state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
C : Type u_1
inst✝⁴ : Category.{?u.110309, u_1} C
inst✝³ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K L M : HomologicalComplex C c
φ✝ : K ⟶ L
ψ : L ⟶ M
i j✝ k✝ : ι
inst✝² : HasHomology K i
inst✝¹ : HasHomology L i
inst✝ : HasHomology M i
A : C
k : A ⟶ X K i
j : ι
hj : ComplexShape.next c i = j
hk : k ≫ d K i j = 0
φ : K ⟶ L
⊢ (k ≫ Hom.f φ i) ≫ d L i j = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by
|
rw [assoc, φ.comm, reassoc_of% hk, zero_comp]
|
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.391_0.3mDRYOmCgwAIyYF
|
@[reassoc (attr
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝⁴ : Category.{u_3, u_1} C
inst✝³ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K L M : HomologicalComplex C c
φ✝ : K ⟶ L
ψ : L ⟶ M
i j✝ k✝ : ι
inst✝² : HasHomology K i
inst✝¹ : HasHomology L i
inst✝ : HasHomology M i
A : C
k : A ⟶ X K i
j : ι
hj : ComplexShape.next c i = j
hk : k ≫ d K i j = 0
φ : K ⟶ L
⊢ liftCycles K k j hj hk ≫ cyclesMap φ i = liftCycles L (k ≫ Hom.f φ i) j hj (_ : (k ≫ Hom.f φ i) ≫ d L i j = 0)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
|
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
|
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.391_0.3mDRYOmCgwAIyYF
|
@[reassoc (attr
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i j k : ι
hj : ComplexShape.next c i = j
h : d K i j = 0
inst✝ : HasHomology K i
⊢ IsIso (iCycles K i)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
|
subst hj
|
lemma isIso_iCycles : IsIso (K.iCycles i) := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.473_0.3mDRYOmCgwAIyYF
|
lemma isIso_iCycles : IsIso (K.iCycles i)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i k : ι
inst✝ : HasHomology K i
h : d K i (ComplexShape.next c i) = 0
⊢ IsIso (iCycles K i)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
|
exact ShortComplex.isIso_iCycles _ h
|
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.473_0.3mDRYOmCgwAIyYF
|
lemma isIso_iCycles : IsIso (K.iCycles i)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i j k : ι
hj : ComplexShape.next c i = j
h : d K i j = 0
inst✝ : HasHomology K i
⊢ (sc K i).g = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by
|
aesop_cat
|
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.493_0.3mDRYOmCgwAIyYF
|
lemma isIso_homologyι : IsIso (K.homologyι i)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i j k : ι
hi : ComplexShape.prev c j = i
h : d K i j = 0
inst✝ : HasHomology K j
⊢ IsIso (pOpcycles K j)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
|
obtain rfl := hi
|
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.519_0.3mDRYOmCgwAIyYF
|
lemma isIso_pOpcycles : IsIso (K.pOpcycles j)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
j k : ι
inst✝ : HasHomology K j
h : d K (ComplexShape.prev c j) j = 0
⊢ IsIso (pOpcycles K j)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
|
exact ShortComplex.isIso_pOpcycles _ h
|
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.519_0.3mDRYOmCgwAIyYF
|
lemma isIso_pOpcycles : IsIso (K.pOpcycles j)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i j k : ι
hi : ComplexShape.prev c j = i
h : d K i j = 0
inst✝ : HasHomology K j
⊢ (sc K j).f = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by
|
aesop_cat
|
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.539_0.3mDRYOmCgwAIyYF
|
lemma isIso_homologyπ : IsIso (K.homologyπ j)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝¹ : Category.{u_3, u_1} C
inst✝ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i j k : ι
⊢ ExactAt K i ↔ ShortComplex.Exact (sc K i)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by
|
rfl
|
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.564_0.3mDRYOmCgwAIyYF
|
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i j k : ι
inst✝ : HasHomology K i
⊢ ExactAt K i ↔ IsZero (homology K i)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
|
dsimp [homology]
|
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.571_0.3mDRYOmCgwAIyYF
|
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_3, u_1} C
inst✝¹ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
K : HomologicalComplex C c
i j k : ι
inst✝ : HasHomology K i
⊢ ExactAt K i ↔ IsZero (ShortComplex.homology (sc K i))
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
|
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
|
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.571_0.3mDRYOmCgwAIyYF
|
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{?u.155878, u_1} C
inst✝¹ : HasZeroMorphisms C
K L : ChainComplex C ℕ
φ : K ⟶ L
inst✝ : HomologicalComplex.HasHomology K 0
⊢ HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by
|
simp
|
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.583_0.3mDRYOmCgwAIyYF
|
instance isIso_homologyι₀ :
IsIso (K.homologyι 0)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{?u.157135, u_1} C
inst✝¹ : HasZeroMorphisms C
K L : ChainComplex C ℕ
φ : K ⟶ L
inst✝ : HomologicalComplex.HasHomology K 0
⊢ HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by
|
simp
|
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.587_0.3mDRYOmCgwAIyYF
|
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
K L : ChainComplex C ℕ
φ : K ⟶ L
inst✝¹ : HomologicalComplex.HasHomology K 0
inst✝ : HomologicalComplex.HasHomology L 0
⊢ (isoHomologyι₀ K).inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ (isoHomologyι₀ L).inv
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
|
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
|
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.594_0.3mDRYOmCgwAIyYF
|
@[reassoc (attr
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{?u.161113, u_1} C
inst✝¹ : HasZeroMorphisms C
K L : CochainComplex C ℕ
φ : K ⟶ L
inst✝ : HomologicalComplex.HasHomology K 0
⊢ HomologicalComplex.d K (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by
|
simp
|
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.609_0.3mDRYOmCgwAIyYF
|
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0)
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{?u.162372, u_1} C
inst✝¹ : HasZeroMorphisms C
K L : CochainComplex C ℕ
φ : K ⟶ L
inst✝ : HomologicalComplex.HasHomology K 0
⊢ HomologicalComplex.d K (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by
|
simp
|
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.613_0.3mDRYOmCgwAIyYF
|
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
K L : CochainComplex C ℕ
φ : K ⟶ L
inst✝¹ : HomologicalComplex.HasHomology K 0
inst✝ : HomologicalComplex.HasHomology L 0
⊢ HomologicalComplex.homologyMap φ 0 ≫ (isoHomologyπ₀ L).inv = (isoHomologyπ₀ K).inv ≫ HomologicalComplex.cyclesMap φ 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
|
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
|
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.620_0.3mDRYOmCgwAIyYF
|
@[reassoc (attr
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ homologyMap (-φ) i = -homologyMap φ i
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
|
dsimp [homologyMap]
|
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.637_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ ShortComplex.homologyMap ((shortComplexFunctor C c i).map (-φ)) =
-ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
|
rw [← ShortComplex.homologyMap_neg]
|
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.637_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ ShortComplex.homologyMap ((shortComplexFunctor C c i).map (-φ)) =
ShortComplex.homologyMap (-(shortComplexFunctor C c i).map φ)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
|
rfl
|
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.637_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
|
dsimp [homologyMap]
|
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.643_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ ShortComplex.homologyMap ((shortComplexFunctor C c i).map (φ + ψ)) =
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ) +
ShortComplex.homologyMap ((shortComplexFunctor C c i).map ψ)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
|
rw [← ShortComplex.homologyMap_add]
|
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.643_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ ShortComplex.homologyMap ((shortComplexFunctor C c i).map (φ + ψ)) =
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ + (shortComplexFunctor C c i).map ψ)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
|
rfl
|
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.643_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
|
dsimp [homologyMap]
|
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.649_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ ShortComplex.homologyMap ((shortComplexFunctor C c i).map (φ - ψ)) =
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ) -
ShortComplex.homologyMap ((shortComplexFunctor C c i).map ψ)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
|
rw [← ShortComplex.homologyMap_sub]
|
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.649_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
ι : Type u_2
inst✝³ : Category.{u_3, u_1} C
inst✝² : Preadditive C
c : ComplexShape ι
K L : HomologicalComplex C c
f g φ ψ : K ⟶ L
i : ι
inst✝¹ : HasHomology K i
inst✝ : HasHomology L i
⊢ ShortComplex.homologyMap ((shortComplexFunctor C c i).map (φ - ψ)) =
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ - (shortComplexFunctor C c i).map ψ)
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
|
rfl
|
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.649_0.3mDRYOmCgwAIyYF
|
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{?u.173930, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ : φ ≫ HomologicalComplex.d K 0 1 = 0
⊢ ComplexShape.next (ComplexShape.up ℕ) 0 = 1
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by
|
simp
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ : φ ≫ HomologicalComplex.d K 0 1 = 0
⊢ IsIso (HomologicalComplex.liftCycles K φ 1 (_ : ComplexShape.next (ComplexShape.up ℕ) 0 = 1) hφ) ↔
ShortComplex.Exact (ShortComplex.mk φ (HomologicalComplex.d K 0 1) hφ) ∧ Mono φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
|
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ : φ ≫ HomologicalComplex.d K 0 1 = 0
this :
∀ (i : ℕ) (hx : ComplexShape.next (ComplexShape.up ℕ) 0 = i) (hφ : φ ≫ HomologicalComplex.d K 0 i = 0),
IsIso (HomologicalComplex.liftCycles K φ i hx hφ) ↔
ShortComplex.Exact (ShortComplex.mk φ (HomologicalComplex.d K 0 i) hφ) ∧ Mono φ
⊢ ComplexShape.next (ComplexShape.up ℕ) 0 = 1
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by
|
simp
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ : φ ≫ HomologicalComplex.d K 0 1 = 0
⊢ ∀ (i : ℕ) (hx : ComplexShape.next (ComplexShape.up ℕ) 0 = i) (hφ : φ ≫ HomologicalComplex.d K 0 i = 0),
IsIso (HomologicalComplex.liftCycles K φ i hx hφ) ↔
ShortComplex.Exact (ShortComplex.mk φ (HomologicalComplex.d K 0 i) hφ) ∧ Mono φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
|
rintro _ rfl hφ
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : φ ≫ HomologicalComplex.d K 0 1 = 0
hφ : φ ≫ HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.up ℕ) 0) = 0
⊢ IsIso
(HomologicalComplex.liftCycles K φ (ComplexShape.next (ComplexShape.up ℕ) 0)
(_ : ComplexShape.next (ComplexShape.up ℕ) 0 = ComplexShape.next (ComplexShape.up ℕ) 0) hφ) ↔
ShortComplex.Exact (ShortComplex.mk φ (HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.up ℕ) 0)) hφ) ∧
Mono φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
|
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : φ ≫ HomologicalComplex.d K 0 1 = 0
hφ : φ ≫ HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.up ℕ) 0) = 0
⊢ 0 ≫ 0 = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by
|
simp
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : φ ≫ HomologicalComplex.d K 0 1 = 0
hφ : φ ≫ HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.up ℕ) 0) = 0
α : ShortComplex.mk 0 0 (_ : 0 ≫ 0 = 0) ⟶ HomologicalComplex.sc K 0 := ShortComplex.Hom.mk 0 φ 0
⊢ IsIso
(HomologicalComplex.liftCycles K φ (ComplexShape.next (ComplexShape.up ℕ) 0)
(_ : ComplexShape.next (ComplexShape.up ℕ) 0 = ComplexShape.next (ComplexShape.up ℕ) 0) hφ) ↔
ShortComplex.Exact (ShortComplex.mk φ (HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.up ℕ) 0)) hφ) ∧
Mono φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
|
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : φ ≫ HomologicalComplex.d K 0 1 = 0
hφ : φ ≫ HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.up ℕ) 0) = 0
α : ShortComplex.mk 0 0 (_ : 0 ≫ 0 = 0) ⟶ HomologicalComplex.sc K 0 := ShortComplex.Hom.mk 0 φ 0
⊢ (HomologicalComplex.sc K 0).f = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by
|
simp
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : CochainComplex C ℕ
X : C
φ : X ⟶ HomologicalComplex.X K 0
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : φ ≫ HomologicalComplex.d K 0 1 = 0
hφ : φ ≫ HomologicalComplex.d K 0 (ComplexShape.next (ComplexShape.up ℕ) 0) = 0
α : ShortComplex.mk 0 0 (_ : 0 ≫ 0 = 0) ⟶ HomologicalComplex.sc K 0 := ShortComplex.Hom.mk 0 φ 0
⊢ (HomologicalComplex.sc K 0).f = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by
|
simp
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.663_0.3mDRYOmCgwAIyYF
|
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{?u.181426, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ : HomologicalComplex.d K 1 0 ≫ φ = 0
⊢ ComplexShape.prev (ComplexShape.down ℕ) 0 = 1
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by
|
simp
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ : HomologicalComplex.d K 1 0 ≫ φ = 0
⊢ IsIso (HomologicalComplex.descOpcycles K φ 1 (_ : ComplexShape.prev (ComplexShape.down ℕ) 0 = 1) hφ) ↔
ShortComplex.Exact (ShortComplex.mk (HomologicalComplex.d K 1 0) φ hφ) ∧ Epi φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
|
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ : HomologicalComplex.d K 1 0 ≫ φ = 0
this :
∀ (i : ℕ) (hx : ComplexShape.prev (ComplexShape.down ℕ) 0 = i) (hφ : HomologicalComplex.d K i 0 ≫ φ = 0),
IsIso (HomologicalComplex.descOpcycles K φ i hx hφ) ↔
ShortComplex.Exact (ShortComplex.mk (HomologicalComplex.d K i 0) φ hφ) ∧ Epi φ
⊢ ComplexShape.prev (ComplexShape.down ℕ) 0 = 1
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by
|
simp
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ : HomologicalComplex.d K 1 0 ≫ φ = 0
⊢ ∀ (i : ℕ) (hx : ComplexShape.prev (ComplexShape.down ℕ) 0 = i) (hφ : HomologicalComplex.d K i 0 ≫ φ = 0),
IsIso (HomologicalComplex.descOpcycles K φ i hx hφ) ↔
ShortComplex.Exact (ShortComplex.mk (HomologicalComplex.d K i 0) φ hφ) ∧ Epi φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
|
rintro _ rfl hφ
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : HomologicalComplex.d K 1 0 ≫ φ = 0
hφ : HomologicalComplex.d K (ComplexShape.prev (ComplexShape.down ℕ) 0) 0 ≫ φ = 0
⊢ IsIso
(HomologicalComplex.descOpcycles K φ (ComplexShape.prev (ComplexShape.down ℕ) 0)
(_ : ComplexShape.prev (ComplexShape.down ℕ) 0 = ComplexShape.prev (ComplexShape.down ℕ) 0) hφ) ↔
ShortComplex.Exact (ShortComplex.mk (HomologicalComplex.d K (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) φ hφ) ∧
Epi φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
|
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : HomologicalComplex.d K 1 0 ≫ φ = 0
hφ : HomologicalComplex.d K (ComplexShape.prev (ComplexShape.down ℕ) 0) 0 ≫ φ = 0
⊢ 0 ≫ 0 = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by
|
simp
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : HomologicalComplex.d K 1 0 ≫ φ = 0
hφ : HomologicalComplex.d K (ComplexShape.prev (ComplexShape.down ℕ) 0) 0 ≫ φ = 0
α : HomologicalComplex.sc K 0 ⟶ ShortComplex.mk 0 0 (_ : 0 ≫ 0 = 0) := ShortComplex.Hom.mk 0 φ 0
⊢ IsIso
(HomologicalComplex.descOpcycles K φ (ComplexShape.prev (ComplexShape.down ℕ) 0)
(_ : ComplexShape.prev (ComplexShape.down ℕ) 0 = ComplexShape.prev (ComplexShape.down ℕ) 0) hφ) ↔
ShortComplex.Exact (ShortComplex.mk (HomologicalComplex.d K (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) φ hφ) ∧
Epi φ
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
|
exact (ShortComplex.quasiIso_iff_isIso_descOpcycles α (by simp) rfl rfl).symm.trans
(ShortComplex.quasiIso_iff_of_zeros' α (by simp) rfl rfl)
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : HomologicalComplex.d K 1 0 ≫ φ = 0
hφ : HomologicalComplex.d K (ComplexShape.prev (ComplexShape.down ℕ) 0) 0 ≫ φ = 0
α : HomologicalComplex.sc K 0 ⟶ ShortComplex.mk 0 0 (_ : 0 ≫ 0 = 0) := ShortComplex.Hom.mk 0 φ 0
⊢ (HomologicalComplex.sc K 0).g = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_descOpcycles α (by
|
simp
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_descOpcycles α (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Abelian C
K : ChainComplex C ℕ
X : C
φ : HomologicalComplex.X K 0 ⟶ X
inst✝ : HomologicalComplex.HasHomology K 0
hφ✝ : HomologicalComplex.d K 1 0 ≫ φ = 0
hφ : HomologicalComplex.d K (ComplexShape.prev (ComplexShape.down ℕ) 0) 0 ≫ φ = 0
α : HomologicalComplex.sc K 0 ⟶ ShortComplex.mk 0 0 (_ : 0 ≫ 0 = 0) := ShortComplex.Hom.mk 0 φ 0
⊢ (HomologicalComplex.sc K 0).g = 0
|
/-
Copyright (c) 2023 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import Mathlib.Algebra.Homology.Additive
import Mathlib.Algebra.Homology.ShortComplex.Exact
import Mathlib.Algebra.Homology.ShortComplex.Preadditive
import Mathlib.Tactic.Linarith
/-!
# The short complexes attached to homological complexes
In this file, we define a functor
`shortComplexFunctor C c i : HomologicalComplex C c ⥤ ShortComplex C`.
By definition, the image of a homological complex `K` by this functor
is the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`.
The homology `K.homology i` of a homological complex `K` in degree `i` is defined as
the homology of the short complex `(shortComplexFunctor C c i).obj K`, which can be
abbreviated as `K.sc i`.
-/
open CategoryTheory Category Limits
namespace HomologicalComplex
variable (C : Type*) [Category C] [HasZeroMorphisms C] {ι : Type*} (c : ComplexShape ι)
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
@[simps]
def shortComplexFunctor' (i j k : ι) : HomologicalComplex C c ⥤ ShortComplex C where
obj K := ShortComplex.mk (K.d i j) (K.d j k) (K.d_comp_d i j k)
map f :=
{ τ₁ := f.f i
τ₂ := f.f j
τ₃ := f.f k }
/-- The functor `HomologicalComplex C c ⥤ ShortComplex C` which sends a homological
complex `K` to the short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
@[simps!]
noncomputable def shortComplexFunctor (i : ι) :=
shortComplexFunctor' C c (c.prev i) i (c.next i)
/-- The natural isomorphism `shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k`
when `c.prev j = i` and `c.next j = k`. -/
@[simps!]
noncomputable def natIsoSc' (i j k : ι) (hi : c.prev j = i) (hk : c.next j = k) :
shortComplexFunctor C c j ≅ shortComplexFunctor' C c i j k :=
NatIso.ofComponents (fun K => ShortComplex.isoMk (K.XIsoOfEq hi) (Iso.refl _) (K.XIsoOfEq hk)
(by aesop_cat) (by aesop_cat)) (by aesop_cat)
variable {C c}
section
variable (K L M : HomologicalComplex C c) (φ : K ⟶ L) (ψ : L ⟶ M) (i j k : ι)
/-- The short complex `K.X i ⟶ K.X j ⟶ K.X k` for arbitrary indices `i`, `j` and `k`. -/
abbrev sc' := (shortComplexFunctor' C c i j k).obj K
/-- The short complex `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)`. -/
noncomputable abbrev sc := (shortComplexFunctor C c i).obj K
/-- The canonical isomorphism `K.sc j ≅ K.sc' i j k` when `c.prev j = i` and `c.next j = k`. -/
noncomputable abbrev isoSc' (hi : c.prev j = i) (hk : c.next j = k) :
K.sc j ≅ K.sc' i j k := (natIsoSc' C c i j k hi hk).app K
/-- A homological complex `K` has homology in degree `i` if the associated
short complex `K.sc i` has. -/
abbrev HasHomology := (K.sc i).HasHomology
variable [K.HasHomology i]
/-- The homology in degree `i` of a homological complex. -/
noncomputable def homology := (K.sc i).homology
/-- Comparison isomorphism between the homology for the two homology API. -/
noncomputable def homology'IsoHomology {A : Type*} [Category A] [Abelian A]
(K : HomologicalComplex A c) (i : ι) :
K.homology' i ≅ K.homology i :=
(K.sc i).homology'IsoHomology
/-- The cycles in degree `i` of a homological complex. -/
noncomputable def cycles := (K.sc i).cycles
/-- The inclusion of the cycles of a homological complex. -/
noncomputable def iCycles : K.cycles i ⟶ K.X i := (K.sc i).iCycles
/-- The homology class map from cycles to the homology of a homological complex. -/
noncomputable def homologyπ : K.cycles i ⟶ K.homology i := (K.sc i).homologyπ
variable {i}
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
noncomputable def liftCycles {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
(K.sc i).liftCycles k (by subst hj; exact hk)
/-- The morphism to `K.cycles i` that is induced by a "cycle", i.e. a morphism
to `K.X i` whose postcomposition with the differential is zero. -/
@[reducible]
noncomputable def liftCycles' {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.Rel i j)
(hk : k ≫ K.d i j = 0) : A ⟶ K.cycles i :=
K.liftCycles k j (c.next_eq' hj) hk
@[reassoc (attr := simp)]
lemma liftCycles_i {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) : K.liftCycles k j hj hk ≫ K.iCycles i = k := by
dsimp [liftCycles, iCycles]
simp
variable (i)
/-- The map `K.X i ⟶ K.cycles j` induced by the differential `K.d i j`. -/
noncomputable def toCycles [K.HasHomology j] :
K.X i ⟶ K.cycles j :=
K.liftCycles (K.d i j) (c.next j) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma iCycles_d : K.iCycles i ≫ K.d i j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.next_eq' hij
exact (K.sc i).iCycles_g
· rw [K.shape _ _ hij, comp_zero]
/-- `K.cycles i` is the kernel of `K.d i j` when `c.next i = j`. -/
noncomputable def cyclesIsKernel (hj : c.next i = j) :
IsLimit (KernelFork.ofι (K.iCycles i) (K.iCycles_d i j)) := by
obtain rfl := hj
exact (K.sc i).cyclesIsKernel
@[reassoc (attr := simp)]
lemma toCycles_i [K.HasHomology j] :
K.toCycles i j ≫ K.iCycles j = K.d i j :=
liftCycles_i _ _ _ _ _
instance : Mono (K.iCycles i) := by
dsimp only [iCycles]
infer_instance
instance : Epi (K.homologyπ i) := by
dsimp only [homologyπ]
infer_instance
@[reassoc (attr := simp)]
lemma d_toCycles [K.HasHomology k] :
K.d i j ≫ K.toCycles j k = 0 := by
simp only [← cancel_mono (K.iCycles k), assoc, toCycles_i, d_comp_d, zero_comp]
variable {i}
@[reassoc]
lemma comp_liftCycles {A' A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (α : A' ⟶ A) :
α ≫ K.liftCycles k j hj hk = K.liftCycles (α ≫ k) j hj (by rw [assoc, hk, comp_zero]) := by
simp only [← cancel_mono (K.iCycles i), assoc, liftCycles_i]
@[reassoc]
lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι)
(hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) :
K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0 := by
by_cases h : c.Rel i' i
· obtain rfl := c.prev_eq' h
exact (K.sc i).liftCycles_homologyπ_eq_zero_of_boundary _ x hx
· have : liftCycles K k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) = 0 := by
rw [K.shape _ _ h, comp_zero] at hx
rw [← cancel_mono (K.iCycles i), zero_comp, liftCycles_i, hx]
rw [this, zero_comp]
variable (i)
@[reassoc (attr := simp)]
lemma toCycles_comp_homologyπ [K.HasHomology j] :
K.toCycles i j ≫ K.homologyπ j = 0 :=
K.liftCycles_homologyπ_eq_zero_of_boundary (K.d i j) (c.next j) rfl (𝟙 _) (by simp)
/-- `K.homology j` is the cokernel of `K.toCycles i j : K.X i ⟶ K.cycles j`
when `c.prev j = i`. -/
noncomputable def homologyIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.homologyπ j) (K.toCycles_comp_homologyπ i j)) := by
subst hi
exact ((K.sc j).homologyIsCokernel)
/-- The opcycles in degree `i` of a homological complex. -/
noncomputable def opcycles := (K.sc i).opcycles
/-- The projection to the opcycles of a homological complex. -/
noncomputable def pOpcycles : K.X i ⟶ K.opcycles i := (K.sc i).pOpcycles
/-- The inclusion map of the homology of a homological complex into its opcycles. -/
noncomputable def homologyι : K.homology i ⟶ K.opcycles i := (K.sc i).homologyι
variable {i}
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
noncomputable def descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
(K.sc i).descOpcycles k (by subst hj; exact hk)
/-- The morphism from `K.opcycles i` that is induced by an "opcycle", i.e. a morphism
from `K.X i` whose precomposition with the differential is zero. -/
@[reducible]
noncomputable def descOpcycles' {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.Rel j i)
(hk : K.d j i ≫ k = 0) : K.opcycles i ⟶ A :=
K.descOpcycles k j (c.prev_eq' hj) hk
@[reassoc (attr := simp)]
lemma p_descOpcycles {A : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) : K.pOpcycles i ≫ K.descOpcycles k j hj hk = k := by
dsimp [descOpcycles, pOpcycles]
simp
variable (i)
/-- The map `K.opcycles i ⟶ K.X j` induced by the differential `K.d i j`. -/
noncomputable def fromOpcycles :
K.opcycles i ⟶ K.X j :=
K.descOpcycles (K.d i j) (c.prev i) rfl (K.d_comp_d _ _ _)
@[reassoc (attr := simp)]
lemma d_pOpcycles [K.HasHomology j] : K.d i j ≫ K.pOpcycles j = 0 := by
by_cases hij : c.Rel i j
· obtain rfl := c.prev_eq' hij
exact (K.sc j).f_pOpcycles
· rw [K.shape _ _ hij, zero_comp]
/-- `K.opcycles j` is the cokernel of `K.d i j` when `c.prev j = i`. -/
noncomputable def opcyclesIsCokernel (hi : c.prev j = i) [K.HasHomology j] :
IsColimit (CokernelCofork.ofπ (K.pOpcycles j) (K.d_pOpcycles i j)) := by
obtain rfl := hi
exact (K.sc j).opcyclesIsCokernel
@[reassoc (attr := simp)]
lemma p_fromOpcycles :
K.pOpcycles i ≫ K.fromOpcycles i j = K.d i j :=
p_descOpcycles _ _ _ _ _
instance : Epi (K.pOpcycles i) := by
dsimp only [pOpcycles]
infer_instance
instance : Mono (K.homologyι i) := by
dsimp only [homologyι]
infer_instance
@[reassoc (attr := simp)]
lemma fromOpcycles_d :
K.fromOpcycles i j ≫ K.d j k = 0 := by
simp only [← cancel_epi (K.pOpcycles i), p_fromOpcycles_assoc, d_comp_d, comp_zero]
variable {i}
@[reassoc]
lemma descOpcycles_comp {A A' : C} (k : K.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : K.d j i ≫ k = 0) (α : A ⟶ A') :
K.descOpcycles k j hj hk ≫ α = K.descOpcycles (k ≫ α) j hj
(by rw [reassoc_of% hk, zero_comp]) := by
simp only [← cancel_epi (K.pOpcycles i), p_descOpcycles_assoc, p_descOpcycles]
@[reassoc]
lemma homologyι_descOpcycles_eq_zero_of_boundary {A : C} (k : K.X i ⟶ A) (j : ι)
(hj : c.prev i = j) {i' : ι} (x : K.X i' ⟶ A) (hx : k = K.d i i' ≫ x) :
K.homologyι i ≫ K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
by_cases h : c.Rel i i'
· obtain rfl := c.next_eq' h
exact (K.sc i).homologyι_descOpcycles_eq_zero_of_boundary _ x hx
· have : K.descOpcycles k j hj (by rw [hx, K.d_comp_d_assoc, zero_comp]) = 0 := by
rw [K.shape _ _ h, zero_comp] at hx
rw [← cancel_epi (K.pOpcycles i), comp_zero, p_descOpcycles, hx]
rw [this, comp_zero]
variable (i)
@[reassoc (attr := simp)]
lemma homologyι_comp_fromOpcycles :
K.homologyι i ≫ K.fromOpcycles i j = 0 :=
K.homologyι_descOpcycles_eq_zero_of_boundary (K.d i j) _ rfl (𝟙 _) (by simp)
/-- `K.homology i` is the kernel of `K.fromOpcycles i j : K.opcycles i ⟶ K.X j`
when `c.next i = j`. -/
noncomputable def homologyIsKernel (hi : c.next i = j) :
IsLimit (KernelFork.ofι (K.homologyι i) (K.homologyι_comp_fromOpcycles i j)) := by
subst hi
exact (K.sc i).homologyIsKernel
variable {K L M}
variable [L.HasHomology i] [M.HasHomology i]
/-- The map `K.homology i ⟶ L.homology i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def homologyMap : K.homology i ⟶ L.homology i :=
ShortComplex.homologyMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.cycles i ⟶ L.cycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def cyclesMap : K.cycles i ⟶ L.cycles i :=
ShortComplex.cyclesMap ((shortComplexFunctor C c i).map φ)
/-- The map `K.opcycles i ⟶ L.opcycles i` induced by a morphism in `HomologicalComplex`. -/
noncomputable def opcyclesMap : K.opcycles i ⟶ L.opcycles i :=
ShortComplex.opcyclesMap ((shortComplexFunctor C c i).map φ)
@[reassoc (attr := simp)]
lemma cyclesMap_i : cyclesMap φ i ≫ L.iCycles i = K.iCycles i ≫ φ.f i :=
ShortComplex.cyclesMap_i _
@[reassoc (attr := simp)]
lemma p_opcyclesMap : K.pOpcycles i ≫ opcyclesMap φ i = φ.f i ≫ L.pOpcycles i :=
ShortComplex.p_opcyclesMap _
instance [Mono (φ.f i)] : Mono (cyclesMap φ i) := mono_of_mono_fac (cyclesMap_i φ i)
attribute [local instance] epi_comp
instance [Epi (φ.f i)] : Epi (opcyclesMap φ i) := epi_of_epi_fac (p_opcyclesMap φ i)
variable (K)
@[simp]
lemma homologyMap_id : homologyMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.homologyMap_id _
@[simp]
lemma cyclesMap_id : cyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.cyclesMap_id _
@[simp]
lemma opcyclesMap_id : opcyclesMap (𝟙 K) i = 𝟙 _ :=
ShortComplex.opcyclesMap_id _
variable {K}
@[reassoc]
lemma homologyMap_comp : homologyMap (φ ≫ ψ) i = homologyMap φ i ≫ homologyMap ψ i := by
dsimp [homologyMap]
rw [Functor.map_comp, ShortComplex.homologyMap_comp]
@[reassoc]
lemma cyclesMap_comp : cyclesMap (φ ≫ ψ) i = cyclesMap φ i ≫ cyclesMap ψ i := by
dsimp [cyclesMap]
rw [Functor.map_comp, ShortComplex.cyclesMap_comp]
@[reassoc]
lemma opcyclesMap_comp : opcyclesMap (φ ≫ ψ) i = opcyclesMap φ i ≫ opcyclesMap ψ i := by
dsimp [opcyclesMap]
rw [Functor.map_comp, ShortComplex.opcyclesMap_comp]
variable (K L)
@[simp]
lemma homologyMap_zero : homologyMap (0 : K ⟶ L) i = 0 :=
ShortComplex.homologyMap_zero _ _
@[simp]
lemma cyclesMap_zero : cyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.cyclesMap_zero _ _
@[simp]
lemma opcyclesMap_zero : opcyclesMap (0 : K ⟶ L) i = 0 :=
ShortComplex.opcyclesMap_zero _ _
variable {K L}
@[reassoc (attr := simp)]
lemma homologyπ_naturality :
K.homologyπ i ≫ homologyMap φ i = cyclesMap φ i ≫ L.homologyπ i :=
ShortComplex.homologyπ_naturality _
@[reassoc (attr := simp)]
lemma homologyι_naturality :
homologyMap φ i ≫ L.homologyι i = K.homologyι i ≫ opcyclesMap φ i :=
ShortComplex.homologyι_naturality _
@[reassoc (attr := simp)]
lemma homology_π_ι :
K.homologyπ i ≫ K.homologyι i = K.iCycles i ≫ K.pOpcycles i :=
(K.sc i).homology_π_ι
variable {i}
@[reassoc (attr := simp)]
lemma opcyclesMap_comp_descOpcycles {A : C} (k : L.X i ⟶ A) (j : ι) (hj : c.prev i = j)
(hk : L.d j i ≫ k = 0) (φ : K ⟶ L) :
opcyclesMap φ i ≫ L.descOpcycles k j hj hk = K.descOpcycles (φ.f i ≫ k) j hj
(by rw [← φ.comm_assoc, hk, comp_zero]) := by
simp only [← cancel_epi (K.pOpcycles i), p_opcyclesMap_assoc, p_descOpcycles]
@[reassoc (attr := simp)]
lemma liftCycles_comp_cyclesMap {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j)
(hk : k ≫ K.d i j = 0) (φ : K ⟶ L) :
K.liftCycles k j hj hk ≫ cyclesMap φ i = L.liftCycles (k ≫ φ.f i) j hj
(by rw [assoc, φ.comm, reassoc_of% hk, zero_comp]) := by
simp only [← cancel_mono (L.iCycles i), assoc, cyclesMap_i, liftCycles_i_assoc, liftCycles_i]
section
variable (C c i)
attribute [local simp] homologyMap_comp cyclesMap_comp opcyclesMap_comp
/-- The `i`th homology functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def homologyFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.homology i
map f := homologyMap f i
/-- The homology functor to graded objects. -/
@[simps]
noncomputable def gradedHomologyFunctor [CategoryWithHomology C] :
HomologicalComplex C c ⥤ GradedObject ι C where
obj K i := K.homology i
map f i := homologyMap f i
/-- The `i`th cycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def cyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.cycles i
map f := cyclesMap f i
/-- The `i`th opcycles functor `HomologicalComplex C c ⥤ C`. -/
@[simps]
noncomputable def opcyclesFunctor [CategoryWithHomology C] : HomologicalComplex C c ⥤ C where
obj K := K.opcycles i
map f := opcyclesMap f i
/-- The natural transformation `K.homologyπ i : K.cycles i ⟶ K.homology i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyπ [CategoryWithHomology C] :
cyclesFunctor C c i ⟶ homologyFunctor C c i where
app K := K.homologyπ i
/-- The natural transformation `K.homologyι i : K.homology i ⟶ K.opcycles i`
for all `K : HomologicalComplex C c`. -/
@[simps]
noncomputable def natTransHomologyι [CategoryWithHomology C] :
homologyFunctor C c i ⟶ opcyclesFunctor C c i where
app K := K.homologyι i
/-- The natural isomorphism `K.homology i ≅ (K.sc i).homology`
for all homological complexes `K`. -/
@[simps!]
noncomputable def homologyFunctorIso [CategoryWithHomology C] :
homologyFunctor C c i ≅
shortComplexFunctor C c i ⋙ ShortComplex.homologyFunctor C :=
Iso.refl _
/-- The natural isomorphism `K.homology j ≅ (K.sc' i j k).homology`
for all homological complexes `K` when `c.prev j = i` and `c.next j = k`. -/
noncomputable def homologyFunctorIso' [CategoryWithHomology C]
(hi : c.prev j = i) (hk : c.next j = k) :
homologyFunctor C c j ≅
shortComplexFunctor' C c i j k ⋙ ShortComplex.homologyFunctor C :=
homologyFunctorIso C c j ≪≫ isoWhiskerRight (natIsoSc' C c i j k hi hk) _
instance [CategoryWithHomology C] : (homologyFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (opcyclesFunctor C c i).PreservesZeroMorphisms where
instance [CategoryWithHomology C] : (cyclesFunctor C c i).PreservesZeroMorphisms where
end
end
variable (K : HomologicalComplex C c) (i j k : ι)
section
variable (hj : c.next i = j) (h : K.d i j = 0) [K.HasHomology i]
lemma isIso_iCycles : IsIso (K.iCycles i) := by
subst hj
exact ShortComplex.isIso_iCycles _ h
/-- The canonical isomorphism `K.cycles i ≅ K.X i` when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def iCyclesIso : K.cycles i ≅ K.X i :=
have := K.isIso_iCycles i j hj h
asIso (K.iCycles i)
@[reassoc (attr := simp)]
lemma iCyclesIso_hom_inv_id :
K.iCycles i ≫ (K.iCyclesIso i j hj h).inv = 𝟙 _ :=
(K.iCyclesIso i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma iCyclesIso_inv_hom_id :
(K.iCyclesIso i j hj h).inv ≫ K.iCycles i = 𝟙 _ :=
(K.iCyclesIso i j hj h).inv_hom_id
lemma isIso_homologyι : IsIso (K.homologyι i) :=
ShortComplex.isIso_homologyι _ (by aesop_cat)
/-- The canonical isomorphism `K.homology i ≅ K.opcycles i`
when the differential from `i` is zero. -/
@[simps! hom]
noncomputable def isoHomologyι : K.homology i ≅ K.opcycles i :=
have := K.isIso_homologyι i j hj h
asIso (K.homologyι i)
@[reassoc (attr := simp)]
lemma isoHomologyι_hom_inv_id :
K.homologyι i ≫ (K.isoHomologyι i j hj h).inv = 𝟙 _ :=
(K.isoHomologyι i j hj h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyι_inv_hom_id :
(K.isoHomologyι i j hj h).inv ≫ K.homologyι i = 𝟙 _ :=
(K.isoHomologyι i j hj h).inv_hom_id
end
section
variable (hi : c.prev j = i) (h : K.d i j = 0) [K.HasHomology j]
lemma isIso_pOpcycles : IsIso (K.pOpcycles j) := by
obtain rfl := hi
exact ShortComplex.isIso_pOpcycles _ h
/-- The canonical isomorphism `K.X j ≅ K.opCycles j` when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def pOpcyclesIso : K.X j ≅ K.opcycles j :=
have := K.isIso_pOpcycles i j hi h
asIso (K.pOpcycles j)
@[reassoc (attr := simp)]
lemma pOpcyclesIso_hom_inv_id :
K.pOpcycles j ≫ (K.pOpcyclesIso i j hi h).inv = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma pOpcyclesIso_inv_hom_id :
(K.pOpcyclesIso i j hi h).inv ≫ K.pOpcycles j = 𝟙 _ :=
(K.pOpcyclesIso i j hi h).inv_hom_id
lemma isIso_homologyπ : IsIso (K.homologyπ j) :=
ShortComplex.isIso_homologyπ _ (by aesop_cat)
/-- The canonical isomorphism `K.cycles j ≅ K.homology j`
when the differential to `j` is zero. -/
@[simps! hom]
noncomputable def isoHomologyπ : K.cycles j ≅ K.homology j :=
have := K.isIso_homologyπ i j hi h
asIso (K.homologyπ j)
@[reassoc (attr := simp)]
lemma isoHomologyπ_hom_inv_id :
K.homologyπ j ≫ (K.isoHomologyπ i j hi h).inv = 𝟙 _ :=
(K.isoHomologyπ i j hi h).hom_inv_id
@[reassoc (attr := simp)]
lemma isoHomologyπ_inv_hom_id :
(K.isoHomologyπ i j hi h).inv ≫ K.homologyπ j = 𝟙 _ :=
(K.isoHomologyπ i j hi h).inv_hom_id
end
/-- A homological complex `K` is exact at `i` if the short complex `K.sc i` is exact. -/
def ExactAt := (K.sc i).Exact
lemma exactAt_iff :
K.ExactAt i ↔ (K.sc i).Exact := by rfl
lemma exactAt_iff' (hi : c.prev j = i) (hk : c.next j = k) :
K.ExactAt j ↔ (K.sc' i j k).Exact :=
ShortComplex.exact_iff_of_iso (K.isoSc' i j k hi hk)
lemma exactAt_iff_isZero_homology [K.HasHomology i] :
K.ExactAt i ↔ IsZero (K.homology i) := by
dsimp [homology]
rw [exactAt_iff, ShortComplex.exact_iff_isZero_homology]
end HomologicalComplex
namespace ChainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : ChainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyι₀ :
IsIso (K.homologyι 0) :=
K.isIso_homologyι 0 _ rfl (by simp)
/-- The canonical isomorphism `K.homology 0 ≅ K.opcycles 0` for a chain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyι₀ :
K.homology 0 ≅ K.opcycles 0 := K.isoHomologyι 0 _ rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyι₀_inv_naturality [L.HasHomology 0] :
K.isoHomologyι₀.inv ≫ HomologicalComplex.homologyMap φ 0 =
HomologicalComplex.opcyclesMap φ 0 ≫ L.isoHomologyι₀.inv := by
simp only [assoc, ← cancel_mono (L.homologyι 0),
HomologicalComplex.homologyι_naturality, HomologicalComplex.isoHomologyι_inv_hom_id_assoc,
HomologicalComplex.isoHomologyι_inv_hom_id, comp_id]
end ChainComplex
namespace CochainComplex
variable {C : Type*} [Category C] [HasZeroMorphisms C]
(K L : CochainComplex C ℕ) (φ : K ⟶ L) [K.HasHomology 0]
instance isIso_homologyπ₀ :
IsIso (K.homologyπ 0) :=
K.isIso_homologyπ _ 0 rfl (by simp)
/-- The canonical isomorphism `K.cycles 0 ≅ K.homology 0` for a cochain complex `K`
indexed by `ℕ`. -/
noncomputable abbrev isoHomologyπ₀ :
K.cycles 0 ≅ K.homology 0 := K.isoHomologyπ _ 0 rfl (by simp)
variable {K L}
@[reassoc (attr := simp)]
lemma isoHomologyπ₀_inv_naturality [L.HasHomology 0] :
HomologicalComplex.homologyMap φ 0 ≫ L.isoHomologyπ₀.inv =
K.isoHomologyπ₀.inv ≫ HomologicalComplex.cyclesMap φ 0 := by
simp only [← cancel_epi (K.homologyπ 0), HomologicalComplex.homologyπ_naturality_assoc,
HomologicalComplex.isoHomologyπ_hom_inv_id, comp_id,
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc]
end CochainComplex
namespace HomologicalComplex
variable {C ι : Type*} [Category C] [Preadditive C] {c : ComplexShape ι}
{K L : HomologicalComplex C c} {f g : K ⟶ L}
variable (φ ψ : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i]
@[simp]
lemma homologyMap_neg : homologyMap (-φ) i = -homologyMap φ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_neg]
rfl
@[simp]
lemma homologyMap_add : homologyMap (φ + ψ) i = homologyMap φ i + homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_add]
rfl
@[simp]
lemma homologyMap_sub : homologyMap (φ - ψ) i = homologyMap φ i - homologyMap ψ i := by
dsimp [homologyMap]
rw [← ShortComplex.homologyMap_sub]
rfl
instance [CategoryWithHomology C] : (homologyFunctor C c i).Additive where
end HomologicalComplex
namespace CochainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_liftCycles_iff (K : CochainComplex C ℕ) {X : C} (φ : X ⟶ K.X 0)
[K.HasHomology 0] (hφ : φ ≫ K.d 0 1 = 0) :
IsIso (K.liftCycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.up ℕ).next 0 = i)
(hφ : φ ≫ K.d 0 i = 0), IsIso (K.liftCycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Mono φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) ⟶ K.sc 0 :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_liftCycles α rfl rfl (by simp)).symm.trans
(ShortComplex.quasiIso_iff_of_zeros α rfl rfl (by simp))
end CochainComplex
namespace ChainComplex
variable {C : Type*} [Category C] [Abelian C]
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_descOpcycles α (by simp) rfl rfl).symm.trans
(ShortComplex.quasiIso_iff_of_zeros' α (by
|
simp
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ := by
suffices ∀ (i : ℕ) (hx : (ComplexShape.down ℕ).prev 0 = i)
(hφ : K.d i 0 ≫ φ = 0), IsIso (K.descOpcycles φ i hx hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ from this 1 (by simp) hφ
rintro _ rfl hφ
let α : K.sc 0 ⟶ ShortComplex.mk (0 : X ⟶ X) (0 : X ⟶ X) (by simp) :=
{ τ₁ := 0
τ₂ := φ
τ₃ := 0 }
exact (ShortComplex.quasiIso_iff_isIso_descOpcycles α (by simp) rfl rfl).symm.trans
(ShortComplex.quasiIso_iff_of_zeros' α (by
|
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex.684_0.3mDRYOmCgwAIyYF
|
lemma isIso_descOpcycles_iff (K : ChainComplex C ℕ) {X : C} (φ : K.X 0 ⟶ X)
[K.HasHomology 0] (hφ : K.d 1 0 ≫ φ = 0) :
IsIso (K.descOpcycles φ 1 (by simp) hφ) ↔
(ShortComplex.mk _ _ hφ).Exact ∧ Epi φ
|
Mathlib_Algebra_Homology_ShortComplex_HomologicalComplex
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderTop α
inst✝² : PartialOrder β
inst✝¹ : OrderTop β
inst✝ : OrderIsoClass F α β
f : F
a : α
⊢ f a = ⊤ ↔ a = ⊤
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
|
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
|
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
|
Mathlib.Order.Hom.Bounded.138_0.4FzgGE1bSNjCw87
|
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderTop α
inst✝² : PartialOrder β
inst✝¹ : OrderTop β
inst✝ : OrderIsoClass F α β
f : F
a : α
this : TopHomClass F α β := OrderIsoClass.toTopHomClass
⊢ f a = ⊤ ↔ a = ⊤
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
|
rw [← map_top f, (EquivLike.injective f).eq_iff]
|
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
|
Mathlib.Order.Hom.Bounded.138_0.4FzgGE1bSNjCw87
|
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderBot α
inst✝² : PartialOrder β
inst✝¹ : OrderBot β
inst✝ : OrderIsoClass F α β
f : F
a : α
⊢ f a = ⊥ ↔ a = ⊥
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
|
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
|
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
|
Mathlib.Order.Hom.Bounded.148_0.4FzgGE1bSNjCw87
|
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderBot α
inst✝² : PartialOrder β
inst✝¹ : OrderBot β
inst✝ : OrderIsoClass F α β
f : F
a : α
this : BotHomClass F α β := OrderIsoClass.toBotHomClass
⊢ f a = ⊥ ↔ a = ⊥
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
|
rw [← map_bot f, (EquivLike.injective f).eq_iff]
|
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
|
Mathlib.Order.Hom.Bounded.148_0.4FzgGE1bSNjCw87
|
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
f g : TopHom α β
h : f.toFun = g.toFun
⊢ f = g
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by
|
cases f
|
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by
|
Mathlib.Order.Hom.Bounded.195_0.4FzgGE1bSNjCw87
|
instance : TopHomClass (TopHom α β) α
β where
coe
|
Mathlib_Order_Hom_Bounded
|
case mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
g : TopHom α β
toFun✝ : α → β
map_top'✝ : toFun✝ ⊤ = ⊤
h : { toFun := toFun✝, map_top' := map_top'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_top' := map_top'✝ } = g
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f;
|
cases g
|
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f;
|
Mathlib.Order.Hom.Bounded.195_0.4FzgGE1bSNjCw87
|
instance : TopHomClass (TopHom α β) α
β where
coe
|
Mathlib_Order_Hom_Bounded
|
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
toFun✝¹ : α → β
map_top'✝¹ : toFun✝¹ ⊤ = ⊤
toFun✝ : α → β
map_top'✝ : toFun✝ ⊤ = ⊤
h : { toFun := toFun✝¹, map_top' := map_top'✝¹ }.toFun = { toFun := toFun✝, map_top' := map_top'✝ }.toFun
⊢ { toFun := toFun✝¹, map_top' := map_top'✝¹ } = { toFun := toFun✝, map_top' := map_top'✝ }
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g;
|
congr
|
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g;
|
Mathlib.Order.Hom.Bounded.195_0.4FzgGE1bSNjCw87
|
instance : TopHomClass (TopHom α β) α
β where
coe
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
f : TopHom β γ
g : TopHom α β
⊢ (⇑f ∘ ⇑g) ⊤ = ⊤
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by
|
rw [comp_apply, map_top, map_top]
|
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by
|
Mathlib.Order.Hom.Bounded.250_0.4FzgGE1bSNjCw87
|
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
g : TopHom β γ
f₁ f₂ : TopHom α β
hg : Injective ⇑g
h : comp g f₁ = comp g f₂
a : α
⊢ g (f₁ a) = g (f₂ a)
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by
|
rw [← TopHom.comp_apply, h, TopHom.comp_apply]
|
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by
|
Mathlib.Order.Hom.Bounded.289_0.4FzgGE1bSNjCw87
|
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Top α
inst✝¹ : SemilatticeInf β
inst✝ : OrderTop β
f✝ g✝ f g : TopHom α β
⊢ (⇑f ⊓ ⇑g) ⊤ = ⊤
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by
|
rw [Pi.inf_apply, map_top, map_top, inf_top_eq]
|
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by
|
Mathlib.Order.Hom.Bounded.328_0.4FzgGE1bSNjCw87
|
instance : Inf (TopHom α β)
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Top α
inst✝¹ : SemilatticeSup β
inst✝ : OrderTop β
f✝ g✝ f g : TopHom α β
⊢ (⇑f ⊔ ⇑g) ⊤ = ⊤
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by
|
rw [Pi.sup_apply, map_top, map_top, sup_top_eq]
|
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by
|
Mathlib.Order.Hom.Bounded.350_0.4FzgGE1bSNjCw87
|
instance : Sup (TopHom α β)
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
f g : BotHom α β
h : f.toFun = g.toFun
⊢ f = g
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by
|
cases f
|
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by
|
Mathlib.Order.Hom.Bounded.387_0.4FzgGE1bSNjCw87
|
instance : BotHomClass (BotHom α β) α
β where
coe
|
Mathlib_Order_Hom_Bounded
|
case mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
g : BotHom α β
toFun✝ : α → β
map_bot'✝ : toFun✝ ⊥ = ⊥
h : { toFun := toFun✝, map_bot' := map_bot'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_bot' := map_bot'✝ } = g
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f;
|
cases g
|
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f;
|
Mathlib.Order.Hom.Bounded.387_0.4FzgGE1bSNjCw87
|
instance : BotHomClass (BotHom α β) α
β where
coe
|
Mathlib_Order_Hom_Bounded
|
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
toFun✝¹ : α → β
map_bot'✝¹ : toFun✝¹ ⊥ = ⊥
toFun✝ : α → β
map_bot'✝ : toFun✝ ⊥ = ⊥
h : { toFun := toFun✝¹, map_bot' := map_bot'✝¹ }.toFun = { toFun := toFun✝, map_bot' := map_bot'✝ }.toFun
⊢ { toFun := toFun✝¹, map_bot' := map_bot'✝¹ } = { toFun := toFun✝, map_bot' := map_bot'✝ }
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g;
|
congr
|
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g;
|
Mathlib.Order.Hom.Bounded.387_0.4FzgGE1bSNjCw87
|
instance : BotHomClass (BotHom α β) α
β where
coe
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
f : BotHom β γ
g : BotHom α β
⊢ (⇑f ∘ ⇑g) ⊥ = ⊥
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by
|
rw [comp_apply, map_bot, map_bot]
|
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by
|
Mathlib.Order.Hom.Bounded.442_0.4FzgGE1bSNjCw87
|
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
g : BotHom β γ
f₁ f₂ : BotHom α β
hg : Injective ⇑g
h : comp g f₁ = comp g f₂
a : α
⊢ g (f₁ a) = g (f₂ a)
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by rw [comp_apply, map_bot, map_bot]
#align bot_hom.comp BotHom.comp
@[simp]
theorem coe_comp (f : BotHom β γ) (g : BotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bot_hom.coe_comp BotHom.coe_comp
@[simp]
theorem comp_apply (f : BotHom β γ) (g : BotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align bot_hom.comp_apply BotHom.comp_apply
@[simp]
theorem comp_assoc (f : BotHom γ δ) (g : BotHom β γ) (h : BotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bot_hom.comp_assoc BotHom.comp_assoc
@[simp]
theorem comp_id (f : BotHom α β) : f.comp (BotHom.id α) = f :=
BotHom.ext fun _ => rfl
#align bot_hom.comp_id BotHom.comp_id
@[simp]
theorem id_comp (f : BotHom α β) : (BotHom.id β).comp f = f :=
BotHom.ext fun _ => rfl
#align bot_hom.id_comp BotHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BotHom β γ} {f : BotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BotHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (comp · f)⟩
#align bot_hom.cancel_right BotHom.cancel_right
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by
|
rw [← BotHom.comp_apply, h, BotHom.comp_apply]
|
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by
|
Mathlib.Order.Hom.Bounded.481_0.4FzgGE1bSNjCw87
|
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Bot α
inst✝¹ : SemilatticeInf β
inst✝ : OrderBot β
f✝ g✝ f g : BotHom α β
⊢ (⇑f ⊓ ⇑g) ⊥ = ⊥
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by rw [comp_apply, map_bot, map_bot]
#align bot_hom.comp BotHom.comp
@[simp]
theorem coe_comp (f : BotHom β γ) (g : BotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bot_hom.coe_comp BotHom.coe_comp
@[simp]
theorem comp_apply (f : BotHom β γ) (g : BotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align bot_hom.comp_apply BotHom.comp_apply
@[simp]
theorem comp_assoc (f : BotHom γ δ) (g : BotHom β γ) (h : BotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bot_hom.comp_assoc BotHom.comp_assoc
@[simp]
theorem comp_id (f : BotHom α β) : f.comp (BotHom.id α) = f :=
BotHom.ext fun _ => rfl
#align bot_hom.comp_id BotHom.comp_id
@[simp]
theorem id_comp (f : BotHom α β) : (BotHom.id β).comp f = f :=
BotHom.ext fun _ => rfl
#align bot_hom.id_comp BotHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BotHom β γ} {f : BotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BotHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (comp · f)⟩
#align bot_hom.cancel_right BotHom.cancel_right
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by rw [← BotHom.comp_apply, h, BotHom.comp_apply],
congr_arg _⟩
#align bot_hom.cancel_left BotHom.cancel_left
end Bot
instance [Preorder β] [Bot β] : Preorder (BotHom α β) :=
Preorder.lift (FunLike.coe : BotHom α β → α → β)
instance [PartialOrder β] [Bot β] : PartialOrder (BotHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderBot
variable [Preorder β] [OrderBot β]
instance : OrderBot (BotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le := fun _ => @bot_le (α → β) _ _ _
@[simp]
theorem coe_bot : ⇑(⊥ : BotHom α β) = ⊥ :=
rfl
#align bot_hom.coe_bot BotHom.coe_bot
@[simp]
theorem bot_apply (a : α) : (⊥ : BotHom α β) a = ⊥ :=
rfl
#align bot_hom.bot_apply BotHom.bot_apply
end OrderBot
section SemilatticeInf
variable [SemilatticeInf β] [OrderBot β] (f g : BotHom α β)
instance : Inf (BotHom α β) :=
⟨fun f g => ⟨f ⊓ g, by
|
rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq]
|
instance : Inf (BotHom α β) :=
⟨fun f g => ⟨f ⊓ g, by
|
Mathlib.Order.Hom.Bounded.520_0.4FzgGE1bSNjCw87
|
instance : Inf (BotHom α β)
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Bot α
inst✝¹ : SemilatticeSup β
inst✝ : OrderBot β
f✝ g✝ f g : BotHom α β
⊢ (⇑f ⊔ ⇑g) ⊥ = ⊥
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by rw [comp_apply, map_bot, map_bot]
#align bot_hom.comp BotHom.comp
@[simp]
theorem coe_comp (f : BotHom β γ) (g : BotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bot_hom.coe_comp BotHom.coe_comp
@[simp]
theorem comp_apply (f : BotHom β γ) (g : BotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align bot_hom.comp_apply BotHom.comp_apply
@[simp]
theorem comp_assoc (f : BotHom γ δ) (g : BotHom β γ) (h : BotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bot_hom.comp_assoc BotHom.comp_assoc
@[simp]
theorem comp_id (f : BotHom α β) : f.comp (BotHom.id α) = f :=
BotHom.ext fun _ => rfl
#align bot_hom.comp_id BotHom.comp_id
@[simp]
theorem id_comp (f : BotHom α β) : (BotHom.id β).comp f = f :=
BotHom.ext fun _ => rfl
#align bot_hom.id_comp BotHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BotHom β γ} {f : BotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BotHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (comp · f)⟩
#align bot_hom.cancel_right BotHom.cancel_right
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by rw [← BotHom.comp_apply, h, BotHom.comp_apply],
congr_arg _⟩
#align bot_hom.cancel_left BotHom.cancel_left
end Bot
instance [Preorder β] [Bot β] : Preorder (BotHom α β) :=
Preorder.lift (FunLike.coe : BotHom α β → α → β)
instance [PartialOrder β] [Bot β] : PartialOrder (BotHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderBot
variable [Preorder β] [OrderBot β]
instance : OrderBot (BotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le := fun _ => @bot_le (α → β) _ _ _
@[simp]
theorem coe_bot : ⇑(⊥ : BotHom α β) = ⊥ :=
rfl
#align bot_hom.coe_bot BotHom.coe_bot
@[simp]
theorem bot_apply (a : α) : (⊥ : BotHom α β) a = ⊥ :=
rfl
#align bot_hom.bot_apply BotHom.bot_apply
end OrderBot
section SemilatticeInf
variable [SemilatticeInf β] [OrderBot β] (f g : BotHom α β)
instance : Inf (BotHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq]⟩⟩
instance : SemilatticeInf (BotHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align bot_hom.coe_inf BotHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align bot_hom.inf_apply BotHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderBot β] (f g : BotHom α β)
instance : Sup (BotHom α β) :=
⟨fun f g => ⟨f ⊔ g, by
|
rw [Pi.sup_apply, map_bot, map_bot, sup_bot_eq]
|
instance : Sup (BotHom α β) :=
⟨fun f g => ⟨f ⊔ g, by
|
Mathlib.Order.Hom.Bounded.542_0.4FzgGE1bSNjCw87
|
instance : Sup (BotHom α β)
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
f g : BoundedOrderHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by rw [comp_apply, map_bot, map_bot]
#align bot_hom.comp BotHom.comp
@[simp]
theorem coe_comp (f : BotHom β γ) (g : BotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bot_hom.coe_comp BotHom.coe_comp
@[simp]
theorem comp_apply (f : BotHom β γ) (g : BotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align bot_hom.comp_apply BotHom.comp_apply
@[simp]
theorem comp_assoc (f : BotHom γ δ) (g : BotHom β γ) (h : BotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bot_hom.comp_assoc BotHom.comp_assoc
@[simp]
theorem comp_id (f : BotHom α β) : f.comp (BotHom.id α) = f :=
BotHom.ext fun _ => rfl
#align bot_hom.comp_id BotHom.comp_id
@[simp]
theorem id_comp (f : BotHom α β) : (BotHom.id β).comp f = f :=
BotHom.ext fun _ => rfl
#align bot_hom.id_comp BotHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BotHom β γ} {f : BotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BotHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (comp · f)⟩
#align bot_hom.cancel_right BotHom.cancel_right
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by rw [← BotHom.comp_apply, h, BotHom.comp_apply],
congr_arg _⟩
#align bot_hom.cancel_left BotHom.cancel_left
end Bot
instance [Preorder β] [Bot β] : Preorder (BotHom α β) :=
Preorder.lift (FunLike.coe : BotHom α β → α → β)
instance [PartialOrder β] [Bot β] : PartialOrder (BotHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderBot
variable [Preorder β] [OrderBot β]
instance : OrderBot (BotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le := fun _ => @bot_le (α → β) _ _ _
@[simp]
theorem coe_bot : ⇑(⊥ : BotHom α β) = ⊥ :=
rfl
#align bot_hom.coe_bot BotHom.coe_bot
@[simp]
theorem bot_apply (a : α) : (⊥ : BotHom α β) a = ⊥ :=
rfl
#align bot_hom.bot_apply BotHom.bot_apply
end OrderBot
section SemilatticeInf
variable [SemilatticeInf β] [OrderBot β] (f g : BotHom α β)
instance : Inf (BotHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq]⟩⟩
instance : SemilatticeInf (BotHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align bot_hom.coe_inf BotHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align bot_hom.inf_apply BotHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderBot β] (f g : BotHom α β)
instance : Sup (BotHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_bot, map_bot, sup_bot_eq]⟩⟩
instance : SemilatticeSup (BotHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align bot_hom.coe_sup BotHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align bot_hom.sup_apply BotHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderBot β] : Lattice (BotHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderBot β] : DistribLattice (BotHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end BotHom
/-! ### Bounded order homomorphisms -/
-- Porting note: todo: remove this configuration and use the default configuration.
-- We keep this to be consistent with Lean 3.
initialize_simps_projections BoundedOrderHom (+toOrderHom, -toFun)
namespace BoundedOrderHom
variable [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [BoundedOrder α] [BoundedOrder β]
[BoundedOrder γ] [BoundedOrder δ]
/-- Reinterpret a `BoundedOrderHom` as a `TopHom`. -/
def toTopHom (f : BoundedOrderHom α β) : TopHom α β :=
{ f with }
#align bounded_order_hom.to_top_hom BoundedOrderHom.toTopHom
/-- Reinterpret a `BoundedOrderHom` as a `BotHom`. -/
def toBotHom (f : BoundedOrderHom α β) : BotHom α β :=
{ f with }
#align bounded_order_hom.to_bot_hom BoundedOrderHom.toBotHom
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f := f.toFun
coe_injective' f g h := by
|
obtain ⟨⟨_, _⟩, _⟩ := f
|
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f := f.toFun
coe_injective' f g h := by
|
Mathlib.Order.Hom.Bounded.589_0.4FzgGE1bSNjCw87
|
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f
|
Mathlib_Order_Hom_Bounded
|
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
g : BoundedOrderHom α β
toFun✝ : α → β
monotone'✝ : Monotone toFun✝
map_top'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊤ = ⊤
map_bot'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊥ = ⊥
h :
(fun f => f.toFun)
{ toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } =
(fun f => f.toFun) g
⊢ { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } = g
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by rw [comp_apply, map_bot, map_bot]
#align bot_hom.comp BotHom.comp
@[simp]
theorem coe_comp (f : BotHom β γ) (g : BotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bot_hom.coe_comp BotHom.coe_comp
@[simp]
theorem comp_apply (f : BotHom β γ) (g : BotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align bot_hom.comp_apply BotHom.comp_apply
@[simp]
theorem comp_assoc (f : BotHom γ δ) (g : BotHom β γ) (h : BotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bot_hom.comp_assoc BotHom.comp_assoc
@[simp]
theorem comp_id (f : BotHom α β) : f.comp (BotHom.id α) = f :=
BotHom.ext fun _ => rfl
#align bot_hom.comp_id BotHom.comp_id
@[simp]
theorem id_comp (f : BotHom α β) : (BotHom.id β).comp f = f :=
BotHom.ext fun _ => rfl
#align bot_hom.id_comp BotHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BotHom β γ} {f : BotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BotHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (comp · f)⟩
#align bot_hom.cancel_right BotHom.cancel_right
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by rw [← BotHom.comp_apply, h, BotHom.comp_apply],
congr_arg _⟩
#align bot_hom.cancel_left BotHom.cancel_left
end Bot
instance [Preorder β] [Bot β] : Preorder (BotHom α β) :=
Preorder.lift (FunLike.coe : BotHom α β → α → β)
instance [PartialOrder β] [Bot β] : PartialOrder (BotHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderBot
variable [Preorder β] [OrderBot β]
instance : OrderBot (BotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le := fun _ => @bot_le (α → β) _ _ _
@[simp]
theorem coe_bot : ⇑(⊥ : BotHom α β) = ⊥ :=
rfl
#align bot_hom.coe_bot BotHom.coe_bot
@[simp]
theorem bot_apply (a : α) : (⊥ : BotHom α β) a = ⊥ :=
rfl
#align bot_hom.bot_apply BotHom.bot_apply
end OrderBot
section SemilatticeInf
variable [SemilatticeInf β] [OrderBot β] (f g : BotHom α β)
instance : Inf (BotHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq]⟩⟩
instance : SemilatticeInf (BotHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align bot_hom.coe_inf BotHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align bot_hom.inf_apply BotHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderBot β] (f g : BotHom α β)
instance : Sup (BotHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_bot, map_bot, sup_bot_eq]⟩⟩
instance : SemilatticeSup (BotHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align bot_hom.coe_sup BotHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align bot_hom.sup_apply BotHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderBot β] : Lattice (BotHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderBot β] : DistribLattice (BotHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end BotHom
/-! ### Bounded order homomorphisms -/
-- Porting note: todo: remove this configuration and use the default configuration.
-- We keep this to be consistent with Lean 3.
initialize_simps_projections BoundedOrderHom (+toOrderHom, -toFun)
namespace BoundedOrderHom
variable [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [BoundedOrder α] [BoundedOrder β]
[BoundedOrder γ] [BoundedOrder δ]
/-- Reinterpret a `BoundedOrderHom` as a `TopHom`. -/
def toTopHom (f : BoundedOrderHom α β) : TopHom α β :=
{ f with }
#align bounded_order_hom.to_top_hom BoundedOrderHom.toTopHom
/-- Reinterpret a `BoundedOrderHom` as a `BotHom`. -/
def toBotHom (f : BoundedOrderHom α β) : BotHom α β :=
{ f with }
#align bounded_order_hom.to_bot_hom BoundedOrderHom.toBotHom
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f;
|
obtain ⟨⟨_, _⟩, _⟩ := g
|
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f;
|
Mathlib.Order.Hom.Bounded.589_0.4FzgGE1bSNjCw87
|
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f
|
Mathlib_Order_Hom_Bounded
|
case mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
toFun✝¹ : α → β
monotone'✝¹ : Monotone toFun✝¹
map_top'✝¹ : OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } ⊤ = ⊤
map_bot'✝¹ : OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } ⊥ = ⊥
toFun✝ : α → β
monotone'✝ : Monotone toFun✝
map_top'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊤ = ⊤
map_bot'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊥ = ⊥
h :
(fun f => f.toFun)
{ toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } =
(fun f => f.toFun)
{ toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ }
⊢ { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } =
{ toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ }
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by rw [comp_apply, map_bot, map_bot]
#align bot_hom.comp BotHom.comp
@[simp]
theorem coe_comp (f : BotHom β γ) (g : BotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bot_hom.coe_comp BotHom.coe_comp
@[simp]
theorem comp_apply (f : BotHom β γ) (g : BotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align bot_hom.comp_apply BotHom.comp_apply
@[simp]
theorem comp_assoc (f : BotHom γ δ) (g : BotHom β γ) (h : BotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bot_hom.comp_assoc BotHom.comp_assoc
@[simp]
theorem comp_id (f : BotHom α β) : f.comp (BotHom.id α) = f :=
BotHom.ext fun _ => rfl
#align bot_hom.comp_id BotHom.comp_id
@[simp]
theorem id_comp (f : BotHom α β) : (BotHom.id β).comp f = f :=
BotHom.ext fun _ => rfl
#align bot_hom.id_comp BotHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BotHom β γ} {f : BotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BotHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (comp · f)⟩
#align bot_hom.cancel_right BotHom.cancel_right
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by rw [← BotHom.comp_apply, h, BotHom.comp_apply],
congr_arg _⟩
#align bot_hom.cancel_left BotHom.cancel_left
end Bot
instance [Preorder β] [Bot β] : Preorder (BotHom α β) :=
Preorder.lift (FunLike.coe : BotHom α β → α → β)
instance [PartialOrder β] [Bot β] : PartialOrder (BotHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderBot
variable [Preorder β] [OrderBot β]
instance : OrderBot (BotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le := fun _ => @bot_le (α → β) _ _ _
@[simp]
theorem coe_bot : ⇑(⊥ : BotHom α β) = ⊥ :=
rfl
#align bot_hom.coe_bot BotHom.coe_bot
@[simp]
theorem bot_apply (a : α) : (⊥ : BotHom α β) a = ⊥ :=
rfl
#align bot_hom.bot_apply BotHom.bot_apply
end OrderBot
section SemilatticeInf
variable [SemilatticeInf β] [OrderBot β] (f g : BotHom α β)
instance : Inf (BotHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq]⟩⟩
instance : SemilatticeInf (BotHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align bot_hom.coe_inf BotHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align bot_hom.inf_apply BotHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderBot β] (f g : BotHom α β)
instance : Sup (BotHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_bot, map_bot, sup_bot_eq]⟩⟩
instance : SemilatticeSup (BotHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align bot_hom.coe_sup BotHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align bot_hom.sup_apply BotHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderBot β] : Lattice (BotHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderBot β] : DistribLattice (BotHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end BotHom
/-! ### Bounded order homomorphisms -/
-- Porting note: todo: remove this configuration and use the default configuration.
-- We keep this to be consistent with Lean 3.
initialize_simps_projections BoundedOrderHom (+toOrderHom, -toFun)
namespace BoundedOrderHom
variable [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [BoundedOrder α] [BoundedOrder β]
[BoundedOrder γ] [BoundedOrder δ]
/-- Reinterpret a `BoundedOrderHom` as a `TopHom`. -/
def toTopHom (f : BoundedOrderHom α β) : TopHom α β :=
{ f with }
#align bounded_order_hom.to_top_hom BoundedOrderHom.toTopHom
/-- Reinterpret a `BoundedOrderHom` as a `BotHom`. -/
def toBotHom (f : BoundedOrderHom α β) : BotHom α β :=
{ f with }
#align bounded_order_hom.to_bot_hom BoundedOrderHom.toBotHom
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g;
|
congr
|
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g;
|
Mathlib.Order.Hom.Bounded.589_0.4FzgGE1bSNjCw87
|
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f
|
Mathlib_Order_Hom_Bounded
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
g : BoundedOrderHom β γ
f₁ f₂ : BoundedOrderHom α β
hg : Injective ⇑g
h : comp g f₁ = comp g f₂
a : α
⊢ g (f₁ a) = g (f₂ a)
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.Hom.Basic
import Mathlib.Order.BoundedOrder
#align_import order.hom.bounded from "leanprover-community/mathlib"@"f1a2caaf51ef593799107fe9a8d5e411599f3996"
/-!
# Bounded order homomorphisms
This file defines (bounded) order homomorphisms.
We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
* `TopHom`: Maps which preserve `⊤`.
* `BotHom`: Maps which preserve `⊥`.
* `BoundedOrderHom`: Bounded order homomorphisms. Monotone maps which preserve `⊤` and `⊥`.
## Typeclasses
* `TopHomClass`
* `BotHomClass`
* `BoundedOrderHomClass`
-/
open Function OrderDual
variable {F α β γ δ : Type*}
/-- The type of `⊤`-preserving functions from `α` to `β`. -/
structure TopHom (α β : Type*) [Top α] [Top β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
#align top_hom TopHom
/-- The type of `⊥`-preserving functions from `α` to `β`. -/
structure BotHom (α β : Type*) [Bot α] [Bot β] where
/-- The underlying function. The preferred spelling is `FunLike.coe`. -/
toFun : α → β
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bot_hom BotHom
/-- The type of bounded order homomorphisms from `α` to `β`. -/
structure BoundedOrderHom (α β : Type*) [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] extends OrderHom α β where
/-- The function preserves the top element. The preferred spelling is `map_top`. -/
map_top' : toFun ⊤ = ⊤
/-- The function preserves the bottom element. The preferred spelling is `map_bot`. -/
map_bot' : toFun ⊥ = ⊥
#align bounded_order_hom BoundedOrderHom
section
/-- `TopHomClass F α β` states that `F` is a type of `⊤`-preserving morphisms.
You should extend this class when you extend `TopHom`. -/
class TopHomClass (F : Type*) (α β : outParam <| Type*) [Top α] [Top β] extends
FunLike F α fun _ => β where
/-- A `TopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align top_hom_class TopHomClass
/-- `BotHomClass F α β` states that `F` is a type of `⊥`-preserving morphisms.
You should extend this class when you extend `BotHom`. -/
class BotHomClass (F : Type*) (α β : outParam <| Type*) [Bot α] [Bot β] extends
FunLike F α fun _ => β where
/-- A `BotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align bot_hom_class BotHomClass
/-- `BoundedOrderHomClass F α β` states that `F` is a type of bounded order morphisms.
You should extend this class when you extend `BoundedOrderHom`. -/
class BoundedOrderHomClass (F : Type*) (α β : outParam <| Type*) [LE α] [LE β] [BoundedOrder α]
[BoundedOrder β] extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where
/-- Morphisms preserve the top element. The preferred spelling is `_root_.map_top`. -/
map_top (f : F) : f ⊤ = ⊤
/-- Morphisms preserve the bottom element. The preferred spelling is `_root_.map_bot`. -/
map_bot (f : F) : f ⊥ = ⊥
#align bounded_order_hom_class BoundedOrderHomClass
end
export TopHomClass (map_top)
export BotHomClass (map_bot)
attribute [simp] map_top map_bot
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toTopHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : TopHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_top_hom_class BoundedOrderHomClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) BoundedOrderHomClass.toBotHomClass [LE α] [LE β]
[BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] : BotHomClass F α β :=
{ ‹BoundedOrderHomClass F α β› with }
#align bounded_order_hom_class.to_bot_hom_class BoundedOrderHomClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toTopHomClass [LE α] [OrderTop α]
[PartialOrder β] [OrderTop β] [OrderIsoClass F α β] : TopHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_top := fun f => top_le_iff.1 <| (map_inv_le_iff f).1 le_top }
#align order_iso_class.to_top_hom_class OrderIsoClass.toTopHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBotHomClass [LE α] [OrderBot α]
[PartialOrder β] [OrderBot β] [OrderIsoClass F α β] : BotHomClass F α β :=
{ --⟨λ f, le_bot_iff.1 $ (le_map_inv_iff f).1 bot_le⟩
show OrderHomClass F α β from inferInstance with
map_bot := fun f => le_bot_iff.1 <| (le_map_inv_iff f).1 bot_le }
#align order_iso_class.to_bot_hom_class OrderIsoClass.toBotHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedOrderHomClass [LE α] [BoundedOrder α]
[PartialOrder β] [BoundedOrder β] [OrderIsoClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, OrderIsoClass.toTopHomClass,
OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_bounded_order_hom_class OrderIsoClass.toBoundedOrderHomClass
-- Porting note: the `letI` is needed because we can't make the
-- `OrderTop` parameters instance implicit in `OrderIsoClass.toTopHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_top_iff [LE α] [OrderTop α] [PartialOrder β] [OrderTop β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊤ ↔ a = ⊤ := by
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
rw [← map_top f, (EquivLike.injective f).eq_iff]
#align map_eq_top_iff map_eq_top_iff
-- Porting note: the `letI` is needed because we can't make the
-- `OrderBot` parameters instance implicit in `OrderIsoClass.toBotHomClass`,
-- and they apparently can't be figured out through unification.
@[simp]
theorem map_eq_bot_iff [LE α] [OrderBot α] [PartialOrder β] [OrderBot β] [OrderIsoClass F α β]
(f : F) {a : α} : f a = ⊥ ↔ a = ⊥ := by
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
rw [← map_bot f, (EquivLike.injective f).eq_iff]
#align map_eq_bot_iff map_eq_bot_iff
/-- Turn an element of a type `F` satisfying `TopHomClass F α β` into an actual
`TopHom`. This is declared as the default coercion from `F` to `TopHom α β`. -/
@[coe]
def TopHomClass.toTopHom [Top α] [Top β] [TopHomClass F α β] (f : F) : TopHom α β :=
⟨f, map_top f⟩
instance [Top α] [Top β] [TopHomClass F α β] : CoeTC F (TopHom α β) :=
⟨TopHomClass.toTopHom⟩
/-- Turn an element of a type `F` satisfying `BotHomClass F α β` into an actual
`BotHom`. This is declared as the default coercion from `F` to `BotHom α β`. -/
@[coe]
def BotHomClass.toBotHom [Bot α] [Bot β] [BotHomClass F α β] (f : F) : BotHom α β :=
⟨f, map_bot f⟩
instance [Bot α] [Bot β] [BotHomClass F α β] : CoeTC F (BotHom α β) :=
⟨BotHomClass.toBotHom⟩
/-- Turn an element of a type `F` satisfying `BoundedOrderHomClass F α β` into an actual
`BoundedOrderHom`. This is declared as the default coercion from `F` to `BoundedOrderHom α β`. -/
@[coe]
def BoundedOrderHomClass.toBoundedOrderHom [Preorder α] [Preorder β] [BoundedOrder α]
[BoundedOrder β] [BoundedOrderHomClass F α β] (f : F) : BoundedOrderHom α β :=
{ (f : α →o β) with toFun := f, map_top' := map_top f, map_bot' := map_bot f }
instance [Preorder α] [Preorder β] [BoundedOrder α] [BoundedOrder β] [BoundedOrderHomClass F α β] :
CoeTC F (BoundedOrderHom α β) :=
⟨BoundedOrderHomClass.toBoundedOrderHom⟩
/-! ### Top homomorphisms -/
namespace TopHom
variable [Top α]
section Top
variable [Top β] [Top γ] [Top δ]
instance : TopHomClass (TopHom α β) α
β where
coe := TopHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_top := TopHom.map_top'
#noalign top_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections TopHom (toFun → apply)
@[ext]
theorem ext {f g : TopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align top_hom.ext TopHom.ext
/-- Copy of a `TopHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : TopHom α β) (f' : α → β) (h : f' = f) :
TopHom α β where
toFun := f'
map_top' := h.symm ▸ f.map_top'
#align top_hom.copy TopHom.copy
@[simp]
theorem coe_copy (f : TopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align top_hom.coe_copy TopHom.coe_copy
theorem copy_eq (f : TopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align top_hom.copy_eq TopHom.copy_eq
instance : Inhabited (TopHom α β) :=
⟨⟨fun _ => ⊤, rfl⟩⟩
variable (α)
/-- `id` as a `TopHom`. -/
protected def id : TopHom α α :=
⟨id, rfl⟩
#align top_hom.id TopHom.id
@[simp]
theorem coe_id : ⇑(TopHom.id α) = id :=
rfl
#align top_hom.coe_id TopHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : TopHom.id α a = a :=
rfl
#align top_hom.id_apply TopHom.id_apply
/-- Composition of `TopHom`s as a `TopHom`. -/
def comp (f : TopHom β γ) (g : TopHom α β) :
TopHom α γ where
toFun := f ∘ g
map_top' := by rw [comp_apply, map_top, map_top]
#align top_hom.comp TopHom.comp
@[simp]
theorem coe_comp (f : TopHom β γ) (g : TopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align top_hom.coe_comp TopHom.coe_comp
@[simp]
theorem comp_apply (f : TopHom β γ) (g : TopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align top_hom.comp_apply TopHom.comp_apply
@[simp]
theorem comp_assoc (f : TopHom γ δ) (g : TopHom β γ) (h : TopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align top_hom.comp_assoc TopHom.comp_assoc
@[simp]
theorem comp_id (f : TopHom α β) : f.comp (TopHom.id α) = f :=
TopHom.ext fun _ => rfl
#align top_hom.comp_id TopHom.comp_id
@[simp]
theorem id_comp (f : TopHom α β) : (TopHom.id β).comp f = f :=
TopHom.ext fun _ => rfl
#align top_hom.id_comp TopHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : TopHom β γ} {f : TopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => TopHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (fun g => comp g f)⟩
#align top_hom.cancel_right TopHom.cancel_right
@[simp]
theorem cancel_left {g : TopHom β γ} {f₁ f₂ : TopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => TopHom.ext fun a => hg <| by rw [← TopHom.comp_apply, h, TopHom.comp_apply],
congr_arg _⟩
#align top_hom.cancel_left TopHom.cancel_left
end Top
instance [Preorder β] [Top β] : Preorder (TopHom α β) :=
Preorder.lift (FunLike.coe : TopHom α β → α → β)
instance [PartialOrder β] [Top β] : PartialOrder (TopHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderTop
variable [Preorder β] [OrderTop β]
instance : OrderTop (TopHom α β) where
top := ⟨⊤, rfl⟩
le_top := fun _ => @le_top (α → β) _ _ _
@[simp]
theorem coe_top : ⇑(⊤ : TopHom α β) = ⊤ :=
rfl
#align top_hom.coe_top TopHom.coe_top
@[simp]
theorem top_apply (a : α) : (⊤ : TopHom α β) a = ⊤ :=
rfl
#align top_hom.top_apply TopHom.top_apply
end OrderTop
section SemilatticeInf
variable [SemilatticeInf β] [OrderTop β] (f g : TopHom α β)
instance : Inf (TopHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_top, map_top, inf_top_eq]⟩⟩
instance : SemilatticeInf (TopHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align top_hom.coe_inf TopHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align top_hom.inf_apply TopHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderTop β] (f g : TopHom α β)
instance : Sup (TopHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_top, map_top, sup_top_eq]⟩⟩
instance : SemilatticeSup (TopHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align top_hom.coe_sup TopHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align top_hom.sup_apply TopHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderTop β] : Lattice (TopHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderTop β] : DistribLattice (TopHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end TopHom
/-! ### Bot homomorphisms -/
namespace BotHom
variable [Bot α]
section Bot
variable [Bot β] [Bot γ] [Bot δ]
instance : BotHomClass (BotHom α β) α
β where
coe := BotHom.toFun
coe_injective' f g h := by cases f; cases g; congr
map_bot := BotHom.map_bot'
#noalign bot_hom.to_fun_eq_coe
-- this must come after the coe_to_fun definition
initialize_simps_projections BotHom (toFun → apply)
@[ext]
theorem ext {f g : BotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bot_hom.ext BotHom.ext
/-- Copy of a `BotHom` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : BotHom α β) (f' : α → β) (h : f' = f) :
BotHom α β where
toFun := f'
map_bot' := h.symm ▸ f.map_bot'
#align bot_hom.copy BotHom.copy
@[simp]
theorem coe_copy (f : BotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bot_hom.coe_copy BotHom.coe_copy
theorem copy_eq (f : BotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bot_hom.copy_eq BotHom.copy_eq
instance : Inhabited (BotHom α β) :=
⟨⟨fun _ => ⊥, rfl⟩⟩
variable (α)
/-- `id` as a `BotHom`. -/
protected def id : BotHom α α :=
⟨id, rfl⟩
#align bot_hom.id BotHom.id
@[simp]
theorem coe_id : ⇑(BotHom.id α) = id :=
rfl
#align bot_hom.coe_id BotHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BotHom.id α a = a :=
rfl
#align bot_hom.id_apply BotHom.id_apply
/-- Composition of `BotHom`s as a `BotHom`. -/
def comp (f : BotHom β γ) (g : BotHom α β) :
BotHom α γ where
toFun := f ∘ g
map_bot' := by rw [comp_apply, map_bot, map_bot]
#align bot_hom.comp BotHom.comp
@[simp]
theorem coe_comp (f : BotHom β γ) (g : BotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bot_hom.coe_comp BotHom.coe_comp
@[simp]
theorem comp_apply (f : BotHom β γ) (g : BotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align bot_hom.comp_apply BotHom.comp_apply
@[simp]
theorem comp_assoc (f : BotHom γ δ) (g : BotHom β γ) (h : BotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bot_hom.comp_assoc BotHom.comp_assoc
@[simp]
theorem comp_id (f : BotHom α β) : f.comp (BotHom.id α) = f :=
BotHom.ext fun _ => rfl
#align bot_hom.comp_id BotHom.comp_id
@[simp]
theorem id_comp (f : BotHom α β) : (BotHom.id β).comp f = f :=
BotHom.ext fun _ => rfl
#align bot_hom.id_comp BotHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BotHom β γ} {f : BotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BotHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg (comp · f)⟩
#align bot_hom.cancel_right BotHom.cancel_right
@[simp]
theorem cancel_left {g : BotHom β γ} {f₁ f₂ : BotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => BotHom.ext fun a => hg <| by rw [← BotHom.comp_apply, h, BotHom.comp_apply],
congr_arg _⟩
#align bot_hom.cancel_left BotHom.cancel_left
end Bot
instance [Preorder β] [Bot β] : Preorder (BotHom α β) :=
Preorder.lift (FunLike.coe : BotHom α β → α → β)
instance [PartialOrder β] [Bot β] : PartialOrder (BotHom α β) :=
PartialOrder.lift _ FunLike.coe_injective
section OrderBot
variable [Preorder β] [OrderBot β]
instance : OrderBot (BotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le := fun _ => @bot_le (α → β) _ _ _
@[simp]
theorem coe_bot : ⇑(⊥ : BotHom α β) = ⊥ :=
rfl
#align bot_hom.coe_bot BotHom.coe_bot
@[simp]
theorem bot_apply (a : α) : (⊥ : BotHom α β) a = ⊥ :=
rfl
#align bot_hom.bot_apply BotHom.bot_apply
end OrderBot
section SemilatticeInf
variable [SemilatticeInf β] [OrderBot β] (f g : BotHom α β)
instance : Inf (BotHom α β) :=
⟨fun f g => ⟨f ⊓ g, by rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq]⟩⟩
instance : SemilatticeInf (BotHom α β) :=
(FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
@[simp]
theorem coe_inf : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align bot_hom.coe_inf BotHom.coe_inf
@[simp]
theorem inf_apply (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align bot_hom.inf_apply BotHom.inf_apply
end SemilatticeInf
section SemilatticeSup
variable [SemilatticeSup β] [OrderBot β] (f g : BotHom α β)
instance : Sup (BotHom α β) :=
⟨fun f g => ⟨f ⊔ g, by rw [Pi.sup_apply, map_bot, map_bot, sup_bot_eq]⟩⟩
instance : SemilatticeSup (BotHom α β) :=
(FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
@[simp]
theorem coe_sup : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align bot_hom.coe_sup BotHom.coe_sup
@[simp]
theorem sup_apply (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align bot_hom.sup_apply BotHom.sup_apply
end SemilatticeSup
instance [Lattice β] [OrderBot β] : Lattice (BotHom α β) :=
FunLike.coe_injective.lattice _ (fun _ _ => rfl) fun _ _ => rfl
instance [DistribLattice β] [OrderBot β] : DistribLattice (BotHom α β) :=
FunLike.coe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl
end BotHom
/-! ### Bounded order homomorphisms -/
-- Porting note: todo: remove this configuration and use the default configuration.
-- We keep this to be consistent with Lean 3.
initialize_simps_projections BoundedOrderHom (+toOrderHom, -toFun)
namespace BoundedOrderHom
variable [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [BoundedOrder α] [BoundedOrder β]
[BoundedOrder γ] [BoundedOrder δ]
/-- Reinterpret a `BoundedOrderHom` as a `TopHom`. -/
def toTopHom (f : BoundedOrderHom α β) : TopHom α β :=
{ f with }
#align bounded_order_hom.to_top_hom BoundedOrderHom.toTopHom
/-- Reinterpret a `BoundedOrderHom` as a `BotHom`. -/
def toBotHom (f : BoundedOrderHom α β) : BotHom α β :=
{ f with }
#align bounded_order_hom.to_bot_hom BoundedOrderHom.toBotHom
instance : BoundedOrderHomClass (BoundedOrderHom α β) α
β where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
map_rel f := @(f.monotone')
map_top f := f.map_top'
map_bot f := f.map_bot'
#noalign bounded_order_hom.to_fun_eq_coe
@[ext]
theorem ext {f g : BoundedOrderHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bounded_order_hom.ext BoundedOrderHom.ext
/-- Copy of a `BoundedOrderHom` with a new `toFun` equal to the old one. Useful to fix
definitional equalities. -/
protected def copy (f : BoundedOrderHom α β) (f' : α → β) (h : f' = f) : BoundedOrderHom α β :=
{ f.toOrderHom.copy f' h, f.toTopHom.copy f' h, f.toBotHom.copy f' h with }
#align bounded_order_hom.copy BoundedOrderHom.copy
@[simp]
theorem coe_copy (f : BoundedOrderHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bounded_order_hom.coe_copy BoundedOrderHom.coe_copy
theorem copy_eq (f : BoundedOrderHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bounded_order_hom.copy_eq BoundedOrderHom.copy_eq
variable (α)
/-- `id` as a `BoundedOrderHom`. -/
protected def id : BoundedOrderHom α α :=
{ OrderHom.id, TopHom.id α, BotHom.id α with }
#align bounded_order_hom.id BoundedOrderHom.id
instance : Inhabited (BoundedOrderHom α α) :=
⟨BoundedOrderHom.id α⟩
@[simp]
theorem coe_id : ⇑(BoundedOrderHom.id α) = id :=
rfl
#align bounded_order_hom.coe_id BoundedOrderHom.coe_id
variable {α}
@[simp]
theorem id_apply (a : α) : BoundedOrderHom.id α a = a :=
rfl
#align bounded_order_hom.id_apply BoundedOrderHom.id_apply
/-- Composition of `BoundedOrderHom`s as a `BoundedOrderHom`. -/
def comp (f : BoundedOrderHom β γ) (g : BoundedOrderHom α β) : BoundedOrderHom α γ :=
{ f.toOrderHom.comp g.toOrderHom, f.toTopHom.comp g.toTopHom, f.toBotHom.comp g.toBotHom with }
#align bounded_order_hom.comp BoundedOrderHom.comp
@[simp]
theorem coe_comp (f : BoundedOrderHom β γ) (g : BoundedOrderHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align bounded_order_hom.coe_comp BoundedOrderHom.coe_comp
@[simp]
theorem comp_apply (f : BoundedOrderHom β γ) (g : BoundedOrderHom α β) (a : α) :
(f.comp g) a = f (g a) :=
rfl
#align bounded_order_hom.comp_apply BoundedOrderHom.comp_apply
@[simp]
theorem coe_comp_orderHom (f : BoundedOrderHom β γ) (g : BoundedOrderHom α β) :
(f.comp g : OrderHom α γ) = (f : OrderHom β γ).comp g :=
rfl
#align bounded_order_hom.coe_comp_order_hom BoundedOrderHom.coe_comp_orderHom
@[simp]
theorem coe_comp_topHom (f : BoundedOrderHom β γ) (g : BoundedOrderHom α β) :
(f.comp g : TopHom α γ) = (f : TopHom β γ).comp g :=
rfl
#align bounded_order_hom.coe_comp_top_hom BoundedOrderHom.coe_comp_topHom
@[simp]
theorem coe_comp_botHom (f : BoundedOrderHom β γ) (g : BoundedOrderHom α β) :
(f.comp g : BotHom α γ) = (f : BotHom β γ).comp g :=
rfl
#align bounded_order_hom.coe_comp_bot_hom BoundedOrderHom.coe_comp_botHom
@[simp]
theorem comp_assoc (f : BoundedOrderHom γ δ) (g : BoundedOrderHom β γ) (h : BoundedOrderHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bounded_order_hom.comp_assoc BoundedOrderHom.comp_assoc
@[simp]
theorem comp_id (f : BoundedOrderHom α β) : f.comp (BoundedOrderHom.id α) = f :=
BoundedOrderHom.ext fun _ => rfl
#align bounded_order_hom.comp_id BoundedOrderHom.comp_id
@[simp]
theorem id_comp (f : BoundedOrderHom α β) : (BoundedOrderHom.id β).comp f = f :=
BoundedOrderHom.ext fun _ => rfl
#align bounded_order_hom.id_comp BoundedOrderHom.id_comp
@[simp]
theorem cancel_right {g₁ g₂ : BoundedOrderHom β γ} {f : BoundedOrderHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BoundedOrderHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h,
congr_arg (fun g => comp g f)⟩
#align bounded_order_hom.cancel_right BoundedOrderHom.cancel_right
@[simp]
theorem cancel_left {g : BoundedOrderHom β γ} {f₁ f₂ : BoundedOrderHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h =>
BoundedOrderHom.ext fun a =>
hg <| by
|
rw [← BoundedOrderHom.comp_apply, h, BoundedOrderHom.comp_apply]
|
@[simp]
theorem cancel_left {g : BoundedOrderHom β γ} {f₁ f₂ : BoundedOrderHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h =>
BoundedOrderHom.ext fun a =>
hg <| by
|
Mathlib.Order.Hom.Bounded.698_0.4FzgGE1bSNjCw87
|
@[simp]
theorem cancel_left {g : BoundedOrderHom β γ} {f₁ f₂ : BoundedOrderHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂
|
Mathlib_Order_Hom_Bounded
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : α ≃ₜ β
s : Set α
hs : IsOpen s
t : Set β
h : ⇑e '' s = t
⊢ IsOpen (Equiv.toPartialEquivOfImageEq e.toEquiv s t h).target
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by
|
simpa [← h]
|
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by
|
Mathlib.Topology.PartialHomeomorph.202_0.xRULiNOId4c9Kju
|
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : α ≃ₜ β
⊢ ⇑e '' univ = univ
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by
|
rw [image_univ, e.surjective.range_eq]
|
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by
|
Mathlib.Topology.PartialHomeomorph.214_0.xRULiNOId4c9Kju
|
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e'✝ : PartialHomeomorph β γ
e : PartialHomeomorph α β
e' : PartialEquiv α β
h : e.toPartialEquiv = e'
⊢ replaceEquiv e e' h = e
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
|
cases e
|
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
|
Mathlib.Topology.PartialHomeomorph.230_0.xRULiNOId4c9Kju
|
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e
|
Mathlib_Topology_PartialHomeomorph
|
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e'✝ : PartialHomeomorph β γ
e' toPartialEquiv✝ : PartialEquiv α β
open_source✝ : IsOpen toPartialEquiv✝.source
open_target✝ : IsOpen toPartialEquiv✝.target
continuousOn_toFun✝ : ContinuousOn (↑toPartialEquiv✝) toPartialEquiv✝.source
continuousOn_invFun✝ : ContinuousOn toPartialEquiv✝.invFun toPartialEquiv✝.target
h :
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }.toPartialEquiv =
e'
⊢ replaceEquiv
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }
e' h =
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
|
subst e'
|
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
|
Mathlib.Topology.PartialHomeomorph.230_0.xRULiNOId4c9Kju
|
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e
|
Mathlib_Topology_PartialHomeomorph
|
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
toPartialEquiv✝ : PartialEquiv α β
open_source✝ : IsOpen toPartialEquiv✝.source
open_target✝ : IsOpen toPartialEquiv✝.target
continuousOn_toFun✝ : ContinuousOn (↑toPartialEquiv✝) toPartialEquiv✝.source
continuousOn_invFun✝ : ContinuousOn toPartialEquiv✝.invFun toPartialEquiv✝.target
⊢ replaceEquiv
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }.toPartialEquiv
(_ :
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }.toPartialEquiv =
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }.toPartialEquiv) =
{ toPartialEquiv := toPartialEquiv✝, open_source := open_source✝, open_target := open_target✝,
continuousOn_toFun := continuousOn_toFun✝, continuousOn_invFun := continuousOn_invFun✝ }
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
|
rfl
|
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
|
Mathlib.Topology.PartialHomeomorph.230_0.xRULiNOId4c9Kju
|
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
hx : x ∈ e.source
x' : α
hx' : ↑(PartialHomeomorph.symm e) (↑e x') = x'
h : ↑e x' = ↑e x
⊢ x' ∈ {x}
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by
|
rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
|
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by
|
Mathlib.Topology.PartialHomeomorph.267_0.xRULiNOId4c9Kju
|
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e'✝ : PartialHomeomorph β γ
e e' : PartialHomeomorph α β
⊢ e = e' →
(∀ (x : α), ↑e x = ↑e' x) ∧
(∀ (x : β), ↑(PartialHomeomorph.symm e) x = ↑(PartialHomeomorph.symm e') x) ∧ e.source = e'.source
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
|
rintro rfl
|
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
|
Mathlib.Topology.PartialHomeomorph.339_0.xRULiNOId4c9Kju
|
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
⊢ (∀ (x : α), ↑e x = ↑e x) ∧
(∀ (x : β), ↑(PartialHomeomorph.symm e) x = ↑(PartialHomeomorph.symm e) x) ∧ e.source = e.source
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
|
exact ⟨fun x => rfl, fun x => rfl, rfl⟩
|
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
|
Mathlib.Topology.PartialHomeomorph.339_0.xRULiNOId4c9Kju
|
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
x : α
hx : x ∈ e.source
⊢ Tendsto (↑(PartialHomeomorph.symm e)) (𝓝 (↑e x)) (𝓝 x)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
|
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
|
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
|
Mathlib.Topology.PartialHomeomorph.377_0.xRULiNOId4c9Kju
|
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
x : α
hx : x ∈ e.source
⊢ 𝓝 (↑(PartialHomeomorph.symm e) (↑e x)) = 𝓝 x
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by
|
rw [e.left_inv hx]
|
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by
|
Mathlib.Topology.PartialHomeomorph.386_0.xRULiNOId4c9Kju
|
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
hx : x ∈ e.source
s : Set β
⊢ map (↑e) (𝓝[↑e ⁻¹' s] x) = 𝓝[s] ↑e x
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
|
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
|
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
|
Mathlib.Topology.PartialHomeomorph.405_0.xRULiNOId4c9Kju
|
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : β → Prop
hx : x ∈ e.source
⊢ (∀ᶠ (y : β) in 𝓝 (↑e x), p y) ↔ ∀ᶠ (b : β) in map (fun x => ↑e x) (𝓝 x), p b
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by
|
rw [e.map_nhds_eq hx]
|
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by
|
Mathlib.Topology.PartialHomeomorph.411_0.xRULiNOId4c9Kju
|
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : α → Prop
hx : x ∈ e.source
⊢ (∀ᶠ (y : β) in 𝓝 (↑e x), p (↑(PartialHomeomorph.symm e) y)) ↔ ∀ᶠ (x : α) in 𝓝 x, p x
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
|
rw [e.eventually_nhds _ hx]
|
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
|
Mathlib.Topology.PartialHomeomorph.416_0.xRULiNOId4c9Kju
|
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : α → Prop
hx : x ∈ e.source
⊢ (∀ᶠ (x : α) in 𝓝 x, p (↑(PartialHomeomorph.symm e) (↑e x))) ↔ ∀ᶠ (x : α) in 𝓝 x, p x
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
|
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
|
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
|
Mathlib.Topology.PartialHomeomorph.416_0.xRULiNOId4c9Kju
|
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : α → Prop
hx : x ∈ e.source
y : α
hy : ↑(PartialHomeomorph.symm e) (↑e y) = y
⊢ p (↑(PartialHomeomorph.symm e) (↑e y)) ↔ p y
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
|
rw [hy]
|
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
|
Mathlib.Topology.PartialHomeomorph.416_0.xRULiNOId4c9Kju
|
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : β → Prop
s : Set α
hx : x ∈ e.source
⊢ (∀ᶠ (y : β) in 𝓝[↑(PartialHomeomorph.symm e) ⁻¹' s] ↑e x, p y) ↔ ∀ᶠ (x : α) in 𝓝[s] x, p (↑e x)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
|
refine' Iff.trans _ eventually_map
|
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
|
Mathlib.Topology.PartialHomeomorph.423_0.xRULiNOId4c9Kju
|
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : β → Prop
s : Set α
hx : x ∈ e.source
⊢ (∀ᶠ (y : β) in 𝓝[↑(PartialHomeomorph.symm e) ⁻¹' s] ↑e x, p y) ↔ ∀ᶠ (b : β) in map (fun x => ↑e x) (𝓝[s] x), p b
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
|
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
|
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
|
Mathlib.Topology.PartialHomeomorph.423_0.xRULiNOId4c9Kju
|
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : α → Prop
s : Set α
hx : x ∈ e.source
⊢ (∀ᶠ (y : β) in 𝓝[↑(PartialHomeomorph.symm e) ⁻¹' s] ↑e x, p (↑(PartialHomeomorph.symm e) y)) ↔
∀ᶠ (x : α) in 𝓝[s] x, p x
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
|
rw [e.eventually_nhdsWithin _ hx]
|
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
|
Mathlib.Topology.PartialHomeomorph.429_0.xRULiNOId4c9Kju
|
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : α → Prop
s : Set α
hx : x ∈ e.source
⊢ (∀ᶠ (x : α) in 𝓝[s] x, p (↑(PartialHomeomorph.symm e) (↑e x))) ↔ ∀ᶠ (x : α) in 𝓝[s] x, p x
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
|
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
|
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
|
Mathlib.Topology.PartialHomeomorph.429_0.xRULiNOId4c9Kju
|
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
x : α
p : α → Prop
s : Set α
hx : x ∈ e.source
y : α
hy : ↑(PartialHomeomorph.symm e) (↑e y) = y
⊢ p (↑(PartialHomeomorph.symm e) (↑e y)) ↔ p y
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
|
rw [hy]
|
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
|
Mathlib.Topology.PartialHomeomorph.429_0.xRULiNOId4c9Kju
|
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
s : Set α
t : Set γ
x : α
f : α → γ
hf : ContinuousWithinAt f s x
hxe : x ∈ e.source
ht : t ∈ 𝓝 (f x)
⊢ ↑(PartialHomeomorph.symm e) ⁻¹' s =ᶠ[𝓝 (↑e x)] e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (s ∩ f ⁻¹' t)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
|
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
|
Mathlib.Topology.PartialHomeomorph.437_0.xRULiNOId4c9Kju
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
s : Set α
t : Set γ
x : α
f : α → γ
hf : ContinuousWithinAt f s x
hxe : x ∈ e.source
ht : t ∈ 𝓝 (f x)
⊢ ∀ᶠ (x : α) in 𝓝 x,
↑e x ∈ ↑(PartialHomeomorph.symm e) ⁻¹' s ↔ ↑e x ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (s ∩ f ⁻¹' t)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
|
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
|
Mathlib.Topology.PartialHomeomorph.437_0.xRULiNOId4c9Kju
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β)
|
Mathlib_Topology_PartialHomeomorph
|
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
s : Set α
t : Set γ
x : α
f : α → γ
hf : ContinuousWithinAt f s x
hxe : x ∈ e.source
ht : t ∈ 𝓝 (f x)
⊢ ∀ a ∈ e.source,
(a ∈ s → a ∈ f ⁻¹' t) →
(↑e a ∈ ↑(PartialHomeomorph.symm e) ⁻¹' s ↔ ↑e a ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (s ∩ f ⁻¹' t))
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
|
intro y hy hyu
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
|
Mathlib.Topology.PartialHomeomorph.437_0.xRULiNOId4c9Kju
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β)
|
Mathlib_Topology_PartialHomeomorph
|
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialHomeomorph α β
s : Set α
t : Set γ
x : α
f : α → γ
hf : ContinuousWithinAt f s x
hxe : x ∈ e.source
ht : t ∈ 𝓝 (f x)
y : α
hy : y ∈ e.source
hyu : y ∈ s → y ∈ f ⁻¹' t
⊢ ↑e y ∈ ↑(PartialHomeomorph.symm e) ⁻¹' s ↔ ↑e y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (s ∩ f ⁻¹' t)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
|
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
|
Mathlib.Topology.PartialHomeomorph.437_0.xRULiNOId4c9Kju
|
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
hs : IsOpen s
hse : s ⊆ e.source
⊢ IsOpen (↑e '' s)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
|
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
|
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
|
Mathlib.Topology.PartialHomeomorph.456_0.xRULiNOId4c9Kju
|
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
hs : IsOpen s
hse : s ⊆ e.source
⊢ IsOpen (e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' s)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
|
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
|
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
|
Mathlib.Topology.PartialHomeomorph.456_0.xRULiNOId4c9Kju
|
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
t : Set β
x : α
y : β
⊢ IsImage e s t ↔ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (e.source ∩ s) = e.target ∩ t
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
|
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
|
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
|
Mathlib.Topology.PartialHomeomorph.550_0.xRULiNOId4c9Kju
|
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
t : Set β
x : α
y : β
h : IsImage e s t
hx : x ∈ e.source
⊢ map (↑e) (𝓝[s] x) = 𝓝[t] ↑e x
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
|
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
|
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
|
Mathlib.Topology.PartialHomeomorph.609_0.xRULiNOId4c9Kju
|
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
t : Set β
x✝ : α
y : β
h : IsImage e s t
x : α
hx : x ∈ e.source
⊢ ↑e x ∈ closure t ↔ x ∈ closure s
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
|
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
|
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
|
Mathlib.Topology.PartialHomeomorph.613_0.xRULiNOId4c9Kju
|
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
t : Set β
x : α
y : β
h : IsImage e s t
⊢ IsImage e (interior s) (interior t)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
|
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
|
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
|
Mathlib.Topology.PartialHomeomorph.617_0.xRULiNOId4c9Kju
|
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
hs : IsOpen s
h : s ⊆ e.source
⊢ IsOpen (↑e '' s)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
|
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
|
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
|
Mathlib.Topology.PartialHomeomorph.672_0.xRULiNOId4c9Kju
|
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
hs : IsOpen s
h : s ⊆ e.source
this : ↑e '' s = e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' s
⊢ IsOpen (↑e '' s)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
|
rw [this]
|
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
|
Mathlib.Topology.PartialHomeomorph.672_0.xRULiNOId4c9Kju
|
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e : PartialHomeomorph α β
e' : PartialHomeomorph β γ
s : Set α
hs : IsOpen s
h : s ⊆ e.source
this : ↑e '' s = e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' s
⊢ IsOpen (e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' s)
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
|
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
|
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
|
Mathlib.Topology.PartialHomeomorph.672_0.xRULiNOId4c9Kju
|
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s)
|
Mathlib_Topology_PartialHomeomorph
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : TopologicalSpace δ
e✝ : PartialHomeomorph α β
e' : PartialHomeomorph β γ
e : PartialEquiv α β
hc : ContinuousOn (↑e) e.source
ho : IsOpenMap (restrict e.source ↑e)
hs : IsOpen e.source
⊢ IsOpen e.target
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by
|
simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
|
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by
|
Mathlib.Topology.PartialHomeomorph.685_0.xRULiNOId4c9Kju
|
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv
|
Mathlib_Topology_PartialHomeomorph
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.