corrector_update_fn(step_rng, state, x, vec_t) rng, step_rng = random.split(rng) x, x_mean = predictor_update_fn(step_rng, state, x, vec_t) return rng, x, x_mean _, x, x_mean = jax.lax.fori_loop(0, sde.N, loop_body, (rng, x, x)) # Denoising is equivalent to running one predictor step without adding noise. return x_mean if denoise else x, sde.N * (n_steps + 1) return jax.pmap(pc_sampler, axis_name="batch") def get_onestep_sampler(config, sde, model, shape): def sampler(rng, state): rng, step_rng = random.split(rng) x = jax.random.normal(step_rng, shape) * config.sampling.std model_fn = mutils.get_distiller_fn( sde, model, state.params_ema, state.model_state, train=False, return_state=False, ) samples = model_fn(x, jnp.ones((x.shape[0],)) * config.sampling.std) return samples, 1 return jax.pmap(sampler, axis_name="batch") def get_seeded_sampler(config, sde, model, shape): def sampler(rng, state, init, t): rng, step_rng = random.split(rng) x = init model_fn = mutils.get_distiller_fn( sde, model, state.params_ema, state.model_state, train=False, return_state=False, ) samples = model_fn(x, jnp.ones((x.shape[0],)) * t) return samples, 1 return jax.pmap(sampler, axis_name="batch") def get_heun_sampler(sde, model, shape, denoise=True): def heun_sampler(rng, state): denoiser_fn = mutils.get_denoiser_fn( sde, model, state.params_ema, state.model_state, train=False ) rng = hk.PRNGSequence(rng) x = sde.prior_sampling(next(rng), shape) timesteps = ( sde.t_max ** (1 / sde.rho) + jnp.arange(sde.N) / (sde.N - 1) * (sde.t_min ** (1 / sde.rho) - sde.t_max ** (1 / sde.rho)) ) ** sde.rho timesteps = jnp.concatenate([timesteps, jnp.array([0.0])]) def loop_body(i, val): x = val t = timesteps[i] vec_t = jnp.ones((shape[0],)) * t denoiser = denoiser_fn(x, vec_t) d = 1 / t * x - 1 / t * denoiser next_t = timesteps[i + 1] samples = x + (next_t - t) * d vec_next_t = jnp.ones((shape[0],)) * next_t denoiser = denoiser_fn(samples, vec_next_t) next_d = 1 / next_t * samples - 1 / next_t * denoiser samples = x + (next_t - t) / 2 * (d + next_d) return samples x = jax.lax.fori_loop(0, sde.N - 1, loop_body, x) if denoise: t = timesteps[sde.N - 1] vec_t = jnp.ones((shape[0],)) * t denoiser = denoiser_fn(x, vec_t) d = 1 / t * x - 1 / t * denoiser next_t = timesteps[sde.N] samples = x + (next_t - t) * d else: samples = x return samples, sde.N return jax.pmap(heun_sampler, axis_name="batch") def get_euler_sampler(sde, model, shape, denoise=True): def euler_sampler(rng, state): denoiser_fn = mutils.get_denoiser_fn( sde, model, state.params_ema, state.model_state, train=False ) rng = hk.PRNGSequence(rng) x = sde.prior_sampling(next(rng), shape) timesteps = ( sde.t_max ** (1 / sde.rho) + jnp.arange(sde.N) / (sde.N - 1) * (sde.t_min ** (1 / sde.rho) - sde.t_max ** (1 / sde.rho)) ) ** sde.rho timesteps = jnp.concatenate([timesteps, jnp.array([0.0])]) def loop_body(i, val): x = val t = timesteps[i] vec_t = jnp.ones((shape[0],)) * t denoiser = denoiser_fn(x, vec_t) d = 1 / t * x - 1 / t * denoiser next_t = timesteps[i + 1] samples = x + (next_t - t) * d return samples x = jax.lax.fori_loop(0, sde.N - 1, loop_body, x) if denoise: t = timesteps[sde.N - 1] vec_t = jnp.ones((shape[0],)) * t denoiser = denoiser_fn(x, vec_t) d = 1 / t * x - 1 / t * denoiser next_t = timesteps[sde.N] samples = x + (next_t - t) * d else: samples = x return samples, sde.N return jax.pmap(euler_sampler, axis_name="batch") def get_progressive_distillation_sampler(config, sde, model, shape, denoise=True): ema_scales_fn = get_ema_scales_fn(config) def progressive_distillation_sampler(rng, state): denoiser_fn = mutils.get_denoiser_fn( sde, model, state.params_ema, state.model_state, train=False ) _, num_scales = ema_scales_fn(state.step) rng = hk.PRNGSequence(rng) x = sde.prior_sampling(next(rng), shape) t_start = sde.t_max ** (1 / sde.rho) t_end = sde.t_min ** (1 / sde.rho) def loop_body(i, val): x = val t = (t_start + i / num_scales * (t_end - t_start)) ** sde.rho vec_t = jnp.ones((shape[0],)) * t denoiser = denoiser_fn(x, vec_t) d = 1 / t * x - 1 / t * denoiser next_t = (t_start + (i + 1) / num_scales * (t_end - t_start)) ** sde.rho samples = x + (next_t - t) * d return samples x = jax.lax.fori_loop(0, num_scales, loop_body, x) if denoise: t = sde.t_min vec_t = jnp.ones((shape[0],)) * t denoiser = denoiser_fn(x, vec_t) d = 1 / t * x - 1 / t * denoiser next_t = 0.0 samples = x + (next_t - t) * d else: samples = x return samples, num_scales return jax.pmap(progressive_distillation_sampler, axis_name="batch") def get_ode_sampler( sde, model, shape, denoise=False, rtol=1e-5, atol=1e-5, method="RK45", eps=1e-3, ): """Probability flow ODE sampler with the black-box ODE solver. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. model: A `flax.linen.Module` object that represents the architecture of the score-based model. shape: A sequence of integers. The expected shape of a single sample. denoise: If `True`, add one-step denoising to final samples. rtol: A `float` number. The relative tolerance level of the ODE solver. atol: A `float` number. The absolute tolerance level of the ODE solver. method: A `str`. The algorithm used for the black-box ODE solver. See the documentation of `scipy.integrate.solve_ivp`. eps: A `float` number. The reverse-time SDE/ODE will be integrated to `eps` for numerical stability. Returns: A sampling function that takes random states, and a replicated training state and returns samples as well as the number of function evaluations during sampling. """ @jax.pmap def denoise_update_fn(rng, state, x): score_fn = get_score_fn( sde, model, state.params_ema, state.model_state, train=False, ) # Reverse diffusion predictor for denoising predictor_obj = ReverseDiffusionPredictor(sde, score_fn, probability_flow=False) vec_eps = jnp.ones((x.shape[0],)) * eps _, x = predictor_obj.update_fn(rng, x, vec_eps) return x @jax.pmap def drift_fn(state, x, t): """Get the drift function of the reverse-time SDE.""" score_fn = get_score_fn( sde, model, state.params_ema, state.model_state, train=False, ) rsde = sde.reverse(score_fn, probability_flow=True) return rsde.sde(x, t)[0] def ode_sampler(prng, pstate, z=None): """The probability flow ODE sampler with black-box ODE solver. Args: prng: An array of random state. The leading dimension equals the number of devices. pstate: Replicated training state for running on multiple devices. z: If present, generate samples from latent code `z`. Returns: Samples, and the number of function evaluations. """ # Initial sample rng = flax.jax_utils.unreplicate(prng) rng, step_rng = random.split(rng) if z is None: # If not represent, sample the latent code from the prior distibution of the SDE. x = sde.prior_sampling(step_rng, (jax.local_device_count(),) + shape) else: x = z def ode_func(t, x): x = from_flattened_numpy(x, (jax.local_device_count(),) + shape) vec_t = jnp.ones((x.shape[0], x.shape[1])) * t drift = drift_fn(pstate, x, vec_t) return to_flattened_numpy(drift) # Black-box ODE solver for the probability flow ODE solution = integrate.solve_ivp( ode_func, (sde.T, eps), to_flattened_numpy(x), rtol=rtol, atol=atol, method=method, ) nfe = solution.nfev x = jnp.asarray(solution.y[:, -1]).reshape((jax.local_device_count(),) + shape) # Denoising is equivalent to running one predictor step without adding noise if denoise: rng, *step_rng = random.split(rng, jax.local_device_count() + 1) step_rng = jnp.asarray(step_rng) x = denoise_update_fn(step_rng, pstate, x) return x, nfe return ode_sampler
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training and evaluation for score-based generative models. """ import os from typing import Any import flax import flax.jax_utils as flax_utils import jax import jax.numpy as jnp import numpy as np import logging import functools import haiku as hk from . import checkpoints import wandb # Keep the import below for registering all model definitions from .models import ddpm, ncsnv2, ncsnpp from .models import utils as mutils from . import losses from . import sampling from . import utils from . import datasets from . import sde_lib import blobfile def train(config, workdir): """Runs the training pipeline. Args: config: Configuration to use. workdir: Working directory for checkpoints and TF summaries. If this contains checkpoint training will be resumed from the latest checkpoint. """ # Create directories for experimental logs sample_dir = os.path.join(workdir, "samples") blobfile.makedirs(sample_dir) rng = hk.PRNGSequence(config.seed) # Initialize model. score_model, init_model_state, initial_params = mutils.init_model(next(rng), config) optimizer, optimize_fn = losses.get_optimizer(config) if config.training.loss.lower().endswith( ("ema", "adaptive", "progressive_distillation") ): state = mutils.StateWithTarget( step=0, lr=config.optim.lr, ema_rate=config.model.ema_rate, params=initial_params, target_params=initial_params, params_ema=initial_params, model_state=init_model_state, opt_state=optimizer.init(initial_params), rng_state=rng.internal_state, ) else: state = mutils.State( step=0, lr=config.optim.lr, ema_rate=config.model.ema_rate, params=initial_params, params_ema=initial_params, model_state=init_model_state, opt_state=optimizer.init(initial_params), rng_state=rng.internal_state, ) # Setup SDEs sde = sde_lib.get_sde(config) # Build one-step training and evaluation functions train_loss_fn, eval_loss_fn, state = losses.get_loss_fn( config, sde, score_model, state, next(rng) ) ema_scale_fn = losses.get_ema_scales_fn(config) train_step_fn = losses.get_step_fn( train_loss_fn, train=True, optimize_fn=optimize_fn, ema_scales_fn=ema_scale_fn, ) # Pmap (and jit-compile) multiple training steps together for faster running p_train_step = jax.pmap( functools.partial(jax.lax.scan, train_step_fn), axis_name="batch", ) eval_step_fn = losses.get_step_fn( eval_loss_fn, train=False, optimize_fn=optimize_fn, ema_scales_fn=ema_scale_fn, ) # Pmap (and jit-compile) multiple evaluation steps together for faster running p_eval_step = jax.pmap( functools.partial(jax.lax.scan, eval_step_fn), axis_name="batch", ) # Create checkpoints directory checkpoint_dir = os.path.join(workdir, "checkpoints") # Intermediate checkpoints to resume training after pre-emption in cloud environments checkpoint_meta_dir = os.path.join(workdir, "checkpoints-meta") blobfile.makedirs(checkpoint_dir) blobfile.makedirs(checkpoint_meta_dir) # Resume training when intermediate checkpoints are detected state = checkpoints.restore_checkpoint(checkpoint_meta_dir, state) # `state.step` is JAX integer on the GPU/TPU devices initial_step = int(state.step) rng.replace_internal_state(state.rng_state) # Finished model initialization # Build data iterators train_ds, eval_ds = datasets.get_dataset( config, additional_dim=config.training.n_jitted_steps, uniform_dequantization=config.data.uniform_dequantization, ) train_iter = iter(train_ds) eval_iter = iter(eval_ds) # Building sampling functions if config.training.snapshot_sampling: sampling_shape = ( config.training.batch_size // jax.local_device_count(), config.data.image_size, config.data.image_size, config.data.num_channels, ) sampling_fn = sampling.get_sampling_fn(config, sde, score_model, sampling_shape) # Replicate the training state to run on multiple devices pstate = flax_utils.replicate(state) num_train_steps = config.training.n_iters # In case there are multiple hosts (e.g., TPU pods), only log to host 0 if jax.process_index() == 0: logging.info("Starting training loop at step %d." % (initial_step,)) rng = hk.PRNGSequence(jax.random.fold_in(next(rng), jax.process_index())) # JIT multiple training steps together for faster training n_jitted_steps = config.training.n_jitted_steps # Must be divisible by the number of steps jitted together assert ( config.training.log_freq % n_jitted_steps == 0 and config.training.snapshot_freq_for_preemption % n_jitted_steps == 0 and config.training.eval_freq % n_jitted_steps == 0 and config.training.snapshot_freq % n_jitted_steps == 0 ), "The number of steps jitted together must be divisible by the logging frequency." for step in range( initial_step, num_train_steps + 1, config.training.n_jitted_steps ): # Convert data to JAX arrays and normalize them. Use ._numpy() to avoid copy. try: data = next(train_iter) except StopIteration: # Restart the iterator when the dataset is exhausted. train_iter = iter(train_ds) data = next(train_iter) batch = jax.tree_util.tree_map(lambda x: x.detach().cpu().numpy(), data) next_rng = rng.take(jax.local_device_count()) next_rng = jnp.asarray(next_rng) # Execute one training step (_, pstate), (ploss, p_log_stats) = p_train_step((next_rng, pstate), batch) loss = flax.jax_utils.unreplicate(ploss).mean() log_stats = jax.tree_map( lambda x: x.mean(), flax.jax_utils.unreplicate(p_log_stats) ) # Log to console, file and tensorboard on host 0 if jax.process_index() == 0 and step % config.training.log_freq == 0: logging.info("step: %d, training_loss: %.5e" % (step, loss)) if "dsm_loss" in log_stats and "distill_loss" in log_stats: logging.info( "step: %d, dsm_loss: %.5e, distill_loss: %.5e" % (step, log_stats["dsm_loss"], log_stats["distill_loss"]) ) wandb.log({"training_loss": float(loss)}, step=step) for key, value in log_stats.items(): wandb.log({f"training_{key}": float(value)}, step=step) # Report the loss on an evaluation dataset periodically if step % config.training.eval_freq == 0: try: eval_data = next(eval_iter) except StopIteration: eval_iter = iter(eval_ds) eval_data = next(eval_iter) eval_batch = jax.tree_util.tree_map( lambda x: x.detach().cpu().numpy(), eval_data ) next_rng = jnp.asarray(rng.take(jax.local_device_count())) (_, _), (peval_loss, peval_log_stats) = p_eval_step( (next_rng, pstate), eval_batch ) eval_loss = flax.jax_utils.unreplicate(peval_loss).mean() eval_log_stats = jax.tree_map( lambda x: x.mean(), flax.jax_utils.unreplicate(peval_log_stats) ) if jax.process_index() == 0: logging.info("step: %d, eval_loss: %.5e" % (step, eval_loss)) if "dsm_loss" in eval_log_stats and "distill_loss" in eval_log_stats: logging.info( "step: %d, dsm_loss: %.5e, distill_loss: %.5e" % ( step, eval_log_stats["dsm_loss"], eval_log_stats["distill_loss"], ) ) wandb.log({"eval_loss": float(eval_loss)}, step=step) for key, value in eval_log_stats.items(): wandb.log({f"eval_{key}": float(value)}, step=step) if config.training.loss.lower() == "progressive_distillation": ema_scale_fn = losses.get_ema_scales_fn(config) if step > 0: scales = int(ema_scale_fn(step)[1]) last_scales = int(ema_scale_fn(step - 1)[1]) if scales != last_scales: # Move to the next distillation iteration if scales == 2 or scales == 1: config.optim.linear_decay_steps = ( config.training.distill_steps_per_iter * 2 ) elif scales == 1: config.optim.linear_decay_steps = config.training.n_iters - step optimizer, optimize_fn = losses.get_optimizer(config) state = flax.jax_utils.unreplicate(pstate) state = state.replace( target_params=state.params_ema, params=state.params_ema, opt_state=optimizer.init(state.params_ema), ) pstate = flax.jax_utils.replicate(state) train_step_fn = losses.get_step_fn( train_loss_fn, train=True, optimize_fn=optimize_fn, ema_scales_fn=ema_scale_fn, ) # Pmap (and jit-compile) multiple training steps together for faster running p_train_step = jax.pmap( functools.partial(jax.lax.scan, train_step_fn), axis_name="batch", ) eval_step_fn = losses.get_step_fn( eval_loss_fn, train=False, optimize_fn=optimize_fn, ema_scales_fn=ema_scale_fn, ) # Pmap (and jit-compile) multiple evaluation steps together for faster running p_eval_step = jax.pmap( functools.partial(jax.lax.scan, eval_step_fn), axis_name="batch", ) # Save a checkpoint periodically and generate samples if needed if ( step != 0 and step % config.training.snapshot_freq == 0 or step == num_train_steps ): # Save the checkpoint. if jax.process_index() == 0: saved_state = flax_utils.unreplicate(pstate) saved_state = saved_state.replace(rng_state=rng.internal_state) checkpoints.save_checkpoint( checkpoint_dir, saved_state, step=step // config.training.snapshot_freq, keep=np.inf, ) # Generate and save samples if config.training.snapshot_sampling: # Use the same random seed for sampling to track progress sample_rng_seed = hk.PRNGSequence(42) sample_rng = jnp.asarray(sample_rng_seed.take(jax.local_device_count())) sample, n = sampling_fn(sample_rng, pstate) sample = (sample + 1.0) / 2.0 this_sample_dir = os.path.join( sample_dir, "iter_{}_host_{}".format(step, jax.process_index()) ) blobfile.makedirs(this_sample_dir) image_grid = sample.reshape((-1, *sample.shape[2:])) nrow = int(np.sqrt(image_grid.shape[0])) sample = np.clip(sample * 255, 0, 255).astype(np.uint8) with blobfile.BlobFile( os.path.join(this_sample_dir, "sample.np"), "wb", ) as fout: np.save(fout, sample) with blobfile.BlobFile( os.path.join(this_sample_dir, "sample.png"), "wb", ) as fout: utils.save_image(image_grid, fout, nrow=nrow, padding=2) # Save a temporary checkpoint to resume training after pre-emption periodically # Must execute at the last to avoid corner cases where the main checkpoint was not successfully saved if ( step != 0 and step % config.training.snapshot_freq_for_preemption == 0 and jax.process_index() == 0 ): saved_state = flax_utils.unreplicate(pstate) saved_state = saved_state.replace(rng_state=rng.internal_state) checkpoints.save_checkpoint( checkpoint_meta_dir, saved_state, step=step // config.training.snapshot_freq_for_preemption, keep=1, )
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import time from typing import Any import flax import jax import jax.numpy as jnp import numpy as np import logging import functools import haiku as hk import math from collections import defaultdict from . import checkpoints # Keep the import below for registering all model definitions from .models import ddpm, ncsnv2, ncsnpp from .models import utils as mutils from . import losses from . import sampling from . import datasets from . import metrics from . import likelihood from . import sde_lib from .metrics import get_samples_from_ckpt import blobfile def evaluate(config, workdir, eval_folder="eval"): """Evaluate trained models. Args: config: Configuration to use. workdir: Working directory for checkpoints. eval_folder: The subfolder for storing evaluation results. Default to "eval". """ # Create directory to eval_folder eval_dir = os.path.join(workdir, eval_folder) blobfile.makedirs(eval_dir) rng = hk.PRNGSequence(config.seed + 1) # Initialize model score_model, init_model_state, initial_params = mutils.init_model(next(rng), config) optimizer, optimize_fn = losses.get_optimizer(config) if config.training.loss.lower().endswith( ("ema", "adaptive", "progressive_distillation") ): state = mutils.StateWithTarget( step=0, lr=config.optim.lr, ema_rate=config.model.ema_rate, params=initial_params, target_params=initial_params, params_ema=initial_params, model_state=init_model_state, opt_state=optimizer.init(initial_params), rng_state=rng.internal_state, ) else: state = mutils.State( step=0, lr=config.optim.lr, ema_rate=config.model.ema_rate, params=initial_params, params_ema=initial_params, model_state=init_model_state, opt_state=optimizer.init(initial_params), rng_state=rng.internal_state, ) checkpoint_dir = os.path.join(workdir, "checkpoints") # Setup SDEs sde = sde_lib.get_sde(config) # Add one additional round to get the exact number of samples as required. # num_sampling_rounds and num_bpd_rounds must be computed in all cases. num_sampling_rounds = int( math.ceil(config.eval.num_samples / config.eval.batch_size) ) # Create data loaders for likelihood evaluation. Only evaluate on uniformly dequantized data train_ds_bpd, eval_ds_bpd = datasets.get_dataset( config, additional_dim=None, uniform_dequantization=True, evaluation=True, drop_last=False, ) if config.eval.bpd_dataset.lower() == "train": ds_bpd = train_ds_bpd elif config.eval.bpd_dataset.lower() == "test": # Go over the dataset 5 times when computing likelihood on the test dataset ds_bpd = eval_ds_bpd else: raise ValueError(f"No bpd dataset {config.eval.bpd_dataset} recognized.") num_bpd_rounds = len(ds_bpd) if config.eval.enable_loss: # Build datasets train_ds, eval_ds = datasets.get_dataset( config, additional_dim=1, uniform_dequantization=config.data.uniform_dequantization, evaluation=True, drop_last=False, ) # Create the one-step evaluation function when loss computation is enabled train_loss_fn, eval_loss_fn, state = losses.get_loss_fn( config, sde, score_model, state, next(rng) ) ema_scales_fn = losses.get_ema_scales_fn(config) eval_step = losses.get_step_fn( eval_loss_fn, train=False, optimize_fn=optimize_fn, ema_scales_fn=ema_scales_fn, ) # Pmap (and jit-compile) multiple evaluation steps together for faster execution p_eval_step = jax.pmap( functools.partial(jax.lax.scan, eval_step), axis_name="batch", ) if config.eval.enable_bpd: # Build the likelihood computation function when likelihood is enabled likelihood_fn = likelihood.get_likelihood_fn( sde, score_model, num_repeats=5 if config.eval.bpd_dataset.lower() == "test" else 1, ) # Build the sampling function when sampling is enabled if config.eval.enable_sampling: sampling_shape = ( config.eval.batch_size // jax.local_device_count(), config.data.image_size, config.data.image_size, config.data.num_channels, ) sampling_fn = sampling.get_sampling_fn(config, sde, score_model, sampling_shape) # Create different random states for different hosts in a multi-host environment (e.g., TPU pods) rng = hk.PRNGSequence(jax.random.fold_in(next(rng), jax.process_index())) # A data class for storing intermediate results to resume evaluation after pre-emption @flax.struct.dataclass class EvalMeta: ckpt_id: int sampling_round_id: int bpd_round_id: int rng_state: Any # Restore evaluation after pre-emption eval_meta = EvalMeta( ckpt_id=config.eval.begin_ckpt, sampling_round_id=-1, bpd_round_id=-1, rng_state=rng.internal_state, ) eval_meta = checkpoints.restore_checkpoint( eval_dir, eval_meta, step=None, prefix=f"meta_{jax.process_index()}_" ) # avoid not starting from config.eval.begin_ckpt. if eval_meta.ckpt_id < config.eval.begin_ckpt: eval_meta = eval_meta.replace( ckpt_id=config.eval.begin_ckpt, sampling_round_id=-1, bpd_round_id=-1, rng_state=rng.internal_state, ) # Evaluation order: first loss, then likelihood, then sampling if eval_meta.bpd_round_id < num_bpd_rounds - 1: begin_ckpt = eval_meta.ckpt_id begin_bpd_round = eval_meta.bpd_round_id + 1 begin_sampling_round = 0 elif eval_meta.sampling_round_id < num_sampling_rounds - 1: begin_ckpt = eval_meta.ckpt_id begin_bpd_round = num_bpd_rounds begin_sampling_round = eval_meta.sampling_round_id + 1 else: begin_ckpt = eval_meta.ckpt_id + 1 begin_bpd_round = 0 begin_sampling_round = 0 rng.replace_internal_state(eval_meta.rng_state) logging.info("begin checkpoint: %d" % (begin_ckpt,)) for ckpt in range(begin_ckpt, config.eval.end_ckpt + 1): ## Part 1: Load checkpoint # Wait if the target checkpoint doesn't exist yet waiting_message_printed = False ckpt_filename = os.path.join(checkpoint_dir, "checkpoint_{}".format(ckpt)) while not blobfile.exists(ckpt_filename): if not waiting_message_printed and jax.process_index() == 0: logging.warning("Waiting for the arrival of checkpoint_%d" % (ckpt,)) waiting_message_printed = True time.sleep(60) # Wait for 2 additional mins in case the file exists but is not ready for reading try: state = checkpoints.restore_checkpoint(checkpoint_dir, state, step=ckpt) except: time.sleep(60) try: state = checkpoints.restore_checkpoint(checkpoint_dir, state, step=ckpt) except: raise OSError("checkpoint file is not ready for reading") # Replicate the training state to prepare for pmap pstate = flax.jax_utils.replicate(state) ## Part 2: Compute loss if config.eval.enable_loss: all_losses = [] all_log_stats = defaultdict(list) eval_iter = iter(eval_ds) # pytype: disable=wrong-arg-types for i, batch in enumerate(eval_iter): eval_batch = jax.tree_util.tree_map( lambda x: x.detach().cpu().numpy(), batch ) next_rng = jnp.asarray(rng.take(jax.local_device_count())) (_, _), ( p_eval_loss, p_eval_log_stats, ) = p_eval_step((next_rng, pstate), eval_batch) eval_loss = flax.jax_utils.unreplicate(p_eval_loss) eval_log_stats = flax.jax_utils.unreplicate(p_eval_log_stats) all_losses.extend(eval_loss) for key, value in eval_log_stats.items(): all_log_stats[key].extend(value) if (i + 1) % 1000 == 0 and jax.process_index() == 0: logging.info("Finished %dth step loss evaluation" % (i + 1)) # Save loss values to disk or Google Cloud Storage all_losses = jnp.asarray(all_losses) all_log_stats = jax.tree_map(lambda x: jnp.asarray(x), all_log_stats) with blobfile.BlobFile( os.path.join(eval_dir, f"ckpt_{ckpt}_loss.npz"), "wb" ) as fout: io_buffer = io.BytesIO() np.savez_compressed( io_buffer, all_losses=all_losses, mean_loss=all_losses.mean(), **all_log_stats, ) fout.write(io_buffer.getvalue()) ## Part 3: Compute likelihood (bits/dim) if config.eval.enable_bpd: bpds = [] bpd_iter = iter(ds_bpd) for _ in range(begin_bpd_round): next(bpd_iter) for i, eval_batch in enumerate(bpd_iter): eval_batch = jax.tree_util.tree_map( lambda x: x.detach().cpu().numpy(), eval_batch ) step_rng = jnp.asarray(rng.take(jax.local_device_count())) bpd = likelihood_fn(step_rng, pstate, eval_batch["image"])[0] bpd = bpd.reshape(-1) bpds.extend(bpd) bpd_round_id = begin_bpd_round + i logging.info( "ckpt: %d, round: %d, mean bpd: %6f" % (ckpt, bpd_round_id, jnp.mean(jnp.asarray(bpds))) ) # Save bits/dim to disk or Google Cloud Storage with blobfile.BlobFile( os.path.join( eval_dir, f"{config.eval.bpd_dataset}_ckpt_{ckpt}_bpd_{bpd_round_id}.npz", ), "wb", ) as fout: io_buffer = io.BytesIO() np.savez_compressed(io_buffer, bpd) fout.write(io_buffer.getvalue()) eval_meta = eval_meta.replace( ckpt_id=ckpt, bpd_round_id=bpd_round_id, rng_state=rng.internal_state, ) # Save intermediate states to resume evaluation after pre-emption checkpoints.save_checkpoint( eval_dir, eval_meta, step=ckpt * (num_bpd_rounds + num_sampling_rounds) + bpd_round_id, keep=1, prefix=f"meta_{jax.process_index()}_", ) else: # Skip likelihood computation and save intermediate states for pre-emption eval_meta = eval_meta.replace(ckpt_id=ckpt, bpd_round_id=num_bpd_rounds - 1) checkpoints.save_checkpoint( eval_dir, eval_meta, step=ckpt * (num_bpd_rounds + num_sampling_rounds) + num_bpd_rounds - 1, keep=1, prefix=f"meta_{jax.process_index()}_", ) # Generate samples and compute IS/FID/KID when enabled if config.eval.enable_sampling: logging.info(f"Start sampling evaluation for ckpt {ckpt}") # Run sample generation for multiple rounds to create enough samples # Designed to be pre-emption safe. Automatically resumes when interrupted for r in range(begin_sampling_round, num_sampling_rounds): if jax.process_index() == 0: logging.info("sampling -- ckpt: %d, round: %d" % (ckpt, r)) # Directory to save samples. Different for each host to avoid writing conflicts this_sample_dir = os.path.join( eval_dir, f"ckpt_{ckpt}_host_{jax.process_index()}" ) blobfile.makedirs(this_sample_dir) sample_rng = jnp.asarray(rng.take(jax.local_device_count())) samples, n = sampling_fn(sample_rng, pstate) samples = (samples + 1.0) / 2.0 samples = np.clip(samples * 255.0, 0, 255).astype(np.uint8) samples = samples.reshape( ( -1, config.data.image_size, config.data.image_size, config.data.num_channels, ) ) # Write samples to disk or Google Cloud Storage with blobfile.BlobFile( os.path.join(this_sample_dir, f"samples_{r}.npz"), "wb", ) as fout: io_buffer = io.BytesIO() np.savez_compressed(io_buffer, samples=samples) fout.write(io_buffer.getvalue()) # Save image samples and submit to the FID evaluation website if r == num_sampling_rounds - 1: # Collect samples from all hosts and sampling rounds if jax.process_index() == 0: all_samples = get_samples_from_ckpt(eval_dir, ckpt) all_samples = all_samples[: config.eval.num_samples] sample_path = os.path.join(eval_dir, f"ckpt_{ckpt}_samples.npz") with blobfile.BlobFile(sample_path, "wb") as fout: io_buffer = io.BytesIO() np.savez_compressed(io_buffer, all_samples) fout.write(io_buffer.getvalue()) # Update the intermediate evaluation state eval_meta = eval_meta.replace( ckpt_id=ckpt, sampling_round_id=r, rng_state=rng.internal_state ) # Save intermediate states to resume evaluation after pre-emption checkpoints.save_checkpoint( eval_dir, eval_meta, step=ckpt * (num_sampling_rounds + num_bpd_rounds) + r + num_bpd_rounds, keep=1, prefix=f"meta_{jax.process_index()}_", ) else: # Skip sampling and save intermediate evaluation states for pre-emption eval_meta = eval_meta.replace( ckpt_id=ckpt, sampling_round_id=num_sampling_rounds - 1, rng_state=rng.internal_state, ) checkpoints.save_checkpoint( eval_dir, eval_meta, step=ckpt * (num_sampling_rounds + num_bpd_rounds) + num_sampling_rounds - 1 + num_bpd_rounds, keep=1, prefix=f"meta_{jax.process_index()}_", ) begin_bpd_round = 0 begin_sampling_round = 0 # Remove all meta files after finishing evaluation meta_files = blobfile.glob(os.path.join(eval_dir, f"meta_{jax.process_index()}_*")) for file in meta_files: blobfile.remove(file)
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """All functions related to loss computation and optimization. """ import optax import jax import jax.numpy as jnp import haiku as hk import jax.random as random from . import checkpoints from .models import utils as mutils from .utils import batch_mul from jcm import sde_lib import numpy as np def get_optimizer(config): """Returns a flax optimizer object based on `config`.""" if config.optim.optimizer.lower() == "adam": if hasattr(config.optim, "linear_decay_steps"): # for progressive distillation stable_training_schedule = optax.linear_schedule( init_value=config.optim.lr, end_value=0.0, transition_steps=config.optim.linear_decay_steps, ) else: stable_training_schedule = optax.constant_schedule(config.optim.lr) schedule = optax.join_schedules( [ optax.linear_schedule( init_value=0, end_value=config.optim.lr, transition_steps=config.optim.warmup, ), stable_training_schedule, ], [config.optim.warmup], ) if not np.isinf(config.optim.grad_clip): optimizer = optax.chain( optax.clip_by_global_norm(max_norm=config.optim.grad_clip), optax.adamw( learning_rate=schedule, b1=config.optim.beta1, eps=config.optim.eps, weight_decay=config.optim.weight_decay, ), ) else: optimizer = optax.adamw( learning_rate=schedule, b1=config.optim.beta1, eps=config.optim.eps, weight_decay=config.optim.weight_decay, ) elif config.optim.optimizer.lower() == "radam": beta1 = config.optim.beta1 beta2 = config.optim.beta2 eps = config.optim.eps weight_decay = config.optim.weight_decay lr = config.optim.lr optimizer = optax.chain( optax.scale_by_radam(b1=beta1, b2=beta2, eps=eps), optax.add_decayed_weights(weight_decay, None), optax.scale(-lr), ) else: raise NotImplementedError( f"Optimizer {config.optim.optimizer} not supported yet!" ) def optimize_fn(grads, opt_state, params): updates, opt_state = optimizer.update(grads, opt_state, params) params = optax.apply_updates(params, updates) return params, opt_state return optimizer, optimize_fn def get_loss_fn(config, sde, score_model, state, rng): likelihood_weighting = config.training.likelihood_weighting if config.training.loss.lower() in ["dsm", "ssm"]: ssm = config.training.loss.lower() == "ssm" train_loss_fn = get_score_matching_loss_fn( sde, score_model, train=True, likelihood_weighting=likelihood_weighting, ssm=ssm, ) eval_loss_fn = get_score_matching_loss_fn( sde, score_model, train=False, likelihood_weighting=likelihood_weighting, ssm=ssm, ) elif config.training.loss.lower().startswith( ("continuous", "consistency", "progressive_distillation") ): optimizer, optimize_fn = get_optimizer(config.training.ref_config) rng = hk.PRNGSequence(rng) ref_config = config.training.ref_config ref_model, init_ref_model_state, init_ref_params = mutils.init_model( next(rng), ref_config ) ref_state = mutils.State( step=0, lr=ref_config.optim.lr, ema_rate=ref_config.model.ema_rate, params=init_ref_params, params_ema=init_ref_params, model_state=init_ref_model_state, opt_state=optimizer.init(init_ref_params), rng_state=rng.internal_state, ) ref_state = checkpoints.restore_checkpoint( config.training.ref_model_path, ref_state ) # Initialize the flow model from the denoiser model if config.training.finetune: state = state.replace( params=ref_state.params, params_ema=ref_state.params_ema, model_state=ref_state.model_state, ) if config.training.loss_norm.lower() == "lpips": lpips_model, lpips_params = mutils.init_lpips(next(rng), config) else: lpips_model, lpips_params = None, None if config.training.loss.lower().startswith("continuous"): train_loss_fn = get_continuous_consistency_loss_fn( sde, ref_model, ref_state.params_ema, ref_state.model_state, score_model, train=True, loss_norm=config.training.loss_norm, stopgrad=config.training.stopgrad, lpips_model=lpips_model, lpips_params=lpips_params, dsm_target=config.training.dsm_target, ) eval_loss_fn = get_continuous_consistency_loss_fn( sde, ref_model, ref_state.params_ema, ref_state.model_state, score_model, train=False, loss_norm=config.training.loss_norm, stopgrad=config.training.stopgrad, lpips_model=lpips_model, lpips_params=lpips_params, dsm_target=config.training.dsm_target, ) elif config.training.loss.lower().startswith("consistency"): train_loss_fn = get_consistency_loss_fn( sde, ref_model, ref_state.params_ema, ref_state.model_state, score_model, train=True, loss_norm=config.training.loss_norm, weighting=config.training.weighting, stopgrad=config.training.stopgrad, dsm_target=config.training.dsm_target, solver=config.training.solver, lpips_model=lpips_model, lpips_params=lpips_params, ) eval_loss_fn = get_consistency_loss_fn( sde, ref_model, ref_state.params_ema, ref_state.model_state, score_model, train=False, loss_norm=config.training.loss_norm, weighting=config.training.weighting, stopgrad=config.training.stopgrad, dsm_target=config.training.dsm_target, solver=config.training.solver, lpips_model=lpips_model, lpips_params=lpips_params, ) elif config.training.loss.lower() == "progressive_distillation": train_loss_fn = get_progressive_distillation_loss_fn( sde, score_model, train=True, loss_norm=config.training.loss_norm, weighting=config.training.weighting, lpips_model=lpips_model, lpips_params=lpips_params, ) eval_loss_fn = get_progressive_distillation_loss_fn( sde, score_model, train=False, loss_norm=config.training.loss_norm, weighting=config.training.weighting, lpips_model=lpips_model, lpips_params=lpips_params, ) assert ( config.training.finetune ), "Finetuning is required for progressive distillation." state = state.replace( target_params=ref_state.params_ema, ) else: raise ValueError(f"Unknown loss {config.training.loss}") return train_loss_fn, eval_loss_fn, state def get_quarter_masks(t, ranges): return [(ranges[i] <= t) & (t < ranges[i + 1]) for i in range(len(ranges) - 1)] def get_consistency_loss_fn( sde, ref_model, ref_params, ref_states, model, train, loss_norm="l1", weighting="uniform", stopgrad=True, dsm_target=False, solver="heun", lpips_model=None, lpips_params=None, ): assert isinstance(sde, sde_lib.KVESDE), "Only KVE SDEs are supported for now." denoiser_fn = mutils.get_denoiser_fn( sde, ref_model, ref_params, ref_states, train=False, return_state=False, ) def heun_solver(samples, t, next_t, x0): x = samples if dsm_target: denoiser = x0 else: denoiser = denoiser_fn(x, t) d = batch_mul(1 / t, x - denoiser) samples = x + batch_mul(next_t - t, d) if dsm_target: denoiser = x0 else: denoiser = denoiser_fn(samples, next_t) next_d = batch_mul(1 / next_t, samples - denoiser) samples = x + batch_mul((next_t - t) / 2, d + next_d) return samples def euler_solver(samples, t, next_t, x0): x = samples if dsm_target: denoiser = x0 else: denoiser = denoiser_fn(x, t) score = batch_mul(1 / t**2, denoiser - x) samples = x + batch_mul(next_t - t, -batch_mul(score, t)) return samples if solver.lower() == "heun": ode_solver = heun_solver elif solver.lower() == "euler": ode_solver = euler_solver def loss_fn(rng, params, states, batch, target_params=None, num_scales=None): rng = hk.PRNGSequence(rng) x = batch["image"] if target_params is None: target_params = params if num_scales is None: num_scales = sde.N indices = jax.random.randint(next(rng), (x.shape[0],), 0, num_scales - 1) t = sde.t_max ** (1 / sde.rho) + indices / (num_scales - 1) * ( sde.t_min ** (1 / sde.rho) - sde.t_max ** (1 / sde.rho) ) t = t**sde.rho t2 = sde.t_max ** (1 / sde.rho) + (indices + 1) / (num_scales - 1) * ( sde.t_min ** (1 / sde.rho) - sde.t_max ** (1 / sde.rho) ) t2 = t2**sde.rho z = jax.random.normal(next(rng), x.shape) x_t = x + batch_mul(t, z) dropout_rng = next(rng) Ft, new_states = mutils.get_distiller_fn( sde, model, params, states, train=train, return_state=True )(x_t, t, rng=dropout_rng if train else None) x_t2 = ode_solver(x_t, t, t2, x) Ft2, new_states = mutils.get_distiller_fn( sde, model, target_params, new_states, train=train, return_state=True )(x_t2, t2, rng=dropout_rng if train else None) if stopgrad: Ft2 = jax.lax.stop_gradient(Ft2) diffs = Ft - Ft2 if weighting.lower() == "uniform": weight = jnp.ones_like(t) elif weighting.lower() == "snrp1": weight = 1 / t**2 + 1.0 elif weighting.lower() == "truncated_snr": weight = jnp.maximum(1 / t**2, jnp.ones_like(t)) elif weighting.lower() == "snr": weight = 1 / t**2 else: raise NotImplementedError(f"Weighting {weighting} not implemented") if loss_norm.lower() == "l1": losses = jnp.abs(diffs) losses = jnp.mean(losses.reshape(losses.shape[0], -1), axis=-1) elif loss_norm.lower() == "l2": losses = diffs**2 losses = jnp.mean(losses.reshape(losses.shape[0], -1), axis=-1) elif loss_norm.lower() == "linf": losses = jnp.abs(diffs) losses = jnp.max(losses.reshape(losses.shape[0], -1), axis=-1) elif loss_norm.lower() == "lpips": scaled_Ft = jax.image.resize( Ft, (Ft.shape[0], 224, 224, 3), method="bilinear" ) scaled_Ft2 = jax.image.resize( Ft2, (Ft2.shape[0], 224, 224, 3), method="bilinear" ) losses = jnp.squeeze(lpips_model.apply(lpips_params, scaled_Ft, scaled_Ft2)) else: raise ValueError("Unknown loss norm: {}".format(loss_norm)) loss = jnp.nansum(losses * batch["mask"] * weight / jnp.sum(batch["mask"])) log_stats = {} ## Uncomment to log loss per time step # for t_index in range(sde.N - 1): # mask = (indices == t_index).astype(jnp.float32) # log_stats["loss_t{}".format(t_index)] = jnp.nansum( # losses * batch["mask"] * mask / jnp.sum(batch["mask"] * mask) # ) return loss, (new_states, log_stats) return loss_fn def get_progressive_distillation_loss_fn( sde, model, train, loss_norm="l2", weighting="truncated_snr", lpips_model=None, lpips_params=None, ): assert isinstance(sde, sde_lib.KVESDE), "Only KVE SDEs are supported for now." def loss_fn(rng, params, states, batch, target_params, num_scales): rng = hk.PRNGSequence(rng) x = batch["image"] indices = jax.random.randint(next(rng), (x.shape[0],), 0, num_scales) t = sde.t_max ** (1 / sde.rho) + indices / num_scales * ( sde.t_min ** (1 / sde.rho) - sde.t_max ** (1 / sde.rho) ) t = t**sde.rho t2 = sde.t_max ** (1 / sde.rho) + (indices + 0.5) / num_scales * ( sde.t_min ** (1 / sde.rho) - sde.t_max ** (1 / sde.rho) ) t2 = t2**sde.rho t3 = sde.t_max ** (1 / sde.rho) + (indices + 1) / num_scales * ( sde.t_min ** (1 / sde.rho) - sde.t_max ** (1 / sde.rho) ) t3 = t3**sde.rho z = jax.random.normal(next(rng), x.shape) x_t = x + batch_mul(t, z) dropout_rng = next(rng) denoised_x, new_states = mutils.get_denoiser_fn( sde, model, params, states, train=train, return_state=True )(x_t, t, rng=dropout_rng if train else None) target_denoiser_fn = mutils.get_denoiser_fn( sde, model, target_params, states, train=False, return_state=False, ) def euler_solver(samples, t, next_t): x = samples denoiser = target_denoiser_fn(x, t, rng=None) score = batch_mul(1 / t**2, denoiser - x) samples = x + batch_mul(next_t - t, -batch_mul(score, t)) return samples def euler_to_denoiser(x_t, t, x_next_t, next_t): denoiser = x_t - batch_mul(t, batch_mul(x_next_t - x_t, 1 / (next_t - t))) return denoiser x_t2 = euler_solver(x_t, t, t2) x_t3 = euler_solver(x_t2, t2, t3) target_x = jax.lax.stop_gradient(euler_to_denoiser(x_t, t, x_t3, t3)) diffs = denoised_x - target_x if loss_norm.lower() == "l1": losses = jnp.abs(diffs) losses = jnp.mean(losses.reshape(losses.shape[0], -1), axis=-1) elif loss_norm.lower() == "l2": losses = diffs**2 losses = jnp.mean(losses.reshape(losses.shape[0], -1), axis=-1) elif loss_norm.lower() == "linf": losses = jnp.abs(diffs) losses = jnp.max(losses.reshape(losses.shape[0], -1), axis=-1) elif loss_norm.lower() == "lpips": scaled_denoised_x = jax.image.resize( denoised_x, (denoised_x.shape[0], 224, 224, 3), method="bilinear" ) scaled_target_x = jax.image.resize( target_x, (target_x.shape[0], 224, 224, 3), method="bilinear" ) losses = jnp.squeeze( lpips_model.apply(lpips_params, scaled_denoised_x, scaled_target_x) ) else: raise ValueError("Unknown loss norm: {}".format(loss_norm)) if weighting.lower() == "snrp1": weight = 1 / t**2 + 1 elif weighting.lower() == "truncated_snr": weight = jnp.maximum(1 / t**2, jnp.ones_like(t)) elif weighting.lower() == "snr": weight = 1 / t**2 loss = jnp.nansum(losses * batch["mask"] * weight / jnp.sum(batch["mask"])) log_stats = {} return loss, (new_states, log_stats) return loss_fn def get_continuous_consistency_loss_fn( sde, ref_model, ref_params, ref_states, model, train, loss_norm="l1", stopgrad=False, lpips_model=None, lpips_params=None, dsm_target=False, ): assert isinstance(sde, sde_lib.KVESDE), "Only KVE SDEs are supported for now." score_fn = mutils.get_score_fn( sde, ref_model, ref_params, ref_states, train=False, return_state=False, ) def loss_fn(rng, params, states, batch): rng = hk.PRNGSequence(rng) x = batch["image"] # sampling t according to the Heun sampler t = jax.random.uniform( next(rng), (x.shape[0],), minval=sde.t_min ** (1 / sde.rho), maxval=sde.t_max ** (1 / sde.rho), ) ** (sde.rho) weightings = jnp.ones_like(t) z = jax.random.normal(next(rng), x.shape) x_t = x + batch_mul(t, z) if dsm_target: score_t = batch_mul(x - x_t, 1 / t**2) else: score_t = score_fn(x_t, t) if train: step_rng = next(rng) else: step_rng = None def model_fn(data, time): return mutils.get_distiller_fn( sde, model, params, states, train=train, return_state=True )(data, time, rng=step_rng) Ft, diffs, new_states = jax.jvp( model_fn, (x_t, t), (batch_mul(t, score_t), -jnp.ones_like(t)), has_aux=True ) if loss_norm.lower() == "l1": losses = jnp.abs(diffs) losses = jnp.mean(losses.reshape(losses.shape[0], -1), axis=1) elif loss_norm.lower() == "l2": losses = diffs**2 losses = jnp.sqrt(jnp.sum(losses.reshape(losses.shape[0], -1), axis=1)) elif loss_norm.lower() == "linf": losses = jnp.abs(diffs) losses = jnp.max(losses.reshape(losses.shape[0], -1), axis=1) elif loss_norm.lower() == "lpips": def metric(x): scaled_Ft = jax.image.resize( Ft, (Ft.shape[0], 224, 224, 3), method="bilinear" ) x = jax.image.resize(x, (x.shape[0], 224, 224, 3), method="bilinear") return jnp.sum( jnp.squeeze(lpips_model.apply(lpips_params, scaled_Ft, x)) ) losses = ( jax.grad(lambda x: jnp.sum(jax.grad(metric)(x) * diffs))(Ft) * diffs ) losses = jnp.sum(losses.reshape(losses.shape[0], -1), axis=1) else: raise ValueError("Unknown loss norm: {}".format(loss_norm)) if stopgrad: if loss_norm.lower() == "l2": pseudo_losses = -jax.lax.stop_gradient(diffs) * Ft pseudo_losses = jnp.sum( pseudo_losses.reshape((pseudo_losses.shape[0], -1)), axis=-1 ) loss = jnp.nansum( pseudo_losses * batch["mask"] * weightings / jnp.sum(batch["mask"]) ) elif loss_norm.lower() == "lpips": def metric_fn(x): x = jax.image.resize( x, (x.shape[0], 224, 224, 3), method="bilinear" ) y = jax.image.resize( jax.lax.stop_gradient(Ft), (x.shape[0], 224, 224, 3), method="bilinear", ) return jnp.sum(jnp.squeeze(lpips_model.apply(lpips_params, x, y))) # forward-over-reverse def hvp(f, primals, tangents): return jax.jvp(jax.grad(f), primals, tangents)[1] pseudo_losses = Ft * hvp( metric_fn, (jax.lax.stop_gradient(Ft),), (-jax.lax.stop_gradient(diffs),), ) pseudo_losses = jnp.sum( pseudo_losses.reshape((pseudo_losses.shape[0], -1)), axis=-1 ) loss = jnp.nansum( pseudo_losses * batch["mask"] * weightings / jnp.sum(batch["mask"]) ) else: raise NotImplementedError else: loss = jnp.nansum( losses * batch["mask"] * weightings / jnp.sum(batch["mask"]) ) quarter_masks = get_quarter_masks( t, np.linspace(sde.t_min ** (1 / sde.rho), sde.t_max ** (1 / sde.rho), 5) ** sde.rho, ) loss_q1 = jnp.nansum( losses * quarter_masks[0] * batch["mask"] / jnp.sum(quarter_masks[0] * batch["mask"]) ) loss_q2 = jnp.nansum( losses * quarter_masks[1] * batch["mask"] / jnp.sum(quarter_masks[1] * batch["mask"]) ) loss_q3 = jnp.nansum( losses * quarter_masks[2] * batch["mask"] / jnp.sum(quarter_masks[2] * batch["mask"]) ) loss_q4 = jnp.nansum( losses * quarter_masks[3] * batch["mask"] / jnp.sum(quarter_masks[3] * batch["mask"]) ) log_stats = { "loss": loss, "loss_q1": loss_q1, "loss_q2": loss_q2, "loss_q3": loss_q3, "loss_q4": loss_q4, } return loss, (new_states, log_stats) return loss_fn def get_score_matching_loss_fn( sde, model, train, likelihood_weighting=False, ssm=False, eps=1e-5, ): """Create a loss function for training with arbirary SDEs. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. model: A `flax.linen.Module` object that represents the architecture of the score-based model. train: `True` for training loss and `False` for evaluation loss. likelihood_weighting: If `True`, weight the mixture of score matching losses according to https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended in our paper. eps: A `float` number. The smallest time step to sample from. Returns: A loss function. """ def dsm_loss_fn(rng, params, states, batch): """Compute the loss function based on denoising score matching. Args: rng: A JAX random state. params: A dictionary that contains trainable parameters of the score-based model. states: A dictionary that contains mutable states of the score-based model. batch: A mini-batch of training data. Returns: loss: A scalar that represents the average loss value across the mini-batch. new_model_state: A dictionary that contains the mutated states of the score-based model. """ data = batch["image"] rng = hk.PRNGSequence(rng) if isinstance(sde, sde_lib.KVESDE): t = random.normal(next(rng), (data.shape[0],)) * 1.2 - 1.2 t = jnp.exp(t) else: t = random.uniform(next(rng), (data.shape[0],), minval=eps, maxval=sde.T) z = random.normal(next(rng), data.shape) mean, std = sde.marginal_prob(data, t) perturbed_data = mean + batch_mul(std, z) if isinstance(sde, sde_lib.KVESDE): score_fn = mutils.get_score_fn( sde, model, params, states, train=train, return_state=True, ) score, new_model_state = score_fn(perturbed_data, t, rng=next(rng)) losses = jnp.square(batch_mul(score, std) + z) losses = batch_mul( losses, (std**2 + sde.data_std**2) / sde.data_std**2 ) losses = jnp.sum(losses.reshape((losses.shape[0], -1)), axis=-1) else: score_fn = mutils.get_score_fn( sde, model, params, states, train=train, return_state=True, ) score, new_model_state = score_fn(perturbed_data, t, rng=next(rng)) if not likelihood_weighting: losses = jnp.square(batch_mul(score, std) + z) losses = jnp.mean(losses.reshape((losses.shape[0], -1)), axis=-1) else: g2 = sde.sde(jnp.zeros_like(data), t)[1] ** 2 losses = jnp.square(score + batch_mul(z, 1.0 / std)) losses = jnp.mean(losses.reshape((losses.shape[0], -1)), axis=-1) * g2 loss = jnp.nansum(losses * batch["mask"] / jnp.sum(batch["mask"])) quarter_masks = get_quarter_masks( t, np.linspace(sde.t_min ** (1 / sde.rho), sde.t_max ** (1 / sde.rho), 5) ** sde.rho, ) loss_q1 = jnp.nansum( losses * quarter_masks[0] * batch["mask"] / jnp.sum(quarter_masks[0] * batch["mask"]) ) loss_q2 = jnp.nansum( losses * quarter_masks[1] * batch["mask"] / jnp.sum(quarter_masks[1] * batch["mask"]) ) loss_q3 = jnp.nansum( losses * quarter_masks[2] * batch["mask"] / jnp.sum(quarter_masks[2] * batch["mask"]) ) loss_q4 = jnp.nansum( losses * quarter_masks[3] * batch["mask"] / jnp.sum(quarter_masks[3] * batch["mask"]) ) log_stats = { "loss_q1": loss_q1, "loss_q2": loss_q2, "loss_q3": loss_q3, "loss_q4": loss_q4, } return loss, (new_model_state, log_stats) def ssm_loss_fn(rng, params, states, batch): """Compute the loss function based on sliced score matching. Args: rng: A JAX random state. params: A dictionary that contains trainable parameters of the score-based model. states: A dictionary that contains mutable states of the score-based model. batch: A mini-batch of training data. Returns: loss: A scalar that represents the average loss value across the mini-batch. new_model_state: A dictionary that contains the mutated states of the score-based model. """ score_fn = mutils.get_score_fn( sde, model, params, states, train=train, return_state=True, ) data = batch["image"] rng = hk.PRNGSequence(rng) # DEBUG: beware of eps! if isinstance(sde, sde_lib.KVESDE): t = random.normal(next(rng), (data.shape[0],)) * 1.2 - 1.2 t = jnp.exp(t) else: t = random.uniform(next(rng), (data.shape[0],), minval=eps, maxval=sde.T) # t = random.uniform(next(rng), (data.shape[0],), minval=eps, maxval=sde.T) z = random.normal(next(rng), data.shape) mean, std = sde.marginal_prob(data, t) perturbed_data = mean + batch_mul(std, z) def score_fn_for_jvp(x): return score_fn(x, t, rng=next(rng)) epsilon = random.rademacher(next(rng), data.shape, dtype=data.dtype) score, score_trace, new_model_state = jax.jvp( score_fn_for_jvp, (perturbed_data,), (epsilon,), has_aux=True ) score_norm = jnp.mean(jnp.square(score).reshape((score.shape[0], -1)), axis=-1) score_trace = jnp.mean( (2 * score_trace * epsilon).reshape((score.shape[0], -1)), axis=-1 ) if not likelihood_weighting: losses = (score_norm + score_trace) * std**2 elif isinstance(sde, sde_lib.KVESDE): losses = score_norm + score_trace losses = ( losses * std**2 * (std**2 + sde.data_std**2) / sde.data_std**2 ) else: g2 = sde.sde(jnp.zeros_like(data), t)[1] ** 2 losses = (score_norm + score_trace) * g2 loss = jnp.nansum(losses * batch["mask"] / jnp.sum(batch["mask"])) quarter_masks = get_quarter_masks( t, np.linspace(sde.t_min ** (1 / sde.rho), sde.t_max ** (1 / sde.rho), 5) ** sde.rho, ) loss_q1 = jnp.nansum( losses * quarter_masks[0] * batch["mask"] / jnp.sum(quarter_masks[0] * batch["mask"]) ) loss_q2 = jnp.nansum( losses * quarter_masks[1] * batch["mask"] / jnp.sum(quarter_masks[1] * batch["mask"]) ) loss_q3 = jnp.nansum( losses * quarter_masks[2] * batch["mask"] / jnp.sum(quarter_masks[2] * batch["mask"]) ) loss_q4 = jnp.nansum( losses * quarter_masks[3] * batch["mask"] / jnp.sum(quarter_masks[3] * batch["mask"]) ) log_stats = { "loss_q1": loss_q1, "loss_q2": loss_q2, "loss_q3": loss_q3, "loss_q4": loss_q4, "loss": loss, } return loss, (new_model_state, log_stats) return dsm_loss_fn if not ssm else ssm_loss_fn def get_ema_scales_fn(config): if config.training.loss.lower() in ("dsm", "ssm", "continuous", "consistency"): def ema_and_scales_fn(step): return None, None else: def ema_and_scales_fn(step): if ( config.training.target_ema_mode == "fixed" and config.training.scale_mode == "fixed" ): target_ema = float(config.training.target_ema) scales = int(config.model.num_scales) elif ( config.training.target_ema_mode == "adaptive" and config.training.scale_mode == "progressive" ): start_ema = float(config.training.start_ema) start_scales = int(config.training.start_scales) end_scales = int(config.training.end_scales) total_steps = int(config.training.n_iters) scales = jnp.ceil( jnp.sqrt( (step / total_steps) * ((end_scales + 1) ** 2 - start_scales**2) + start_scales**2 ) - 1 ).astype(jnp.int32) scales = jnp.maximum(scales, 1) c = -jnp.log(start_ema) * start_scales target_ema = jnp.exp(-c / scales) scales = scales + 1 elif ( config.training.target_ema_mode == "fixed" and config.training.scale_mode == "progdist" ): start_scales = int(config.training.start_scales) distill_steps_per_iter = int(config.training.distill_steps_per_iter) distill_stage = step // distill_steps_per_iter scales = start_scales // (2**distill_stage) scales = jnp.maximum(scales, 2) sub_stage = jnp.maximum( step - distill_steps_per_iter * (jnp.log2(start_scales) - 1), 0, ) sub_stage = sub_stage // (distill_steps_per_iter * 2) sub_scales = 2 // (2**sub_stage) sub_scales = jnp.maximum(sub_scales, 1) scales = jnp.where(scales == 2, sub_scales, scales) target_ema = 1.0 else: raise NotImplementedError return target_ema, scales return ema_and_scales_fn def get_step_fn( loss_fn, train, optimize_fn=None, ema_scales_fn=None, ): """Create a one-step training/evaluation function. Args: loss_fn: The loss function for training or evaluation. It should have the signature `loss_fn(rng, params, states, batch)`. train: `True` for training and `False` for evaluation. optimize_fn: An optimization function. ema_scales_fn: A function that returns the current EMA and number of scales. Useful for progressive training. Returns: A one-step function for training or evaluation. """ def step_fn(carry_state, batch): """Running one step of training or evaluation. This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together for faster execution. Args: carry_state: A tuple (JAX random state, `flax.struct.dataclass` containing the training state). batch: A mini-batch of training/evaluation data. Returns: new_carry_state: The updated tuple of `carry_state`. loss: The average loss value of this state. """ (rng, state) = carry_state rng, step_rng = jax.random.split(rng) grad_fn = jax.value_and_grad(loss_fn, argnums=1, has_aux=True) if train: step = state.step params = state.params states = state.model_state opt_state = state.opt_state target_ema, num_scales = ema_scales_fn(step) if target_ema is None and num_scales is None: ( loss, (new_model_state, log_stats), ), grad = grad_fn(step_rng, params, states, batch) grad = jax.lax.pmean(grad, axis_name="batch") new_params, new_opt_state = optimize_fn(grad, opt_state, params) new_params_ema = jax.tree_util.tree_map( lambda p_ema, p: p_ema * state.ema_rate + p * (1.0 - state.ema_rate), state.params_ema, new_params, ) step = state.step + 1 new_state = state.replace( step=step, params=new_params, params_ema=new_params_ema, model_state=new_model_state, opt_state=new_opt_state, ) else: target_params = state.target_params (loss, (new_model_state, log_stats)), grad = grad_fn( step_rng, params, states, batch, target_params, num_scales ) grad = jax.lax.pmean(grad, axis_name="batch") new_params, new_opt_state = optimize_fn(grad, opt_state, params) new_params_ema = jax.tree_util.tree_map( lambda p_ema, p: p_ema * state.ema_rate + p * (1.0 - state.ema_rate), state.params_ema, new_params, ) new_target_params = jax.tree_util.tree_map( lambda p_target, p: p_target * target_ema + p * (1.0 - target_ema), target_params, new_params, ) step = state.step + 1 new_state = state.replace( step=step, params=new_params, params_ema=new_params_ema, target_params=new_target_params, model_state=new_model_state, opt_state=new_opt_state, ) else: target_ema, num_scales = ema_scales_fn(state.step) if target_ema is None and num_scales is None: loss, (_, log_stats) = loss_fn( step_rng, state.params_ema, state.model_state, batch, ) else: loss, (_, log_stats) = loss_fn( step_rng, state.params_ema, state.model_state, batch, state.target_params, num_scales, ) new_state = state loss = jax.lax.pmean(loss, axis_name="batch") mean_log_stats = jax.tree_map( lambda x: jax.lax.pmean(x, axis_name="batch"), log_stats ) new_carry_state = (rng, new_state) return new_carry_state, (loss, mean_log_stats) return step_fn
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file # pytype: skip-file """Various sampling methods.""" import jax import flax import jax.numpy as jnp import numpy as np from scipy import integrate import haiku as hk from jcm.utils import T from .models import utils as mutils import diffrax def get_div_fn(fn): """Create the divergence function of `fn` using the Hutchinson-Skilling trace estimator.""" ## Reverse-mode differentiation (slower) # def div_fn(x, t, eps): # grad_fn = lambda data: jnp.sum(fn(data, t) * eps) # grad_fn_eps = jax.grad(grad_fn)(x) # return jnp.sum(grad_fn_eps * eps, axis=tuple(range(1, len(x.shape)))) ## Forward-mode differentiation (faster) def div_fn(x, t, eps): jvp = jax.jvp(lambda x: fn(x, t), (x,), (eps,))[1] return jnp.sum(jvp * eps, axis=tuple(range(1, len(x.shape)))) return div_fn def get_likelihood_fn( sde, model, hutchinson_type="Rademacher", rtol=1e-5, atol=1e-5, eps=1e-5, num_repeats=1, ): """Create a function to compute the unbiased log-likelihood estimate of a given data point. Args: sde: A `sde_lib.SDE` object that represents the forward SDE. model: A `flax.linen.Module` object that represents the architecture of the score-based model. hutchinson_type: "Rademacher" or "Gaussian". The type of noise for Hutchinson-Skilling trace estimator. rtol: A `float` number. The relative tolerance level of the black-box ODE solver. atol: A `float` number. The absolute tolerance level of the black-box ODE solver. eps: A `float` number. The probability flow ODE is integrated to `eps` for numerical stability. num_repeats: The number of times to repeat the black-box ODE solver for reduced variance. Returns: A function that takes random states, replicated training states, and a batch of data points and returns the log-likelihoods in bits/dim, the latent code, and the number of function evaluations cost by computation. """ def drift_fn(state, x, t): """The drift function of the reverse-time SDE.""" score_fn = mutils.get_score_fn( sde, model, state.params_ema, state.model_state, train=False, ) # Probability flow ODE is a special case of Reverse SDE rsde = sde.reverse(score_fn, probability_flow=True) return rsde.sde(x, t)[0] def likelihood_fn(rng, state, data): """Compute an unbiased estimate to the log-likelihood in bits/dim. Args: rng: An array of random states. state: Replicated training state for running on multiple devices. data: A JAX array of shape [batch size, ...]. Returns: bpd: A JAX array of shape [batch size]. The log-likelihoods on `data` in bits/dim. z: A JAX array of the same shape as `data`. The latent representation of `data` under the probability flow ODE. nfe: An integer. The number of function evaluations used for running the black-box ODE solver. """ div_fn = get_div_fn(lambda x, t: drift_fn(state, x, t)) rng = hk.PRNGSequence(rng) shape = data.shape if hutchinson_type == "Gaussian": epsilon = jax.random.normal(next(rng), shape) elif hutchinson_type == "Rademacher": epsilon = jax.random.rademacher(next(rng), shape, dtype=data.dtype) else: raise NotImplementedError(f"Hutchinson type {hutchinson_type} unknown.") ## ODE function for diffrax ODE solver def ode_func(t, x, args): sample = x[..., :-1] vec_t = jnp.ones((sample.shape[0],)) * t drift = drift_fn(sample, vec_t) logp_grad = div_fn(sample, vec_t, epsilon) return jnp.stack([drift, logp_grad], axis=-1) term = diffrax.ODETerm(ode_func) solver = diffrax.Tsit5() stepsize_controller = diffrax.PIDController(rtol=rtol, atol=atol) solution = diffrax.diffeqsolve( term, solver, t0=sde.T, t1=eps, dt0=eps - sde.T, y0=jnp.stack([data, jnp.zeros_like((data.shape[0],))], axis=-1), stepsize_controller=stepsize_controller, ) nfe = solution.stats["num_steps"] z = solution.ys[-1, ..., :-1] delta_logp = solution.ys[-1, ..., -1] prior_logp = sde.prior_logp(z) bpd = -(prior_logp + delta_logp) / np.log(2) N = np.prod(shape[1:]) bpd = bpd / N offset = 7.0 bpd += offset return bpd, z, nfe def likelihood_fn_repeated(rng, state, data): def loop_fn(i, carry): bpd, nfe, rng = carry rng, step_rng = jax.random.split(rng) bpd_i, z_i, nfe_i = likelihood_fn(step_rng, state, data) bpd = bpd + bpd_i nfe = nfe + nfe_i return bpd, nfe, rng bpd, nfe, rng = jax.lax.fori_loop( 0, num_repeats, loop_fn, (jnp.zeros(data.shape[0]), 0, rng) ) bpd = bpd / num_repeats nfe = nfe / num_repeats return bpd, nfe return jax.pmap(likelihood_fn_repeated, axis_name="batch")
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training and evaluation""" from jcm import train from jcm import evaluate from jcm import metrics import logging import os import blobfile import wandb from absl import flags, app from ml_collections.config_flags import config_flags FLAGS = flags.FLAGS config_flags.DEFINE_config_file( "config", None, "Training configuration.", lock_config=True ) flags.DEFINE_string("workdir", None, "Work directory.") flags.DEFINE_enum( "mode", None, ["train", "eval", "metrics"], "Running mode: train or eval or metrics", ) flags.DEFINE_string( "eval_folder", "eval", "The folder name for storing evaluation results" ) flags.DEFINE_integer("num_gpus", 8, "Number of GPUs to use.") flags.mark_flags_as_required(["workdir", "config", "mode"]) def main(argv): if FLAGS.mode == "train": wandb.login() wandb.init( project=os.path.basename(FLAGS.workdir), name=os.path.basename(FLAGS.workdir), config=FLAGS.config.to_dict(), ) # Create the working directory blobfile.makedirs(FLAGS.workdir) formatter = logging.Formatter( "%(levelname)s - %(filename)s - %(asctime)s - %(message)s" ) logger = logging.getLogger() handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel("INFO") # Run the training pipeline train.train(FLAGS.config, FLAGS.workdir) elif FLAGS.mode == "eval": # Run the evaluation pipeline evaluate.evaluate( FLAGS.config, FLAGS.workdir, FLAGS.eval_folder, ) elif FLAGS.mode == "metrics": # Compute the metrics metrics.compute_metrics( FLAGS.config, FLAGS.workdir, FLAGS.eval_folder, ) else: raise ValueError(f"Mode {FLAGS.mode} not recognized.") if __name__ == "__main__": app.run(main)
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """The NCSNv2 model.""" import flax.linen as nn import functools from .utils import register_model from .layers import ( CondRefineBlock, RefineBlock, ResidualBlock, ncsn_conv3x3, ConditionalResidualBlock, get_act, ) from .normalization import get_normalization import ml_collections CondResidualBlock = ConditionalResidualBlock conv3x3 = ncsn_conv3x3 def get_network(config): if config.data.image_size < 96: return functools.partial(NCSNv2, config=config) elif 96 <= config.data.image_size <= 128: return functools.partial(NCSNv2_128, config=config) elif 128 < config.data.image_size <= 256: return functools.partial(NCSNv2_256, config=config) else: raise NotImplementedError( f"No network suitable for {config.data.image_size}px implemented yet." ) @register_model(name="ncsnv2_64") class NCSNv2(nn.Module): """NCSNv2 model architecture.""" config: ml_collections.ConfigDict @nn.compact def __call__(self, x, labels, train=True): # config parsing config = self.config nf = config.model.nf act = get_act(config) normalizer = get_normalization(config) interpolation = config.model.interpolation if not config.data.centered: h = 2 * x - 1.0 else: h = x h = conv3x3(h, nf, stride=1, bias=True) # ResNet backbone h = ResidualBlock(nf, resample=None, act=act, normalization=normalizer)(h) layer1 = ResidualBlock(nf, resample=None, act=act, normalization=normalizer)(h) h = ResidualBlock(2 * nf, resample="down", act=act, normalization=normalizer)( layer1 ) layer2 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer )(h) h = ResidualBlock( 2 * nf, resample="down", act=act, normalization=normalizer, dilation=2 )(layer2) layer3 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer, dilation=2 )(h) h = ResidualBlock( 2 * nf, resample="down", act=act, normalization=normalizer, dilation=4 )(layer3) layer4 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer, dilation=4 )(h) # U-Net with RefineBlocks ref1 = RefineBlock( layer4.shape[1:3], 2 * nf, act=act, interpolation=interpolation, start=True )([layer4]) ref2 = RefineBlock( layer3.shape[1:3], 2 * nf, interpolation=interpolation, act=act )([layer3, ref1]) ref3 = RefineBlock( layer2.shape[1:3], 2 * nf, interpolation=interpolation, act=act )([layer2, ref2]) ref4 = RefineBlock( layer1.shape[1:3], nf, interpolation=interpolation, act=act, end=True )([layer1, ref3]) h = normalizer()(ref4) h = act(h) h = conv3x3(h, x.shape[-1]) return h @register_model(name="ncsn") class NCSN(nn.Module): """NCSNv1 model architecture.""" config: ml_collections.ConfigDict @nn.compact def __call__(self, x, labels, train=True): # config parsing config = self.config nf = config.model.nf act = get_act(config) normalizer = get_normalization(config, conditional=True) interpolation = config.model.interpolation if not config.data.centered: h = 2 * x - 1.0 else: h = x h = conv3x3(h, nf, stride=1, bias=True) # ResNet backbone h = CondResidualBlock(nf, resample=None, act=act, normalization=normalizer)( h, labels ) layer1 = CondResidualBlock( nf, resample=None, act=act, normalization=normalizer )(h, labels) h = CondResidualBlock( 2 * nf, resample="down", act=act, normalization=normalizer )(layer1, labels) layer2 = CondResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer )(h, labels) h = CondResidualBlock( 2 * nf, resample="down", act=act, normalization=normalizer, dilation=2 )(layer2, labels) layer3 = CondResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer, dilation=2 )(h, labels) h = CondResidualBlock( 2 * nf, resample="down", act=act, normalization=normalizer, dilation=4 )(layer3, labels) layer4 = CondResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer, dilation=4 )(h, labels) # U-Net with RefineBlocks ref1 = CondRefineBlock( layer4.shape[1:3], 2 * nf, act=act, normalizer=normalizer, interpolation=interpolation, start=True, )([layer4], labels) ref2 = CondRefineBlock( layer3.shape[1:3], 2 * nf, normalizer=normalizer, interpolation=interpolation, act=act, )([layer3, ref1], labels) ref3 = CondRefineBlock( layer2.shape[1:3], 2 * nf, normalizer=normalizer, interpolation=interpolation, act=act, )([layer2, ref2], labels) ref4 = CondRefineBlock( layer1.shape[1:3], nf, normalizer=normalizer, interpolation=interpolation, act=act, end=True, )([layer1, ref3], labels) h = normalizer()(ref4, labels) h = act(h) h = conv3x3(h, x.shape[-1]) return h @register_model(name="ncsnv2_128") class NCSNv2_128(nn.Module): # pylint: disable=invalid-name """NCSNv2 model architecture for 128px images.""" config: ml_collections.ConfigDict @nn.compact def __call__(self, x, labels, train=True): # config parsing config = self.config nf = config.model.nf act = get_act(config) normalizer = get_normalization(config) interpolation = config.model.interpolation if not config.data.centered: h = 2 * x - 1.0 else: h = x h = conv3x3(h, nf, stride=1, bias=True) # ResNet backbone h = ResidualBlock(nf, resample=None, act=act, normalization=normalizer)(h) layer1 = ResidualBlock(nf, resample=None, act=act, normalization=normalizer)(h) h = ResidualBlock(2 * nf, resample="down", act=act, normalization=normalizer)( layer1 ) layer2 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer )(h) h = ResidualBlock(2 * nf, resample="down", act=act, normalization=normalizer)( layer2 ) layer3 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer )(h) h = ResidualBlock( 4 * nf, resample="down", act=act, normalization=normalizer, dilation=2 )(layer3) layer4 = ResidualBlock( 4 * nf, resample=None, act=act, normalization=normalizer, dilation=2 )(h) h = ResidualBlock( 4 * nf, resample="down", act=act, normalization=normalizer, dilation=4 )(layer4) layer5 = ResidualBlock( 4 * nf, resample=None, act=act, normalization=normalizer, dilation=4 )(h) # U-Net with RefineBlocks ref1 = RefineBlock( layer5.shape[1:3], 4 * nf, interpolation=interpolation, act=act, start=True )([layer5]) ref2 = RefineBlock( layer4.shape[1:3], 2 * nf, interpolation=interpolation, act=act )([layer4, ref1]) ref3 = RefineBlock( layer3.shape[1:3], 2 * nf, interpolation=interpolation, act=act )([layer3, ref2]) ref4 = RefineBlock(layer2.shape[1:3], nf, interpolation=interpolation, act=act)( [layer2, ref3] ) ref5 = RefineBlock( layer1.shape[1:3], nf, interpolation=interpolation, act=act, end=True )([layer1, ref4]) h = normalizer()(ref5) h = act(h) h = conv3x3(h, x.shape[-1]) return h @register_model(name="ncsnv2_256") class NCSNv2_256(nn.Module): # pylint: disable=invalid-name """NCSNv2 model architecture for 256px images.""" config: ml_collections.ConfigDict @nn.compact def __call__(self, x, labels, train=True): # config parsing config = self.config nf = config.model.nf act = get_act(config) normalizer = get_normalization(config) interpolation = config.model.interpolation if not config.data.centered: h = 2 * x - 1.0 else: h = x h = conv3x3(h, nf, stride=1, bias=True) # ResNet backbone h = ResidualBlock(nf, resample=None, act=act, normalization=normalizer)(h) layer1 = ResidualBlock(nf, resample=None, act=act, normalization=normalizer)(h) h = ResidualBlock(2 * nf, resample="down", act=act, normalization=normalizer)( layer1 ) layer2 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer )(h) h = ResidualBlock(2 * nf, resample="down", act=act, normalization=normalizer)( layer2 ) layer3 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer )(h) h = ResidualBlock(2 * nf, resample="down", act=act, normalization=normalizer)( layer3 ) layer31 = ResidualBlock( 2 * nf, resample=None, act=act, normalization=normalizer )(h) h = ResidualBlock( 4 * nf, resample="down", act=act, normalization=normalizer, dilation=2 )(layer31) layer4 = ResidualBlock( 4 * nf, resample=None, act=act, normalization=normalizer, dilation=2 )(h) h = ResidualBlock( 4 * nf, resample="down", act=act, normalization=normalizer, dilation=4 )(layer4) layer5 = ResidualBlock( 4 * nf, resample=None, act=act, normalization=normalizer, dilation=4 )(h) # U-Net with RefineBlocks ref1 = RefineBlock( layer5.shape[1:3], 4 * nf, interpolation=interpolation, act=act, start=True )([layer5]) ref2 = RefineBlock( layer4.shape[1:3], 2 * nf, interpolation=interpolation, act=act )([layer4, ref1]) ref31 = RefineBlock( layer31.shape[1:3], 2 * nf, interpolation=interpolation, act=act )([layer31, ref2]) ref3 = RefineBlock( layer3.shape[1:3], 2 * nf, interpolation=interpolation, act=act )([layer3, ref31]) ref4 = RefineBlock(layer2.shape[1:3], nf, interpolation=interpolation, act=act)( [layer2, ref3] ) ref5 = RefineBlock( layer1.shape[1:3], nf, interpolation=interpolation, act=act, end=True )([layer1, ref4]) h = normalizer()(ref5) h = act(h) h = conv3x3(h, x.shape[-1]) return h
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Layers for defining NCSN++. """ from typing import Any, Optional, Tuple from . import layers from . import up_or_down_sampling import flax.linen as nn import jax import jax.numpy as jnp import numpy as np conv1x1 = layers.ddpm_conv1x1 conv3x3 = layers.ddpm_conv3x3 NIN = layers.NIN default_init = layers.default_init class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" embedding_size: int = 256 scale: float = 1.0 @nn.compact def __call__(self, x): W = self.param( "W", jax.nn.initializers.normal(stddev=self.scale), (self.embedding_size,) ) W = jax.lax.stop_gradient(W) x_proj = x[:, None] * W[None, :] * 2 * jnp.pi return jnp.concatenate([jnp.sin(x_proj), jnp.cos(x_proj)], axis=-1) class Combine(nn.Module): """Combine information from skip connections.""" method: str = "cat" @nn.compact def __call__(self, x, y): h = conv1x1(x, y.shape[-1]) if self.method == "cat": return jnp.concatenate([h, y], axis=-1) elif self.method == "sum": return h + y else: raise ValueError(f"Method {self.method} not recognized.") class AttnBlockpp(nn.Module): """Channel-wise self-attention block. Modified from DDPM.""" skip_rescale: bool = False init_scale: float = 0.0 @nn.compact def __call__(self, x): B, H, W, C = x.shape h = nn.GroupNorm(num_groups=min(x.shape[-1] // 4, 32))(x) q = NIN(C)(h) k = NIN(C)(h) v = NIN(C)(h) w = jnp.einsum("bhwc,bHWc->bhwHW", q, k) * (int(C) ** (-0.5)) w = jnp.reshape(w, (B, H, W, H * W)) w = jax.nn.softmax(w, axis=-1) w = jnp.reshape(w, (B, H, W, H, W)) h = jnp.einsum("bhwHW,bHWc->bhwc", w, v) h = NIN(C, init_scale=self.init_scale)(h) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.0) class Upsample(nn.Module): out_ch: Optional[int] = None with_conv: bool = False fir: bool = False fir_kernel: Tuple[int] = (1, 3, 3, 1) @nn.compact def __call__(self, x): B, H, W, C = x.shape out_ch = self.out_ch if self.out_ch else C if not self.fir: h = jax.image.resize(x, (x.shape[0], H * 2, W * 2, C), "nearest") if self.with_conv: h = conv3x3(h, out_ch) else: if not self.with_conv: h = up_or_down_sampling.upsample_2d(x, self.fir_kernel, factor=2) else: h = up_or_down_sampling.Conv2d( out_ch, kernel=3, up=True, resample_kernel=self.fir_kernel, use_bias=True, kernel_init=default_init(), )(x) assert h.shape == (B, 2 * H, 2 * W, out_ch) return h class Downsample(nn.Module): out_ch: Optional[int] = None with_conv: bool = False fir: bool = False fir_kernel: Tuple[int] = (1, 3, 3, 1) @nn.compact def __call__(self, x): B, H, W, C = x.shape out_ch = self.out_ch if self.out_ch else C if not self.fir: if self.with_conv: x = conv3x3(x, out_ch, stride=2) else: x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2), padding="SAME") else: if not self.with_conv: x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2) else: x = up_or_down_sampling.Conv2d( out_ch, kernel=3, down=True, resample_kernel=self.fir_kernel, use_bias=True, kernel_init=default_init(), )(x) assert x.shape == (B, H // 2, W // 2, out_ch) return x class ResnetBlockDDPMpp(nn.Module): """ResBlock adapted from DDPM.""" act: Any out_ch: Optional[int] = None conv_shortcut: bool = False dropout: float = 0.1 skip_rescale: bool = False init_scale: float = 0.0 @nn.compact def __call__(self, x, temb=None, train=True): B, H, W, C = x.shape out_ch = self.out_ch if self.out_ch else C h = self.act(nn.GroupNorm(num_groups=min(x.shape[-1] // 4, 32))(x)) h = conv3x3(h, out_ch) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += nn.Dense(out_ch, kernel_init=default_init())(self.act(temb))[ :, None, None, : ] h = self.act(nn.GroupNorm(num_groups=min(h.shape[-1] // 4, 32))(h)) h = nn.Dropout(self.dropout)(h, deterministic=not train) h = conv3x3(h, out_ch, init_scale=self.init_scale) if C != out_ch: if self.conv_shortcut: x = conv3x3(x, out_ch) else: x = NIN(out_ch)(x) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.0) class ResnetBlockBigGANpp(nn.Module): """ResBlock adapted from BigGAN.""" act: Any up: bool = False down: bool = False out_ch: Optional[int] = None dropout: float = 0.1 fir: bool = False fir_kernel: Tuple[int] = (1, 3, 3, 1) skip_rescale: bool = True init_scale: float = 0.0 @nn.compact def __call__(self, x, temb=None, train=True): B, H, W, C = x.shape out_ch = self.out_ch if self.out_ch else C h = self.act(nn.GroupNorm(num_groups=min(x.shape[-1] // 4, 32))(x)) if self.up: if self.fir: h = up_or_down_sampling.upsample_2d(h, self.fir_kernel, factor=2) x = up_or_down_sampling.upsample_2d(x, self.fir_kernel, factor=2) else: h = up_or_down_sampling.naive_upsample_2d(h, factor=2) x = up_or_down_sampling.naive_upsample_2d(x, factor=2) elif self.down: if self.fir: h = up_or_down_sampling.downsample_2d(h, self.fir_kernel, factor=2) x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2) else: h = up_or_down_sampling.naive_downsample_2d(h, factor=2) x = up_or_down_sampling.naive_downsample_2d(x, factor=2) h = conv3x3(h, out_ch) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += nn.Dense(out_ch, kernel_init=default_init())(self.act(temb))[ :, None, None, : ] h = self.act(nn.GroupNorm(num_groups=min(h.shape[-1] // 4, 32))(h)) h = nn.Dropout(self.dropout)(h, deterministic=not train) h = conv3x3(h, out_ch, init_scale=self.init_scale) if C != out_ch or self.up or self.down: x = conv1x1(x, out_ch) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.0)
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2023 (c) OpenAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """All functions and modules related to model definition. """ from typing import Any import flax import haiku as hk import functools import jax.numpy as jnp from .. import sde_lib import jax import numpy as np from . import wideresnet_noise_conditional from .. import checkpoints from ..utils import T, batch_mul # The dataclass that stores all training states @flax.struct.dataclass class State: step: int lr: float ema_rate: float params: Any params_ema: Any model_state: Any opt_state: Any rng_state: Any @flax.struct.dataclass class StateWithTarget: step: int lr: float ema_rate: float params: Any target_params: Any params_ema: Any model_state: Any opt_state: Any rng_state: Any _MODELS = {} def register_model(cls=None, *, name=None): """A decorator for registering model classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _MODELS: raise ValueError(f"Already registered model with name: {local_name}") _MODELS[local_name] = cls return cls if cls is None: return _register else: return _register(cls) def get_model(name): return _MODELS[name] def init_model(rng, config): """Initialize a `flax.linen.Module` model.""" rng = hk.PRNGSequence(rng) model_name = config.model.name model_def = functools.partial(get_model(model_name), config=config) input_shape = ( jax.local_device_count(), config.data.image_size, config.data.image_size, config.data.num_channels, ) label_shape = input_shape[:1] fake_input = jnp.zeros(input_shape) fake_label = jnp.zeros(label_shape, dtype=jnp.int32) model = model_def() variables = model.init( {"params": next(rng), "dropout": next(rng)}, fake_input, fake_label ) # Variables is a `flax.FrozenDict`. It is immutable and respects functional programming init_model_state, initial_params = variables.pop("params") return model, init_model_state, initial_params def init_lpips(rng, config): assert config.training.loss_norm.lower() == "lpips", "LPIPS is not used in training" from .lpips import LPIPS model = LPIPS() params = model.init(rng, jnp.zeros((1, 256, 256, 3)), jnp.zeros((1, 256, 256, 3))) return model, params def get_model_fn(model, params, states, train=False): """Create a function to give the output of the score-based model. Args: model: A `flax.linen.Module` object the represent the architecture of score-based model. params: A dictionary that contains all trainable parameters. states: A dictionary that contains all mutable states. train: `True` for training and `False` for evaluation. Returns: A model function. """ def model_fn(x, labels, rng=None): """Compute the output of the score-based model. Args: x: A mini-batch of input data. labels: A mini-batch of conditioning variables for time steps. Should be interpreted differently for different models. rng: If present, it is the random state for dropout Returns: A tuple of (model output, new mutable states) """ variables = {"params": params, **states} if not train: return model.apply(variables, x, labels, train=False, mutable=False), states else: rngs = {"dropout": rng} return model.apply( variables, x, labels, train=True, mutable=list(states.keys()), rngs=rngs ) return model_fn def get_denoiser_fn(sde, model, params, states, train=False, return_state=False): model_fn = get_model_fn(model, params, states, train=train) assert isinstance( sde, sde_lib.KVESDE ), "Only KVE SDE is supported for building the denoiser" def denoiser_fn(x, t, rng=None): in_x = batch_mul(x, 1 / jnp.sqrt(t**2 + sde.data_std**2)) cond_t = 0.25 * jnp.log(t) denoiser, state = model_fn(in_x, cond_t, rng) denoiser = batch_mul( denoiser, t * sde.data_std / jnp.sqrt(t**2 + sde.data_std**2) ) skip_x = batch_mul(x, sde.data_std**2 / (t**2 + sde.data_std**2)) denoiser = skip_x + denoiser if return_state: return denoiser, state else: return denoiser return denoiser_fn def get_distiller_fn( sde, model, params, states, train=False, return_state=False, pred_t=None ): assert isinstance( sde, sde_lib.KVESDE ), "Only KVE SDE is supported for building the denoiser" model_fn = get_model_fn(model, params, states, train=train) if pred_t is None: pred_t = sde.t_min def distiller_fn(x, t, rng=None): in_x = batch_mul(x, 1 / jnp.sqrt(t**2 + sde.data_std**2)) cond_t = 0.25 * jnp.log(t) denoiser, state = model_fn(in_x, cond_t, rng) denoiser = batch_mul( denoiser, (t - pred_t) * sde.data_std / jnp.sqrt(t**2 + sde.data_std**2), ) skip_x = batch_mul( x, sde.data_std**2 / ((t - pred_t) ** 2 + sde.data_std**2) ) denoiser = skip_x + denoiser if return_state: return denoiser, state else: return denoiser return distiller_fn def get_gaussianizer_fn( sde, model, params, states, train=False, return_state=False, pred_t=None ): assert isinstance( sde, sde_lib.KVESDE ), "Only KVE SDE is supported for building the denoiser" model_fn = get_model_fn(model, params, states, train=train) if pred_t is None: pred_t = sde.t_min def gaussianizer_fn(x, t, rng=None): in_x = x / sde.data_std cond_t = 0.25 * jnp.log(t) model_output, state = model_fn(in_x, cond_t, rng) model_output = x + batch_mul(model_output, t - pred_t) if return_state: return model_output, state else: return model_output return gaussianizer_fn def get_score_fn(sde, model, params, states, train=False, return_state=False): """Wraps `score_fn` so that the model output corresponds to a real time-dependent score function. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. model: A `flax.linen.Module` object that represents the architecture of the score-based model. params: A dictionary that contains all trainable parameters. states: A dictionary that contains all other mutable parameters. train: `True` for training and `False` for evaluation. return_state: If `True`, return the new mutable states alongside the model output. Returns: A score function. """ model_fn = get_model_fn(model, params, states, train=train) if isinstance(sde, sde_lib.VPSDE) or isinstance(sde, sde_lib.subVPSDE): def score_fn(x, t, rng=None): # Scale neural network output by standard deviation and flip sign # For VP-trained models, t=0 corresponds to the lowest noise level # The maximum value of time embedding is assumed to 999 for # continuously-trained models. cond_t = t * 999 model, state = model_fn(x, cond_t, rng) std = sde.marginal_prob(jnp.zeros_like(x), t)[1] score = batch_mul(-model, 1.0 / std) if return_state: return score, state else: return score elif isinstance(sde, sde_lib.VESDE): def score_fn(x, t, rng=None): x = 2 * x - 1.0 # assuming x is in [0, 1] std = sde.marginal_prob(jnp.zeros_like(x), t)[1] score, state = model_fn(x, jnp.log(std), rng) score = batch_mul(score, 1.0 / std) if return_state: return score, state else: return score elif isinstance(sde, sde_lib.KVESDE): denoiser_fn = get_denoiser_fn( sde, model, params, states, train=train, return_state=True ) def score_fn(x, t, rng=None): denoiser, state = denoiser_fn(x, t, rng) score = batch_mul(denoiser - x, 1 / t**2) if return_state: return score, state else: return score else: raise NotImplementedError( f"SDE class {sde.__class__.__name__} not yet supported." ) return score_fn def get_denoiser_and_distiller_fn( sde, model, params, states, train=False, return_state=False, pred_t=None ): """Wraps `score_fn` so that the model output corresponds to a real time-dependent score function. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. model: A `flax.linen.Module` object that represents the architecture of the score-based model. params: A dictionary that contains all trainable parameters. states: A dictionary that contains all other mutable parameters. train: `True` for training and `False` for evaluation. return_state: If `True`, return the new mutable states alongside the model output. pred_t: The time at which the denoiser is identity. Returns: A score function. """ assert isinstance( sde, sde_lib.KVESDE ), "Only KVE SDE is supported for joint training." model_fn = get_model_fn(model, params, states, train=train) if pred_t is None: pred_t = sde.t_min from .ncsnpp import NCSNpp, JointNCSNpp def denoiser_distiller_fn(x, t, rng=None): in_x = batch_mul(x, 1 / jnp.sqrt(t**2 + sde.data_std**2)) cond_t = 0.25 * jnp.log(t) if isinstance(model, NCSNpp): model_output, state = model_fn(in_x, cond_t, rng) denoiser = model_output[..., :3] distiller = model_output[..., 3:] elif isinstance(model, JointNCSNpp): (denoiser, distiller), state = model_fn(in_x, cond_t, rng) denoiser = batch_mul( denoiser, t * sde.data_std / jnp.sqrt(t**2 + sde.data_std**2) ) skip_x = batch_mul(x, sde.data_std**2 / (t**2 + sde.data_std**2)) denoiser = skip_x + denoiser distiller = batch_mul( distiller, (t - pred_t) * sde.data_std / jnp.sqrt(t**2 + sde.data_std**2), ) skip_x = batch_mul( x, sde.data_std**2 / ((t - pred_t) ** 2 + sde.data_std**2) ) distiller = skip_x + distiller if return_state: return (denoiser, distiller), state else: return denoiser, distiller return denoiser_distiller_fn def to_flattened_numpy(x): """Flatten a JAX array `x` and convert it to numpy.""" return np.asarray(x.reshape((-1,))) def from_flattened_numpy(x, shape): """Form a JAX array with the given `shape` from a flattened numpy array `x`.""" return jnp.asarray(x).reshape(shape) def create_classifier(prng_key, batch_size, ckpt_path): """Create a noise-conditional image classifier. Args: prng_key: A JAX random state. batch_size: The batch size of input data. ckpt_path: The path to stored checkpoints for this classifier. Returns: classifier: A `flax.linen.Module` object that represents the architecture of the classifier. classifier_params: A dictionary that contains trainable parameters of the classifier. """ input_shape = (batch_size, 32, 32, 3) classifier = wideresnet_noise_conditional.WideResnet( blocks_per_group=4, channel_multiplier=10, num_outputs=10 ) initial_variables = classifier.init( {"params": prng_key, "dropout": jax.random.PRNGKey(0)}, jnp.ones(input_shape, dtype=jnp.float32), jnp.ones((batch_size,), dtype=jnp.float32), train=False, ) model_state, init_params = initial_variables.pop("params") classifier_params = checkpoints.restore_checkpoint(ckpt_path, init_params) return classifier, classifier_params def get_logit_fn(classifier, classifier_params): """Create a logit function for the classifier.""" def preprocess(data): image_mean = jnp.asarray([[[0.49139968, 0.48215841, 0.44653091]]]) image_std = jnp.asarray([[[0.24703223, 0.24348513, 0.26158784]]]) return (data - image_mean[None, ...]) / image_std[None, ...] def logit_fn(data, ve_noise_scale): """Give the logits of the classifier. Args: data: A JAX array of the input. ve_noise_scale: time conditioning variables in the form of VE SDEs. Returns: logits: The logits given by the noise-conditional classifier. """ data = preprocess(data) logits = classifier.apply( {"params": classifier_params}, data, ve_noise_scale, train=False, mutable=False, ) return logits return logit_fn def get_classifier_grad_fn(logit_fn): """Create the gradient function for the classifier in use of class-conditional sampling.""" def grad_fn(data, ve_noise_scale, labels): def prob_fn(data): logits = logit_fn(data, ve_noise_scale) prob = jax.nn.log_softmax(logits, axis=-1)[ jnp.arange(labels.shape[0]), labels ].sum() return prob return jax.grad(prob_fn)(data) return grad_fn
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Layers used for up-sampling or down-sampling images. Many functions are ported from https://github.com/NVlabs/stylegan2. """ import flax.linen as nn from typing import Any, Tuple, Optional, Sequence import jax import jax.nn as jnn import jax.numpy as jnp import numpy as np # Function ported from StyleGAN2 def get_weight(module, shape, weight_var="weight", kernel_init=None): """Get/create weight tensor for a convolution or fully-connected layer.""" return module.param(weight_var, kernel_init, shape) class Conv2d(nn.Module): """Conv2d layer with optimal upsampling and downsampling (StyleGAN2).""" fmaps: int kernel: int up: bool = False down: bool = False resample_kernel: Tuple[int] = (1, 3, 3, 1) use_bias: bool = True weight_var: str = "weight" kernel_init: Optional[Any] = None @nn.compact def __call__(self, x): assert not (self.up and self.down) assert self.kernel >= 1 and self.kernel % 2 == 1 w = get_weight( self, (self.kernel, self.kernel, x.shape[-1], self.fmaps), weight_var=self.weight_var, kernel_init=self.kernel_init, ) if self.up: x = upsample_conv_2d(x, w, data_format="NHWC", k=self.resample_kernel) elif self.down: x = conv_downsample_2d(x, w, data_format="NHWC", k=self.resample_kernel) else: x = jax.lax.conv_general_dilated( x, w, window_strides=(1, 1), padding="SAME", dimension_numbers=("NHWC", "HWIO", "NHWC"), ) if self.use_bias: b = self.param("bias", jnn.initializers.zeros, (x.shape[-1],)) x = x + b.reshape((1, 1, 1, -1)) return x def naive_upsample_2d(x, factor=2): _N, H, W, C = x.shape x = jnp.reshape(x, [-1, H, 1, W, 1, C]) x = jnp.tile(x, [1, 1, factor, 1, factor, 1]) return jnp.reshape(x, [-1, H * factor, W * factor, C]) def naive_downsample_2d(x, factor=2): _N, H, W, C = x.shape x = jnp.reshape(x, [-1, H // factor, factor, W // factor, factor, C]) return jnp.mean(x, axis=[2, 4]) def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format="NHWC"): """Fused `upsample_2d()` followed by `tf.nn.conv2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). Returns: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 # Check weight shape. assert len(w.shape) == 4 convH = w.shape[0] convW = w.shape[1] inC = w.shape[2] outC = w.shape[3] assert convW == convH # Setup filter kernel. if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor**2)) p = (k.shape[0] - factor) - (convW - 1) stride = [factor, factor] # Determine data dimensions. if data_format == "NCHW": num_groups = _shape(x, 1) // inC else: num_groups = _shape(x, 3) // inC # Transpose weights. w = jnp.reshape(w, [convH, convW, inC, num_groups, -1]) w = jnp.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2]) w = jnp.reshape(w, [convH, convW, -1, num_groups * inC]) ## Original TF code. # x = tf.nn.conv2d_transpose( # x, # w, # output_shape=output_shape, # strides=stride, # padding='VALID', # data_format=data_format) ## JAX equivalent x = jax.lax.conv_transpose( x, w, strides=stride, padding="VALID", transpose_kernel=True, dimension_numbers=(data_format, "HWIO", data_format), ) return _simple_upfirdn_2d( x, k, pad0=(p + 1) // 2 + factor - 1, pad1=p // 2 + 1, data_format=data_format ) def conv_downsample_2d(x, w, k=None, factor=2, gain=1, data_format="NHWC"): """Fused `tf.nn.conv2d()` followed by `downsample_2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 convH, convW, _inC, _outC = w.shape assert convW == convH if k is None: k = [1] * factor k = _setup_kernel(k) * gain p = (k.shape[0] - factor) + (convW - 1) s = [factor, factor] x = _simple_upfirdn_2d( x, k, pad0=(p + 1) // 2, pad1=p // 2, data_format=data_format ) return jax.lax.conv_general_dilated( x, w, window_strides=s, padding="VALID", dimension_numbers=(data_format, "HWIO", data_format), ) def upfirdn_2d(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1): """Pad, upsample, FIR filter, and downsample a batch of 2D images. Accepts a batch of 2D images of the shape `[majorDim, inH, inW, minorDim]` and performs the following operations for each image, batched across `majorDim` and `minorDim`: 1. Pad the image with zeros by the specified number of pixels on each side (`padx0`, `padx1`, `pady0`, `pady1`). Specifying a negative value corresponds to cropping the image. 2. Upsample the image by inserting the zeros after each pixel (`upx`, `upy`). 3. Convolve the image with the specified 2D FIR filter (`k`), shrinking the image so that the footprint of all output pixels lies within the input image. 4. Downsample the image by throwing away pixels (`downx`, `downy`). This sequence of operations bears close resemblance to scipy.signal.upfirdn(). The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[majorDim, inH, inW, minorDim]`. k: 2D FIR filter of the shape `[firH, firW]`. upx: Integer upsampling factor along the X-axis (default: 1). upy: Integer upsampling factor along the Y-axis (default: 1). downx: Integer downsampling factor along the X-axis (default: 1). downy: Integer downsampling factor along the Y-axis (default: 1). padx0: Number of pixels to pad on the left side (default: 0). padx1: Number of pixels to pad on the right side (default: 0). pady0: Number of pixels to pad on the top side (default: 0). pady1: Number of pixels to pad on the bottom side (default: 0). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[majorDim, outH, outW, minorDim]`, and same datatype as `x`. """ k = jnp.asarray(k, dtype=np.float32) assert len(x.shape) == 4 inH = x.shape[1] inW = x.shape[2] minorDim = x.shape[3] kernelH, kernelW = k.shape assert inW >= 1 and inH >= 1 assert kernelW >= 1 and kernelH >= 1 assert isinstance(upx, int) and isinstance(upy, int) assert isinstance(downx, int) and isinstance(downy, int) assert isinstance(padx0, int) and isinstance(padx1, int) assert isinstance(pady0, int) and isinstance(pady1, int) # Upsample (insert zeros). x = jnp.reshape(x, (-1, inH, 1, inW, 1, minorDim)) x = jnp.pad(x, [[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]]) x = jnp.reshape(x, [-1, inH * upy, inW * upx, minorDim]) # Pad (crop if negative). x = jnp.pad( x, [ [0, 0], [max(pady0, 0), max(pady1, 0)], [max(padx0, 0), max(padx1, 0)], [0, 0], ], ) x = x[ :, max(-pady0, 0) : x.shape[1] - max(-pady1, 0), max(-padx0, 0) : x.shape[2] - max(-padx1, 0), :, ] # Convolve with filter. x = jnp.transpose(x, [0, 3, 1, 2]) x = jnp.reshape(x, [-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1]) w = jnp.array(k[::-1, ::-1, None, None], dtype=x.dtype) x = jax.lax.conv_general_dilated( x, w, window_strides=(1, 1), padding="VALID", dimension_numbers=("NCHW", "HWIO", "NCHW"), ) x = jnp.reshape( x, [ -1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW * upx + padx0 + padx1 - kernelW + 1, ], ) x = jnp.transpose(x, [0, 2, 3, 1]) # Downsample (throw away pixels). return x[:, ::downy, ::downx, :] def _simple_upfirdn_2d(x, k, up=1, down=1, pad0=0, pad1=0, data_format="NCHW"): assert data_format in ["NCHW", "NHWC"] assert len(x.shape) == 4 y = x if data_format == "NCHW": y = jnp.reshape(y, [-1, y.shape[2], y.shape[3], 1]) y = upfirdn_2d( y, k, upx=up, upy=up, downx=down, downy=down, padx0=pad0, padx1=pad1, pady0=pad0, pady1=pad1, ) if data_format == "NCHW": y = jnp.reshape(y, [-1, x.shape[1], y.shape[1], y.shape[2]]) return y def _setup_kernel(k): k = np.asarray(k, dtype=np.float32) if k.ndim == 1: k = np.outer(k, k) k /= np.sum(k) assert k.ndim == 2 assert k.shape[0] == k.shape[1] return k def _shape(x, dim): return x.shape[dim] def upsample_2d(x, k=None, factor=2, gain=1, data_format="NHWC"): r"""Upsample a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the upsampling factor. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). Returns: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor**2)) p = k.shape[0] - factor return _simple_upfirdn_2d( x, k, up=factor, pad0=(p + 1) // 2 + factor - 1, pad1=p // 2, data_format=data_format, ) def downsample_2d(x, k=None, factor=2, gain=1, data_format="NHWC"): r"""Downsample a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the downsampling factor. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * gain p = k.shape[0] - factor return _simple_upfirdn_2d( x, k, down=factor, pad0=(p + 1) // 2, pad1=p // 2, data_format=data_format )
# Code adapted from https://github.com/google-research/google-research/tree/master/flax_models/cifar # Original copyright statement: # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wide Resnet Model. Reference: Wide Residual Networks, Sergey Zagoruyko, Nikos Komodakis https://arxiv.org/abs/1605.07146 Initially forked from github.com/google/flax/blob/master/examples/cifar10/models/wideresnet.py This implementation mimics the one from github.com/tensorflow/models/blob/master/research/autoaugment/wrn.py that is widely used as a benchmark. It uses identity + zero padding skip connections, with kaiming normal initialization for convolutional kernels (mode = fan_out, gain=2.0). The final dense layer uses a uniform distribution U[-scale, scale] where scale = 1 / sqrt(num_classes) as per the autoaugment implementation. Using the default initialization instead gives error rates approximately 0.5% greater on cifar100, most likely because the parameters used in the literature were finetuned for this particular initialization. Finally, the autoaugment implementation adds more residual connections between the groups (instead of just between the blocks as per the original paper and most implementations). It is possible to safely remove those connections without degrading the performance, which we do by default to match the original wideresnet paper. Setting `use_additional_skip_connections` to True will add them back and then reproduces exactly the model used in autoaugment. """ import numpy as np import flax from flax import linen as nn import jax import jax.numpy as jnp from typing import Any, Tuple, Optional _BATCHNORM_MOMENTUM = 0.9 _BATCHNORM_EPSILON = 1e-5 # Kaiming initialization with fan out mode. Should be used to initialize # convolutional kernels. conv_kernel_init_fn = jax.nn.initializers.variance_scaling(2.0, "fan_out", "normal") def dense_layer_init_fn(key, shape, dtype=jnp.float32): """Initializer for the final dense layer. Args: key: PRNG key to use to sample the weights. shape: Shape of the tensor to initialize. dtype: Data type of the tensor to initialize. Returns: The initialized tensor. """ num_units_out = shape[1] unif_init_range = 1.0 / (num_units_out) ** (0.5) return jax.random.uniform(key, shape, dtype, -1) * unif_init_range def shake_shake_train(xa, xb, rng=None): """Shake-shake regularization in training mode. Shake-shake regularization interpolates between inputs A and B with *different* random uniform (per-sample) interpolation factors for the forward and backward/gradient passes. Args: xa: Input, branch A. xb: Input, branch B. rng: PRNG key. Returns: Mix of input branches. """ if rng is None: rng = flax.nn.make_rng() gate_forward_key, gate_backward_key = jax.random.split(rng, num=2) gate_shape = (len(xa), 1, 1, 1) # Draw different interpolation factors (gate) for forward and backward pass. gate_forward = jax.random.uniform( gate_forward_key, gate_shape, dtype=jnp.float32, minval=0.0, maxval=1.0 ) gate_backward = jax.random.uniform( gate_backward_key, gate_shape, dtype=jnp.float32, minval=0.0, maxval=1.0 ) # Compute interpolated x for forward and backward. x_forward = xa * gate_forward + xb * (1.0 - gate_forward) x_backward = xa * gate_backward + xb * (1.0 - gate_backward) # Combine using stop_gradient. return x_backward + jax.lax.stop_gradient(x_forward - x_backward) def shake_shake_eval(xa, xb): """Shake-shake regularization in testing mode. Args: xa: Input, branch A. xb: Input, branch B. Returns: Mix of input branches. """ # Blend between inputs A and B 50%-50%. return (xa + xb) * 0.5 def shake_drop_train(x, mask_prob, alpha_min, alpha_max, beta_min, beta_max, rng=None): """ShakeDrop training pass. See https://arxiv.org/abs/1802.02375 Args: x: Input to apply ShakeDrop to. mask_prob: Mask probability. alpha_min: Alpha range lower. alpha_max: Alpha range upper. beta_min: Beta range lower. beta_max: Beta range upper. rng: PRNG key (if `None`, uses `flax.nn.make_rng`). Returns: The regularized tensor. """ if rng is None: rng = flax.nn.make_rng() bern_key, alpha_key, beta_key = jax.random.split(rng, num=3) rnd_shape = (len(x), 1, 1, 1) # Bernoulli variable b_l in Eqn 6, https://arxiv.org/abs/1802.02375. mask = jax.random.bernoulli(bern_key, mask_prob, rnd_shape) mask = mask.astype(jnp.float32) alpha_values = jax.random.uniform( alpha_key, rnd_shape, dtype=jnp.float32, minval=alpha_min, maxval=alpha_max ) beta_values = jax.random.uniform( beta_key, rnd_shape, dtype=jnp.float32, minval=beta_min, maxval=beta_max ) # See Eqn 6 in https://arxiv.org/abs/1802.02375. rand_forward = mask + alpha_values - mask * alpha_values rand_backward = mask + beta_values - mask * beta_values return x * rand_backward + jax.lax.stop_gradient( x * rand_forward - x * rand_backward ) def shake_drop_eval(x, mask_prob, alpha_min, alpha_max): """ShakeDrop eval pass. See https://arxiv.org/abs/1802.02375 Args: x: Input to apply ShakeDrop to. mask_prob: Mask probability. alpha_min: Alpha range lower. alpha_max: Alpha range upper. Returns: The regularized tensor. """ expected_alpha = (alpha_max + alpha_min) / 2 # See Eqn 6 in https://arxiv.org/abs/1802.02375. return (mask_prob + expected_alpha - mask_prob * expected_alpha) * x def activation(x, train, apply_relu=True, name=""): x = nn.GroupNorm(name=name, epsilon=1e-5, num_groups=min(x.shape[-1] // 4, 32))(x) if apply_relu: x = jax.nn.relu(x) return x def _output_add(block_x, orig_x): """Add two tensors, padding them with zeros or pooling them if necessary. Args: block_x: Output of a resnet block. orig_x: Residual branch to add to the output of the resnet block. Returns: The sum of blocks_x and orig_x. If necessary, orig_x will be average pooled or zero padded so that its shape matches orig_x. """ stride = orig_x.shape[-2] // block_x.shape[-2] strides = (stride, stride) if block_x.shape[-1] != orig_x.shape[-1]: orig_x = nn.avg_pool(orig_x, strides, strides) channels_to_add = block_x.shape[-1] - orig_x.shape[-1] orig_x = jnp.pad(orig_x, [(0, 0), (0, 0), (0, 0), (0, channels_to_add)]) return block_x + orig_x class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" embedding_size: int = 256 scale: float = 1.0 @nn.compact def __call__(self, x): W = self.param( "W", jax.nn.initializers.normal(stddev=self.scale), (self.embedding_size,) ) W = jax.lax.stop_gradient(W) x_proj = x[:, None] * W[None, :] * 2 * jnp.pi return jnp.concatenate([jnp.sin(x_proj), jnp.cos(x_proj)], axis=-1) class WideResnetBlock(nn.Module): """Defines a single WideResnetBlock.""" channels: int strides: Tuple[int] = (1, 1) activate_before_residual: bool = False @nn.compact def __call__(self, x, temb=None, train=True): if self.activate_before_residual: x = activation(x, train, name="init_bn") orig_x = x else: orig_x = x block_x = x if not self.activate_before_residual: block_x = activation(block_x, train, name="init_bn") block_x = nn.Conv( self.channels, (3, 3), self.strides, padding="SAME", use_bias=False, kernel_init=conv_kernel_init_fn, name="conv1", )(block_x) if temb is not None: block_x += nn.Dense(self.channels)(nn.swish(temb))[:, None, None, :] block_x = activation(block_x, train=train, name="bn_2") block_x = nn.Conv( self.channels, (3, 3), padding="SAME", use_bias=False, kernel_init=conv_kernel_init_fn, name="conv2", )(block_x) return _output_add(block_x, orig_x) class WideResnetGroup(nn.Module): """Defines a WideResnetGroup.""" blocks_per_group: int channels: int strides: Tuple[int] = (1, 1) activate_before_residual: bool = False @nn.compact def __call__(self, x, temb=None, train=True): for i in range(self.blocks_per_group): x = WideResnetBlock( self.channels, self.strides if i == 0 else (1, 1), activate_before_residual=self.activate_before_residual and not i, )(x, temb, train) return x class WideResnet(nn.Module): """Defines the WideResnet Model.""" blocks_per_group: int channel_multiplier: int num_outputs: int @nn.compact def __call__(self, x, sigmas, train=True): # per image standardization N = np.prod(x.shape[1:]) x = (x - jnp.mean(x, axis=(1, 2, 3), keepdims=True)) / jnp.maximum( jnp.std(x, axis=(1, 2, 3), keepdims=True), 1.0 / np.sqrt(N) ) temb = GaussianFourierProjection(embedding_size=128, scale=16)(jnp.log(sigmas)) temb = nn.Dense(128 * 4)(temb) temb = nn.Dense(128 * 4)(nn.swish(temb)) x = nn.Conv( 16, (3, 3), padding="SAME", name="init_conv", kernel_init=conv_kernel_init_fn, use_bias=False, )(x) x = WideResnetGroup( self.blocks_per_group, 16 * self.channel_multiplier, activate_before_residual=True, )(x, temb, train) x = WideResnetGroup( self.blocks_per_group, 32 * self.channel_multiplier, (2, 2) )(x, temb, train) x = WideResnetGroup( self.blocks_per_group, 64 * self.channel_multiplier, (2, 2) )(x, temb, train) x = activation(x, train=train, name="pre-pool-bn") x = nn.avg_pool(x, x.shape[1:3]) x = x.reshape((x.shape[0], -1)) x = nn.Dense(self.num_outputs, kernel_init=dense_layer_init_fn)(x) return x
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Common layers for defining score networks. """ import functools import math import string from typing import Any, Sequence, Optional import flax.linen as nn import jax import jax.nn as jnn import jax.numpy as jnp def get_act(config): """Get activation functions from the config file.""" if config.model.nonlinearity.lower() == "elu": return nn.elu elif config.model.nonlinearity.lower() == "relu": return nn.relu elif config.model.nonlinearity.lower() == "lrelu": return functools.partial(nn.leaky_relu, negative_slope=0.2) elif config.model.nonlinearity.lower() == "swish": return nn.swish else: raise NotImplementedError("activation function does not exist!") def ncsn_conv1x1(x, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0): """1x1 convolution with PyTorch initialization. Same as NCSNv1/v2.""" init_scale = 1e-10 if init_scale == 0 else init_scale kernel_init = jnn.initializers.variance_scaling( 1 / 3 * init_scale, "fan_in", "uniform" ) kernel_shape = (1, 1) + (x.shape[-1], out_planes) bias_init = lambda key, shape: kernel_init(key, kernel_shape)[0, 0, 0, :] output = nn.Conv( out_planes, kernel_size=(1, 1), strides=(stride, stride), padding="SAME", use_bias=bias, kernel_dilation=(dilation, dilation), kernel_init=kernel_init, bias_init=bias_init, )(x) return output def default_init(scale=1.0): """The same initialization used in DDPM.""" scale = 1e-10 if scale == 0 else scale return jnn.initializers.variance_scaling(scale, "fan_avg", "uniform") def ddpm_conv1x1(x, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0): """1x1 convolution with DDPM initialization.""" bias_init = jnn.initializers.zeros output = nn.Conv( out_planes, kernel_size=(1, 1), strides=(stride, stride), padding="SAME", use_bias=bias, kernel_dilation=(dilation, dilation), kernel_init=default_init(init_scale), bias_init=bias_init, )(x) return output def ncsn_conv3x3(x, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0): """3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2.""" init_scale = 1e-10 if init_scale == 0 else init_scale kernel_init = jnn.initializers.variance_scaling( 1 / 3 * init_scale, "fan_in", "uniform" ) kernel_shape = (3, 3) + (x.shape[-1], out_planes) bias_init = lambda key, shape: kernel_init(key, kernel_shape)[0, 0, 0, :] output = nn.Conv( out_planes, kernel_size=(3, 3), strides=(stride, stride), padding="SAME", use_bias=bias, kernel_dilation=(dilation, dilation), kernel_init=kernel_init, bias_init=bias_init, )(x) return output def ddpm_conv3x3(x, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0): """3x3 convolution with DDPM initialization.""" bias_init = jnn.initializers.zeros output = nn.Conv( out_planes, kernel_size=(3, 3), strides=(stride, stride), padding="SAME", use_bias=bias, kernel_dilation=(dilation, dilation), kernel_init=default_init(init_scale), bias_init=bias_init, )(x) return output ########################################################################### # Functions below are ported over from the NCSNv1/NCSNv2 codebase: # https://github.com/ermongroup/ncsn # https://github.com/ermongroup/ncsnv2 ########################################################################### class CRPBlock(nn.Module): """CRPBlock for RefineNet. Used in NCSNv2.""" features: int n_stages: int act: Any = nn.relu @nn.compact def __call__(self, x): x = self.act(x) path = x for _ in range(self.n_stages): path = nn.max_pool( path, window_shape=(5, 5), strides=(1, 1), padding="SAME" ) path = ncsn_conv3x3(path, self.features, stride=1, bias=False) x = path + x return x class CondCRPBlock(nn.Module): """Noise-conditional CRPBlock for RefineNet. Used in NCSNv1.""" features: int n_stages: int normalizer: Any act: Any = nn.relu @nn.compact def __call__(self, x, y): x = self.act(x) path = x for _ in range(self.n_stages): path = self.normalizer()(path, y) path = nn.avg_pool( path, window_shape=(5, 5), strides=(1, 1), padding="SAME" ) path = ncsn_conv3x3(path, self.features, stride=1, bias=False) x = path + x return x class RCUBlock(nn.Module): """RCUBlock for RefineNet. Used in NCSNv2.""" features: int n_blocks: int n_stages: int act: Any = nn.relu @nn.compact def __call__(self, x): for _ in range(self.n_blocks): residual = x for _ in range(self.n_stages): x = self.act(x) x = ncsn_conv3x3(x, self.features, stride=1, bias=False) x = x + residual return x class CondRCUBlock(nn.Module): """Noise-conditional RCUBlock for RefineNet. Used in NCSNv1.""" features: int n_blocks: int n_stages: int normalizer: Any act: Any = nn.relu @nn.compact def __call__(self, x, y): for _ in range(self.n_blocks): residual = x for _ in range(self.n_stages): x = self.normalizer()(x, y) x = self.act(x) x = ncsn_conv3x3(x, self.features, stride=1, bias=False) x += residual return x class MSFBlock(nn.Module): """MSFBlock for RefineNet. Used in NCSNv2.""" shape: Sequence[int] features: int interpolation: str = "bilinear" @nn.compact def __call__(self, xs): sums = jnp.zeros((xs[0].shape[0], *self.shape, self.features)) for i in range(len(xs)): h = ncsn_conv3x3(xs[i], self.features, stride=1, bias=True) if self.interpolation == "bilinear": h = jax.image.resize( h, (h.shape[0], *self.shape, h.shape[-1]), "bilinear" ) elif self.interpolation == "nearest_neighbor": h = jax.image.resize( h, (h.shape[0], *self.shape, h.shape[-1]), "nearest" ) else: raise ValueError(f"Interpolation {self.interpolation} does not exist!") sums = sums + h return sums class CondMSFBlock(nn.Module): """Noise-conditional MSFBlock for RefineNet. Used in NCSNv1.""" shape: Sequence[int] features: int normalizer: Any interpolation: str = "bilinear" @nn.compact def __call__(self, xs, y): sums = jnp.zeros((xs[0].shape[0], *self.shape, self.features)) for i in range(len(xs)): h = self.normalizer()(xs[i], y) h = ncsn_conv3x3(h, self.features, stride=1, bias=True) if self.interpolation == "bilinear": h = jax.image.resize( h, (h.shape[0], *self.shape, h.shape[-1]), "bilinear" ) elif self.interpolation == "nearest_neighbor": h = jax.image.resize( h, (h.shape[0], *self.shape, h.shape[-1]), "nearest" ) else: raise ValueError(f"Interpolation {self.interpolation} does not exist") sums = sums + h return sums class RefineBlock(nn.Module): """RefineBlock for building NCSNv2 RefineNet.""" output_shape: Sequence[int] features: int act: Any = nn.relu interpolation: str = "bilinear" start: bool = False end: bool = False @nn.compact def __call__(self, xs): rcu_block = functools.partial(RCUBlock, n_blocks=2, n_stages=2, act=self.act) rcu_block_output = functools.partial( RCUBlock, features=self.features, n_blocks=3 if self.end else 1, n_stages=2, act=self.act, ) hs = [] for i in range(len(xs)): h = rcu_block(features=xs[i].shape[-1])(xs[i]) hs.append(h) if not self.start: msf = functools.partial( MSFBlock, features=self.features, interpolation=self.interpolation ) h = msf(shape=self.output_shape)(hs) else: h = hs[0] crp = functools.partial( CRPBlock, features=self.features, n_stages=2, act=self.act ) h = crp()(h) h = rcu_block_output()(h) return h class CondRefineBlock(nn.Module): """Noise-conditional RefineBlock for building NCSNv1 RefineNet.""" output_shape: Sequence[int] features: int normalizer: Any act: Any = nn.relu interpolation: str = "bilinear" start: bool = False end: bool = False @nn.compact def __call__(self, xs, y): rcu_block = functools.partial( CondRCUBlock, n_blocks=2, n_stages=2, act=self.act, normalizer=self.normalizer, ) rcu_block_output = functools.partial( CondRCUBlock, features=self.features, n_blocks=3 if self.end else 1, n_stages=2, act=self.act, normalizer=self.normalizer, ) hs = [] for i in range(len(xs)): h = rcu_block(features=xs[i].shape[-1])(xs[i], y) hs.append(h) if not self.start: msf = functools.partial( CondMSFBlock, features=self.features, interpolation=self.interpolation, normalizer=self.normalizer, ) h = msf(shape=self.output_shape)(hs, y) else: h = hs[0] crp = functools.partial( CondCRPBlock, features=self.features, n_stages=2, act=self.act, normalizer=self.normalizer, ) h = crp()(h, y) h = rcu_block_output()(h, y) return h class ConvMeanPool(nn.Module): """ConvMeanPool for building the ResNet backbone.""" output_dim: int kernel_size: int = 3 biases: bool = True @nn.compact def __call__(self, inputs): output = nn.Conv( features=self.output_dim, kernel_size=(self.kernel_size, self.kernel_size), strides=(1, 1), padding="SAME", use_bias=self.biases, )(inputs) output = ( sum( [ output[:, ::2, ::2, :], output[:, 1::2, ::2, :], output[:, ::2, 1::2, :], output[:, 1::2, 1::2, :], ] ) / 4.0 ) return output class MeanPoolConv(nn.Module): """MeanPoolConv for building the ResNet backbone.""" output_dim: int kernel_size: int = 3 biases: bool = True @nn.compact def __call__(self, inputs): output = inputs output = ( sum( [ output[:, ::2, ::2, :], output[:, 1::2, ::2, :], output[:, ::2, 1::2, :], output[:, 1::2, 1::2, :], ] ) / 4.0 ) output = nn.Conv( features=self.output_dim, kernel_size=(self.kernel_size, self.kernel_size), strides=(1, 1), padding="SAME", use_bias=self.biases, )(output) return output class ResidualBlock(nn.Module): """The residual block for defining the ResNet backbone. Used in NCSNv2.""" output_dim: int normalization: Any resample: Optional[str] = None act: Any = nn.elu dilation: int = 1 @nn.compact def __call__(self, x): h = self.normalization()(x) h = self.act(h) if self.resample == "down": h = ncsn_conv3x3(h, h.shape[-1], dilation=self.dilation) h = self.normalization()(h) h = self.act(h) if self.dilation > 1: h = ncsn_conv3x3(h, self.output_dim, dilation=self.dilation) shortcut = ncsn_conv3x3(x, self.output_dim, dilation=self.dilation) else: h = ConvMeanPool(output_dim=self.output_dim)(h) shortcut = ConvMeanPool(output_dim=self.output_dim, kernel_size=1)(x) elif self.resample is None: if self.dilation > 1: if self.output_dim == x.shape[-1]: shortcut = x else: shortcut = ncsn_conv3x3(x, self.output_dim, dilation=self.dilation) h = ncsn_conv3x3(h, self.output_dim, dilation=self.dilation) h = self.normalization()(h) h = self.act(h) h = ncsn_conv3x3(h, self.output_dim, dilation=self.dilation) else: if self.output_dim == x.shape[-1]: shortcut = x else: shortcut = ncsn_conv1x1(x, self.output_dim) h = ncsn_conv3x3(h, self.output_dim) h = self.normalization()(h) h = self.act(h) h = ncsn_conv3x3(h, self.output_dim) return h + shortcut class ConditionalResidualBlock(nn.Module): """The noise-conditional residual block for building NCSNv1.""" output_dim: int normalization: Any resample: Optional[str] = None act: Any = nn.elu dilation: int = 1 @nn.compact def __call__(self, x, y): h = self.normalization()(x, y) h = self.act(h) if self.resample == "down": h = ncsn_conv3x3(h, h.shape[-1], dilation=self.dilation) h = self.normalization(h, y) h = self.act(h) if self.dilation > 1: h = ncsn_conv3x3(h, self.output_dim, dilation=self.dilation) shortcut = ncsn_conv3x3(x, self.output_dim, dilation=self.dilation) else: h = ConvMeanPool(output_dim=self.output_dim)(h) shortcut = ConvMeanPool(output_dim=self.output_dim, kernel_size=1)(x) elif self.resample is None: if self.dilation > 1: if self.output_dim == x.shape[-1]: shortcut = x else: shortcut = ncsn_conv3x3(x, self.output_dim, dilation=self.dilation) h = ncsn_conv3x3(h, self.output_dim, dilation=self.dilation) h = self.normalization()(h, y) h = self.act(h) h = ncsn_conv3x3(h, self.output_dim, dilation=self.dilation) else: if self.output_dim == x.shape[-1]: shortcut = x else: shortcut = ncsn_conv1x1(x, self.output_dim) h = ncsn_conv3x3(h, self.output_dim) h = self.normalization()(h, y) h = self.act(h) h = ncsn_conv3x3(h, self.output_dim) return h + shortcut ########################################################################### # Functions below are ported over from the DDPM codebase: # https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py ########################################################################### def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000): assert len(timesteps.shape) == 1 # and timesteps.dtype == tf.int32 half_dim = embedding_dim // 2 # magic number 10000 is from transformers emb = math.log(max_positions) / (half_dim - 1) # emb = math.log(2.) / (half_dim - 1) emb = jnp.exp(jnp.arange(half_dim, dtype=jnp.float32) * -emb) # emb = tf.range(num_embeddings, dtype=jnp.float32)[:, None] * emb[None, :] # emb = tf.cast(timesteps, dtype=jnp.float32)[:, None] * emb[None, :] emb = timesteps[:, None] * emb[None, :] emb = jnp.concatenate([jnp.sin(emb), jnp.cos(emb)], axis=1) if embedding_dim % 2 == 1: # zero pad emb = jnp.pad(emb, [[0, 0], [0, 1]]) assert emb.shape == (timesteps.shape[0], embedding_dim) return emb class NIN(nn.Module): num_units: int init_scale: float = 0.1 @nn.compact def __call__(self, x): in_dim = int(x.shape[-1]) W = self.param( "W", default_init(scale=self.init_scale), (in_dim, self.num_units) ) b = self.param("b", jnn.initializers.zeros, (self.num_units,)) y = contract_inner(x, W) + b assert y.shape == x.shape[:-1] + (self.num_units,) return y def _einsum(a, b, c, x, y): einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c)) return jnp.einsum(einsum_str, x, y) def contract_inner(x, y): """tensordot(x, y, 1).""" x_chars = list(string.ascii_lowercase[: len(x.shape)]) y_chars = list(string.ascii_uppercase[: len(y.shape)]) assert len(x_chars) == len(x.shape) and len(y_chars) == len(y.shape) y_chars[0] = x_chars[-1] # first axis of y and last of x get summed out_chars = x_chars[:-1] + y_chars[1:] return _einsum(x_chars, y_chars, out_chars, x, y) class AttnBlock(nn.Module): """Channel-wise self-attention block.""" normalize: Any @nn.compact def __call__(self, x): B, H, W, C = x.shape h = self.normalize()(x) q = NIN(C)(h) k = NIN(C)(h) v = NIN(C)(h) w = jnp.einsum("bhwc,bHWc->bhwHW", q, k) * (int(C) ** (-0.5)) w = jnp.reshape(w, (B, H, W, H * W)) w = jax.nn.softmax(w, axis=-1) w = jnp.reshape(w, (B, H, W, H, W)) h = jnp.einsum("bhwHW,bHWc->bhwc", w, v) h = NIN(C, init_scale=0.0)(h) return x + h class Upsample(nn.Module): with_conv: bool = False @nn.compact def __call__(self, x): B, H, W, C = x.shape h = jax.image.resize(x, (x.shape[0], H * 2, W * 2, C), "nearest") if self.with_conv: h = ddpm_conv3x3(h, C) return h class Downsample(nn.Module): with_conv: bool = False @nn.compact def __call__(self, x): B, H, W, C = x.shape if self.with_conv: x = ddpm_conv3x3(x, C, stride=2) else: x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2), padding="SAME") assert x.shape == (B, H // 2, W // 2, C) return x class ResnetBlockDDPM(nn.Module): """The ResNet Blocks used in DDPM.""" act: Any normalize: Any out_ch: Optional[int] = None conv_shortcut: bool = False dropout: float = 0.5 @nn.compact def __call__(self, x, temb=None, train=True): B, H, W, C = x.shape out_ch = self.out_ch if self.out_ch else C h = self.act(self.normalize()(x)) h = ddpm_conv3x3(h, out_ch) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += nn.Dense(out_ch, kernel_init=default_init())(self.act(temb))[ :, None, None, : ] h = self.act(self.normalize()(h)) h = nn.Dropout(self.dropout)(h, deterministic=not train) h = ddpm_conv3x3(h, out_ch, init_scale=0.0) if C != out_ch: if self.conv_shortcut: x = ddpm_conv3x3(x, out_ch) else: x = NIN(out_ch)(x) return x + h
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Normalization layers.""" import flax.linen as nn import functools import jax.nn.initializers as init import jax.numpy as jnp def get_normalization(config, conditional=False): """Obtain normalization modules from the config file.""" norm = config.model.normalization if conditional: if norm == "InstanceNorm++": return functools.partial( ConditionalInstanceNorm2dPlus, num_classes=config.model.num_classes ) else: raise NotImplementedError(f"{norm} not implemented yet.") else: if norm == "InstanceNorm": return InstanceNorm2d elif norm == "InstanceNorm++": return InstanceNorm2dPlus elif norm == "VarianceNorm": return VarianceNorm2d elif norm == "GroupNorm": return nn.GroupNorm else: raise ValueError("Unknown normalization: %s" % norm) class VarianceNorm2d(nn.Module): """Variance normalization for images.""" bias: bool = False @staticmethod def scale_init(key, shape, dtype=jnp.float32): normal_init = init.normal(0.02) return normal_init(key, shape, dtype=dtype) + 1.0 @nn.compact def __call__(self, x): variance = jnp.var(x, axis=(1, 2), keepdims=True) h = x / jnp.sqrt(variance + 1e-5) h = h * self.param("scale", VarianceNorm2d.scale_init, (1, 1, 1, x.shape[-1])) if self.bias: h = h + self.param("bias", init.zeros, (1, 1, 1, x.shape[-1])) return h class InstanceNorm2d(nn.Module): """Instance normalization for images.""" bias: bool = True @nn.compact def __call__(self, x): mean = jnp.mean(x, axis=(1, 2), keepdims=True) variance = jnp.var(x, axis=(1, 2), keepdims=True) h = (x - mean) / jnp.sqrt(variance + 1e-5) h = h * self.param("scale", init.ones, (1, 1, 1, x.shape[-1])) if self.bias: h = h + self.param("bias", init.zeros, (1, 1, 1, x.shape[-1])) return h class InstanceNorm2dPlus(nn.Module): """InstanceNorm++ as proposed in the original NCSN paper.""" bias: bool = True @staticmethod def scale_init(key, shape, dtype=jnp.float32): normal_init = init.normal(0.02) return normal_init(key, shape, dtype=dtype) + 1.0 @nn.compact def __call__(self, x): means = jnp.mean(x, axis=(1, 2)) m = jnp.mean(means, axis=-1, keepdims=True) v = jnp.var(means, axis=-1, keepdims=True) means_plus = (means - m) / jnp.sqrt(v + 1e-5) h = (x - means[:, None, None, :]) / jnp.sqrt( jnp.var(x, axis=(1, 2), keepdims=True) + 1e-5 ) h = h + means_plus[:, None, None, :] * self.param( "alpha", InstanceNorm2dPlus.scale_init, (1, 1, 1, x.shape[-1]) ) h = h * self.param( "gamma", InstanceNorm2dPlus.scale_init, (1, 1, 1, x.shape[-1]) ) if self.bias: h = h + self.param("beta", init.zeros, (1, 1, 1, x.shape[-1])) return h class ConditionalInstanceNorm2dPlus(nn.Module): """Conditional InstanceNorm++ as in the original NCSN paper.""" num_classes: int = 10 bias: bool = True @nn.compact def __call__(self, x, y): means = jnp.mean(x, axis=(1, 2)) m = jnp.mean(means, axis=-1, keepdims=True) v = jnp.var(means, axis=-1, keepdims=True) means_plus = (means - m) / jnp.sqrt(v + 1e-5) h = (x - means[:, None, None, :]) / jnp.sqrt( jnp.var(x, axis=(1, 2), keepdims=True) + 1e-5 ) normal_init = init.normal(0.02) zero_init = init.zeros if self.bias: def init_embed(key, shape, dtype=jnp.float32): feature_size = shape[1] // 3 normal = ( normal_init(key, (shape[0], 2 * feature_size), dtype=dtype) + 1.0 ) zero = zero_init(key, (shape[0], feature_size), dtype=dtype) return jnp.concatenate([normal, zero], axis=-1) embed = nn.Embed( num_embeddings=self.num_classes, features=x.shape[-1] * 3, embedding_init=init_embed, ) else: def init_embed(key, shape, dtype=jnp.float32): return normal_init(key, shape, dtype=dtype) + 1.0 embed = nn.Embed( num_embeddings=self.num_classes, features=x.shape[-1] * 2, embedding_init=init_embed, ) if self.bias: gamma, alpha, beta = jnp.split(embed(y), 3, axis=-1) h = h + means_plus[:, None, None, :] * alpha[:, None, None, :] out = gamma[:, None, None, :] * h + beta[:, None, None, :] else: gamma, alpha = jnp.split(embed(y), 2, axis=-1) h = h + means_plus[:, None, None, :] * alpha[:, None, None, :] out = gamma[:, None, None, :] * h return out
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file from . import utils, layers, layerspp, normalization import flax.linen as nn import functools import jax.numpy as jnp import numpy as np import ml_collections ResnetBlockDDPM = layerspp.ResnetBlockDDPMpp ResnetBlockBigGAN = layerspp.ResnetBlockBigGANpp Combine = layerspp.Combine conv3x3 = layerspp.conv3x3 conv1x1 = layerspp.conv1x1 get_act = layers.get_act get_normalization = normalization.get_normalization default_initializer = layers.default_init @utils.register_model(name="ncsnpp") class NCSNpp(nn.Module): """NCSN++ model""" config: ml_collections.ConfigDict @nn.compact def __call__(self, x, time_cond, train=True): # config parsing config = self.config act = get_act(config) nf = config.model.nf ch_mult = config.model.ch_mult num_res_blocks = config.model.num_res_blocks attn_resolutions = config.model.attn_resolutions dropout = config.model.dropout resamp_with_conv = config.model.resamp_with_conv num_resolutions = len(ch_mult) conditional = config.model.conditional # noise-conditional fir = config.model.fir fir_kernel = config.model.fir_kernel skip_rescale = config.model.skip_rescale resblock_type = config.model.resblock_type.lower() progressive = config.model.progressive.lower() progressive_input = config.model.progressive_input.lower() embedding_type = config.model.embedding_type.lower() init_scale = config.model.init_scale assert progressive in ["none", "output_skip", "residual"] assert progressive_input in ["none", "input_skip", "residual"] assert embedding_type in ["fourier", "positional"] combine_method = config.model.progressive_combine.lower() combiner = functools.partial(Combine, method=combine_method) # timestep/noise_level embedding; only for continuous training if embedding_type == "fourier": # Gaussian Fourier features embeddings. temb = layerspp.GaussianFourierProjection( embedding_size=nf, scale=config.model.fourier_scale )(time_cond) elif embedding_type == "positional": # Sinusoidal positional embeddings. temb = layers.get_timestep_embedding(time_cond, nf) else: raise ValueError(f"embedding type {embedding_type} unknown.") if conditional: temb = nn.Dense(nf * 4, kernel_init=default_initializer())(temb) temb = nn.Dense(nf * 4, kernel_init=default_initializer())(act(temb)) else: temb = None AttnBlock = functools.partial( layerspp.AttnBlockpp, init_scale=init_scale, skip_rescale=skip_rescale ) Upsample = functools.partial( layerspp.Upsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel, ) if progressive == "output_skip": pyramid_upsample = functools.partial( layerspp.Upsample, fir=fir, fir_kernel=fir_kernel, with_conv=False ) elif progressive == "residual": pyramid_upsample = functools.partial( layerspp.Upsample, fir=fir, fir_kernel=fir_kernel, with_conv=True ) Downsample = functools.partial( layerspp.Downsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel, ) if progressive_input == "input_skip": pyramid_downsample = functools.partial( layerspp.Downsample, fir=fir, fir_kernel=fir_kernel, with_conv=False ) elif progressive_input == "residual": pyramid_downsample = functools.partial( layerspp.Downsample, fir=fir, fir_kernel=fir_kernel, with_conv=True ) if resblock_type == "ddpm": ResnetBlock = functools.partial( ResnetBlockDDPM, act=act, dropout=dropout, init_scale=init_scale, skip_rescale=skip_rescale, ) elif resblock_type == "biggan": ResnetBlock = functools.partial( ResnetBlockBigGAN, act=act, dropout=dropout, fir=fir, fir_kernel=fir_kernel, init_scale=init_scale, skip_rescale=skip_rescale, ) else: raise ValueError(f"resblock type {resblock_type} unrecognized.") # Downsampling block input_pyramid = None if progressive_input != "none": input_pyramid = x hs = [conv3x3(x, nf)] for i_level in range(num_resolutions): # Residual blocks for this resolution for i_block in range(num_res_blocks): h = ResnetBlock(out_ch=nf * ch_mult[i_level])(hs[-1], temb, train) if h.shape[1] in attn_resolutions: h = AttnBlock()(h) hs.append(h) if i_level != num_resolutions - 1: if resblock_type == "ddpm": h = Downsample()(hs[-1]) else: h = ResnetBlock(down=True)(hs[-1], temb, train) if progressive_input == "input_skip": input_pyramid = pyramid_downsample()(input_pyramid) h = combiner()(input_pyramid, h) elif progressive_input == "residual": input_pyramid = pyramid_downsample(out_ch=h.shape[-1])( input_pyramid ) if skip_rescale: input_pyramid = (input_pyramid + h) / np.sqrt( 2.0, dtype=np.float32 ) else: input_pyramid = input_pyramid + h h = input_pyramid hs.append(h) h = hs[-1] h = ResnetBlock()(h, temb, train) h = AttnBlock()(h) h = ResnetBlock()(h, temb, train) pyramid = None # Upsampling block for i_level in reversed(range(num_resolutions)): for i_block in range(num_res_blocks + 1): h = ResnetBlock(out_ch=nf * ch_mult[i_level])( jnp.concatenate([h, hs.pop()], axis=-1), temb, train ) if h.shape[1] in attn_resolutions: h = AttnBlock()(h) if progressive != "none": if i_level == num_resolutions - 1: if progressive == "output_skip": pyramid = conv3x3( act(nn.GroupNorm(num_groups=min(h.shape[-1] // 4, 32))(h)), x.shape[-1], bias=True, init_scale=init_scale, ) elif progressive == "residual": pyramid = conv3x3( act(nn.GroupNorm(num_groups=min(h.shape[-1] // 4, 32))(h)), h.shape[-1], bias=True, ) else: raise ValueError(f"{progressive} is not a valid name.") else: if progressive == "output_skip": pyramid = pyramid_upsample()(pyramid) pyramid = pyramid + conv3x3( act(nn.GroupNorm(num_groups=min(h.shape[-1] // 4, 32))(h)), x.shape[-1], bias=True, init_scale=init_scale, ) elif progressive == "residual": pyramid = pyramid_upsample(out_ch=h.shape[-1])(pyramid) if skip_rescale: pyramid = (pyramid + h) / np.sqrt(2.0, dtype=np.float32) else: pyramid = pyramid + h h = pyramid else: raise ValueError(f"{progressive} is not a valid name") if i_level != 0: if resblock_type == "ddpm": h = Upsample()(h) else: h = ResnetBlock(up=True)(h, temb, train) assert not hs if progressive == "output_skip" and not config.model.double_heads: h = pyramid else: h = act(nn.GroupNorm(num_groups=min(h.shape[-1] // 4, 32))(h)) if config.model.double_heads: h = conv3x3(h, x.shape[-1] * 2, init_scale=init_scale) else: h = conv3x3(h, x.shape[-1], init_scale=init_scale) return h @utils.register_model(name="joint_ncsnpp") class JointNCSNpp(nn.Module): """NCSN++ model""" config: ml_collections.ConfigDict @nn.compact def __call__(self, x, time_cond, train=True): # config parsing denoiser = NCSNpp(config=self.config) distiller = NCSNpp(config=self.config) return denoiser(x, time_cond, train), distiller(x, time_cond, train)
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """DDPM model. This code is the FLAX equivalent of: https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/models/unet.py """ import flax.linen as nn import jax.numpy as jnp import ml_collections import functools from . import utils, layers, normalization RefineBlock = layers.RefineBlock ResidualBlock = layers.ResidualBlock ResnetBlockDDPM = layers.ResnetBlockDDPM Upsample = layers.Upsample Downsample = layers.Downsample conv3x3 = layers.ddpm_conv3x3 get_act = layers.get_act get_normalization = normalization.get_normalization default_initializer = layers.default_init @utils.register_model(name="ddpm") class DDPM(nn.Module): """DDPM model architecture.""" config: ml_collections.ConfigDict @nn.compact def __call__(self, x, labels, train=True): # config parsing config = self.config act = get_act(config) normalize = get_normalization(config) nf = config.model.nf ch_mult = config.model.ch_mult num_res_blocks = config.model.num_res_blocks attn_resolutions = config.model.attn_resolutions dropout = config.model.dropout resamp_with_conv = config.model.resamp_with_conv num_resolutions = len(ch_mult) AttnBlock = functools.partial(layers.AttnBlock, normalize=normalize) ResnetBlock = functools.partial( ResnetBlockDDPM, act=act, normalize=normalize, dropout=dropout ) if config.model.conditional: # timestep/scale embedding timesteps = labels temb = layers.get_timestep_embedding(timesteps, nf) temb = nn.Dense(nf * 4, kernel_init=default_initializer())(temb) temb = nn.Dense(nf * 4, kernel_init=default_initializer())(act(temb)) else: temb = None if config.data.centered: # Input is in [-1, 1] h = x else: # Input is in [0, 1] h = 2 * x - 1.0 # Downsampling block hs = [conv3x3(h, nf)] for i_level in range(num_resolutions): # Residual blocks for this resolution for i_block in range(num_res_blocks): h = ResnetBlock(out_ch=nf * ch_mult[i_level])(hs[-1], temb, train) if h.shape[1] in attn_resolutions: h = AttnBlock()(h) hs.append(h) if i_level != num_resolutions - 1: hs.append(Downsample(with_conv=resamp_with_conv)(hs[-1])) h = hs[-1] h = ResnetBlock()(h, temb, train) h = AttnBlock()(h) h = ResnetBlock()(h, temb, train) # Upsampling block for i_level in reversed(range(num_resolutions)): for i_block in range(num_res_blocks + 1): h = ResnetBlock(out_ch=nf * ch_mult[i_level])( jnp.concatenate([h, hs.pop()], axis=-1), temb, train ) if h.shape[1] in attn_resolutions: h = AttnBlock()(h) if i_level != 0: h = Upsample(with_conv=resamp_with_conv)(h) assert not hs h = act(normalize()(h)) h = conv3x3(h, x.shape[-1], init_scale=0.0) return h
# Code from https://github.com/pcuenca/lpips-j/blob/main/src/lpips_j/lpips.py # # Original copyright statement: # Copyright 2021 The DALL·E mini Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import h5py import flax.linen as nn import jax.numpy as jnp # from flaxmodels import VGG16 import flaxmodels.vgg as vgg from huggingface_hub import hf_hub_download class VGGExtractor(vgg.VGG): """ VGG16 configured as a feature extractor for LPIPS, with weights downloaded from the huggingface hub. Note: subclasses `VGG` from `flaxmodels`, even though it was probably not meant to be subclassed (is not included in __all__). """ def __init__(self): super().__init__( output="activations", pretrained="imagenet", architecture="vgg16", include_head=False, ) def setup(self): weights_file = hf_hub_download( repo_id="pcuenq/lpips-jax", filename="vgg16_weights.h5" ) self.param_dict = h5py.File(weights_file, "r") class NetLinLayer(nn.Module): weights: jnp.array kernel_size = (1, 1) def setup(self): w = lambda *_: self.weights self.layer = nn.Conv( 1, self.kernel_size, kernel_init=w, strides=None, padding=0, use_bias=False ) def __call__(self, x): x = self.layer(x) return x class LPIPS(nn.Module): def setup(self): # We don't add a scaling layer because `VGG16` already includes it self.feature_names = ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"] self.vgg = VGGExtractor() weights_file = hf_hub_download( repo_id="pcuenq/lpips-jax", filename="lpips_lin.h5" ) lin_weights = h5py.File(weights_file) self.lins = [ NetLinLayer(jnp.array(lin_weights[f"lin{i}"])) for i in range(len(self.feature_names)) ] def __call__(self, x, t): x = self.vgg((x + 1) / 2) t = self.vgg((t + 1) / 2) feats_x, feats_t, diffs = {}, {}, {} for i, f in enumerate(self.feature_names): feats_x[i], feats_t[i] = normalize_tensor(x[f]), normalize_tensor(t[f]) diffs[i] = (feats_x[i] - feats_t[i]) ** 2 # We should maybe vectorize this better res = [ spatial_average(self.lins[i](diffs[i]), keepdims=True) for i in range(len(self.feature_names)) ] val = res[0] for i in range(1, len(res)): val += res[i] return val def normalize_tensor(x, eps=1e-10): # Use `-1` because we are channel-last norm_factor = jnp.sqrt(jnp.sum(x**2, axis=-1, keepdims=True)) return x / (norm_factor + eps) def spatial_average(x, keepdims=True): # Mean over W, H return jnp.mean(x, axis=[1, 2], keepdims=keepdims)
from configs.default_cifar10_configs import get_default_configs from configs.cifar10_k_ve import get_config as get_ref_config import math def get_config(): config = get_default_configs() # training training = config.training training.sde = "kvesde" training.loss = "consistency_adaptive" training.ref_model_path = "/path/to/edm_cifar10_ema" training.ref_config = get_ref_config() training.n_iters = 800000 training.n_jitted_steps = 1 training.snapshot_freq_for_preemption = 5000 training.snapshot_freq = 10000 training.batch_size = 512 training.loss_norm = "lpips" training.finetune = False training.stopgrad = True training.dsm_target = True training.solver = "euler" training.start_ema = 0.9 training.start_scales = 2 training.end_scales = 150 training.target_ema_mode = "adaptive" training.scale_mode = "progressive" training.weighting = "uniform" # evaluation evaluate = config.eval evaluate.begin_ckpt = 1 evaluate.end_ckpt = 80 evaluate.enable_loss = True # sampling sampling = config.sampling sampling.method = "onestep" sampling.std = config.model.t_max # data data = config.data data.dataset = "CIFAR10" # model model = config.model model.name = "ncsnpp" model.ema_rate = 0.9999 model.normalization = "GroupNorm" model.nonlinearity = "swish" model.nf = 128 model.ch_mult = (2, 2, 2) model.num_res_blocks = 4 model.attn_resolutions = (16,) model.resamp_with_conv = True model.conditional = True model.fir = True model.fir_kernel = [1, 3, 3, 1] model.skip_rescale = True model.resblock_type = "biggan" model.progressive = "none" model.progressive_input = "residual" model.progressive_combine = "sum" model.attention_type = "ddpm" model.init_scale = 0.0 model.fourier_scale = 16 model.conv_size = 3 model.rho = 7.0 model.data_std = 0.5 model.num_scales = 18 # model.dropout = 0.13 model.dropout = 0.0 # optimization optim = config.optim optim.weight_decay = 0.0 optim.optimizer = "radam" optim.lr = 2e-4 optim.beta1 = 0.9 optim.eps = 1e-8 optim.warmup = int(1e7 / training.batch_size) # warmup for 10M images optim.grad_clip = float("inf") # no gradient clipping return config
from configs.default_cifar10_configs import get_default_configs import math def get_config(): config = get_default_configs() # training training = config.training training.sde = "kvesde" training.loss = "dsm" training.batch_size = 512 training.n_iters = 400001 training.n_jitted_steps = 2 training.snapshot_freq = 10000 training.snapshot_freq_for_preemption = 5000 training.log_freq = 50 training.eval_freq = 100 # sampling sampling = config.sampling sampling.method = "heun" sampling.denoise = True # evaluation evaluate = config.eval evaluate.begin_ckpt = 1 evaluate.end_ckpt = 40 # model model = config.model model.name = "ncsnpp" model.ema_rate = math.exp( math.log(0.5) / (0.5e6 / training.batch_size) ) # half life of 0.5M images model.normalization = "GroupNorm" model.nonlinearity = "swish" model.nf = 128 model.ch_mult = (2, 2, 2) model.num_res_blocks = 4 model.attn_resolutions = (16,) model.resamp_with_conv = True model.conditional = True model.fir = True model.fir_kernel = [1, 3, 3, 1] model.skip_rescale = True model.resblock_type = "biggan" model.progressive = "none" model.progressive_input = "residual" model.progressive_combine = "sum" model.attention_type = "ddpm" model.embedding_type = "fourier" model.init_scale = 0.0 model.fourier_scale = 16 model.conv_size = 3 model.rho = 7.0 model.data_std = 0.5 model.num_scales = 18 model.dropout = 0.13 # optimization optim = config.optim optim.weight_decay = 0 optim.optimizer = "Adam" optim.lr = 1e-3 optim.beta1 = 0.9 optim.eps = 1e-8 optim.warmup = int(1e7 / training.batch_size) # warmup for 10M images optim.grad_clip = float("inf") # no gradient clipping return config
from configs.default_cifar10_configs import get_default_configs from configs.cifar10_k_ve import get_config as get_ref_config import math def get_config(): config = get_default_configs() # training training = config.training training.sde = "kvesde" training.loss = "consistency_ema" training.ref_model_path = "/path/to/edm_cifar10_ema" training.ref_config = get_ref_config() training.n_iters = 800001 training.n_jitted_steps = 1 training.snapshot_freq_for_preemption = 5000 training.snapshot_freq = 10000 training.batch_size = 512 training.loss_norm = "lpips" training.finetune = False training.stopgrad = True training.dsm_target = True training.solver = "euler" training.target_ema = 0.99 training.weighting = "uniform" training.target_ema_mode = "fixed" training.scale_mode = "fixed" # evaluation evaluate = config.eval evaluate.begin_ckpt = 1 evaluate.end_ckpt = 80 evaluate.enable_loss = True # sampling sampling = config.sampling sampling.method = "onestep" sampling.std = config.model.t_max # data data = config.data data.dataset = "CIFAR10" # model model = config.model model.name = "ncsnpp" model.ema_rate = 0.9999 model.normalization = "GroupNorm" model.nonlinearity = "swish" model.nf = 128 model.ch_mult = (2, 2, 2) model.num_res_blocks = 4 model.attn_resolutions = (16,) model.resamp_with_conv = True model.conditional = True model.fir = True model.fir_kernel = [1, 3, 3, 1] model.skip_rescale = True model.resblock_type = "biggan" model.progressive = "none" model.progressive_input = "residual" model.progressive_combine = "sum" model.attention_type = "ddpm" model.init_scale = 0.0 model.fourier_scale = 16 model.conv_size = 3 model.rho = 7.0 model.data_std = 0.5 model.num_scales = 18 model.dropout = 0.0 # optimization optim = config.optim optim.weight_decay = 0.0 optim.optimizer = "radam" optim.lr = 2e-4 optim.beta1 = 0.9 optim.eps = 1e-8 optim.warmup = int(1e7 / training.batch_size) # warmup for 10M images optim.grad_clip = float("inf") # no gradient clipping return config
from configs.default_cifar10_configs import get_default_configs from configs.cifar10_k_ve import get_config as get_ref_config import math def get_config(): config = get_default_configs() # training training = config.training training.sde = "kvesde" training.loss = "continuous" training.ref_model_path = "/path/to/edm_cifar10_ema" training.ref_config = get_ref_config() training.n_iters = 800001 training.n_jitted_steps = 1 training.snapshot_freq_for_preemption = 5000 training.snapshot_freq = 10000 training.batch_size = 512 training.loss_norm = "l2" training.finetune = True training.stopgrad = False training.dsm_target = False # evaluation evaluate = config.eval evaluate.begin_ckpt = 1 evaluate.end_ckpt = 40 evaluate.enable_loss = True # sampling sampling = config.sampling sampling.method = "onestep" sampling.std = config.model.t_max # data data = config.data data.dataset = "CIFAR10" # model model = config.model model.name = "ncsnpp" model.ema_rate = 0.9999 model.normalization = "GroupNorm" model.nonlinearity = "swish" model.nf = 128 model.ch_mult = (2, 2, 2) model.num_res_blocks = 4 model.attn_resolutions = (16,) model.resamp_with_conv = True model.conditional = True model.fir = True model.fir_kernel = [1, 3, 3, 1] model.skip_rescale = True model.resblock_type = "biggan" model.progressive = "none" model.progressive_input = "residual" model.progressive_combine = "sum" model.attention_type = "ddpm" model.init_scale = 0.0 model.fourier_scale = 16 model.conv_size = 3 model.rho = 7.0 model.data_std = 0.5 model.num_scales = 18 model.dropout = 0.3 # optimization optim = config.optim optim.weight_decay = 0.0 optim.optimizer = "radam" optim.lr = 1e-3 optim.beta1 = 0.9 optim.eps = 1e-8 optim.warmup = int(1e7 / training.batch_size) # warmup for 10M images optim.grad_clip = float("inf") # no gradient clipping return config
from configs.default_cifar10_configs import get_default_configs from configs.cifar10_k_ve import get_config as get_ref_config import math def get_config(): config = get_default_configs() # training training = config.training training.sde = "kvesde" training.loss = "progressive_distillation" training.ref_model_path = "/path/to/edm_cifar10_ema" training.ref_config = get_ref_config() training.n_iters = 800001 training.n_jitted_steps = 10 training.snapshot_freq_for_preemption = 5000 training.snapshot_freq = 10000 training.batch_size = 512 training.loss_norm = "l2" training.finetune = True training.target_ema_mode = "fixed" training.scale_mode = "progdist" training.start_scales = 4096 training.distill_steps_per_iter = 50000 training.weighting = "truncated_snr" # evaluation evaluate = config.eval evaluate.begin_ckpt = 1 evaluate.end_ckpt = 80 evaluate.enable_loss = False # sampling sampling = config.sampling sampling.method = "progressive_distillation" sampling.denoise = False # data data = config.data data.dataset = "CIFAR10" # model model = config.model model.name = "ncsnpp" model.ema_rate = 0.0 model.normalization = "GroupNorm" model.nonlinearity = "swish" model.nf = 128 model.ch_mult = (2, 2, 2) model.num_res_blocks = 4 model.attn_resolutions = (16,) model.resamp_with_conv = True model.conditional = True model.fir = True model.fir_kernel = [1, 3, 3, 1] model.skip_rescale = True model.resblock_type = "biggan" model.progressive = "none" model.progressive_input = "residual" model.progressive_combine = "sum" model.attention_type = "ddpm" model.init_scale = 0.0 model.fourier_scale = 16 model.conv_size = 3 model.rho = 7.0 model.data_std = 0.5 model.num_scales = 18 model.dropout = 0.0 # optimization optim = config.optim optim.weight_decay = 0.0 optim.optimizer = "adam" optim.lr = 5e-5 optim.schedule = "linear" optim.linear_decay_steps = training.distill_steps_per_iter optim.beta1 = 0.9 optim.eps = 1e-8 optim.warmup = 0 optim.grad_clip = 1.0 return config
from configs.default_cifar10_configs import get_default_configs import math def get_config(): config = get_default_configs() # training training = config.training training.sde = "kvesde" training.loss = "dsm" training.batch_size = 512 training.n_iters = 400001 training.n_jitted_steps = 2 training.snapshot_freq = 10000 training.snapshot_freq_for_preemption = 5000 training.log_freq = 50 training.eval_freq = 100 # sampling sampling = config.sampling sampling.method = "heun" sampling.denoise = True # evaluation evaluate = config.eval evaluate.begin_ckpt = 1 evaluate.end_ckpt = 40 # model model = config.model model.name = "ncsnpp" model.normalization = "GroupNorm" model.nonlinearity = "swish" model.nf = 128 model.ch_mult = (2, 2, 2) model.num_res_blocks = 4 model.attn_resolutions = (16,) model.resamp_with_conv = True model.conditional = True model.fir = False model.fir_kernel = [1, 3, 3, 1] model.skip_rescale = True model.resblock_type = "biggan" model.progressive = "none" model.progressive_input = "none" model.progressive_combine = "sum" model.attention_type = "ddpm" model.init_scale = 0.0 model.embedding_type = "positional" model.fourier_scale = 16 model.conv_size = 3 model.ema_rate = math.exp( math.log(0.5) / (0.5e6 / training.batch_size) ) # half life of 0.5M images model.rho = 7.0 model.data_std = 0.5 model.num_scales = 18 model.dropout = 0.13 # optimization optim = config.optim optim.weight_decay = 0 optim.optimizer = "Adam" optim.lr = 1e-3 optim.beta1 = 0.9 optim.eps = 1e-8 optim.warmup = int(1e7 / training.batch_size) # warmup for 10M images optim.grad_clip = float("inf") # no gradient clipping return config
from configs.default_cifar10_configs import get_default_configs from configs.cifar10_k_ve import get_config as get_ref_config import math def get_config(): config = get_default_configs() # training training = config.training training.sde = "kvesde" training.loss = "consistency" training.ref_model_path = "/path/to/edm_cifar10_ema" training.ref_config = get_ref_config() training.n_iters = 800001 training.n_jitted_steps = 1 training.snapshot_freq_for_preemption = 5000 training.snapshot_freq = 10000 training.batch_size = 512 training.loss_norm = "lpips" training.finetune = True training.stopgrad = True training.dsm_target = False training.solver = "heun" training.weighting = "uniform" # evaluation evaluate = config.eval evaluate.begin_ckpt = 1 evaluate.end_ckpt = 80 evaluate.enable_loss = True # sampling sampling = config.sampling sampling.method = "onestep" sampling.std = config.model.t_max sampling.n_steps = 18 # data data = config.data data.dataset = "CIFAR10" # model model = config.model model.name = "ncsnpp" model.ema_rate = 0.9999 model.normalization = "GroupNorm" model.nonlinearity = "swish" model.nf = 128 model.ch_mult = (2, 2, 2) model.num_res_blocks = 4 model.attn_resolutions = (16,) model.resamp_with_conv = True model.conditional = True model.fir = True model.fir_kernel = [1, 3, 3, 1] model.skip_rescale = True model.resblock_type = "biggan" model.progressive = "none" model.progressive_input = "residual" model.progressive_combine = "sum" model.attention_type = "ddpm" model.init_scale = 0.0 model.fourier_scale = 16 model.conv_size = 3 model.rho = 7.0 model.data_std = 0.5 model.num_scales = 18 model.dropout = 0.0 # optimization optim = config.optim optim.weight_decay = 0.0 optim.optimizer = "radam" optim.lr = 4e-4 optim.beta1 = 0.9 optim.eps = 1e-8 optim.warmup = int(1e7 / training.batch_size) # warmup for 10M images optim.grad_clip = float("inf") # no gradient clipping return config
import ml_collections def get_default_configs(): config = ml_collections.ConfigDict() # training config.training = training = ml_collections.ConfigDict() training.batch_size = 128 training.n_iters = 1300001 training.snapshot_freq = 50000 training.log_freq = 50 training.eval_freq = 100 ## store additional checkpoints for preemption in cloud computing environments training.snapshot_freq_for_preemption = 10000 ## produce samples at each snapshot. training.snapshot_sampling = True training.likelihood_weighting = False training.n_jitted_steps = 5 # TODO: important flag! # sampling config.sampling = sampling = ml_collections.ConfigDict() sampling.n_steps_each = 1 sampling.noise_removal = True sampling.probability_flow = False sampling.snr = 0.16 # evaluation config.eval = evaluate = ml_collections.ConfigDict() evaluate.begin_ckpt = 9 evaluate.end_ckpt = 26 evaluate.batch_size = 512 evaluate.enable_sampling = True evaluate.num_samples = 50000 evaluate.enable_loss = True evaluate.enable_bpd = False evaluate.bpd_dataset = "test" # data config.data = data = ml_collections.ConfigDict() data.dataset = "CIFAR10" data.image_size = 32 data.random_flip = True data.uniform_dequantization = False data.num_channels = 3 # model config.model = model = ml_collections.ConfigDict() model.sigma_min = 0.02 model.sigma_max = 100 model.num_scales = 1000 model.beta_min = 0.1 model.beta_max = 20.0 model.t_min = 0.002 model.t_max = 80.0 model.dropout = 0.1 model.embedding_type = "fourier" model.double_heads = False # optimization config.optim = optim = ml_collections.ConfigDict() optim.weight_decay = 0.0 optim.optimizer = "Adam" optim.lr = 2e-4 optim.beta1 = 0.9 optim.beta2 = 0.999 optim.eps = 1e-8 optim.warmup = 5000 optim.grad_clip = 1.0 optim.clip_sigmas = 5.0 config.seed = 42 return config
from tqdm import tqdm from model import CLIPImage, CLIPText import tensorflow as tf import os import numpy as np from lucid.optvis import objectives, param import lucid.optvis.render as render from lucid.optvis.objectives import wrap_objective, diversity import lucid.optvis.transform as transform from lucid.misc.io import load, save @wrap_objective() def l2(batch=None): def inner(T): return -tf.reduce_mean((T("input") - 0.5)**2) return inner @wrap_objective() def vector(layer, d, batch=None): def inner(T): channel_obj = tf.reduce_mean( tf.einsum( "ijkl,j->ikl", tf.nn.relu(T(layer)), tf.constant(d) ), [1,2]) channel_obj_weighted = tf.reduce_mean(channel_obj)**(1/1) return channel_obj_weighted return inner @wrap_objective() def attr(obj, style_attrs, layers, strength): def inner(T): style = tf.constant(style_attrs) obj_t = obj(T) layer_t = T(layers[0]) w = tf.linspace(strength[0], strength[1], tf.shape(layer_t)[0]) batch_n, _, _, _ = layer_t.get_shape().as_list() style = tf.transpose(style, (0,2,3,1)) style = tf.image.resize(style, (tf.shape(layer_t)[2],tf.shape(layer_t)[3])) style = tf.transpose(style, (0,3,1,2)) flat_attrs = [] grads = tf.gradients(obj_t, [T(layer) for layer in layers]) for layer, grad_t in zip(layers, grads): layer_t = T(layer) attr_t = layer_t * tf.nn.relu(tf.stop_gradient(grad_t)) if len(style_attrs.shape) == 2: flat_attr_t = tf.reduce_sum(attr_t, axis=(2,3)) elif len(style_attrs.shape) == 4: flat_attr_t = attr_t flat_attrs.append(flat_attr_t) flat_attr_t = tf.concat(flat_attrs, -1) return tf.reduce_sum(w[:,None,None,None]*flat_attr_t*style) return inner def render_facet(model, neuron_obj, layers, style_attrs, strength = (0.1, 0.3), l2_weight = 10.0, resolution = 128, alpha = False): def mean_alpha(): def inner(T): input_t = T("input") return tf.sqrt(tf.reduce_mean(input_t[..., 3:] ** 2)) return objectives.Objective(inner) standard_transforms = [ transform.pad(2, mode='constant', constant_value=.5), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.jitter(4), transform.random_scale([0.995**n for n in range(-5,80)] + [0.998**n for n in 2*list(range(20,40))]), transform.random_rotate(list(range(-20,20))+list(range(-10,10))+list(range(-5,5))+5*[0]), transform.jitter(2), transform.crop_or_pad_to(resolution, resolution) ] if alpha: standard_transforms.append(transform.collapse_alpha_random()) param_f = lambda: param.image(resolution, batch=9, alpha=True) else: param_f = lambda: param.image(resolution, batch=9) optimizer = tf.train.AdamOptimizer(0.02) ultimate_layer = [n.name for n in model.graph_def.node if "image_block_4" in n.name][-1] obj = vector(ultimate_layer, neuron_obj) facetsp = [(5/len(layers))*attr(obj, style, [layer], strength) for style, layer in list(zip(style_attrs, layers))] for facetp in facetsp: obj = obj + facetp obj = obj + l2_weight*l2() if alpha: obj -= mean_alpha() obj -= 1e2 * objectives.blur_alpha_each_step() data = render.render_vis(model, obj, param_f, transforms=standard_transforms, optimizer=optimizer, thresholds=(1024*4,)) return data def one_hot(ind): z = np.zeros(2560) z[ind] = 1 return z.astype(np.float32) facets = ["face", "text", "logo", "pose", "arch", "nature", "indoor"] model = CLIPImage() d = one_hot(100) for facet in facets: layernames = [n.name for n in model.graph_def.node if ("image_block_3" in n.name) and ("Relu_2" in n.name)][::2] def loadnpy(url): import blobfile from io import BytesIO fp = blobfile.BlobFile(url, "rb") x = np.load(BytesIO(fp.read())) fp.close() return x style_attrs = [loadnpy(f"https://openaipublic.blob.core.windows.net/clip/facets/{model.name}/{layername}/{facet}_spatial.npy") for layername in layernames] for l2_weight in [10]: img = render_facet(model, d, layernames, style_attrs, l2_weight = l2_weight, strength = (0.1, 5.0), alpha = False, resolution = 256) save(img[0][-1], f"/root/{facet}.png")
from tokenizer import SimpleTokenizer from model import CLIPImage, CLIPText import tensorflow as tf from lucid.misc.io import load import numpy as np def imresize(img, size, scale=255): from PIL import Image im = Image.fromarray((img*scale).astype(np.uint8) ) return np.array(im.resize(size, Image.BICUBIC)).astype(np.float32)/scale tokenizer = SimpleTokenizer() tf.reset_default_graph() inp_text, T_text = CLIPText().load() inp_img, T_img = CLIPImage().load() sess = tf.Session() captions = ["This is a dog", "This is a cat", "This is a dog and a cat"] tokens = [] for caption in captions: tokens.append(tokenizer.tokenize(caption)[0]) img = imresize(load("https://openaipublic.blob.core.windows.net/clarity/dog_cat.jpeg"), [288,288]) text_embd = sess.run(T_text("text_post/l2_normalize"), {inp_text: tokens}) img_embd = sess.run(T_img("l2_normalize"), {inp_img: [img]}) scores = (text_embd @ img_embd.T)[:,0] for score, caption in zip(scores, captions): print(caption, score)
from lucid.modelzoo.vision_base import Model from lucid.optvis import render import tensorflow as tf from lucid.misc.io import load, save class CLIPImage(Model): image_value_range = (0, 255) input_name = 'input_image' def __init__(self): self.model_name = "RN50_4x" self.image_shape = [288, 288, 3] self.model_path = "https://openaipublic.blob.core.windows.net/clip/tf/RN50_4x/084ee9c176da32014b0ebe42cd7ca66e/image32.pb" def load(self, inp = None): import tensorflow as tf if inp == None: self.inp = tf.placeholder(shape = (None,self.image_shape[0], self.image_shape[1], 3), dtype = tf.float32) else: self.inp = inp self.T = render.import_model(self, self.inp, self.inp) return self.inp, self.T class CLIPText(Model): input_name = 'tokens' def __init__(self): self.model_name = f"RN50_4x_text" self.model_path = "https://openaipublic.blob.core.windows.net/clip/tf/RN50_4x/da21bc82c7bba068aa8163333438354c/text32.pb" def load(self, O = None): import tensorflow as tf if O == None: self.O = tf.placeholder(tf.int32, [None, None]) else: self.O = O tf.import_graph_def(self.graph_def, {self.input_name: self.O}, name = "text") gph = tf.get_default_graph() self.T = lambda x: gph.get_tensor_by_name("text/" + x + ":0") return self.O, self.T
# By Alec Radford import html import ftfy import json import regex as re from functools import lru_cache import tensorflow as tf import blobfile def pad(x, pad_length = 76): z = np.zeros((pad_length)) z[0:len(x)] = x return z @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path = None): if bpe_path == None: bpe_path = blobfile.BlobFile('https://openaipublic.blob.core.windows.net/clip/bpe_simple_vocab_16e6.txt', 'r') self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} merges = bpe_path.read().split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v:k for k,v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>':'<|startoftext|>', '<|endoftext|>':'<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text def tokenize(self, text, n_text = 76, pad = True): sot = self.encoder['<|startoftext|>'] eot = self.encoder['<|endoftext|>'] tokens = self.encode(text) tokens = [sot]+tokens[:n_text-1]+[eot] if pad: return [tokens + [0]*(n_text+1-len(tokens))] else: return tokens def sot(self): return self.encoder['<|startoftext|>'] def eot(self): return self.encoder['<|endoftext|>']