python_code
stringlengths
0
869k
import os HPARAMS_REGISTRY = {} DEFAULT_OUT_DIR = os.path.expandvars('$HOME/dist-aug') class Hyperparams(dict): def __getattr__(self, attr): try: return self[attr] except KeyError: return None def __setattr__(self, attr, value): self[attr] = value good_baseline_sm = Hyperparams() good_baseline_sm.float16 = True good_baseline_sm.fp16_mean_var = True good_baseline_sm.fp16_allreduce = True good_baseline_sm.no_vocab_rounding = False good_baseline_sm.skip_initial_evals = True good_baseline_sm.n_ctx = 2048 good_baseline_sm.n_layer = 32 good_baseline_sm.n_head = 4 good_baseline_sm.n_batch = 16 good_baseline_sm.n_embd = 256 good_baseline_sm.activation = 'quick_gelu' good_baseline_sm.optimizer = 'bs_adam' good_baseline_sm.blocksparse_op = True good_baseline_sm.recompute = True good_baseline_sm.resid_pdrop = 0.05 good_baseline_sm.warmup_iters = 7500 good_baseline_sm.embd_pdrop = 0.05 good_baseline_sm.lr = 0.0007 good_baseline_sm.total_epochs = 120 good_baseline_sm.pos_embd_std = 0.007 good_baseline_sm.w_embd_std = 0.013 good_baseline_sm.fp16_loss_scale = 2.0**16 good_baseline_sm.merge_layer_allreduce = 1 good_baseline_sm.max_grad_norm = 1.0 good_baseline_sm.blocksize = 64 good_baseline_sm.attention_layers = 'a' good_baseline_sm.mlp_w1 = 0.125 good_baseline_sm.qk_w = 0.125 good_baseline_sm.v_w = 0.125 good_baseline_sm.post_w = 0.125 good_baseline_sm.mlp_w2 = 0.5 good_baseline_sm.mlp_multiple = 4.0 good_baseline_sm.qk_ratio = 1.0 HPARAMS_REGISTRY['good_base_sm'] = good_baseline_sm good_baseline_med = Hyperparams() good_baseline_med.n_layer = 64 good_baseline_med.lr = 0.0005 good_baseline_med.n_batch = 4 HPARAMS_REGISTRY['good_base_med'] = good_baseline_med good_baseline_large = Hyperparams() good_baseline_large.n_layer = 64 good_baseline_large.n_head = 16 good_baseline_large.n_embd = 512 good_baseline_large.n_batch = 1 HPARAMS_REGISTRY['good_base_lg'] = good_baseline_large sample_during_eval_8gpu = Hyperparams() sample_during_eval_8gpu.sample_during_eval = True sample_during_eval_8gpu.samples_to_generate = 1 sample_during_eval_8gpu.sample_batch = 1 sample_during_eval_8gpu.sample_grid_dim = 4 HPARAMS_REGISTRY['sample-during-eval-8gpu'] = sample_during_eval_8gpu c10 = Hyperparams() c10.n_ctx = 3072 c10.dataset = 'cifar10' c10.mlp_multiple = 2.0 c10.qk_ratio = 0.5 c10.n_embd = 256 HPARAMS_REGISTRY['cifar10'] = c10 c10_dense = Hyperparams() c10_dense.update(good_baseline_sm) c10_dense.update(sample_during_eval_8gpu) c10_dense.update(c10) c10_dense.lr = 0.00035 c10_dense.dynamic_loss_scaling = True c10_dense.warmup_iters = 15000 c10_dense.max_grad_norm = 1.0 c10_dense.resid_pdrop = 0.25 c10_dense.embd_pdrop = 0.0 c10_dense.n_batch = 2 c10_dense.n_layer = 128 c10_dense.merge_layer_allreduce = 4 c10_dense.n_head = 2 c10_dense.total_epochs = 140 c10_dense.qk_w = 0.125 c10_dense.mlp_w1 = 0.125 c10_dense.mlp_w2 = 0.125 c10_dense.post_w = 0.125 c10_dense.logits_w = 0.0 c10_dense.pos_embd_std = 0.01 c10_dense.w_embd_std = 0.01 c10_dense.blocksize = 32 c10_dense.l2_loss = 0.01 HPARAMS_REGISTRY['c10-dense'] = c10_dense c10_sparse = Hyperparams() c10_sparse.update(c10_dense) c10_sparse.blocksize = 32 c10_sparse.local_attn_ctx = 96 c10_sparse.attention_layers = 'bT,b,b,b' c10_sparse.test_size = 2000 c10_sparse.datapoints = 48000 HPARAMS_REGISTRY['c10-gemnet'] = c10_sparse c10_58m = Hyperparams() c10_58m.update(c10_sparse) HPARAMS_REGISTRY['c10-58m'] = c10_58m c10_58m_rot = Hyperparams() c10_58m_rot.update(c10_58m) c10_58m_rot.use_rotation = True c10_58m_rot.total_epochs = 10000 c10_58m_rot.resid_pdrop = 0.01 HPARAMS_REGISTRY['c10-58m-rot'] = c10_58m_rot c10_58m_rot_tr = Hyperparams() c10_58m_rot_tr.update(c10_58m) c10_58m_rot_tr.use_rotation = True c10_58m_rot_tr.use_transposition = True c10_58m_rot_tr.total_epochs = 10000 c10_58m_rot_tr.resid_pdrop = 0.01 HPARAMS_REGISTRY['c10-58m-rot-tr'] = c10_58m_rot_tr c10_15m_dense = Hyperparams() c10_15m_dense.update(c10_dense) c10_15m_dense.n_layer = 32 c10_15m_dense.n_batch = 16 c10_15m_dense.resid_pdrop = 0.005 c10_15m_dense.total_epochs = 10000 c10_15m_dense.test_size = 2000 c10_15m_dense.datapoints = 48000 HPARAMS_REGISTRY['c10_15m_dense'] = c10_15m_dense c10_15m = Hyperparams() c10_15m.update(c10_sparse) c10_15m.n_layer = 32 c10_15m.n_batch = 16 c10_15m.resid_pdrop = 0.005 c10_15m.total_epochs = 10000 HPARAMS_REGISTRY['c10_15m'] = c10_15m c10_15m_rot = Hyperparams() c10_15m_rot.update(c10_15m) c10_15m_rot.use_rotation = True HPARAMS_REGISTRY['c10_15m_rot'] = c10_15m_rot c10_15m_rot_tr = Hyperparams() c10_15m_rot_tr.update(c10_15m) c10_15m_rot_tr.use_rotation = True c10_15m_rot_tr.use_transposition = True HPARAMS_REGISTRY['c10_15m_rot_tr'] = c10_15m_rot_tr c10_15m_tr = Hyperparams() c10_15m_tr.update(c10_15m) c10_15m_tr.use_transposition = True HPARAMS_REGISTRY['c10_15m_tr'] = c10_15m_tr c10_15m_rev = Hyperparams() c10_15m_rev.update(c10_15m) c10_15m_rev.use_reverse = True HPARAMS_REGISTRY['c10_15m_rev'] = c10_15m_rev c10_15m_c = Hyperparams() c10_15m_c.update(c10_15m) c10_15m_c.use_color = True HPARAMS_REGISTRY['c10_15m_c'] = c10_15m_c c10_15m_js = Hyperparams() c10_15m_js.update(c10_15m) c10_15m_js.use_jigsaw = True c10_15m_js.jigsaw_grid_size = 2 HPARAMS_REGISTRY['c10_15m_js'] = c10_15m_js c10_15m_lr = Hyperparams() c10_15m_lr.update(c10_15m) c10_15m_lr.aug = True HPARAMS_REGISTRY['c10_15m_lr'] = c10_15m_lr c10_15m_ra_n2_m3 = Hyperparams() c10_15m_ra_n2_m3.update(c10_15m) c10_15m_ra_n2_m3.rand_augment = True c10_15m_ra_n2_m3.rand_augment_conditioning = True c10_15m_ra_n2_m3.rand_augment_n = 2 c10_15m_ra_n2_m3.rand_augment_m = 3 HPARAMS_REGISTRY['c10_15m_ra_n2_m3'] = c10_15m_ra_n2_m3 c10_15m_ra_n1_m2 = Hyperparams() c10_15m_ra_n1_m2.update(c10_15m) c10_15m_ra_n1_m2.rand_augment = True c10_15m_ra_n1_m2.rand_augment_conditioning = True c10_15m_ra_n1_m2.rand_augment_n = 1 c10_15m_ra_n1_m2.rand_augment_m = 2 HPARAMS_REGISTRY['c10_15m_ra_n1_m2'] = c10_15m_ra_n1_m2 c10_15m_i32_nocond = Hyperparams() c10_15m_i32_nocond.update(c10_15m) c10_15m_i32_nocond.dataset = 'imagenet32cifar' c10_15m_i32_nocond.use_imagenet_fraction = 1.0 c10_15m_i32_nocond.eval_after_n_examples = 48000 c10_15m_i32_nocond.use_dataset_conditioning = True c10_15m_i32_nocond.use_unconditional_augmentation = True HPARAMS_REGISTRY['c10_15m_i32_nocond'] = c10_15m_i32_nocond c10_15m_i32_cond = Hyperparams() c10_15m_i32_cond.update(c10_15m) c10_15m_i32_cond.dataset = 'imagenet32cifar' c10_15m_i32_cond.use_imagenet_fraction = 1.0 c10_15m_i32_cond.eval_after_n_examples = 48000 c10_15m_i32_cond.use_dataset_conditioning = True HPARAMS_REGISTRY['c10_15m_i32_cond'] = c10_15m_i32_cond c10_15m_ss_i32_nocond = Hyperparams() c10_15m_ss_i32_nocond.update(c10_15m) c10_15m_ss_i32_nocond.auxiliary_dataset = 'imagenet32' c10_15m_ss_i32_nocond.auxiliary_dataset_fraction = 0.5 c10_15m_ss_i32_nocond.use_dataset_conditioning = True c10_15m_ss_i32_nocond.use_unconditional_augmentation = True HPARAMS_REGISTRY['c10_15m_ss_i32_nocond'] = c10_15m_ss_i32_nocond c10_15m_ss_i32_cond = Hyperparams() c10_15m_ss_i32_cond.update(c10_15m) c10_15m_ss_i32_cond.auxiliary_dataset = 'imagenet32' c10_15m_ss_i32_cond.auxiliary_dataset_fraction = 0.5 c10_15m_ss_i32_cond.use_dataset_conditioning = True HPARAMS_REGISTRY['c10_15m_ss_i32_cond'] = c10_15m_ss_i32_cond c10_15m_dense_rd = Hyperparams() c10_15m_dense_rd.update(c10_15m_dense) c10_15m_dense_rd.use_randomly_determined_order = True c10_15m_dense_rd.randomly_determined_order_num_perms = 3 c10_15m_dense_rd.randomly_determined_order_seed = 42 HPARAMS_REGISTRY['c10_15m_dense_rd'] = c10_15m_dense_rd c10_15m_rd = Hyperparams() c10_15m_rd.update(c10_15m) c10_15m_rd.use_randomly_determined_order = True c10_15m_rd.randomly_determined_order_num_perms = 3 c10_15m_rd.randomly_determined_order_seed = 42 HPARAMS_REGISTRY['c10_15m_rd'] = c10_15m_rd c10_15m_rd_s314 = Hyperparams() c10_15m_rd_s314.update(c10_15m) c10_15m_rd_s314.use_randomly_determined_order = True c10_15m_rd_s314.randomly_determined_order_num_perms = 3 c10_15m_rd_s314.randomly_determined_order_seed = 314 HPARAMS_REGISTRY['c10_15m_rd_s314'] = c10_15m_rd_s314 c10_15m_rd_s2718 = Hyperparams() c10_15m_rd_s2718.update(c10_15m) c10_15m_rd_s2718.use_randomly_determined_order = True c10_15m_rd_s2718.randomly_determined_order_num_perms = 3 c10_15m_rd_s2718.randomly_determined_order_seed = 2718 HPARAMS_REGISTRY['c10_15m_rd_s2718'] = c10_15m_rd_s2718 c10_15m_rd_s1618 = Hyperparams() c10_15m_rd_s1618.update(c10_15m) c10_15m_rd_s1618.use_randomly_determined_order = True c10_15m_rd_s1618.randomly_determined_order_num_perms = 3 c10_15m_rd_s1618.randomly_determined_order_seed = 1618 HPARAMS_REGISTRY['c10_15m_rd_s1618'] = c10_15m_rd_s1618 imagenet64_8gpu = Hyperparams() imagenet64_8gpu.update(c10_sparse) imagenet64_8gpu.n_batch = 16 imagenet64_8gpu.n_embd = 512 imagenet64_8gpu.n_layer = 28 imagenet64_8gpu.n_head = 4 imagenet64_8gpu.dataset = 'imagenet64' imagenet64_8gpu.blocksize = 64 imagenet64_8gpu.local_attn_ctx = 128 imagenet64_8gpu.lr = 0.00025 imagenet64_8gpu.n_ctx = 8192 imagenet64_8gpu.resid_pdrop = 0.01 imagenet64_8gpu.embd_pdrop = 0.01 imagenet64_8gpu.total_epochs = 50 imagenet64_8gpu.mlp_w1 = 0.125 imagenet64_8gpu.qk_w = 0.125 imagenet64_8gpu.v_w = 0.125 imagenet64_8gpu.post_w = 0.125 imagenet64_8gpu.mlp_w2 = 0.5 imagenet64_8gpu.mlp_multiple = 4.0 imagenet64_8gpu.qk_ratio = 1.0 HPARAMS_REGISTRY['imagenet64-8gpu'] = imagenet64_8gpu c10_150m_baseline = Hyperparams() c10_150m_baseline.update(imagenet64_8gpu) c10_150m_baseline.blocksize = 32 c10_150m_baseline.local_attn_ctx = 96 c10_150m_baseline.n_batch = 2 c10_150m_baseline.lr = 0.00015 c10_150m_baseline.merge_layer_allreduce = 4 c10_150m_baseline.n_layer = 48 c10_150m_baseline.resid_pdrop = 0.005 c10_150m_baseline.pos_embd_std = 0.01 c10_150m_baseline.w_embd_std = 0.01 c10_150m_baseline.dynamic_loss_scaling = True c10_150m_baseline.embd_pdrop = 0.0 c10_150m_baseline.mlp_w2 = 0.125 c10_150m_baseline.n_ctx = 3072 c10_150m_baseline.n_head = 16 c10_150m_baseline.attention_layers = 'b,bT,b,b' c10_150m_baseline.dataset = 'cifar10' c10_150m_baseline.total_epochs = 10000 c10_150m_baseline.test_size = 2000 c10_150m_baseline.datapoints = 48000 HPARAMS_REGISTRY['c10_150m_baseline'] = c10_150m_baseline c10_150m_pgd1 = Hyperparams() c10_150m_pgd1.update(c10_150m_baseline) c10_150m_pgd1.use_linf_pgd = True c10_150m_pgd1.linf_pgd_epsilon = 1.0 c10_150m_pgd1.linf_pgd_n = 1 c10_150m_pgd1.linf_pgd_a = 1.0 HPARAMS_REGISTRY['c10_150m_pgd1'] = c10_150m_pgd1 c10_150m_pgd3 = Hyperparams() c10_150m_pgd3.update(c10_150m_baseline) c10_150m_pgd3.use_linf_pgd = True c10_150m_pgd3.linf_pgd_epsilon = 2.0 c10_150m_pgd3.linf_pgd_n = 3 c10_150m_pgd3.linf_pgd_a = 1.0 HPARAMS_REGISTRY['c10_150m_pgd3'] = c10_150m_pgd3 c10_150m_pgd4 = Hyperparams() c10_150m_pgd4.update(c10_150m_baseline) c10_150m_pgd4.use_linf_pgd = True c10_150m_pgd4.linf_pgd_epsilon = 3.0 c10_150m_pgd4.linf_pgd_n = 4 c10_150m_pgd4.linf_pgd_a = 1.0 HPARAMS_REGISTRY['c10_150m_pgd4'] = c10_150m_pgd4 c10_150m_pgd5 = Hyperparams() c10_150m_pgd5.update(c10_150m_baseline) c10_150m_pgd5.use_linf_pgd = True c10_150m_pgd5.linf_pgd_epsilon = 4.0 c10_150m_pgd5.linf_pgd_n = 5 c10_150m_pgd5.linf_pgd_a = 1.0 HPARAMS_REGISTRY['c10_150m_pgd5'] = c10_150m_pgd5 c10_150m_rot = Hyperparams() c10_150m_rot.update(c10_150m_baseline) c10_150m_rot.use_rotation = True HPARAMS_REGISTRY['c10_150m_rot'] = c10_150m_rot c10_150m_tr = Hyperparams() c10_150m_tr.update(c10_150m_baseline) c10_150m_tr.use_transposition = True HPARAMS_REGISTRY['c10_150m_tr'] = c10_150m_tr c10_150m_js = Hyperparams() c10_150m_js.update(c10_150m_baseline) c10_150m_js.use_jigsaw = True c10_150m_js.jigsaw_grid_size = 2 HPARAMS_REGISTRY['c10_150m_js'] = c10_150m_js c10_150m_color = Hyperparams() c10_150m_color.update(c10_150m_baseline) c10_150m_color.use_color = True HPARAMS_REGISTRY['c10_150m_color'] = c10_150m_color c10_150m_tr = Hyperparams() c10_150m_tr.update(c10_150m_baseline) c10_150m_tr.use_transposition = True HPARAMS_REGISTRY['c10_150m_tr'] = c10_150m_tr c10_150m_rot_tr = Hyperparams() c10_150m_rot_tr.update(c10_150m_baseline) c10_150m_rot_tr.use_rotation = True c10_150m_rot_tr.use_transposition = True HPARAMS_REGISTRY['c10_150m_rot_tr'] = c10_150m_rot_tr c10_150m_rot_js = Hyperparams() c10_150m_rot_js.update(c10_150m_baseline) c10_150m_rot_js.use_rotation = True c10_150m_rot_js.use_jigsaw = True c10_150m_rot_js.jigsaw_grid_size = 2 HPARAMS_REGISTRY['c10_150m_rot_js'] = c10_150m_rot_js c10_150m_rot_js_tr = Hyperparams() c10_150m_rot_js_tr.update(c10_150m_baseline) c10_150m_rot_js_tr.use_rotation = True c10_150m_rot_js_tr.use_jigsaw = True c10_150m_rot_js_tr.jigsaw_grid_size = 2 c10_150m_rot_js_tr.use_transposition = True HPARAMS_REGISTRY['c10_150m_rot_js_tr'] = c10_150m_rot_js_tr c10_150m_rot_js_tr_c = Hyperparams() c10_150m_rot_js_tr_c.update(c10_150m_baseline) c10_150m_rot_js_tr_c.use_rotation = True c10_150m_rot_js_tr_c.use_jigsaw = True c10_150m_rot_js_tr_c.jigsaw_grid_size = 2 c10_150m_rot_js_tr_c.use_transposition = True c10_150m_rot_js_tr_c.use_color = True HPARAMS_REGISTRY['c10_150m_rot_js_tr_c'] = c10_150m_rot_js_tr_c c10_150m_imagenet = Hyperparams() c10_150m_imagenet.update(c10_150m_baseline) c10_150m_imagenet.dataset = 'imagenet32cifar' c10_150m_imagenet.use_imagenet_fraction = 1.0 c10_150m_imagenet.eval_after_n_examples = 48000 c10_150m_imagenet.use_dataset_conditioning = True HPARAMS_REGISTRY['c10_150m_imagenet'] = c10_150m_imagenet c10_150m_aug = Hyperparams() c10_150m_aug.update(c10_150m_baseline) c10_150m_aug.aug = True c10_150m_aug.resid_pdrop = 0.40 HPARAMS_REGISTRY['c10_150m_aug'] = c10_150m_aug c10_150m_randaugment_dataaug = Hyperparams() c10_150m_randaugment_dataaug.update(c10_150m_baseline) c10_150m_randaugment_dataaug.rand_augment = True c10_150m_randaugment_dataaug.rand_augment_n = 2 c10_150m_randaugment_dataaug.rand_augment_m = 3 HPARAMS_REGISTRY['c10_150m_randaugment_dataaug'] = c10_150m_randaugment_dataaug c10_150m_randaugment_distaug = Hyperparams() c10_150m_randaugment_distaug.update(c10_150m_baseline) c10_150m_randaugment_distaug.rand_augment = True c10_150m_randaugment_distaug.rand_augment_conditioning = True c10_150m_randaugment_distaug.rand_augment_n = 2 c10_150m_randaugment_distaug.rand_augment_m = 3 HPARAMS_REGISTRY['c10_150m_randaugment_distaug'] = c10_150m_randaugment_distaug c10_150m_rot = Hyperparams() c10_150m_rot.update(c10_150m_baseline) c10_150m_rot.use_rotation = True HPARAMS_REGISTRY['c10-150m-rot'] = c10_150m_rot c10_150m_rot_c_tr = Hyperparams() c10_150m_rot_c_tr.update(c10_150m_baseline) c10_150m_rot_c_tr.use_rotation = True c10_150m_rot_c_tr.use_color = True c10_150m_rot_c_tr.use_transposition = True HPARAMS_REGISTRY['c10-150m-rot-c-tr'] = c10_150m_rot_c_tr c10_150m_rot_c_tr_js = Hyperparams() c10_150m_rot_c_tr_js.update(c10_150m_baseline) c10_150m_rot_c_tr_js.use_rotation = True c10_150m_rot_c_tr_js.use_color = True c10_150m_rot_c_tr_js.use_transposition = True c10_150m_rot_c_tr_js.use_jigsaw = True c10_150m_rot_c_tr_js.jigsaw_grid_size = 2 HPARAMS_REGISTRY['c10-150m-rot-c-tr-js'] = c10_150m_rot_c_tr_js c10_150m_rot_tr_js = Hyperparams() c10_150m_rot_tr_js.update(c10_150m_baseline) c10_150m_rot_tr_js.use_rotation = True c10_150m_rot_tr_js.use_transposition = True c10_150m_rot_tr_js.use_jigsaw = True c10_150m_rot_tr_js.jigsaw_grid_size = 2 HPARAMS_REGISTRY['c10-150m-rot-tr-js'] = c10_150m_rot_tr_js c10_150m_rot_c = Hyperparams() c10_150m_rot_c.update(c10_150m_baseline) c10_150m_rot_c.use_rotation = True c10_150m_rot_c.use_color = True HPARAMS_REGISTRY['c10-150m-rot-c'] = c10_150m_rot_c c10_150m_rot_tr = Hyperparams() c10_150m_rot_tr.update(c10_150m_baseline) c10_150m_rot_tr.use_rotation = True c10_150m_rot_tr.use_transposition = True HPARAMS_REGISTRY['c10-150m-rot-tr'] = c10_150m_rot_tr c10_150m_rot_tr_ra_n2_m3 = Hyperparams() c10_150m_rot_tr_ra_n2_m3.update(c10_150m_baseline) c10_150m_rot_tr_ra_n2_m3.use_rotation = True c10_150m_rot_tr_ra_n2_m3.use_transposition = True c10_150m_rot_tr_ra_n2_m3.rand_augment = True c10_150m_rot_tr_ra_n2_m3.rand_augment_n = 2 c10_150m_rot_tr_ra_n2_m3.rand_augment_m = 3 c10_150m_rot_tr_ra_n2_m3.rand_augment_conditioning = True c10_150m_rot_tr_ra_n2_m3.rand_augment_rate = 0.5 HPARAMS_REGISTRY['c10-150m-rot-tr-ra-n2-m3'] = c10_150m_rot_tr_ra_n2_m3 c10_150m_rot_tr_ra_n1_m2 = Hyperparams() c10_150m_rot_tr_ra_n1_m2.update(c10_150m_baseline) c10_150m_rot_tr_ra_n1_m2.use_rotation = True c10_150m_rot_tr_ra_n1_m2.use_transposition = True c10_150m_rot_tr_ra_n1_m2.rand_augment = True c10_150m_rot_tr_ra_n1_m2.rand_augment_n = 1 c10_150m_rot_tr_ra_n1_m2.rand_augment_m = 2 c10_150m_rot_tr_ra_n1_m2.rand_augment_conditioning = True c10_150m_rot_tr_ra_n1_m2.rand_augment_rate = 0.5 HPARAMS_REGISTRY['c10-150m-rot-tr-ra-n1-m2'] = c10_150m_rot_tr_ra_n1_m2 c10_150m_rot_c_tr_js_ra_n1_m2 = Hyperparams() c10_150m_rot_c_tr_js_ra_n1_m2.update(c10_150m_baseline) c10_150m_rot_c_tr_js_ra_n1_m2.use_rotation = True c10_150m_rot_c_tr_js_ra_n1_m2.use_color = True c10_150m_rot_c_tr_js_ra_n1_m2.use_transposition = True c10_150m_rot_c_tr_js_ra_n1_m2.use_jigsaw = True c10_150m_rot_c_tr_js_ra_n1_m2.jigsaw_grid_size = 2 c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment = True c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_n = 1 c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_m = 2 c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_conditioning = True c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_rate = 0.5 HPARAMS_REGISTRY['c10-150m-rot-c-tr-js-ra-n1-m2'] = c10_150m_rot_c_tr_js_ra_n1_m2 c10_150m_c_tr = Hyperparams() c10_150m_c_tr.update(c10_150m_baseline) c10_150m_c_tr.use_color = True c10_150m_c_tr.use_transposition = True HPARAMS_REGISTRY['c10-150m-c-tr'] = c10_150m_c_tr c10_10m_baseline = Hyperparams() c10_10m_baseline.update(c10_150m_baseline) c10_10m_baseline.n_embd = 128 c10_10m_baseline.n_batch = 16 HPARAMS_REGISTRY['c10_10m_baseline'] = c10_10m_baseline c10_10m_rot = Hyperparams() c10_10m_rot.update(c10_10m_baseline) c10_10m_rot.use_rotation = True HPARAMS_REGISTRY['c10_10m_rot'] = c10_10m_rot c10_2m_baseline = Hyperparams() c10_2m_baseline.update(c10_150m_baseline) c10_2m_baseline.n_embd = 64 c10_2m_baseline.n_batch = 16 c10_2m_baseline.n_head = 8 HPARAMS_REGISTRY['c10_2m_baseline'] = c10_2m_baseline c10_2m_rot = Hyperparams() c10_2m_rot.update(c10_2m_baseline) c10_2m_rot.use_rotation = True HPARAMS_REGISTRY['c10_2m_rot'] = c10_2m_rot i64_150m_32gpu = Hyperparams() i64_150m_32gpu.update(imagenet64_8gpu) i64_150m_32gpu.n_batch = 4 i64_150m_32gpu.lr = 0.00015 i64_150m_32gpu.l2_loss = 0.001 i64_150m_32gpu.total_epochs = 10000 i64_150m_32gpu.merge_layer_allreduce = 4 i64_150m_32gpu.n_layer = 48 i64_150m_32gpu.resid_pdrop = 0.005 i64_150m_32gpu.blocksize = 32 i64_150m_32gpu.pos_embd_std = 0.01 i64_150m_32gpu.w_embd_std = 0.01 i64_150m_32gpu.dropout_broadcast_dims = None i64_150m_32gpu.dynamic_loss_scaling = True i64_150m_32gpu.embd_pdrop = 0.0 i64_150m_32gpu.mlp_w2 = 0.125 i64_150m_32gpu.n_ctx = 12288 i64_150m_32gpu.n_head = 16 i64_150m_32gpu.attention_layers = 'b,bT,b,b' HPARAMS_REGISTRY['i64_150m_32gpu'] = i64_150m_32gpu i64_150m_32gpu_rot = Hyperparams() i64_150m_32gpu_rot.update(i64_150m_32gpu) i64_150m_32gpu_rot.use_rotation = True HPARAMS_REGISTRY['i64_150m_32gpu_rot_32gpu'] = i64_150m_32gpu_rot i64_150m_32gpu_rot_tr = Hyperparams() i64_150m_32gpu_rot_tr.update(i64_150m_32gpu) i64_150m_32gpu_rot_tr.use_rotation = True i64_150m_32gpu_rot_tr.use_transposition = True HPARAMS_REGISTRY['i64_150m_32gpu_rot_tr_32gpu'] = i64_150m_32gpu_rot_tr i64_300m_64gpu = Hyperparams() i64_300m_64gpu.update(i64_150m_32gpu) i64_300m_64gpu.n_layer = 96 i64_300m_64gpu.n_batch = 2 HPARAMS_REGISTRY['i64_300m_64gpu'] = i64_300m_64gpu i64_300m_64gpu_rot = Hyperparams() i64_300m_64gpu_rot.update(i64_300m_64gpu) i64_300m_64gpu_rot.use_rotation = True HPARAMS_REGISTRY['i64_300m_64gpu_rot'] = i64_300m_64gpu_rot i64_300m_64gpu_rot_tr = Hyperparams() i64_300m_64gpu_rot_tr.update(i64_300m_64gpu) i64_300m_64gpu_rot_tr.use_rotation = True i64_300m_64gpu_rot_tr.use_transposition = True HPARAMS_REGISTRY['i64_300m_64gpu_rot_tr'] = i64_300m_64gpu_rot_tr i64_300m_64gpu_rot_c_tr = Hyperparams() i64_300m_64gpu_rot_c_tr.update(i64_300m_64gpu) i64_300m_64gpu_rot_c_tr.use_rotation = True i64_300m_64gpu_rot_c_tr.use_color = True i64_300m_64gpu_rot_c_tr.use_transposition = True HPARAMS_REGISTRY['i64_300m_64gpu_rot_c_tr'] = i64_300m_64gpu_rot_c_tr def parse_args_and_update_hparams(H, parser, s=None): args = parser.parse_args(s) valid_args = set(args.__dict__.keys()) hparam_sets = [x for x in args.hparam_sets.split(',') if x] for hp_set in hparam_sets: hps = HPARAMS_REGISTRY[hp_set] for k in hps: if k not in valid_args: raise ValueError(f"{k} not in default args") parser.set_defaults(**hps) H.update(parser.parse_args().__dict__) # H is updated in place, so return nothing. def add_arguments(parser): parser.add_argument('--out_dir', type=str, default=DEFAULT_OUT_DIR) parser.add_argument('--desc', type=str, default='test') parser.add_argument('--print_params', action="store_true") parser.add_argument('--hparam_sets', '--hps', type=str, default='') # dataset params parser.add_argument('--dataset', type=str, default="cifar10") parser.add_argument('--auxiliary_dataset', type=str, default=None) parser.add_argument('--auxiliary_dataset_fraction', type=float, default=0.5) parser.add_argument('--auxiliary_dataset_subset_size', type=int, default=None) parser.add_argument('--auxiliary_dataset_seed', type=int, default=42) # Training params parser.add_argument('--n_batch', type=int, default=128) parser.add_argument('--max_grad_norm', type=float, default=1.0) # Transformer architectural parameters parser.add_argument('--n_embd', type=int, default=512) parser.add_argument('--n_ctx', type=int, default=256) parser.add_argument('--n_head', type=int, default=8) parser.add_argument('--n_layer', type=int, default=6) parser.add_argument('--dropout_broadcast_dims', type=str, default=None) parser.add_argument('--embd_pdrop', type=float, default=0.1) parser.add_argument('--resid_pdrop', type=float, default=0.1) parser.add_argument('--mlp_multiple', type=float, default=4.0) parser.add_argument('--qk_ratio', type=float, default=1.0) parser.add_argument('--attention_layers', type=str, default='a') parser.add_argument('--local_attn_ctx', type=int, default=64) parser.add_argument('--pos_embd_std', type=float, default=0.007) parser.add_argument('--w_embd_std', type=float, default=0.013) parser.add_argument('--mlp_w1', type=float, default=0.125) parser.add_argument('--mlp_w2', type=float, default=0.125) parser.add_argument('--qk_w', type=float, default=0.125) parser.add_argument('--v_w', type=float, default=0.125) parser.add_argument('--post_w', type=float, default=0.125) parser.add_argument('--logits_w', type=float, default=0.125) parser.add_argument('--preconv_w', type=float, default=0.125) # rand augment params # https://arxiv.org/pdf/1909.13719.pdf parser.add_argument('--rand_augment', action="store_true") parser.add_argument('--rand_augment_conditioning', action="store_true") parser.add_argument('--rand_augment_rate', type=float, default=0.95) parser.add_argument('--rand_augment_n', type=int, default=1) # Number of sequential perturbations -- range [1, 3] parser.add_argument('--rand_augment_m', type=int, default=2) # Magnitude of pertubations -- range [2, 30] # Distr Aug Params parser.add_argument('--aug', action='store_true') parser.add_argument('--permute_embeddings', dest='permute_embeddings', action="store_true") parser.add_argument('--no_permute_embeddings', dest='permute_embeddings', action="store_false") parser.set_defaults(permute_embeddings=True) parser.add_argument('--use_imagenet_fraction', type=float, default=1.0) parser.add_argument('--unaugmented_data_rate', type=float, default=None) parser.add_argument('--use_rotation', action="store_true") parser.add_argument('--use_dataset_conditioning', action="store_true") parser.add_argument('--no_dataset_conditioning', action="store_false", dest="use_dataset_conditioning") parser.add_argument('--use_color', action="store_true") parser.add_argument('--use_transposition', action="store_true") parser.add_argument('--use_randomly_determined_order', action="store_true") parser.add_argument('--randomly_determined_order_num_perms', type=int, default=3) parser.add_argument('--randomly_determined_order_seed', type=int, default=42) parser.add_argument('--randomly_determined_order_use_lookahead', action="store_true") parser.add_argument('--use_reverse', action="store_true") parser.add_argument('--use_linf_pgd', action="store_true") parser.add_argument('--use_jigsaw', action="store_true") parser.add_argument('--jigsaw_grid_size', type=int, default=2) parser.add_argument('--use_unconditional_augmentation', action='store_true') parser.add_argument('--datapoints', type=int, default=None) parser.add_argument('--test_size', type=int, default=None) # Training params parser.add_argument('--seed', type=int, default=42) parser.add_argument('--aug_seed', type=int, default=314) parser.add_argument('--optimizer', type=str, default='bs_adam') parser.add_argument('--activation', type=str, default='quick_gelu') parser.add_argument('--beta2', type=float, default=0.999) parser.add_argument('--l2_loss', type=float, default=0.0) parser.add_argument('--recompute', action="store_true", dest="recompute") parser.add_argument('--no_recompute', action="store_false", dest="recompute") parser.add_argument('--float16', action="store_true") parser.add_argument('--no_float16', action="store_false", dest='float16') parser.add_argument('--blocksparse_op', action="store_true") parser.add_argument('--no_blocksparse_op', action="store_false", dest="blocksparse_op") parser.add_argument('--blocksize', type=int, default=64) parser.add_argument('--fp16_allreduce', action="store_true") parser.add_argument('--no_fp16_allreduce', action="store_false", dest='fp16_allreduce') parser.add_argument('--merge_layer_allreduce', default=0, type=int) parser.add_argument('--fp32_gains_biases', action="store_true") parser.add_argument('--fp16_loss_scale', type=float, default=2.0**16) parser.add_argument('--min_loss_scale', type=float, default=2.0**10) parser.add_argument('--fp16_loss_freq', type=int, default=1000) parser.add_argument('--fp16_mean_var', action='store_true') parser.add_argument('--no_fp16_mean_var', action='store_false', dest='fp16_mean_var') parser.add_argument('--dynamic_loss_scaling', action='store_true') parser.add_argument('--no_dynamic_loss_scaling', action='store_false', dest='dynamic_loss_scaling') parser.add_argument('--lr', type=float, default=0.0005) parser.add_argument('--lr_offset', type=int, default=0) parser.add_argument('--decay_lr_linearly', action="store_true") parser.add_argument('--no_vocab_rounding', action="store_true") parser.add_argument('--disable_ema_vars', action="store_true") parser.add_argument('--total_epochs', type=int, default=100) parser.add_argument('--exit_after_n_epochs', type=int, default=None) parser.add_argument('--warmup_iters', type=int, default=5000) parser.add_argument('--weights_beta', type=float, default=0.999) parser.add_argument('--iters_per_log', type=int, default=500) parser.add_argument('--aug_eval', type=str, default=None) parser.add_argument('--aug_eval_n_examples', type=int, default=None) parser.add_argument('--eval_after_n_examples', type=int, default=None) parser.add_argument('--epochs_per_save', type=int, default=1) parser.add_argument('--epochs_per_backup', type=int, default=1) parser.add_argument('--epochs_per_eval', type=int, default=1) # eval stuff parser.add_argument('--skip_initial_evals', action="store_true") parser.add_argument('--eval_and_exit', action="store_true") parser.add_argument('--no_skip_initial_evals', action="store_false", dest='skip_initial_evals') parser.add_argument('--eval_test', action="store_true") parser.add_argument('--eval_start_idx', type=int, default=0) parser.add_argument('--eval_n_examples', type=int, default=100000) # Generating unconditional samples parser.add_argument('--sample_batch', type=int, default=4) parser.add_argument('--samples_to_generate', type=int, default=4) parser.add_argument('--sample_grid_dim', type=int, default=4) parser.add_argument('--sample_and_exit', action="store_true") parser.add_argument('--sample_during_eval', action="store_true") parser.add_argument('--sample_f16', action="store_true") parser.add_argument('--temperature', type=float, default=1.0) parser.add_argument('--no_sample_during_eval', action="store_false", dest='sample_during_eval') # Restoring jobs parser.add_argument('--restore_path', type=str, default='') return parser
from mpi4py import MPI import numpy as np import tensorflow as tf import blocksparse as bs from blocksparse import nccl def mpi_init(initializer): 'Variable initializer for MPI. Used such that allreduce ' 'syncs variables at the beginning of training. ' 'This is better than multiplying the values by 0, which requires' 'extra memory. Alternatively, a broadcast can be used.' if mpi_rank() == 0: return initializer return tf.zeros_initializer() def random_or_zeros_init(stddev): return mpi_init(tf.random_normal_initializer(stddev=stddev)) def constant_or_zeros_init(constant): return mpi_init(tf.constant_initializer(constant)) def zeros_init(): return tf.zeros_initializer() def num_comms(): # perhaps make this editable later return 2 def mpi_size(): return MPI.COMM_WORLD.Get_size() def mpi_rank(): return MPI.COMM_WORLD.Get_rank() def num_nodes(): # works only w 8 gpu nodes if mpi_size() > 8: return mpi_size() // 8 return 1 def gpus_per_node(): size = mpi_size() if size > 1: return max(size // num_nodes(), 1) return 1 def local_mpi_rank(): return mpi_rank() % gpus_per_node() def prereduce_size(): if mpi_size() > 8: if mpi_size() % num_nodes() != 0: raise ValueError('MPI size not evenly divisible across nodes') return gpus_per_node() return 0 def allreduce(val): if mpi_size() == 1: return val return nccl.allreduce(val, num_comms=num_comms(), prereduce=prereduce_size()) def sync_variables(sess): sess.run(bs.nccl.sync_globals_zero_init_op( num_comms=num_comms(), prereduce=prereduce_size())) def group_allreduce(grads, params, search_strings=None, cast_all=None): if mpi_size() == 1: return grads return nccl.group_allreduce( grads, params, search_strings=search_strings, cast_all=cast_all, num_comms=num_comms(), prereduce=prereduce_size()) def mpi_dtype(dtype): return { "float32": MPI.FLOAT, "float64": MPI.DOUBLE, "int8": MPI.CHAR, "uint8": MPI.UNSIGNED_CHAR, "int16": MPI.SHORT, "uint16": MPI.UNSIGNED_SHORT, "int32": MPI.INT, "uint32": MPI.UNSIGNED, "int64": MPI.LONG, "uint64": MPI.UNSIGNED_LONG, }[dtype] def mpi_barrier(): MPI.COMM_WORLD.Barrier() def mpi_allgather(arr): comm = MPI.COMM_WORLD n = comm.Get_size() bs, *other = arr.shape out = np.zeros((bs * n, *other), dtype=arr.dtype) dtype = mpi_dtype(arr.dtype.name) comm.Allgather([arr, dtype], [out, dtype]) return out def get_session(mpi=True, disable_swapping=True, log=print): config = tf.ConfigProto() # if mpi: # log('local rank', local_mpi_rank(), 'rank', mpi_rank()) # config.gpu_options.visible_device_list = str(local_mpi_rank()) config.allow_soft_placement = False if disable_swapping: # Disables the swapping heuristic used by TF to reduce memory; # it is faster to recompute gradients rather than swap out params config.graph_options.rewrite_options.memory_optimization = 1 # Dont need the timeout session if mpi4py is used when invoking mpi # sess = TimeoutSession(timeout=timeout, config=config, log=log) sess = tf.Session(config=config) return sess
import argparse import subprocess import shlex import os import glob import json import time from matplotlib import pyplot as plt import numpy as np LOGDIR = os.path.expanduser('~/bigtrans_logs') GRAPHDIR = os.path.expanduser('~/bigtrans_graphs') BUCKET = '<input bucket>' os.makedirs(LOGDIR, exist_ok=True) os.makedirs(GRAPHDIR, exist_ok=True) EPOCH_VARS = frozenset(['epoch', 'n_epochs']) x_var_mapping = { 'epoch': 'n_epochs', 'step': 'n_updates' } y_var_mapping = { 'eval_loss': { 'loss': 'valid_gen_loss', 'loss_clf': 'valid_clf_loss', 'acc_clf': 'valid_acc', }, 'train_loss': { 'loss_avg': 'train_gen_loss', 'loss_clf_avg': 'train_clf_loss', } } class Series(object): def __init__(self, logpath, model_name, series_id, x_var, y_var, average, base=None, convert_to_epochs=False, legend=None): self.name = model_name if legend: self.name += ":" + legend with open(logpath, 'r') as f: lines = f.readlines() identifier = json.loads(lines[0]) img_gen_repr_learn = False if 'code' in identifier: img_gen_repr_learn = True if img_gen_repr_learn: x_var = x_var_mapping[x_var] y_var = y_var_mapping[series_id][y_var] data = [] epoch_length = None for l in lines[1:]: try: parse = json.loads(l) if epoch_length is None and 'n_updates_per_epoch' in parse: epoch_length = float(parse['n_updates_per_epoch']) if img_gen_repr_learn: data.append(parse) elif 'series' in parse and parse['series'] == series_id: data.append(parse) except json.JSONDecodeError: pass data = [d for d in data if x_var in d and y_var in d] self.x = np.array([l[x_var] for l in data]).astype(np.float64) self.y = np.array([l[y_var] for l in data]).astype(np.float64) if convert_to_epochs and x_var not in EPOCH_VARS: self.x /= epoch_length if base is not None: self.y /= np.log(base) if average: out_y = [] for j in range(1, len(self.y) + 1): mini = max(0, j - args.average) out_y.append(self.y[mini:j].mean()) self.y = np.array(out_y) if len(self.x) > 0 and len(self.y) > 0: max_idx = np.argmax(self.y) min_idx = np.argmin(self.y) self.xmax = self.x[max_idx] self.ymax = self.y[max_idx] self.xmin = self.x[min_idx] self.ymin = self.y[min_idx] if __name__ == "__main__": parser = argparse.ArgumentParser() # comma-separated model name substrings parser.add_argument('--model', type=str) parser.add_argument('--title', type=str, default=None) parser.add_argument('--skip_cp', action="store_true") parser.add_argument('--ylim', type=str, default="") parser.add_argument('--xlim', type=str, default="") parser.add_argument('--series', type=str, default="eval_loss:epoch:loss") parser.add_argument('--average', type=int, default=None) parser.add_argument('--train', action="store_true") parser.add_argument('--valid', action="store_true") parser.add_argument('--acc', action="store_true") parser.add_argument('--clf_loss', action="store_true") parser.add_argument('--train_valid', action="store_true") parser.add_argument('--max', action="store_true") parser.add_argument('--base', type=float) parser.add_argument('--logy', action="store_true") parser.add_argument('--logx', action="store_true") parser.add_argument('--show', action='store_true') args = parser.parse_args() if not args.title: args.title = args.model # Basic sanity-checks if args.acc and args.base is not None: raise ValueError("Converting to other units is supported only for generative losses") legends = [None] if args.train: args.series = 'train_loss:step:loss_avg' if args.valid: args.series = 'eval_loss:epoch:loss' if args.acc: args.series = 'eval_loss:epoch:acc_clf' args.max = True if args.clf_loss: args.series = 'eval_loss:epoch:loss_clf' if args.train_valid: legends = ["valid", "train"] if args.acc: args.series = 'eval_loss:epoch:acc_clf,train_loss:step:loss_acc' args.max = True elif args.clf_loss: args.series = 'eval_loss:epoch:loss_clf,train_loss:step:loss_clf_avg' args.max = False else: args.series = 'eval_loss:epoch:loss,train_loss:step:loss_avg' os.makedirs(LOGDIR, exist_ok=True) strs = args.model.split(',') print('Plotting models with names', strs) prefix = BUCKET suffix = '/log.jsonl' names = [] sps = [] if not args.skip_cp: files = [] for s in strs: modelstr = f'{prefix}{s}{suffix}' cmd = f'gsutil ls {modelstr}' try: o = subprocess.check_output(shlex.split(cmd)) files += [a.decode('utf-8') for a in o.split()] except subprocess.CalledProcessError: print(f'ls failed for {modelstr}') for f in files: name = f[len(prefix):-len(suffix)] p = os.path.join(LOGDIR, name, 'log.jsonl') cmd = f'gsutil cp {f} {p}' sps.append(subprocess.Popen(shlex.split(cmd))) while sps: for proc in sps: retcode = proc.poll() if retcode is not None: sps.remove(proc) else: time.sleep(0.1) localpaths = [] for s in strs: prefix = f'{LOGDIR}/' suffix = 'log.jsonl' for fp in glob.glob(os.path.join(prefix, s, suffix)): localpaths.append((fp, fp[len(prefix):-len(suffix) - 1])) # Series types define what to show as the train and validation curves. series_types = args.series.split(',') assert len(series_types) > 0 series = [[] for _ in series_types] print('series to print:', series_types) convert_to_epochs = set(srs.split(':')[1] in EPOCH_VARS for srs in series_types) == {True, False} for logpath, model_name in localpaths: for idx, (series_str, legend) in enumerate(zip(series_types, legends)): series_id, x_var, y_var = series_str.split(':') s = Series(logpath, model_name, series_id, x_var, y_var, args.average, base=args.base, convert_to_epochs=convert_to_epochs, legend=legend) if len(s.x) > 0 and len(s.y) > 0: series[idx].append(s) assert len(series) > 0 and len(series[0]) > 0 cm = plt.cm.gist_rainbow colors = cm(np.linspace(0, 1, len(series[0]))) if args.show: plt.figure(figsize=(5, 5)) else: plt.figure(figsize=(20, 20)) # # sort to keep colors consistent across plottings for idx in range(len(series_types)): series[idx].sort(key=lambda x: x.name) ymin_data = [] ymax_data = [] # For --train_valid, validation curve will be shown in solid line by # default. linestyles = ["-", "--"] for srs_list, style in zip(reversed(series), reversed(linestyles[:len(series)])): for idx, srs in enumerate(srs_list): alpha = 0.7 if style == '--' else 1.0 plt.plot(srs.x, srs.y, linestyle=style, color=colors[idx], label=srs.name, alpha=alpha) ymax_data.append(srs.y.max()) ymin_data.append(srs.y.min()) plt.grid(linestyle="--") if args.logy: plt.yscale('log') if args.logx: plt.xscale('log') if args.ylim: ymin, ymax = [float(x) for x in args.ylim.split(',')] plt.ylim(ymin, ymax) plt.yticks(np.arange(ymin, ymax, (ymax - ymin) / 50)) else: ymin, ymax = min(ymin_data), max(ymax_data) plt.yticks(np.arange(ymin, ymax, (ymax - ymin) / 50)) if args.xlim: xmin, xmax = [float(x) for x in args.xlim.split(',')] plt.xlim(xmin, xmax) os.makedirs(GRAPHDIR, exist_ok=True) fname = args.title + args.series.replace(":", "-").replace(",", "-") outpath = os.path.join(GRAPHDIR, fname[:100] + '.png') plt.title(f"{args.series} for {args.model}") plt.legend() plt.savefig(outpath) if args.max: for idx in range(len(series)): series[idx].sort(key=lambda x: x.ymax) for s in series[idx]: print(s.ymax, s.xmax, s.name) else: for idx in range(len(series)): series[idx].sort(key=lambda x: x.ymin) for s in series[idx]: print(s.ymin, s.xmin, s.name) if args.show: plt.show() else: print('Opening.') subprocess.call(['open', outpath])
import pickle import os import numpy as np import imageio try: from sklearn.cross_validation import train_test_split except ModuleNotFoundError: from sklearn.model_selection import train_test_split from mpi_utils import mpi_size, mpi_rank from janky_stuff import JankySubsampler mpisize = mpi_size() mpirank = mpi_rank() def get_dataset(name): return { 'cifar10': Cifar10, 'imagenet64': Imagenet64, 'imagenet32': Imagenet32, }[name] def tile_images(images, d1=4, d2=4, border=1): id1, id2, c = images[0].shape out = np.ones([d1 * id1 + border * (d1 + 1), d2 * id2 + border * (d2 + 1), c], dtype=np.uint8) out *= 255 if len(images) != d1 * d2: raise ValueError('Wrong num of images') for imgnum, im in enumerate(images): num_d1 = imgnum // d2 num_d2 = imgnum % d2 start_d1 = num_d1 * id1 + border * (num_d1 + 1) start_d2 = num_d2 * id2 + border * (num_d2 + 1) out[start_d1:start_d1 + id1, start_d2:start_d2 + id2, :] = im return out def iter_data_mpi(*args, n_batch, log, shuffle=False, iters=None, seed=None, split_by_rank=True): 'Take the tensors in *args and iterate through them across mpi ranks if split_by_rank, otherwise iter normally' if not args: raise ValueError size = args[0].shape[0] for idx in range(1, len(args)): if args[idx].shape[0] != size: raise ValueError(f'mismatch in arg {idx}, shape {args[idx].shape[0]} vs {size}') if seed: np.random.seed(seed) if shuffle: idxs = np.random.permutation(np.arange(size)) else: idxs = np.arange(size) ms = mpisize mr = mpirank if not split_by_rank: ms = 1 mr = 0 # Truncate the data if it does not divide evenly sequences_per_batch = ms * n_batch length = (idxs.size // sequences_per_batch) * sequences_per_batch if length != idxs.size: log('Truncating {}/{} sequences'.format(idxs.size - length, idxs.size)) idxs = idxs[:length] # Reshape starting indices to K*mpi_size*n_batch idxs = idxs.reshape([-1, ms, n_batch]) log(f'Number of minibatches in this dataset: {len(idxs)}') for mb_idx in range(len(idxs)): indices = idxs[mb_idx, mr] vals = [t[indices] for t in args] yield vals if iters and mb_idx > iters: break class ImageDataset(object): 'Non-jpeg images' def decode(self, samples, logname): H = self.H out_samples = self.samples_to_image(samples) n_examples = out_samples.shape[0] d2 = H.sample_grid_dim if d2 > n_examples: d2 = n_examples d1 = n_examples // d2 tiled_image = tile_images(out_samples, d1=d1, d2=d2) imname = f'{H.desc}-samples-{logname}.png' out_path = os.path.join(H.model_dir, imname) imageio.imwrite(out_path, tiled_image) self.logprint(f'Saved samples in file {out_path}') def initialize_image_embedding(self): w, h, c = self.embedding_sizes embedding = [] for i in range(w): for j in range(h): for k in range(c): embedding.append([i, j, k]) self.x_emb = np.array(embedding).T.reshape([1, 3, self.ctx]) def samples_to_image(self, samples): return samples.reshape(self.orig_shape) class JankySubsampledDataset(ImageDataset): def __init__(self, datasets, pmf, seed=42): assert len(pmf) == len(datasets) if seed is None: raise ValueError("seed can't be None") self.datasets = datasets self.pmf = pmf # Some basic sanity-checks. attrs = ( "orig_shape", "shape", "ctx", "num_embeddings", "embedding_sizes", "n_vocab", "x_emb", ) for attr in attrs: assert hasattr(self.ref, attr), f"{attr} is missing in the main dataset." ref_attr = getattr(self.ref, attr) setattr(self, attr, ref_attr) for oth in self.oth: assert hasattr(oth, attr), f"{attr} is missing in the auxiliary dataset" oth_attr = getattr(oth, attr) assert type(ref_attr) == type(oth_attr) if isinstance(ref_attr, np.ndarray): assert (ref_attr == oth_attr).all(), f"expected {attr} to be the same." else: assert ref_attr == oth_attr, f"expected {attr} to be the same." # Perform model selection and evaluation using the main dataset. attrs = ( "H", "logprint", "vaX", "vaY", "teX", "teY", "n_classes", "full_dataset_valid", "full_dataset_train", "iters_per_epoch", ) for attr in attrs: setattr(self, attr, getattr(self.ref, attr, None)) trX = [ds.trX for ds in datasets] auxX = [np.zeros_like(tr[:, 0:1]) + idx for idx, tr in enumerate(trX)] self.trX = JankySubsampler(trX, pmf, seed=seed) self.auxX = JankySubsampler(auxX, pmf, seed=seed) @property def ref(self): return self.datasets[0] @property def oth(self): return self.datasets[1:] class Imagenet64(ImageDataset): '''To download, if your data dir is /root/data: mkdir -p /root/data cd /root/data wget https://openaipublic.blob.core.windows.net/distribution-augmentation-assets/imagenet64-train.npy wget https://openaipublic.blob.core.windows.net/distribution-augmentation-assets/imagenet64-valid.npy ''' def __init__(self, H, logprint): self.logprint = logprint self.H = H # Whether the full dataset is loaded on each rank, or just its own partition self.full_dataset_train = True self.full_dataset_valid = True n_train = 1231149 self.n_batch = H.n_batch self.orig_shape = [-1, 64, 64, 3] self.orig_pixels = 64 * 64 * 3 self.num_embeddings = 3 self.n_vocab = 256 self.embedding_sizes = [64, 64, 3] self.iters_per_epoch = n_train // (mpisize * self.n_batch) tr = np.load('/root/data/imagenet64-train.npy', mmap_mode='r').reshape([-1, 12288]) self.trX = tr[:n_train] self.trY = None self.vaY = None self.teY = None self.vaX = tr[n_train:] self.n_classes = None self.teX = np.load('/root/data/imagenet64-valid.npy', mmap_mode='r').reshape([-1, 12288]) self.n_vocab = 256 self.ctx = 12288 self.shape = [-1, self.ctx] assert self.ctx == H.n_ctx, f'n_ctx should be {self.ctx}' self.initialize_image_embedding() class Imagenet32(Imagenet64): '''To download, if your data dir is /root/data: mkdir -p /root/data cd /root/data wget https://openaipublic.blob.core.windows.net/distribution-augmentation-assets/imagenet32-train.npy wget https://openaipublic.blob.core.windows.net/distribution-augmentation-assets/imagenet32-valid.npy ''' def __init__(self, H, logprint): self.logprint = logprint self.H = H # 1281167 << dataset has this many examples # We will use 10k examples for dev n_train = 1281167 - 10000 self.full_dataset_train = True self.full_dataset_valid = True self.n_batch = H.n_batch self.orig_shape = [-1, 32, 32, 3] self.trY = None self.vaY = None self.teY = None self.n_classes = None self.orig_pixels = 32 * 32 * 3 self.num_embeddings = 3 self.n_vocab = 256 self.embedding_sizes = [32, 32, 3] self.iters_per_epoch = n_train // (mpisize * self.n_batch) # we are dumb and saved imagenet32 in 3x32x32, unlike ImageNet64, which we saved in transposed format, sorry about the inconsistency tr = np.load('/root/data/imagenet32-train.npy').reshape([-1, 3, 32, 32]).transpose( [0, 2, 3, 1]).reshape([-1, 3072]) self.trX = tr[:n_train] self.vaX = tr[n_train:] self.teX = np.load('/root/data/imagenet32-valid.npy').reshape([-1, 3, 32, 32]).transpose( [0, 2, 3, 1]).reshape([-1, 3072]) self.n_vocab = 256 self.ctx = 3072 self.shape = [-1, self.ctx] assert self.ctx == H.n_ctx, f'n_ctx should be {self.ctx}' self.initialize_image_embedding() def flatten(outer): return [el for inner in outer for el in inner] def unpickle_cifar10(file): fo = open(file, 'rb') data = pickle.load(fo, encoding='bytes') fo.close() data = dict(zip([k.decode() for k in data.keys()], data.values())) return data def cifar10(data_dir, one_hot=True, test_size=None): test_size = test_size or 5000 tr_data = [unpickle_cifar10(os.path.join(data_dir, 'data_batch_%d' % i)) for i in range(1, 6)] trX = np.vstack(data['data'] for data in tr_data) trY = np.asarray(flatten([data['labels'] for data in tr_data])) te_data = unpickle_cifar10(os.path.join(data_dir, 'test_batch')) teX = np.asarray(te_data['data']) teY = np.asarray(te_data['labels']) trX = trX.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1).reshape([-1, 3072]) teX = teX.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1).reshape([-1, 3072]) trX, vaX, trY, vaY = train_test_split(trX, trY, test_size=test_size, random_state=11172018) if one_hot: trY = np.eye(10, dtype=np.float32)[trY] vaY = np.eye(10, dtype=np.float32)[vaY] teY = np.eye(10, dtype=np.float32)[teY] else: trY = np.reshape(trY, [-1, 1]) vaY = np.reshape(vaY, [-1, 1]) teY = np.reshape(teY, [-1, 1]) return (trX, trY), (vaX, vaY), (teX, teY) class Cifar10(ImageDataset): def __init__(self, H, logprint): self.logprint = logprint self.H = H self.full_dataset_train = True self.full_dataset_valid = True # 5k examples for valid n_train = 45000 if H.datapoints: n_train = H.datapoints self.n_batch = H.n_batch self.iters_per_epoch = n_train // (mpisize * self.n_batch) self.orig_shape = [-1, 32, 32, 3] self.n_classes = 10 self.orig_pixels = 32 * 32 * 3 self.num_embeddings = 3 self.n_vocab = 256 self.embedding_sizes = [32, 32, 3] self.n_batch = H.n_batch self.iters_per_epoch = n_train // (mpisize * self.n_batch) (self.trX, self.trY), (self.vaX, self.vaY), (self.teX, self.teY) = cifar10('/root/data/cifar10/', one_hot=False, test_size=H.test_size) if H.datapoints: logprint(f'Only using {H.datapoints} examples') self.trX = self.trX[:n_train] self.trY = self.trY[:n_train] self.shape = [-1, 3072] self.ctx = 32 * 32 * 3 assert self.ctx == H.n_ctx, f'n_ctx should be {self.ctx}' self.initialize_image_embedding() def preprocess(self, arr): arr = arr.reshape([-1, 3, 32, 32]) arr = arr.transpose([0, 2, 3, 1]) return arr.reshape([-1, 3072])
import os import itertools import json import tempfile import numpy as np import tensorflow as tf import blocksparse as bs import time import subprocess from mpi_utils import mpi_rank def logger(log_prefix): 'Prints the arguments out to stdout, .txt, and .jsonl files' jsonl_path = f'{log_prefix}.jsonl' txt_path = f'{log_prefix}.txt' def log(*args, pprint=False, **kwargs): if mpi_rank() != 0: return t = time.ctime() argdict = {'time': t} if len(args) > 0: argdict['message'] = ' '.join([str(x) for x in args]) argdict.update(kwargs) txt_str = [] args_iter = sorted(argdict) if pprint else argdict for k in args_iter: val = argdict[k] if isinstance(val, np.ndarray): val = val.tolist() elif isinstance(val, np.integer): val = int(val) elif isinstance(val, np.floating): val = float(val) argdict[k] = val if isinstance(val, float): if k == 'lr': val = f'{val:.6f}' else: val = f'{val:.4f}' txt_str.append(f'{k}: {val}') txt_str = ', '.join(txt_str) if pprint: json_str = json.dumps(argdict, sort_keys=True) txt_str = json.dumps(argdict, sort_keys=True, indent=4) else: json_str = json.dumps(argdict) print(txt_str, flush=True) with open(txt_path, "a+") as f: print(txt_str, file=f, flush=True) with open(jsonl_path, "a+") as f: print(json_str, file=f, flush=True) return log def go_over(choices): return itertools.product(*[range(n) for n in choices]) def get_git_revision(): git_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD']) return git_hash.strip().decode('utf-8') def shape_list(x): """ deal with dynamic shape in tensorflow cleanly """ ps = x.get_shape().as_list() ts = tf.shape(x) return [ts[i] if ps[i] is None else ps[i] for i in range(len(ps))] def rsync_data(from_path, to_path): subprocess.check_output(['rsync', '-r', from_path, to_path, '--update']) def maybe_download(path): '''If a path is a gsutil path, download it and return the local link, otherwise return link''' if not path.startswith('gs://'): return path local_dest = tempfile.mkstemp()[1] subprocess.check_output(['gsutil', '-m', 'cp', path, local_dest]) return local_dest def upload_to_gcp(from_path, to_path, is_async=False): if is_async: cmd = f'bash -exec -c "gsutil -m rsync -r {from_path} {to_path}"&' subprocess.call(cmd, shell=True, stderr=subprocess.DEVNULL) else: subprocess.check_output(['gsutil', '-m', 'rsync', from_path, to_path]) def check_identical(from_path, to_path): try: subprocess.check_output(['git', 'diff', '--no-index', '--quiet', from_path, to_path]) return True except subprocess.CalledProcessError: return False def wait_until_synced(from_path, to_path): while True: if check_identical(from_path, to_path): break else: time.sleep(5) def is_gcp(): try: subprocess.check_output(['curl', '-s', 'metadata.google.internal', '-i']) return True except subprocess.CalledProcessError: return False def backup_files(save_dir, save_dir_gcp, path=None): if mpi_rank() == 0: if not path: print(f'Backing up {save_dir} to {save_dir_gcp}', 'Will execute silently in another thread') upload_to_gcp(save_dir, save_dir_gcp, is_async=True) else: upload_to_gcp(path, save_dir_gcp, is_async=True) def log_gradient_values(grads, variables, global_step, model_dir): loggrads = [] with tf.name_scope("log_gradient_values"): for i, (grad, param) in enumerate(zip(grads, variables)): name = param.op.name + "_" + "_".join( str(x) for x in param.shape.as_list()) loggrads.append(bs.log_stats( grad, step=global_step, name=name, logfile=os.path.join(model_dir, 'grad_stats.txt'))) return loggrads def tf_print(t, name, summarize=10, first_n=None, mv=False, maxmin=False): # Useful for debugging! axes = [i for i in range(len(t.shape))] if mv: m, v = tf.nn.moments(t, axes=axes) if maxmin: maxi = tf.reduce_max(t) mini = tf.reduce_min(t) prefix = f'{tf.get_variable_scope().name}-{name}' with tf.device('/cpu:0'): if mv: t = tf.Print(t, [tf.shape(t), m, v], prefix, summarize=summarize, first_n=first_n) elif maxmin: t = tf.Print(t, [tf.shape(t), mini, maxi, t], prefix, summarize=summarize, first_n=first_n) else: t = tf.Print(t, [tf.shape(t), t], prefix, summarize=summarize, first_n=first_n) return t def get_variables(trainable=False): if trainable: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) else: variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) return variables def load_variables(sess, weights, ignore=None, trainable=False, ema=True): '''ema refers to whether the exponential moving averaged weights are used to initialize the true weights or not.''' weights = {os.path.normpath(key): value for key, value in weights.items()} ops = [] feed_dict = {} if ema: gvs_map = {v.name: v for v in tf.global_variables()} for i, var in enumerate(get_variables(trainable=trainable)): var_name = os.path.normpath(var.name) if ignore: do_not_load = False for ignore_substr in ignore: if ignore_substr in var_name: do_not_load = True if do_not_load: continue ph = tf.placeholder(dtype=var.dtype, shape=var.shape) ops.append(var.assign(ph)) if ema: ema_name = f'{var_name[:-2]}/Ema/ema:0' # We assign the EMA value to the current value try: feed_dict[ph] = weights[ema_name] except KeyError: print(f'warning: ema var not found for {var_name}') feed_dict[ph] = weights[var_name] # We also assign the EMA value to the current EMA, which will otherwise # use the initialized value of the variable (random) ema_var = gvs_map[ema_name] ph = tf.placeholder(dtype=ema_var.dtype, shape=ema_var.shape) ops.append(ema_var.assign(ph)) feed_dict[ph] = weights[ema_name] else: feed_dict[ph] = weights[var_name] sess.run(ops, feed_dict) def save_params(sess, path): if mpi_rank() == 0: tf_vars = dict(zip([var.name for var in get_variables()], sess.run(get_variables()))) np.savez(path + '.npz', **tf_vars) def load_variables_from_file(sess, path, ignore=None, trainable=False, ema=True): weights = dict(np.load(path)) load_variables(sess, weights, ignore, trainable=trainable, ema=ema)
# This page is copied from the TensorFlow source code. # https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """AutoAugment and RandAugment policies for enhanced image preprocessing. AutoAugment Reference: https://arxiv.org/abs/1805.09501 RandAugment Reference: https://arxiv.org/abs/1909.13719 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import inspect import math import tensorflow as tf # This signifies the max integer that the controller RNN could predict for the # augmentation scheme. _MAX_LEVEL = 10. def policy_v0(): """Autoaugment policy that was used in AutoAugment Paper.""" # Each tuple is an augmentation operation of the form # (operation, probability, magnitude). Each element in policy is a # sub-policy that will be applied sequentially on the image. policy = [ [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)], [('Color', 0.4, 9), ('Equalize', 0.6, 3)], [('Color', 0.4, 1), ('Rotate', 0.6, 8)], [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)], [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)], [('Color', 0.2, 0), ('Equalize', 0.8, 8)], [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)], [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)], [('Color', 0.6, 1), ('Equalize', 1.0, 2)], [('Invert', 0.4, 9), ('Rotate', 0.6, 0)], [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)], [('Color', 0.4, 7), ('Equalize', 0.6, 0)], [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)], [('Solarize', 0.6, 8), ('Color', 0.6, 9)], [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)], [('Rotate', 1.0, 7), ('TranslateY', 0.8, 9)], [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)], [('ShearY', 0.8, 0), ('Color', 0.6, 4)], [('Color', 1.0, 0), ('Rotate', 0.6, 2)], [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)], [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)], [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)], [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)], [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)], [('Color', 0.8, 6), ('Rotate', 0.4, 5)], ] return policy def policy_vtest(): """Autoaugment test policy for debugging.""" # Each tuple is an augmentation operation of the form # (operation, probability, magnitude). Each element in policy is a # sub-policy that will be applied sequentially on the image. policy = [ [('TranslateX', 1.0, 4), ('Equalize', 1.0, 10)], ] return policy def blend(image1, image2, factor): """Blend image1 and image2 using 'factor'. Factor can be above 0.0. A value of 0.0 means only image1 is used. A value of 1.0 means only image2 is used. A value between 0.0 and 1.0 means we linearly interpolate the pixel values between the two images. A value greater than 1.0 "extrapolates" the difference between the two pixel values, and we clip the results to values between 0 and 255. Args: image1: An image Tensor of type uint8. image2: An image Tensor of type uint8. factor: A floating point value above 0.0. Returns: A blended image Tensor of type uint8. """ if factor == 0.0: return tf.convert_to_tensor(image1) if factor == 1.0: return tf.convert_to_tensor(image2) image1 = tf.to_float(image1) image2 = tf.to_float(image2) difference = image2 - image1 scaled = factor * difference # Do addition in float. temp = tf.to_float(image1) + scaled # Interpolate if factor > 0.0 and factor < 1.0: # Interpolation means we always stay within 0 and 255. return tf.cast(temp, tf.uint8) # Extrapolate: # # We need to clip and then cast. return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8) def cutout(image, pad_size, replace=0): """Apply cutout (https://arxiv.org/abs/1708.04552) to image. This operation applies a (2*pad_size x 2*pad_size) mask of zeros to a random location within `img`. The pixel values filled in will be of the value `replace`. The located where the mask will be applied is randomly chosen uniformly over the whole image. Args: image: An image Tensor of type uint8. pad_size: Specifies how big the zero mask that will be generated is that is applied to the image. The mask will be of size (2*pad_size x 2*pad_size). replace: What pixel value to fill in the image in the area that has the cutout mask applied to it. Returns: An image Tensor that is of type uint8. """ image_height = tf.shape(image)[0] image_width = tf.shape(image)[1] # Sample the center location in the image where the zero mask will be applied. cutout_center_height = tf.random_uniform( shape=[], minval=0, maxval=image_height, dtype=tf.int32) cutout_center_width = tf.random_uniform( shape=[], minval=0, maxval=image_width, dtype=tf.int32) lower_pad = tf.maximum(0, cutout_center_height - pad_size) upper_pad = tf.maximum(0, image_height - cutout_center_height - pad_size) left_pad = tf.maximum(0, cutout_center_width - pad_size) right_pad = tf.maximum(0, image_width - cutout_center_width - pad_size) cutout_shape = [image_height - (lower_pad + upper_pad), image_width - (left_pad + right_pad)] padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]] mask = tf.pad( tf.zeros(cutout_shape, dtype=image.dtype), padding_dims, constant_values=1) mask = tf.expand_dims(mask, -1) mask = tf.tile(mask, [1, 1, 3]) image = tf.where( tf.equal(mask, 0), tf.ones_like(image, dtype=image.dtype) * replace, image) return image def solarize(image, threshold=128): # For each pixel in the image, select the pixel # if the value is less than the threshold. # Otherwise, subtract 255 from the pixel. return tf.where(image < threshold, image, 255 - image) def solarize_add(image, addition=0, threshold=128): # For each pixel in the image less than threshold # we add 'addition' amount to it and then clip the # pixel value to be between 0 and 255. The value # of 'addition' is between -128 and 128. added_image = tf.cast(image, tf.int64) + addition added_image = tf.cast(tf.clip_by_value(added_image, 0, 255), tf.uint8) return tf.where(image < threshold, added_image, image) def color(image, factor): """Equivalent of PIL Color.""" degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) return blend(degenerate, image, factor) def contrast(image, factor): """Equivalent of PIL Contrast.""" degenerate = tf.image.rgb_to_grayscale(image) # Cast before calling tf.histogram. degenerate = tf.cast(degenerate, tf.int32) # Compute the grayscale histogram, then compute the mean pixel value, # and create a constant image size of that value. Use that as the # blending degenerate target of the original image. hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256) mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0 degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8)) return blend(degenerate, image, factor) def brightness(image, factor): """Equivalent of PIL Brightness.""" degenerate = tf.zeros_like(image) return blend(degenerate, image, factor) def posterize(image, bits): """Equivalent of PIL Posterize.""" shift = 8 - bits return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift) def rotate(image, degrees, replace): """Rotates the image by degrees either clockwise or counterclockwise. Args: image: An image Tensor of type uint8. degrees: Float, a scalar angle in degrees to rotate all images by. If degrees is positive the image will be rotated clockwise otherwise it will be rotated counterclockwise. replace: A one or three value 1D tensor to fill empty pixels caused by the rotate operation. Returns: The rotated version of image. """ # Convert from degrees to radians. degrees_to_radians = math.pi / 180.0 radians = degrees * degrees_to_radians # In practice, we should randomize the rotation degrees by flipping # it negatively half the time, but that's done on 'degrees' outside # of the function. image = tf.contrib.image.rotate(wrap(image), radians) return unwrap(image, replace) def translate_x(image, pixels, replace): """Equivalent of PIL Translate in X dimension.""" image = tf.contrib.image.translate(wrap(image), [-pixels, 0]) return unwrap(image, replace) def translate_y(image, pixels, replace): """Equivalent of PIL Translate in Y dimension.""" image = tf.contrib.image.translate(wrap(image), [0, -pixels]) return unwrap(image, replace) def shear_x(image, level, replace): """Equivalent of PIL Shearing in X dimension.""" # Shear parallel to x axis is a projective transform # with a matrix form of: # [1 level # 0 1]. image = tf.contrib.image.transform( wrap(image), [1., level, 0., 0., 1., 0., 0., 0.]) return unwrap(image, replace) def shear_y(image, level, replace): """Equivalent of PIL Shearing in Y dimension.""" # Shear parallel to y axis is a projective transform # with a matrix form of: # [1 0 # level 1]. image = tf.contrib.image.transform( wrap(image), [1., 0., 0., level, 1., 0., 0., 0.]) return unwrap(image, replace) def autocontrast(image): """Implements Autocontrast function from PIL using TF ops. Args: image: A 3D uint8 tensor. Returns: The image after it has had autocontrast applied to it and will be of type uint8. """ def scale_channel(image): """Scale the 2D image using the autocontrast rule.""" # A possibly cheaper version can be done using cumsum/unique_with_counts # over the histogram values, rather than iterating over the entire image. # to compute mins and maxes. lo = tf.to_float(tf.reduce_min(image)) hi = tf.to_float(tf.reduce_max(image)) # Scale the image, making the lowest value 0 and the highest value 255. def scale_values(im): scale = 255.0 / (hi - lo) offset = -lo * scale im = tf.to_float(im) * scale + offset im = tf.clip_by_value(im, 0.0, 255.0) return tf.cast(im, tf.uint8) result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image) return result # Assumes RGB for now. Scales each channel independently # and then stacks the result. s1 = scale_channel(image[:, :, 0]) s2 = scale_channel(image[:, :, 1]) s3 = scale_channel(image[:, :, 2]) image = tf.stack([s1, s2, s3], 2) return image def sharpness(image, factor): """Implements Sharpness function from PIL using TF ops.""" orig_image = image image = tf.cast(image, tf.float32) # Make image 4D for conv operation. image = tf.expand_dims(image, 0) # SMOOTH PIL Kernel. kernel = tf.constant( [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32, shape=[3, 3, 1, 1]) / 13. # Tile across channel dimension. kernel = tf.tile(kernel, [1, 1, 3, 1]) strides = [1, 1, 1, 1] degenerate = tf.nn.depthwise_conv2d( image, kernel, strides, padding='VALID', rate=[1, 1]) degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0]) # For the borders of the resulting image, fill in the values of the # original image. mask = tf.ones_like(degenerate) padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]]) padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]]) result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image) # Blend the final result. return blend(result, orig_image, factor) def equalize(image): """Implements Equalize function from PIL using TF ops.""" def scale_channel(im, c): """Scale the data in the channel to implement equalize.""" im = tf.cast(im[:, :, c], tf.int32) # Compute the histogram of the image channel. histo = tf.histogram_fixed_width(im, [0, 255], nbins=256) # For the purposes of computing the step, filter out the nonzeros. nonzero = tf.where(tf.not_equal(histo, 0)) nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1]) step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255 def build_lut(histo, step): # Compute the cumulative sum, shifting by step // 2 # and then normalization by step. lut = (tf.cumsum(histo) + (step // 2)) // step # Shift lut, prepending with 0. lut = tf.concat([[0], lut[:-1]], 0) # Clip the counts to be in range. This is done # in the C code for image.point. return tf.clip_by_value(lut, 0, 255) # If step is zero, return the original image. Otherwise, build # lut from the full histogram and step and then index from it. result = tf.cond(tf.equal(step, 0), lambda: im, lambda: tf.gather(build_lut(histo, step), im)) return tf.cast(result, tf.uint8) # Assumes RGB for now. Scales each channel independently # and then stacks the result. s1 = scale_channel(image, 0) s2 = scale_channel(image, 1) s3 = scale_channel(image, 2) image = tf.stack([s1, s2, s3], 2) return image def invert(image): """Inverts the image pixels.""" image = tf.convert_to_tensor(image) return 255 - image def wrap(image): """Returns 'image' with an extra channel set to all 1s.""" shape = tf.shape(image) extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype) extended = tf.concat([image, extended_channel], 2) return extended def unwrap(image, replace): """Unwraps an image produced by wrap. Where there is a 0 in the last channel for every spatial position, the rest of the three channels in that spatial dimension are grayed (set to 128). Operations like translate and shear on a wrapped Tensor will leave 0s in empty locations. Some transformations look at the intensity of values to do preprocessing, and we want these empty pixels to assume the 'average' value, rather than pure black. Args: image: A 3D Image Tensor with 4 channels. replace: A one or three value 1D tensor to fill empty pixels. Returns: image: A 3D image Tensor with 3 channels. """ image_shape = tf.shape(image) # Flatten the spatial dimensions. flattened_image = tf.reshape(image, [-1, image_shape[2]]) # Find all pixels where the last channel is zero. alpha_channel = flattened_image[:, 3] replace = tf.concat([replace, tf.ones([1], image.dtype)], 0) # Where they are zero, fill them in with 'replace'. flattened_image = tf.where( tf.equal(alpha_channel, 0), tf.ones_like(flattened_image, dtype=image.dtype) * replace, flattened_image) image = tf.reshape(flattened_image, image_shape) image = tf.slice(image, [0, 0, 0], [image_shape[0], image_shape[1], 3]) return image NAME_TO_FUNC = { 'AutoContrast': autocontrast, 'Equalize': equalize, 'Invert': invert, 'Rotate': rotate, 'Posterize': posterize, 'Solarize': solarize, 'SolarizeAdd': solarize_add, 'Color': color, 'Contrast': contrast, 'Brightness': brightness, 'Sharpness': sharpness, 'ShearX': shear_x, 'ShearY': shear_y, 'TranslateX': translate_x, 'TranslateY': translate_y, 'Cutout': cutout, } def _randomly_negate_tensor(tensor): """With 50% prob turn the tensor negative.""" should_flip = tf.cast(tf.floor(tf.random_uniform([]) + 0.5), tf.bool) final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor) return final_tensor def _rotate_level_to_arg(level): level = (level/_MAX_LEVEL) * 30. level = _randomly_negate_tensor(level) return (level,) def _shrink_level_to_arg(level): """Converts level to ratio by which we shrink the image content.""" if level == 0: return (1.0,) # if level is zero, do not shrink the image # Maximum shrinking ratio is 2.9. level = 2. / (_MAX_LEVEL / level) + 0.9 return (level,) def _enhance_level_to_arg(level): return ((level/_MAX_LEVEL) * 1.8 + 0.1,) def _shear_level_to_arg(level): level = (level/_MAX_LEVEL) * 0.3 # Flip level to negative with 50% chance. level = _randomly_negate_tensor(level) return (level,) def _translate_level_to_arg(level, translate_const): level = (level/_MAX_LEVEL) * float(translate_const) # Flip level to negative with 50% chance. level = _randomly_negate_tensor(level) return (level,) def level_to_arg(hparams): return { 'AutoContrast': lambda level: (), 'Equalize': lambda level: (), 'Invert': lambda level: (), 'Rotate': _rotate_level_to_arg, 'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),), 'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),), 'SolarizeAdd': lambda level: (int((level/_MAX_LEVEL) * 110),), 'Color': _enhance_level_to_arg, 'Contrast': _enhance_level_to_arg, 'Brightness': _enhance_level_to_arg, 'Sharpness': _enhance_level_to_arg, 'ShearX': _shear_level_to_arg, 'ShearY': _shear_level_to_arg, 'Cutout': lambda level: (int((level/_MAX_LEVEL) * hparams.cutout_const),), # pylint:disable=g-long-lambda 'TranslateX': lambda level: _translate_level_to_arg( level, hparams.translate_const), 'TranslateY': lambda level: _translate_level_to_arg( level, hparams.translate_const), # pylint:enable=g-long-lambda } def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams): """Return the function that corresponds to `name` and update `level` param.""" func = NAME_TO_FUNC[name] args = level_to_arg(augmentation_hparams)[name](level) # Check to see if prob is passed into function. This is used for operations # where we alter bboxes independently. # pytype:disable=wrong-arg-types if 'prob' in inspect.getargspec(func)[0]: args = tuple([prob] + list(args)) # pytype:enable=wrong-arg-types # Add in replace arg if it is required for the function that is being called. if 'replace' in inspect.getargspec(func)[0]: # Make sure replace is the final argument assert 'replace' == inspect.getargspec(func)[0][-1] args = tuple(list(args) + [replace_value]) return (func, prob, args) def _apply_func_with_prob(func, image, args, prob): """Apply `func` to image w/ `args` as input with probability `prob`.""" assert isinstance(args, tuple) # If prob is a function argument, then this randomness is being handled # inside the function, so make sure it is always called. if 'prob' in inspect.getargspec(func)[0]: prob = 1.0 # Apply the function with probability `prob`. should_apply_op = tf.cast( tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool) augmented_image = tf.cond( should_apply_op, lambda: func(image, *args), lambda: image) return augmented_image def select_and_apply_random_policy(policies, image): """Select a random policy from `policies` and apply it to `image`.""" policy_to_select = tf.random_uniform([], maxval=len(policies), dtype=tf.int32) # Note that using tf.case instead of tf.conds would result in significantly # larger graphs and would even break export for some larger policies. for (i, policy) in enumerate(policies): image = tf.cond( tf.equal(i, policy_to_select), lambda selected_policy=policy: selected_policy(image), lambda: image) return image def build_and_apply_nas_policy(policies, image, augmentation_hparams): """Build a policy from the given policies passed in and apply to image. Args: policies: list of lists of tuples in the form `(func, prob, level)`, `func` is a string name of the augmentation function, `prob` is the probability of applying the `func` operation, `level` is the input argument for `func`. image: tf.Tensor that the resulting policy will be applied to. augmentation_hparams: Hparams associated with the NAS learned policy. Returns: A version of image that now has data augmentation applied to it based on the `policies` pass into the function. """ replace_value = [128, 128, 128] # func is the string name of the augmentation function, prob is the # probability of applying the operation and level is the parameter associated # with the tf op. # tf_policies are functions that take in an image and return an augmented # image. tf_policies = [] for policy in policies: tf_policy = [] # Link string name to the correct python function and make sure the correct # argument is passed into that function. for policy_info in policy: policy_info = list(policy_info) + [replace_value, augmentation_hparams] tf_policy.append(_parse_policy_info(*policy_info)) # Now build the tf policy that will apply the augmentation procedue # on image. def make_final_policy(tf_policy_): def final_policy(image_): for func, prob, args in tf_policy_: image_ = _apply_func_with_prob( func, image_, args, prob) return image_ return final_policy tf_policies.append(make_final_policy(tf_policy)) augmented_image = select_and_apply_random_policy( tf_policies, image) return augmented_image def distort_image_with_autoaugment(image, augmentation_name): """Applies the AutoAugment policy to `image`. AutoAugment is from the paper: https://arxiv.org/abs/1805.09501. Args: image: `Tensor` of shape [height, width, 3] representing an image. augmentation_name: The name of the AutoAugment policy to use. The available options are `v0` and `test`. `v0` is the policy used for all of the results in the paper and was found to achieve the best results on the COCO dataset. `v1`, `v2` and `v3` are additional good policies found on the COCO dataset that have slight variation in what operations were used during the search procedure along with how many operations are applied in parallel to a single image (2 vs 3). Returns: A tuple containing the augmented versions of `image`. """ available_policies = {'v0': policy_v0, 'test': policy_vtest} if augmentation_name not in available_policies: raise ValueError('Invalid augmentation_name: {}'.format(augmentation_name)) policy = available_policies[augmentation_name]() # Hparams that will be used for AutoAugment. augmentation_hparams = tf.contrib.training.HParams( cutout_const=100, translate_const=250) return build_and_apply_nas_policy(policy, image, augmentation_hparams) def distort_image_with_randaugment(image, num_layers, magnitude): """Applies the RandAugment policy to `image`. RandAugment is from the paper https://arxiv.org/abs/1909.13719, Args: image: `Tensor` of shape [height, width, 3] representing an image. num_layers: Integer, the number of augmentation transformations to apply sequentially to an image. Represented as (N) in the paper. Usually best values will be in the range [1, 3]. magnitude: Integer, shared magnitude across all augmentation operations. Represented as (M) in the paper. Usually best values are in the range [5, 30]. Returns: The augmented version of `image`. """ replace_value = [128] * 3 tf.logging.info('Using RandAug.') # augmentation_hparams = tf.contrib.training.HParams( # cutout_const=40, translate_const=100) augmentation_hparams = tf.contrib.training.HParams( cutout_const=20, translate_const=50) available_ops = [ 'AutoContrast', 'Equalize', 'Invert', 'Rotate', 'Posterize', 'Solarize', 'Color', 'Contrast', 'Brightness', 'Sharpness', 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Cutout', 'SolarizeAdd'] for layer_num in range(num_layers): op_to_select = tf.random_uniform( [], maxval=len(available_ops), dtype=tf.int32) random_magnitude = float(magnitude) with tf.name_scope('randaug_layer_{}'.format(layer_num)): for (i, op_name) in enumerate(available_ops): prob = tf.random_uniform([], minval=0.2, maxval=0.8, dtype=tf.float32) func, _, args = _parse_policy_info(op_name, prob, random_magnitude, replace_value, augmentation_hparams) image = tf.cond( tf.equal(i, op_to_select), # pylint:disable=g-long-lambda lambda selected_func=func, selected_args=args: selected_func( image, *selected_args), # pylint:enable=g-long-lambda lambda: image) return image
# the base model is the optimized version of the Sparse Transformer # presented at https://arxiv.org/abs/1904.10509 # if hacking on the model, be sure to use the mpi init functions # (random_or_zeros_init, constant_or_zeros_init, etc) or # else the models wont be synced across ranks from collections import namedtuple import itertools import os import pdb import sys import time import math import argparse import numpy as np import tensorflow as tf import blocksparse as bs from blocksparse.nccl import serialize_allreduce_ops import subprocess from utils import logger, save_params, load_variables_from_file from utils import maybe_download from utils import log_gradient_values, shape_list, go_over from hyperparams import Hyperparams, add_arguments from hyperparams import parse_args_and_update_hparams from mpi_utils import random_or_zeros_init, constant_or_zeros_init, zeros_init from mpi_utils import get_session, allreduce, group_allreduce, sync_variables from mpi_utils import mpi_size, mpi_rank, local_mpi_rank, mpi_allgather, mpi_barrier from optimizer import get_optimizer from datasets import get_dataset, iter_data_mpi, JankySubsampledDataset from autoaugment import distort_image_with_randaugment H = Hyperparams() AugmentationType = namedtuple("AugmentationType", ("sos_name", "description", "num_tokens", "is_used", "fn")) def f32_storage_getter(getter, name, shape=None, dtype=tf.float32, initializer=None, regularizer=None, trainable=True, *args, **kwargs): """Custom variable getter that forces trainable variables to be stored in float32 precision and then casts them to the training precision. https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/ index.html#mptrain """ var = H.var_cache.get(name) if var is None: with tf.control_dependencies(None): var = getter(name, shape, dtype=tf.float32, initializer=initializer, regularizer=regularizer, trainable=trainable, *args, **kwargs) H.var_cache[name] = var if H.ema is not None: var = H.ema.average(var) if dtype != var.dtype.base_dtype: var = bs.float_cast(var, dtype=dtype, dx_dtype=dtype, name=f"{name}/cast") return var def split_states(x, heads): """ reshape (batch, pixel, state) -> (batch, pixel, head, head_state) """ x_shape = shape_list(x) m = x_shape[-1] new_x_shape = x_shape[:-1] + [heads, m // heads] return tf.reshape(x, new_x_shape) def merge_states(x): """ reshape (batch, pixel, head, head_state) -> (batch, pixel, state) """ x_shape = shape_list(x) new_x_shape = x_shape[:-2] + [np.prod(x_shape[-2:])] return tf.reshape(x, new_x_shape) def split_heads(scope, x, heads): """ (batch, pixel, state) -> (batch, head, pixel, head_state) """ with tf.name_scope(scope): return bs.transpose_0213(split_states(x, heads)) def merge_heads(scope, x): """ (batch, head, pixel, head_state) -> (batch, pixel, state) """ with tf.name_scope(scope): return merge_states(bs.transpose_0213(x)) def get_dense_attn_mask(n, attn_mode): '''a is dense attention, b is local attention (previous k), bT is strided (every kth element), implemented as a transpose''' key = f'{n}-{attn_mode}' dense_mask = H.dense_mask_cache.get(key) if dense_mask is not None: return dense_mask if attn_mode == 'a_all': b = tf.ones([n, n], dtype=tf.float32) elif attn_mode == 'a': b = tf.matrix_band_part(tf.ones([n, n]), -1, 0) elif attn_mode == 'b': bandwidth = H.local_attn_ctx ctx = tf.minimum(n - 1, bandwidth - 1) b = tf.matrix_band_part(tf.ones([n, n]), ctx, 0) elif attn_mode in ['c', 'bT']: stride = H.local_attn_ctx x = tf.reshape(tf.range(n, dtype=tf.int32), [n, 1]) y = tf.transpose(x) z = tf.zeros([n, n], dtype=tf.int32) q = z + x k = z + y c1 = q >= k c2 = tf.equal(tf.floormod(q - k, stride), 0) c3 = tf.logical_and(c1, c2) b = tf.cast(c3, tf.float32) else: raise ValueError('Not yet implemented') b = tf.reshape(b, [1, 1, n, n]) H.dense_mask_cache[key] = b return b def get_callback(attn_mode): def cb(blk_shape, head_idx, qry_idx, key_idx, blk_idx): mask = np.ones(blk_shape, dtype=np.bool) qdim, kdim = blk_shape assert qdim == kdim if attn_mode in ['a_all', 'b_all', 'bT_all']: return mask if qry_idx == key_idx: for q in range(qdim): mask[q, q + 1:] = 0 if attn_mode in ['a', 'bT', 'b0']: return mask if attn_mode == 'b': bandwidth = H.local_attn_ctx # convert group indices to absolute indices and mask # according to that q_pos = blk_shape[0] * qry_idx k_pos = blk_shape[1] * key_idx for q in range(qdim): q_ = q + q_pos maxw = max(-1, q_ - k_pos - bandwidth) mask[q, :maxw + 1] = 0 if qry_idx == key_idx: mask[q, q + 1:] = 0 if H.print_attn_layout: for i in range(qdim): print(' '.join([str(x) for x in mask[i, 0:kdim].astype(np.int32)])) print(qry_idx, key_idx) pdb.set_trace() return mask raise ValueError return cb def get_blocksparse_obj(n_ctx, n_heads, attn_mode): '''a is dense attention, b is local attention (previous k), bT is strided (every kth element), implemented as a transpose''' key = f'{n_ctx}-{n_heads}-{attn_mode}' bst = H.bst_cache.get(key) if bst is not None: return bst blocksize = H.blocksize n_bctx = n_ctx // blocksize if attn_mode in ['b', 'bT', 'b0']: if attn_mode in ['b']: assert H.local_attn_ctx % blocksize == 0 extra_diagonals = H.local_attn_ctx // blocksize elif attn_mode in ['bT', 'b0']: bT_ctx = H.attn_ctx // H.local_attn_ctx assert bT_ctx % blocksize == 0 block_chunks = bT_ctx // blocksize layout = np.ones([n_bctx, n_bctx], dtype=np.bool) for q_idx in range(n_bctx): # Causal queries cannot attend to keys above them layout[q_idx, q_idx + 1:] = 0 if attn_mode == 'b': start = max(0, q_idx - extra_diagonals) layout[q_idx, :start] = 0 elif attn_mode in ['bT', 'b0']: offset = q_idx % block_chunks layout[q_idx, :q_idx - offset] = 0 elif attn_mode == 'a': # standard causal attention layout = np.ones([n_bctx, n_bctx], dtype=np.bool) for q_idx in range(n_bctx): layout[q_idx, q_idx + 1:] = 0 elif attn_mode == 'a_all': layout = np.ones([n_bctx, n_bctx], dtype=np.bool) if H.mem_block and H.block_memory: # Block attention over the memory block layout[:-1, -1] = 0 elif attn_mode in ['b_all', 'bT_all']: assert H.blocksize == 32 assert H.local_attn_ctx == 32 assert n_bctx == 32 layout = np.zeros([n_bctx, n_bctx], dtype=np.bool) for q_idx in range(n_bctx): layout[q_idx, q_idx] = 1.0 else: raise NotImplementedError if H.print_attn_layout: width = H.attn_cols_to_print for i in range(min(width, n_bctx)): print(' '.join([str(x) for x in layout[i, 0:width].astype(np.int32)])) pdb.set_trace() bst = bs.BlocksparseTransformer( layout, block_size=blocksize, mask_callback=get_callback(attn_mode), heads=n_heads) H.bst_cache[key] = bst return bst def linear(scope, x, nf, std, relu=False, fast_gelu=False): with tf.variable_scope(scope): nx = x.shape[-1].value # delay w casting operation just prior to use # This can save a lot of memory for large param models. with tf.control_dependencies([x]): w = tf.get_variable("w", [nx, nf], dtype=H.dtype, initializer=random_or_zeros_init(stddev=std)) b = tf.get_variable("b", [nf], dtype=tf.float32, initializer=zeros_init()) ndims = x.shape.ndims if ndims > 2: h_shape = tf.concat([tf.shape(x)[:ndims - 1], [nf]], axis=0) x = tf.reshape(x, [-1, nx]) h = tf.matmul(x, w) h = bs.bias_relu(h, b, relu=relu, fast_gelu=fast_gelu) if ndims > 2: h = tf.reshape(h, h_shape) return h def norm(scope, x, epsilon=1e-5): with tf.variable_scope(scope): nx = x.shape[-1].value g = tf.get_variable("g", [nx], dtype=tf.float32, initializer=constant_or_zeros_init(1.0)) b = tf.get_variable("b", [nx], dtype=tf.float32, initializer=zeros_init()) return bs.layer_norm(x, g, b, axis=-1, epsilon=epsilon, relu=False) def embedding_dropout(x, train): if train and H.embd_pdrop > 0.0: x, _ = bs.dropout(x, keep_prob=1.0 - H.embd_pdrop) return x def residual_dropout(x, train, key, pdrop=None): resid_pdrop = pdrop if pdrop else H.resid_pdrop if train and resid_pdrop > 0.0: mask_shape = x.shape.as_list() key += str(mask_shape) mask_shape = None x, H.dropout_cache[key] = bs.dropout( x, keep_prob=1.0 - resid_pdrop, mask=H.dropout_cache.get(key), mask_shape=mask_shape) return x @bs.recomputable def dense_attention(x, n_heads, attn_mode, use_cache=False, train=False, pdrop=None): nx = x.shape[-1].value n_state = int(nx * H.qk_ratio) if n_state % n_heads != 0: raise ValueError('nx must be divisible by head state') h = norm("attn_input", x) qh = h[:, -1:, :] if use_cache else h q = linear('q_proj', qh, n_state, std=np.sqrt(H.qk_w / nx)) k = linear('k_proj', h, n_state, std=np.sqrt(H.qk_w / nx)) v = linear('v_proj', h, nx, std=np.sqrt(H.v_w / nx)) q = split_heads("q_split", q, n_heads) k = split_heads("k_split", k, n_heads) v = split_heads("v_split", v, n_heads) if use_cache: if attn_mode not in ['a', 'b', 'c', 'bT']: raise NotImplementedError mask = None if attn_mode == 'b': k = k[:, :, -H.local_attn_ctx:, :] v = v[:, :, -H.local_attn_ctx:, :] elif attn_mode in ['c', 'bT']: k = k[:, :, ::-H.local_attn_ctx, :][:, :, ::-1, :] v = v[:, :, ::-H.local_attn_ctx, :][:, :, ::-1, :] else: n_timesteps = k.shape[2].value mask = get_dense_attn_mask(n_timesteps, attn_mode) if H.float16: # These products can overflow, so we do it in float32. k = bs.float_cast(k, dtype=tf.float32) q = bs.float_cast(q, dtype=tf.float32) v = bs.float_cast(v, dtype=tf.float32) w = tf.matmul(q, k, transpose_b=True) w = bs.masked_softmax(w, mask=mask, scale=1.0 / np.sqrt(q.shape[-1].value)) a = tf.matmul(w, v) a = merge_heads("merge_attn", a) if H.float16: a = bs.float_cast(a, dtype=tf.float16) return post_attention(x, a, use_cache=use_cache, train=train, pdrop=pdrop) @bs.recomputable def sparse_attention(x, n_heads, attn_mode, use_cache=False, train=False, pdrop=None): if use_cache: raise NotImplementedError if not H.float16: raise ValueError("sparse_attention requires fp16") nx = x.shape[-1].value n_state = int(nx * H.qk_ratio) if n_state % n_heads != 0: raise ValueError('nx must be divisible by head state') h = norm("attn_input", x) if attn_mode in ['bT', 'bT_all']: ctx = H.local_attn_ctx bT_ctx = H.attn_ctx // ctx assert bT_ctx % H.blocksize == 0, f'{bT_ctx}, {H.blocksize}' n, t, embd = shape_list(h) h = tf.reshape(h, [n, bT_ctx, ctx, embd]) h = bs.transpose_0213(h) h = tf.reshape(h, [n, t, embd]) q = linear('q_proj', h, n_state, std=np.sqrt(H.qk_w / nx)) k = linear('k_proj', h, n_state, std=np.sqrt(H.qk_w / nx)) v = linear('v_proj', h, nx, std=np.sqrt(H.v_w / nx)) bst = get_blocksparse_obj(H.attn_ctx, n_heads, attn_mode) w = bst.query_key_op(q, k) w = bst.masked_softmax(w, scale=1.0 / np.sqrt(n_state // n_heads)) a = bst.weight_value_op(w, v) if attn_mode in ['bT', 'bT_all']: a = tf.reshape(a, [n, ctx, bT_ctx, embd]) a = bs.transpose_0213(a) a = tf.reshape(a, [n, t, embd]) return post_attention(x, a, train=train, pdrop=pdrop) def post_attention(x, a, use_cache=None, train=False, pdrop=None): nx = x.shape[-1].value a = linear('post_proj', a, nx, std=np.sqrt(H.post_w * 0.5 / nx / H.n_layer)) scopename = tf.get_variable_scope().name a = residual_dropout(a, train, key=f'{scopename}-a', pdrop=pdrop) x = x[:, -1:, :] if use_cache else x x = bs.add(x, a) inner_dim = int(nx * H.mlp_multiple) m = norm("mlp", x) m = linear('mlp_proj1', m, inner_dim, std=np.sqrt(H.mlp_w1 / nx), fast_gelu=True) m = linear('mlp_proj2', m, nx, std=np.sqrt(H.mlp_w2 / inner_dim / H.n_layer * 0.5)) m = residual_dropout(m, train, key=f'{scopename}-m', pdrop=pdrop) return bs.add(x, m) def add_position_embedding(x, x_emb, train, step): num_e = H.emb_number emb_std = H.pos_embd_std * np.sqrt(1.0 / num_e) for idx in range(H.emb_number): vsize = H.emb_vocabs[idx] name = f"pos_emb_{idx}" we = tf.get_variable( name, [vsize, H.n_embd], dtype=H.dtype, initializer=random_or_zeros_init(stddev=emb_std)) e = bs.embedding_lookup(we, x_emb[:, idx, :]) e = embedding_dropout(e, train) x += e return x def stack(X, X_emb, train, step=None, cache=None): with tf.name_scope('input_processing'): we = tf.get_variable( "we", [H.n_vocab, H.n_embd], dtype=H.dtype, initializer=random_or_zeros_init(stddev=H.w_embd_std)) h = bs.embedding_lookup(we, X) H.we = we H.we_x = h h = embedding_dropout(h, train) h = add_position_embedding(h, X_emb, train, step=step) if step is None: h = tf.reshape(h, [H.n_batch, H.attn_ctx, H.n_embd]) else: h = tf.reshape(h, [H.sample_batch, -1, H.n_embd]) with tf.variable_scope('sos_token'): if H.num_self_gen_in_use > 0 and not H.use_unconditional_augmentation: y_gen_idx = 0 sos_tok = 0 for typ in H.self_gen_types: if not typ.is_used: if mpi_rank() == 0: print(f" [self-gen] not using {typ.description}") continue if mpi_rank() == 0: print(f" [self-gen] using {typ.description}") this_sos_var = tf.get_variable( typ.sos_name, [typ.num_tokens, H.n_embd], dtype=H.dtype, initializer=random_or_zeros_init(stddev=H.w_embd_std)) this_sos_tok = bs.embedding_lookup(this_sos_var, H.Y_gen_ph[:, y_gen_idx:y_gen_idx + 1]) assert this_sos_tok.shape[1:] == (1, H.n_embd) sos_tok += this_sos_tok y_gen_idx += 1 assert y_gen_idx == H.num_self_gen_in_use else: sos = tf.get_variable( 'sos', [1, 1, H.n_embd], dtype=H.dtype, initializer=random_or_zeros_init(stddev=H.w_embd_std)) batch_size = H.n_batch if step is None else H.sample_batch sos_tok = tf.ones(shape=[batch_size, 1, H.n_embd], dtype=H.dtype) * sos if step is None: h = tf.concat([sos_tok, h[:, :-1, :]], axis=1) if H.randomly_determined_order_use_lookahead: print("lookahead_embd") with tf.variable_scope("lookahead_embedding"): h = add_position_embedding(h, X_emb, train, step=step) else: h = tf.concat([sos_tok, h], axis=1)[:, -1:, :] new_cache = [] modes = H.attention_layers.split(',') assert H.n_layer % len(modes) == 0 for layer_idx in range(H.n_layer): mode = modes[layer_idx % len(modes)] name = f'h{layer_idx}' if cache is not None: # We only cache the pre qkv tensor, as it takes up # too much memory otherwise on long sequences. h = tf.concat([cache[layer_idx], h], axis=1) new_cache.append(h) use_cache = True else: use_cache = False with tf.variable_scope(name): recompute = H.recompute and train if H.float16 and H.blocksparse_op and not use_cache: h = sparse_attention(h, H.n_head, mode, use_cache=use_cache, train=train, recompute=recompute) else: h = dense_attention(h, H.n_head, mode, use_cache=use_cache, train=train, recompute=recompute) if cache is not None: return h, new_cache return h def get_logits(name, h, n_out, train=False): n, t, nx = shape_list(h) w_std = np.sqrt(H.logits_w / nx) with tf.variable_scope(name): w = tf.get_variable( "logits_proj", [nx, n_out], dtype=H.dtype, initializer=random_or_zeros_init(stddev=w_std)) w = embedding_dropout(w, train) h = tf.reshape(h, [-1, nx]) logits = tf.matmul(h, w) return tf.reshape(logits, [n, t, n_out]) def get_losses(logits, labels, mask=None): with tf.name_scope('loss'): n, t, nx = shape_list(logits) ln, lt = shape_list(labels) assert lt == t labels = tf.reshape(labels, [-1]) logits = tf.reshape(logits, [-1, nx]) if H.float16 and logits.shape[-1].value <= 65536 and logits.dtype == tf.float16: # much faster fused fp16 implementation that also saves memory losses = bs.softmax_cross_entropy(logits=logits, labels=labels) else: logits = tf.cast(logits, tf.float32) losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels) losses = tf.reshape(losses, [n, t]) if mask is not None: # X_mask can be either boolean or scalar (weighted) mask return (tf.reduce_sum(losses * mask) / tf.reduce_sum(mask)), losses return tf.reduce_mean(losses), losses def model(train=False): with tf.variable_scope('model', custom_getter=f32_storage_getter): network_input = H.X_ph network_target = H.X_ph if H.rand_augment and train: assert network_input.shape[-1] == 3072, 'TODO: support other image sizes' network_input = tf.reshape(tf.cast(network_input, tf.uint8), [-1, 32, 32, 3]) if H.rand_augment_conditioning: if H.use_unconditional_augmentation: raise NotImplementedError rand_augment_idx = [t.sos_name for t in H.self_gen_types if t.is_used].index('sos_aa') batch = [] with tf.device('/cpu:0'): for i in range(H.n_batch): example = network_input[i] with_randaug = distort_image_with_randaugment(example, H.rand_augment_n, H.rand_augment_m) without_randaug = example should_autoaugment = tf.cast(H.Y_gen_ph[i, rand_augment_idx], tf.bool) example = tf.cond(should_autoaugment, lambda: with_randaug, lambda: without_randaug) batch.append(example) network_input = batch else: with tf.device('/cpu:0'): network_input = [distort_image_with_randaugment(network_input[i], H.rand_augment_n, H.rand_augment_m) for i in range(H.n_batch)] network_input = tf.cast(tf.reshape(tf.concat(network_input, axis=0), [-1, 3072]), H.X_ph.dtype) network_target = network_input h = stack(network_input, H.X_emb_ph, train=train) h = norm('final_norm', h, epsilon=1e-6) targets = network_target gen_logits = get_logits('gen_logits', h, H.n_vocab, train=train) gen_loss, gen_losses = get_losses(gen_logits, targets) return gen_loss, gen_losses def sample_model(): X = tf.zeros(shape=[H.sample_batch, 0], dtype=tf.int32) current_step = tf.constant(0, dtype=tf.int64) accumulated_output = X[:, :current_step] # Everything up til now. current_input = X[:, current_step - 1:current_step] cache_vars = [tf.zeros(shape=[H.sample_batch, 0, H.n_embd], dtype=H.dtype) for _ in range(H.n_layer)] cacheshapes = [tf.TensorShape([H.sample_batch, None, H.n_embd]) for _ in range(H.n_layer)] embd_index = tf.constant([0] * H.sample_batch, dtype=tf.int32) first_embd = tf.zeros(shape=[H.sample_batch, H.emb_number, 0], dtype=tf.int32) loop_vars = [current_step, accumulated_output, current_input, first_embd, embd_index, cache_vars] shape_invariants = [current_step.get_shape(), tf.TensorShape([H.sample_batch, None]), tf.TensorShape([H.sample_batch, None]), tf.TensorShape([H.sample_batch, H.emb_number, None]), embd_index.get_shape(), cacheshapes] embd_shapes = tf.constant(H.emb_vocabs, dtype=tf.int32) def cond(step, acc, curr, curr_embd, embd_index, cache): return step < H.attn_ctx def body(step, acc, curr, curr_embd, embd_index, cache): with tf.variable_scope('model', custom_getter=f32_storage_getter): h, cache = stack(curr, curr_embd, train=False, step=step, cache=cache) h = norm('final_norm', h, epsilon=1e-6) h = h[:, -1:, :] logits = tf.cast(get_logits('gen_logits', h, H.n_vocab), tf.float32) logits = tf.reshape(logits, [H.sample_batch, H.n_vocab]) temp = H.temperature symbol = tf.cast(tf.multinomial(logits / temp, 1), tf.int32) with tf.device('/cpu:0'): next_embd = tf.unravel_index(embd_index, embd_shapes) # unravel_index yields a embd_size, n_batch tensor next_embd = tf.transpose(next_embd, [1, 0]) next_embd = tf.reshape(next_embd, [ H.sample_batch, H.emb_number, 1]) next_index = embd_index + 1 return (step + 1, tf.concat([acc, symbol], axis=1), symbol, next_embd, next_index, cache) _, output_seq, _, _, _, _ = tf.while_loop( cond=cond, body=body, loop_vars=loop_vars, back_prop=False, shape_invariants=shape_invariants, parallel_iterations=1) # Now, we want to gather the images across all ranks which have generated # them. We will just allreduce a sparse tensor. all_samples = [tf.zeros_like(output_seq) for _ in range(mpi_size())] all_samples[mpi_rank()] = output_seq all_samples = tf.cast(allreduce(tf.cast( tf.concat(all_samples, axis=0), tf.float32)), tf.int32) return all_samples def warmup_cosine(current_iter): current_iter = tf.cast(current_iter, tf.float32) + 1.0 warmup_iters = tf.cast(H.warmup_iters, tf.float32) s = tf.cast(tf.less(current_iter, warmup_iters), tf.float32) current_fraction = ((current_iter - warmup_iters) / (H.n_updates_total - warmup_iters)) return (s * (current_iter / warmup_iters) + (1 - s) * (0.5 * (1 + tf.cos(math.pi * current_fraction)))) def warmup_linear_decay(current_iter): current_iter = tf.cast(current_iter, tf.float32) + 1.0 warmup_iters = tf.cast(H.warmup_iters, tf.float32) s = tf.cast(tf.less(current_iter, warmup_iters), tf.float32) current_fraction = tf.minimum( ((current_iter - warmup_iters) / (H.n_updates_total - warmup_iters)), tf.cast(1, tf.float32)) return (s * (current_iter / warmup_iters) + (1 - s) * (1.0 - current_fraction)) def mpi_train(): with tf.device('/cpu:0'), tf.name_scope('optimizer'): if H.decay_lr_linearly: lr_at_time = H.lr * warmup_linear_decay(H.global_step - H.lr_offset) else: lr_at_time = H.lr * warmup_cosine(H.global_step - H.lr_offset) rcp_mpi_size = tf.constant(1.0 / mpi_size()) grad_scale = tf.reciprocal(H.curr_loss_scale) with tf.device("/gpu:0"): avg_loss_gen, _ = model(train=True) H.train_gen_loss = avg_loss_gen # n_updates_per_epoch H.global_step loss_to_optimize = avg_loss_gen params = tf.trainable_variables() grads = bs.gradients(bs.scale_tensor(loss_to_optimize, H.curr_loss_scale), params) if H.merge_layer_allreduce > 0: search_strings = list() stride = H.merge_layer_allreduce for l in range(H.n_layer - 1, -1, -stride): search_strings.append([f"model/h{j}" for j in range(l, l - stride, -1)]) else: logprint('Not interleaving allreduce with backprop! Is slow.') search_strings = None if mpi_size() > 1: H.train_gen_loss = allreduce(bs.scale_tensor(avg_loss_gen, rcp_mpi_size)) # Pre-scale the gradients to give all-reduce some room. # After gradients are computed on this device scaling here can be rather aggressive. # But 1/mpi_size should be enough. grads = [bs.filter_tensor(x, rcp_mpi_size) for x in grads] cast_all = tf.float16 if H.fp16_allreduce else None grads = group_allreduce(grads, params, search_strings=search_strings, cast_all=cast_all) serialize_allreduce_ops([H.train_gen_loss] + grads) if H.log_grad_stats and mpi_rank() == 0: grads = log_gradient_values(grads, params, H.global_step, model_dir=H.model_dir) train_op, global_norm = get_optimizer(H.optimizer)( grads, params, learning_rate=lr_at_time, grad_scale=grad_scale, fp16_mean_var=H.fp16_mean_var, max_grad_norm=H.max_grad_norm, static_loss_scaling=H.float16 and not H.dynamic_loss_scaling, beta2=H.beta2) if H.l2_loss > 0: # AdamW logprint('enabling l2 loss with value', H.l2_loss) updates = [train_op] l2_updates = [] for p in params: if len(shape_list(p)) > 1: l2_updates.append(p.assign(p - lr_at_time * H.l2_loss * p)) updates.extend(l2_updates) train_op = tf.group(*updates) if not H.disable_ema_vars: # Polyak average of params. Stores an extra copy. # NOTE: this assignment is stateful -- graphs created after this will use the EMA var, see # the variable getter, so the order of mpi_train and eval model creation cannot be swapped. # TODO: remove this constraint H.ema = bs.Ema(decay=H.weights_beta) with tf.control_dependencies([train_op]): train_op = H.ema.apply(params) return train_op, lr_at_time, global_norm def eval(test=False, epoch=None): if test: tx = dataset.teX else: tx = dataset.vaX losses = [] for data in iter_data_mpi(tx, n_batch=H.n_batch, log=logprint, split_by_rank=dataset.full_dataset_valid): feeds = {H.X_ph: data[0], H.X_emb_ph: H.x_emb} if H.num_self_gen_in_use > 0 and not H.use_unconditional_augmentation: feeds[H.Y_gen_ph] = np.zeros((data[0].shape[0], H.num_self_gen_in_use), dtype=np.int32) losses.append(sess.run(H.avg_eval_loss_gen, feeds)) avg_loss = sum(losses) / len(losses) content = dict(epoch=epoch, series='eval_loss', loss=avg_loss, bits=avg_loss / np.log(2.)) logprint(**content) mpi_barrier() return avg_loss def get_data(partition): return { "train": (dataset.trX, dataset.trY), "valid": (dataset.vaX, dataset.vaY), "test": (dataset.teX, dataset.teY), }[partition] def aug_eval(partition, epoch): tx, ty = get_data(partition) if H.aug_eval_n_examples is not None: tx = tx[:H.aug_eval_n_examples] if ty is not None: ty = ty[:H.aug_eval_n_examples] gen_in_use = [gen for gen in H.self_gen_types if gen.is_used] if not gen_in_use: gen_in_use = [AugmentationType("sos", "identity", 1, True, identity)] aug_choices = [gen.num_tokens for gen in gen_in_use] for aug_types in go_over(aug_choices): fname = os.path.join( H.model_dir, f"{H.desc}_" + "_".join(map(str, aug_types)) + "_losses.npz") if os.path.exists(fname): if mpi_rank() == 0: print(f" Evaluated {fname}") continue if mpi_rank() == 0: print(f"Evaluating {fname}") losses = [] imgs = [] for data in iter_data_mpi(tx, n_batch=H.n_batch, log=logprint, split_by_rank=dataset.full_dataset_valid): feeds = {H.X_ph: data[0], H.X_emb_ph: H.x_emb} x_emb = np.concatenate([H.x_emb.copy() for _ in range(H.n_batch)], axis=0) d_in = data[0] if H.num_self_gen_in_use > 0: y_gen_list = [] for aug_type, gen in zip(aug_types, gen_in_use): if gen.sos_name == 'sos_data': raise NotImplementedError("sos_data is not supported in aug_eval") yy = np.full((H.n_batch, 1), aug_type, dtype=np.int32) d_in, x_emb, y_gen = gen.fn(d_in, x_emb, yy=yy) assert (y_gen == yy).all() y_gen_list.append(y_gen) feeds[H.X_ph] = d_in if H.permute_embeddings: feeds[H.X_emb_ph] = x_emb if not H.use_unconditional_augmentation: feeds[H.Y_gen_ph] = np.concatenate(y_gen_list, axis=1) assert (feeds[H.Y_gen_ph] == np.stack([aug_types] * H.n_batch)).all() imgs.append(d_in) cur_loss = sess.run(H.eval_gen_losses, feeds) assert cur_loss.shape[0] == H.n_batch losses.append(cur_loss) losses = np.concatenate(losses, axis=0).astype(np.float32) assert losses.shape[0] == tx.shape[0] // mpi_size() mpi_barrier() losses = mpi_allgather(losses) assert losses.shape[0] == tx.shape[0] loss = losses.mean() content = dict(epoch=epoch, aug_types=aug_types, loss=loss, bpd=loss / np.log(2.0)) logprint(**content) content["losses"] = losses if mpi_rank() == 0: np.savez(fname, **content) imgs = np.concatenate(imgs, axis=0) assert imgs.shape[0] == tx.shape[0] // mpi_size() mpi_barrier() imgs = mpi_allgather(imgs) assert imgs.shape == tx.shape if mpi_rank() == 0 and partition != "test": fname = os.path.join(H.model_dir, f"{H.desc}_" + "_".join(map(str, aug_types)) + "_imgs.npz") np.savez(fname, imgs=imgs.reshape(dataset.orig_shape)) mpi_barrier() def sample(name): sample_batches = [] assert H.samples_to_generate % (H.sample_batch * mpi_size()) == 0 for idx in range(H.samples_to_generate // (H.sample_batch * mpi_size())): feeds = {} if H.num_self_gen_in_use > 0 and not H.use_unconditional_augmentation: feeds[H.Y_gen_ph] = np.zeros((H.sample_batch, H.num_self_gen_in_use), dtype=np.int32) samples = sess.run(sample_output, feeds) sample_batches.append(samples) logprint(f'generated {sum([a.shape[0] for a in sample_batches])} / {H.samples_to_generate} samples') if idx == 0 and H.samples_memorycheck: mem = sess.run(tf.contrib.memory_stats.MaxBytesInUse()) logprint('Runtime memory usage so far (bytes):', f'{mem:,}') logprint(memory_usage=mem) if mpi_rank() == 0: samples = np.concatenate(sample_batches, axis=0) nppath = os.path.join(H.model_dir, f'{H.desc}-samples-{H.samples_to_generate}-t{H.temperature}.npy') np.save(nppath, samples) def sample_augmentation_type(n, size=None, nprng=None): """ Sample one of `n` augmentation types. Index 0 is reserved for not augmenting. """ if nprng is None: nprng = np.random if H.unaugmented_data_rate is None: y = nprng.randint(n, size=size) else: # We draw multiple augmentation types independently, so the probability # of not using augmentation has to be discounted accordingly. n_types = max(H.num_self_gen_in_use, 1) p = H.unaugmented_data_rate ** (1.0 / n_types) pmf = [p] + [(1.0 - p) / (n - 1)] * (n - 1) y = nprng.choice(n, size=size, p=pmf) return y.astype(np.int32) def data_aug(xx, nprng=None, yy=None): """just hflip""" if nprng is None: nprng = np.random xx = xx.reshape(dataset.orig_shape) if yy is None: yy = sample_augmentation_type(2, size=xx.shape[0], nprng=nprng) assert yy.shape[0] == xx.shape[0] # n = len(xx) # xx = np.pad(xx, [[0, 0], [4, 4], [4, 4], [0, 0]], mode='reflect') xx = [np.fliplr(x) if y else x for x, y in zip(xx, yy)] # ii = nprng.randint(low=0, high=4 * 2 + 1, size=n) # jj = nprng.randint(low=0, high=4 * 2 + 1, size=n) # xx = [x[i:i + 32, j:j + 32] for x, i, j in zip(xx, ii, jj)] xx = np.asarray(xx).reshape(dataset.shape) return xx def identity(xx, x_emb, nprng=None, yy=None): return xx, x_emb, yy def rotate(xx, x_emb, nprng=None, yy=None): b = xx.shape[0] b_emb, n_emb, n_ctx = x_emb.shape assert b == b_emb assert n_ctx == np.prod(dataset.orig_shape[1:]) if yy is None: yy = sample_augmentation_type(4, size=(b, 1), nprng=nprng) assert yy.shape[0] == xx.shape[0] xx = xx.reshape(dataset.orig_shape) xx = [np.rot90(x, k=yy[i, 0], axes=(1, 0)) for i, x in enumerate(xx)] xx = np.asarray(xx).reshape(dataset.shape) x_emb = x_emb.reshape((b_emb, n_emb, *dataset.orig_shape[1:])) x_emb = [np.rot90(x, k=yy[i, 0], axes=(2, 1)) for i, x in enumerate(x_emb)] x_emb = np.asarray(x_emb).reshape((b_emb, n_emb, n_ctx)) return xx, x_emb, yy def transpose(xx, x_emb, nprng=None, yy=None): b = xx.shape[0] b_emb, n_emb, n_ctx = x_emb.shape assert b == b_emb assert n_ctx == np.prod(dataset.orig_shape[1:]) if yy is None: yy = sample_augmentation_type(2, size=(b, 1), nprng=nprng) assert yy.shape[0] == xx.shape[0] xx = xx.reshape(dataset.orig_shape) xx = [np.transpose(x, [1, 0, 2]) if yy[i, 0] == 1 else x for i, x in enumerate(xx)] xx = np.asarray(xx).reshape(dataset.shape) x_emb = x_emb.reshape((b_emb, n_emb, *dataset.orig_shape[1:])) x_emb = [np.transpose(x, [0, 2, 1, 3]) if yy[i, 0] == 1 else x for i, x in enumerate(x_emb)] x_emb = np.asarray(x_emb).reshape((b_emb, n_emb, n_ctx)) return xx, x_emb, yy def reverse(xx, x_emb, nprng=None, yy=None): b = xx.shape[0] b_emb, n_emb, n_ctx = x_emb.shape assert b == b_emb assert n_ctx == np.prod(dataset.orig_shape[1:]) if yy is None: yy = sample_augmentation_type(2, size=(b, 1), nprng=nprng) assert yy.shape[0] == xx.shape[0] xx = xx.reshape(dataset.orig_shape) xx = [np.rot90(x, k=yy[i, 0] * 2, axes=(1, 0)) for i, x in enumerate(xx)] xx = np.asarray(xx).reshape(dataset.shape) x_emb = x_emb.reshape((b_emb, n_emb, *dataset.orig_shape[1:])) x_emb = [np.rot90(x, k=yy[i, 0] * 2, axes=(2, 1)) for i, x in enumerate(x_emb)] x_emb = np.asarray(x_emb).reshape((b_emb, n_emb, n_ctx)) return xx, x_emb, yy def autoaugment_conditioning(rate): def fn(xx, x_emb, nprng=None, yy=None): if nprng is None: nprng = np.random b = xx.shape[0] # 1 when augment is applied if yy is None: yy = (nprng.uniform(size=(b, 1)) < rate).astype(np.int32) assert yy.shape[0] == xx.shape[0] return xx, x_emb, yy return fn def permute_arbitrarily(random_perms): perms = [np.arange(dataset.ctx)] + random_perms n = len(perms) def fn(xx, x_emb, nprng=None, yy=None): b, n_ctx = xx.shape b_emb, n_emb, n_emb_ctx = x_emb.shape assert b == b_emb assert n_ctx == n_emb_ctx if yy is None: yy = sample_augmentation_type(n, size=(b, 1), nprng=nprng) assert yy.shape[0] == xx.shape[0] xx_new = [] x_emb_new = [] for i, y in enumerate(yy): xx_new.append(xx[i][perms[y[0]]]) x_emb_new.append(x_emb[i][:, perms[y[0]]]) xx = np.concatenate(xx_new, axis=0).reshape(dataset.shape) x_emb = np.concatenate(x_emb_new, axis=0) x_emb = x_emb.reshape(b_emb, n_emb, n_emb_ctx) return xx, x_emb, yy return fn def remap_c(xx, order): new = np.zeros_like(xx) a, b, c = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0) ][order] new[:, :, 0] = xx[:, :, a] new[:, :, 1] = xx[:, :, b] new[:, :, 2] = xx[:, :, c] return new def color_swap(xx, x_emb, nprng=None, yy=None): b = xx.shape[0] b_emb, n_emb, n_ctx = x_emb.shape assert b == b_emb assert n_ctx == np.prod(dataset.orig_shape[1:]) if yy is None: yy = sample_augmentation_type(6, size=(b, 1), nprng=nprng) assert yy.shape[0] == xx.shape[0] xx = xx.reshape(dataset.orig_shape) x_emb = x_emb.reshape((b, n_emb * dataset.orig_shape[1], *dataset.orig_shape[2:])) xx_new = [] x_emb_new = [] for i, order in enumerate(yy): xx_new.append(remap_c(xx[i], order[0])) x_emb_new.append(remap_c(x_emb[i], order[0])) xx = np.concatenate(xx_new, axis=0).reshape(dataset.shape) x_emb = np.concatenate(x_emb_new, axis=0).reshape((b_emb, n_emb, n_ctx)) return xx, x_emb, yy def remap_jigsaw(x, order): r, c, ch = x.shape g = H.jigsaw_grid_size gr, gc = r // g, c // g x = x.reshape((g, gr, g, gc, ch)) x = np.transpose(x, [0, 2, 1, 3, 4]) x = x.reshape([g * g, gr, gc, ch]) perm = H.jigsaw_perms[order] x = x[perm, :, :, :] x = x.reshape([g, g, gr, gc, ch]) x = np.transpose(x, [0, 2, 1, 3, 4]) x = x.reshape((r, c, ch)) return x def jigsaw(xx, x_emb, nprng=None, yy=None): b = xx.shape[0] b_emb, n_emb, n_ctx = x_emb.shape r, c, ch = dataset.orig_shape[1:] assert b == b_emb assert n_ctx == np.prod(dataset.orig_shape[1:]) xx = xx.reshape(dataset.orig_shape) if yy is None: yy = sample_augmentation_type(H.jigsaw_num_perms, size=(b, 1), nprng=nprng) assert yy.shape[0] == xx.shape[0] x_emb = x_emb.reshape(b, n_emb, r, c, ch) x_emb = np.transpose(x_emb, [0, 2, 1, 3, 4]) x_emb = x_emb.reshape((b, n_emb * r, c, ch)) xx_new = [] x_emb_new = [] for i, order in enumerate(yy): xx_new.append(remap_jigsaw(xx[i], order[0])) x_emb_new.append(remap_jigsaw(x_emb[i], order[0])) xx = np.concatenate(xx_new, axis=0).reshape(dataset.shape) x_emb = np.concatenate(x_emb_new, axis=0) x_emb = x_emb.reshape(b, r, n_emb, c, ch) x_emb = np.transpose(x_emb, [0, 2, 1, 3, 4]) x_emb = x_emb.reshape((b_emb, n_emb, n_ctx)) return xx, x_emb, yy if __name__ == '__main__': if 'CUDA_VISIBLE_DEVICES' not in os.environ: os.environ['CUDA_VISIBLE_DEVICES'] = str(local_mpi_rank()) parser = argparse.ArgumentParser() add_arguments(parser) parse_args_and_update_hparams(H, parser) H.model_dir = os.path.join(H.out_dir, H.desc) os.makedirs(H.model_dir, exist_ok=True) H.log_path = os.path.join(H.model_dir, 'log') logprint = logger(H.log_path) logprint(hyperparams=H, pprint=True) # Same numpy seed so we can shuffle the data across ranks similarly np.random.seed(H.seed) # Different seed for TF to randomize model sampling/dropout across ranks tf.set_random_seed(H.seed * mpi_rank()) # Augmentation nprng aug_nprng = np.random.RandomState(H.aug_seed + mpi_rank()) # Cache for objects/tensors that should persist through recompute, eval, and/or samples H.bst_cache = dict() H.dropout_cache = dict() H.dense_mask_cache = dict() H.var_cache = dict() H.ema = None H.reduced_targets = H.kmeans_targets or H.mse_targets H.attn_ctx = H.n_ctx H.dtype = tf.float16 if H.float16 else tf.float32 bs.set_entropy() # for bs.dropout if mpi_size() == 1: logprint("WARNING: Only one MPI rank, did you forget to run w/ MPI?") dataset = get_dataset(H.dataset)(H, logprint) if H.auxiliary_dataset is not None: if mpi_rank() == 0: logprint("") pmf = [1.0 - H.auxiliary_dataset_fraction, H.auxiliary_dataset_fraction] aux_dataset = get_dataset(H.auxiliary_dataset)(H, logprint) if H.auxiliary_dataset_subset_size is not None: n_train = H.auxiliary_dataset_subset_size aux_dataset.trX = aux_dataset.trX[:n_train] if mpi_rank() == 0: logprint(f"taking a subset of auxiliary dataset {len(aux_dataset.trX)}") aux_dataset.iters_per_epoch = n_train // (mpi_size() * aux_dataset.n_batch) datasets = (dataset, aux_dataset) dataset = JankySubsampledDataset(datasets, pmf, seed=H.auxiliary_dataset_seed) H.emb_number = dataset.num_embeddings H.emb_vocabs = dataset.embedding_sizes H.n_classes = dataset.n_classes H.X_emb_shape = [None] + [H.emb_number] + dataset.shape[1:] H.x_emb = dataset.x_emb # Making n_vocab the nearest multiple of 128 allows the usage of # tensor cores with fp16 on V100's, which speeds up large vocab problems if H.no_vocab_rounding: H.n_vocab = dataset.n_vocab else: H.n_vocab = (math.ceil(dataset.n_vocab / 128)) * 128 H.X_shape = [None] + dataset.shape[1:] with tf.device("/gpu:0"), tf.name_scope('placeholders'): H.X_ph = tf.placeholder(tf.int32, H.X_shape) H.X_emb_ph = tf.placeholder(tf.int32, H.X_emb_shape) H.jigsaw_perms = list(itertools.permutations(list(range(H.jigsaw_grid_size ** 2)))) H.jigsaw_num_perms = len(H.jigsaw_perms) nprng = np.random.RandomState(H.randomly_determined_order_seed) random_perms = [ nprng.permutation(dataset.ctx) for _ in range(H.randomly_determined_order_num_perms) ] H.self_gen_types = [ AugmentationType("sos_rot", "rotation", 4, H.use_rotation, rotate), AugmentationType("sos_c", "color swapping", 6, H.use_color, color_swap), AugmentationType("sos_tr", "transposition", 2, H.use_transposition, transpose), AugmentationType("sos_rev", "reverse", 2, H.use_reverse, reverse), AugmentationType("sos_js", f"jigsaw with grid size {H.jigsaw_grid_size}", H.jigsaw_num_perms, H.use_jigsaw, jigsaw), AugmentationType("sos_aa", "autoaugment", 2, H.rand_augment_conditioning, autoaugment_conditioning(H.rand_augment_rate)), AugmentationType("sos_rd", "randomly determined order", H.randomly_determined_order_num_perms + 1, H.use_randomly_determined_order, permute_arbitrarily(random_perms)), AugmentationType("sos_data", "dataset", 2, H.use_dataset_conditioning, None), ] H.num_self_gen_in_use = sum(typ.is_used for typ in H.self_gen_types) if mpi_rank() == 0: for typ in H.self_gen_types: if typ.is_used: logprint(f"Using [{typ.description}]") else: logprint(f"Not using [{typ.description}]") if H.use_unconditional_augmentation: logprint(f"Training without augmentation prompting") else: logprint(f"Training with augmentation prompting") if H.permute_embeddings: logprint("Permuting embeddings") else: logprint("Not permuting embeddings") if H.num_self_gen_in_use > 0 and not H.use_unconditional_augmentation: H.Y_gen_ph = tf.placeholder(tf.int32, [None, H.num_self_gen_in_use]) with tf.device("/cpu:0"): loss_scale_ph = tf.placeholder( tf.float32, shape=[], name="loss_scale") H.global_step = tf.get_variable( 'global_step', initializer=zeros_init(), shape=tuple(), trainable=False, dtype=tf.int64) num_epochs = tf.get_variable( 'num_epochs', initializer=zeros_init(), shape=tuple(), trainable=False, dtype=tf.int64) num_examples_processed = tf.get_variable( 'num_examples_processed', initializer=zeros_init(), shape=tuple(), trainable=False, dtype=tf.int64) curr_loss_scale = tf.get_variable( 'curr_loss_scale', initializer=constant_or_zeros_init(H.fp16_loss_scale), shape=tuple(), trainable=False, dtype=tf.float32) H.curr_loss_scale = curr_loss_scale best_val_loss = tf.get_variable( 'best_val_loss', initializer=constant_or_zeros_init(99999), shape=tuple(), trainable=False, dtype=tf.float32) val_loss = tf.placeholder(tf.float32, shape=[], name="val_loss") update_val_loss = tf.assign(best_val_loss, val_loss) update_loss_scale = tf.assign(curr_loss_scale, loss_scale_ph) increment_epochs = tf.assign_add(num_epochs, 1) increment_examples = tf.assign_add(num_examples_processed, H.n_batch * mpi_size()) increment_step = tf.assign_add(H.global_step, 1) n_updates_per_epoch = dataset.iters_per_epoch n_updates_total = H.total_epochs * n_updates_per_epoch H.n_updates_total = n_updates_total train_op, lr_at_step, global_norm = mpi_train() num_params = 0 for p in tf.trainable_variables(): num_params += np.prod(p.shape.as_list()) if H.print_params: logprint(f'{p.name}, {p.shape.as_list()}, {np.prod(p.shape.as_list()):,}') with tf.name_scope('eval_model'), tf.device('/gpu:0'): avg_eval_loss_gen, eval_gen_losses = model(train=False) H.eval_gen_losses = eval_gen_losses H.avg_eval_loss_gen = allreduce(avg_eval_loss_gen) * (1.0 / mpi_size()) if H.sample_and_exit or H.sample_during_eval: logprint('Creating sampling graph.') with tf.name_scope('sample_model'), tf.device('/gpu:0'): sample_output = sample_model() logprint('Done with sampling graph creation.') sess = get_session(mpi=True, disable_swapping=True, log=logprint) sess.run(tf.global_variables_initializer()) logprint(f'Total number trainable parameters: {num_params:,}') logprint(num_params=num_params, n_vocab=H.n_vocab, n_batch=H.n_batch, n_ctx=H.n_ctx, effective_minibatch=mpi_size() * H.n_batch, n_updates_total=n_updates_total, n_updates_per_epoch=n_updates_per_epoch, pprint=True) if H.restore_path: if mpi_rank() == 0: localpath = maybe_download(H.restore_path) logprint("loading from " + localpath) load_variables_from_file(sess, localpath, ema=False) logprint("Done loading from " + localpath) with tf.name_scope('sync_variables'): if mpi_size() > 1: logprint('Syncing initial variables across gpus') sync_variables(sess) logprint('Finishing syncing variables') ema_loss = None steps_since_starting = 0 save_dir = os.path.join(H.out_dir, H.desc) os.makedirs(save_dir, exist_ok=True) n_updates, n_epochs, curr_val_loss, loss_scale_t, examples_processed_t = sess.run([ H.global_step, num_epochs, best_val_loss, curr_loss_scale, num_examples_processed]) logprint(f"Starting at {n_updates} updates, {n_epochs} epochs, " + f"{curr_val_loss} best val loss, examples {examples_processed_t}") if H.sample_and_exit or H.sample_during_eval: sample('onload') if H.sample_and_exit: sys.exit(0) if H.eval_test or not H.skip_initial_evals or H.eval_and_exit: eval(test=H.eval_test, epoch=n_epochs) if H.eval_test or H.eval_and_exit: sys.exit(0) if H.aug_eval is not None: aug_eval(partition=H.aug_eval, epoch=n_epochs) sys.exit(0) # Free up some python memory H.bst_cache = None H.dropout_cache = None H.dense_mask_cache = None H.var_cache = None bs.clear_bst_constants() avg_t = 9999.0 loss_count = 0 if H.eval_after_n_examples: last_set_processed = examples_processed_t // H.eval_after_n_examples loss_scale_t = H.fp16_loss_scale times = [] losses = [] gns = [] for i in range(n_epochs, H.total_epochs): t0 = time.time() args = [dataset.trX] if H.use_dataset_conditioning: args.append(dataset.auxX) for data in iter_data_mpi(*args, n_batch=H.n_batch, log=logprint, iters=n_updates_per_epoch, shuffle=True, seed=i, split_by_rank=dataset.full_dataset_train): outputs = [train_op, H.train_gen_loss, lr_at_step, global_norm] d_in = data_aug(data[0], nprng=aug_nprng) if H.aug else data[0] feeds = {H.X_ph: d_in, H.X_emb_ph: H.x_emb} if H.num_self_gen_in_use > 0: y_gen_list = [] x_emb = np.concatenate([H.x_emb.copy() for _ in range(H.n_batch)], axis=0) d_gen = d_in.copy() for gen in H.self_gen_types: if not gen.is_used: continue if gen.fn is None and gen.sos_name == 'sos_data': y_gen = data[-1] else: d_gen, x_emb, y_gen = gen.fn(d_gen, x_emb, nprng=aug_nprng) assert d_gen.shape == d_in.shape assert y_gen.shape == (d_in.shape[0], 1) y_gen_list.append(y_gen) feeds[H.X_ph] = d_gen if H.permute_embeddings: feeds[H.X_emb_ph] = x_emb if not H.use_unconditional_augmentation: feeds[H.Y_gen_ph] = np.concatenate(y_gen_list, axis=1) is_rank0 = mpi_rank() == 0 if steps_since_starting == 2 or steps_since_starting == 65: mem = sess.run(tf.contrib.memory_stats.MaxBytesInUse()) logprint('Runtime memory usage so far (bytes):', f'{mem:,}') logprint(memory_usage=mem) t1 = time.time() _, loss_t, lr_t, gn_t = sess.run(outputs, feeds) t2 = time.time() if H.dynamic_loss_scaling and H.float16: # slowly increase loss scale but quickly drop it when inf or nan is detected in the gradients # global_norm will be nan/inf when this happens if np.isfinite(loss_t) and np.isfinite(gn_t): # Case: No infs or nans, roughly double the loss scale every 2k iters loss_scale_t = sess.run(update_loss_scale, {loss_scale_ph: loss_scale_t * 1.0003466337}) elif not np.isfinite(loss_t): # Incurred some nans on the forward pass, don't do anything. pass else: # gn_t is nan/inf and loss_t is non-nan, meaning the grad scaling was too high # Reduce by half and move to the next minibatch if loss_scale_t > H.min_loss_scale: loss_scale_t = sess.run(update_loss_scale, {loss_scale_ph: loss_scale_t * 0.5}) step_t = sess.run(increment_step) examples_processed = sess.run(increment_examples) n_updates += 1 gns.append(gn_t) times.append(t2 - t0) losses.append(loss_t) steps_since_starting += 1 if (steps_since_starting in [2**n for n in range(9)] or n_updates % H.iters_per_log == 0): loss_to_avg = [x for x in losses if np.isfinite(x)] if len(loss_to_avg) > 0: avg_loss = sum(loss_to_avg) / len(loss_to_avg) else: avg_loss = None avg_t = sum(times) / len(times) gns_so_far = [x for x in gns if np.isfinite(x)] if len(gns_so_far) > 0: max_gn_so_far = max([x for x in gns if np.isfinite(x)]) else: max_gn_so_far = -1 logprint(step=step_t, lr=lr_t, loss=loss_t, loss_avg=avg_loss, t_iter=t2 - t1, t_iter_avg=avg_t, t_data=t1 - t0, gn=gn_t, nans=len(losses) - len(loss_to_avg), loss_scale="2^%.0f" % np.log2(loss_scale_t), max_gn=max_gn_so_far, series='train_loss', examples=examples_processed) times = [] losses = [] gns = [] t0 = time.time() if H.eval_after_n_examples: sets_processed = examples_processed // H.eval_after_n_examples if sets_processed > last_set_processed: vl = eval(epoch=sets_processed) if H.sample_during_eval: sample(f'epoch-{sets_processed}') if vl < curr_val_loss: curr_val_loss = vl sess.run(update_val_loss, {val_loss: vl}) logprint(f'Saving model with val loss of {vl} at epoch {sets_processed}') save_params(sess, os.path.join(save_dir, 'model_best')) save_params(sess, os.path.join(save_dir, 'model_latest')) n = 12 if sets_processed in [2**i for i in range(n)] + [2**(n - 1) + 2 ** i for i in range(n)]: save_params(sess, os.path.join(save_dir, f'model_epoch{sets_processed}')) last_set_processed = sets_processed n_epochs = sess.run(increment_epochs) if not H.eval_after_n_examples: if n_epochs % H.epochs_per_eval == 0: vl = eval(epoch=n_epochs) if H.sample_during_eval: sample(f'epoch-{n_epochs}') if vl < curr_val_loss: curr_val_loss = vl sess.run(update_val_loss, {val_loss: vl}) logprint(f'Saving model with val loss of {vl} at epoch {n_epochs}') save_params(sess, os.path.join(save_dir, 'model_best')) if n_epochs % H.epochs_per_save == 0 and n_epochs > 0: save_params(sess, os.path.join(save_dir, 'model_latest')) if n_epochs in [2**i for i in range(12)]: save_params(sess, os.path.join(save_dir, f'model_epoch{n_epochs}')) if H.exit_after_n_epochs: if n_epochs >= H.exit_after_n_epochs: time.sleep(20) logprint(f'Exiting now, epoch={n_epochs}') sys.exit(0) save_params(sess, os.path.join(save_dir, 'model_latest')) logprint('Finished training.')
''' Optimizers should take the arguments grads, variables, learning_rate, grad_scale, max_grad_norm, and **kwargs. ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import blocksparse as bs from mpi_utils import mpi_rank def get_optimizer(name): mapping = { 'bs_adafactor': bs_adafactor, 'bs_adam': bs_adam, } return mapping[name] def bs_adafactor(grads, variables, learning_rate, grad_scale=1.0, beta2=0.999, max_grad_norm=1.0, norm_scale=1.0, static_loss_scaling=False, **kwargs): # set to large value to disable clipping, but still collect global norm # we also use this for dynamic loss scaling if not max_grad_norm: max_grad_norm = 9e9 fp16_args = dict(saturate=65504.0, zero_nans=True) if static_loss_scaling else dict() global_norm, norm_scale = bs.clip_by_global_norm(grads, grad_scale=grad_scale, clip_norm=max_grad_norm, **fp16_args) # use Adam for gains/biases adam = bs.AdamOptimizer( learning_rate=learning_rate, beta2=beta2, norm_scale=norm_scale, grad_scale=grad_scale, zero_init_variables=mpi_rank() != 0, **fp16_args) fact = bs.AdafactorOptimizer( learning_rate=learning_rate, beta2=beta2, norm_scale=norm_scale, grad_scale=grad_scale, zero_init_variables=mpi_rank() != 0, **fp16_args) adam_pairs = list() fact_pairs = list() for g, v in zip(grads, variables): if len(v.shape) < 2: adam_pairs.append((g, v)) else: fact_pairs.append((g, v)) adam = adam.apply_gradients(adam_pairs) fact = fact.apply_gradients(fact_pairs) return tf.group(adam, fact), global_norm def bs_adam(grads, variables, learning_rate, beta2=0.999, grad_scale=1.0, max_grad_norm=1.0, fp16_mean_var=True, static_loss_scaling=False, **kwargs): # set to large value to disable clipping, but still collect global norm # we also use this for dynamic loss scaling if not max_grad_norm: max_grad_norm = 9e9 if static_loss_scaling: global_norm, norm_scale = bs.clip_by_global_norm(grads, grad_scale=grad_scale, clip_norm=max_grad_norm, saturate=65504.0, zero_nans=True) else: # We first calculate whether its nan, then also clip. global_norm, _ = bs.clip_by_global_norm(grads, grad_scale=grad_scale, clip_norm=max_grad_norm) # Try zeroing infs. grads = [bs.filter_tensor(g, zero_infs=True, zero_nans=True) for g in grads] _, norm_scale = bs.clip_by_global_norm(grads, grad_scale=grad_scale, clip_norm=max_grad_norm) adam = bs.AdamOptimizer( learning_rate=learning_rate, beta2=beta2, norm_scale=norm_scale, grad_scale=grad_scale, fp16=fp16_mean_var, zero_init_variables=mpi_rank() != 0, saturate=65504.0, zero_nans=True) return adam.apply_gradients(zip(grads, variables)), global_norm
import numpy as np class JankySampler: def __init__(self, arr, seed=None): self.arr = arr self.nprng = np.random.RandomState(seed) self.reset() def reset(self): self.drawn = 0 self.idx = self.nprng.permutation(len(self.arr)) def draw(self, n): ''' Shuffle the array if it's exhausted and draw `n` samples without replacement. ''' if n > len(self.arr): raise ValueError("It looks like you tried to draw more than there are in the list") if self.drawn + n > len(self.arr): self.reset() end = self.drawn + n retval = self.arr[self.idx[self.drawn:end]] self.drawn = end return retval class JankySubsampler: ''' To be used with iter_data_mpi. This class reports it has the same number of examples as `arrays[0]`, but returns a mixed slice of examples from all `arrays`. ''' def __init__(self, arrays, pmf, seed=None): assert len(pmf) == len(arrays) self.pmf = pmf self.arrays = arrays self.samplers = [JankySampler(arr, seed=seed) for arr in arrays] self.idxs = np.arange(len(self.pmf)) self.nprng = np.random.RandomState(seed) for arr in arrays[1:]: assert arrays[0].shape[1:] == arr.shape[1:] @property def shape(self): return self.arrays[0].shape def __getitem__(self, key): n = len(key) arr = self.nprng.choice(self.idxs, size=n, p=self.pmf) ret = np.concatenate( [sampler.draw((arr == idx).sum()) for idx, sampler in zip(self.idxs, self.samplers)], axis=0) return ret if __name__ == "__main__": # Test 1 arr = np.arange(9) sampler = JankySampler(arr, seed=42) for _ in range(4): print(sampler.draw(8)) # Test 2 pmf = [0.5, 0.5] arr1 = np.arange(4 * 2).reshape(4, 2) + 1 arr2 = -np.arange(8 * 2).reshape(8, 2) subsampler = JankySubsampler((arr1, arr2), pmf, seed=42) aux_arr1 = np.ones((4,)) aux_arr2 = np.zeros((8,)) aux_subsampler = JankySubsampler((aux_arr1, aux_arr2), pmf, seed=42) dummy_indices = np.arange(4) # Draw 4 arrays at a time for _ in range(10): print(subsampler[dummy_indices]) print(aux_subsampler[dummy_indices])
import re from setuptools import setup, find_packages import sys if sys.version_info.major != 3: print('This Python is only compatible with Python 3, but you are running ' 'Python {}. The installation will likely fail.'.format(sys.version_info.major)) extras = { 'test': [ 'filelock', 'pytest', 'pytest-forked', 'atari-py', 'matplotlib', 'pandas' ], 'mpi': [ 'mpi4py' ] } all_deps = [] for group_name in extras: all_deps += extras[group_name] extras['all'] = all_deps setup(name='baselines', packages=[package for package in find_packages() if package.startswith('baselines')], install_requires=[ 'gym>=0.15.4, <0.16.0', 'scipy', 'tqdm', 'joblib', 'cloudpickle', 'click', 'opencv-python' ], extras_require=extras, description='OpenAI baselines: high quality implementations of reinforcement learning algorithms', author='OpenAI', url='https://github.com/openai/baselines', author_email='[email protected]', version='0.1.6') # ensure there is some tensorflow build with version above 1.4 import pkg_resources tf_pkg = None for tf_pkg_name in ['tensorflow', 'tensorflow-gpu', 'tf-nightly', 'tf-nightly-gpu']: try: tf_pkg = pkg_resources.get_distribution(tf_pkg_name) except pkg_resources.DistributionNotFound: pass assert tf_pkg is not None, 'TensorFlow needed, of version above 1.4' from distutils.version import LooseVersion assert LooseVersion(re.sub(r'-?rc\d+$', '', tf_pkg.version)) >= LooseVersion('1.4.0')
import numpy as np import matplotlib matplotlib.use('TkAgg') # Can change to 'Agg' for non-interactive mode import matplotlib.pyplot as plt plt.rcParams['svg.fonttype'] = 'none' from baselines.common import plot_util X_TIMESTEPS = 'timesteps' X_EPISODES = 'episodes' X_WALLTIME = 'walltime_hrs' Y_REWARD = 'reward' Y_TIMESTEPS = 'timesteps' POSSIBLE_X_AXES = [X_TIMESTEPS, X_EPISODES, X_WALLTIME] EPISODES_WINDOW = 100 COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', 'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue'] def rolling_window(a, window): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) def window_func(x, y, window, func): yw = rolling_window(y, window) yw_func = func(yw, axis=-1) return x[window-1:], yw_func def ts2xy(ts, xaxis, yaxis): if xaxis == X_TIMESTEPS: x = np.cumsum(ts.l.values) elif xaxis == X_EPISODES: x = np.arange(len(ts)) elif xaxis == X_WALLTIME: x = ts.t.values / 3600. else: raise NotImplementedError if yaxis == Y_REWARD: y = ts.r.values elif yaxis == Y_TIMESTEPS: y = ts.l.values else: raise NotImplementedError return x, y def plot_curves(xy_list, xaxis, yaxis, title): fig = plt.figure(figsize=(8,2)) maxx = max(xy[0][-1] for xy in xy_list) minx = 0 for (i, (x, y)) in enumerate(xy_list): color = COLORS[i % len(COLORS)] plt.scatter(x, y, s=2) x, y_mean = window_func(x, y, EPISODES_WINDOW, np.mean) #So returns average of last EPISODE_WINDOW episodes plt.plot(x, y_mean, color=color) plt.xlim(minx, maxx) plt.title(title) plt.xlabel(xaxis) plt.ylabel(yaxis) plt.tight_layout() fig.canvas.mpl_connect('resize_event', lambda event: plt.tight_layout()) plt.grid(True) def split_by_task(taskpath): return taskpath['dirname'].split('/')[-1].split('-')[0] def plot_results(dirs, num_timesteps=10e6, xaxis=X_TIMESTEPS, yaxis=Y_REWARD, title='', split_fn=split_by_task): results = plot_util.load_results(dirs) plot_util.plot_results(results, xy_fn=lambda r: ts2xy(r['monitor'], xaxis, yaxis), split_fn=split_fn, average_group=True, resample=int(1e6)) # Example usage in jupyter-notebook # from baselines.results_plotter import plot_results # %matplotlib inline # plot_results("./log") # Here ./log is a directory containing the monitor.csv files def main(): import argparse import os parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--dirs', help='List of log directories', nargs = '*', default=['./log']) parser.add_argument('--num_timesteps', type=int, default=int(10e6)) parser.add_argument('--xaxis', help = 'Varible on X-axis', default = X_TIMESTEPS) parser.add_argument('--yaxis', help = 'Varible on Y-axis', default = Y_REWARD) parser.add_argument('--task_name', help = 'Title of plot', default = 'Breakout') args = parser.parse_args() args.dirs = [os.path.abspath(dir) for dir in args.dirs] plot_results(args.dirs, args.num_timesteps, args.xaxis, args.yaxis, args.task_name) plt.show() if __name__ == '__main__': main()
import sys import re import multiprocessing import os.path as osp import gym from collections import defaultdict import tensorflow as tf import numpy as np from baselines.common.vec_env import VecFrameStack, VecNormalize, VecEnv from baselines.common.vec_env.vec_video_recorder import VecVideoRecorder from baselines.common.cmd_util import common_arg_parser, parse_unknown_args, make_vec_env, make_env from baselines.common.tf_util import get_session from baselines import logger from importlib import import_module try: from mpi4py import MPI except ImportError: MPI = None try: import pybullet_envs except ImportError: pybullet_envs = None try: import roboschool except ImportError: roboschool = None _game_envs = defaultdict(set) for env in gym.envs.registry.all(): # TODO: solve this with regexes env_type = env.entry_point.split(':')[0].split('.')[-1] _game_envs[env_type].add(env.id) # reading benchmark names directly from retro requires # importing retro here, and for some reason that crashes tensorflow # in ubuntu _game_envs['retro'] = { 'BubbleBobble-Nes', 'SuperMarioBros-Nes', 'TwinBee3PokoPokoDaimaou-Nes', 'SpaceHarrier-Nes', 'SonicTheHedgehog-Genesis', 'Vectorman-Genesis', 'FinalFight-Snes', 'SpaceInvaders-Snes', } def train(args, extra_args): env_type, env_id = get_env_type(args) print('env_type: {}'.format(env_type)) total_timesteps = int(args.num_timesteps) seed = args.seed learn = get_learn_function(args.alg) alg_kwargs = get_learn_function_defaults(args.alg, env_type) alg_kwargs.update(extra_args) env = build_env(args) if args.save_video_interval != 0: env = VecVideoRecorder(env, osp.join(logger.get_dir(), "videos"), record_video_trigger=lambda x: x % args.save_video_interval == 0, video_length=args.save_video_length) if args.network: alg_kwargs['network'] = args.network else: if alg_kwargs.get('network') is None: alg_kwargs['network'] = get_default_network(env_type) print('Training {} on {}:{} with arguments \n{}'.format(args.alg, env_type, env_id, alg_kwargs)) model = learn( env=env, seed=seed, total_timesteps=total_timesteps, **alg_kwargs ) return model, env def build_env(args): ncpu = multiprocessing.cpu_count() if sys.platform == 'darwin': ncpu //= 2 nenv = args.num_env or ncpu alg = args.alg seed = args.seed env_type, env_id = get_env_type(args) if env_type in {'atari', 'retro'}: if alg == 'deepq': env = make_env(env_id, env_type, seed=seed, wrapper_kwargs={'frame_stack': True}) elif alg == 'trpo_mpi': env = make_env(env_id, env_type, seed=seed) else: frame_stack_size = 4 env = make_vec_env(env_id, env_type, nenv, seed, gamestate=args.gamestate, reward_scale=args.reward_scale) env = VecFrameStack(env, frame_stack_size) else: config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) config.gpu_options.allow_growth = True get_session(config=config) flatten_dict_observations = alg not in {'her'} env = make_vec_env(env_id, env_type, args.num_env or 1, seed, reward_scale=args.reward_scale, flatten_dict_observations=flatten_dict_observations) if env_type == 'mujoco': env = VecNormalize(env, use_tf=True) return env def get_env_type(args): env_id = args.env if args.env_type is not None: return args.env_type, env_id # Re-parse the gym registry, since we could have new envs since last time. for env in gym.envs.registry.all(): env_type = env.entry_point.split(':')[0].split('.')[-1] _game_envs[env_type].add(env.id) # This is a set so add is idempotent if env_id in _game_envs.keys(): env_type = env_id env_id = [g for g in _game_envs[env_type]][0] else: env_type = None for g, e in _game_envs.items(): if env_id in e: env_type = g break if ':' in env_id: env_type = re.sub(r':.*', '', env_id) assert env_type is not None, 'env_id {} is not recognized in env types'.format(env_id, _game_envs.keys()) return env_type, env_id def get_default_network(env_type): if env_type in {'atari', 'retro'}: return 'cnn' else: return 'mlp' def get_alg_module(alg, submodule=None): submodule = submodule or alg try: # first try to import the alg module from baselines alg_module = import_module('.'.join(['baselines', alg, submodule])) except ImportError: # then from rl_algs alg_module = import_module('.'.join(['rl_' + 'algs', alg, submodule])) return alg_module def get_learn_function(alg): return get_alg_module(alg).learn def get_learn_function_defaults(alg, env_type): try: alg_defaults = get_alg_module(alg, 'defaults') kwargs = getattr(alg_defaults, env_type)() except (ImportError, AttributeError): kwargs = {} return kwargs def parse_cmdline_kwargs(args): ''' convert a list of '='-spaced command-line arguments to a dictionary, evaluating python objects when possible ''' def parse(v): assert isinstance(v, str) try: return eval(v) except (NameError, SyntaxError): return v return {k: parse(v) for k,v in parse_unknown_args(args).items()} def configure_logger(log_path, **kwargs): if log_path is not None: logger.configure(log_path) else: logger.configure(**kwargs) def main(args): # configure logger, disable logging in child MPI processes (with rank > 0) arg_parser = common_arg_parser() args, unknown_args = arg_parser.parse_known_args(args) extra_args = parse_cmdline_kwargs(unknown_args) if MPI is None or MPI.COMM_WORLD.Get_rank() == 0: rank = 0 configure_logger(args.log_path) else: rank = MPI.COMM_WORLD.Get_rank() configure_logger(args.log_path, format_strs=[]) model, env = train(args, extra_args) if args.save_path is not None and rank == 0: save_path = osp.expanduser(args.save_path) model.save(save_path) if args.play: logger.log("Running trained model") obs = env.reset() state = model.initial_state if hasattr(model, 'initial_state') else None dones = np.zeros((1,)) episode_rew = np.zeros(env.num_envs) if isinstance(env, VecEnv) else np.zeros(1) while True: if state is not None: actions, _, state, _ = model.step(obs,S=state, M=dones) else: actions, _, _, _ = model.step(obs) obs, rew, done, _ = env.step(actions) episode_rew += rew env.render() done_any = done.any() if isinstance(done, np.ndarray) else done if done_any: for i in np.nonzero(done)[0]: print('episode_rew={}'.format(episode_rew[i])) episode_rew[i] = 0 env.close() return model if __name__ == '__main__': main(sys.argv)
import os import sys import shutil import os.path as osp import json import time import datetime import tempfile from collections import defaultdict from contextlib import contextmanager DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): def writekvs(self, kvs): raise NotImplementedError class SeqWriter(object): def writeseq(self, seq): raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): if isinstance(filename_or_file, str): self.file = open(filename_or_file, 'wt') self.own_file = True else: assert hasattr(filename_or_file, 'read'), 'expected file or str, got %s'%filename_or_file self.file = filename_or_file self.own_file = False def writekvs(self, kvs): # Create strings for printing key2str = {} for (key, val) in sorted(kvs.items()): if hasattr(val, '__float__'): valstr = '%-8.3g' % val else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) # Find max widths if len(key2str) == 0: print('WARNING: tried to write empty key-value dict') return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) # Write out the data dashes = '-' * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()): lines.append('| %s%s | %s%s |' % ( key, ' ' * (keywidth - len(key)), val, ' ' * (valwidth - len(val)), )) lines.append(dashes) self.file.write('\n'.join(lines) + '\n') # Flush the output to the file self.file.flush() def _truncate(self, s): maxlen = 30 return s[:maxlen-3] + '...' if len(s) > maxlen else s def writeseq(self, seq): seq = list(seq) for (i, elem) in enumerate(seq): self.file.write(elem) if i < len(seq) - 1: # add space unless this is the last one self.file.write(' ') self.file.write('\n') self.file.flush() def close(self): if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'wt') def writekvs(self, kvs): for k, v in sorted(kvs.items()): if hasattr(v, 'dtype'): kvs[k] = float(v) self.file.write(json.dumps(kvs) + '\n') self.file.flush() def close(self): self.file.close() class CSVOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'w+t') self.keys = [] self.sep = ',' def writekvs(self, kvs): # Add our current row to the history extra_keys = list(kvs.keys() - self.keys) extra_keys.sort() if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') self.file.write(k) self.file.write('\n') for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write('\n') for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') v = kvs.get(k) if v is not None: self.file.write(str(v)) self.file.write('\n') self.file.flush() def close(self): self.file.close() class TensorBoardOutputFormat(KVWriter): """ Dumps key/value pairs into TensorBoard's numeric format. """ def __init__(self, dir): os.makedirs(dir, exist_ok=True) self.dir = dir self.step = 1 prefix = 'events' path = osp.join(osp.abspath(dir), prefix) import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.core.util import event_pb2 from tensorflow.python.util import compat self.tf = tf self.event_pb2 = event_pb2 self.pywrap_tensorflow = pywrap_tensorflow self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) def writekvs(self, kvs): def summary_val(k, v): kwargs = {'tag': k, 'simple_value': float(v)} return self.tf.Summary.Value(**kwargs) summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()]) event = self.event_pb2.Event(wall_time=time.time(), summary=summary) event.step = self.step # is there any reason why you'd want to specify the step? self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): if self.writer: self.writer.Close() self.writer = None def make_output_format(format, ev_dir, log_suffix=''): os.makedirs(ev_dir, exist_ok=True) if format == 'stdout': return HumanOutputFormat(sys.stdout) elif format == 'log': return HumanOutputFormat(osp.join(ev_dir, 'log%s.txt' % log_suffix)) elif format == 'json': return JSONOutputFormat(osp.join(ev_dir, 'progress%s.json' % log_suffix)) elif format == 'csv': return CSVOutputFormat(osp.join(ev_dir, 'progress%s.csv' % log_suffix)) elif format == 'tensorboard': return TensorBoardOutputFormat(osp.join(ev_dir, 'tb%s' % log_suffix)) else: raise ValueError('Unknown format specified: %s' % (format,)) # ================================================================ # API # ================================================================ def logkv(key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration If called many times, last value will be used. """ get_current().logkv(key, val) def logkv_mean(key, val): """ The same as logkv(), but if called many times, values averaged. """ get_current().logkv_mean(key, val) def logkvs(d): """ Log a dictionary of key-value pairs """ for (k, v) in d.items(): logkv(k, v) def dumpkvs(): """ Write all of the diagnostics from the current iteration """ return get_current().dumpkvs() def getkvs(): return get_current().name2val def log(*args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). """ get_current().log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): """ Set logging threshold on current logger. """ get_current().set_level(level) def set_comm(comm): get_current().set_comm(comm) def get_dir(): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) """ return get_current().get_dir() record_tabular = logkv dump_tabular = dumpkvs @contextmanager def profile_kv(scopename): logkey = 'wait_' + scopename tstart = time.time() try: yield finally: get_current().name2val[logkey] += time.time() - tstart def profile(n): """ Usage: @profile("my_func") def my_func(): code """ def decorator_with_name(func): def func_wrapper(*args, **kwargs): with profile_kv(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name # ================================================================ # Backend # ================================================================ def get_current(): if Logger.CURRENT is None: _configure_default_logger() return Logger.CURRENT class Logger(object): DEFAULT = None # A logger with no output files. (See right below class definition) # So that you can still log to the terminal without setting up any output files CURRENT = None # Current logger being used by the free functions above def __init__(self, dir, output_formats, comm=None): self.name2val = defaultdict(float) # values this iteration self.name2cnt = defaultdict(int) self.level = INFO self.dir = dir self.output_formats = output_formats self.comm = comm # Logging API, forwarded # ---------------------------------------- def logkv(self, key, val): self.name2val[key] = val def logkv_mean(self, key, val): oldval, cnt = self.name2val[key], self.name2cnt[key] self.name2val[key] = oldval*cnt/(cnt+1) + val/(cnt+1) self.name2cnt[key] = cnt + 1 def dumpkvs(self): if self.comm is None: d = self.name2val else: from baselines.common import mpi_util d = mpi_util.mpi_weighted_mean(self.comm, {name : (val, self.name2cnt.get(name, 1)) for (name, val) in self.name2val.items()}) if self.comm.rank != 0: d['dummy'] = 1 # so we don't get a warning about empty dict out = d.copy() # Return the dict for unit testing purposes for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(d) self.name2val.clear() self.name2cnt.clear() return out def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) # Configuration # ---------------------------------------- def set_level(self, level): self.level = level def set_comm(self, comm): self.comm = comm def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() # Misc # ---------------------------------------- def _do_log(self, args): for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) def get_rank_without_mpi_import(): # check environment variables here instead of importing mpi4py # to avoid calling MPI_Init() when this module is imported for varname in ['PMI_RANK', 'OMPI_COMM_WORLD_RANK']: if varname in os.environ: return int(os.environ[varname]) return 0 def configure(dir=None, format_strs=None, comm=None, log_suffix=''): """ If comm is provided, average all numerical stats across that comm """ if dir is None: dir = os.getenv('OPENAI_LOGDIR') if dir is None: dir = osp.join(tempfile.gettempdir(), datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f")) assert isinstance(dir, str) dir = os.path.expanduser(dir) os.makedirs(os.path.expanduser(dir), exist_ok=True) rank = get_rank_without_mpi_import() if rank > 0: log_suffix = log_suffix + "-rank%03i" % rank if format_strs is None: if rank == 0: format_strs = os.getenv('OPENAI_LOG_FORMAT', 'stdout,log,csv').split(',') else: format_strs = os.getenv('OPENAI_LOG_FORMAT_MPI', 'log').split(',') format_strs = filter(None, format_strs) output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm) if output_formats: log('Logging to %s'%dir) def _configure_default_logger(): configure() Logger.DEFAULT = Logger.CURRENT def reset(): if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log('Reset logger') @contextmanager def scoped_configure(dir=None, format_strs=None, comm=None): prevlogger = Logger.CURRENT configure(dir=dir, format_strs=format_strs, comm=comm) try: yield finally: Logger.CURRENT.close() Logger.CURRENT = prevlogger # ================================================================ def _demo(): info("hi") debug("shouldn't appear") set_level(DEBUG) debug("should appear") dir = "/tmp/testlogging" if os.path.exists(dir): shutil.rmtree(dir) configure(dir=dir) logkv("a", 3) logkv("b", 2.5) dumpkvs() logkv("b", -2.5) logkv("a", 5.5) dumpkvs() info("^^^ should see a = 5.5") logkv_mean("b", -22.5) logkv_mean("b", -44.4) logkv("a", 5.5) dumpkvs() info("^^^ should see b = -33.3") logkv("b", -2.5) dumpkvs() logkv("a", "longasslongasslongasslongasslongasslongassvalue") dumpkvs() # ================================================================ # Readers # ================================================================ def read_json(fname): import pandas ds = [] with open(fname, 'rt') as fh: for line in fh: ds.append(json.loads(line)) return pandas.DataFrame(ds) def read_csv(fname): import pandas return pandas.read_csv(fname, index_col=None, comment='#') def read_tb(path): """ path : a tensorboard file OR a directory, where we will find all TB files of the form events.* """ import pandas import numpy as np from glob import glob import tensorflow as tf if osp.isdir(path): fnames = glob(osp.join(path, "events.*")) elif osp.basename(path).startswith("events."): fnames = [path] else: raise NotImplementedError("Expected tensorboard file or directory containing them. Got %s"%path) tag2pairs = defaultdict(list) maxstep = 0 for fname in fnames: for summary in tf.train.summary_iterator(fname): if summary.step > 0: for v in summary.summary.value: pair = (summary.step, v.simple_value) tag2pairs[v.tag].append(pair) maxstep = max(summary.step, maxstep) data = np.empty((maxstep, len(tag2pairs))) data[:] = np.nan tags = sorted(tag2pairs.keys()) for (colidx,tag) in enumerate(tags): pairs = tag2pairs[tag] for (step, value) in pairs: data[step-1, colidx] = value return pandas.DataFrame(data, columns=tags) if __name__ == "__main__": _demo()
''' This code is used to evalaute the imitators trained with different number of trajectories and plot the results in the same figure for easy comparison. ''' import argparse import os import glob import gym import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from baselines.gail import run_mujoco from baselines.gail import mlp_policy from baselines.common import set_global_seeds, tf_util as U from baselines.common.misc_util import boolean_flag from baselines.gail.dataset.mujoco_dset import Mujoco_Dset plt.style.use('ggplot') CONFIG = { 'traj_limitation': [1, 5, 10, 50], } def load_dataset(expert_path): dataset = Mujoco_Dset(expert_path=expert_path) return dataset def argsparser(): parser = argparse.ArgumentParser('Do evaluation') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--policy_hidden_size', type=int, default=100) parser.add_argument('--env', type=str, choices=['Hopper', 'Walker2d', 'HalfCheetah', 'Humanoid', 'HumanoidStandup']) boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate') return parser.parse_args() def evaluate_env(env_name, seed, policy_hidden_size, stochastic, reuse, prefix): def get_checkpoint_dir(checkpoint_list, limit, prefix): for checkpoint in checkpoint_list: if ('limitation_'+str(limit) in checkpoint) and (prefix in checkpoint): return checkpoint return None def policy_fn(name, ob_space, ac_space, reuse=False): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, reuse=reuse, hid_size=policy_hidden_size, num_hid_layers=2) data_path = os.path.join('data', 'deterministic.trpo.' + env_name + '.0.00.npz') dataset = load_dataset(data_path) checkpoint_list = glob.glob(os.path.join('checkpoint', '*' + env_name + ".*")) log = { 'traj_limitation': [], 'upper_bound': [], 'avg_ret': [], 'avg_len': [], 'normalized_ret': [] } for i, limit in enumerate(CONFIG['traj_limitation']): # Do one evaluation upper_bound = sum(dataset.rets[:limit])/limit checkpoint_dir = get_checkpoint_dir(checkpoint_list, limit, prefix=prefix) checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir) env = gym.make(env_name + '-v1') env.seed(seed) print('Trajectory limitation: {}, Load checkpoint: {}, '.format(limit, checkpoint_path)) avg_len, avg_ret = run_mujoco.runner(env, policy_fn, checkpoint_path, timesteps_per_batch=1024, number_trajs=10, stochastic_policy=stochastic, reuse=((i != 0) or reuse)) normalized_ret = avg_ret/upper_bound print('Upper bound: {}, evaluation returns: {}, normalized scores: {}'.format( upper_bound, avg_ret, normalized_ret)) log['traj_limitation'].append(limit) log['upper_bound'].append(upper_bound) log['avg_ret'].append(avg_ret) log['avg_len'].append(avg_len) log['normalized_ret'].append(normalized_ret) env.close() return log def plot(env_name, bc_log, gail_log, stochastic): upper_bound = bc_log['upper_bound'] bc_avg_ret = bc_log['avg_ret'] gail_avg_ret = gail_log['avg_ret'] plt.plot(CONFIG['traj_limitation'], upper_bound) plt.plot(CONFIG['traj_limitation'], bc_avg_ret) plt.plot(CONFIG['traj_limitation'], gail_avg_ret) plt.xlabel('Number of expert trajectories') plt.ylabel('Accumulated reward') plt.title('{} unnormalized scores'.format(env_name)) plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right') plt.grid(b=True, which='major', color='gray', linestyle='--') if stochastic: title_name = 'result/{}-unnormalized-stochastic-scores.png'.format(env_name) else: title_name = 'result/{}-unnormalized-deterministic-scores.png'.format(env_name) plt.savefig(title_name) plt.close() bc_normalized_ret = bc_log['normalized_ret'] gail_normalized_ret = gail_log['normalized_ret'] plt.plot(CONFIG['traj_limitation'], np.ones(len(CONFIG['traj_limitation']))) plt.plot(CONFIG['traj_limitation'], bc_normalized_ret) plt.plot(CONFIG['traj_limitation'], gail_normalized_ret) plt.xlabel('Number of expert trajectories') plt.ylabel('Normalized performance') plt.title('{} normalized scores'.format(env_name)) plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right') plt.grid(b=True, which='major', color='gray', linestyle='--') if stochastic: title_name = 'result/{}-normalized-stochastic-scores.png'.format(env_name) else: title_name = 'result/{}-normalized-deterministic-scores.png'.format(env_name) plt.ylim(0, 1.6) plt.savefig(title_name) plt.close() def main(args): U.make_session(num_cpu=1).__enter__() set_global_seeds(args.seed) print('Evaluating {}'.format(args.env)) bc_log = evaluate_env(args.env, args.seed, args.policy_hidden_size, args.stochastic_policy, False, 'BC') print('Evaluation for {}'.format(args.env)) print(bc_log) gail_log = evaluate_env(args.env, args.seed, args.policy_hidden_size, args.stochastic_policy, True, 'gail') print('Evaluation for {}'.format(args.env)) print(gail_log) plot(args.env, bc_log, gail_log, args.stochastic_policy) if __name__ == '__main__': args = argsparser() main(args)
''' Reference: https://github.com/openai/imitation I follow the architecture from the official repository ''' import tensorflow as tf import numpy as np from baselines.common.mpi_running_mean_std import RunningMeanStd from baselines.common import tf_util as U def logsigmoid(a): '''Equivalent to tf.log(tf.sigmoid(a))''' return -tf.nn.softplus(-a) """ Reference: https://github.com/openai/imitation/blob/99fbccf3e060b6e6c739bdf209758620fcdefd3c/policyopt/thutil.py#L48-L51""" def logit_bernoulli_entropy(logits): ent = (1.-tf.nn.sigmoid(logits))*logits - logsigmoid(logits) return ent class TransitionClassifier(object): def __init__(self, env, hidden_size, entcoeff=0.001, lr_rate=1e-3, scope="adversary"): self.scope = scope self.observation_shape = env.observation_space.shape self.actions_shape = env.action_space.shape self.input_shape = tuple([o+a for o, a in zip(self.observation_shape, self.actions_shape)]) self.num_actions = env.action_space.shape[0] self.hidden_size = hidden_size self.build_ph() # Build grpah generator_logits = self.build_graph(self.generator_obs_ph, self.generator_acs_ph, reuse=False) expert_logits = self.build_graph(self.expert_obs_ph, self.expert_acs_ph, reuse=True) # Build accuracy generator_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(generator_logits) < 0.5)) expert_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(expert_logits) > 0.5)) # Build regression loss # let x = logits, z = targets. # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) generator_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=generator_logits, labels=tf.zeros_like(generator_logits)) generator_loss = tf.reduce_mean(generator_loss) expert_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=expert_logits, labels=tf.ones_like(expert_logits)) expert_loss = tf.reduce_mean(expert_loss) # Build entropy loss logits = tf.concat([generator_logits, expert_logits], 0) entropy = tf.reduce_mean(logit_bernoulli_entropy(logits)) entropy_loss = -entcoeff*entropy # Loss + Accuracy terms self.losses = [generator_loss, expert_loss, entropy, entropy_loss, generator_acc, expert_acc] self.loss_name = ["generator_loss", "expert_loss", "entropy", "entropy_loss", "generator_acc", "expert_acc"] self.total_loss = generator_loss + expert_loss + entropy_loss # Build Reward for policy self.reward_op = -tf.log(1-tf.nn.sigmoid(generator_logits)+1e-8) var_list = self.get_trainable_variables() self.lossandgrad = U.function([self.generator_obs_ph, self.generator_acs_ph, self.expert_obs_ph, self.expert_acs_ph], self.losses + [U.flatgrad(self.total_loss, var_list)]) def build_ph(self): self.generator_obs_ph = tf.placeholder(tf.float32, (None, ) + self.observation_shape, name="observations_ph") self.generator_acs_ph = tf.placeholder(tf.float32, (None, ) + self.actions_shape, name="actions_ph") self.expert_obs_ph = tf.placeholder(tf.float32, (None, ) + self.observation_shape, name="expert_observations_ph") self.expert_acs_ph = tf.placeholder(tf.float32, (None, ) + self.actions_shape, name="expert_actions_ph") def build_graph(self, obs_ph, acs_ph, reuse=False): with tf.variable_scope(self.scope): if reuse: tf.get_variable_scope().reuse_variables() with tf.variable_scope("obfilter"): self.obs_rms = RunningMeanStd(shape=self.observation_shape) obs = (obs_ph - self.obs_rms.mean) / self.obs_rms.std _input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh) p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh) logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity) return logits def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) def get_reward(self, obs, acs): sess = tf.get_default_session() if len(obs.shape) == 1: obs = np.expand_dims(obs, 0) if len(acs.shape) == 1: acs = np.expand_dims(acs, 0) feed_dict = {self.generator_obs_ph: obs, self.generator_acs_ph: acs} reward = sess.run(self.reward_op, feed_dict) return reward
''' The code is used to train BC imitator, or pretrained GAIL imitator ''' import argparse import tempfile import os.path as osp import gym import logging from tqdm import tqdm import tensorflow as tf from baselines.gail import mlp_policy from baselines import bench from baselines import logger from baselines.common import set_global_seeds, tf_util as U from baselines.common.misc_util import boolean_flag from baselines.common.mpi_adam import MpiAdam from baselines.gail.run_mujoco import runner from baselines.gail.dataset.mujoco_dset import Mujoco_Dset def argsparser(): parser = argparse.ArgumentParser("Tensorflow Implementation of Behavior Cloning") parser.add_argument('--env_id', help='environment ID', default='Hopper-v2') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz') parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint') parser.add_argument('--log_dir', help='the directory to save log file', default='log') # Mujoco Dataset Configuration parser.add_argument('--traj_limitation', type=int, default=-1) # Network Configuration (Using MLP Policy) parser.add_argument('--policy_hidden_size', type=int, default=100) # for evaluatation boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate') boolean_flag(parser, 'save_sample', default=False, help='save the trajectories or not') parser.add_argument('--BC_max_iter', help='Max iteration for training BC', type=int, default=1e5) return parser.parse_args() def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_variables(savedir_fname, variables=pi.get_variables()) return savedir_fname def get_task_name(args): task_name = 'BC' task_name += '.{}'.format(args.env_id.split("-")[0]) task_name += '.traj_limitation_{}'.format(args.traj_limitation) task_name += ".seed_{}".format(args.seed) return task_name def main(args): U.make_session(num_cpu=1).__enter__() set_global_seeds(args.seed) env = gym.make(args.env_id) def policy_fn(name, ob_space, ac_space, reuse=False): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, reuse=reuse, hid_size=args.policy_hidden_size, num_hid_layers=2) env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), "monitor.json")) env.seed(args.seed) gym.logger.setLevel(logging.WARN) task_name = get_task_name(args) args.checkpoint_dir = osp.join(args.checkpoint_dir, task_name) args.log_dir = osp.join(args.log_dir, task_name) dataset = Mujoco_Dset(expert_path=args.expert_path, traj_limitation=args.traj_limitation) savedir_fname = learn(env, policy_fn, dataset, max_iters=args.BC_max_iter, ckpt_dir=args.checkpoint_dir, log_dir=args.log_dir, task_name=task_name, verbose=True) avg_len, avg_ret = runner(env, policy_fn, savedir_fname, timesteps_per_batch=1024, number_trajs=10, stochastic_policy=args.stochastic_policy, save=args.save_sample, reuse=True) if __name__ == '__main__': args = argsparser() main(args)
''' Disclaimer: this code is highly based on trpo_mpi at @openai/baselines and @openai/imitation ''' import argparse import os.path as osp import logging from mpi4py import MPI from tqdm import tqdm import numpy as np import gym from baselines.gail import mlp_policy from baselines.common import set_global_seeds, tf_util as U from baselines.common.misc_util import boolean_flag from baselines import bench from baselines import logger from baselines.gail.dataset.mujoco_dset import Mujoco_Dset from baselines.gail.adversary import TransitionClassifier def argsparser(): parser = argparse.ArgumentParser("Tensorflow Implementation of GAIL") parser.add_argument('--env_id', help='environment ID', default='Hopper-v2') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz') parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint') parser.add_argument('--log_dir', help='the directory to save log file', default='log') parser.add_argument('--load_model_path', help='if provided, load the model', type=str, default=None) # Task parser.add_argument('--task', type=str, choices=['train', 'evaluate', 'sample'], default='train') # for evaluatation boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate') boolean_flag(parser, 'save_sample', default=False, help='save the trajectories or not') # Mujoco Dataset Configuration parser.add_argument('--traj_limitation', type=int, default=-1) # Optimization Configuration parser.add_argument('--g_step', help='number of steps to train policy in each epoch', type=int, default=3) parser.add_argument('--d_step', help='number of steps to train discriminator in each epoch', type=int, default=1) # Network Configuration (Using MLP Policy) parser.add_argument('--policy_hidden_size', type=int, default=100) parser.add_argument('--adversary_hidden_size', type=int, default=100) # Algorithms Configuration parser.add_argument('--algo', type=str, choices=['trpo', 'ppo'], default='trpo') parser.add_argument('--max_kl', type=float, default=0.01) parser.add_argument('--policy_entcoeff', help='entropy coefficiency of policy', type=float, default=0) parser.add_argument('--adversary_entcoeff', help='entropy coefficiency of discriminator', type=float, default=1e-3) # Traing Configuration parser.add_argument('--save_per_iter', help='save model every xx iterations', type=int, default=100) parser.add_argument('--num_timesteps', help='number of timesteps per episode', type=int, default=5e6) # Behavior Cloning boolean_flag(parser, 'pretrained', default=False, help='Use BC to pretrain') parser.add_argument('--BC_max_iter', help='Max iteration for training BC', type=int, default=1e4) return parser.parse_args() def get_task_name(args): task_name = args.algo + "_gail." if args.pretrained: task_name += "with_pretrained." if args.traj_limitation != np.inf: task_name += "transition_limitation_%d." % args.traj_limitation task_name += args.env_id.split("-")[0] task_name = task_name + ".g_step_" + str(args.g_step) + ".d_step_" + str(args.d_step) + \ ".policy_entcoeff_" + str(args.policy_entcoeff) + ".adversary_entcoeff_" + str(args.adversary_entcoeff) task_name += ".seed_" + str(args.seed) return task_name def main(args): U.make_session(num_cpu=1).__enter__() set_global_seeds(args.seed) env = gym.make(args.env_id) def policy_fn(name, ob_space, ac_space, reuse=False): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, reuse=reuse, hid_size=args.policy_hidden_size, num_hid_layers=2) env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), "monitor.json")) env.seed(args.seed) gym.logger.setLevel(logging.WARN) task_name = get_task_name(args) args.checkpoint_dir = osp.join(args.checkpoint_dir, task_name) args.log_dir = osp.join(args.log_dir, task_name) if args.task == 'train': dataset = Mujoco_Dset(expert_path=args.expert_path, traj_limitation=args.traj_limitation) reward_giver = TransitionClassifier(env, args.adversary_hidden_size, entcoeff=args.adversary_entcoeff) train(env, args.seed, policy_fn, reward_giver, dataset, args.algo, args.g_step, args.d_step, args.policy_entcoeff, args.num_timesteps, args.save_per_iter, args.checkpoint_dir, args.log_dir, args.pretrained, args.BC_max_iter, task_name ) elif args.task == 'evaluate': runner(env, policy_fn, args.load_model_path, timesteps_per_batch=1024, number_trajs=10, stochastic_policy=args.stochastic_policy, save=args.save_sample ) else: raise NotImplementedError env.close() def train(env, seed, policy_fn, reward_giver, dataset, algo, g_step, d_step, policy_entcoeff, num_timesteps, save_per_iter, checkpoint_dir, log_dir, pretrained, BC_max_iter, task_name=None): pretrained_weight = None if pretrained and (BC_max_iter > 0): # Pretrain with behavior cloning from baselines.gail import behavior_clone pretrained_weight = behavior_clone.learn(env, policy_fn, dataset, max_iters=BC_max_iter) if algo == 'trpo': from baselines.gail import trpo_mpi # Set up for MPI seed rank = MPI.COMM_WORLD.Get_rank() if rank != 0: logger.set_level(logger.DISABLED) workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() set_global_seeds(workerseed) env.seed(workerseed) trpo_mpi.learn(env, policy_fn, reward_giver, dataset, rank, pretrained=pretrained, pretrained_weight=pretrained_weight, g_step=g_step, d_step=d_step, entcoeff=policy_entcoeff, max_timesteps=num_timesteps, ckpt_dir=checkpoint_dir, log_dir=log_dir, save_per_iter=save_per_iter, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1, gamma=0.995, lam=0.97, vf_iters=5, vf_stepsize=1e-3, task_name=task_name) else: raise NotImplementedError def runner(env, policy_func, load_model_path, timesteps_per_batch, number_trajs, stochastic_policy, save=False, reuse=False): # Setup network # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space, reuse=reuse) U.initialize() # Prepare for rollouts # ---------------------------------------- U.load_variables(load_model_path) obs_list = [] acs_list = [] len_list = [] ret_list = [] for _ in tqdm(range(number_trajs)): traj = traj_1_generator(pi, env, timesteps_per_batch, stochastic=stochastic_policy) obs, acs, ep_len, ep_ret = traj['ob'], traj['ac'], traj['ep_len'], traj['ep_ret'] obs_list.append(obs) acs_list.append(acs) len_list.append(ep_len) ret_list.append(ep_ret) if stochastic_policy: print('stochastic policy:') else: print('deterministic policy:') if save: filename = load_model_path.split('/')[-1] + '.' + env.spec.id np.savez(filename, obs=np.array(obs_list), acs=np.array(acs_list), lens=np.array(len_list), rets=np.array(ret_list)) avg_len = sum(len_list)/len(len_list) avg_ret = sum(ret_list)/len(ret_list) print("Average length:", avg_len) print("Average return:", avg_ret) return avg_len, avg_ret # Sample one trajectory (until trajectory end) def traj_1_generator(pi, env, horizon, stochastic): t = 0 ac = env.action_space.sample() # not used, just so we have the datatype new = True # marks if we're on first timestep of an episode ob = env.reset() cur_ep_ret = 0 # return in current episode cur_ep_len = 0 # len of current episode # Initialize history arrays obs = [] rews = [] news = [] acs = [] while True: ac, vpred = pi.act(stochastic, ob) obs.append(ob) news.append(new) acs.append(ac) ob, rew, new, _ = env.step(ac) rews.append(rew) cur_ep_ret += rew cur_ep_len += 1 if new or t >= horizon: break t += 1 obs = np.array(obs) rews = np.array(rews) news = np.array(news) acs = np.array(acs) traj = {"ob": obs, "rew": rews, "new": news, "ac": acs, "ep_ret": cur_ep_ret, "ep_len": cur_ep_len} return traj if __name__ == '__main__': args = argsparser() main(args)
''' Disclaimer: The trpo part highly rely on trpo_mpi at @openai/baselines ''' import time import os from contextlib import contextmanager from mpi4py import MPI from collections import deque import tensorflow as tf import numpy as np import baselines.common.tf_util as U from baselines.common import explained_variance, zipsame, dataset, fmt_row from baselines import logger from baselines.common import colorize from baselines.common.mpi_adam import MpiAdam from baselines.common.cg import cg from baselines.gail.statistics import stats def traj_segment_generator(pi, env, reward_giver, horizon, stochastic): # Initialize state variables t = 0 ac = env.action_space.sample() new = True rew = 0.0 true_rew = 0.0 ob = env.reset() cur_ep_ret = 0 cur_ep_len = 0 cur_ep_true_ret = 0 ep_true_rets = [] ep_rets = [] ep_lens = [] # Initialize history arrays obs = np.array([ob for _ in range(horizon)]) true_rews = np.zeros(horizon, 'float32') rews = np.zeros(horizon, 'float32') vpreds = np.zeros(horizon, 'float32') news = np.zeros(horizon, 'int32') acs = np.array([ac for _ in range(horizon)]) prevacs = acs.copy() while True: prevac = ac ac, vpred = pi.act(stochastic, ob) # Slight weirdness here because we need value function at time T # before returning segment [0, T-1] so we get the correct # terminal value if t > 0 and t % horizon == 0: yield {"ob": obs, "rew": rews, "vpred": vpreds, "new": news, "ac": acs, "prevac": prevacs, "nextvpred": vpred * (1 - new), "ep_rets": ep_rets, "ep_lens": ep_lens, "ep_true_rets": ep_true_rets} _, vpred = pi.act(stochastic, ob) # Be careful!!! if you change the downstream algorithm to aggregate # several of these batches, then be sure to do a deepcopy ep_rets = [] ep_true_rets = [] ep_lens = [] i = t % horizon obs[i] = ob vpreds[i] = vpred news[i] = new acs[i] = ac prevacs[i] = prevac rew = reward_giver.get_reward(ob, ac) ob, true_rew, new, _ = env.step(ac) rews[i] = rew true_rews[i] = true_rew cur_ep_ret += rew cur_ep_true_ret += true_rew cur_ep_len += 1 if new: ep_rets.append(cur_ep_ret) ep_true_rets.append(cur_ep_true_ret) ep_lens.append(cur_ep_len) cur_ep_ret = 0 cur_ep_true_ret = 0 cur_ep_len = 0 ob = env.reset() t += 1 def add_vtarg_and_adv(seg, gamma, lam): new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = np.append(seg["vpred"], seg["nextvpred"]) T = len(seg["rew"]) seg["adv"] = gaelam = np.empty(T, 'float32') rew = seg["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-new[t+1] delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamret"] = seg["adv"] + seg["vpred"] def learn(env, policy_func, reward_giver, expert_dataset, rank, pretrained, pretrained_weight, *, g_step, d_step, entcoeff, save_per_iter, ckpt_dir, log_dir, timesteps_per_batch, task_name, gamma, lam, max_kl, cg_iters, cg_damping=1e-2, vf_stepsize=3e-4, d_stepsize=3e-4, vf_iters=3, max_timesteps=0, max_episodes=0, max_iters=0, callback=None ): nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space, reuse=(pretrained_weight != None)) oldpi = policy_func("oldpi", ob_space, ac_space) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = entcoeff * meanent vferr = tf.reduce_mean(tf.square(pi.vpred - ret)) ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = pi.get_trainable_variables() var_list = [v for v in all_var_list if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")] vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")] assert len(var_list) == len(vf_var_list) + 1 d_adam = MpiAdam(reward_giver.get_trainable_variables()) vfadam = MpiAdam(vf_var_list) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start+sz], shape)) start += sz gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) # pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())]) compute_losses = U.function([ob, ac, atarg], losses) compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)]) compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list)) @contextmanager def timed(msg): if rank == 0: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta')) else: yield def allmean(x): assert isinstance(x, np.ndarray) out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers return out U.initialize() th_init = get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) d_adam.sync() vfadam.sync() if rank == 0: print("Init param sum", th_init.sum(), flush=True) # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, reward_giver, timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards true_rewbuffer = deque(maxlen=40) assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1 g_loss_stats = stats(loss_names) d_loss_stats = stats(reward_giver.loss_name) ep_stats = stats(["True_rewards", "Rewards", "Episode_length"]) # if provide pretrained weight if pretrained_weight is not None: U.load_state(pretrained_weight, var_list=pi.get_variables()) while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break # Save model if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None: fname = os.path.join(ckpt_dir, task_name) os.makedirs(os.path.dirname(fname), exist_ok=True) saver = tf.train.Saver() saver.save(tf.get_default_session(), fname) logger.log("********** Iteration %i ************" % iters_so_far) def fisher_vector_product(p): return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p # ------------------ Update G ------------------ logger.log("Optimizing Policy...") for _ in range(g_step): with timed("sampling"): seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy args = seg["ob"], seg["ac"], atarg fvpargs = [arr[::5] for arr in args] assign_old_eq_new() # set old parameter values to new parameter values with timed("computegrad"): *lossbefore, g = compute_lossandgrad(*args) lossbefore = allmean(np.array(lossbefore)) g = allmean(g) if np.allclose(g, 0): logger.log("Got zero gradient. not updating") else: with timed("cg"): stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0) assert np.isfinite(stepdir).all() shs = .5*stepdir.dot(fisher_vector_product(stepdir)) lm = np.sqrt(shs / max_kl) # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g)) fullstep = stepdir / lm expectedimprove = g.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize set_from_flat(thnew) meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve)) if not np.isfinite(meanlosses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl > max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") set_from_flat(thbefore) if nworkers > 1 and iters_so_far % 20 == 0: paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) with timed("vf"): for _ in range(vf_iters): for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), include_final_partial_batch=False, batch_size=128): if hasattr(pi, "ob_rms"): pi.ob_rms.update(mbob) # update running mean/std for policy g = allmean(compute_vflossandgrad(mbob, mbret)) vfadam.update(g, vf_stepsize) g_losses = meanlosses for (lossname, lossval) in zip(loss_names, meanlosses): logger.record_tabular(lossname, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) # ------------------ Update D ------------------ logger.log("Optimizing Discriminator...") logger.log(fmt_row(13, reward_giver.loss_name)) ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob)) batch_size = len(ob) // d_step d_losses = [] # list of tuples, each of which gives the loss for a minibatch for ob_batch, ac_batch in dataset.iterbatches((ob, ac), include_final_partial_batch=False, batch_size=batch_size): ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch)) # update running mean/std for reward_giver if hasattr(reward_giver, "obs_rms"): reward_giver.obs_rms.update(np.concatenate((ob_batch, ob_expert), 0)) *newlosses, g = reward_giver.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert) d_adam.update(allmean(g), d_stepsize) d_losses.append(newlosses) logger.log(fmt_row(13, np.mean(d_losses, axis=0))) lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs)) true_rewbuffer.extend(true_rets) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if rank == 0: logger.dump_tabular() def flatten_lists(listoflists): return [el for list_ in listoflists for el in list_]
''' This code is highly based on https://github.com/carpedm20/deep-rl-tensorflow/blob/master/agents/statistic.py ''' import tensorflow as tf import numpy as np import baselines.common.tf_util as U class stats(): def __init__(self, scalar_keys=[], histogram_keys=[]): self.scalar_keys = scalar_keys self.histogram_keys = histogram_keys self.scalar_summaries = [] self.scalar_summaries_ph = [] self.histogram_summaries_ph = [] self.histogram_summaries = [] with tf.variable_scope('summary'): for k in scalar_keys: ph = tf.placeholder('float32', None, name=k+'.scalar.summary') sm = tf.summary.scalar(k+'.scalar.summary', ph) self.scalar_summaries_ph.append(ph) self.scalar_summaries.append(sm) for k in histogram_keys: ph = tf.placeholder('float32', None, name=k+'.histogram.summary') sm = tf.summary.scalar(k+'.histogram.summary', ph) self.histogram_summaries_ph.append(ph) self.histogram_summaries.append(sm) self.summaries = tf.summary.merge(self.scalar_summaries+self.histogram_summaries) def add_all_summary(self, writer, values, iter): # Note that the order of the incoming ```values``` should be the same as the that of the # ```scalar_keys``` given in ```__init__``` if np.sum(np.isnan(values)+0) != 0: return sess = U.get_session() keys = self.scalar_summaries_ph + self.histogram_summaries_ph feed_dict = {} for k, v in zip(keys, values): feed_dict.update({k: v}) summaries_str = sess.run(self.summaries, feed_dict) writer.add_summary(summaries_str, iter)
''' from baselines/ppo1/mlp_policy.py and add simple modification (1) add reuse argument (2) cache the `stochastic` placeholder ''' import tensorflow as tf import gym import baselines.common.tf_util as U from baselines.common.mpi_running_mean_std import RunningMeanStd from baselines.common.distributions import make_pdtype from baselines.acktr.utils import dense class MlpPolicy(object): recurrent = False def __init__(self, name, reuse=False, *args, **kwargs): with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() self._init(*args, **kwargs) self.scope = tf.get_variable_scope().name def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0))) self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] # change for BC stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self.ac = ac self._act = U.function([stochastic, ob], [ac, self.vpred]) def act(self, stochastic, ob): ac1, vpred1 = self._act(stochastic, ob[None]) return ac1[0], vpred1[0] def get_variables(self): return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope) def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) def get_initial_state(self): return []
''' Data structure of the input .npz: the data is save in python dictionary format with keys: 'acs', 'ep_rets', 'rews', 'obs' the values of each item is a list storing the expert trajectory sequentially a transition can be: (data['obs'][t], data['acs'][t], data['obs'][t+1]) and get reward data['rews'][t] ''' from baselines import logger import numpy as np class Dset(object): def __init__(self, inputs, labels, randomize): self.inputs = inputs self.labels = labels assert len(self.inputs) == len(self.labels) self.randomize = randomize self.num_pairs = len(inputs) self.init_pointer() def init_pointer(self): self.pointer = 0 if self.randomize: idx = np.arange(self.num_pairs) np.random.shuffle(idx) self.inputs = self.inputs[idx, :] self.labels = self.labels[idx, :] def get_next_batch(self, batch_size): # if batch_size is negative -> return all if batch_size < 0: return self.inputs, self.labels if self.pointer + batch_size >= self.num_pairs: self.init_pointer() end = self.pointer + batch_size inputs = self.inputs[self.pointer:end, :] labels = self.labels[self.pointer:end, :] self.pointer = end return inputs, labels class Mujoco_Dset(object): def __init__(self, expert_path, train_fraction=0.7, traj_limitation=-1, randomize=True): traj_data = np.load(expert_path) if traj_limitation < 0: traj_limitation = len(traj_data['obs']) obs = traj_data['obs'][:traj_limitation] acs = traj_data['acs'][:traj_limitation] # obs, acs: shape (N, L, ) + S where N = # episodes, L = episode length # and S is the environment observation/action space. # Flatten to (N * L, prod(S)) if len(obs.shape) > 2: self.obs = np.reshape(obs, [-1, np.prod(obs.shape[2:])]) self.acs = np.reshape(acs, [-1, np.prod(acs.shape[2:])]) else: self.obs = np.vstack(obs) self.acs = np.vstack(acs) self.rets = traj_data['ep_rets'][:traj_limitation] self.avg_ret = sum(self.rets)/len(self.rets) self.std_ret = np.std(np.array(self.rets)) if len(self.acs) > 2: self.acs = np.squeeze(self.acs) assert len(self.obs) == len(self.acs) self.num_traj = min(traj_limitation, len(traj_data['obs'])) self.num_transition = len(self.obs) self.randomize = randomize self.dset = Dset(self.obs, self.acs, self.randomize) # for behavior cloning self.train_set = Dset(self.obs[:int(self.num_transition*train_fraction), :], self.acs[:int(self.num_transition*train_fraction), :], self.randomize) self.val_set = Dset(self.obs[int(self.num_transition*train_fraction):, :], self.acs[int(self.num_transition*train_fraction):, :], self.randomize) self.log_info() def log_info(self): logger.log("Total trajectories: %d" % self.num_traj) logger.log("Total transitions: %d" % self.num_transition) logger.log("Average returns: %f" % self.avg_ret) logger.log("Std for returns: %f" % self.std_ret) def get_next_batch(self, batch_size, split=None): if split is None: return self.dset.get_next_batch(batch_size) elif split == 'train': return self.train_set.get_next_batch(batch_size) elif split == 'val': return self.val_set.get_next_batch(batch_size) else: raise NotImplementedError def plot(self): import matplotlib.pyplot as plt plt.hist(self.rets) plt.savefig("histogram_rets.png") plt.close() def test(expert_path, traj_limitation, plot): dset = Mujoco_Dset(expert_path, traj_limitation=traj_limitation) if plot: dset.plot() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument("--expert_path", type=str, default="../data/deterministic.trpo.Hopper.0.00.npz") parser.add_argument("--traj_limitation", type=int, default=None) parser.add_argument("--plot", type=bool, default=False) args = parser.parse_args() test(args.expert_path, args.traj_limitation, args.plot)
from .monitor import Monitor import gym import json def test_monitor(): import pandas import os import uuid env = gym.make("CartPole-v1") env.seed(0) mon_file = "/tmp/baselines-test-%s.monitor.csv" % uuid.uuid4() menv = Monitor(env, mon_file) menv.reset() for _ in range(1000): _, _, done, _ = menv.step(0) if done: menv.reset() f = open(mon_file, 'rt') firstline = f.readline() assert firstline.startswith('#') metadata = json.loads(firstline[1:]) assert metadata['env_id'] == "CartPole-v1" assert set(metadata.keys()) == {'env_id', 't_start'}, "Incorrect keys in monitor metadata" last_logline = pandas.read_csv(f, index_col=None) assert set(last_logline.keys()) == {'l', 't', 'r'}, "Incorrect keys in monitor logline" f.close() os.remove(mon_file)
__all__ = ['Monitor', 'get_monitor_files', 'load_results'] from gym.core import Wrapper import time from glob import glob import csv import os.path as osp import json class Monitor(Wrapper): EXT = "monitor.csv" f = None def __init__(self, env, filename, allow_early_resets=False, reset_keywords=(), info_keywords=()): Wrapper.__init__(self, env=env) self.tstart = time.time() if filename: self.results_writer = ResultsWriter(filename, header={"t_start": time.time(), 'env_id' : env.spec and env.spec.id}, extra_keys=reset_keywords + info_keywords ) else: self.results_writer = None self.reset_keywords = reset_keywords self.info_keywords = info_keywords self.allow_early_resets = allow_early_resets self.rewards = None self.needs_reset = True self.episode_rewards = [] self.episode_lengths = [] self.episode_times = [] self.total_steps = 0 self.current_reset_info = {} # extra info about the current episode, that was passed in during reset() def reset(self, **kwargs): self.reset_state() for k in self.reset_keywords: v = kwargs.get(k) if v is None: raise ValueError('Expected you to pass kwarg %s into reset'%k) self.current_reset_info[k] = v return self.env.reset(**kwargs) def reset_state(self): if not self.allow_early_resets and not self.needs_reset: raise RuntimeError("Tried to reset an environment before done. If you want to allow early resets, wrap your env with Monitor(env, path, allow_early_resets=True)") self.rewards = [] self.needs_reset = False def step(self, action): if self.needs_reset: raise RuntimeError("Tried to step environment that needs reset") ob, rew, done, info = self.env.step(action) self.update(ob, rew, done, info) return (ob, rew, done, info) def update(self, ob, rew, done, info): self.rewards.append(rew) if done: self.needs_reset = True eprew = sum(self.rewards) eplen = len(self.rewards) epinfo = {"r": round(eprew, 6), "l": eplen, "t": round(time.time() - self.tstart, 6)} for k in self.info_keywords: epinfo[k] = info[k] self.episode_rewards.append(eprew) self.episode_lengths.append(eplen) self.episode_times.append(time.time() - self.tstart) epinfo.update(self.current_reset_info) if self.results_writer: self.results_writer.write_row(epinfo) assert isinstance(info, dict) if isinstance(info, dict): info['episode'] = epinfo self.total_steps += 1 def close(self): super(Monitor, self).close() if self.f is not None: self.f.close() def get_total_steps(self): return self.total_steps def get_episode_rewards(self): return self.episode_rewards def get_episode_lengths(self): return self.episode_lengths def get_episode_times(self): return self.episode_times class LoadMonitorResultsError(Exception): pass class ResultsWriter(object): def __init__(self, filename, header='', extra_keys=()): self.extra_keys = extra_keys assert filename is not None if not filename.endswith(Monitor.EXT): if osp.isdir(filename): filename = osp.join(filename, Monitor.EXT) else: filename = filename + "." + Monitor.EXT self.f = open(filename, "wt") if isinstance(header, dict): header = '# {} \n'.format(json.dumps(header)) self.f.write(header) self.logger = csv.DictWriter(self.f, fieldnames=('r', 'l', 't')+tuple(extra_keys)) self.logger.writeheader() self.f.flush() def write_row(self, epinfo): if self.logger: self.logger.writerow(epinfo) self.f.flush() def get_monitor_files(dir): return glob(osp.join(dir, "*" + Monitor.EXT)) def load_results(dir): import pandas monitor_files = ( glob(osp.join(dir, "*monitor.json")) + glob(osp.join(dir, "*monitor.csv"))) # get both csv and (old) json files if not monitor_files: raise LoadMonitorResultsError("no monitor files of the form *%s found in %s" % (Monitor.EXT, dir)) dfs = [] headers = [] for fname in monitor_files: with open(fname, 'rt') as fh: if fname.endswith('csv'): firstline = fh.readline() if not firstline: continue assert firstline[0] == '#' header = json.loads(firstline[1:]) df = pandas.read_csv(fh, index_col=None) headers.append(header) elif fname.endswith('json'): # Deprecated json format episodes = [] lines = fh.readlines() header = json.loads(lines[0]) headers.append(header) for line in lines[1:]: episode = json.loads(line) episodes.append(episode) df = pandas.DataFrame(episodes) else: assert 0, 'unreachable' df['t'] += header['t_start'] dfs.append(df) df = pandas.concat(dfs) df.sort_values('t', inplace=True) df.reset_index(inplace=True) df['t'] -= min(header['t_start'] for header in headers) df.headers = headers # HACK to preserve backwards compatibility return df
# flake8: noqa F403 from baselines.bench.benchmarks import * from baselines.bench.monitor import *
import re import os SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) _atari7 = ['BeamRider', 'Breakout', 'Enduro', 'Pong', 'Qbert', 'Seaquest', 'SpaceInvaders'] _atariexpl7 = ['Freeway', 'Gravitar', 'MontezumaRevenge', 'Pitfall', 'PrivateEye', 'Solaris', 'Venture'] _BENCHMARKS = [] remove_version_re = re.compile(r'-v\d+$') def register_benchmark(benchmark): for b in _BENCHMARKS: if b['name'] == benchmark['name']: raise ValueError('Benchmark with name %s already registered!' % b['name']) # automatically add a description if it is not present if 'tasks' in benchmark: for t in benchmark['tasks']: if 'desc' not in t: t['desc'] = remove_version_re.sub('', t.get('env_id', t.get('id'))) _BENCHMARKS.append(benchmark) def list_benchmarks(): return [b['name'] for b in _BENCHMARKS] def get_benchmark(benchmark_name): for b in _BENCHMARKS: if b['name'] == benchmark_name: return b raise ValueError('%s not found! Known benchmarks: %s' % (benchmark_name, list_benchmarks())) def get_task(benchmark, env_id): """Get a task by env_id. Return None if the benchmark doesn't have the env""" return next(filter(lambda task: task['env_id'] == env_id, benchmark['tasks']), None) def find_task_for_env_id_in_any_benchmark(env_id): for bm in _BENCHMARKS: for task in bm["tasks"]: if task["env_id"] == env_id: return bm, task return None, None _ATARI_SUFFIX = 'NoFrameskip-v4' register_benchmark({ 'name': 'Atari50M', 'description': '7 Atari games from Mnih et al. (2013), with pixel observations, 50M timesteps', 'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(50e6)} for _game in _atari7] }) register_benchmark({ 'name': 'Atari10M', 'description': '7 Atari games from Mnih et al. (2013), with pixel observations, 10M timesteps', 'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 6, 'num_timesteps': int(10e6)} for _game in _atari7] }) register_benchmark({ 'name': 'Atari1Hr', 'description': '7 Atari games from Mnih et al. (2013), with pixel observations, 1 hour of walltime', 'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_seconds': 60 * 60} for _game in _atari7] }) register_benchmark({ 'name': 'AtariExploration10M', 'description': '7 Atari games emphasizing exploration, with pixel observations, 10M timesteps', 'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atariexpl7] }) # MuJoCo _mujocosmall = [ 'InvertedDoublePendulum-v2', 'InvertedPendulum-v2', 'HalfCheetah-v2', 'Hopper-v2', 'Walker2d-v2', 'Reacher-v2', 'Swimmer-v2'] register_benchmark({ 'name': 'Mujoco1M', 'description': 'Some small 2D MuJoCo tasks, run for 1M timesteps', 'tasks': [{'env_id': _envid, 'trials': 6, 'num_timesteps': int(1e6)} for _envid in _mujocosmall] }) register_benchmark({ 'name': 'MujocoWalkers', 'description': 'MuJoCo forward walkers, run for 8M, humanoid 100M', 'tasks': [ {'env_id': "Hopper-v1", 'trials': 4, 'num_timesteps': 8 * 1000000}, {'env_id': "Walker2d-v1", 'trials': 4, 'num_timesteps': 8 * 1000000}, {'env_id': "Humanoid-v1", 'trials': 4, 'num_timesteps': 100 * 1000000}, ] }) # Bullet _bulletsmall = [ 'InvertedDoublePendulum', 'InvertedPendulum', 'HalfCheetah', 'Reacher', 'Walker2D', 'Hopper', 'Ant' ] _bulletsmall = [e + 'BulletEnv-v0' for e in _bulletsmall] register_benchmark({ 'name': 'Bullet1M', 'description': '6 mujoco-like tasks from bullet, 1M steps', 'tasks': [{'env_id': e, 'trials': 6, 'num_timesteps': int(1e6)} for e in _bulletsmall] }) # Roboschool register_benchmark({ 'name': 'Roboschool8M', 'description': 'Small 2D tasks, up to 30 minutes to complete on 8 cores', 'tasks': [ {'env_id': "RoboschoolReacher-v1", 'trials': 4, 'num_timesteps': 2 * 1000000}, {'env_id': "RoboschoolAnt-v1", 'trials': 4, 'num_timesteps': 8 * 1000000}, {'env_id': "RoboschoolHalfCheetah-v1", 'trials': 4, 'num_timesteps': 8 * 1000000}, {'env_id': "RoboschoolHopper-v1", 'trials': 4, 'num_timesteps': 8 * 1000000}, {'env_id': "RoboschoolWalker2d-v1", 'trials': 4, 'num_timesteps': 8 * 1000000}, ] }) register_benchmark({ 'name': 'RoboschoolHarder', 'description': 'Test your might!!! Up to 12 hours on 32 cores', 'tasks': [ {'env_id': "RoboschoolHumanoid-v1", 'trials': 4, 'num_timesteps': 100 * 1000000}, {'env_id': "RoboschoolHumanoidFlagrun-v1", 'trials': 4, 'num_timesteps': 200 * 1000000}, {'env_id': "RoboschoolHumanoidFlagrunHarder-v1", 'trials': 4, 'num_timesteps': 400 * 1000000}, ] }) # Other _atari50 = [ # actually 47 'Alien', 'Amidar', 'Assault', 'Asterix', 'Asteroids', 'Atlantis', 'BankHeist', 'BattleZone', 'BeamRider', 'Bowling', 'Breakout', 'Centipede', 'ChopperCommand', 'CrazyClimber', 'DemonAttack', 'DoubleDunk', 'Enduro', 'FishingDerby', 'Freeway', 'Frostbite', 'Gopher', 'Gravitar', 'IceHockey', 'Jamesbond', 'Kangaroo', 'Krull', 'KungFuMaster', 'MontezumaRevenge', 'MsPacman', 'NameThisGame', 'Pitfall', 'Pong', 'PrivateEye', 'Qbert', 'RoadRunner', 'Robotank', 'Seaquest', 'SpaceInvaders', 'StarGunner', 'Tennis', 'TimePilot', 'Tutankham', 'UpNDown', 'Venture', 'VideoPinball', 'WizardOfWor', 'Zaxxon', ] register_benchmark({ 'name': 'Atari50_10M', 'description': '47 Atari games from Mnih et al. (2013), with pixel observations, 10M timesteps', 'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atari50] }) # HER DDPG _fetch_tasks = ['FetchReach-v1', 'FetchPush-v1', 'FetchSlide-v1'] register_benchmark({ 'name': 'Fetch1M', 'description': 'Fetch* benchmarks for 1M timesteps', 'tasks': [{'trials': 6, 'env_id': env_id, 'num_timesteps': int(1e6)} for env_id in _fetch_tasks] })
#!/usr/bin/env python3 import os from baselines.common.cmd_util import make_mujoco_env, mujoco_arg_parser from baselines.common import tf_util as U from baselines import logger import gym def train(num_timesteps, seed, model_path=None): env_id = 'Humanoid-v2' from baselines.ppo1 import mlp_policy, pposgd_simple U.make_session(num_cpu=1).__enter__() def policy_fn(name, ob_space, ac_space): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=64, num_hid_layers=2) env = make_mujoco_env(env_id, seed) # parameters below were the best found in a simple random search # these are good enough to make humanoid walk, but whether those are # an absolute best or not is not certain env = RewScale(env, 0.1) logger.log("NOTE: reward will be scaled by a factor of 10 in logged stats. Check the monitor for unscaled reward.") pi = pposgd_simple.learn(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_actorbatch=2048, clip_param=0.1, entcoeff=0.0, optim_epochs=10, optim_stepsize=1e-4, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='constant', ) env.close() if model_path: U.save_state(model_path) return pi class RewScale(gym.RewardWrapper): def __init__(self, env, scale): gym.RewardWrapper.__init__(self, env) self.scale = scale def reward(self, r): return r * self.scale def main(): logger.configure() parser = mujoco_arg_parser() parser.add_argument('--model-path', default=os.path.join(logger.get_dir(), 'humanoid_policy')) parser.set_defaults(num_timesteps=int(5e7)) args = parser.parse_args() if not args.play: # train the model train(num_timesteps=args.num_timesteps, seed=args.seed, model_path=args.model_path) else: # construct the model object, load pre-trained model and render pi = train(num_timesteps=1, seed=args.seed) U.load_state(args.model_path) env = make_mujoco_env('Humanoid-v2', seed=0) ob = env.reset() while True: action = pi.act(stochastic=False, ob=ob)[0] ob, _, done, _ = env.step(action) env.render() if done: ob = env.reset() if __name__ == '__main__': main()
import baselines.common.tf_util as U import tensorflow as tf import gym from baselines.common.distributions import make_pdtype class CnnPolicy(object): recurrent = False def __init__(self, name, ob_space, ac_space, kind='large'): with tf.variable_scope(name): self._init(ob_space, ac_space, kind) self.scope = tf.get_variable_scope().name def _init(self, ob_space, ac_space, kind): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) x = ob / 255.0 if kind == 'small': # from A3C paper x = tf.nn.relu(U.conv2d(x, 16, "l1", [8, 8], [4, 4], pad="VALID")) x = tf.nn.relu(U.conv2d(x, 32, "l2", [4, 4], [2, 2], pad="VALID")) x = U.flattenallbut0(x) x = tf.nn.relu(tf.layers.dense(x, 256, name='lin', kernel_initializer=U.normc_initializer(1.0))) elif kind == 'large': # Nature DQN x = tf.nn.relu(U.conv2d(x, 32, "l1", [8, 8], [4, 4], pad="VALID")) x = tf.nn.relu(U.conv2d(x, 64, "l2", [4, 4], [2, 2], pad="VALID")) x = tf.nn.relu(U.conv2d(x, 64, "l3", [3, 3], [1, 1], pad="VALID")) x = U.flattenallbut0(x) x = tf.nn.relu(tf.layers.dense(x, 512, name='lin', kernel_initializer=U.normc_initializer(1.0))) else: raise NotImplementedError logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(logits) self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))[:,0] self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = self.pd.sample() # XXX self._act = U.function([stochastic, ob], [ac, self.vpred]) def act(self, stochastic, ob): ac1, vpred1 = self._act(stochastic, ob[None]) return ac1[0], vpred1[0] def get_variables(self): return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope) def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) def get_initial_state(self): return []
#!/usr/bin/env python3 from mpi4py import MPI from baselines.common import set_global_seeds from baselines import logger from baselines.common.cmd_util import make_robotics_env, robotics_arg_parser import mujoco_py def train(env_id, num_timesteps, seed): from baselines.ppo1 import mlp_policy, pposgd_simple import baselines.common.tf_util as U rank = MPI.COMM_WORLD.Get_rank() sess = U.single_threaded_session() sess.__enter__() mujoco_py.ignore_mujoco_warnings().__enter__() workerseed = seed + 10000 * rank set_global_seeds(workerseed) env = make_robotics_env(env_id, workerseed, rank=rank) def policy_fn(name, ob_space, ac_space): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=256, num_hid_layers=3) pposgd_simple.learn(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_actorbatch=2048, clip_param=0.2, entcoeff=0.0, optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256, gamma=0.99, lam=0.95, schedule='linear', ) env.close() def main(): args = robotics_arg_parser().parse_args() train(args.env, num_timesteps=args.num_timesteps, seed=args.seed) if __name__ == '__main__': main()
from baselines.common import Dataset, explained_variance, fmt_row, zipsame from baselines import logger import baselines.common.tf_util as U import tensorflow as tf, numpy as np import time from baselines.common.mpi_adam import MpiAdam from baselines.common.mpi_moments import mpi_moments from mpi4py import MPI from collections import deque def traj_segment_generator(pi, env, horizon, stochastic): t = 0 ac = env.action_space.sample() # not used, just so we have the datatype new = True # marks if we're on first timestep of an episode ob = env.reset() cur_ep_ret = 0 # return in current episode cur_ep_len = 0 # len of current episode ep_rets = [] # returns of completed episodes in this segment ep_lens = [] # lengths of ... # Initialize history arrays obs = np.array([ob for _ in range(horizon)]) rews = np.zeros(horizon, 'float32') vpreds = np.zeros(horizon, 'float32') news = np.zeros(horizon, 'int32') acs = np.array([ac for _ in range(horizon)]) prevacs = acs.copy() while True: prevac = ac ac, vpred = pi.act(stochastic, ob) # Slight weirdness here because we need value function at time T # before returning segment [0, T-1] so we get the correct # terminal value if t > 0 and t % horizon == 0: yield {"ob" : obs, "rew" : rews, "vpred" : vpreds, "new" : news, "ac" : acs, "prevac" : prevacs, "nextvpred": vpred * (1 - new), "ep_rets" : ep_rets, "ep_lens" : ep_lens} # Be careful!!! if you change the downstream algorithm to aggregate # several of these batches, then be sure to do a deepcopy ep_rets = [] ep_lens = [] i = t % horizon obs[i] = ob vpreds[i] = vpred news[i] = new acs[i] = ac prevacs[i] = prevac ob, rew, new, _ = env.step(ac) rews[i] = rew cur_ep_ret += rew cur_ep_len += 1 if new: ep_rets.append(cur_ep_ret) ep_lens.append(cur_ep_len) cur_ep_ret = 0 cur_ep_len = 0 ob = env.reset() t += 1 def add_vtarg_and_adv(seg, gamma, lam): """ Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) """ new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = np.append(seg["vpred"], seg["nextvpred"]) T = len(seg["rew"]) seg["adv"] = gaelam = np.empty(T, 'float32') rew = seg["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-new[t+1] delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamret"] = seg["adv"] + seg["vpred"] def learn(env, policy_fn, *, timesteps_per_actorbatch, # timesteps per actor per update clip_param, entcoeff, # clipping parameter epsilon, entropy coeff optim_epochs, optim_stepsize, optim_batchsize,# optimization hypers gamma, lam, # advantage estimation max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0, # time constraint callback=None, # you can do anything in the callback, since it takes locals(), globals() adam_epsilon=1e-5, schedule='constant' # annealing for stepsize parameters (epsilon and adam) ): # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space) # Construct network for new policy oldpi = policy_fn("oldpi", ob_space, ac_space) # Network for old policy atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult = tf.placeholder(name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) pol_entpen = (-entcoeff) * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = - tf.reduce_mean(tf.minimum(surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP) vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret)) total_loss = pol_surr + pol_entpen + vf_loss losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] var_list = pi.get_trainable_variables() lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)]) adam = MpiAdam(var_list, epsilon=adam_epsilon) assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())]) compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses) U.initialize() adam.sync() # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, timesteps_per_actorbatch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards assert sum([max_iters>0, max_timesteps>0, max_episodes>0, max_seconds>0])==1, "Only one time constraint permitted" while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break elif max_seconds and time.time() - tstart >= max_seconds: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError logger.log("********** Iteration %i ************"%iters_so_far) seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), deterministic=pi.recurrent) optim_batchsize = optim_batchsize or ob.shape[0] if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new() # set old parameter values to new parameter values logger.log("Optimizing...") logger.log(fmt_row(13, loss_names)) # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs): losses = [] # list of tuples, each of which gives the loss for a minibatch for batch in d.iterate_once(optim_batchsize): *newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) adam.update(g, optim_stepsize * cur_lrmult) losses.append(newlosses) logger.log(fmt_row(13, np.mean(losses, axis=0))) logger.log("Evaluating losses...") losses = [] for batch in d.iterate_once(optim_batchsize): newlosses = compute_losses(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) losses.append(newlosses) meanlosses,_,_ = mpi_moments(losses, axis=0) logger.log(fmt_row(13, meanlosses)) for (lossval, name) in zipsame(meanlosses, loss_names): logger.record_tabular("loss_"+name, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if MPI.COMM_WORLD.Get_rank()==0: logger.dump_tabular() return pi def flatten_lists(listoflists): return [el for list_ in listoflists for el in list_]
#!/usr/bin/env python3 from baselines.common.cmd_util import make_mujoco_env, mujoco_arg_parser from baselines.common import tf_util as U from baselines import logger def train(env_id, num_timesteps, seed): from baselines.ppo1 import mlp_policy, pposgd_simple U.make_session(num_cpu=1).__enter__() def policy_fn(name, ob_space, ac_space): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=64, num_hid_layers=2) env = make_mujoco_env(env_id, seed) pposgd_simple.learn(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_actorbatch=2048, clip_param=0.2, entcoeff=0.0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear', ) env.close() def main(): args = mujoco_arg_parser().parse_args() logger.configure() train(args.env, num_timesteps=args.num_timesteps, seed=args.seed) if __name__ == '__main__': main()
from baselines.common.mpi_running_mean_std import RunningMeanStd import baselines.common.tf_util as U import tensorflow as tf import gym from baselines.common.distributions import make_pdtype class MlpPolicy(object): recurrent = False def __init__(self, name, *args, **kwargs): with tf.variable_scope(name): self._init(*args, **kwargs) self.scope = tf.get_variable_scope().name def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred]) def act(self, stochastic, ob): ac1, vpred1 = self._act(stochastic, ob[None]) return ac1[0], vpred1[0] def get_variables(self): return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope) def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) def get_initial_state(self): return []
#!/usr/bin/env python3 from mpi4py import MPI from baselines.common import set_global_seeds from baselines import bench import os.path as osp from baselines import logger from baselines.common.atari_wrappers import make_atari, wrap_deepmind from baselines.common.cmd_util import atari_arg_parser def train(env_id, num_timesteps, seed): from baselines.ppo1 import pposgd_simple, cnn_policy import baselines.common.tf_util as U rank = MPI.COMM_WORLD.Get_rank() sess = U.single_threaded_session() sess.__enter__() if rank == 0: logger.configure() else: logger.configure(format_strs=[]) workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() if seed is not None else None set_global_seeds(workerseed) env = make_atari(env_id) def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613 return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space) env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), str(rank))) env.seed(workerseed) env = wrap_deepmind(env) env.seed(workerseed) pposgd_simple.learn(env, policy_fn, max_timesteps=int(num_timesteps * 1.1), timesteps_per_actorbatch=256, clip_param=0.2, entcoeff=0.01, optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear' ) env.close() def main(): args = atari_arg_parser().parse_args() train(args.env, num_timesteps=args.num_timesteps, seed=args.seed) if __name__ == '__main__': main()
import time import functools import numpy as np import tensorflow as tf from baselines import logger from baselines.common import set_global_seeds from baselines.common.policies import build_policy from baselines.common.tf_util import get_session, save_variables, load_variables from baselines.common.vec_env.vec_frame_stack import VecFrameStack from baselines.a2c.utils import batch_to_seq, seq_to_batch from baselines.a2c.utils import cat_entropy_softmax from baselines.a2c.utils import Scheduler, find_trainable_variables from baselines.a2c.utils import EpisodeStats from baselines.a2c.utils import get_by_index, check_shape, avg_norm, gradient_add, q_explained_variance from baselines.acer.buffer import Buffer from baselines.acer.runner import Runner # remove last step def strip(var, nenvs, nsteps, flat = False): vars = batch_to_seq(var, nenvs, nsteps + 1, flat) return seq_to_batch(vars[:-1], flat) def q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma): """ Calculates q_retrace targets :param R: Rewards :param D: Dones :param q_i: Q values for actions taken :param v: V values :param rho_i: Importance weight for each action :return: Q_retrace values """ rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), nenvs, nsteps, True) # list of len steps, shape [nenvs] rs = batch_to_seq(R, nenvs, nsteps, True) # list of len steps, shape [nenvs] ds = batch_to_seq(D, nenvs, nsteps, True) # list of len steps, shape [nenvs] q_is = batch_to_seq(q_i, nenvs, nsteps, True) vs = batch_to_seq(v, nenvs, nsteps + 1, True) v_final = vs[-1] qret = v_final qrets = [] for i in range(nsteps - 1, -1, -1): check_shape([qret, ds[i], rs[i], rho_bar[i], q_is[i], vs[i]], [[nenvs]] * 6) qret = rs[i] + gamma * qret * (1.0 - ds[i]) qrets.append(qret) qret = (rho_bar[i] * (qret - q_is[i])) + vs[i] qrets = qrets[::-1] qret = seq_to_batch(qrets, flat=True) return qret # For ACER with PPO clipping instead of trust region # def clip(ratio, eps_clip): # # assume 0 <= eps_clip <= 1 # return tf.minimum(1 + eps_clip, tf.maximum(1 - eps_clip, ratio)) class Model(object): def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, ent_coef, q_coef, gamma, max_grad_norm, lr, rprop_alpha, rprop_epsilon, total_timesteps, lrschedule, c, trust_region, alpha, delta): sess = get_session() nact = ac_space.n nbatch = nenvs * nsteps A = tf.placeholder(tf.int32, [nbatch]) # actions D = tf.placeholder(tf.float32, [nbatch]) # dones R = tf.placeholder(tf.float32, [nbatch]) # rewards, not returns MU = tf.placeholder(tf.float32, [nbatch, nact]) # mu's LR = tf.placeholder(tf.float32, []) eps = 1e-6 step_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs,) + ob_space.shape) train_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs*(nsteps+1),) + ob_space.shape) with tf.variable_scope('acer_model', reuse=tf.AUTO_REUSE): step_model = policy(nbatch=nenvs, nsteps=1, observ_placeholder=step_ob_placeholder, sess=sess) train_model = policy(nbatch=nbatch, nsteps=nsteps, observ_placeholder=train_ob_placeholder, sess=sess) params = find_trainable_variables("acer_model") print("Params {}".format(len(params))) for var in params: print(var) # create polyak averaged model ema = tf.train.ExponentialMovingAverage(alpha) ema_apply_op = ema.apply(params) def custom_getter(getter, *args, **kwargs): v = ema.average(getter(*args, **kwargs)) print(v.name) return v with tf.variable_scope("acer_model", custom_getter=custom_getter, reuse=True): polyak_model = policy(nbatch=nbatch, nsteps=nsteps, observ_placeholder=train_ob_placeholder, sess=sess) # Notation: (var) = batch variable, (var)s = seqeuence variable, (var)_i = variable index by action at step i # action probability distributions according to train_model, polyak_model and step_model # poilcy.pi is probability distribution parameters; to obtain distribution that sums to 1 need to take softmax train_model_p = tf.nn.softmax(train_model.pi) polyak_model_p = tf.nn.softmax(polyak_model.pi) step_model_p = tf.nn.softmax(step_model.pi) v = tf.reduce_sum(train_model_p * train_model.q, axis = -1) # shape is [nenvs * (nsteps + 1)] # strip off last step f, f_pol, q = map(lambda var: strip(var, nenvs, nsteps), [train_model_p, polyak_model_p, train_model.q]) # Get pi and q values for actions taken f_i = get_by_index(f, A) q_i = get_by_index(q, A) # Compute ratios for importance truncation rho = f / (MU + eps) rho_i = get_by_index(rho, A) # Calculate Q_retrace targets qret = q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma) # Calculate losses # Entropy # entropy = tf.reduce_mean(strip(train_model.pd.entropy(), nenvs, nsteps)) entropy = tf.reduce_mean(cat_entropy_softmax(f)) # Policy Graident loss, with truncated importance sampling & bias correction v = strip(v, nenvs, nsteps, True) check_shape([qret, v, rho_i, f_i], [[nenvs * nsteps]] * 4) check_shape([rho, f, q], [[nenvs * nsteps, nact]] * 2) # Truncated importance sampling adv = qret - v logf = tf.log(f_i + eps) gain_f = logf * tf.stop_gradient(adv * tf.minimum(c, rho_i)) # [nenvs * nsteps] loss_f = -tf.reduce_mean(gain_f) # Bias correction for the truncation adv_bc = (q - tf.reshape(v, [nenvs * nsteps, 1])) # [nenvs * nsteps, nact] logf_bc = tf.log(f + eps) # / (f_old + eps) check_shape([adv_bc, logf_bc], [[nenvs * nsteps, nact]]*2) gain_bc = tf.reduce_sum(logf_bc * tf.stop_gradient(adv_bc * tf.nn.relu(1.0 - (c / (rho + eps))) * f), axis = 1) #IMP: This is sum, as expectation wrt f loss_bc= -tf.reduce_mean(gain_bc) loss_policy = loss_f + loss_bc # Value/Q function loss, and explained variance check_shape([qret, q_i], [[nenvs * nsteps]]*2) ev = q_explained_variance(tf.reshape(q_i, [nenvs, nsteps]), tf.reshape(qret, [nenvs, nsteps])) loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i)*0.5) # Net loss check_shape([loss_policy, loss_q, entropy], [[]] * 3) loss = loss_policy + q_coef * loss_q - ent_coef * entropy if trust_region: g = tf.gradients(- (loss_policy - ent_coef * entropy) * nsteps * nenvs, f) #[nenvs * nsteps, nact] # k = tf.gradients(KL(f_pol || f), f) k = - f_pol / (f + eps) #[nenvs * nsteps, nact] # Directly computed gradient of KL divergence wrt f k_dot_g = tf.reduce_sum(k * g, axis=-1) adj = tf.maximum(0.0, (tf.reduce_sum(k * g, axis=-1) - delta) / (tf.reduce_sum(tf.square(k), axis=-1) + eps)) #[nenvs * nsteps] # Calculate stats (before doing adjustment) for logging. avg_norm_k = avg_norm(k) avg_norm_g = avg_norm(g) avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g)) avg_norm_adj = tf.reduce_mean(tf.abs(adj)) g = g - tf.reshape(adj, [nenvs * nsteps, 1]) * k grads_f = -g/(nenvs*nsteps) # These are turst region adjusted gradients wrt f ie statistics of policy pi grads_policy = tf.gradients(f, params, grads_f) grads_q = tf.gradients(loss_q * q_coef, params) grads = [gradient_add(g1, g2, param) for (g1, g2, param) in zip(grads_policy, grads_q, params)] avg_norm_grads_f = avg_norm(grads_f) * (nsteps * nenvs) norm_grads_q = tf.global_norm(grads_q) norm_grads_policy = tf.global_norm(grads_policy) else: grads = tf.gradients(loss, params) if max_grad_norm is not None: grads, norm_grads = tf.clip_by_global_norm(grads, max_grad_norm) grads = list(zip(grads, params)) trainer = tf.train.RMSPropOptimizer(learning_rate=LR, decay=rprop_alpha, epsilon=rprop_epsilon) _opt_op = trainer.apply_gradients(grads) # so when you call _train, you first do the gradient step, then you apply ema with tf.control_dependencies([_opt_op]): _train = tf.group(ema_apply_op) lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule) # Ops/Summaries to run, and their names for logging run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, ev, norm_grads] names_ops = ['loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc', 'explained_variance', 'norm_grads'] if trust_region: run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g, avg_norm_k_dot_g, avg_norm_adj] names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k', 'avg_norm_g', 'avg_norm_k_dot_g', 'avg_norm_adj'] def train(obs, actions, rewards, dones, mus, states, masks, steps): cur_lr = lr.value_steps(steps) td_map = {train_model.X: obs, polyak_model.X: obs, A: actions, R: rewards, D: dones, MU: mus, LR: cur_lr} if states is not None: td_map[train_model.S] = states td_map[train_model.M] = masks td_map[polyak_model.S] = states td_map[polyak_model.M] = masks return names_ops, sess.run(run_ops, td_map)[1:] # strip off _train def _step(observation, **kwargs): return step_model._evaluate([step_model.action, step_model_p, step_model.state], observation, **kwargs) self.train = train self.save = functools.partial(save_variables, sess=sess) self.load = functools.partial(load_variables, sess=sess) self.train_model = train_model self.step_model = step_model self._step = _step self.step = self.step_model.step self.initial_state = step_model.initial_state tf.global_variables_initializer().run(session=sess) class Acer(): def __init__(self, runner, model, buffer, log_interval): self.runner = runner self.model = model self.buffer = buffer self.log_interval = log_interval self.tstart = None self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv) self.steps = None def call(self, on_policy): runner, model, buffer, steps = self.runner, self.model, self.buffer, self.steps if on_policy: enc_obs, obs, actions, rewards, mus, dones, masks = runner.run() self.episode_stats.feed(rewards, dones) if buffer is not None: buffer.put(enc_obs, actions, rewards, mus, dones, masks) else: # get obs, actions, rewards, mus, dones from buffer. obs, actions, rewards, mus, dones, masks = buffer.get() # reshape stuff correctly obs = obs.reshape(runner.batch_ob_shape) actions = actions.reshape([runner.nbatch]) rewards = rewards.reshape([runner.nbatch]) mus = mus.reshape([runner.nbatch, runner.nact]) dones = dones.reshape([runner.nbatch]) masks = masks.reshape([runner.batch_ob_shape[0]]) names_ops, values_ops = model.train(obs, actions, rewards, dones, mus, model.initial_state, masks, steps) if on_policy and (int(steps/runner.nbatch) % self.log_interval == 0): logger.record_tabular("total_timesteps", steps) logger.record_tabular("fps", int(steps/(time.time() - self.tstart))) # IMP: In EpisodicLife env, during training, we get done=True at each loss of life, not just at the terminal state. # Thus, this is mean until end of life, not end of episode. # For true episode rewards, see the monitor files in the log folder. logger.record_tabular("mean_episode_length", self.episode_stats.mean_length()) logger.record_tabular("mean_episode_reward", self.episode_stats.mean_reward()) for name, val in zip(names_ops, values_ops): logger.record_tabular(name, float(val)) logger.dump_tabular() def learn(network, env, seed=None, nsteps=20, total_timesteps=int(80e6), q_coef=0.5, ent_coef=0.01, max_grad_norm=10, lr=7e-4, lrschedule='linear', rprop_epsilon=1e-5, rprop_alpha=0.99, gamma=0.99, log_interval=100, buffer_size=50000, replay_ratio=4, replay_start=10000, c=10.0, trust_region=True, alpha=0.99, delta=1, load_path=None, **network_kwargs): ''' Main entrypoint for ACER (Actor-Critic with Experience Replay) algorithm (https://arxiv.org/pdf/1611.01224.pdf) Train an agent with given network architecture on a given environment using ACER. Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) (default: 20) nstack: int, size of the frame stack, i.e. number of the frames passed to the step model. Frames are stacked along channel dimension (last image dimension) (default: 4) total_timesteps: int, number of timesteps (i.e. number of actions taken in the environment) (default: 80M) q_coef: float, value function loss coefficient in the optimization objective (analog of vf_coef for other actor-critic methods) ent_coef: float, policy entropy coefficient in the optimization objective (default: 0.01) max_grad_norm: float, gradient norm clipping coefficient. If set to None, no clipping. (default: 10), lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output rprop_epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) rprop_alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting factor (default: 0.99) log_interval: int, number of updates between logging events (default: 100) buffer_size: int, size of the replay buffer (default: 50k) replay_ratio: int, now many (on average) batches of data to sample from the replay buffer take after batch from the environment (default: 4) replay_start: int, the sampling from the replay buffer does not start until replay buffer has at least that many samples (default: 10k) c: float, importance weight clipping factor (default: 10) trust_region bool, whether or not algorithms estimates the gradient KL divergence between the old and updated policy and uses it to determine step size (default: True) delta: float, max KL divergence between the old policy and updated policy (default: 1) alpha: float, momentum factor in the Polyak (exponential moving average) averaging of the model parameters (default: 0.99) load_path: str, path to load the model from (default: None) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' print("Running Acer Simple") print(locals()) set_global_seeds(seed) if not isinstance(env, VecFrameStack): env = VecFrameStack(env, 1) policy = build_policy(env, network, estimate_q=True, **network_kwargs) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space nstack = env.nstack model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, q_coef=q_coef, gamma=gamma, max_grad_norm=max_grad_norm, lr=lr, rprop_alpha=rprop_alpha, rprop_epsilon=rprop_epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, c=c, trust_region=trust_region, alpha=alpha, delta=delta) if load_path is not None: model.load(load_path) runner = Runner(env=env, model=model, nsteps=nsteps) if replay_ratio > 0: buffer = Buffer(env=env, nsteps=nsteps, size=buffer_size) else: buffer = None nbatch = nenvs*nsteps acer = Acer(runner, model, buffer, log_interval) acer.tstart = time.time() for acer.steps in range(0, total_timesteps, nbatch): #nbatch samples, 1 on_policy call and multiple off-policy calls acer.call(on_policy=True) if replay_ratio > 0 and buffer.has_atleast(replay_start): n = np.random.poisson(replay_ratio) for _ in range(n): acer.call(on_policy=False) # no simulation steps in this return model
import numpy as np from baselines.common.runners import AbstractEnvRunner from baselines.common.vec_env.vec_frame_stack import VecFrameStack from gym import spaces class Runner(AbstractEnvRunner): def __init__(self, env, model, nsteps): super().__init__(env=env, model=model, nsteps=nsteps) assert isinstance(env.action_space, spaces.Discrete), 'This ACER implementation works only with discrete action spaces!' assert isinstance(env, VecFrameStack) self.nact = env.action_space.n nenv = self.nenv self.nbatch = nenv * nsteps self.batch_ob_shape = (nenv*(nsteps+1),) + env.observation_space.shape self.obs = env.reset() self.obs_dtype = env.observation_space.dtype self.ac_dtype = env.action_space.dtype self.nstack = self.env.nstack self.nc = self.batch_ob_shape[-1] // self.nstack def run(self): # enc_obs = np.split(self.obs, self.nstack, axis=3) # so now list of obs steps enc_obs = np.split(self.env.stackedobs, self.env.nstack, axis=-1) mb_obs, mb_actions, mb_mus, mb_dones, mb_rewards = [], [], [], [], [] for _ in range(self.nsteps): actions, mus, states = self.model._step(self.obs, S=self.states, M=self.dones) mb_obs.append(np.copy(self.obs)) mb_actions.append(actions) mb_mus.append(mus) mb_dones.append(self.dones) obs, rewards, dones, _ = self.env.step(actions) # states information for statefull models like LSTM self.states = states self.dones = dones self.obs = obs mb_rewards.append(rewards) enc_obs.append(obs[..., -self.nc:]) mb_obs.append(np.copy(self.obs)) mb_dones.append(self.dones) enc_obs = np.asarray(enc_obs, dtype=self.obs_dtype).swapaxes(1, 0) mb_obs = np.asarray(mb_obs, dtype=self.obs_dtype).swapaxes(1, 0) mb_actions = np.asarray(mb_actions, dtype=self.ac_dtype).swapaxes(1, 0) mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0) mb_mus = np.asarray(mb_mus, dtype=np.float32).swapaxes(1, 0) mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0) mb_masks = mb_dones # Used for statefull models like LSTM's to mask state when done mb_dones = mb_dones[:, 1:] # Used for calculating returns. The dones array is now aligned with rewards # shapes are now [nenv, nsteps, []] # When pulling from buffer, arrays will now be reshaped in place, preventing a deep copy. return enc_obs, mb_obs, mb_actions, mb_rewards, mb_mus, mb_dones, mb_masks
import numpy as np class Buffer(object): # gets obs, actions, rewards, mu's, (states, masks), dones def __init__(self, env, nsteps, size=50000): self.nenv = env.num_envs self.nsteps = nsteps # self.nh, self.nw, self.nc = env.observation_space.shape self.obs_shape = env.observation_space.shape self.obs_dtype = env.observation_space.dtype self.ac_dtype = env.action_space.dtype self.nc = self.obs_shape[-1] self.nstack = env.nstack self.nc //= self.nstack self.nbatch = self.nenv * self.nsteps self.size = size // (self.nsteps) # Each loc contains nenv * nsteps frames, thus total buffer is nenv * size frames # Memory self.enc_obs = None self.actions = None self.rewards = None self.mus = None self.dones = None self.masks = None # Size indexes self.next_idx = 0 self.num_in_buffer = 0 def has_atleast(self, frames): # Frames per env, so total (nenv * frames) Frames needed # Each buffer loc has nenv * nsteps frames return self.num_in_buffer >= (frames // self.nsteps) def can_sample(self): return self.num_in_buffer > 0 # Generate stacked frames def decode(self, enc_obs, dones): # enc_obs has shape [nenvs, nsteps + nstack, nh, nw, nc] # dones has shape [nenvs, nsteps] # returns stacked obs of shape [nenv, (nsteps + 1), nh, nw, nstack*nc] return _stack_obs(enc_obs, dones, nsteps=self.nsteps) def put(self, enc_obs, actions, rewards, mus, dones, masks): # enc_obs [nenv, (nsteps + nstack), nh, nw, nc] # actions, rewards, dones [nenv, nsteps] # mus [nenv, nsteps, nact] if self.enc_obs is None: self.enc_obs = np.empty([self.size] + list(enc_obs.shape), dtype=self.obs_dtype) self.actions = np.empty([self.size] + list(actions.shape), dtype=self.ac_dtype) self.rewards = np.empty([self.size] + list(rewards.shape), dtype=np.float32) self.mus = np.empty([self.size] + list(mus.shape), dtype=np.float32) self.dones = np.empty([self.size] + list(dones.shape), dtype=np.bool) self.masks = np.empty([self.size] + list(masks.shape), dtype=np.bool) self.enc_obs[self.next_idx] = enc_obs self.actions[self.next_idx] = actions self.rewards[self.next_idx] = rewards self.mus[self.next_idx] = mus self.dones[self.next_idx] = dones self.masks[self.next_idx] = masks self.next_idx = (self.next_idx + 1) % self.size self.num_in_buffer = min(self.size, self.num_in_buffer + 1) def take(self, x, idx, envx): nenv = self.nenv out = np.empty([nenv] + list(x.shape[2:]), dtype=x.dtype) for i in range(nenv): out[i] = x[idx[i], envx[i]] return out def get(self): # returns # obs [nenv, (nsteps + 1), nh, nw, nstack*nc] # actions, rewards, dones [nenv, nsteps] # mus [nenv, nsteps, nact] nenv = self.nenv assert self.can_sample() # Sample exactly one id per env. If you sample across envs, then higher correlation in samples from same env. idx = np.random.randint(0, self.num_in_buffer, nenv) envx = np.arange(nenv) take = lambda x: self.take(x, idx, envx) # for i in range(nenv)], axis = 0) dones = take(self.dones) enc_obs = take(self.enc_obs) obs = self.decode(enc_obs, dones) actions = take(self.actions) rewards = take(self.rewards) mus = take(self.mus) masks = take(self.masks) return obs, actions, rewards, mus, dones, masks def _stack_obs_ref(enc_obs, dones, nsteps): nenv = enc_obs.shape[0] nstack = enc_obs.shape[1] - nsteps nh, nw, nc = enc_obs.shape[2:] obs_dtype = enc_obs.dtype obs_shape = (nh, nw, nc*nstack) mask = np.empty([nsteps + nstack - 1, nenv, 1, 1, 1], dtype=np.float32) obs = np.zeros([nstack, nsteps + nstack, nenv, nh, nw, nc], dtype=obs_dtype) x = np.reshape(enc_obs, [nenv, nsteps + nstack, nh, nw, nc]).swapaxes(1, 0) # [nsteps + nstack, nenv, nh, nw, nc] mask[nstack-1:] = np.reshape(1.0 - dones, [nenv, nsteps, 1, 1, 1]).swapaxes(1, 0) # keep mask[:nstack-1] = 1.0 # y = np.reshape(1 - dones, [nenvs, nsteps, 1, 1, 1]) for i in range(nstack): obs[-(i + 1), i:] = x # obs[:,i:,:,:,-(i+1),:] = x x = x[:-1] * mask mask = mask[1:] return np.reshape(obs[:, (nstack-1):].transpose((2, 1, 3, 4, 0, 5)), (nenv, (nsteps + 1)) + obs_shape) def _stack_obs(enc_obs, dones, nsteps): nenv = enc_obs.shape[0] nstack = enc_obs.shape[1] - nsteps nc = enc_obs.shape[-1] obs_ = np.zeros((nenv, nsteps + 1) + enc_obs.shape[2:-1] + (enc_obs.shape[-1] * nstack, ), dtype=enc_obs.dtype) mask = np.ones((nenv, nsteps+1), dtype=enc_obs.dtype) mask[:, 1:] = 1.0 - dones mask = mask.reshape(mask.shape + tuple(np.ones(len(enc_obs.shape)-2, dtype=np.uint8))) for i in range(nstack-1, -1, -1): obs_[..., i * nc : (i + 1) * nc] = enc_obs[:, i : i + nsteps + 1, :] if i < nstack-1: obs_[..., i * nc : (i + 1) * nc] *= mask mask[:, 1:, ...] *= mask[:, :-1, ...] return obs_ def test_stack_obs(): nstack = 7 nenv = 1 nsteps = 5 obs_shape = (2, 3, nstack) enc_obs_shape = (nenv, nsteps + nstack) + obs_shape[:-1] + (1,) enc_obs = np.random.random(enc_obs_shape) dones = np.random.randint(low=0, high=2, size=(nenv, nsteps)) stacked_obs_ref = _stack_obs_ref(enc_obs, dones, nsteps=nsteps) stacked_obs_test = _stack_obs(enc_obs, dones, nsteps=nsteps) np.testing.assert_allclose(stacked_obs_ref, stacked_obs_test)
def atari(): return dict( lrschedule='constant' )
import numpy as np import tensorflow as tf from baselines.common.policies import nature_cnn from baselines.a2c.utils import fc, batch_to_seq, seq_to_batch, lstm, sample class AcerCnnPolicy(object): def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False): nbatch = nenv * nsteps nh, nw, nc = ob_space.shape ob_shape = (nbatch, nh, nw, nc * nstack) nact = ac_space.n X = tf.placeholder(tf.uint8, ob_shape) # obs with tf.variable_scope("model", reuse=reuse): h = nature_cnn(X) pi_logits = fc(h, 'pi', nact, init_scale=0.01) pi = tf.nn.softmax(pi_logits) q = fc(h, 'q', nact) a = sample(tf.nn.softmax(pi_logits)) # could change this to use self.pi instead self.initial_state = [] # not stateful self.X = X self.pi = pi # actual policy params now self.pi_logits = pi_logits self.q = q self.vf = q def step(ob, *args, **kwargs): # returns actions, mus, states a0, pi0 = sess.run([a, pi], {X: ob}) return a0, pi0, [] # dummy state def out(ob, *args, **kwargs): pi0, q0 = sess.run([pi, q], {X: ob}) return pi0, q0 def act(ob, *args, **kwargs): return sess.run(a, {X: ob}) self.step = step self.out = out self.act = act class AcerLstmPolicy(object): def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False, nlstm=256): nbatch = nenv * nsteps nh, nw, nc = ob_space.shape ob_shape = (nbatch, nh, nw, nc * nstack) nact = ac_space.n X = tf.placeholder(tf.uint8, ob_shape) # obs M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states with tf.variable_scope("model", reuse=reuse): h = nature_cnn(X) # lstm xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm) h5 = seq_to_batch(h5) pi_logits = fc(h5, 'pi', nact, init_scale=0.01) pi = tf.nn.softmax(pi_logits) q = fc(h5, 'q', nact) a = sample(pi_logits) # could change this to use self.pi instead self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32) self.X = X self.M = M self.S = S self.pi = pi # actual policy params now self.q = q def step(ob, state, mask, *args, **kwargs): # returns actions, mus, states a0, pi0, s = sess.run([a, pi, snew], {X: ob, S: state, M: mask}) return a0, pi0, s self.step = step
import tensorflow as tf from baselines.common.models import get_network_builder class Model(object): def __init__(self, name, network='mlp', **network_kwargs): self.name = name self.network_builder = get_network_builder(network)(**network_kwargs) @property def vars(self): return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name) @property def trainable_vars(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name) @property def perturbable_vars(self): return [var for var in self.trainable_vars if 'LayerNorm' not in var.name] class Actor(Model): def __init__(self, nb_actions, name='actor', network='mlp', **network_kwargs): super().__init__(name=name, network=network, **network_kwargs) self.nb_actions = nb_actions def __call__(self, obs, reuse=False): with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): x = self.network_builder(obs) x = tf.layers.dense(x, self.nb_actions, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3)) x = tf.nn.tanh(x) return x class Critic(Model): def __init__(self, name='critic', network='mlp', **network_kwargs): super().__init__(name=name, network=network, **network_kwargs) self.layer_norm = True def __call__(self, obs, action, reuse=False): with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): x = tf.concat([obs, action], axis=-1) # this assumes observation and action can be concatenated x = self.network_builder(x) x = tf.layers.dense(x, 1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3), name='output') return x @property def output_vars(self): output_vars = [var for var in self.trainable_vars if 'output' in var.name] return output_vars
import numpy as np class RingBuffer(object): def __init__(self, maxlen, shape, dtype='float32'): self.maxlen = maxlen self.start = 0 self.length = 0 self.data = np.zeros((maxlen,) + shape).astype(dtype) def __len__(self): return self.length def __getitem__(self, idx): if idx < 0 or idx >= self.length: raise KeyError() return self.data[(self.start + idx) % self.maxlen] def get_batch(self, idxs): return self.data[(self.start + idxs) % self.maxlen] def append(self, v): if self.length < self.maxlen: # We have space, simply increase the length. self.length += 1 elif self.length == self.maxlen: # No space, "remove" the first item. self.start = (self.start + 1) % self.maxlen else: # This should never happen. raise RuntimeError() self.data[(self.start + self.length - 1) % self.maxlen] = v def array_min2d(x): x = np.array(x) if x.ndim >= 2: return x return x.reshape(-1, 1) class Memory(object): def __init__(self, limit, action_shape, observation_shape): self.limit = limit self.observations0 = RingBuffer(limit, shape=observation_shape) self.actions = RingBuffer(limit, shape=action_shape) self.rewards = RingBuffer(limit, shape=(1,)) self.terminals1 = RingBuffer(limit, shape=(1,)) self.observations1 = RingBuffer(limit, shape=observation_shape) def sample(self, batch_size): # Draw such that we always have a proceeding element. batch_idxs = np.random.randint(self.nb_entries - 2, size=batch_size) obs0_batch = self.observations0.get_batch(batch_idxs) obs1_batch = self.observations1.get_batch(batch_idxs) action_batch = self.actions.get_batch(batch_idxs) reward_batch = self.rewards.get_batch(batch_idxs) terminal1_batch = self.terminals1.get_batch(batch_idxs) result = { 'obs0': array_min2d(obs0_batch), 'obs1': array_min2d(obs1_batch), 'rewards': array_min2d(reward_batch), 'actions': array_min2d(action_batch), 'terminals1': array_min2d(terminal1_batch), } return result def append(self, obs0, action, reward, obs1, terminal1, training=True): if not training: return self.observations0.append(obs0) self.actions.append(action) self.rewards.append(reward) self.observations1.append(obs1) self.terminals1.append(terminal1) @property def nb_entries(self): return len(self.observations0)
from copy import copy from functools import reduce import numpy as np import tensorflow as tf import tensorflow.contrib as tc from baselines import logger from baselines.common.mpi_adam import MpiAdam import baselines.common.tf_util as U from baselines.common.mpi_running_mean_std import RunningMeanStd try: from mpi4py import MPI except ImportError: MPI = None def normalize(x, stats): if stats is None: return x return (x - stats.mean) / (stats.std + 1e-8) def denormalize(x, stats): if stats is None: return x return x * stats.std + stats.mean def reduce_std(x, axis=None, keepdims=False): return tf.sqrt(reduce_var(x, axis=axis, keepdims=keepdims)) def reduce_var(x, axis=None, keepdims=False): m = tf.reduce_mean(x, axis=axis, keepdims=True) devs_squared = tf.square(x - m) return tf.reduce_mean(devs_squared, axis=axis, keepdims=keepdims) def get_target_updates(vars, target_vars, tau): logger.info('setting up target updates ...') soft_updates = [] init_updates = [] assert len(vars) == len(target_vars) for var, target_var in zip(vars, target_vars): logger.info(' {} <- {}'.format(target_var.name, var.name)) init_updates.append(tf.assign(target_var, var)) soft_updates.append(tf.assign(target_var, (1. - tau) * target_var + tau * var)) assert len(init_updates) == len(vars) assert len(soft_updates) == len(vars) return tf.group(*init_updates), tf.group(*soft_updates) def get_perturbed_actor_updates(actor, perturbed_actor, param_noise_stddev): assert len(actor.vars) == len(perturbed_actor.vars) assert len(actor.perturbable_vars) == len(perturbed_actor.perturbable_vars) updates = [] for var, perturbed_var in zip(actor.vars, perturbed_actor.vars): if var in actor.perturbable_vars: logger.info(' {} <- {} + noise'.format(perturbed_var.name, var.name)) updates.append(tf.assign(perturbed_var, var + tf.random_normal(tf.shape(var), mean=0., stddev=param_noise_stddev))) else: logger.info(' {} <- {}'.format(perturbed_var.name, var.name)) updates.append(tf.assign(perturbed_var, var)) assert len(updates) == len(actor.vars) return tf.group(*updates) class DDPG(object): def __init__(self, actor, critic, memory, observation_shape, action_shape, param_noise=None, action_noise=None, gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True, batch_size=128, observation_range=(-5., 5.), action_range=(-1., 1.), return_range=(-np.inf, np.inf), critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.): # Inputs. self.obs0 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs0') self.obs1 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs1') self.terminals1 = tf.placeholder(tf.float32, shape=(None, 1), name='terminals1') self.rewards = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.actions = tf.placeholder(tf.float32, shape=(None,) + action_shape, name='actions') self.critic_target = tf.placeholder(tf.float32, shape=(None, 1), name='critic_target') self.param_noise_stddev = tf.placeholder(tf.float32, shape=(), name='param_noise_stddev') # Parameters. self.gamma = gamma self.tau = tau self.memory = memory self.normalize_observations = normalize_observations self.normalize_returns = normalize_returns self.action_noise = action_noise self.param_noise = param_noise self.action_range = action_range self.return_range = return_range self.observation_range = observation_range self.critic = critic self.actor = actor self.actor_lr = actor_lr self.critic_lr = critic_lr self.clip_norm = clip_norm self.enable_popart = enable_popart self.reward_scale = reward_scale self.batch_size = batch_size self.stats_sample = None self.critic_l2_reg = critic_l2_reg # Observation normalization. if self.normalize_observations: with tf.variable_scope('obs_rms'): self.obs_rms = RunningMeanStd(shape=observation_shape) else: self.obs_rms = None normalized_obs0 = tf.clip_by_value(normalize(self.obs0, self.obs_rms), self.observation_range[0], self.observation_range[1]) normalized_obs1 = tf.clip_by_value(normalize(self.obs1, self.obs_rms), self.observation_range[0], self.observation_range[1]) # Return normalization. if self.normalize_returns: with tf.variable_scope('ret_rms'): self.ret_rms = RunningMeanStd() else: self.ret_rms = None # Create target networks. target_actor = copy(actor) target_actor.name = 'target_actor' self.target_actor = target_actor target_critic = copy(critic) target_critic.name = 'target_critic' self.target_critic = target_critic # Create networks and core TF parts that are shared across setup parts. self.actor_tf = actor(normalized_obs0) self.normalized_critic_tf = critic(normalized_obs0, self.actions) self.critic_tf = denormalize(tf.clip_by_value(self.normalized_critic_tf, self.return_range[0], self.return_range[1]), self.ret_rms) self.normalized_critic_with_actor_tf = critic(normalized_obs0, self.actor_tf, reuse=True) self.critic_with_actor_tf = denormalize(tf.clip_by_value(self.normalized_critic_with_actor_tf, self.return_range[0], self.return_range[1]), self.ret_rms) Q_obs1 = denormalize(target_critic(normalized_obs1, target_actor(normalized_obs1)), self.ret_rms) self.target_Q = self.rewards + (1. - self.terminals1) * gamma * Q_obs1 # Set up parts. if self.param_noise is not None: self.setup_param_noise(normalized_obs0) self.setup_actor_optimizer() self.setup_critic_optimizer() if self.normalize_returns and self.enable_popart: self.setup_popart() self.setup_stats() self.setup_target_network_updates() self.initial_state = None # recurrent architectures not supported yet def setup_target_network_updates(self): actor_init_updates, actor_soft_updates = get_target_updates(self.actor.vars, self.target_actor.vars, self.tau) critic_init_updates, critic_soft_updates = get_target_updates(self.critic.vars, self.target_critic.vars, self.tau) self.target_init_updates = [actor_init_updates, critic_init_updates] self.target_soft_updates = [actor_soft_updates, critic_soft_updates] def setup_param_noise(self, normalized_obs0): assert self.param_noise is not None # Configure perturbed actor. param_noise_actor = copy(self.actor) param_noise_actor.name = 'param_noise_actor' self.perturbed_actor_tf = param_noise_actor(normalized_obs0) logger.info('setting up param noise') self.perturb_policy_ops = get_perturbed_actor_updates(self.actor, param_noise_actor, self.param_noise_stddev) # Configure separate copy for stddev adoption. adaptive_param_noise_actor = copy(self.actor) adaptive_param_noise_actor.name = 'adaptive_param_noise_actor' adaptive_actor_tf = adaptive_param_noise_actor(normalized_obs0) self.perturb_adaptive_policy_ops = get_perturbed_actor_updates(self.actor, adaptive_param_noise_actor, self.param_noise_stddev) self.adaptive_policy_distance = tf.sqrt(tf.reduce_mean(tf.square(self.actor_tf - adaptive_actor_tf))) def setup_actor_optimizer(self): logger.info('setting up actor optimizer') self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf) actor_shapes = [var.get_shape().as_list() for var in self.actor.trainable_vars] actor_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in actor_shapes]) logger.info(' actor shapes: {}'.format(actor_shapes)) logger.info(' actor params: {}'.format(actor_nb_params)) self.actor_grads = U.flatgrad(self.actor_loss, self.actor.trainable_vars, clip_norm=self.clip_norm) self.actor_optimizer = MpiAdam(var_list=self.actor.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_critic_optimizer(self): logger.info('setting up critic optimizer') normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1]) self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf)) if self.critic_l2_reg > 0.: critic_reg_vars = [var for var in self.critic.trainable_vars if var.name.endswith('/w:0') and 'output' not in var.name] for var in critic_reg_vars: logger.info(' regularizing: {}'.format(var.name)) logger.info(' applying l2 regularization with {}'.format(self.critic_l2_reg)) critic_reg = tc.layers.apply_regularization( tc.layers.l2_regularizer(self.critic_l2_reg), weights_list=critic_reg_vars ) self.critic_loss += critic_reg critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars] critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes]) logger.info(' critic shapes: {}'.format(critic_shapes)) logger.info(' critic params: {}'.format(critic_nb_params)) self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm) self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_popart(self): # See https://arxiv.org/pdf/1602.07714.pdf for details. self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std') new_std = self.ret_rms.std self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean') new_mean = self.ret_rms.mean self.renormalize_Q_outputs_op = [] for vs in [self.critic.output_vars, self.target_critic.output_vars]: assert len(vs) == 2 M, b = vs assert 'kernel' in M.name assert 'bias' in b.name assert M.get_shape()[-1] == 1 assert b.get_shape()[-1] == 1 self.renormalize_Q_outputs_op += [M.assign(M * self.old_std / new_std)] self.renormalize_Q_outputs_op += [b.assign((b * self.old_std + self.old_mean - new_mean) / new_std)] def setup_stats(self): ops = [] names = [] if self.normalize_returns: ops += [self.ret_rms.mean, self.ret_rms.std] names += ['ret_rms_mean', 'ret_rms_std'] if self.normalize_observations: ops += [tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std)] names += ['obs_rms_mean', 'obs_rms_std'] ops += [tf.reduce_mean(self.critic_tf)] names += ['reference_Q_mean'] ops += [reduce_std(self.critic_tf)] names += ['reference_Q_std'] ops += [tf.reduce_mean(self.critic_with_actor_tf)] names += ['reference_actor_Q_mean'] ops += [reduce_std(self.critic_with_actor_tf)] names += ['reference_actor_Q_std'] ops += [tf.reduce_mean(self.actor_tf)] names += ['reference_action_mean'] ops += [reduce_std(self.actor_tf)] names += ['reference_action_std'] if self.param_noise: ops += [tf.reduce_mean(self.perturbed_actor_tf)] names += ['reference_perturbed_action_mean'] ops += [reduce_std(self.perturbed_actor_tf)] names += ['reference_perturbed_action_std'] self.stats_ops = ops self.stats_names = names def step(self, obs, apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: actor_tf = self.perturbed_actor_tf else: actor_tf = self.actor_tf feed_dict = {self.obs0: U.adjust_shape(self.obs0, [obs])} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None if self.action_noise is not None and apply_noise: noise = self.action_noise() assert noise.shape == action[0].shape action += noise action = np.clip(action, self.action_range[0], self.action_range[1]) return action, q, None, None def store_transition(self, obs0, action, reward, obs1, terminal1): reward *= self.reward_scale B = obs0.shape[0] for b in range(B): self.memory.append(obs0[b], action[b], reward[b], obs1[b], terminal1[b]) if self.normalize_observations: self.obs_rms.update(np.array([obs0[b]])) def train(self): # Get a batch. batch = self.memory.sample(batch_size=self.batch_size) if self.normalize_returns and self.enable_popart: old_mean, old_std, target_Q = self.sess.run([self.ret_rms.mean, self.ret_rms.std, self.target_Q], feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) self.ret_rms.update(target_Q.flatten()) self.sess.run(self.renormalize_Q_outputs_op, feed_dict={ self.old_std : np.array([old_std]), self.old_mean : np.array([old_mean]), }) # Run sanity check. Disabled by default since it slows down things considerably. # print('running sanity check') # target_Q_new, new_mean, new_std = self.sess.run([self.target_Q, self.ret_rms.mean, self.ret_rms.std], feed_dict={ # self.obs1: batch['obs1'], # self.rewards: batch['rewards'], # self.terminals1: batch['terminals1'].astype('float32'), # }) # print(target_Q_new, target_Q, new_mean, new_std) # assert (np.abs(target_Q - target_Q_new) < 1e-3).all() else: target_Q = self.sess.run(self.target_Q, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) # Get all gradients and perform a synced update. ops = [self.actor_grads, self.actor_loss, self.critic_grads, self.critic_loss] actor_grads, actor_loss, critic_grads, critic_loss = self.sess.run(ops, feed_dict={ self.obs0: batch['obs0'], self.actions: batch['actions'], self.critic_target: target_Q, }) self.actor_optimizer.update(actor_grads, stepsize=self.actor_lr) self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr) return critic_loss, actor_loss def initialize(self, sess): self.sess = sess self.sess.run(tf.global_variables_initializer()) self.actor_optimizer.sync() self.critic_optimizer.sync() self.sess.run(self.target_init_updates) def update_target_net(self): self.sess.run(self.target_soft_updates) def get_stats(self): if self.stats_sample is None: # Get a sample and keep that fixed for all further computations. # This allows us to estimate the change in value for the same set of inputs. self.stats_sample = self.memory.sample(batch_size=self.batch_size) values = self.sess.run(self.stats_ops, feed_dict={ self.obs0: self.stats_sample['obs0'], self.actions: self.stats_sample['actions'], }) names = self.stats_names[:] assert len(names) == len(values) stats = dict(zip(names, values)) if self.param_noise is not None: stats = {**stats, **self.param_noise.get_stats()} return stats def adapt_param_noise(self): try: from mpi4py import MPI except ImportError: MPI = None if self.param_noise is None: return 0. # Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation. batch = self.memory.sample(batch_size=self.batch_size) self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) distance = self.sess.run(self.adaptive_policy_distance, feed_dict={ self.obs0: batch['obs0'], self.param_noise_stddev: self.param_noise.current_stddev, }) if MPI is not None: mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size() else: mean_distance = distance self.param_noise.adapt(mean_distance) return mean_distance def reset(self): # Reset internal state after an episode is complete. if self.action_noise is not None: self.action_noise.reset() if self.param_noise is not None: self.sess.run(self.perturb_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, })
from baselines.common.tests.util import smoketest def _run(argstr): smoketest('--alg=ddpg --env=Pendulum-v0 --num_timesteps=0 ' + argstr) def test_popart(): _run('--normalize_returns=True --popart=True') def test_noise_normal(): _run('--noise_type=normal_0.1') def test_noise_ou(): _run('--noise_type=ou_0.1') def test_noise_adaptive(): _run('--noise_type=adaptive-param_0.2,normal_0.1')
import numpy as np class AdaptiveParamNoiseSpec(object): def __init__(self, initial_stddev=0.1, desired_action_stddev=0.1, adoption_coefficient=1.01): self.initial_stddev = initial_stddev self.desired_action_stddev = desired_action_stddev self.adoption_coefficient = adoption_coefficient self.current_stddev = initial_stddev def adapt(self, distance): if distance > self.desired_action_stddev: # Decrease stddev. self.current_stddev /= self.adoption_coefficient else: # Increase stddev. self.current_stddev *= self.adoption_coefficient def get_stats(self): stats = { 'param_noise_stddev': self.current_stddev, } return stats def __repr__(self): fmt = 'AdaptiveParamNoiseSpec(initial_stddev={}, desired_action_stddev={}, adoption_coefficient={})' return fmt.format(self.initial_stddev, self.desired_action_stddev, self.adoption_coefficient) class ActionNoise(object): def reset(self): pass class NormalActionNoise(ActionNoise): def __init__(self, mu, sigma): self.mu = mu self.sigma = sigma def __call__(self): return np.random.normal(self.mu, self.sigma) def __repr__(self): return 'NormalActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma) # Based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab class OrnsteinUhlenbeckActionNoise(ActionNoise): def __init__(self, mu, sigma, theta=.15, dt=1e-2, x0=None): self.theta = theta self.mu = mu self.sigma = sigma self.dt = dt self.x0 = x0 self.reset() def __call__(self): x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape) self.x_prev = x return x def reset(self): self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu) def __repr__(self): return 'OrnsteinUhlenbeckActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
import os import time from collections import deque import pickle from baselines.ddpg.ddpg_learner import DDPG from baselines.ddpg.models import Actor, Critic from baselines.ddpg.memory import Memory from baselines.ddpg.noise import AdaptiveParamNoiseSpec, NormalActionNoise, OrnsteinUhlenbeckActionNoise from baselines.common import set_global_seeds import baselines.common.tf_util as U from baselines import logger import numpy as np try: from mpi4py import MPI except ImportError: MPI = None def learn(network, env, seed=None, total_timesteps=None, nb_epochs=None, # with default settings, perform 1M steps total nb_epoch_cycles=20, nb_rollout_steps=100, reward_scale=1.0, render=False, render_eval=False, noise_type='adaptive-param_0.2', normalize_returns=False, normalize_observations=True, critic_l2_reg=1e-2, actor_lr=1e-4, critic_lr=1e-3, popart=False, gamma=0.99, clip_norm=None, nb_train_steps=50, # per epoch cycle and MPI worker, nb_eval_steps=100, batch_size=64, # per MPI worker tau=0.01, eval_env=None, param_noise_adaption_interval=50, **network_kwargs): set_global_seeds(seed) if total_timesteps is not None: assert nb_epochs is None nb_epochs = int(total_timesteps) // (nb_epoch_cycles * nb_rollout_steps) else: nb_epochs = 500 if MPI is not None: rank = MPI.COMM_WORLD.Get_rank() else: rank = 0 nb_actions = env.action_space.shape[-1] assert (np.abs(env.action_space.low) == env.action_space.high).all() # we assume symmetric actions. memory = Memory(limit=int(1e6), action_shape=env.action_space.shape, observation_shape=env.observation_space.shape) critic = Critic(network=network, **network_kwargs) actor = Actor(nb_actions, network=network, **network_kwargs) action_noise = None param_noise = None if noise_type is not None: for current_noise_type in noise_type.split(','): current_noise_type = current_noise_type.strip() if current_noise_type == 'none': pass elif 'adaptive-param' in current_noise_type: _, stddev = current_noise_type.split('_') param_noise = AdaptiveParamNoiseSpec(initial_stddev=float(stddev), desired_action_stddev=float(stddev)) elif 'normal' in current_noise_type: _, stddev = current_noise_type.split('_') action_noise = NormalActionNoise(mu=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions)) elif 'ou' in current_noise_type: _, stddev = current_noise_type.split('_') action_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions)) else: raise RuntimeError('unknown noise type "{}"'.format(current_noise_type)) max_action = env.action_space.high logger.info('scaling actions by {} before executing in env'.format(max_action)) agent = DDPG(actor, critic, memory, env.observation_space.shape, env.action_space.shape, gamma=gamma, tau=tau, normalize_returns=normalize_returns, normalize_observations=normalize_observations, batch_size=batch_size, action_noise=action_noise, param_noise=param_noise, critic_l2_reg=critic_l2_reg, actor_lr=actor_lr, critic_lr=critic_lr, enable_popart=popart, clip_norm=clip_norm, reward_scale=reward_scale) logger.info('Using agent with the following configuration:') logger.info(str(agent.__dict__.items())) eval_episode_rewards_history = deque(maxlen=100) episode_rewards_history = deque(maxlen=100) sess = U.get_session() # Prepare everything. agent.initialize(sess) sess.graph.finalize() agent.reset() obs = env.reset() if eval_env is not None: eval_obs = eval_env.reset() nenvs = obs.shape[0] episode_reward = np.zeros(nenvs, dtype = np.float32) #vector episode_step = np.zeros(nenvs, dtype = int) # vector episodes = 0 #scalar t = 0 # scalar epoch = 0 start_time = time.time() epoch_episode_rewards = [] epoch_episode_steps = [] epoch_actions = [] epoch_qs = [] epoch_episodes = 0 for epoch in range(nb_epochs): for cycle in range(nb_epoch_cycles): # Perform rollouts. if nenvs > 1: # if simulating multiple envs in parallel, impossible to reset agent at the end of the episode in each # of the environments, so resetting here instead agent.reset() for t_rollout in range(nb_rollout_steps): # Predict next action. action, q, _, _ = agent.step(obs, apply_noise=True, compute_Q=True) # Execute next action. if rank == 0 and render: env.render() # max_action is of dimension A, whereas action is dimension (nenvs, A) - the multiplication gets broadcasted to the batch new_obs, r, done, info = env.step(max_action * action) # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1]) # note these outputs are batched from vecenv t += 1 if rank == 0 and render: env.render() episode_reward += r episode_step += 1 # Book-keeping. epoch_actions.append(action) epoch_qs.append(q) agent.store_transition(obs, action, r, new_obs, done) #the batched data will be unrolled in memory.py's append. obs = new_obs for d in range(len(done)): if done[d]: # Episode done. epoch_episode_rewards.append(episode_reward[d]) episode_rewards_history.append(episode_reward[d]) epoch_episode_steps.append(episode_step[d]) episode_reward[d] = 0. episode_step[d] = 0 epoch_episodes += 1 episodes += 1 if nenvs == 1: agent.reset() # Train. epoch_actor_losses = [] epoch_critic_losses = [] epoch_adaptive_distances = [] for t_train in range(nb_train_steps): # Adapt param noise, if necessary. if memory.nb_entries >= batch_size and t_train % param_noise_adaption_interval == 0: distance = agent.adapt_param_noise() epoch_adaptive_distances.append(distance) cl, al = agent.train() epoch_critic_losses.append(cl) epoch_actor_losses.append(al) agent.update_target_net() # Evaluate. eval_episode_rewards = [] eval_qs = [] if eval_env is not None: nenvs_eval = eval_obs.shape[0] eval_episode_reward = np.zeros(nenvs_eval, dtype = np.float32) for t_rollout in range(nb_eval_steps): eval_action, eval_q, _, _ = agent.step(eval_obs, apply_noise=False, compute_Q=True) eval_obs, eval_r, eval_done, eval_info = eval_env.step(max_action * eval_action) # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1]) if render_eval: eval_env.render() eval_episode_reward += eval_r eval_qs.append(eval_q) for d in range(len(eval_done)): if eval_done[d]: eval_episode_rewards.append(eval_episode_reward[d]) eval_episode_rewards_history.append(eval_episode_reward[d]) eval_episode_reward[d] = 0.0 if MPI is not None: mpi_size = MPI.COMM_WORLD.Get_size() else: mpi_size = 1 # Log stats. # XXX shouldn't call np.mean on variable length lists duration = time.time() - start_time stats = agent.get_stats() combined_stats = stats.copy() combined_stats['rollout/return'] = np.mean(epoch_episode_rewards) combined_stats['rollout/return_std'] = np.std(epoch_episode_rewards) combined_stats['rollout/return_history'] = np.mean(episode_rewards_history) combined_stats['rollout/return_history_std'] = np.std(episode_rewards_history) combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps) combined_stats['rollout/actions_mean'] = np.mean(epoch_actions) combined_stats['rollout/Q_mean'] = np.mean(epoch_qs) combined_stats['train/loss_actor'] = np.mean(epoch_actor_losses) combined_stats['train/loss_critic'] = np.mean(epoch_critic_losses) combined_stats['train/param_noise_distance'] = np.mean(epoch_adaptive_distances) combined_stats['total/duration'] = duration combined_stats['total/steps_per_second'] = float(t) / float(duration) combined_stats['total/episodes'] = episodes combined_stats['rollout/episodes'] = epoch_episodes combined_stats['rollout/actions_std'] = np.std(epoch_actions) # Evaluation statistics. if eval_env is not None: combined_stats['eval/return'] = eval_episode_rewards combined_stats['eval/return_history'] = np.mean(eval_episode_rewards_history) combined_stats['eval/Q'] = eval_qs combined_stats['eval/episodes'] = len(eval_episode_rewards) def as_scalar(x): if isinstance(x, np.ndarray): assert x.size == 1 return x[0] elif np.isscalar(x): return x else: raise ValueError('expected scalar, got %s'%x) combined_stats_sums = np.array([ np.array(x).flatten()[0] for x in combined_stats.values()]) if MPI is not None: combined_stats_sums = MPI.COMM_WORLD.allreduce(combined_stats_sums) combined_stats = {k : v / mpi_size for (k,v) in zip(combined_stats.keys(), combined_stats_sums)} # Total statistics. combined_stats['total/epochs'] = epoch + 1 combined_stats['total/steps'] = t for key in sorted(combined_stats.keys()): logger.record_tabular(key, combined_stats[key]) if rank == 0: logger.dump_tabular() logger.info('') logdir = logger.get_dir() if rank == 0 and logdir: if hasattr(env, 'get_state'): with open(os.path.join(logdir, 'env_state.pkl'), 'wb') as f: pickle.dump(env.get_state(), f) if eval_env and hasattr(eval_env, 'get_state'): with open(os.path.join(logdir, 'eval_env_state.pkl'), 'wb') as f: pickle.dump(eval_env.get_state(), f) return agent
import numpy as np def tile_images(img_nhwc): """ Tile N images into one big PxQ image (P,Q) are chosen to be as close as possible, and if N is square, then P=Q. input: img_nhwc, list or array of images, ndim=4 once turned into array n = batch index, h = height, w = width, c = channel returns: bigim_HWc, ndarray with ndim=3 """ img_nhwc = np.asarray(img_nhwc) N, h, w, c = img_nhwc.shape H = int(np.ceil(np.sqrt(N))) W = int(np.ceil(float(N)/H)) img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)]) img_HWhwc = img_nhwc.reshape(H, W, h, w, c) img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4) img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c) return img_Hh_Ww_c
from mpi4py import MPI import numpy as np from baselines.common import zipsame def mpi_mean(x, axis=0, comm=None, keepdims=False): x = np.asarray(x) assert x.ndim > 0 if comm is None: comm = MPI.COMM_WORLD xsum = x.sum(axis=axis, keepdims=keepdims) n = xsum.size localsum = np.zeros(n+1, x.dtype) localsum[:n] = xsum.ravel() localsum[n] = x.shape[axis] # globalsum = np.zeros_like(localsum) # comm.Allreduce(localsum, globalsum, op=MPI.SUM) globalsum = comm.allreduce(localsum, op=MPI.SUM) return globalsum[:n].reshape(xsum.shape) / globalsum[n], globalsum[n] def mpi_moments(x, axis=0, comm=None, keepdims=False): x = np.asarray(x) assert x.ndim > 0 mean, count = mpi_mean(x, axis=axis, comm=comm, keepdims=True) sqdiffs = np.square(x - mean) meansqdiff, count1 = mpi_mean(sqdiffs, axis=axis, comm=comm, keepdims=True) assert count1 == count std = np.sqrt(meansqdiff) if not keepdims: newshape = mean.shape[:axis] + mean.shape[axis+1:] mean = mean.reshape(newshape) std = std.reshape(newshape) return mean, std, count def test_runningmeanstd(): import subprocess subprocess.check_call(['mpirun', '-np', '3', 'python','-c', 'from baselines.common.mpi_moments import _helper_runningmeanstd; _helper_runningmeanstd()']) def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
import numpy as np def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10): """ Demmel p 312 """ p = b.copy() r = b.copy() x = np.zeros_like(b) rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g" titlestr = "%10s %10s %10s" if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters): if callback is not None: callback(x) if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x))) z = f_Ax(p) v = rdotr / p.dot(z) x += v*p r -= v*z newrdotr = r.dot(r) mu = newrdotr/rdotr p = r + mu*p rdotr = newrdotr if rdotr < residual_tol: break if callback is not None: callback(x) if verbose: print(fmtstr % (i+1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631 return x
import numpy as np import tensorflow as tf from baselines.a2c import utils from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch from baselines.common.mpi_running_mean_std import RunningMeanStd mapping = {} def register(name): def _thunk(func): mapping[name] = func return func return _thunk def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) def build_impala_cnn(unscaled_images, depths=[16,32,32], **conv_kwargs): """ Model used in the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561 """ layer_num = 0 def get_layer_num_str(): nonlocal layer_num num_str = str(layer_num) layer_num += 1 return num_str def conv_layer(out, depth): return tf.layers.conv2d(out, depth, 3, padding='same', name='layer_' + get_layer_num_str()) def residual_block(inputs): depth = inputs.get_shape()[-1].value out = tf.nn.relu(inputs) out = conv_layer(out, depth) out = tf.nn.relu(out) out = conv_layer(out, depth) return out + inputs def conv_sequence(inputs, depth): out = conv_layer(inputs, depth) out = tf.layers.max_pooling2d(out, pool_size=3, strides=2, padding='same') out = residual_block(out) out = residual_block(out) return out out = tf.cast(unscaled_images, tf.float32) / 255. for depth in depths: out = conv_sequence(out, depth) out = tf.layers.flatten(out) out = tf.nn.relu(out) out = tf.layers.dense(out, 256, activation=tf.nn.relu, name='layer_' + get_layer_num_str()) return out @register("mlp") def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False): """ Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder """ def network_fn(X): h = tf.layers.flatten(X) for i in range(num_layers): h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)) if layer_norm: h = tf.contrib.layers.layer_norm(h, center=True, scale=True) h = activation(h) return h return network_fn @register("cnn") def cnn(**conv_kwargs): def network_fn(X): return nature_cnn(X, **conv_kwargs) return network_fn @register("impala_cnn") def impala_cnn(**conv_kwargs): def network_fn(X): return build_impala_cnn(X) return network_fn @register("cnn_small") def cnn_small(**conv_kwargs): def network_fn(X): h = tf.cast(X, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(h, 'c1', nf=8, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h = activ(conv(h, 'c2', nf=16, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h = conv_to_fc(h) h = activ(fc(h, 'fc1', nh=128, init_scale=np.sqrt(2))) return h return network_fn @register("lstm") def lstm(nlstm=128, layer_norm=False): """ Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder """ def network_fn(X, nenv=1): nbatch = X.shape[0] nsteps = nbatch // nenv h = tf.layers.flatten(X) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) if layer_norm: h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm) else: h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm) h = seq_to_batch(h5) initial_state = np.zeros(S.shape.as_list(), dtype=float) return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state} return network_fn @register("cnn_lstm") def cnn_lstm(nlstm=128, layer_norm=False, conv_fn=nature_cnn, **conv_kwargs): def network_fn(X, nenv=1): nbatch = X.shape[0] nsteps = nbatch // nenv h = conv_fn(X, **conv_kwargs) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) if layer_norm: h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm) else: h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm) h = seq_to_batch(h5) initial_state = np.zeros(S.shape.as_list(), dtype=float) return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state} return network_fn @register("impala_cnn_lstm") def impala_cnn_lstm(): return cnn_lstm(nlstm=256, conv_fn=build_impala_cnn) @register("cnn_lnlstm") def cnn_lnlstm(nlstm=128, **conv_kwargs): return cnn_lstm(nlstm, layer_norm=True, **conv_kwargs) @register("conv_only") def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs): ''' convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer ''' def network_fn(X): out = tf.cast(X, tf.float32) / 255. with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = tf.contrib.layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu, **conv_kwargs) return out return network_fn def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms def get_network_builder(name): """ If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn """ if callable(name): return name elif name in mapping: return mapping[name] else: raise ValueError('Unknown network type: {}'.format(name))
import gym import numpy as np import os import pickle import random import tempfile import zipfile def zipsame(*seqs): L = len(seqs[0]) assert all(len(seq) == L for seq in seqs[1:]) return zip(*seqs) class EzPickle(object): """Objects that are pickled and unpickled via their constructor arguments. Example usage: class Dog(Animal, EzPickle): def __init__(self, furcolor, tailkind="bushy"): Animal.__init__() EzPickle.__init__(furcolor, tailkind) ... When this object is unpickled, a new Dog will be constructed by passing the provided furcolor and tailkind into the constructor. However, philosophers are still not sure whether it is still the same dog. This is generally needed only for environments which wrap C/C++ code, such as MuJoCo and Atari. """ def __init__(self, *args, **kwargs): self._ezpickle_args = args self._ezpickle_kwargs = kwargs def __getstate__(self): return {"_ezpickle_args": self._ezpickle_args, "_ezpickle_kwargs": self._ezpickle_kwargs} def __setstate__(self, d): out = type(self)(*d["_ezpickle_args"], **d["_ezpickle_kwargs"]) self.__dict__.update(out.__dict__) def set_global_seeds(i): try: import MPI rank = MPI.COMM_WORLD.Get_rank() except ImportError: rank = 0 myseed = i + 1000 * rank if i is not None else None try: import tensorflow as tf tf.set_random_seed(myseed) except ImportError: pass np.random.seed(myseed) random.seed(myseed) def pretty_eta(seconds_left): """Print the number of seconds in human readable format. Examples: 2 days 2 hours and 37 minutes less than a minute Paramters --------- seconds_left: int Number of seconds to be converted to the ETA Returns ------- eta: str String representing the pretty ETA. """ minutes_left = seconds_left // 60 seconds_left %= 60 hours_left = minutes_left // 60 minutes_left %= 60 days_left = hours_left // 24 hours_left %= 24 def helper(cnt, name): return "{} {}{}".format(str(cnt), name, ('s' if cnt > 1 else '')) if days_left > 0: msg = helper(days_left, 'day') if hours_left > 0: msg += ' and ' + helper(hours_left, 'hour') return msg if hours_left > 0: msg = helper(hours_left, 'hour') if minutes_left > 0: msg += ' and ' + helper(minutes_left, 'minute') return msg if minutes_left > 0: return helper(minutes_left, 'minute') return 'less than a minute' class RunningAvg(object): def __init__(self, gamma, init_value=None): """Keep a running estimate of a quantity. This is a bit like mean but more sensitive to recent changes. Parameters ---------- gamma: float Must be between 0 and 1, where 0 is the most sensitive to recent changes. init_value: float or None Initial value of the estimate. If None, it will be set on the first update. """ self._value = init_value self._gamma = gamma def update(self, new_val): """Update the estimate. Parameters ---------- new_val: float new observated value of estimated quantity. """ if self._value is None: self._value = new_val else: self._value = self._gamma * self._value + (1.0 - self._gamma) * new_val def __float__(self): """Get the current estimate""" return self._value def boolean_flag(parser, name, default=False, help=None): """Add a boolean flag to argparse parser. Parameters ---------- parser: argparse.Parser parser to add the flag to name: str --<name> will enable the flag, while --no-<name> will disable it default: bool or None default value of the flag help: str help string for the flag """ dest = name.replace('-', '_') parser.add_argument("--" + name, action="store_true", default=default, dest=dest, help=help) parser.add_argument("--no-" + name, action="store_false", dest=dest) def get_wrapper_by_name(env, classname): """Given an a gym environment possibly wrapped multiple times, returns a wrapper of class named classname or raises ValueError if no such wrapper was applied Parameters ---------- env: gym.Env of gym.Wrapper gym environment classname: str name of the wrapper Returns ------- wrapper: gym.Wrapper wrapper named classname """ currentenv = env while True: if classname == currentenv.class_name(): return currentenv elif isinstance(currentenv, gym.Wrapper): currentenv = currentenv.env else: raise ValueError("Couldn't find wrapper named %s" % classname) def relatively_safe_pickle_dump(obj, path, compression=False): """This is just like regular pickle dump, except from the fact that failure cases are different: - It's never possible that we end up with a pickle in corrupted state. - If a there was a different file at the path, that file will remain unchanged in the even of failure (provided that filesystem rename is atomic). - it is sometimes possible that we end up with useless temp file which needs to be deleted manually (it will be removed automatically on the next function call) The indended use case is periodic checkpoints of experiment state, such that we never corrupt previous checkpoints if the current one fails. Parameters ---------- obj: object object to pickle path: str path to the output file compression: bool if true pickle will be compressed """ temp_storage = path + ".relatively_safe" if compression: # Using gzip here would be simpler, but the size is limited to 2GB with tempfile.NamedTemporaryFile() as uncompressed_file: pickle.dump(obj, uncompressed_file) uncompressed_file.file.flush() with zipfile.ZipFile(temp_storage, "w", compression=zipfile.ZIP_DEFLATED) as myzip: myzip.write(uncompressed_file.name, "data") else: with open(temp_storage, "wb") as f: pickle.dump(obj, f) os.rename(temp_storage, path) def pickle_load(path, compression=False): """Unpickle a possible compressed pickle. Parameters ---------- path: str path to the output file compression: bool if true assumes that pickle was compressed when created and attempts decompression. Returns ------- obj: object the unpickled object """ if compression: with zipfile.ZipFile(path, "r", compression=zipfile.ZIP_DEFLATED) as myzip: with myzip.open("data") as f: return pickle.load(f) else: with open(path, "rb") as f: return pickle.load(f)
""" Helpers for scripts like run_atari.py. """ import os try: from mpi4py import MPI except ImportError: MPI = None import gym from gym.wrappers import FlattenObservation, FilterObservation from baselines import logger from baselines.bench import Monitor from baselines.common import set_global_seeds from baselines.common.atari_wrappers import make_atari, wrap_deepmind from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv from baselines.common.vec_env.dummy_vec_env import DummyVecEnv from baselines.common import retro_wrappers from baselines.common.wrappers import ClipActionsWrapper def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, env_kwargs=None, start_index=0, reward_scale=1.0, flatten_dict_observations=True, gamestate=None, initializer=None, force_dummy=False): """ Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo. """ wrapper_kwargs = wrapper_kwargs or {} env_kwargs = env_kwargs or {} mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0 seed = seed + 10000 * mpi_rank if seed is not None else None logger_dir = logger.get_dir() def make_thunk(rank, initializer=None): return lambda: make_env( env_id=env_id, env_type=env_type, mpi_rank=mpi_rank, subrank=rank, seed=seed, reward_scale=reward_scale, gamestate=gamestate, flatten_dict_observations=flatten_dict_observations, wrapper_kwargs=wrapper_kwargs, env_kwargs=env_kwargs, logger_dir=logger_dir, initializer=initializer ) set_global_seeds(seed) if not force_dummy and num_env > 1: return SubprocVecEnv([make_thunk(i + start_index, initializer=initializer) for i in range(num_env)]) else: return DummyVecEnv([make_thunk(i + start_index, initializer=None) for i in range(num_env)]) def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.0, gamestate=None, flatten_dict_observations=True, wrapper_kwargs=None, env_kwargs=None, logger_dir=None, initializer=None): if initializer is not None: initializer(mpi_rank=mpi_rank, subrank=subrank) wrapper_kwargs = wrapper_kwargs or {} env_kwargs = env_kwargs or {} if ':' in env_id: import re import importlib module_name = re.sub(':.*','',env_id) env_id = re.sub('.*:', '', env_id) importlib.import_module(module_name) if env_type == 'atari': env = make_atari(env_id) elif env_type == 'retro': import retro gamestate = gamestate or retro.State.DEFAULT env = retro_wrappers.make_retro(game=env_id, max_episode_steps=10000, use_restricted_actions=retro.Actions.DISCRETE, state=gamestate) else: env = gym.make(env_id, **env_kwargs) if flatten_dict_observations and isinstance(env.observation_space, gym.spaces.Dict): env = FlattenObservation(env) env.seed(seed + subrank if seed is not None else None) env = Monitor(env, logger_dir and os.path.join(logger_dir, str(mpi_rank) + '.' + str(subrank)), allow_early_resets=True) if env_type == 'atari': env = wrap_deepmind(env, **wrapper_kwargs) elif env_type == 'retro': if 'frame_stack' not in wrapper_kwargs: wrapper_kwargs['frame_stack'] = 1 env = retro_wrappers.wrap_deepmind_retro(env, **wrapper_kwargs) if isinstance(env.action_space, gym.spaces.Box): env = ClipActionsWrapper(env) if reward_scale != 1: env = retro_wrappers.RewardScaler(env, reward_scale) return env def make_mujoco_env(env_id, seed, reward_scale=1.0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ rank = MPI.COMM_WORLD.Get_rank() myseed = seed + 1000 * rank if seed is not None else None set_global_seeds(myseed) env = gym.make(env_id) logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank)) env = Monitor(env, logger_path, allow_early_resets=True) env.seed(seed) if reward_scale != 1.0: from baselines.common.retro_wrappers import RewardScaler env = RewardScaler(env, reward_scale) return env def make_robotics_env(env_id, seed, rank=0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ set_global_seeds(seed) env = gym.make(env_id) env = FlattenObservation(FilterObservation(env, ['observation', 'desired_goal'])) env = Monitor( env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)), info_keywords=('is_success',)) env.seed(seed) return env def arg_parser(): """ Create an empty argparse.ArgumentParser. """ import argparse return argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) def atari_arg_parser(): """ Create an argparse.ArgumentParser for run_atari.py. """ print('Obsolete - use common_arg_parser instead') return common_arg_parser() def mujoco_arg_parser(): print('Obsolete - use common_arg_parser instead') return common_arg_parser() def common_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--env_type', help='type of environment, used when the environment type cannot be automatically determined', type=str) parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2') parser.add_argument('--num_timesteps', type=float, default=1e6), parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm, conv_only)', default=None) parser.add_argument('--gamestate', help='game state to load (so far only used in retro games)', default=None) parser.add_argument('--num_env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int) parser.add_argument('--reward_scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float) parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str) parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int) parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int) parser.add_argument('--log_path', help='Directory to save learning curve data.', default=None, type=str) parser.add_argument('--play', default=False, action='store_true') return parser def robotics_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='FetchReach-v0') parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--num-timesteps', type=int, default=int(1e6)) return parser def parse_unknown_args(args): """ Parse arguments not consumed by arg parser into a dictionary """ retval = {} preceded_by_key = False for arg in args: if arg.startswith('--'): if '=' in arg: key = arg.split('=')[0][2:] value = arg.split('=')[1] retval[key] = value else: key = arg[2:] preceded_by_key = True elif preceded_by_key: retval[key] = arg preceded_by_key = False return retval
import numpy as np import os os.environ.setdefault('PATH', '') from collections import deque import gym from gym import spaces import cv2 cv2.ocl.setUseOpenCL(False) from .wrappers import TimeLimit class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset(**kwargs) if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condition for a few frames # so it's important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env, skip=4): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8) self._skip = skip def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class ClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class WarpFrame(gym.ObservationWrapper): def __init__(self, env, width=84, height=84, grayscale=True, dict_space_key=None): """ Warp frames to 84x84 as done in the Nature paper and later work. If the environment uses dictionary observations, `dict_space_key` can be specified which indicates which observation should be warped. """ super().__init__(env) self._width = width self._height = height self._grayscale = grayscale self._key = dict_space_key if self._grayscale: num_colors = 1 else: num_colors = 3 new_space = gym.spaces.Box( low=0, high=255, shape=(self._height, self._width, num_colors), dtype=np.uint8, ) if self._key is None: original_space = self.observation_space self.observation_space = new_space else: original_space = self.observation_space.spaces[self._key] self.observation_space.spaces[self._key] = new_space assert original_space.dtype == np.uint8 and len(original_space.shape) == 3 def observation(self, obs): if self._key is None: frame = obs else: frame = obs[self._key] if self._grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize( frame, (self._width, self._height), interpolation=cv2.INTER_AREA ) if self._grayscale: frame = np.expand_dims(frame, -1) if self._key is None: obs = frame else: obs = obs.copy() obs[self._key] = frame return obs class FrameStack(gym.Wrapper): def __init__(self, env, k): """Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k return LazyFrames(list(self.frames)) class ScaledFloatFrame(gym.ObservationWrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32) def observation(self, observation): # careful! This undoes the memory optimization, use # with smaller replay buffers only. return np.array(observation).astype(np.float32) / 255.0 class LazyFrames(object): def __init__(self, frames): """This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. You'd not believe how complex the previous solution was.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=-1) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i] def count(self): frames = self._force() return frames.shape[frames.ndim - 1] def frame(self, i): return self._force()[..., i] def make_atari(env_id, max_episode_steps=None): env = gym.make(env_id) assert 'NoFrameskip' in env.spec.id env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) if max_episode_steps is not None: env = TimeLimit(env, max_episode_steps=max_episode_steps) return env def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env
import baselines.common.tf_util as U import tensorflow as tf import numpy as np try: from mpi4py import MPI except ImportError: MPI = None class MpiAdam(object): def __init__(self, var_list, *, beta1=0.9, beta2=0.999, epsilon=1e-08, scale_grad_by_procs=True, comm=None): self.var_list = var_list self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.scale_grad_by_procs = scale_grad_by_procs size = sum(U.numel(v) for v in var_list) self.m = np.zeros(size, 'float32') self.v = np.zeros(size, 'float32') self.t = 0 self.setfromflat = U.SetFromFlat(var_list) self.getflat = U.GetFlat(var_list) self.comm = MPI.COMM_WORLD if comm is None and MPI is not None else comm def update(self, localg, stepsize): if self.t % 100 == 0: self.check_synced() localg = localg.astype('float32') if self.comm is not None: globalg = np.zeros_like(localg) self.comm.Allreduce(localg, globalg, op=MPI.SUM) if self.scale_grad_by_procs: globalg /= self.comm.Get_size() else: globalg = np.copy(localg) self.t += 1 a = stepsize * np.sqrt(1 - self.beta2**self.t)/(1 - self.beta1**self.t) self.m = self.beta1 * self.m + (1 - self.beta1) * globalg self.v = self.beta2 * self.v + (1 - self.beta2) * (globalg * globalg) step = (- a) * self.m / (np.sqrt(self.v) + self.epsilon) self.setfromflat(self.getflat() + step) def sync(self): if self.comm is None: return theta = self.getflat() self.comm.Bcast(theta, root=0) self.setfromflat(theta) def check_synced(self): if self.comm is None: return if self.comm.Get_rank() == 0: # this is root theta = self.getflat() self.comm.Bcast(theta, root=0) else: thetalocal = self.getflat() thetaroot = np.empty_like(thetalocal) self.comm.Bcast(thetaroot, root=0) assert (thetaroot == thetalocal).all(), (thetaroot, thetalocal) @U.in_session def test_MpiAdam(): np.random.seed(0) tf.set_random_seed(0) a = tf.Variable(np.random.randn(3).astype('float32')) b = tf.Variable(np.random.randn(2,5).astype('float32')) loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b)) stepsize = 1e-2 update_op = tf.train.AdamOptimizer(stepsize).minimize(loss) do_update = U.function([], loss, updates=[update_op]) tf.get_default_session().run(tf.global_variables_initializer()) losslist_ref = [] for i in range(10): l = do_update() print(i, l) losslist_ref.append(l) tf.set_random_seed(0) tf.get_default_session().run(tf.global_variables_initializer()) var_list = [a,b] lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)]) adam = MpiAdam(var_list) losslist_test = [] for i in range(10): l,g = lossandgrad() adam.update(g, stepsize) print(i,l) losslist_test.append(l) np.testing.assert_allclose(np.array(losslist_ref), np.array(losslist_test), atol=1e-4) if __name__ == '__main__': test_MpiAdam()
# flake8: noqa F403 from baselines.common.console_util import * from baselines.common.dataset import Dataset from baselines.common.math_util import * from baselines.common.misc_util import *
from __future__ import print_function from contextlib import contextmanager import numpy as np import time import shlex import subprocess # ================================================================ # Misc # ================================================================ def fmt_row(width, row, header=False): out = " | ".join(fmt_item(x, width) for x in row) if header: out = out + "\n" + "-"*len(out) return out def fmt_item(x, l): if isinstance(x, np.ndarray): assert x.ndim==0 x = x.item() if isinstance(x, (float, np.float32, np.float64)): v = abs(x) if (v < 1e-4 or v > 1e+4) and v > 0: rep = "%7.2e" % x else: rep = "%7.5f" % x else: rep = str(x) return " "*(l - len(rep)) + rep color2num = dict( gray=30, red=31, green=32, yellow=33, blue=34, magenta=35, cyan=36, white=37, crimson=38 ) def colorize(string, color='green', bold=False, highlight=False): attr = [] num = color2num[color] if highlight: num += 10 attr.append(str(num)) if bold: attr.append('1') return '\x1b[%sm%s\x1b[0m' % (';'.join(attr), string) def print_cmd(cmd, dry=False): if isinstance(cmd, str): # for shell=True pass else: cmd = ' '.join(shlex.quote(arg) for arg in cmd) print(colorize(('CMD: ' if not dry else 'DRY: ') + cmd)) def get_git_commit(cwd=None): return subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD'], cwd=cwd).decode('utf8') def get_git_commit_message(cwd=None): return subprocess.check_output(['git', 'show', '-s', '--format=%B', 'HEAD'], cwd=cwd).decode('utf8') def ccap(cmd, dry=False, env=None, **kwargs): print_cmd(cmd, dry) if not dry: subprocess.check_call(cmd, env=env, **kwargs) MESSAGE_DEPTH = 0 @contextmanager def timed(msg): global MESSAGE_DEPTH #pylint: disable=W0603 print(colorize('\t'*MESSAGE_DEPTH + '=: ' + msg, color='magenta')) tstart = time.time() MESSAGE_DEPTH += 1 yield MESSAGE_DEPTH -= 1 print(colorize('\t'*MESSAGE_DEPTH + "done in %.3f seconds"%(time.time() - tstart), color='magenta'))
import numpy as np import tensorflow as tf # pylint: ignore-module import copy import os import functools import collections import multiprocessing def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation. """ x_shape = copy.copy(then_expression.get_shape()) x = tf.cond(tf.cast(condition, 'bool'), lambda: then_expression, lambda: else_expression) x.set_shape(x_shape) return x # ================================================================ # Extras # ================================================================ def lrelu(x, leak=0.2): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x) # ================================================================ # Mathematical utils # ================================================================ def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return tf.where( tf.abs(x) < delta, tf.square(x) * 0.5, delta * (tf.abs(x) - 0.5 * delta) ) # ================================================================ # Global session # ================================================================ def get_session(config=None): """Get default session or create one with a given config""" sess = tf.get_default_session() if sess is None: sess = make_session(config=config, make_default=True) return sess def make_session(config=None, num_cpu=None, make_default=False, graph=None): """Returns a session that will use <num_cpu> CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) if config is None: config = tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) config.gpu_options.allow_growth = True if make_default: return tf.InteractiveSession(config=config, graph=graph) else: return tf.Session(config=config, graph=graph) def single_threaded_session(): """Returns a session which will only use a single CPU""" return make_session(num_cpu=1) def in_session(f): @functools.wraps(f) def newfunc(*args, **kwargs): with tf.Session(): f(*args, **kwargs) return newfunc ALREADY_INITIALIZED = set() def initialize(): """Initialize all the uninitialized variables in the global scope.""" new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED get_session().run(tf.variables_initializer(new_variables)) ALREADY_INITIALIZED.update(new_variables) # ================================================================ # Model components # ================================================================ def normc_initializer(std=1.0, axis=0): def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613 out = np.random.randn(*shape).astype(dtype.as_numpy_dtype) out *= std / np.sqrt(np.square(out).sum(axis=axis, keepdims=True)) return tf.constant(out) return _initializer def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None, summary_tag=None): with tf.variable_scope(name): stride_shape = [1, stride[0], stride[1], 1] filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters] # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = intprod(filter_shape[:3]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = intprod(filter_shape[:2]) * num_filters # initialize weights with random weights w_bound = np.sqrt(6. / (fan_in + fan_out)) w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound), collections=collections) b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.zeros_initializer(), collections=collections) if summary_tag is not None: tf.summary.image(summary_tag, tf.transpose(tf.reshape(w, [filter_size[0], filter_size[1], -1, 1]), [2, 0, 1, 3]), max_images=10) return tf.nn.conv2d(x, w, stride_shape, pad) + b # ================================================================ # Theano-like Function # ================================================================ def function(inputs, outputs, updates=None, givens=None): """Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. updates: [tf.Operation] or tf.Operation list of update functions or single update function that will be run whenever the function is called. The return is ignored. """ if isinstance(outputs, list): return _Function(inputs, outputs, updates, givens=givens) elif isinstance(outputs, (dict, collections.OrderedDict)): f = _Function(inputs, outputs.values(), updates, givens=givens) return lambda *args, **kwargs: type(outputs)(zip(outputs.keys(), f(*args, **kwargs))) else: f = _Function(inputs, [outputs], updates, givens=givens) return lambda *args, **kwargs: f(*args, **kwargs)[0] class _Function(object): def __init__(self, inputs, outputs, updates, givens): for inpt in inputs: if not hasattr(inpt, 'make_feed_dict') and not (type(inpt) is tf.Tensor and len(inpt.op.inputs) == 0): assert False, "inputs should all be placeholders, constants, or have a make_feed_dict method" self.inputs = inputs self.input_names = {inp.name.split("/")[-1].split(":")[0]: inp for inp in inputs} updates = updates or [] self.update_group = tf.group(*updates) self.outputs_update = list(outputs) + [self.update_group] self.givens = {} if givens is None else givens def _feed_input(self, feed_dict, inpt, value): if hasattr(inpt, 'make_feed_dict'): feed_dict.update(inpt.make_feed_dict(value)) else: feed_dict[inpt] = adjust_shape(inpt, value) def __call__(self, *args, **kwargs): assert len(args) + len(kwargs) <= len(self.inputs), "Too many arguments provided" feed_dict = {} # Update feed dict with givens. for inpt in self.givens: feed_dict[inpt] = adjust_shape(inpt, feed_dict.get(inpt, self.givens[inpt])) # Update the args for inpt, value in zip(self.inputs, args): self._feed_input(feed_dict, inpt, value) for inpt_name, value in kwargs.items(): self._feed_input(feed_dict, self.input_names[inpt_name], value) results = get_session().run(self.outputs_update, feed_dict=feed_dict)[:-1] return results # ================================================================ # Flat vectors # ================================================================ def var_shape(x): out = x.get_shape().as_list() assert all(isinstance(a, int) for a in out), \ "shape function assumes that shape is fully known" return out def numel(x): return intprod(var_shape(x)) def intprod(x): return int(np.prod(x)) def flatgrad(loss, var_list, clip_norm=None): grads = tf.gradients(loss, var_list) if clip_norm is not None: grads = [tf.clip_by_norm(grad, clip_norm=clip_norm) for grad in grads] return tf.concat(axis=0, values=[ tf.reshape(grad if grad is not None else tf.zeros_like(v), [numel(v)]) for (v, grad) in zip(var_list, grads) ]) class SetFromFlat(object): def __init__(self, var_list, dtype=tf.float32): assigns = [] shapes = list(map(var_shape, var_list)) total_size = np.sum([intprod(shape) for shape in shapes]) self.theta = theta = tf.placeholder(dtype, [total_size]) start = 0 assigns = [] for (shape, v) in zip(shapes, var_list): size = intprod(shape) assigns.append(tf.assign(v, tf.reshape(theta[start:start + size], shape))) start += size self.op = tf.group(*assigns) def __call__(self, theta): tf.get_default_session().run(self.op, feed_dict={self.theta: theta}) class GetFlat(object): def __init__(self, var_list): self.op = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list]) def __call__(self): return tf.get_default_session().run(self.op) def flattenallbut0(x): return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])]) # ============================================================= # TF placeholders management # ============================================================ _PLACEHOLDER_CACHE = {} # name -> (placeholder, dtype, shape) def get_placeholder(name, dtype, shape): if name in _PLACEHOLDER_CACHE: out, dtype1, shape1 = _PLACEHOLDER_CACHE[name] if out.graph == tf.get_default_graph(): assert dtype1 == dtype and shape1 == shape, \ 'Placeholder with name {} has already been registered and has shape {}, different from requested {}'.format(name, shape1, shape) return out out = tf.placeholder(dtype=dtype, shape=shape, name=name) _PLACEHOLDER_CACHE[name] = (out, dtype, shape) return out def get_placeholder_cached(name): return _PLACEHOLDER_CACHE[name][0] # ================================================================ # Diagnostics # ================================================================ def display_var_info(vars): from baselines import logger count_params = 0 for v in vars: name = v.name if "/Adam" in name or "beta1_power" in name or "beta2_power" in name: continue v_params = np.prod(v.shape.as_list()) count_params += v_params if "/b:" in name or "/bias" in name: continue # Wx+b, bias is not interesting to look at => count params, but not print logger.info(" %s%s %i params %s" % (name, " "*(55-len(name)), v_params, str(v.shape))) logger.info("Total model parameters: %0.2f million" % (count_params*1e-6)) def get_available_gpus(session_config=None): # based on recipe from https://stackoverflow.com/a/38580201 # Unless we allocate a session here, subsequent attempts to create one # will ignore our custom config (in particular, allow_growth=True will have # no effect). if session_config is None: session_config = get_session()._config from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices(session_config) return [x.name for x in local_device_protos if x.device_type == 'GPU'] # ================================================================ # Saving variables # ================================================================ def load_state(fname, sess=None): from baselines import logger logger.warn('load_state method is deprecated, please use load_variables instead') sess = sess or get_session() saver = tf.train.Saver() saver.restore(tf.get_default_session(), fname) def save_state(fname, sess=None): from baselines import logger logger.warn('save_state method is deprecated, please use save_variables instead') sess = sess or get_session() dirname = os.path.dirname(fname) if any(dirname): os.makedirs(dirname, exist_ok=True) saver = tf.train.Saver() saver.save(tf.get_default_session(), fname) # The methods above and below are clearly doing the same thing, and in a rather similar way # TODO: ensure there is no subtle differences and remove one def save_variables(save_path, variables=None, sess=None): import joblib sess = sess or get_session() variables = variables or tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) ps = sess.run(variables) save_dict = {v.name: value for v, value in zip(variables, ps)} dirname = os.path.dirname(save_path) if any(dirname): os.makedirs(dirname, exist_ok=True) joblib.dump(save_dict, save_path) def load_variables(load_path, variables=None, sess=None): import joblib sess = sess or get_session() variables = variables or tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) loaded_params = joblib.load(os.path.expanduser(load_path)) restores = [] if isinstance(loaded_params, list): assert len(loaded_params) == len(variables), 'number of variables loaded mismatches len(variables)' for d, v in zip(loaded_params, variables): restores.append(v.assign(d)) else: for v in variables: restores.append(v.assign(loaded_params[v.name])) sess.run(restores) # ================================================================ # Shape adjustment for feeding into tf placeholders # ================================================================ def adjust_shape(placeholder, data): ''' adjust shape of the data to the shape of the placeholder if possible. If shape is incompatible, AssertionError is thrown Parameters: placeholder tensorflow input placeholder data input data to be (potentially) reshaped to be fed into placeholder Returns: reshaped data ''' if not isinstance(data, np.ndarray) and not isinstance(data, list): return data if isinstance(data, list): data = np.array(data) placeholder_shape = [x or -1 for x in placeholder.shape.as_list()] assert _check_shape(placeholder_shape, data.shape), \ 'Shape of data {} is not compatible with shape of the placeholder {}'.format(data.shape, placeholder_shape) return np.reshape(data, placeholder_shape) def _check_shape(placeholder_shape, data_shape): ''' check if two shapes are compatible (i.e. differ only by dimensions of size 1, or by the batch dimension)''' return True squeezed_placeholder_shape = _squeeze_shape(placeholder_shape) squeezed_data_shape = _squeeze_shape(data_shape) for i, s_data in enumerate(squeezed_data_shape): s_placeholder = squeezed_placeholder_shape[i] if s_placeholder != -1 and s_data != s_placeholder: return False return True def _squeeze_shape(shape): return [x for x in shape if x != 1] # ================================================================ # Tensorboard interfacing # ================================================================ def launch_tensorboard_in_background(log_dir): ''' To log the Tensorflow graph when using rl-algs algorithms, you can run the following code in your main script: import threading, time def start_tensorboard(session): time.sleep(10) # Wait until graph is setup tb_path = osp.join(logger.get_dir(), 'tb') summary_writer = tf.summary.FileWriter(tb_path, graph=session.graph) summary_op = tf.summary.merge_all() launch_tensorboard_in_background(tb_path) session = tf.get_default_session() t = threading.Thread(target=start_tensorboard, args=([session])) t.start() ''' import subprocess subprocess.Popen(['tensorboard', '--logdir', log_dir])
import numpy as np class Dataset(object): def __init__(self, data_map, deterministic=False, shuffle=True): self.data_map = data_map self.deterministic = deterministic self.enable_shuffle = shuffle self.n = next(iter(data_map.values())).shape[0] self._next_id = 0 self.shuffle() def shuffle(self): if self.deterministic: return perm = np.arange(self.n) np.random.shuffle(perm) for key in self.data_map: self.data_map[key] = self.data_map[key][perm] self._next_id = 0 def next_batch(self, batch_size): if self._next_id >= self.n and self.enable_shuffle: self.shuffle() cur_id = self._next_id cur_batch_size = min(batch_size, self.n - self._next_id) self._next_id += cur_batch_size data_map = dict() for key in self.data_map: data_map[key] = self.data_map[key][cur_id:cur_id+cur_batch_size] return data_map def iterate_once(self, batch_size): if self.enable_shuffle: self.shuffle() while self._next_id <= self.n - batch_size: yield self.next_batch(batch_size) self._next_id = 0 def subset(self, num_elements, deterministic=True): data_map = dict() for key in self.data_map: data_map[key] = self.data_map[key][:num_elements] return Dataset(data_map, deterministic) def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True): assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both' arrays = tuple(map(np.asarray, arrays)) n = arrays[0].shape[0] assert all(a.shape[0] == n for a in arrays[1:]) inds = np.arange(n) if shuffle: np.random.shuffle(inds) sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches for batch_inds in np.array_split(inds, sections): if include_final_partial_batch or len(batch_inds) == batch_size: yield tuple(a[batch_inds] for a in arrays)
import tensorflow as tf import numpy as np import baselines.common.tf_util as U from baselines.a2c.utils import fc from tensorflow.python.ops import math_ops class Pd(object): """ A particular probability distribution """ def flatparam(self): raise NotImplementedError def mode(self): raise NotImplementedError def neglogp(self, x): # Usually it's easier to define the negative logprob raise NotImplementedError def kl(self, other): raise NotImplementedError def entropy(self): raise NotImplementedError def sample(self): raise NotImplementedError def logp(self, x): return - self.neglogp(x) def get_shape(self): return self.flatparam().shape @property def shape(self): return self.get_shape() def __getitem__(self, idx): return self.__class__(self.flatparam()[idx]) class PdType(object): """ Parametrized family of probability distributions """ def pdclass(self): raise NotImplementedError def pdfromflat(self, flat): return self.pdclass()(flat) def pdfromlatent(self, latent_vector, init_scale, init_bias): raise NotImplementedError def param_shape(self): raise NotImplementedError def sample_shape(self): raise NotImplementedError def sample_dtype(self): raise NotImplementedError def param_placeholder(self, prepend_shape, name=None): return tf.placeholder(dtype=tf.float32, shape=prepend_shape+self.param_shape(), name=name) def sample_placeholder(self, prepend_shape, name=None): return tf.placeholder(dtype=self.sample_dtype(), shape=prepend_shape+self.sample_shape(), name=name) def __eq__(self, other): return (type(self) == type(other)) and (self.__dict__ == other.__dict__) class CategoricalPdType(PdType): def __init__(self, ncat): self.ncat = ncat def pdclass(self): return CategoricalPd def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0): pdparam = _matching_fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias) return self.pdfromflat(pdparam), pdparam def param_shape(self): return [self.ncat] def sample_shape(self): return [] def sample_dtype(self): return tf.int32 class MultiCategoricalPdType(PdType): def __init__(self, nvec): self.ncats = nvec.astype('int32') assert (self.ncats > 0).all() def pdclass(self): return MultiCategoricalPd def pdfromflat(self, flat): return MultiCategoricalPd(self.ncats, flat) def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0): pdparam = _matching_fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias) return self.pdfromflat(pdparam), pdparam def param_shape(self): return [sum(self.ncats)] def sample_shape(self): return [len(self.ncats)] def sample_dtype(self): return tf.int32 class DiagGaussianPdType(PdType): def __init__(self, size): self.size = size def pdclass(self): return DiagGaussianPd def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0): mean = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias) logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) return self.pdfromflat(pdparam), mean def param_shape(self): return [2*self.size] def sample_shape(self): return [self.size] def sample_dtype(self): return tf.float32 class BernoulliPdType(PdType): def __init__(self, size): self.size = size def pdclass(self): return BernoulliPd def param_shape(self): return [self.size] def sample_shape(self): return [self.size] def sample_dtype(self): return tf.int32 def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0): pdparam = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias) return self.pdfromflat(pdparam), pdparam # WRONG SECOND DERIVATIVES # class CategoricalPd(Pd): # def __init__(self, logits): # self.logits = logits # self.ps = tf.nn.softmax(logits) # @classmethod # def fromflat(cls, flat): # return cls(flat) # def flatparam(self): # return self.logits # def mode(self): # return U.argmax(self.logits, axis=-1) # def logp(self, x): # return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x) # def kl(self, other): # return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \ # - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps) # def entropy(self): # return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps) # def sample(self): # u = tf.random_uniform(tf.shape(self.logits)) # return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) class CategoricalPd(Pd): def __init__(self, logits): self.logits = logits def flatparam(self): return self.logits def mode(self): return tf.argmax(self.logits, axis=-1) @property def mean(self): return tf.nn.softmax(self.logits) def neglogp(self, x): # return tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=x) # Note: we can't use sparse_softmax_cross_entropy_with_logits because # the implementation does not allow second-order derivatives... if x.dtype in {tf.uint8, tf.int32, tf.int64}: # one-hot encoding x_shape_list = x.shape.as_list() logits_shape_list = self.logits.get_shape().as_list()[:-1] for xs, ls in zip(x_shape_list, logits_shape_list): if xs is not None and ls is not None: assert xs == ls, 'shape mismatch: {} in x vs {} in logits'.format(xs, ls) x = tf.one_hot(x, self.logits.get_shape().as_list()[-1]) else: # already encoded assert x.shape.as_list() == self.logits.shape.as_list() return tf.nn.softmax_cross_entropy_with_logits_v2( logits=self.logits, labels=x) def kl(self, other): a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keepdims=True) a1 = other.logits - tf.reduce_max(other.logits, axis=-1, keepdims=True) ea0 = tf.exp(a0) ea1 = tf.exp(a1) z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True) z1 = tf.reduce_sum(ea1, axis=-1, keepdims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (a0 - tf.log(z0) - a1 + tf.log(z1)), axis=-1) def entropy(self): a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keepdims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (tf.log(z0) - a0), axis=-1) def sample(self): u = tf.random_uniform(tf.shape(self.logits), dtype=self.logits.dtype) return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) @classmethod def fromflat(cls, flat): return cls(flat) class MultiCategoricalPd(Pd): def __init__(self, nvec, flat): self.flat = flat self.categoricals = list(map(CategoricalPd, tf.split(flat, np.array(nvec, dtype=np.int32), axis=-1))) def flatparam(self): return self.flat def mode(self): return tf.cast(tf.stack([p.mode() for p in self.categoricals], axis=-1), tf.int32) def neglogp(self, x): return tf.add_n([p.neglogp(px) for p, px in zip(self.categoricals, tf.unstack(x, axis=-1))]) def kl(self, other): return tf.add_n([p.kl(q) for p, q in zip(self.categoricals, other.categoricals)]) def entropy(self): return tf.add_n([p.entropy() for p in self.categoricals]) def sample(self): return tf.cast(tf.stack([p.sample() for p in self.categoricals], axis=-1), tf.int32) @classmethod def fromflat(cls, flat): raise NotImplementedError class DiagGaussianPd(Pd): def __init__(self, flat): self.flat = flat mean, logstd = tf.split(axis=len(flat.shape)-1, num_or_size_splits=2, value=flat) self.mean = mean self.logstd = logstd self.std = tf.exp(logstd) def flatparam(self): return self.flat def mode(self): return self.mean def neglogp(self, x): return 0.5 * tf.reduce_sum(tf.square((x - self.mean) / self.std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf.reduce_sum(self.logstd, axis=-1) def kl(self, other): assert isinstance(other, DiagGaussianPd) return tf.reduce_sum(other.logstd - self.logstd + (tf.square(self.std) + tf.square(self.mean - other.mean)) / (2.0 * tf.square(other.std)) - 0.5, axis=-1) def entropy(self): return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1) def sample(self): return self.mean + self.std * tf.random_normal(tf.shape(self.mean)) @classmethod def fromflat(cls, flat): return cls(flat) class BernoulliPd(Pd): def __init__(self, logits): self.logits = logits self.ps = tf.sigmoid(logits) def flatparam(self): return self.logits @property def mean(self): return self.ps def mode(self): return tf.round(self.ps) def neglogp(self, x): return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.to_float(x)), axis=-1) def kl(self, other): return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=other.logits, labels=self.ps), axis=-1) - tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1) def entropy(self): return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1) def sample(self): u = tf.random_uniform(tf.shape(self.ps)) return tf.to_float(math_ops.less(u, self.ps)) @classmethod def fromflat(cls, flat): return cls(flat) def make_pdtype(ac_space): from gym import spaces if isinstance(ac_space, spaces.Box): assert len(ac_space.shape) == 1 return DiagGaussianPdType(ac_space.shape[0]) elif isinstance(ac_space, spaces.Discrete): return CategoricalPdType(ac_space.n) elif isinstance(ac_space, spaces.MultiDiscrete): return MultiCategoricalPdType(ac_space.nvec) elif isinstance(ac_space, spaces.MultiBinary): return BernoulliPdType(ac_space.n) else: raise NotImplementedError def shape_el(v, i): maybe = v.get_shape()[i] if maybe is not None: return maybe else: return tf.shape(v)[i] @U.in_session def test_probtypes(): np.random.seed(0) pdparam_diag_gauss = np.array([-.2, .3, .4, -.5, .1, -.5, .1, 0.8]) diag_gauss = DiagGaussianPdType(pdparam_diag_gauss.size // 2) #pylint: disable=E1101 validate_probtype(diag_gauss, pdparam_diag_gauss) pdparam_categorical = np.array([-.2, .3, .5]) categorical = CategoricalPdType(pdparam_categorical.size) #pylint: disable=E1101 validate_probtype(categorical, pdparam_categorical) nvec = [1,2,3] pdparam_multicategorical = np.array([-.2, .3, .5, .1, 1, -.1]) multicategorical = MultiCategoricalPdType(nvec) #pylint: disable=E1101 validate_probtype(multicategorical, pdparam_multicategorical) pdparam_bernoulli = np.array([-.2, .3, .5]) bernoulli = BernoulliPdType(pdparam_bernoulli.size) #pylint: disable=E1101 validate_probtype(bernoulli, pdparam_bernoulli) def validate_probtype(probtype, pdparam): N = 100000 # Check to see if mean negative log likelihood == differential entropy Mval = np.repeat(pdparam[None, :], N, axis=0) M = probtype.param_placeholder([N]) X = probtype.sample_placeholder([N]) pd = probtype.pdfromflat(M) calcloglik = U.function([X, M], pd.logp(X)) calcent = U.function([M], pd.entropy()) Xval = tf.get_default_session().run(pd.sample(), feed_dict={M:Mval}) logliks = calcloglik(Xval, Mval) entval_ll = - logliks.mean() #pylint: disable=E1101 entval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101 entval = calcent(Mval).mean() #pylint: disable=E1101 assert np.abs(entval - entval_ll) < 3 * entval_ll_stderr # within 3 sigmas # Check to see if kldiv[p,q] = - ent[p] - E_p[log q] M2 = probtype.param_placeholder([N]) pd2 = probtype.pdfromflat(M2) q = pdparam + np.random.randn(pdparam.size) * 0.1 Mval2 = np.repeat(q[None, :], N, axis=0) calckl = U.function([M, M2], pd.kl(pd2)) klval = calckl(Mval, Mval2).mean() #pylint: disable=E1101 logliks = calcloglik(Xval, Mval2) klval_ll = - entval - logliks.mean() #pylint: disable=E1101 klval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101 assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas print('ok on', probtype, pdparam) def _matching_fc(tensor, name, size, init_scale, init_bias): if tensor.shape[-1] == size: return tensor else: return fc(tensor, name, size, init_scale=init_scale, init_bias=init_bias)
import gym class TimeLimit(gym.Wrapper): def __init__(self, env, max_episode_steps=None): super(TimeLimit, self).__init__(env) self._max_episode_steps = max_episode_steps self._elapsed_steps = 0 def step(self, ac): observation, reward, done, info = self.env.step(ac) self._elapsed_steps += 1 if self._elapsed_steps >= self._max_episode_steps: done = True info['TimeLimit.truncated'] = True return observation, reward, done, info def reset(self, **kwargs): self._elapsed_steps = 0 return self.env.reset(**kwargs) class ClipActionsWrapper(gym.Wrapper): def step(self, action): import numpy as np action = np.nan_to_num(action) action = np.clip(action, self.action_space.low, self.action_space.high) return self.env.step(action) def reset(self, **kwargs): return self.env.reset(**kwargs)
import operator class SegmentTree(object): def __init__(self, capacity, operation, neutral_element): """Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient ( O(log segment size) ) `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. Paramters --------- capacity: int Total size of the array - must be a power of two. operation: lambda obj, obj -> obj and operation for combining elements (eg. sum, max) must form a mathematical group together with the set of possible values for array elements (i.e. be associative) neutral_element: obj neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end) ) def reduce(self, start=0, end=None): """Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) Parameters ---------- start: int beginning of the subsequence end: int end of the subsequences Returns ------- reduced: obj result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # index of the leaf idx += self._capacity self._value[idx] = val idx //= 2 while idx >= 1: self._value[idx] = self._operation( self._value[2 * idx], self._value[2 * idx + 1] ) idx //= 2 def __getitem__(self, idx): assert 0 <= idx < self._capacity return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=operator.add, neutral_element=0.0 ) def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=min, neutral_element=float('inf') ) def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end)
import tensorflow as tf import numpy as np from baselines.common.tf_util import get_session class RunningMeanStd(object): # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm def __init__(self, epsilon=1e-4, shape=()): self.mean = np.zeros(shape, 'float64') self.var = np.ones(shape, 'float64') self.count = epsilon def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean, batch_var, batch_count): self.mean, self.var, self.count = update_mean_var_count_from_moments( self.mean, self.var, self.count, batch_mean, batch_var, batch_count) def update_mean_var_count_from_moments(mean, var, count, batch_mean, batch_var, batch_count): delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + np.square(delta) * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count class TfRunningMeanStd(object): # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm ''' TensorFlow variables-based implmentation of computing running mean and std Benefit of this implementation is that it can be saved / loaded together with the tensorflow model ''' def __init__(self, epsilon=1e-4, shape=(), scope=''): sess = get_session() self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64) self._new_var = tf.placeholder(shape=shape, dtype=tf.float64) self._new_count = tf.placeholder(shape=(), dtype=tf.float64) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64) self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64) self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64) self.update_ops = tf.group([ self._var.assign(self._new_var), self._mean.assign(self._new_mean), self._count.assign(self._new_count) ]) sess.run(tf.variables_initializer([self._mean, self._var, self._count])) self.sess = sess self._set_mean_var_count() def _set_mean_var_count(self): self.mean, self.var, self.count = self.sess.run([self._mean, self._var, self._count]) def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] new_mean, new_var, new_count = update_mean_var_count_from_moments(self.mean, self.var, self.count, batch_mean, batch_var, batch_count) self.sess.run(self.update_ops, feed_dict={ self._new_mean: new_mean, self._new_var: new_var, self._new_count: new_count }) self._set_mean_var_count() def test_runningmeanstd(): for (x1, x2, x3) in [ (np.random.randn(3), np.random.randn(4), np.random.randn(5)), (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)), ]: rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:]) x = np.concatenate([x1, x2, x3], axis=0) ms1 = [x.mean(axis=0), x.var(axis=0)] rms.update(x1) rms.update(x2) rms.update(x3) ms2 = [rms.mean, rms.var] np.testing.assert_allclose(ms1, ms2) def test_tf_runningmeanstd(): for (x1, x2, x3) in [ (np.random.randn(3), np.random.randn(4), np.random.randn(5)), (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)), ]: rms = TfRunningMeanStd(epsilon=0.0, shape=x1.shape[1:], scope='running_mean_std' + str(np.random.randint(0, 128))) x = np.concatenate([x1, x2, x3], axis=0) ms1 = [x.mean(axis=0), x.var(axis=0)] rms.update(x1) rms.update(x2) rms.update(x3) ms2 = [rms.mean, rms.var] np.testing.assert_allclose(ms1, ms2) def profile_tf_runningmeanstd(): import time from baselines.common import tf_util tf_util.get_session( config=tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1, allow_soft_placement=True )) x = np.random.random((376,)) n_trials = 10000 rms = RunningMeanStd() tfrms = TfRunningMeanStd() tic1 = time.time() for _ in range(n_trials): rms.update(x) tic2 = time.time() for _ in range(n_trials): tfrms.update(x) tic3 = time.time() print('rms update time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms update time ({} trials): {} s'.format(n_trials, tic3 - tic2)) tic1 = time.time() for _ in range(n_trials): z1 = rms.mean tic2 = time.time() for _ in range(n_trials): z2 = tfrms.mean assert z1 == z2 tic3 = time.time() print('rms get mean time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms get mean time ({} trials): {} s'.format(n_trials, tic3 - tic2)) ''' options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101 run_metadata = tf.RunMetadata() profile_opts = dict(options=options, run_metadata=run_metadata) from tensorflow.python.client import timeline fetched_timeline = timeline.Timeline(run_metadata.step_stats) #pylint: disable=E1101 chrome_trace = fetched_timeline.generate_chrome_trace_format() outfile = '/tmp/timeline.json' with open(outfile, 'wt') as f: f.write(chrome_trace) print('Successfully saved profile to {}. Exiting.'.format(outfile)) exit(0) ''' if __name__ == '__main__': profile_tf_runningmeanstd()
import numpy as np import tensorflow as tf from gym.spaces import Discrete, Box, MultiDiscrete def observation_placeholder(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space batch_size: int size of the batch to be fed into input. Can be left None in most cases. name: str name of the placeholder Returns: ------- tensorflow placeholder tensor ''' assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box) or isinstance(ob_space, MultiDiscrete), \ 'Can only deal with Discrete and Box observation spaces for now' dtype = ob_space.dtype if dtype == np.int8: dtype = np.uint8 return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=dtype, name=name) def observation_input(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space, and add input encoder of the appropriate type. ''' placeholder = observation_placeholder(ob_space, batch_size, name) return placeholder, encode_observation(ob_space, placeholder) def encode_observation(ob_space, placeholder): ''' Encode input in the way that is appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space placeholder: tf.placeholder observation input placeholder ''' if isinstance(ob_space, Discrete): return tf.to_float(tf.one_hot(placeholder, ob_space.n)) elif isinstance(ob_space, Box): return tf.to_float(placeholder) elif isinstance(ob_space, MultiDiscrete): placeholder = tf.cast(placeholder, tf.int32) one_hots = [tf.to_float(tf.one_hot(placeholder[..., i], ob_space.nvec[i])) for i in range(placeholder.shape[-1])] return tf.concat(one_hots, axis=-1) else: raise NotImplementedError
import os, subprocess, sys def mpi_fork(n, bind_to_core=False): """Re-launches the current script with workers Returns "parent" for original parent, "child" for MPI children """ if n<=1: return "child" if os.getenv("IN_MPI") is None: env = os.environ.copy() env.update( MKL_NUM_THREADS="1", OMP_NUM_THREADS="1", IN_MPI="1" ) args = ["mpirun", "-np", str(n)] if bind_to_core: args += ["-bind-to", "core"] args += [sys.executable] + sys.argv subprocess.check_call(args, env=env) return "parent" else: return "child"
import numpy as np from abc import ABC, abstractmethod class AbstractEnvRunner(ABC): def __init__(self, *, env, model, nsteps): self.env = env self.model = model self.nenv = nenv = env.num_envs if hasattr(env, 'num_envs') else 1 self.batch_ob_shape = (nenv*nsteps,) + env.observation_space.shape self.obs = np.zeros((nenv,) + env.observation_space.shape, dtype=env.observation_space.dtype.name) self.obs[:] = env.reset() self.nsteps = nsteps self.states = model.initial_state self.dones = [False for _ in range(nenv)] @abstractmethod def run(self): raise NotImplementedError
from collections import deque import cv2 cv2.ocl.setUseOpenCL(False) from .atari_wrappers import WarpFrame, ClipRewardEnv, FrameStack, ScaledFloatFrame from .wrappers import TimeLimit import numpy as np import gym class StochasticFrameSkip(gym.Wrapper): def __init__(self, env, n, stickprob): gym.Wrapper.__init__(self, env) self.n = n self.stickprob = stickprob self.curac = None self.rng = np.random.RandomState() self.supports_want_render = hasattr(env, "supports_want_render") def reset(self, **kwargs): self.curac = None return self.env.reset(**kwargs) def step(self, ac): done = False totrew = 0 for i in range(self.n): # First step after reset, use action if self.curac is None: self.curac = ac # First substep, delay with probability=stickprob elif i==0: if self.rng.rand() > self.stickprob: self.curac = ac # Second substep, new action definitely kicks in elif i==1: self.curac = ac if self.supports_want_render and i<self.n-1: ob, rew, done, info = self.env.step(self.curac, want_render=False) else: ob, rew, done, info = self.env.step(self.curac) totrew += rew if done: break return ob, totrew, done, info def seed(self, s): self.rng.seed(s) class PartialFrameStack(gym.Wrapper): def __init__(self, env, k, channel=1): """ Stack one channel (channel keyword) from previous frames """ gym.Wrapper.__init__(self, env) shp = env.observation_space.shape self.channel = channel self.observation_space = gym.spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] + k - 1), dtype=env.observation_space.dtype) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape def reset(self): ob = self.env.reset() assert ob.shape[2] > self.channel for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, ac): ob, reward, done, info = self.env.step(ac) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k return np.concatenate([frame if i==self.k-1 else frame[:,:,self.channel:self.channel+1] for (i, frame) in enumerate(self.frames)], axis=2) class Downsample(gym.ObservationWrapper): def __init__(self, env, ratio): """ Downsample images by a factor of ratio """ gym.ObservationWrapper.__init__(self, env) (oldh, oldw, oldc) = env.observation_space.shape newshape = (oldh//ratio, oldw//ratio, oldc) self.observation_space = gym.spaces.Box(low=0, high=255, shape=newshape, dtype=np.uint8) def observation(self, frame): height, width, _ = self.observation_space.shape frame = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA) if frame.ndim == 2: frame = frame[:,:,None] return frame class Rgb2gray(gym.ObservationWrapper): def __init__(self, env): """ Downsample images by a factor of ratio """ gym.ObservationWrapper.__init__(self, env) (oldh, oldw, _oldc) = env.observation_space.shape self.observation_space = gym.spaces.Box(low=0, high=255, shape=(oldh, oldw, 1), dtype=np.uint8) def observation(self, frame): frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) return frame[:,:,None] class MovieRecord(gym.Wrapper): def __init__(self, env, savedir, k): gym.Wrapper.__init__(self, env) self.savedir = savedir self.k = k self.epcount = 0 def reset(self): if self.epcount % self.k == 0: self.env.unwrapped.movie_path = self.savedir else: self.env.unwrapped.movie_path = None self.env.unwrapped.movie = None self.epcount += 1 return self.env.reset() class AppendTimeout(gym.Wrapper): def __init__(self, env): gym.Wrapper.__init__(self, env) self.action_space = env.action_space self.timeout_space = gym.spaces.Box(low=np.array([0.0]), high=np.array([1.0]), dtype=np.float32) self.original_os = env.observation_space if isinstance(self.original_os, gym.spaces.Dict): import copy ordered_dict = copy.deepcopy(self.original_os.spaces) ordered_dict['value_estimation_timeout'] = self.timeout_space self.observation_space = gym.spaces.Dict(ordered_dict) self.dict_mode = True else: self.observation_space = gym.spaces.Dict({ 'original': self.original_os, 'value_estimation_timeout': self.timeout_space }) self.dict_mode = False self.ac_count = None while 1: if not hasattr(env, "_max_episode_steps"): # Looking for TimeLimit wrapper that has this field env = env.env continue break self.timeout = env._max_episode_steps def step(self, ac): self.ac_count += 1 ob, rew, done, info = self.env.step(ac) return self._process(ob), rew, done, info def reset(self): self.ac_count = 0 return self._process(self.env.reset()) def _process(self, ob): fracmissing = 1 - self.ac_count / self.timeout if self.dict_mode: ob['value_estimation_timeout'] = fracmissing else: return { 'original': ob, 'value_estimation_timeout': fracmissing } class StartDoingRandomActionsWrapper(gym.Wrapper): """ Warning: can eat info dicts, not good if you depend on them """ def __init__(self, env, max_random_steps, on_startup=True, every_episode=False): gym.Wrapper.__init__(self, env) self.on_startup = on_startup self.every_episode = every_episode self.random_steps = max_random_steps self.last_obs = None if on_startup: self.some_random_steps() def some_random_steps(self): self.last_obs = self.env.reset() n = np.random.randint(self.random_steps) #print("running for random %i frames" % n) for _ in range(n): self.last_obs, _, done, _ = self.env.step(self.env.action_space.sample()) if done: self.last_obs = self.env.reset() def reset(self): return self.last_obs def step(self, a): self.last_obs, rew, done, info = self.env.step(a) if done: self.last_obs = self.env.reset() if self.every_episode: self.some_random_steps() return self.last_obs, rew, done, info def make_retro(*, game, state=None, max_episode_steps=4500, **kwargs): import retro if state is None: state = retro.State.DEFAULT env = retro.make(game, state, **kwargs) env = StochasticFrameSkip(env, n=4, stickprob=0.25) if max_episode_steps is not None: env = TimeLimit(env, max_episode_steps=max_episode_steps) return env def wrap_deepmind_retro(env, scale=True, frame_stack=4): """ Configure environment for retro games, using config similar to DeepMind-style Atari in wrap_deepmind """ env = WarpFrame(env) env = ClipRewardEnv(env) if frame_stack > 1: env = FrameStack(env, frame_stack) if scale: env = ScaledFloatFrame(env) return env class SonicDiscretizer(gym.ActionWrapper): """ Wrap a gym-retro environment and make it use discrete actions for the Sonic game. """ def __init__(self, env): super(SonicDiscretizer, self).__init__(env) buttons = ["B", "A", "MODE", "START", "UP", "DOWN", "LEFT", "RIGHT", "C", "Y", "X", "Z"] actions = [['LEFT'], ['RIGHT'], ['LEFT', 'DOWN'], ['RIGHT', 'DOWN'], ['DOWN'], ['DOWN', 'B'], ['B']] self._actions = [] for action in actions: arr = np.array([False] * 12) for button in action: arr[buttons.index(button)] = True self._actions.append(arr) self.action_space = gym.spaces.Discrete(len(self._actions)) def action(self, a): # pylint: disable=W0221 return self._actions[a].copy() class RewardScaler(gym.RewardWrapper): """ Bring rewards to a reasonable scale for PPO. This is incredibly important and effects performance drastically. """ def __init__(self, env, scale=0.01): super(RewardScaler, self).__init__(env) self.scale = scale def reward(self, reward): return reward * self.scale class AllowBacktracking(gym.Wrapper): """ Use deltas in max(X) as the reward, rather than deltas in X. This way, agents are not discouraged too heavily from exploring backwards if there is no way to advance head-on in the level. """ def __init__(self, env): super(AllowBacktracking, self).__init__(env) self._cur_x = 0 self._max_x = 0 def reset(self, **kwargs): # pylint: disable=E0202 self._cur_x = 0 self._max_x = 0 return self.env.reset(**kwargs) def step(self, action): # pylint: disable=E0202 obs, rew, done, info = self.env.step(action) self._cur_x += rew rew = max(0, self._cur_x - self._max_x) self._max_x = max(self._max_x, self._cur_x) return obs, rew, done, info
import numpy as np import tensorflow as tf from baselines.common import tf_util as U from baselines.common.tests.test_with_mpi import with_mpi from baselines import logger try: from mpi4py import MPI except ImportError: MPI = None class MpiAdamOptimizer(tf.train.AdamOptimizer): """Adam optimizer that averages gradients across mpi processes.""" def __init__(self, comm, grad_clip=None, mpi_rank_weight=1, **kwargs): self.comm = comm self.grad_clip = grad_clip self.mpi_rank_weight = mpi_rank_weight tf.train.AdamOptimizer.__init__(self, **kwargs) def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) * self.mpi_rank_weight shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] total_weight = np.zeros(1, np.float32) self.comm.Allreduce(np.array([self.mpi_rank_weight], dtype=np.float32), total_weight, op=MPI.SUM) total_weight = total_weight[0] buf = np.zeros(sum(sizes), np.float32) countholder = [0] # Counts how many times _collect_grads has been called stat = tf.reduce_sum(grads_and_vars[0][1]) # sum of first variable def _collect_grads(flat_grad, np_stat): if self.grad_clip is not None: gradnorm = np.linalg.norm(flat_grad) if gradnorm > 1: flat_grad /= gradnorm logger.logkv_mean('gradnorm', gradnorm) logger.logkv_mean('gradclipfrac', float(gradnorm > 1)) self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(total_weight), out=buf) if countholder[0] % 100 == 0: check_synced(np_stat, self.comm) countholder[0] += 1 return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad, stat], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars def check_synced(localval, comm=None): """ It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers) """ comm = comm or MPI.COMM_WORLD vals = comm.gather(localval) if comm.rank == 0: assert all(val==vals[0] for val in vals[1:]),\ 'MpiAdamOptimizer detected that different workers have different weights: {}'.format(vals) @with_mpi(timeout=5) def test_nonfreeze(): np.random.seed(0) tf.set_random_seed(0) a = tf.Variable(np.random.randn(3).astype('float32')) b = tf.Variable(np.random.randn(2,5).astype('float32')) loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b)) stepsize = 1e-2 # for some reason the session config with inter_op_parallelism_threads was causing # nested sess.run calls to freeze config = tf.ConfigProto(inter_op_parallelism_threads=1) sess = U.get_session(config=config) update_op = MpiAdamOptimizer(comm=MPI.COMM_WORLD, learning_rate=stepsize).minimize(loss) sess.run(tf.global_variables_initializer()) losslist_ref = [] for i in range(100): l,_ = sess.run([loss, update_op]) print(i, l) losslist_ref.append(l)
from collections import defaultdict import os, numpy as np import platform import shutil import subprocess import warnings import sys try: from mpi4py import MPI except ImportError: MPI = None def sync_from_root(sess, variables, comm=None): """ Send the root node's parameters to every worker. Arguments: sess: the TensorFlow session. variables: all parameter variables including optimizer's """ if comm is None: comm = MPI.COMM_WORLD import tensorflow as tf values = comm.bcast(sess.run(variables)) sess.run([tf.assign(var, val) for (var, val) in zip(variables, values)]) def gpu_count(): """ Count the GPUs on this machine. """ if shutil.which('nvidia-smi') is None: return 0 output = subprocess.check_output(['nvidia-smi', '--query-gpu=gpu_name', '--format=csv']) return max(0, len(output.split(b'\n')) - 2) def setup_mpi_gpus(): """ Set CUDA_VISIBLE_DEVICES to MPI rank if not already set """ if 'CUDA_VISIBLE_DEVICES' not in os.environ: if sys.platform == 'darwin': # This Assumes if you're on OSX you're just ids = [] # doing a smoke test and don't want GPUs else: lrank, _lsize = get_local_rank_size(MPI.COMM_WORLD) ids = [lrank] os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, ids)) def get_local_rank_size(comm): """ Returns the rank of each process on its machine The processes on a given machine will be assigned ranks 0, 1, 2, ..., N-1, where N is the number of processes on this machine. Useful if you want to assign one gpu per machine """ this_node = platform.node() ranks_nodes = comm.allgather((comm.Get_rank(), this_node)) node2rankssofar = defaultdict(int) local_rank = None for (rank, node) in ranks_nodes: if rank == comm.Get_rank(): local_rank = node2rankssofar[node] node2rankssofar[node] += 1 assert local_rank is not None return local_rank, node2rankssofar[this_node] def share_file(comm, path): """ Copies the file from rank 0 to all other ranks Puts it in the same place on all machines """ localrank, _ = get_local_rank_size(comm) if comm.Get_rank() == 0: with open(path, 'rb') as fh: data = fh.read() comm.bcast(data) else: data = comm.bcast(None) if localrank == 0: os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'wb') as fh: fh.write(data) comm.Barrier() def dict_gather(comm, d, op='mean', assert_all_have_data=True): """ Perform a reduction operation over dicts """ if comm is None: return d alldicts = comm.allgather(d) size = comm.size k2li = defaultdict(list) for d in alldicts: for (k,v) in d.items(): k2li[k].append(v) result = {} for (k,li) in k2li.items(): if assert_all_have_data: assert len(li)==size, "only %i out of %i MPI workers have sent '%s'" % (len(li), size, k) if op=='mean': result[k] = np.mean(li, axis=0) elif op=='sum': result[k] = np.sum(li, axis=0) else: assert 0, op return result def mpi_weighted_mean(comm, local_name2valcount): """ Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean """ all_name2valcount = comm.gather(local_name2valcount) if comm.rank == 0: name2sum = defaultdict(float) name2count = defaultdict(float) for n2vc in all_name2valcount: for (name, (val, count)) in n2vc.items(): try: val = float(val) except ValueError: if comm.rank == 0: warnings.warn('WARNING: tried to compute mean on non-float {}={}'.format(name, val)) else: name2sum[name] += val * count name2count[name] += count return {name : name2sum[name] / name2count[name] for name in name2sum} else: return {}
try: from mpi4py import MPI except ImportError: MPI = None import tensorflow as tf, baselines.common.tf_util as U, numpy as np class RunningMeanStd(object): # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm def __init__(self, epsilon=1e-2, shape=()): self._sum = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(0.0), name="runningsum", trainable=False) self._sumsq = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(epsilon), name="runningsumsq", trainable=False) self._count = tf.get_variable( dtype=tf.float64, shape=(), initializer=tf.constant_initializer(epsilon), name="count", trainable=False) self.shape = shape self.mean = tf.to_float(self._sum / self._count) self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean) , 1e-2 )) newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum') newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var') newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count') self.incfiltparams = U.function([newsum, newsumsq, newcount], [], updates=[tf.assign_add(self._sum, newsum), tf.assign_add(self._sumsq, newsumsq), tf.assign_add(self._count, newcount)]) def update(self, x): x = x.astype('float64') n = int(np.prod(self.shape)) totalvec = np.zeros(n*2+1, 'float64') addvec = np.concatenate([x.sum(axis=0).ravel(), np.square(x).sum(axis=0).ravel(), np.array([len(x)],dtype='float64')]) if MPI is not None: MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM) self.incfiltparams(totalvec[0:n].reshape(self.shape), totalvec[n:2*n].reshape(self.shape), totalvec[2*n]) @U.in_session def test_runningmeanstd(): for (x1, x2, x3) in [ (np.random.randn(3), np.random.randn(4), np.random.randn(5)), (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)), ]: rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:]) U.initialize() x = np.concatenate([x1, x2, x3], axis=0) ms1 = [x.mean(axis=0), x.std(axis=0)] rms.update(x1) rms.update(x2) rms.update(x3) ms2 = [rms.mean.eval(), rms.std.eval()] assert np.allclose(ms1, ms2) @U.in_session def test_dist(): np.random.seed(0) p1,p2,p3=(np.random.randn(3,1), np.random.randn(4,1), np.random.randn(5,1)) q1,q2,q3=(np.random.randn(6,1), np.random.randn(7,1), np.random.randn(8,1)) # p1,p2,p3=(np.random.randn(3), np.random.randn(4), np.random.randn(5)) # q1,q2,q3=(np.random.randn(6), np.random.randn(7), np.random.randn(8)) comm = MPI.COMM_WORLD assert comm.Get_size()==2 if comm.Get_rank()==0: x1,x2,x3 = p1,p2,p3 elif comm.Get_rank()==1: x1,x2,x3 = q1,q2,q3 else: assert False rms = RunningMeanStd(epsilon=0.0, shape=(1,)) U.initialize() rms.update(x1) rms.update(x2) rms.update(x3) bigvec = np.concatenate([p1,p2,p3,q1,q2,q3]) def checkallclose(x,y): print(x,y) return np.allclose(x,y) assert checkallclose( bigvec.mean(axis=0), rms.mean.eval(), ) assert checkallclose( bigvec.std(axis=0), rms.std.eval(), ) if __name__ == "__main__": # Run with mpirun -np 2 python <filename> test_dist()
import numpy as np import scipy.signal def discount(x, gamma): """ computes discounted sums along 0th dimension of x. inputs ------ x: ndarray gamma: float outputs ------- y: ndarray with same shape as x, satisfying y[t] = x[t] + gamma*x[t+1] + gamma^2*x[t+2] + ... + gamma^k x[t+k], where k = len(x) - t - 1 """ assert x.ndim >= 1 return scipy.signal.lfilter([1],[1,-gamma],x[::-1], axis=0)[::-1] def explained_variance(ypred,y): """ Computes fraction of variance that ypred explains about y. Returns 1 - Var[y-ypred] / Var[y] interpretation: ev=0 => might as well have predicted zero ev=1 => perfect prediction ev<0 => worse than just predicting zero """ assert y.ndim == 1 and ypred.ndim == 1 vary = np.var(y) return np.nan if vary==0 else 1 - np.var(y-ypred)/vary def explained_variance_2d(ypred, y): assert y.ndim == 2 and ypred.ndim == 2 vary = np.var(y, axis=0) out = 1 - np.var(y-ypred)/vary out[vary < 1e-10] = 0 return out def ncc(ypred, y): return np.corrcoef(ypred, y)[1,0] def flatten_arrays(arrs): return np.concatenate([arr.flat for arr in arrs]) def unflatten_vector(vec, shapes): i=0 arrs = [] for shape in shapes: size = np.prod(shape) arr = vec[i:i+size].reshape(shape) arrs.append(arr) i += size return arrs def discount_with_boundaries(X, New, gamma): """ X: 2d array of floats, time x features New: 2d array of bools, indicating when a new episode has started """ Y = np.zeros_like(X) T = X.shape[0] Y[T-1] = X[T-1] for t in range(T-2, -1, -1): Y[t] = X[t] + gamma * Y[t+1] * (1 - New[t+1]) return Y def test_discount_with_boundaries(): gamma=0.9 x = np.array([1.0, 2.0, 3.0, 4.0], 'float32') starts = [1.0, 0.0, 0.0, 1.0] y = discount_with_boundaries(x, starts, gamma) assert np.allclose(y, [ 1 + gamma * 2 + gamma**2 * 3, 2 + gamma * 3, 3, 4 ])
import matplotlib.pyplot as plt import os.path as osp import json import os import numpy as np import pandas from collections import defaultdict, namedtuple from baselines.bench import monitor from baselines.logger import read_json, read_csv def smooth(y, radius, mode='two_sided', valid_only=False): ''' Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available ''' assert mode in ('two_sided', 'causal') if len(y) < 2*radius+1: return np.ones_like(y) * y.mean() elif mode == 'two_sided': convkernel = np.ones(2 * radius+1) out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same') if valid_only: out[:radius] = out[-radius:] = np.nan elif mode == 'causal': convkernel = np.ones(radius) out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full') out = out[:-radius+1] if valid_only: out[:radius] = np.nan return out def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' low = xolds[0] if low is None else low high = xolds[-1] if high is None else high assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0]) assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1]) assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds)) xolds = xolds.astype('float64') yolds = yolds.astype('float64') luoi = 0 # last unused old index sum_y = 0. count_y = 0. xnews = np.linspace(low, high, n) decay_period = (high - low) / (n - 1) * decay_steps interstep_decay = np.exp(- 1. / decay_steps) sum_ys = np.zeros_like(xnews) count_ys = np.zeros_like(xnews) for i in range(n): xnew = xnews[i] sum_y *= interstep_decay count_y *= interstep_decay while True: if luoi >= len(xolds): break xold = xolds[luoi] if xold <= xnew: decay = np.exp(- (xnew - xold) / decay_period) sum_y += decay * yolds[luoi] count_y += decay luoi += 1 else: break sum_ys[i] = sum_y count_ys[i] = count_y ys = sum_ys / count_ys ys[count_ys < low_counts_threshold] = np.nan return xnews, ys, count_ys def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0) _, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0) ys2 = ys2[::-1] count_ys2 = count_ys2[::-1] count_ys = count_ys1 + count_ys2 ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys ys[count_ys < low_counts_threshold] = np.nan return xs, ys, count_ys Result = namedtuple('Result', 'monitor progress dirname metadata') Result.__new__.__defaults__ = (None,) * len(Result._fields) def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False): ''' load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file ''' import re if isinstance(root_dir_or_dirs, str): rootdirs = [osp.expanduser(root_dir_or_dirs)] else: rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs] allresults = [] for rootdir in rootdirs: assert osp.exists(rootdir), "%s doesn't exist"%rootdir for dirname, dirs, files in os.walk(rootdir): if '-proc' in dirname: files[:] = [] continue monitor_re = re.compile(r'(\d+\.)?(\d+\.)?monitor\.csv') if set(['metadata.json', 'monitor.json', 'progress.json', 'progress.csv']).intersection(files) or \ any([f for f in files if monitor_re.match(f)]): # also match monitor files like 0.1.monitor.csv # used to be uncommented, which means do not go deeper than current directory if any of the data files # are found # dirs[:] = [] result = {'dirname' : dirname} if "metadata.json" in files: with open(osp.join(dirname, "metadata.json"), "r") as fh: result['metadata'] = json.load(fh) progjson = osp.join(dirname, "progress.json") progcsv = osp.join(dirname, "progress.csv") if enable_progress: if osp.exists(progjson): result['progress'] = pandas.DataFrame(read_json(progjson)) elif osp.exists(progcsv): try: result['progress'] = read_csv(progcsv) except pandas.errors.EmptyDataError: print('skipping progress file in ', dirname, 'empty data') else: if verbose: print('skipping %s: no progress file'%dirname) if enable_monitor: try: result['monitor'] = pandas.DataFrame(monitor.load_results(dirname)) except monitor.LoadMonitorResultsError: print('skipping %s: no monitor files'%dirname) except Exception as e: print('exception loading monitor file in %s: %s'%(dirname, e)) if result.get('monitor') is not None or result.get('progress') is not None: allresults.append(Result(**result)) if verbose: print('successfully loaded %s'%dirname) if verbose: print('loaded %i results'%len(allresults)) return allresults COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', 'brown', 'orange', 'teal', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue'] def default_xy_fn(r): x = np.cumsum(r.monitor.l) y = smooth(r.monitor.r, radius=10) return x,y def default_split_fn(r): import re # match name between slash and -<digits> at the end of the string # (slash in the beginning or -<digits> in the end or either may be missing) match = re.search(r'[^/-]+(?=(-\d+)?\Z)', r.dirname) if match: return match.group(0) def plot_results( allresults, *, xy_fn=default_xy_fn, split_fn=default_split_fn, group_fn=default_split_fn, average_group=False, shaded_std=True, shaded_err=True, figsize=None, legend_outside=False, resample=0, smooth_step=1.0, tiling='vertical', xlabel=None, ylabel=None ): ''' Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions. ''' if split_fn is None: split_fn = lambda _ : '' if group_fn is None: group_fn = lambda _ : '' sk2r = defaultdict(list) # splitkey2results for result in allresults: splitkey = split_fn(result) sk2r[splitkey].append(result) assert len(sk2r) > 0 assert isinstance(resample, int), "0: don't resample. <integer>: that many samples" if tiling == 'vertical' or tiling is None: nrows = len(sk2r) ncols = 1 elif tiling == 'horizontal': ncols = len(sk2r) nrows = 1 elif tiling == 'symmetric': import math N = len(sk2r) largest_divisor = 1 for i in range(1, int(math.sqrt(N))+1): if N % i == 0: largest_divisor = i ncols = largest_divisor nrows = N // ncols figsize = figsize or (6 * ncols, 6 * nrows) f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize) groups = list(set(group_fn(result) for result in allresults)) default_samples = 512 if average_group: resample = resample or default_samples for (isplit, sk) in enumerate(sorted(sk2r.keys())): g2l = {} g2c = defaultdict(int) sresults = sk2r[sk] gresults = defaultdict(list) idx_row = isplit // ncols idx_col = isplit % ncols ax = axarr[idx_row][idx_col] for result in sresults: group = group_fn(result) g2c[group] += 1 x, y = xy_fn(result) if x is None: x = np.arange(len(y)) x, y = map(np.asarray, (x, y)) if average_group: gresults[group].append((x,y)) else: if resample: x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step) l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)]) g2l[group] = l if average_group: for group in sorted(groups): xys = gresults[group] if not any(xys): continue color = COLORS[groups.index(group) % len(COLORS)] origxs = [xy[0] for xy in xys] minxlen = min(map(len, origxs)) def allequal(qs): return all((q==qs[0]).all() for q in qs[1:]) if resample: low = max(x[0] for x in origxs) high = min(x[-1] for x in origxs) usex = np.linspace(low, high, resample) ys = [] for (x, y) in xys: ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1]) else: assert allequal([x[:minxlen] for x in origxs]),\ 'If you want to average unevenly sampled data, set resample=<number of samples you want>' usex = origxs[0] ys = [xy[1][:minxlen] for xy in xys] ymean = np.mean(ys, axis=0) ystd = np.std(ys, axis=0) ystderr = ystd / np.sqrt(len(ys)) l, = axarr[idx_row][idx_col].plot(usex, ymean, color=color) g2l[group] = l if shaded_err: ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4) if shaded_std: ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2) # https://matplotlib.org/users/legend_guide.html plt.tight_layout() if any(g2l.keys()): ax.legend( g2l.values(), ['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(), loc=2 if legend_outside else None, bbox_to_anchor=(1,1) if legend_outside else None) ax.set_title(sk) # add xlabels, but only to the bottom row if xlabel is not None: for ax in axarr[-1]: plt.sca(ax) plt.xlabel(xlabel) # add ylabels, but only to left column if ylabel is not None: for ax in axarr[:,0]: plt.sca(ax) plt.ylabel(ylabel) return f, axarr def regression_analysis(df): xcols = list(df.columns.copy()) xcols.remove('score') ycols = ['score'] import statsmodels.api as sm mod = sm.OLS(df[ycols], sm.add_constant(df[xcols]), hasconst=False) res = mod.fit() print(res.summary()) def test_smooth(): norig = 100 nup = 300 ndown = 30 xs = np.cumsum(np.random.rand(norig) * 10 / norig) yclean = np.sin(xs) ys = yclean + .1 * np.random.randn(yclean.size) xup, yup, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), nup, decay_steps=nup/ndown) xdown, ydown, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), ndown, decay_steps=ndown/ndown) xsame, ysame, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), norig, decay_steps=norig/ndown) plt.plot(xs, ys, label='orig', marker='x') plt.plot(xup, yup, label='up', marker='x') plt.plot(xdown, ydown, label='down', marker='x') plt.plot(xsame, ysame, label='same', marker='x') plt.plot(xs, yclean, label='clean', marker='x') plt.legend() plt.show()
import tensorflow as tf from baselines.common import tf_util from baselines.a2c.utils import fc from baselines.common.distributions import make_pdtype from baselines.common.input import observation_placeholder, encode_observation from baselines.common.tf_util import adjust_shape from baselines.common.mpi_running_mean_std import RunningMeanStd from baselines.common.models import get_network_builder import gym class PolicyWithValue(object): """ Encapsulates fields and methods for RL policy and value function estimation with shared parameters """ def __init__(self, env, observations, latent, estimate_q=False, vf_latent=None, sess=None, **tensors): """ Parameters: ---------- env RL environment observations tensorflow placeholder in which the observations will be fed latent latent state from which policy distribution parameters should be inferred vf_latent latent state from which value function should be inferred (if None, then latent is used) sess tensorflow session to run calculations in (if None, default session is used) **tensors tensorflow tensors for additional attributes such as state or mask """ self.X = observations self.state = tf.constant([]) self.initial_state = None self.__dict__.update(tensors) vf_latent = vf_latent if vf_latent is not None else latent vf_latent = tf.layers.flatten(vf_latent) latent = tf.layers.flatten(latent) # Based on the action space, will select what probability distribution type self.pdtype = make_pdtype(env.action_space) self.pd, self.pi = self.pdtype.pdfromlatent(latent, init_scale=0.01) # Take an action self.action = self.pd.sample() # Calculate the neg log of our probability self.neglogp = self.pd.neglogp(self.action) self.sess = sess or tf.get_default_session() if estimate_q: assert isinstance(env.action_space, gym.spaces.Discrete) self.q = fc(vf_latent, 'q', env.action_space.n) self.vf = self.q else: self.vf = fc(vf_latent, 'vf', 1) self.vf = self.vf[:,0] def _evaluate(self, variables, observation, **extra_feed): sess = self.sess feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict) def step(self, observation, **extra_feed): """ Compute next action(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- (action, value estimate, next state, negative log likelihood of the action under current policy parameters) tuple """ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state, self.neglogp], observation, **extra_feed) if state.size == 0: state = None return a, v, state, neglogp def value(self, ob, *args, **kwargs): """ Compute value estimate(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- value estimate """ return self._evaluate(self.vf, ob, *args, **kwargs) def save(self, save_path): tf_util.save_state(save_path, sess=self.sess) def load(self, load_path): tf_util.load_state(load_path, sess=self.sess) def build_policy(env, policy_network, value_network=None, normalize_observations=False, estimate_q=False, **policy_kwargs): if isinstance(policy_network, str): network_type = policy_network policy_network = get_network_builder(network_type)(**policy_kwargs) def policy_fn(nbatch=None, nsteps=None, sess=None, observ_placeholder=None): ob_space = env.observation_space X = observ_placeholder if observ_placeholder is not None else observation_placeholder(ob_space, batch_size=nbatch) extra_tensors = {} if normalize_observations and X.dtype == tf.float32: encoded_x, rms = _normalize_clip_observation(X) extra_tensors['rms'] = rms else: encoded_x = X encoded_x = encode_observation(ob_space, encoded_x) with tf.variable_scope('pi', reuse=tf.AUTO_REUSE): policy_latent = policy_network(encoded_x) if isinstance(policy_latent, tuple): policy_latent, recurrent_tensors = policy_latent if recurrent_tensors is not None: # recurrent architecture, need a few more steps nenv = nbatch // nsteps assert nenv > 0, 'Bad input for recurrent policy: batch size {} smaller than nsteps {}'.format(nbatch, nsteps) policy_latent, recurrent_tensors = policy_network(encoded_x, nenv) extra_tensors.update(recurrent_tensors) _v_net = value_network if _v_net is None or _v_net == 'shared': vf_latent = policy_latent else: if _v_net == 'copy': _v_net = policy_network else: assert callable(_v_net) with tf.variable_scope('vf', reuse=tf.AUTO_REUSE): # TODO recurrent architectures are not supported with value_network=copy yet vf_latent = _v_net(encoded_x) policy = PolicyWithValue( env=env, observations=X, latent=policy_latent, vf_latent=vf_latent, sess=sess, estimate_q=estimate_q, **extra_tensors ) return policy return policy_fn def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
from baselines.common import mpi_util from baselines import logger from baselines.common.tests.test_with_mpi import with_mpi try: from mpi4py import MPI except ImportError: MPI = None @with_mpi() def test_mpi_weighted_mean(): comm = MPI.COMM_WORLD with logger.scoped_configure(comm=comm): if comm.rank == 0: name2valcount = {'a' : (10, 2), 'b' : (20,3)} elif comm.rank == 1: name2valcount = {'a' : (19, 1), 'c' : (42,3)} else: raise NotImplementedError d = mpi_util.mpi_weighted_mean(comm, name2valcount) correctval = {'a' : (10 * 2 + 19) / 3.0, 'b' : 20, 'c' : 42} if comm.rank == 0: assert d == correctval, '{} != {}'.format(d, correctval) for name, (val, count) in name2valcount.items(): for _ in range(count): logger.logkv_mean(name, val) d2 = logger.dumpkvs() if comm.rank == 0: assert d2 == correctval
"""This file is used for specifying various schedules that evolve over time throughout the execution of the algorithm, such as: - learning rate for the optimizer - exploration epsilon for the epsilon greedy exploration strategy - beta parameter for beta parameter in prioritized replay Each schedule has a function `value(t)` which returns the current value of the parameter given the timestep t of the optimization procedure. """ class Schedule(object): def value(self, t): """Value of the schedule at time t""" raise NotImplementedError() class ConstantSchedule(object): def __init__(self, value): """Value remains constant over time. Parameters ---------- value: float Constant value of the schedule """ self._v = value def value(self, t): """See Schedule.value""" return self._v def linear_interpolation(l, r, alpha): return l + alpha * (r - l) class PiecewiseSchedule(object): def __init__(self, endpoints, interpolation=linear_interpolation, outside_value=None): """Piecewise schedule. endpoints: [(int, int)] list of pairs `(time, value)` meanining that schedule should output `value` when `t==time`. All the values for time must be sorted in an increasing order. When t is between two times, e.g. `(time_a, value_a)` and `(time_b, value_b)`, such that `time_a <= t < time_b` then value outputs `interpolation(value_a, value_b, alpha)` where alpha is a fraction of time passed between `time_a` and `time_b` for time `t`. interpolation: lambda float, float, float: float a function that takes value to the left and to the right of t according to the `endpoints`. Alpha is the fraction of distance from left endpoint to right endpoint that t has covered. See linear_interpolation for example. outside_value: float if the value is requested outside of all the intervals sepecified in `endpoints` this value is returned. If None then AssertionError is raised when outside value is requested. """ idxes = [e[0] for e in endpoints] assert idxes == sorted(idxes) self._interpolation = interpolation self._outside_value = outside_value self._endpoints = endpoints def value(self, t): """See Schedule.value""" for (l_t, l), (r_t, r) in zip(self._endpoints[:-1], self._endpoints[1:]): if l_t <= t and t < r_t: alpha = float(t - l_t) / (r_t - l_t) return self._interpolation(l, r, alpha) # t does not belong to any of the pieces, so doom. assert self._outside_value is not None return self._outside_value class LinearSchedule(object): def __init__(self, schedule_timesteps, final_p, initial_p=1.0): """Linear interpolation between initial_p and final_p over schedule_timesteps. After this many timesteps pass final_p is returned. Parameters ---------- schedule_timesteps: int Number of timesteps for which to linearly anneal initial_p to final_p initial_p: float initial output value final_p: float final output value """ self.schedule_timesteps = schedule_timesteps self.final_p = final_p self.initial_p = initial_p def value(self, t): """See Schedule.value""" fraction = min(float(t) / self.schedule_timesteps, 1.0) return self.initial_p + fraction * (self.final_p - self.initial_p)
import pytest try: import mujoco_py _mujoco_present = True except BaseException: mujoco_py = None _mujoco_present = False @pytest.mark.skipif( not _mujoco_present, reason='error loading mujoco - either mujoco / mujoco key not present, or LD_LIBRARY_PATH is not pointing to mujoco library' ) def test_lstm_example(): import tensorflow as tf from baselines.common import policies, models, cmd_util from baselines.common.vec_env.dummy_vec_env import DummyVecEnv # create vectorized environment venv = DummyVecEnv([lambda: cmd_util.make_mujoco_env('Reacher-v2', seed=0)]) with tf.Session() as sess: # build policy based on lstm network with 128 units policy = policies.build_policy(venv, models.lstm(128))(nbatch=1, nsteps=1) # initialize tensorflow variables sess.run(tf.global_variables_initializer()) # prepare environment variables ob = venv.reset() state = policy.initial_state done = [False] step_counter = 0 # run a single episode until the end (i.e. until done) while True: action, _, state, _ = policy.step(ob, S=state, M=done) ob, reward, done, _ = venv.step(action) step_counter += 1 if done: break assert step_counter > 5
import numpy as np from baselines.common.schedules import ConstantSchedule, PiecewiseSchedule def test_piecewise_schedule(): ps = PiecewiseSchedule([(-5, 100), (5, 200), (10, 50), (100, 50), (200, -50)], outside_value=500) assert np.isclose(ps.value(-10), 500) assert np.isclose(ps.value(0), 150) assert np.isclose(ps.value(5), 200) assert np.isclose(ps.value(9), 80) assert np.isclose(ps.value(50), 50) assert np.isclose(ps.value(80), 50) assert np.isclose(ps.value(150), 0) assert np.isclose(ps.value(175), -25) assert np.isclose(ps.value(201), 500) assert np.isclose(ps.value(500), 500) assert np.isclose(ps.value(200 - 1e-10), -50) def test_constant_schedule(): cs = ConstantSchedule(5) for i in range(-100, 100): assert np.isclose(cs.value(i), 5)
import tensorflow as tf import numpy as np from baselines.common.vec_env.dummy_vec_env import DummyVecEnv N_TRIALS = 10000 N_EPISODES = 100 _sess_config = tf.ConfigProto( allow_soft_placement=True, intra_op_parallelism_threads=1, inter_op_parallelism_threads=1 ) def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS): def seeded_env_fn(): env = env_fn() env.seed(0) return env np.random.seed(0) env = DummyVecEnv([seeded_env_fn]) with tf.Graph().as_default(), tf.Session(config=_sess_config).as_default(): tf.set_random_seed(0) model = learn_fn(env) sum_rew = 0 done = True for i in range(n_trials): if done: obs = env.reset() state = model.initial_state if state is not None: a, v, state, _ = model.step(obs, S=state, M=[False]) else: a, v, _, _ = model.step(obs) obs, rew, done, _ = env.step(a) sum_rew += float(rew) print("Reward in {} trials is {}".format(n_trials, sum_rew)) assert sum_rew > min_reward_fraction * n_trials, \ 'sum of rewards {} is less than {} of the total number of trials {}'.format(sum_rew, min_reward_fraction, n_trials) def reward_per_episode_test(env_fn, learn_fn, min_avg_reward, n_trials=N_EPISODES): env = DummyVecEnv([env_fn]) with tf.Graph().as_default(), tf.Session(config=_sess_config).as_default(): model = learn_fn(env) N_TRIALS = 100 observations, actions, rewards = rollout(env, model, N_TRIALS) rewards = [sum(r) for r in rewards] avg_rew = sum(rewards) / N_TRIALS print("Average reward in {} episodes is {}".format(n_trials, avg_rew)) assert avg_rew > min_avg_reward, \ 'average reward in {} episodes ({}) is less than {}'.format(n_trials, avg_rew, min_avg_reward) def rollout(env, model, n_trials): rewards = [] actions = [] observations = [] for i in range(n_trials): obs = env.reset() state = model.initial_state if hasattr(model, 'initial_state') else None episode_rew = [] episode_actions = [] episode_obs = [] while True: if state is not None: a, v, state, _ = model.step(obs, S=state, M=[False]) else: a,v, _, _ = model.step(obs) obs, rew, done, _ = env.step(a) episode_rew.append(rew) episode_actions.append(a) episode_obs.append(obs) if done: break rewards.append(episode_rew) actions.append(episode_actions) observations.append(episode_obs) return observations, actions, rewards def smoketest(argstr, **kwargs): import tempfile import subprocess import os argstr = 'python -m baselines.run ' + argstr for key, value in kwargs: argstr += ' --{}={}'.format(key, value) tempdir = tempfile.mkdtemp() env = os.environ.copy() env['OPENAI_LOGDIR'] = tempdir subprocess.run(argstr.split(' '), env=env) return tempdir
import pytest import gym import tensorflow as tf from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv from baselines.run import get_learn_function from baselines.common.tf_util import make_session algos = ['a2c', 'acer', 'acktr', 'deepq', 'ppo2', 'trpo_mpi'] @pytest.mark.parametrize('algo', algos) def test_env_after_learn(algo): def make_env(): # acktr requires too much RAM, fails on travis env = gym.make('CartPole-v1' if algo == 'acktr' else 'PongNoFrameskip-v4') return env make_session(make_default=True, graph=tf.Graph()) env = SubprocVecEnv([make_env]) learn = get_learn_function(algo) # Commenting out the following line resolves the issue, though crash happens at env.reset(). learn(network='mlp', env=env, total_timesteps=0, load_path=None, seed=None) env.reset() env.close()
# tests for tf_util import tensorflow as tf from baselines.common.tf_util import ( function, initialize, single_threaded_session ) def test_function(): with tf.Graph().as_default(): x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 def test_multikwargs(): with tf.Graph().as_default(): x = tf.placeholder(tf.int32, (), name="x") with tf.variable_scope("other"): x2 = tf.placeholder(tf.int32, (), name="x") z = 3 * x + 2 * x2 lin = function([x, x2], z, givens={x2: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(2, 2) == 10 if __name__ == '__main__': test_function() test_multikwargs()
import pytest from baselines.common.tests.envs.fixed_sequence_env import FixedSequenceEnv from baselines.common.tests.util import simple_test from baselines.run import get_learn_function from baselines.common.tests import mark_slow common_kwargs = dict( seed=0, total_timesteps=50000, ) learn_kwargs = { 'a2c': {}, 'ppo2': dict(nsteps=10, ent_coef=0.0, nminibatches=1), # TODO enable sequential models for trpo_mpi (proper handling of nbatch and nsteps) # github issue: https://github.com/openai/baselines/issues/188 # 'trpo_mpi': lambda e, p: trpo_mpi.learn(policy_fn=p(env=e), env=e, max_timesteps=30000, timesteps_per_batch=100, cg_iters=10, gamma=0.9, lam=1.0, max_kl=0.001) } alg_list = learn_kwargs.keys() rnn_list = ['lstm'] @mark_slow @pytest.mark.parametrize("alg", alg_list) @pytest.mark.parametrize("rnn", rnn_list) def test_fixed_sequence(alg, rnn): ''' Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) env_fn = lambda: FixedSequenceEnv(n_actions=10, episode_len=5) learn = lambda e: get_learn_function(alg)( env=e, network=rnn, **kwargs ) simple_test(env_fn, learn, 0.7) if __name__ == '__main__': test_fixed_sequence('ppo2', 'lstm')
import os, pytest mark_slow = pytest.mark.skipif(not os.getenv('RUNSLOW'), reason='slow')
# smoke tests of plot_util from baselines.common import plot_util as pu from baselines.common.tests.util import smoketest def test_plot_util(): nruns = 4 logdirs = [smoketest('--alg=ppo2 --env=CartPole-v0 --num_timesteps=10000') for _ in range(nruns)] data = pu.load_results(logdirs) assert len(data) == 4 _, axes = pu.plot_results(data[:1]); assert len(axes) == 1 _, axes = pu.plot_results(data, tiling='vertical'); assert axes.shape==(4,1) _, axes = pu.plot_results(data, tiling='horizontal'); assert axes.shape==(1,4) _, axes = pu.plot_results(data, tiling='symmetric'); assert axes.shape==(2,2) _, axes = pu.plot_results(data, split_fn=lambda _: ''); assert len(axes) == 1
import pytest # from baselines.acer import acer_simple as acer from baselines.common.tests.envs.mnist_env import MnistEnv from baselines.common.tests.util import simple_test from baselines.run import get_learn_function from baselines.common.tests import mark_slow # TODO investigate a2c and ppo2 failures - is it due to bad hyperparameters for this problem? # GitHub issue https://github.com/openai/baselines/issues/189 common_kwargs = { 'seed': 0, 'network':'cnn', 'gamma':0.9, 'pad':'SAME' } learn_args = { 'a2c': dict(total_timesteps=50000), 'acer': dict(total_timesteps=20000), 'deepq': dict(total_timesteps=5000), 'acktr': dict(total_timesteps=30000), 'ppo2': dict(total_timesteps=50000, lr=1e-3, nsteps=128, ent_coef=0.0), 'trpo_mpi': dict(total_timesteps=80000, timesteps_per_batch=100, cg_iters=10, lam=1.0, max_kl=0.001) } #tests pass, but are too slow on travis. Same algorithms are covered # by other tests with less compute-hungry nn's and by benchmarks @pytest.mark.skip @mark_slow @pytest.mark.parametrize("alg", learn_args.keys()) def test_mnist(alg): ''' Test if the algorithm can learn to classify MNIST digits. Uses CNN policy. ''' learn_kwargs = learn_args[alg] learn_kwargs.update(common_kwargs) learn = get_learn_function(alg) learn_fn = lambda e: learn(env=e, **learn_kwargs) env_fn = lambda: MnistEnv(episode_len=100) simple_test(env_fn, learn_fn, 0.6) if __name__ == '__main__': test_mnist('acer')
import numpy as np from baselines.common.segment_tree import SumSegmentTree, MinSegmentTree def test_tree_set(): tree = SumSegmentTree(4) tree[2] = 1.0 tree[3] = 3.0 assert np.isclose(tree.sum(), 4.0) assert np.isclose(tree.sum(0, 2), 0.0) assert np.isclose(tree.sum(0, 3), 1.0) assert np.isclose(tree.sum(2, 3), 1.0) assert np.isclose(tree.sum(2, -1), 1.0) assert np.isclose(tree.sum(2, 4), 4.0) def test_tree_set_overlap(): tree = SumSegmentTree(4) tree[2] = 1.0 tree[2] = 3.0 assert np.isclose(tree.sum(), 3.0) assert np.isclose(tree.sum(2, 3), 3.0) assert np.isclose(tree.sum(2, -1), 3.0) assert np.isclose(tree.sum(2, 4), 3.0) assert np.isclose(tree.sum(1, 2), 0.0) def test_prefixsum_idx(): tree = SumSegmentTree(4) tree[2] = 1.0 tree[3] = 3.0 assert tree.find_prefixsum_idx(0.0) == 2 assert tree.find_prefixsum_idx(0.5) == 2 assert tree.find_prefixsum_idx(0.99) == 2 assert tree.find_prefixsum_idx(1.01) == 3 assert tree.find_prefixsum_idx(3.00) == 3 assert tree.find_prefixsum_idx(4.00) == 3 def test_prefixsum_idx2(): tree = SumSegmentTree(4) tree[0] = 0.5 tree[1] = 1.0 tree[2] = 1.0 tree[3] = 3.0 assert tree.find_prefixsum_idx(0.00) == 0 assert tree.find_prefixsum_idx(0.55) == 1 assert tree.find_prefixsum_idx(0.99) == 1 assert tree.find_prefixsum_idx(1.51) == 2 assert tree.find_prefixsum_idx(3.00) == 3 assert tree.find_prefixsum_idx(5.50) == 3 def test_max_interval_tree(): tree = MinSegmentTree(4) tree[0] = 1.0 tree[2] = 0.5 tree[3] = 3.0 assert np.isclose(tree.min(), 0.5) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.5) assert np.isclose(tree.min(0, -1), 0.5) assert np.isclose(tree.min(2, 4), 0.5) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 0.7 assert np.isclose(tree.min(), 0.7) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.7) assert np.isclose(tree.min(0, -1), 0.7) assert np.isclose(tree.min(2, 4), 0.7) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 4.0 assert np.isclose(tree.min(), 1.0) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 1.0) assert np.isclose(tree.min(0, -1), 1.0) assert np.isclose(tree.min(2, 4), 3.0) assert np.isclose(tree.min(2, 3), 4.0) assert np.isclose(tree.min(2, -1), 4.0) assert np.isclose(tree.min(3, 4), 3.0) if __name__ == '__main__': test_tree_set() test_tree_set_overlap() test_prefixsum_idx() test_prefixsum_idx2() test_max_interval_tree()
import pytest import gym from baselines.run import get_learn_function from baselines.common.tests.util import reward_per_episode_test from baselines.common.tests import mark_slow pytest.importorskip('mujoco_py') common_kwargs = dict( network='mlp', seed=0, ) learn_kwargs = { 'her': dict(total_timesteps=2000) } @mark_slow @pytest.mark.parametrize("alg", learn_kwargs.keys()) def test_fetchreach(alg): ''' Test if the algorithm (with an mlp policy) can learn the FetchReach task ''' kwargs = common_kwargs.copy() kwargs.update(learn_kwargs[alg]) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) def env_fn(): env = gym.make('FetchReach-v1') env.seed(0) return env reward_per_episode_test(env_fn, learn_fn, -15) if __name__ == '__main__': test_fetchreach('her')
import pytest from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv, BoxIdentityEnv, MultiDiscreteIdentityEnv from baselines.run import get_learn_function from baselines.common.tests.util import simple_test from baselines.common.tests import mark_slow common_kwargs = dict( total_timesteps=30000, network='mlp', gamma=0.9, seed=0, ) learn_kwargs = { 'a2c' : {}, 'acktr': {}, 'deepq': {}, 'ddpg': dict(layer_norm=True), 'ppo2': dict(lr=1e-3, nsteps=64, ent_coef=0.0), 'trpo_mpi': dict(timesteps_per_batch=100, cg_iters=10, gamma=0.9, lam=1.0, max_kl=0.01) } algos_disc = ['a2c', 'acktr', 'deepq', 'ppo2', 'trpo_mpi'] algos_multidisc = ['a2c', 'acktr', 'ppo2', 'trpo_mpi'] algos_cont = ['a2c', 'acktr', 'ddpg', 'ppo2', 'trpo_mpi'] @mark_slow @pytest.mark.parametrize("alg", algos_disc) def test_discrete_identity(alg): ''' Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action) ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) env_fn = lambda: DiscreteIdentityEnv(10, episode_len=100) simple_test(env_fn, learn_fn, 0.9) @mark_slow @pytest.mark.parametrize("alg", algos_multidisc) def test_multidiscrete_identity(alg): ''' Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action) ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) env_fn = lambda: MultiDiscreteIdentityEnv((3,3), episode_len=100) simple_test(env_fn, learn_fn, 0.9) @mark_slow @pytest.mark.parametrize("alg", algos_cont) def test_continuous_identity(alg): ''' Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action) to a required precision ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) env_fn = lambda: BoxIdentityEnv((1,), episode_len=100) simple_test(env_fn, learn_fn, -0.1) if __name__ == '__main__': test_multidiscrete_identity('acktr')
import pytest import gym from baselines.run import get_learn_function from baselines.common.tests.util import reward_per_episode_test from baselines.common.tests import mark_slow common_kwargs = dict( total_timesteps=30000, network='mlp', gamma=1.0, seed=0, ) learn_kwargs = { 'a2c' : dict(nsteps=32, value_network='copy', lr=0.05), 'acer': dict(value_network='copy'), 'acktr': dict(nsteps=32, value_network='copy', is_async=False), 'deepq': dict(total_timesteps=20000), 'ppo2': dict(value_network='copy'), 'trpo_mpi': {} } @mark_slow @pytest.mark.parametrize("alg", learn_kwargs.keys()) def test_cartpole(alg): ''' Test if the algorithm (with an mlp policy) can learn to balance the cartpole ''' kwargs = common_kwargs.copy() kwargs.update(learn_kwargs[alg]) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) def env_fn(): env = gym.make('CartPole-v0') env.seed(0) return env reward_per_episode_test(env_fn, learn_fn, 100) if __name__ == '__main__': test_cartpole('acer')
import os import sys import subprocess import cloudpickle import base64 import pytest from functools import wraps try: from mpi4py import MPI except ImportError: MPI = None def with_mpi(nproc=2, timeout=30, skip_if_no_mpi=True): def outer_thunk(fn): @wraps(fn) def thunk(*args, **kwargs): serialized_fn = base64.b64encode(cloudpickle.dumps(lambda: fn(*args, **kwargs))) subprocess.check_call([ 'mpiexec','-n', str(nproc), sys.executable, '-m', 'baselines.common.tests.test_with_mpi', serialized_fn ], env=os.environ, timeout=timeout) if skip_if_no_mpi: return pytest.mark.skipif(MPI is None, reason="MPI not present")(thunk) else: return thunk return outer_thunk if __name__ == '__main__': if len(sys.argv) > 1: fn = cloudpickle.loads(base64.b64decode(sys.argv[1])) assert callable(fn) fn()
import os import gym import tempfile import pytest import tensorflow as tf import numpy as np from baselines.common.tests.envs.mnist_env import MnistEnv from baselines.common.vec_env.dummy_vec_env import DummyVecEnv from baselines.run import get_learn_function from baselines.common.tf_util import make_session, get_session from functools import partial learn_kwargs = { 'deepq': {}, 'a2c': {}, 'acktr': {}, 'acer': {}, 'ppo2': {'nminibatches': 1, 'nsteps': 10}, 'trpo_mpi': {}, } network_kwargs = { 'mlp': {}, 'cnn': {'pad': 'SAME'}, 'lstm': {}, 'cnn_lnlstm': {'pad': 'SAME'} } @pytest.mark.parametrize("learn_fn", learn_kwargs.keys()) @pytest.mark.parametrize("network_fn", network_kwargs.keys()) def test_serialization(learn_fn, network_fn): ''' Test if the trained model can be serialized ''' if network_fn.endswith('lstm') and learn_fn in ['acer', 'acktr', 'trpo_mpi', 'deepq']: # TODO make acktr work with recurrent policies # and test # github issue: https://github.com/openai/baselines/issues/660 return def make_env(): env = MnistEnv(episode_len=100) env.seed(10) return env env = DummyVecEnv([make_env]) ob = env.reset().copy() learn = get_learn_function(learn_fn) kwargs = {} kwargs.update(network_kwargs[network_fn]) kwargs.update(learn_kwargs[learn_fn]) learn = partial(learn, env=env, network=network_fn, seed=0, **kwargs) with tempfile.TemporaryDirectory() as td: model_path = os.path.join(td, 'serialization_test_model') with tf.Graph().as_default(), make_session().as_default(): model = learn(total_timesteps=100) model.save(model_path) mean1, std1 = _get_action_stats(model, ob) variables_dict1 = _serialize_variables() with tf.Graph().as_default(), make_session().as_default(): model = learn(total_timesteps=0, load_path=model_path) mean2, std2 = _get_action_stats(model, ob) variables_dict2 = _serialize_variables() for k, v in variables_dict1.items(): np.testing.assert_allclose(v, variables_dict2[k], atol=0.01, err_msg='saved and loaded variable {} value mismatch'.format(k)) np.testing.assert_allclose(mean1, mean2, atol=0.5) np.testing.assert_allclose(std1, std2, atol=0.5) @pytest.mark.parametrize("learn_fn", learn_kwargs.keys()) @pytest.mark.parametrize("network_fn", ['mlp']) def test_coexistence(learn_fn, network_fn): ''' Test if more than one model can exist at a time ''' if learn_fn == 'deepq': # TODO enable multiple DQN models to be useable at the same time # github issue https://github.com/openai/baselines/issues/656 return if network_fn.endswith('lstm') and learn_fn in ['acktr', 'trpo_mpi', 'deepq']: # TODO make acktr work with recurrent policies # and test # github issue: https://github.com/openai/baselines/issues/660 return env = DummyVecEnv([lambda: gym.make('CartPole-v0')]) learn = get_learn_function(learn_fn) kwargs = {} kwargs.update(network_kwargs[network_fn]) kwargs.update(learn_kwargs[learn_fn]) learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs) make_session(make_default=True, graph=tf.Graph()) model1 = learn(seed=1) make_session(make_default=True, graph=tf.Graph()) model2 = learn(seed=2) model1.step(env.observation_space.sample()) model2.step(env.observation_space.sample()) def _serialize_variables(): sess = get_session() variables = tf.trainable_variables() values = sess.run(variables) return {var.name: value for var, value in zip(variables, values)} def _get_action_stats(model, ob): ntrials = 1000 if model.initial_state is None or model.initial_state == []: actions = np.array([model.step(ob)[0] for _ in range(ntrials)]) else: actions = np.array([model.step(ob, S=model.initial_state, M=[False])[0] for _ in range(ntrials)]) mean = np.mean(actions, axis=0) std = np.std(actions, axis=0) return mean, std
from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv def test_discrete_nodelay(): nsteps = 100 eplen = 50 env = DiscreteIdentityEnv(10, episode_len=eplen) ob = env.reset() for t in range(nsteps): action = env.action_space.sample() next_ob, rew, done, info = env.step(action) assert rew == (1 if action == ob else 0) if (t + 1) % eplen == 0: assert done next_ob = env.reset() else: assert not done ob = next_ob def test_discrete_delay1(): eplen = 50 env = DiscreteIdentityEnv(10, episode_len=eplen, delay=1) ob = env.reset() prev_ob = None for t in range(eplen): action = env.action_space.sample() next_ob, rew, done, info = env.step(action) if t > 0: assert rew == (1 if action == prev_ob else 0) else: assert rew == 0 prev_ob = ob ob = next_ob if t < eplen - 1: assert not done assert done
import numpy as np from gym import Env from gym.spaces import Discrete class FixedSequenceEnv(Env): def __init__( self, n_actions=10, episode_len=100 ): self.action_space = Discrete(n_actions) self.observation_space = Discrete(1) self.np_random = np.random.RandomState(0) self.episode_len = episode_len self.sequence = [self.np_random.randint(0, self.action_space.n) for _ in range(self.episode_len)] self.time = 0 def reset(self): self.time = 0 return 0 def step(self, actions): rew = self._get_reward(actions) self._choose_next_state() done = False if self.episode_len and self.time >= self.episode_len: done = True return 0, rew, done, {} def seed(self, seed=None): self.np_random.seed(seed) def _choose_next_state(self): self.time += 1 def _get_reward(self, actions): return 1 if actions == self.sequence[self.time] else 0
import numpy as np from abc import abstractmethod from gym import Env from gym.spaces import MultiDiscrete, Discrete, Box from collections import deque class IdentityEnv(Env): def __init__( self, episode_len=None, delay=0, zero_first_rewards=True ): self.observation_space = self.action_space self.episode_len = episode_len self.time = 0 self.delay = delay self.zero_first_rewards = zero_first_rewards self.q = deque(maxlen=delay+1) def reset(self): self.q.clear() for _ in range(self.delay + 1): self.q.append(self.action_space.sample()) self.time = 0 return self.q[-1] def step(self, actions): rew = self._get_reward(self.q.popleft(), actions) if self.zero_first_rewards and self.time < self.delay: rew = 0 self.q.append(self.action_space.sample()) self.time += 1 done = self.episode_len is not None and self.time >= self.episode_len return self.q[-1], rew, done, {} def seed(self, seed=None): self.action_space.seed(seed) @abstractmethod def _get_reward(self, state, actions): raise NotImplementedError class DiscreteIdentityEnv(IdentityEnv): def __init__( self, dim, episode_len=None, delay=0, zero_first_rewards=True ): self.action_space = Discrete(dim) super().__init__(episode_len=episode_len, delay=delay, zero_first_rewards=zero_first_rewards) def _get_reward(self, state, actions): return 1 if state == actions else 0 class MultiDiscreteIdentityEnv(IdentityEnv): def __init__( self, dims, episode_len=None, delay=0, ): self.action_space = MultiDiscrete(dims) super().__init__(episode_len=episode_len, delay=delay) def _get_reward(self, state, actions): return 1 if all(state == actions) else 0 class BoxIdentityEnv(IdentityEnv): def __init__( self, shape, episode_len=None, ): self.action_space = Box(low=-1.0, high=1.0, shape=shape, dtype=np.float32) super().__init__(episode_len=episode_len) def _get_reward(self, state, actions): diff = actions - state diff = diff[:] return -0.5 * np.dot(diff, diff)
import os.path as osp import numpy as np import tempfile from gym import Env from gym.spaces import Discrete, Box class MnistEnv(Env): def __init__( self, episode_len=None, no_images=None ): import filelock from tensorflow.examples.tutorials.mnist import input_data # we could use temporary directory for this with a context manager and # TemporaryDirecotry, but then each test that uses mnist would re-download the data # this way the data is not cleaned up, but we only download it once per machine mnist_path = osp.join(tempfile.gettempdir(), 'MNIST_data') with filelock.FileLock(mnist_path + '.lock'): self.mnist = input_data.read_data_sets(mnist_path) self.np_random = np.random.RandomState() self.observation_space = Box(low=0.0, high=1.0, shape=(28,28,1)) self.action_space = Discrete(10) self.episode_len = episode_len self.time = 0 self.no_images = no_images self.train_mode() self.reset() def reset(self): self._choose_next_state() self.time = 0 return self.state[0] def step(self, actions): rew = self._get_reward(actions) self._choose_next_state() done = False if self.episode_len and self.time >= self.episode_len: rew = 0 done = True return self.state[0], rew, done, {} def seed(self, seed=None): self.np_random.seed(seed) def train_mode(self): self.dataset = self.mnist.train def test_mode(self): self.dataset = self.mnist.test def _choose_next_state(self): max_index = (self.no_images if self.no_images is not None else self.dataset.num_examples) - 1 index = self.np_random.randint(0, max_index) image = self.dataset.images[index].reshape(28,28,1)*255 label = self.dataset.labels[index] self.state = (image, label) self.time += 1 def _get_reward(self, actions): return 1 if self.state[1] == actions else 0
""" Tests for asynchronous vectorized environments. """ import gym import numpy as np import pytest from .dummy_vec_env import DummyVecEnv from .shmem_vec_env import ShmemVecEnv from .subproc_vec_env import SubprocVecEnv from baselines.common.tests.test_with_mpi import with_mpi def assert_venvs_equal(venv1, venv2, num_steps): """ Compare two environments over num_steps steps and make sure that the observations produced by each are the same when given the same actions. """ assert venv1.num_envs == venv2.num_envs assert venv1.observation_space.shape == venv2.observation_space.shape assert venv1.observation_space.dtype == venv2.observation_space.dtype assert venv1.action_space.shape == venv2.action_space.shape assert venv1.action_space.dtype == venv2.action_space.dtype try: obs1, obs2 = venv1.reset(), venv2.reset() assert np.array(obs1).shape == np.array(obs2).shape assert np.array(obs1).shape == (venv1.num_envs,) + venv1.observation_space.shape assert np.allclose(obs1, obs2) venv1.action_space.seed(1337) for _ in range(num_steps): actions = np.array([venv1.action_space.sample() for _ in range(venv1.num_envs)]) for venv in [venv1, venv2]: venv.step_async(actions) outs1 = venv1.step_wait() outs2 = venv2.step_wait() for out1, out2 in zip(outs1[:3], outs2[:3]): assert np.array(out1).shape == np.array(out2).shape assert np.allclose(out1, out2) assert list(outs1[3]) == list(outs2[3]) finally: venv1.close() venv2.close() @pytest.mark.parametrize('klass', (ShmemVecEnv, SubprocVecEnv)) @pytest.mark.parametrize('dtype', ('uint8', 'float32')) def test_vec_env(klass, dtype): # pylint: disable=R0914 """ Test that a vectorized environment is equivalent to DummyVecEnv, since DummyVecEnv is less likely to be error prone. """ num_envs = 3 num_steps = 100 shape = (3, 8) def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype) fns = [make_fn(i) for i in range(num_envs)] env1 = DummyVecEnv(fns) env2 = klass(fns) assert_venvs_equal(env1, env2, num_steps=num_steps) @pytest.mark.parametrize('dtype', ('uint8', 'float32')) @pytest.mark.parametrize('num_envs_in_series', (3, 4, 6)) def test_sync_sampling(dtype, num_envs_in_series): """ Test that a SubprocVecEnv running with envs in series outputs the same as DummyVecEnv. """ num_envs = 12 num_steps = 100 shape = (3, 8) def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype) fns = [make_fn(i) for i in range(num_envs)] env1 = DummyVecEnv(fns) env2 = SubprocVecEnv(fns, in_series=num_envs_in_series) assert_venvs_equal(env1, env2, num_steps=num_steps) @pytest.mark.parametrize('dtype', ('uint8', 'float32')) @pytest.mark.parametrize('num_envs_in_series', (3, 4, 6)) def test_sync_sampling_sanity(dtype, num_envs_in_series): """ Test that a SubprocVecEnv running with envs in series outputs the same as SubprocVecEnv without running in series. """ num_envs = 12 num_steps = 100 shape = (3, 8) def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype) fns = [make_fn(i) for i in range(num_envs)] env1 = SubprocVecEnv(fns) env2 = SubprocVecEnv(fns, in_series=num_envs_in_series) assert_venvs_equal(env1, env2, num_steps=num_steps) class SimpleEnv(gym.Env): """ An environment with a pre-determined observation space and RNG seed. """ def __init__(self, seed, shape, dtype): np.random.seed(seed) self._dtype = dtype self._start_obs = np.array(np.random.randint(0, 0x100, size=shape), dtype=dtype) self._max_steps = seed + 1 self._cur_obs = None self._cur_step = 0 # this is 0xFF instead of 0x100 because the Box space includes # the high end, while randint does not self.action_space = gym.spaces.Box(low=0, high=0xFF, shape=shape, dtype=dtype) self.observation_space = self.action_space def step(self, action): self._cur_obs += np.array(action, dtype=self._dtype) self._cur_step += 1 done = self._cur_step >= self._max_steps reward = self._cur_step / self._max_steps return self._cur_obs, reward, done, {'foo': 'bar' + str(reward)} def reset(self): self._cur_obs = self._start_obs self._cur_step = 0 return self._cur_obs def render(self, mode=None): raise NotImplementedError @with_mpi() def test_mpi_with_subprocvecenv(): shape = (2,3,4) nenv = 1 venv = SubprocVecEnv([lambda: SimpleEnv(0, shape, 'float32')] * nenv) ob = venv.reset() venv.close() assert ob.shape == (nenv,) + shape
""" Tests for asynchronous vectorized environments. """ import gym import pytest import os import glob import tempfile from .dummy_vec_env import DummyVecEnv from .shmem_vec_env import ShmemVecEnv from .subproc_vec_env import SubprocVecEnv from .vec_video_recorder import VecVideoRecorder @pytest.mark.parametrize('klass', (DummyVecEnv, ShmemVecEnv, SubprocVecEnv)) @pytest.mark.parametrize('num_envs', (1, 4)) @pytest.mark.parametrize('video_length', (10, 100)) @pytest.mark.parametrize('video_interval', (1, 50)) def test_video_recorder(klass, num_envs, video_length, video_interval): """ Wrap an existing VecEnv with VevVideoRecorder, Make (video_interval + video_length + 1) steps, then check that the file is present """ def make_fn(): env = gym.make('PongNoFrameskip-v4') return env fns = [make_fn for _ in range(num_envs)] env = klass(fns) with tempfile.TemporaryDirectory() as video_path: env = VecVideoRecorder(env, video_path, record_video_trigger=lambda x: x % video_interval == 0, video_length=video_length) env.reset() for _ in range(video_interval + video_length + 1): env.step([0] * num_envs) env.close() recorded_video = glob.glob(os.path.join(video_path, "*.mp4")) # first and second step assert len(recorded_video) == 2 # Files are not empty assert all(os.stat(p).st_size != 0 for p in recorded_video)
""" An interface for asynchronous vectorized environments. """ import multiprocessing as mp import numpy as np from .vec_env import VecEnv, CloudpickleWrapper, clear_mpi_env_vars import ctypes from baselines import logger from .util import dict_to_obs, obs_space_info, obs_to_dict _NP_TO_CT = {np.float32: ctypes.c_float, np.int32: ctypes.c_int32, np.int8: ctypes.c_int8, np.uint8: ctypes.c_char, np.bool: ctypes.c_bool} class ShmemVecEnv(VecEnv): """ Optimized version of SubprocVecEnv that uses shared variables to communicate observations. """ def __init__(self, env_fns, spaces=None, context='spawn'): """ If you don't specify observation_space, we'll have to create a dummy environment to get it. """ ctx = mp.get_context(context) if spaces: observation_space, action_space = spaces else: logger.log('Creating dummy env object to get spaces') with logger.scoped_configure(format_strs=[]): dummy = env_fns[0]() observation_space, action_space = dummy.observation_space, dummy.action_space dummy.close() del dummy VecEnv.__init__(self, len(env_fns), observation_space, action_space) self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space) self.obs_bufs = [ {k: ctx.Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys} for _ in env_fns] self.parent_pipes = [] self.procs = [] with clear_mpi_env_vars(): for env_fn, obs_buf in zip(env_fns, self.obs_bufs): wrapped_fn = CloudpickleWrapper(env_fn) parent_pipe, child_pipe = ctx.Pipe() proc = ctx.Process(target=_subproc_worker, args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys)) proc.daemon = True self.procs.append(proc) self.parent_pipes.append(parent_pipe) proc.start() child_pipe.close() self.waiting_step = False self.viewer = None def reset(self): if self.waiting_step: logger.warn('Called reset() while waiting for the step to complete') self.step_wait() for pipe in self.parent_pipes: pipe.send(('reset', None)) return self._decode_obses([pipe.recv() for pipe in self.parent_pipes]) def step_async(self, actions): assert len(actions) == len(self.parent_pipes) for pipe, act in zip(self.parent_pipes, actions): pipe.send(('step', act)) self.waiting_step = True def step_wait(self): outs = [pipe.recv() for pipe in self.parent_pipes] self.waiting_step = False obs, rews, dones, infos = zip(*outs) return self._decode_obses(obs), np.array(rews), np.array(dones), infos def close_extras(self): if self.waiting_step: self.step_wait() for pipe in self.parent_pipes: pipe.send(('close', None)) for pipe in self.parent_pipes: pipe.recv() pipe.close() for proc in self.procs: proc.join() def get_images(self, mode='human'): for pipe in self.parent_pipes: pipe.send(('render', None)) return [pipe.recv() for pipe in self.parent_pipes] def _decode_obses(self, obs): result = {} for k in self.obs_keys: bufs = [b[k] for b in self.obs_bufs] o = [np.frombuffer(b.get_obj(), dtype=self.obs_dtypes[k]).reshape(self.obs_shapes[k]) for b in bufs] result[k] = np.array(o) return dict_to_obs(result) def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_bufs, obs_shapes, obs_dtypes, keys): """ Control a single environment instance using IPC and shared memory. """ def _write_obs(maybe_dict_obs): flatdict = obs_to_dict(maybe_dict_obs) for k in keys: dst = obs_bufs[k].get_obj() dst_np = np.frombuffer(dst, dtype=obs_dtypes[k]).reshape(obs_shapes[k]) # pylint: disable=W0212 np.copyto(dst_np, flatdict[k]) env = env_fn_wrapper.x() parent_pipe.close() try: while True: cmd, data = pipe.recv() if cmd == 'reset': pipe.send(_write_obs(env.reset())) elif cmd == 'step': obs, reward, done, info = env.step(data) if done: obs = env.reset() pipe.send((_write_obs(obs), reward, done, info)) elif cmd == 'render': pipe.send(env.render(mode='rgb_array')) elif cmd == 'close': pipe.send(None) break else: raise RuntimeError('Got unrecognized cmd %s' % cmd) except KeyboardInterrupt: print('ShmemVecEnv worker: got KeyboardInterrupt') finally: env.close()