state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : TopologicalSpace α
inst✝⁵ : TopologicalSpace β
inst✝⁴ : TopologicalSpace γ
inst✝³ : TopologicalSpace δ
e : PartialHomeomorph α β
s : Opens α
inst✝² : Nonempty ↥s
U V : Opens α
inst✝¹ : Nonempty ↥U
inst✝ : Nonempty ↥V
hUV : U ≤ V
i : ↑↑U → ↑↑V := inclusion hUV
y : β
hy : y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (Opens.localHomeomorphSubtypeCoe U).toPartialEquiv.target
hyV : ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
⊢ ↑(PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe V)) (↑(PartialHomeomorph.symm e) y) ∈
(Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.source
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
continuousOn_toFun := hc
continuousOn_invFun := e.image_source_eq_target ▸ ho.continuousOn_image_of_leftInvOn e.leftInvOn
#align local_homeomorph.of_continuous_open_restrict PartialHomeomorph.ofContinuousOpenRestrict
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpen (e : PartialEquiv α β) (hc : ContinuousOn e e.source) (ho : IsOpenMap e)
(hs : IsOpen e.source) : PartialHomeomorph α β :=
ofContinuousOpenRestrict e hc (ho.restrict hs) hs
#align local_homeomorph.of_continuous_open PartialHomeomorph.ofContinuousOpen
/-- Restricting a partial homeomorphism `e` to `e.source ∩ s` when `s` is open.
This is sometimes hard to use because of the openness assumption, but it has the advantage that
when it can be used then its `PartialEquiv` is defeq to `PartialEquiv.restr`. -/
protected def restrOpen (s : Set α) (hs : IsOpen s) : PartialHomeomorph α β :=
(@IsImage.of_symm_preimage_eq α β _ _ e s (e.symm ⁻¹' s) rfl).restr
(IsOpen.inter e.open_source hs)
#align local_homeomorph.restr_open PartialHomeomorph.restrOpen
@[simp, mfld_simps]
theorem restrOpen_toPartialEquiv (s : Set α) (hs : IsOpen s) :
(e.restrOpen s hs).toPartialEquiv = e.toPartialEquiv.restr s :=
rfl
#align local_homeomorph.restr_open_to_local_equiv PartialHomeomorph.restrOpen_toPartialEquiv
-- Already simp via `PartialEquiv`
theorem restrOpen_source (s : Set α) (hs : IsOpen s) : (e.restrOpen s hs).source = e.source ∩ s :=
rfl
#align local_homeomorph.restr_open_source PartialHomeomorph.restrOpen_source
/-- Restricting a partial homeomorphism `e` to `e.source ∩ interior s`. We use the interior to make
sure that the restriction is well defined whatever the set s, since partial homeomorphisms are by
definition defined on open sets. In applications where `s` is open, this coincides with the
restriction of partial equivalences -/
@[simps! (config := mfld_cfg) apply symm_apply, simps! (config := .lemmasOnly) source target]
protected def restr (s : Set α) : PartialHomeomorph α β :=
e.restrOpen (interior s) isOpen_interior
#align local_homeomorph.restr PartialHomeomorph.restr
@[simp, mfld_simps]
theorem restr_toPartialEquiv (s : Set α) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr (interior s) :=
rfl
#align local_homeomorph.restr_to_local_equiv PartialHomeomorph.restr_toPartialEquiv
theorem restr_source' (s : Set α) (hs : IsOpen s) : (e.restr s).source = e.source ∩ s := by
rw [e.restr_source, hs.interior_eq]
#align local_homeomorph.restr_source' PartialHomeomorph.restr_source'
theorem restr_toPartialEquiv' (s : Set α) (hs : IsOpen s) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr s := by
rw [e.restr_toPartialEquiv, hs.interior_eq]
#align local_homeomorph.restr_to_local_equiv' PartialHomeomorph.restr_toPartialEquiv'
theorem restr_eq_of_source_subset {e : PartialHomeomorph α β} {s : Set α} (h : e.source ⊆ s) :
e.restr s = e :=
toPartialEquiv_injective <| PartialEquiv.restr_eq_of_source_subset <|
interior_maximal h e.open_source
#align local_homeomorph.restr_eq_of_source_subset PartialHomeomorph.restr_eq_of_source_subset
@[simp, mfld_simps]
theorem restr_univ {e : PartialHomeomorph α β} : e.restr univ = e :=
restr_eq_of_source_subset (subset_univ _)
#align local_homeomorph.restr_univ PartialHomeomorph.restr_univ
theorem restr_source_inter (s : Set α) : e.restr (e.source ∩ s) = e.restr s := by
refine' PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) _
simp [e.open_source.interior_eq, ← inter_assoc]
#align local_homeomorph.restr_source_inter PartialHomeomorph.restr_source_inter
/-- The identity on the whole space as a partial homeomorphism. -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
protected def refl (α : Type*) [TopologicalSpace α] : PartialHomeomorph α α :=
(Homeomorph.refl α).toPartialHomeomorph
#align local_homeomorph.refl PartialHomeomorph.refl
@[simp, mfld_simps]
theorem refl_localEquiv : (PartialHomeomorph.refl α).toPartialEquiv = PartialEquiv.refl α :=
rfl
#align local_homeomorph.refl_local_equiv PartialHomeomorph.refl_localEquiv
@[simp, mfld_simps]
theorem refl_symm : (PartialHomeomorph.refl α).symm = PartialHomeomorph.refl α :=
rfl
#align local_homeomorph.refl_symm PartialHomeomorph.refl_symm
section
variable {s : Set α} (hs : IsOpen s)
/-- The identity partial equivalence on a set `s` -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
def ofSet (s : Set α) (hs : IsOpen s) : PartialHomeomorph α α where
toPartialEquiv := PartialEquiv.ofSet s
open_source := hs
open_target := hs
continuousOn_toFun := continuous_id.continuousOn
continuousOn_invFun := continuous_id.continuousOn
#align local_homeomorph.of_set PartialHomeomorph.ofSet
@[simp, mfld_simps]
theorem ofSet_toPartialEquiv : (ofSet s hs).toPartialEquiv = PartialEquiv.ofSet s :=
rfl
#align local_homeomorph.of_set_to_local_equiv PartialHomeomorph.ofSet_toPartialEquiv
@[simp, mfld_simps]
theorem ofSet_symm : (ofSet s hs).symm = ofSet s hs :=
rfl
#align local_homeomorph.of_set_symm PartialHomeomorph.ofSet_symm
@[simp, mfld_simps]
theorem ofSet_univ_eq_refl : ofSet univ isOpen_univ = PartialHomeomorph.refl α := by ext <;> simp
#align local_homeomorph.of_set_univ_eq_refl PartialHomeomorph.ofSet_univ_eq_refl
end
/-- Composition of two partial homeomorphisms when the target of the first and the source of
the second coincide. -/
@[simps! apply symm_apply toPartialEquiv, simps! (config := .lemmasOnly) source target]
protected def trans' (h : e.target = e'.source) : PartialHomeomorph α γ where
toPartialEquiv := PartialEquiv.trans' e.toPartialEquiv e'.toPartialEquiv h
open_source := e.open_source
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuousOn <| h ▸ e.mapsTo
continuousOn_invFun := e.continuousOn_symm.comp e'.continuousOn_symm <| h.symm ▸ e'.symm_mapsTo
#align local_homeomorph.trans' PartialHomeomorph.trans'
/-- Composing two partial homeomorphisms, by restricting to the maximal domain where their
composition is well defined. -/
protected def trans : PartialHomeomorph α γ :=
PartialHomeomorph.trans' (e.symm.restrOpen e'.source e'.open_source).symm
(e'.restrOpen e.target e.open_target) (by simp [inter_comm])
#align local_homeomorph.trans PartialHomeomorph.trans
@[simp, mfld_simps]
theorem trans_toPartialEquiv :
(e.trans e').toPartialEquiv = e.toPartialEquiv.trans e'.toPartialEquiv :=
rfl
#align local_homeomorph.trans_to_local_equiv PartialHomeomorph.trans_toPartialEquiv
@[simp, mfld_simps]
theorem coe_trans : (e.trans e' : α → γ) = e' ∘ e :=
rfl
#align local_homeomorph.coe_trans PartialHomeomorph.coe_trans
@[simp, mfld_simps]
theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
rfl
#align local_homeomorph.coe_trans_symm PartialHomeomorph.coe_trans_symm
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
rfl
#align local_homeomorph.trans_apply PartialHomeomorph.trans_apply
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
#align local_homeomorph.trans_symm_eq_symm_trans_symm PartialHomeomorph.trans_symm_eq_symm_trans_symm
/- This could be considered as a simp lemma, but there are many situations where it makes something
simple into something more complicated. -/
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=
PartialEquiv.trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source PartialHomeomorph.trans_source
theorem trans_source' : (e.trans e').source = e.source ∩ e ⁻¹' (e.target ∩ e'.source) :=
PartialEquiv.trans_source' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source' PartialHomeomorph.trans_source'
theorem trans_source'' : (e.trans e').source = e.symm '' (e.target ∩ e'.source) :=
PartialEquiv.trans_source'' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source'' PartialHomeomorph.trans_source''
theorem image_trans_source : e '' (e.trans e').source = e.target ∩ e'.source :=
PartialEquiv.image_trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.image_trans_source PartialHomeomorph.image_trans_source
theorem trans_target : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' e.target :=
rfl
#align local_homeomorph.trans_target PartialHomeomorph.trans_target
theorem trans_target' : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' (e'.source ∩ e.target) :=
trans_source' e'.symm e.symm
#align local_homeomorph.trans_target' PartialHomeomorph.trans_target'
theorem trans_target'' : (e.trans e').target = e' '' (e'.source ∩ e.target) :=
trans_source'' e'.symm e.symm
#align local_homeomorph.trans_target'' PartialHomeomorph.trans_target''
theorem inv_image_trans_target : e'.symm '' (e.trans e').target = e'.source ∩ e.target :=
image_trans_source e'.symm e.symm
#align local_homeomorph.inv_image_trans_target PartialHomeomorph.inv_image_trans_target
theorem trans_assoc (e'' : PartialHomeomorph γ δ) :
(e.trans e').trans e'' = e.trans (e'.trans e'') :=
toPartialEquiv_injective <| e.1.trans_assoc _ _
#align local_homeomorph.trans_assoc PartialHomeomorph.trans_assoc
@[simp, mfld_simps]
theorem trans_refl : e.trans (PartialHomeomorph.refl β) = e :=
toPartialEquiv_injective e.1.trans_refl
#align local_homeomorph.trans_refl PartialHomeomorph.trans_refl
@[simp, mfld_simps]
theorem refl_trans : (PartialHomeomorph.refl α).trans e = e :=
toPartialEquiv_injective e.1.refl_trans
#align local_homeomorph.refl_trans PartialHomeomorph.refl_trans
theorem trans_ofSet {s : Set β} (hs : IsOpen s) : e.trans (ofSet s hs) = e.restr (e ⁻¹' s) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) <| by
rw [trans_source, restr_source, ofSet_source, ← preimage_interior, hs.interior_eq]
#align local_homeomorph.trans_of_set PartialHomeomorph.trans_ofSet
theorem trans_of_set' {s : Set β} (hs : IsOpen s) :
e.trans (ofSet s hs) = e.restr (e.source ∩ e ⁻¹' s) := by rw [trans_ofSet, restr_source_inter]
#align local_homeomorph.trans_of_set' PartialHomeomorph.trans_of_set'
theorem ofSet_trans {s : Set α} (hs : IsOpen s) : (ofSet s hs).trans e = e.restr s :=
PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) <| by simp [hs.interior_eq, inter_comm]
#align local_homeomorph.of_set_trans PartialHomeomorph.ofSet_trans
theorem ofSet_trans' {s : Set α} (hs : IsOpen s) :
(ofSet s hs).trans e = e.restr (e.source ∩ s) := by
rw [ofSet_trans, restr_source_inter]
#align local_homeomorph.of_set_trans' PartialHomeomorph.ofSet_trans'
@[simp, mfld_simps]
theorem ofSet_trans_ofSet {s : Set α} (hs : IsOpen s) {s' : Set α} (hs' : IsOpen s') :
(ofSet s hs).trans (ofSet s' hs') = ofSet (s ∩ s') (IsOpen.inter hs hs') := by
rw [(ofSet s hs).trans_ofSet hs']
ext <;> simp [hs'.interior_eq]
#align local_homeomorph.of_set_trans_of_set PartialHomeomorph.ofSet_trans_ofSet
theorem restr_trans (s : Set α) : (e.restr s).trans e' = (e.trans e').restr s :=
toPartialEquiv_injective <|
PartialEquiv.restr_trans e.toPartialEquiv e'.toPartialEquiv (interior s)
#align local_homeomorph.restr_trans PartialHomeomorph.restr_trans
/-- Postcompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def transHomeomorph (e' : β ≃ₜ γ) : PartialHomeomorph α γ where
toPartialEquiv := e.toPartialEquiv.transEquiv e'.toEquiv
open_source := e.open_source
open_target := e.open_target.preimage e'.symm.continuous
continuousOn_toFun := e'.continuous.comp_continuousOn e.continuousOn
continuousOn_invFun := e.symm.continuousOn.comp e'.symm.continuous.continuousOn fun _ => id
#align local_homeomorph.trans_homeomorph PartialHomeomorph.transHomeomorph
theorem transHomeomorph_eq_trans (e' : β ≃ₜ γ) :
e.transHomeomorph e' = e.trans e'.toPartialHomeomorph :=
toPartialEquiv_injective <| PartialEquiv.transEquiv_eq_trans _ _
#align local_homeomorph.trans_equiv_eq_trans PartialHomeomorph.transHomeomorph_eq_trans
/-- Precompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def _root_.Homeomorph.transPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α γ where
toPartialEquiv := e.toEquiv.transPartialEquiv e'.toPartialEquiv
open_source := e'.open_source.preimage e.continuous
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuous.continuousOn fun _ => id
continuousOn_invFun := e.symm.continuous.comp_continuousOn e'.symm.continuousOn
#align homeomorph.trans_local_homeomorph Homeomorph.transPartialHomeomorph
theorem _root_.Homeomorph.transPartialHomeomorph_eq_trans (e : α ≃ₜ β) :
e.transPartialHomeomorph e' = e.toPartialHomeomorph.trans e' :=
toPartialEquiv_injective <| Equiv.transPartialEquiv_eq_trans _ _
#align homeomorph.trans_local_homeomorph_eq_trans Homeomorph.transPartialHomeomorph_eq_trans
/-- `EqOnSource e e'` means that `e` and `e'` have the same source, and coincide there. They
should really be considered the same partial equivalence. -/
def EqOnSource (e e' : PartialHomeomorph α β) : Prop :=
e.source = e'.source ∧ EqOn e e' e.source
#align local_homeomorph.eq_on_source PartialHomeomorph.EqOnSource
theorem eqOnSource_iff (e e' : PartialHomeomorph α β) :
EqOnSource e e' ↔ PartialEquiv.EqOnSource e.toPartialEquiv e'.toPartialEquiv :=
Iff.rfl
#align local_homeomorph.eq_on_source_iff PartialHomeomorph.eqOnSource_iff
/-- `EqOnSource` is an equivalence relation. -/
instance eqOnSourceSetoid : Setoid (PartialHomeomorph α β) :=
{ PartialEquiv.eqOnSourceSetoid.comap toPartialEquiv with r := EqOnSource }
theorem eqOnSource_refl : e ≈ e := Setoid.refl _
#align local_homeomorph.eq_on_source_refl PartialHomeomorph.eqOnSource_refl
/-- If two partial homeomorphisms are equivalent, so are their inverses. -/
theorem EqOnSource.symm' {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.symm ≈ e'.symm :=
PartialEquiv.EqOnSource.symm' h
#align local_homeomorph.eq_on_source.symm' PartialHomeomorph.EqOnSource.symm'
/-- Two equivalent partial homeomorphisms have the same source. -/
theorem EqOnSource.source_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.source = e'.source :=
h.1
#align local_homeomorph.eq_on_source.source_eq PartialHomeomorph.EqOnSource.source_eq
/-- Two equivalent partial homeomorphisms have the same target. -/
theorem EqOnSource.target_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.target = e'.target :=
h.symm'.1
#align local_homeomorph.eq_on_source.target_eq PartialHomeomorph.EqOnSource.target_eq
/-- Two equivalent partial homeomorphisms have coinciding `toFun` on the source -/
theorem EqOnSource.eqOn {e e' : PartialHomeomorph α β} (h : e ≈ e') : EqOn e e' e.source :=
h.2
#align local_homeomorph.eq_on_source.eq_on PartialHomeomorph.EqOnSource.eqOn
/-- Two equivalent partial homeomorphisms have coinciding `invFun` on the target -/
theorem EqOnSource.symm_eqOn_target {e e' : PartialHomeomorph α β} (h : e ≈ e') :
EqOn e.symm e'.symm e.target :=
h.symm'.2
#align local_homeomorph.eq_on_source.symm_eq_on_target PartialHomeomorph.EqOnSource.symm_eqOn_target
/-- Composition of partial homeomorphisms respects equivalence. -/
theorem EqOnSource.trans' {e e' : PartialHomeomorph α β} {f f' : PartialHomeomorph β γ}
(he : e ≈ e') (hf : f ≈ f') : e.trans f ≈ e'.trans f' :=
PartialEquiv.EqOnSource.trans' he hf
#align local_homeomorph.eq_on_source.trans' PartialHomeomorph.EqOnSource.trans'
/-- Restriction of partial homeomorphisms respects equivalence -/
theorem EqOnSource.restr {e e' : PartialHomeomorph α β} (he : e ≈ e') (s : Set α) :
e.restr s ≈ e'.restr s :=
PartialEquiv.EqOnSource.restr he _
#align local_homeomorph.eq_on_source.restr PartialHomeomorph.EqOnSource.restr
/- Two equivalent partial homeomorphisms are equal when the source and target are `univ`. -/
theorem Set.EqOn.restr_eqOn_source {e e' : PartialHomeomorph α β}
(h : EqOn e e' (e.source ∩ e'.source)) : e.restr e'.source ≈ e'.restr e.source := by
constructor
· rw [e'.restr_source' _ e.open_source]
rw [e.restr_source' _ e'.open_source]
exact Set.inter_comm _ _
· rw [e.restr_source' _ e'.open_source]
refine' (EqOn.trans _ h).trans _ <;> simp only [mfld_simps, eqOn_refl]
#align local_homeomorph.set.eq_on.restr_eq_on_source PartialHomeomorph.Set.EqOn.restr_eqOn_source
/-- Composition of a partial homeomorphism and its inverse is equivalent to the restriction of the
identity to the source -/
theorem trans_self_symm : e.trans e.symm ≈ PartialHomeomorph.ofSet e.source e.open_source :=
PartialEquiv.trans_self_symm _
#align local_homeomorph.trans_self_symm PartialHomeomorph.trans_self_symm
theorem trans_symm_self : e.symm.trans e ≈ PartialHomeomorph.ofSet e.target e.open_target :=
e.symm.trans_self_symm
#align local_homeomorph.trans_symm_self PartialHomeomorph.trans_symm_self
theorem eq_of_eqOnSource_univ {e e' : PartialHomeomorph α β} (h : e ≈ e') (s : e.source = univ)
(t : e.target = univ) : e = e' :=
toPartialEquiv_injective <| PartialEquiv.eq_of_eqOnSource_univ _ _ h s t
#align local_homeomorph.eq_of_eq_on_source_univ PartialHomeomorph.eq_of_eqOnSource_univ
section Prod
/-- The product of two partial homeomorphisms, as a partial homeomorphism on the product space. -/
@[simps! (config := mfld_cfg) toPartialEquiv apply,
simps! (config := .lemmasOnly) source target symm_apply]
def prod (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
PartialHomeomorph (α × γ) (β × δ) where
open_source := e.open_source.prod e'.open_source
open_target := e.open_target.prod e'.open_target
continuousOn_toFun := e.continuousOn.prod_map e'.continuousOn
continuousOn_invFun := e.continuousOn_symm.prod_map e'.continuousOn_symm
toPartialEquiv := e.toPartialEquiv.prod e'.toPartialEquiv
#align local_homeomorph.prod PartialHomeomorph.prod
@[simp, mfld_simps]
theorem prod_symm (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
(e.prod e').symm = e.symm.prod e'.symm :=
rfl
#align local_homeomorph.prod_symm PartialHomeomorph.prod_symm
@[simp]
theorem refl_prod_refl {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] :
(PartialHomeomorph.refl α).prod (PartialHomeomorph.refl β) = PartialHomeomorph.refl (α × β) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) univ_prod_univ
#align local_homeomorph.refl_prod_refl PartialHomeomorph.refl_prod_refl
@[simp, mfld_simps]
theorem prod_trans {η : Type*} {ε : Type*} [TopologicalSpace η] [TopologicalSpace ε]
(e : PartialHomeomorph α β) (f : PartialHomeomorph β γ) (e' : PartialHomeomorph δ η)
(f' : PartialHomeomorph η ε) : (e.prod e').trans (f.prod f') = (e.trans f).prod (e'.trans f') :=
toPartialEquiv_injective <| e.1.prod_trans ..
#align local_homeomorph.prod_trans PartialHomeomorph.prod_trans
theorem prod_eq_prod_of_nonempty {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁.prod e₂).source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
obtain ⟨⟨x, y⟩, -⟩ := id h
haveI : Nonempty α := ⟨x⟩
haveI : Nonempty β := ⟨e₁ x⟩
haveI : Nonempty γ := ⟨y⟩
haveI : Nonempty δ := ⟨e₂ y⟩
simp_rw [PartialHomeomorph.ext_iff, prod_apply, prod_symm_apply, prod_source, Prod.ext_iff,
Set.prod_eq_prod_iff_of_nonempty h, forall_and, Prod.forall, forall_const,
and_assoc, and_left_comm]
#align local_homeomorph.prod_eq_prod_of_nonempty PartialHomeomorph.prod_eq_prod_of_nonempty
theorem prod_eq_prod_of_nonempty' {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁'.prod e₂').source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
rw [eq_comm, prod_eq_prod_of_nonempty h, eq_comm, @eq_comm _ e₂']
#align local_homeomorph.prod_eq_prod_of_nonempty' PartialHomeomorph.prod_eq_prod_of_nonempty'
end Prod
section Piecewise
/-- Combine two `PartialHomeomorph`s using `Set.piecewise`. The source of the new
`PartialHomeomorph` is `s.ite e.source e'.source = e.source ∩ s ∪ e'.source \ s`, and similarly for
target. The function sends `e.source ∩ s` to `e.target ∩ t` using `e` and
`e'.source \ s` to `e'.target \ t` using `e'`, and similarly for the inverse function.
To ensure the maps `toFun` and `invFun` are inverse of each other on the new `source` and `target`,
the definition assumes that the sets `s` and `t` are related both by `e.is_image` and `e'.is_image`.
To ensure that the new maps are continuous on `source`/`target`, it also assumes that `e.source` and
`e'.source` meet `frontier s` on the same set and `e x = e' x` on this intersection. -/
@[simps! (config := .asFn) toPartialEquiv apply]
def piecewise (e e' : PartialHomeomorph α β) (s : Set α) (t : Set β) [∀ x, Decidable (x ∈ s)]
[∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquiv.piecewise e'.toPartialEquiv s t H H'
open_source := e.open_source.ite e'.open_source Hs
open_target :=
e.open_target.ite e'.open_target <| H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq
continuousOn_toFun := continuousOn_piecewise_ite e.continuousOn e'.continuousOn Hs Heq
continuousOn_invFun :=
continuousOn_piecewise_ite e.continuousOn_symm e'.continuousOn_symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq)
#align local_homeomorph.piecewise PartialHomeomorph.piecewise
@[simp]
theorem symm_piecewise (e e' : PartialHomeomorph α β) {s : Set α} {t : Set β}
[∀ x, Decidable (x ∈ s)] [∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) :
(e.piecewise e' s t H H' Hs Heq).symm =
e.symm.piecewise e'.symm t s H.symm H'.symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq) :=
rfl
#align local_homeomorph.symm_piecewise PartialHomeomorph.symm_piecewise
/-- Combine two `PartialHomeomorph`s with disjoint sources and disjoint targets. We reuse
`PartialHomeomorph.piecewise` then override `toPartialEquiv` to `PartialEquiv.disjointUnion`.
This way we have better definitional equalities for `source` and `target`. -/
def disjointUnion (e e' : PartialHomeomorph α β) [∀ x, Decidable (x ∈ e.source)]
[∀ y, Decidable (y ∈ e.target)] (Hs : Disjoint e.source e'.source)
(Ht : Disjoint e.target e'.target) : PartialHomeomorph α β :=
(e.piecewise e' e.source e.target e.isImage_source_target
(e'.isImage_source_target_of_disjoint e Hs.symm Ht.symm)
(by rw [e.open_source.inter_frontier_eq, (Hs.symm.frontier_right e'.open_source).inter_eq])
(by
rw [e.open_source.inter_frontier_eq]
exact eqOn_empty _ _)).replaceEquiv
(e.toPartialEquiv.disjointUnion e'.toPartialEquiv Hs Ht)
(PartialEquiv.disjointUnion_eq_piecewise _ _ _ _).symm
#align local_homeomorph.disjoint_union PartialHomeomorph.disjointUnion
end Piecewise
section Pi
variable {ι : Type*} [Fintype ι] {Xi Yi : ι → Type*} [∀ i, TopologicalSpace (Xi i)]
[∀ i, TopologicalSpace (Yi i)] (ei : ∀ i, PartialHomeomorph (Xi i) (Yi i))
/-- The product of a finite family of `PartialHomeomorph`s. -/
@[simps toPartialEquiv]
def pi : PartialHomeomorph (∀ i, Xi i) (∀ i, Yi i) where
toPartialEquiv := PartialEquiv.pi fun i => (ei i).toPartialEquiv
open_source := isOpen_set_pi finite_univ fun i _ => (ei i).open_source
open_target := isOpen_set_pi finite_univ fun i _ => (ei i).open_target
continuousOn_toFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
continuousOn_invFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn_symm.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
#align local_homeomorph.pi PartialHomeomorph.pi
end Pi
section Continuity
/-- Continuity within a set at a point can be read under right composition with a local
homeomorphism, if the point is in its target -/
theorem continuousWithinAt_iff_continuousWithinAt_comp_right {f : β → γ} {s : Set β} {x : β}
(h : x ∈ e.target) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ e) (e ⁻¹' s) (e.symm x) := by
simp_rw [ContinuousWithinAt, ← @tendsto_map'_iff _ _ _ _ e,
e.map_nhdsWithin_preimage_eq (e.map_target h), (· ∘ ·), e.right_inv h]
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_right PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
/-- Continuity at a point can be read under right composition with a partial homeomorphism, if the
point is in its target -/
theorem continuousAt_iff_continuousAt_comp_right {f : β → γ} {x : β} (h : x ∈ e.target) :
ContinuousAt f x ↔ ContinuousAt (f ∘ e) (e.symm x) := by
rw [← continuousWithinAt_univ, e.continuousWithinAt_iff_continuousWithinAt_comp_right h,
preimage_univ, continuousWithinAt_univ]
#align local_homeomorph.continuous_at_iff_continuous_at_comp_right PartialHomeomorph.continuousAt_iff_continuousAt_comp_right
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the right is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_right {f : β → γ} {s : Set β} (h : s ⊆ e.target) :
ContinuousOn f s ↔ ContinuousOn (f ∘ e) (e.source ∩ e ⁻¹' s) := by
simp only [← e.symm_image_eq_source_inter_preimage h, ContinuousOn, ball_image_iff]
refine' forall₂_congr fun x hx => _
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx),
e.symm_image_eq_source_inter_preimage h, inter_comm, continuousWithinAt_inter]
exact IsOpen.mem_nhds e.open_source (e.map_target (h hx))
#align local_homeomorph.continuous_on_iff_continuous_on_comp_right PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
/-- Continuity within a set at a point can be read under left composition with a local
homeomorphism if a neighborhood of the initial point is sent to the source of the local
homeomorphism-/
theorem continuousWithinAt_iff_continuousWithinAt_comp_left {f : γ → α} {s : Set γ} {x : γ}
(hx : f x ∈ e.source) (h : f ⁻¹' e.source ∈ 𝓝[s] x) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (e ∘ f) s x := by
refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩
rw [← continuousWithinAt_inter' h] at fe_cont ⊢
have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=
haveI : ContinuousWithinAt e.symm univ (e (f x)) :=
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
ContinuousWithinAt.comp this fe_cont (subset_univ _)
exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_left PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
/-- Continuity at a point can be read under left composition with a partial homeomorphism if a
neighborhood of the initial point is sent to the source of the partial homeomorphism-/
theorem continuousAt_iff_continuousAt_comp_left {f : γ → α} {x : γ} (h : f ⁻¹' e.source ∈ 𝓝 x) :
ContinuousAt f x ↔ ContinuousAt (e ∘ f) x := by
have hx : f x ∈ e.source := (mem_of_mem_nhds h : _)
have h' : f ⁻¹' e.source ∈ 𝓝[univ] x := by rwa [nhdsWithin_univ]
rw [← continuousWithinAt_univ, ← continuousWithinAt_univ,
e.continuousWithinAt_iff_continuousWithinAt_comp_left hx h']
#align local_homeomorph.continuous_at_iff_continuous_at_comp_left PartialHomeomorph.continuousAt_iff_continuousAt_comp_left
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the left is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_left {f : γ → α} {s : Set γ} (h : s ⊆ f ⁻¹' e.source) :
ContinuousOn f s ↔ ContinuousOn (e ∘ f) s :=
forall₂_congr fun _x hx =>
e.continuousWithinAt_iff_continuousWithinAt_comp_left (h hx)
(mem_of_superset self_mem_nhdsWithin h)
#align local_homeomorph.continuous_on_iff_continuous_on_comp_left PartialHomeomorph.continuousOn_iff_continuousOn_comp_left
/-- A function is continuous if and only if its composition with a partial homeomorphism
on the left is continuous and its image is contained in the source. -/
theorem continuous_iff_continuous_comp_left {f : γ → α} (h : f ⁻¹' e.source = univ) :
Continuous f ↔ Continuous (e ∘ f) := by
simp only [continuous_iff_continuousOn_univ]
exact e.continuousOn_iff_continuousOn_comp_left (Eq.symm h).subset
#align local_homeomorph.continuous_iff_continuous_comp_left PartialHomeomorph.continuous_iff_continuous_comp_left
end Continuity
/-- The homeomorphism obtained by restricting a `PartialHomeomorph` to a subset of the source. -/
@[simps]
def homeomorphOfImageSubsetSource {s : Set α} {t : Set β} (hs : s ⊆ e.source) (ht : e '' s = t) :
s ≃ₜ t :=
have h₁ : MapsTo e s t := mapsTo'.2 ht.subset
have h₂ : t ⊆ e.target := ht ▸ e.image_source_eq_target ▸ image_subset e hs
have h₃ : MapsTo e.symm t s := ht ▸ ball_image_iff.2 <| fun _x hx =>
(e.left_inv (hs hx)).symm ▸ hx
{ toFun := MapsTo.restrict e s t h₁
invFun := MapsTo.restrict e.symm t s h₃
left_inv := fun a => Subtype.ext (e.left_inv (hs a.2))
right_inv := fun b => Subtype.eq <| e.right_inv (h₂ b.2)
continuous_toFun := (e.continuousOn.mono hs).restrict_mapsTo h₁
continuous_invFun := (e.continuousOn_symm.mono h₂).restrict_mapsTo h₃ }
#align local_homeomorph.homeomorph_of_image_subset_source PartialHomeomorph.homeomorphOfImageSubsetSource
/-- A partial homeomorphism defines a homeomorphism between its source and target. -/
@[simps!] -- porting note: new `simps`
def toHomeomorphSourceTarget : e.source ≃ₜ e.target :=
e.homeomorphOfImageSubsetSource subset_rfl e.image_source_eq_target
#align local_homeomorph.to_homeomorph_source_target PartialHomeomorph.toHomeomorphSourceTarget
theorem secondCountableTopology_source [SecondCountableTopology β] (e : PartialHomeomorph α β) :
SecondCountableTopology e.source :=
e.toHomeomorphSourceTarget.secondCountableTopology
#align local_homeomorph.second_countable_topology_source PartialHomeomorph.secondCountableTopology_source
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) :
𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source := by
lift x to e.source using hx
rw [← e.open_source.nhdsWithin_eq x.2, ← map_nhds_subtype_val, ← map_comap_setCoe_val,
e.toHomeomorphSourceTarget.nhds_eq_comap, nhds_subtype_eq_comap]
simp only [(· ∘ ·), toHomeomorphSourceTarget_apply_coe, comap_comap]
/-- If a partial homeomorphism has source and target equal to univ, then it induces a homeomorphism
between the whole spaces, expressed in this definition. -/
@[simps (config := mfld_cfg) apply symm_apply] -- porting note: todo: add a `PartialEquiv` version
def toHomeomorphOfSourceEqUnivTargetEqUniv (h : e.source = (univ : Set α)) (h' : e.target = univ) :
α ≃ₜ β where
toFun := e
invFun := e.symm
left_inv x :=
e.left_inv <| by
rw [h]
exact mem_univ _
right_inv x :=
e.right_inv <| by
rw [h']
exact mem_univ _
continuous_toFun := by
simpa only [continuous_iff_continuousOn_univ, h] using e.continuousOn
continuous_invFun := by
simpa only [continuous_iff_continuousOn_univ, h'] using e.continuousOn_symm
#align local_homeomorph.to_homeomorph_of_source_eq_univ_target_eq_univ PartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv
theorem openEmbedding_restrict : OpenEmbedding (e.source.restrict e) := by
refine openEmbedding_of_continuous_injective_open (e.continuousOn.comp_continuous
continuous_subtype_val Subtype.prop) e.injOn.injective fun V hV ↦ ?_
rw [Set.restrict_eq, Set.image_comp]
exact e.image_isOpen_of_isOpen (e.open_source.isOpenMap_subtype_val V hV)
fun _ ⟨x, _, h⟩ ↦ h ▸ x.2
/-- A partial homeomorphism whose source is all of `α` defines an open embedding of `α` into `β`.
The converse is also true; see `OpenEmbedding.toPartialHomeomorph`. -/
theorem to_openEmbedding (h : e.source = Set.univ) : OpenEmbedding e :=
e.openEmbedding_restrict.comp
((Homeomorph.setCongr h).trans <| Homeomorph.Set.univ α).symm.openEmbedding
#align local_homeomorph.to_open_embedding PartialHomeomorph.to_openEmbedding
end PartialHomeomorph
namespace Homeomorph
variable (e : α ≃ₜ β) (e' : β ≃ₜ γ)
/- Register as simp lemmas that the fields of a partial homeomorphism built from a homeomorphism
correspond to the fields of the original homeomorphism. -/
@[simp, mfld_simps]
theorem refl_toPartialHomeomorph :
(Homeomorph.refl α).toPartialHomeomorph = PartialHomeomorph.refl α :=
rfl
#align homeomorph.refl_to_local_homeomorph Homeomorph.refl_toPartialHomeomorph
@[simp, mfld_simps]
theorem symm_toPartialHomeomorph : e.symm.toPartialHomeomorph = e.toPartialHomeomorph.symm :=
rfl
#align homeomorph.symm_to_local_homeomorph Homeomorph.symm_toPartialHomeomorph
@[simp, mfld_simps]
theorem trans_toPartialHomeomorph :
(e.trans e').toPartialHomeomorph = e.toPartialHomeomorph.trans e'.toPartialHomeomorph :=
PartialHomeomorph.toPartialEquiv_injective <| Equiv.trans_toPartialEquiv _ _
#align homeomorph.trans_to_local_homeomorph Homeomorph.trans_toPartialHomeomorph
end Homeomorph
namespace OpenEmbedding
variable (f : α → β) (h : OpenEmbedding f)
/-- An open embedding of `α` into `β`, with `α` nonempty, defines a partial homeomorphism
whose source is all of `α`. The converse is also true; see `PartialHomeomorph.to_openEmbedding`. -/
@[simps! (config := mfld_cfg) apply source target]
noncomputable def toPartialHomeomorph [Nonempty α] : PartialHomeomorph α β :=
PartialHomeomorph.ofContinuousOpen ((h.toEmbedding.inj.injOn univ).toPartialEquiv _ _)
h.continuous.continuousOn h.isOpenMap isOpen_univ
#align open_embedding.to_local_homeomorph OpenEmbedding.toPartialHomeomorph
variable [Nonempty α]
lemma toPartialHomeomorph_left_inv {x : α} : (h.toPartialHomeomorph f).symm (f x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.left_inv]
exact Set.mem_univ _
lemma toPartialHomeomorph_right_inv {x : β} (hx : x ∈ Set.range f) :
f ((h.toPartialHomeomorph f).symm x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.right_inv]
rwa [toPartialHomeomorph_target]
end OpenEmbedding
namespace TopologicalSpace.Opens
open TopologicalSpace
variable (s : Opens α) [Nonempty s]
/-- The inclusion of an open subset `s` of a space `α` into `α` is a partial homeomorphism from the
subtype `s` to `α`. -/
noncomputable def localHomeomorphSubtypeCoe : PartialHomeomorph s α :=
OpenEmbedding.toPartialHomeomorph _ s.2.openEmbedding_subtype_val
#align topological_space.opens.local_homeomorph_subtype_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_coe : (s.localHomeomorphSubtypeCoe : s → α) = (↑) :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe_coe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_source : s.localHomeomorphSubtypeCoe.source = Set.univ :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_source TopologicalSpace.Opens.localHomeomorphSubtypeCoe_source
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_target : s.localHomeomorphSubtypeCoe.target = s := by
simp only [localHomeomorphSubtypeCoe, Subtype.range_coe_subtype, mfld_simps]
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_target TopologicalSpace.Opens.localHomeomorphSubtypeCoe_target
end TopologicalSpace.Opens
namespace PartialHomeomorph
open TopologicalSpace
variable (e : PartialHomeomorph α β)
variable (s : Opens α) [Nonempty s]
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
produces a partial homeomorphism whose domain is the subtype `s`. -/
noncomputable def subtypeRestr : PartialHomeomorph s β :=
s.localHomeomorphSubtypeCoe.trans e
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
theorem subtypeRestr_def : e.subtypeRestr s = s.localHomeomorphSubtypeCoe.trans e :=
rfl
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
@[simp, mfld_simps]
theorem subtypeRestr_coe :
((e.subtypeRestr s : PartialHomeomorph s β) : s → β) = Set.restrict ↑s (e : α → β) :=
rfl
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
@[simp, mfld_simps]
theorem subtypeRestr_source : (e.subtypeRestr s).source = (↑) ⁻¹' e.source := by
simp only [subtypeRestr_def, mfld_simps]
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
variable {s}
theorem map_subtype_source {x : s} (hxe : (x : α) ∈ e.source): e x ∈ (e.subtypeRestr s).target := by
refine' ⟨e.map_source hxe, _⟩
rw [s.localHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
exact x.prop
#align local_homeomorph.map_subtype_source PartialHomeomorph.map_subtype_source
variable (s)
/- This lemma characterizes the transition functions of an open subset in terms of the transition
functions of the original space. -/
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph α β) :
(f.subtypeRestr s).symm.trans (f'.subtypeRestr s) ≈
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]
refine' EqOnSource.trans' _ (eqOnSource_refl _)
-- f' has been eliminated !!!
have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=
by mfld_set_tac
have openness₂ : IsOpen (s : Set α) := s.2
rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]
refine' EqOnSource.trans' (eqOnSource_refl _) _
-- f has been eliminated !!!
refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _
simp only [mfld_simps, Setoid.refl]
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
theorem subtypeRestr_symm_eqOn (U : Opens α) [Nonempty U] :
EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U).symm) (e.subtypeRestr U).target := by
intro y hy
rw [eq_comm, eq_symm_apply _ _ hy.1]
· change restrict _ e _ = _
rw [← subtypeRestr_coe, (e.subtypeRestr U).right_inv hy]
· have := map_target _ hy; rwa [subtypeRestr_source] at this
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
·
|
rw [← PartialHomeomorph.symm_target]
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
·
|
Mathlib.Topology.PartialHomeomorph.1460_0.xRULiNOId4c9Kju
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target
|
Mathlib_Topology_PartialHomeomorph
|
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : TopologicalSpace α
inst✝⁵ : TopologicalSpace β
inst✝⁴ : TopologicalSpace γ
inst✝³ : TopologicalSpace δ
e : PartialHomeomorph α β
s : Opens α
inst✝² : Nonempty ↥s
U V : Opens α
inst✝¹ : Nonempty ↥U
inst✝ : Nonempty ↥V
hUV : U ≤ V
i : ↑↑U → ↑↑V := inclusion hUV
y : β
hy : y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (Opens.localHomeomorphSubtypeCoe U).toPartialEquiv.target
hyV : ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
⊢ ↑(PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe V)) (↑(PartialHomeomorph.symm e) y) ∈
(PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe V)).toPartialEquiv.target
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
continuousOn_toFun := hc
continuousOn_invFun := e.image_source_eq_target ▸ ho.continuousOn_image_of_leftInvOn e.leftInvOn
#align local_homeomorph.of_continuous_open_restrict PartialHomeomorph.ofContinuousOpenRestrict
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpen (e : PartialEquiv α β) (hc : ContinuousOn e e.source) (ho : IsOpenMap e)
(hs : IsOpen e.source) : PartialHomeomorph α β :=
ofContinuousOpenRestrict e hc (ho.restrict hs) hs
#align local_homeomorph.of_continuous_open PartialHomeomorph.ofContinuousOpen
/-- Restricting a partial homeomorphism `e` to `e.source ∩ s` when `s` is open.
This is sometimes hard to use because of the openness assumption, but it has the advantage that
when it can be used then its `PartialEquiv` is defeq to `PartialEquiv.restr`. -/
protected def restrOpen (s : Set α) (hs : IsOpen s) : PartialHomeomorph α β :=
(@IsImage.of_symm_preimage_eq α β _ _ e s (e.symm ⁻¹' s) rfl).restr
(IsOpen.inter e.open_source hs)
#align local_homeomorph.restr_open PartialHomeomorph.restrOpen
@[simp, mfld_simps]
theorem restrOpen_toPartialEquiv (s : Set α) (hs : IsOpen s) :
(e.restrOpen s hs).toPartialEquiv = e.toPartialEquiv.restr s :=
rfl
#align local_homeomorph.restr_open_to_local_equiv PartialHomeomorph.restrOpen_toPartialEquiv
-- Already simp via `PartialEquiv`
theorem restrOpen_source (s : Set α) (hs : IsOpen s) : (e.restrOpen s hs).source = e.source ∩ s :=
rfl
#align local_homeomorph.restr_open_source PartialHomeomorph.restrOpen_source
/-- Restricting a partial homeomorphism `e` to `e.source ∩ interior s`. We use the interior to make
sure that the restriction is well defined whatever the set s, since partial homeomorphisms are by
definition defined on open sets. In applications where `s` is open, this coincides with the
restriction of partial equivalences -/
@[simps! (config := mfld_cfg) apply symm_apply, simps! (config := .lemmasOnly) source target]
protected def restr (s : Set α) : PartialHomeomorph α β :=
e.restrOpen (interior s) isOpen_interior
#align local_homeomorph.restr PartialHomeomorph.restr
@[simp, mfld_simps]
theorem restr_toPartialEquiv (s : Set α) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr (interior s) :=
rfl
#align local_homeomorph.restr_to_local_equiv PartialHomeomorph.restr_toPartialEquiv
theorem restr_source' (s : Set α) (hs : IsOpen s) : (e.restr s).source = e.source ∩ s := by
rw [e.restr_source, hs.interior_eq]
#align local_homeomorph.restr_source' PartialHomeomorph.restr_source'
theorem restr_toPartialEquiv' (s : Set α) (hs : IsOpen s) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr s := by
rw [e.restr_toPartialEquiv, hs.interior_eq]
#align local_homeomorph.restr_to_local_equiv' PartialHomeomorph.restr_toPartialEquiv'
theorem restr_eq_of_source_subset {e : PartialHomeomorph α β} {s : Set α} (h : e.source ⊆ s) :
e.restr s = e :=
toPartialEquiv_injective <| PartialEquiv.restr_eq_of_source_subset <|
interior_maximal h e.open_source
#align local_homeomorph.restr_eq_of_source_subset PartialHomeomorph.restr_eq_of_source_subset
@[simp, mfld_simps]
theorem restr_univ {e : PartialHomeomorph α β} : e.restr univ = e :=
restr_eq_of_source_subset (subset_univ _)
#align local_homeomorph.restr_univ PartialHomeomorph.restr_univ
theorem restr_source_inter (s : Set α) : e.restr (e.source ∩ s) = e.restr s := by
refine' PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) _
simp [e.open_source.interior_eq, ← inter_assoc]
#align local_homeomorph.restr_source_inter PartialHomeomorph.restr_source_inter
/-- The identity on the whole space as a partial homeomorphism. -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
protected def refl (α : Type*) [TopologicalSpace α] : PartialHomeomorph α α :=
(Homeomorph.refl α).toPartialHomeomorph
#align local_homeomorph.refl PartialHomeomorph.refl
@[simp, mfld_simps]
theorem refl_localEquiv : (PartialHomeomorph.refl α).toPartialEquiv = PartialEquiv.refl α :=
rfl
#align local_homeomorph.refl_local_equiv PartialHomeomorph.refl_localEquiv
@[simp, mfld_simps]
theorem refl_symm : (PartialHomeomorph.refl α).symm = PartialHomeomorph.refl α :=
rfl
#align local_homeomorph.refl_symm PartialHomeomorph.refl_symm
section
variable {s : Set α} (hs : IsOpen s)
/-- The identity partial equivalence on a set `s` -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
def ofSet (s : Set α) (hs : IsOpen s) : PartialHomeomorph α α where
toPartialEquiv := PartialEquiv.ofSet s
open_source := hs
open_target := hs
continuousOn_toFun := continuous_id.continuousOn
continuousOn_invFun := continuous_id.continuousOn
#align local_homeomorph.of_set PartialHomeomorph.ofSet
@[simp, mfld_simps]
theorem ofSet_toPartialEquiv : (ofSet s hs).toPartialEquiv = PartialEquiv.ofSet s :=
rfl
#align local_homeomorph.of_set_to_local_equiv PartialHomeomorph.ofSet_toPartialEquiv
@[simp, mfld_simps]
theorem ofSet_symm : (ofSet s hs).symm = ofSet s hs :=
rfl
#align local_homeomorph.of_set_symm PartialHomeomorph.ofSet_symm
@[simp, mfld_simps]
theorem ofSet_univ_eq_refl : ofSet univ isOpen_univ = PartialHomeomorph.refl α := by ext <;> simp
#align local_homeomorph.of_set_univ_eq_refl PartialHomeomorph.ofSet_univ_eq_refl
end
/-- Composition of two partial homeomorphisms when the target of the first and the source of
the second coincide. -/
@[simps! apply symm_apply toPartialEquiv, simps! (config := .lemmasOnly) source target]
protected def trans' (h : e.target = e'.source) : PartialHomeomorph α γ where
toPartialEquiv := PartialEquiv.trans' e.toPartialEquiv e'.toPartialEquiv h
open_source := e.open_source
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuousOn <| h ▸ e.mapsTo
continuousOn_invFun := e.continuousOn_symm.comp e'.continuousOn_symm <| h.symm ▸ e'.symm_mapsTo
#align local_homeomorph.trans' PartialHomeomorph.trans'
/-- Composing two partial homeomorphisms, by restricting to the maximal domain where their
composition is well defined. -/
protected def trans : PartialHomeomorph α γ :=
PartialHomeomorph.trans' (e.symm.restrOpen e'.source e'.open_source).symm
(e'.restrOpen e.target e.open_target) (by simp [inter_comm])
#align local_homeomorph.trans PartialHomeomorph.trans
@[simp, mfld_simps]
theorem trans_toPartialEquiv :
(e.trans e').toPartialEquiv = e.toPartialEquiv.trans e'.toPartialEquiv :=
rfl
#align local_homeomorph.trans_to_local_equiv PartialHomeomorph.trans_toPartialEquiv
@[simp, mfld_simps]
theorem coe_trans : (e.trans e' : α → γ) = e' ∘ e :=
rfl
#align local_homeomorph.coe_trans PartialHomeomorph.coe_trans
@[simp, mfld_simps]
theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
rfl
#align local_homeomorph.coe_trans_symm PartialHomeomorph.coe_trans_symm
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
rfl
#align local_homeomorph.trans_apply PartialHomeomorph.trans_apply
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
#align local_homeomorph.trans_symm_eq_symm_trans_symm PartialHomeomorph.trans_symm_eq_symm_trans_symm
/- This could be considered as a simp lemma, but there are many situations where it makes something
simple into something more complicated. -/
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=
PartialEquiv.trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source PartialHomeomorph.trans_source
theorem trans_source' : (e.trans e').source = e.source ∩ e ⁻¹' (e.target ∩ e'.source) :=
PartialEquiv.trans_source' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source' PartialHomeomorph.trans_source'
theorem trans_source'' : (e.trans e').source = e.symm '' (e.target ∩ e'.source) :=
PartialEquiv.trans_source'' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source'' PartialHomeomorph.trans_source''
theorem image_trans_source : e '' (e.trans e').source = e.target ∩ e'.source :=
PartialEquiv.image_trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.image_trans_source PartialHomeomorph.image_trans_source
theorem trans_target : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' e.target :=
rfl
#align local_homeomorph.trans_target PartialHomeomorph.trans_target
theorem trans_target' : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' (e'.source ∩ e.target) :=
trans_source' e'.symm e.symm
#align local_homeomorph.trans_target' PartialHomeomorph.trans_target'
theorem trans_target'' : (e.trans e').target = e' '' (e'.source ∩ e.target) :=
trans_source'' e'.symm e.symm
#align local_homeomorph.trans_target'' PartialHomeomorph.trans_target''
theorem inv_image_trans_target : e'.symm '' (e.trans e').target = e'.source ∩ e.target :=
image_trans_source e'.symm e.symm
#align local_homeomorph.inv_image_trans_target PartialHomeomorph.inv_image_trans_target
theorem trans_assoc (e'' : PartialHomeomorph γ δ) :
(e.trans e').trans e'' = e.trans (e'.trans e'') :=
toPartialEquiv_injective <| e.1.trans_assoc _ _
#align local_homeomorph.trans_assoc PartialHomeomorph.trans_assoc
@[simp, mfld_simps]
theorem trans_refl : e.trans (PartialHomeomorph.refl β) = e :=
toPartialEquiv_injective e.1.trans_refl
#align local_homeomorph.trans_refl PartialHomeomorph.trans_refl
@[simp, mfld_simps]
theorem refl_trans : (PartialHomeomorph.refl α).trans e = e :=
toPartialEquiv_injective e.1.refl_trans
#align local_homeomorph.refl_trans PartialHomeomorph.refl_trans
theorem trans_ofSet {s : Set β} (hs : IsOpen s) : e.trans (ofSet s hs) = e.restr (e ⁻¹' s) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) <| by
rw [trans_source, restr_source, ofSet_source, ← preimage_interior, hs.interior_eq]
#align local_homeomorph.trans_of_set PartialHomeomorph.trans_ofSet
theorem trans_of_set' {s : Set β} (hs : IsOpen s) :
e.trans (ofSet s hs) = e.restr (e.source ∩ e ⁻¹' s) := by rw [trans_ofSet, restr_source_inter]
#align local_homeomorph.trans_of_set' PartialHomeomorph.trans_of_set'
theorem ofSet_trans {s : Set α} (hs : IsOpen s) : (ofSet s hs).trans e = e.restr s :=
PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) <| by simp [hs.interior_eq, inter_comm]
#align local_homeomorph.of_set_trans PartialHomeomorph.ofSet_trans
theorem ofSet_trans' {s : Set α} (hs : IsOpen s) :
(ofSet s hs).trans e = e.restr (e.source ∩ s) := by
rw [ofSet_trans, restr_source_inter]
#align local_homeomorph.of_set_trans' PartialHomeomorph.ofSet_trans'
@[simp, mfld_simps]
theorem ofSet_trans_ofSet {s : Set α} (hs : IsOpen s) {s' : Set α} (hs' : IsOpen s') :
(ofSet s hs).trans (ofSet s' hs') = ofSet (s ∩ s') (IsOpen.inter hs hs') := by
rw [(ofSet s hs).trans_ofSet hs']
ext <;> simp [hs'.interior_eq]
#align local_homeomorph.of_set_trans_of_set PartialHomeomorph.ofSet_trans_ofSet
theorem restr_trans (s : Set α) : (e.restr s).trans e' = (e.trans e').restr s :=
toPartialEquiv_injective <|
PartialEquiv.restr_trans e.toPartialEquiv e'.toPartialEquiv (interior s)
#align local_homeomorph.restr_trans PartialHomeomorph.restr_trans
/-- Postcompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def transHomeomorph (e' : β ≃ₜ γ) : PartialHomeomorph α γ where
toPartialEquiv := e.toPartialEquiv.transEquiv e'.toEquiv
open_source := e.open_source
open_target := e.open_target.preimage e'.symm.continuous
continuousOn_toFun := e'.continuous.comp_continuousOn e.continuousOn
continuousOn_invFun := e.symm.continuousOn.comp e'.symm.continuous.continuousOn fun _ => id
#align local_homeomorph.trans_homeomorph PartialHomeomorph.transHomeomorph
theorem transHomeomorph_eq_trans (e' : β ≃ₜ γ) :
e.transHomeomorph e' = e.trans e'.toPartialHomeomorph :=
toPartialEquiv_injective <| PartialEquiv.transEquiv_eq_trans _ _
#align local_homeomorph.trans_equiv_eq_trans PartialHomeomorph.transHomeomorph_eq_trans
/-- Precompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def _root_.Homeomorph.transPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α γ where
toPartialEquiv := e.toEquiv.transPartialEquiv e'.toPartialEquiv
open_source := e'.open_source.preimage e.continuous
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuous.continuousOn fun _ => id
continuousOn_invFun := e.symm.continuous.comp_continuousOn e'.symm.continuousOn
#align homeomorph.trans_local_homeomorph Homeomorph.transPartialHomeomorph
theorem _root_.Homeomorph.transPartialHomeomorph_eq_trans (e : α ≃ₜ β) :
e.transPartialHomeomorph e' = e.toPartialHomeomorph.trans e' :=
toPartialEquiv_injective <| Equiv.transPartialEquiv_eq_trans _ _
#align homeomorph.trans_local_homeomorph_eq_trans Homeomorph.transPartialHomeomorph_eq_trans
/-- `EqOnSource e e'` means that `e` and `e'` have the same source, and coincide there. They
should really be considered the same partial equivalence. -/
def EqOnSource (e e' : PartialHomeomorph α β) : Prop :=
e.source = e'.source ∧ EqOn e e' e.source
#align local_homeomorph.eq_on_source PartialHomeomorph.EqOnSource
theorem eqOnSource_iff (e e' : PartialHomeomorph α β) :
EqOnSource e e' ↔ PartialEquiv.EqOnSource e.toPartialEquiv e'.toPartialEquiv :=
Iff.rfl
#align local_homeomorph.eq_on_source_iff PartialHomeomorph.eqOnSource_iff
/-- `EqOnSource` is an equivalence relation. -/
instance eqOnSourceSetoid : Setoid (PartialHomeomorph α β) :=
{ PartialEquiv.eqOnSourceSetoid.comap toPartialEquiv with r := EqOnSource }
theorem eqOnSource_refl : e ≈ e := Setoid.refl _
#align local_homeomorph.eq_on_source_refl PartialHomeomorph.eqOnSource_refl
/-- If two partial homeomorphisms are equivalent, so are their inverses. -/
theorem EqOnSource.symm' {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.symm ≈ e'.symm :=
PartialEquiv.EqOnSource.symm' h
#align local_homeomorph.eq_on_source.symm' PartialHomeomorph.EqOnSource.symm'
/-- Two equivalent partial homeomorphisms have the same source. -/
theorem EqOnSource.source_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.source = e'.source :=
h.1
#align local_homeomorph.eq_on_source.source_eq PartialHomeomorph.EqOnSource.source_eq
/-- Two equivalent partial homeomorphisms have the same target. -/
theorem EqOnSource.target_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.target = e'.target :=
h.symm'.1
#align local_homeomorph.eq_on_source.target_eq PartialHomeomorph.EqOnSource.target_eq
/-- Two equivalent partial homeomorphisms have coinciding `toFun` on the source -/
theorem EqOnSource.eqOn {e e' : PartialHomeomorph α β} (h : e ≈ e') : EqOn e e' e.source :=
h.2
#align local_homeomorph.eq_on_source.eq_on PartialHomeomorph.EqOnSource.eqOn
/-- Two equivalent partial homeomorphisms have coinciding `invFun` on the target -/
theorem EqOnSource.symm_eqOn_target {e e' : PartialHomeomorph α β} (h : e ≈ e') :
EqOn e.symm e'.symm e.target :=
h.symm'.2
#align local_homeomorph.eq_on_source.symm_eq_on_target PartialHomeomorph.EqOnSource.symm_eqOn_target
/-- Composition of partial homeomorphisms respects equivalence. -/
theorem EqOnSource.trans' {e e' : PartialHomeomorph α β} {f f' : PartialHomeomorph β γ}
(he : e ≈ e') (hf : f ≈ f') : e.trans f ≈ e'.trans f' :=
PartialEquiv.EqOnSource.trans' he hf
#align local_homeomorph.eq_on_source.trans' PartialHomeomorph.EqOnSource.trans'
/-- Restriction of partial homeomorphisms respects equivalence -/
theorem EqOnSource.restr {e e' : PartialHomeomorph α β} (he : e ≈ e') (s : Set α) :
e.restr s ≈ e'.restr s :=
PartialEquiv.EqOnSource.restr he _
#align local_homeomorph.eq_on_source.restr PartialHomeomorph.EqOnSource.restr
/- Two equivalent partial homeomorphisms are equal when the source and target are `univ`. -/
theorem Set.EqOn.restr_eqOn_source {e e' : PartialHomeomorph α β}
(h : EqOn e e' (e.source ∩ e'.source)) : e.restr e'.source ≈ e'.restr e.source := by
constructor
· rw [e'.restr_source' _ e.open_source]
rw [e.restr_source' _ e'.open_source]
exact Set.inter_comm _ _
· rw [e.restr_source' _ e'.open_source]
refine' (EqOn.trans _ h).trans _ <;> simp only [mfld_simps, eqOn_refl]
#align local_homeomorph.set.eq_on.restr_eq_on_source PartialHomeomorph.Set.EqOn.restr_eqOn_source
/-- Composition of a partial homeomorphism and its inverse is equivalent to the restriction of the
identity to the source -/
theorem trans_self_symm : e.trans e.symm ≈ PartialHomeomorph.ofSet e.source e.open_source :=
PartialEquiv.trans_self_symm _
#align local_homeomorph.trans_self_symm PartialHomeomorph.trans_self_symm
theorem trans_symm_self : e.symm.trans e ≈ PartialHomeomorph.ofSet e.target e.open_target :=
e.symm.trans_self_symm
#align local_homeomorph.trans_symm_self PartialHomeomorph.trans_symm_self
theorem eq_of_eqOnSource_univ {e e' : PartialHomeomorph α β} (h : e ≈ e') (s : e.source = univ)
(t : e.target = univ) : e = e' :=
toPartialEquiv_injective <| PartialEquiv.eq_of_eqOnSource_univ _ _ h s t
#align local_homeomorph.eq_of_eq_on_source_univ PartialHomeomorph.eq_of_eqOnSource_univ
section Prod
/-- The product of two partial homeomorphisms, as a partial homeomorphism on the product space. -/
@[simps! (config := mfld_cfg) toPartialEquiv apply,
simps! (config := .lemmasOnly) source target symm_apply]
def prod (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
PartialHomeomorph (α × γ) (β × δ) where
open_source := e.open_source.prod e'.open_source
open_target := e.open_target.prod e'.open_target
continuousOn_toFun := e.continuousOn.prod_map e'.continuousOn
continuousOn_invFun := e.continuousOn_symm.prod_map e'.continuousOn_symm
toPartialEquiv := e.toPartialEquiv.prod e'.toPartialEquiv
#align local_homeomorph.prod PartialHomeomorph.prod
@[simp, mfld_simps]
theorem prod_symm (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
(e.prod e').symm = e.symm.prod e'.symm :=
rfl
#align local_homeomorph.prod_symm PartialHomeomorph.prod_symm
@[simp]
theorem refl_prod_refl {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] :
(PartialHomeomorph.refl α).prod (PartialHomeomorph.refl β) = PartialHomeomorph.refl (α × β) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) univ_prod_univ
#align local_homeomorph.refl_prod_refl PartialHomeomorph.refl_prod_refl
@[simp, mfld_simps]
theorem prod_trans {η : Type*} {ε : Type*} [TopologicalSpace η] [TopologicalSpace ε]
(e : PartialHomeomorph α β) (f : PartialHomeomorph β γ) (e' : PartialHomeomorph δ η)
(f' : PartialHomeomorph η ε) : (e.prod e').trans (f.prod f') = (e.trans f).prod (e'.trans f') :=
toPartialEquiv_injective <| e.1.prod_trans ..
#align local_homeomorph.prod_trans PartialHomeomorph.prod_trans
theorem prod_eq_prod_of_nonempty {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁.prod e₂).source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
obtain ⟨⟨x, y⟩, -⟩ := id h
haveI : Nonempty α := ⟨x⟩
haveI : Nonempty β := ⟨e₁ x⟩
haveI : Nonempty γ := ⟨y⟩
haveI : Nonempty δ := ⟨e₂ y⟩
simp_rw [PartialHomeomorph.ext_iff, prod_apply, prod_symm_apply, prod_source, Prod.ext_iff,
Set.prod_eq_prod_iff_of_nonempty h, forall_and, Prod.forall, forall_const,
and_assoc, and_left_comm]
#align local_homeomorph.prod_eq_prod_of_nonempty PartialHomeomorph.prod_eq_prod_of_nonempty
theorem prod_eq_prod_of_nonempty' {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁'.prod e₂').source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
rw [eq_comm, prod_eq_prod_of_nonempty h, eq_comm, @eq_comm _ e₂']
#align local_homeomorph.prod_eq_prod_of_nonempty' PartialHomeomorph.prod_eq_prod_of_nonempty'
end Prod
section Piecewise
/-- Combine two `PartialHomeomorph`s using `Set.piecewise`. The source of the new
`PartialHomeomorph` is `s.ite e.source e'.source = e.source ∩ s ∪ e'.source \ s`, and similarly for
target. The function sends `e.source ∩ s` to `e.target ∩ t` using `e` and
`e'.source \ s` to `e'.target \ t` using `e'`, and similarly for the inverse function.
To ensure the maps `toFun` and `invFun` are inverse of each other on the new `source` and `target`,
the definition assumes that the sets `s` and `t` are related both by `e.is_image` and `e'.is_image`.
To ensure that the new maps are continuous on `source`/`target`, it also assumes that `e.source` and
`e'.source` meet `frontier s` on the same set and `e x = e' x` on this intersection. -/
@[simps! (config := .asFn) toPartialEquiv apply]
def piecewise (e e' : PartialHomeomorph α β) (s : Set α) (t : Set β) [∀ x, Decidable (x ∈ s)]
[∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquiv.piecewise e'.toPartialEquiv s t H H'
open_source := e.open_source.ite e'.open_source Hs
open_target :=
e.open_target.ite e'.open_target <| H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq
continuousOn_toFun := continuousOn_piecewise_ite e.continuousOn e'.continuousOn Hs Heq
continuousOn_invFun :=
continuousOn_piecewise_ite e.continuousOn_symm e'.continuousOn_symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq)
#align local_homeomorph.piecewise PartialHomeomorph.piecewise
@[simp]
theorem symm_piecewise (e e' : PartialHomeomorph α β) {s : Set α} {t : Set β}
[∀ x, Decidable (x ∈ s)] [∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) :
(e.piecewise e' s t H H' Hs Heq).symm =
e.symm.piecewise e'.symm t s H.symm H'.symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq) :=
rfl
#align local_homeomorph.symm_piecewise PartialHomeomorph.symm_piecewise
/-- Combine two `PartialHomeomorph`s with disjoint sources and disjoint targets. We reuse
`PartialHomeomorph.piecewise` then override `toPartialEquiv` to `PartialEquiv.disjointUnion`.
This way we have better definitional equalities for `source` and `target`. -/
def disjointUnion (e e' : PartialHomeomorph α β) [∀ x, Decidable (x ∈ e.source)]
[∀ y, Decidable (y ∈ e.target)] (Hs : Disjoint e.source e'.source)
(Ht : Disjoint e.target e'.target) : PartialHomeomorph α β :=
(e.piecewise e' e.source e.target e.isImage_source_target
(e'.isImage_source_target_of_disjoint e Hs.symm Ht.symm)
(by rw [e.open_source.inter_frontier_eq, (Hs.symm.frontier_right e'.open_source).inter_eq])
(by
rw [e.open_source.inter_frontier_eq]
exact eqOn_empty _ _)).replaceEquiv
(e.toPartialEquiv.disjointUnion e'.toPartialEquiv Hs Ht)
(PartialEquiv.disjointUnion_eq_piecewise _ _ _ _).symm
#align local_homeomorph.disjoint_union PartialHomeomorph.disjointUnion
end Piecewise
section Pi
variable {ι : Type*} [Fintype ι] {Xi Yi : ι → Type*} [∀ i, TopologicalSpace (Xi i)]
[∀ i, TopologicalSpace (Yi i)] (ei : ∀ i, PartialHomeomorph (Xi i) (Yi i))
/-- The product of a finite family of `PartialHomeomorph`s. -/
@[simps toPartialEquiv]
def pi : PartialHomeomorph (∀ i, Xi i) (∀ i, Yi i) where
toPartialEquiv := PartialEquiv.pi fun i => (ei i).toPartialEquiv
open_source := isOpen_set_pi finite_univ fun i _ => (ei i).open_source
open_target := isOpen_set_pi finite_univ fun i _ => (ei i).open_target
continuousOn_toFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
continuousOn_invFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn_symm.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
#align local_homeomorph.pi PartialHomeomorph.pi
end Pi
section Continuity
/-- Continuity within a set at a point can be read under right composition with a local
homeomorphism, if the point is in its target -/
theorem continuousWithinAt_iff_continuousWithinAt_comp_right {f : β → γ} {s : Set β} {x : β}
(h : x ∈ e.target) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ e) (e ⁻¹' s) (e.symm x) := by
simp_rw [ContinuousWithinAt, ← @tendsto_map'_iff _ _ _ _ e,
e.map_nhdsWithin_preimage_eq (e.map_target h), (· ∘ ·), e.right_inv h]
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_right PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
/-- Continuity at a point can be read under right composition with a partial homeomorphism, if the
point is in its target -/
theorem continuousAt_iff_continuousAt_comp_right {f : β → γ} {x : β} (h : x ∈ e.target) :
ContinuousAt f x ↔ ContinuousAt (f ∘ e) (e.symm x) := by
rw [← continuousWithinAt_univ, e.continuousWithinAt_iff_continuousWithinAt_comp_right h,
preimage_univ, continuousWithinAt_univ]
#align local_homeomorph.continuous_at_iff_continuous_at_comp_right PartialHomeomorph.continuousAt_iff_continuousAt_comp_right
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the right is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_right {f : β → γ} {s : Set β} (h : s ⊆ e.target) :
ContinuousOn f s ↔ ContinuousOn (f ∘ e) (e.source ∩ e ⁻¹' s) := by
simp only [← e.symm_image_eq_source_inter_preimage h, ContinuousOn, ball_image_iff]
refine' forall₂_congr fun x hx => _
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx),
e.symm_image_eq_source_inter_preimage h, inter_comm, continuousWithinAt_inter]
exact IsOpen.mem_nhds e.open_source (e.map_target (h hx))
#align local_homeomorph.continuous_on_iff_continuous_on_comp_right PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
/-- Continuity within a set at a point can be read under left composition with a local
homeomorphism if a neighborhood of the initial point is sent to the source of the local
homeomorphism-/
theorem continuousWithinAt_iff_continuousWithinAt_comp_left {f : γ → α} {s : Set γ} {x : γ}
(hx : f x ∈ e.source) (h : f ⁻¹' e.source ∈ 𝓝[s] x) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (e ∘ f) s x := by
refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩
rw [← continuousWithinAt_inter' h] at fe_cont ⊢
have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=
haveI : ContinuousWithinAt e.symm univ (e (f x)) :=
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
ContinuousWithinAt.comp this fe_cont (subset_univ _)
exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_left PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
/-- Continuity at a point can be read under left composition with a partial homeomorphism if a
neighborhood of the initial point is sent to the source of the partial homeomorphism-/
theorem continuousAt_iff_continuousAt_comp_left {f : γ → α} {x : γ} (h : f ⁻¹' e.source ∈ 𝓝 x) :
ContinuousAt f x ↔ ContinuousAt (e ∘ f) x := by
have hx : f x ∈ e.source := (mem_of_mem_nhds h : _)
have h' : f ⁻¹' e.source ∈ 𝓝[univ] x := by rwa [nhdsWithin_univ]
rw [← continuousWithinAt_univ, ← continuousWithinAt_univ,
e.continuousWithinAt_iff_continuousWithinAt_comp_left hx h']
#align local_homeomorph.continuous_at_iff_continuous_at_comp_left PartialHomeomorph.continuousAt_iff_continuousAt_comp_left
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the left is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_left {f : γ → α} {s : Set γ} (h : s ⊆ f ⁻¹' e.source) :
ContinuousOn f s ↔ ContinuousOn (e ∘ f) s :=
forall₂_congr fun _x hx =>
e.continuousWithinAt_iff_continuousWithinAt_comp_left (h hx)
(mem_of_superset self_mem_nhdsWithin h)
#align local_homeomorph.continuous_on_iff_continuous_on_comp_left PartialHomeomorph.continuousOn_iff_continuousOn_comp_left
/-- A function is continuous if and only if its composition with a partial homeomorphism
on the left is continuous and its image is contained in the source. -/
theorem continuous_iff_continuous_comp_left {f : γ → α} (h : f ⁻¹' e.source = univ) :
Continuous f ↔ Continuous (e ∘ f) := by
simp only [continuous_iff_continuousOn_univ]
exact e.continuousOn_iff_continuousOn_comp_left (Eq.symm h).subset
#align local_homeomorph.continuous_iff_continuous_comp_left PartialHomeomorph.continuous_iff_continuous_comp_left
end Continuity
/-- The homeomorphism obtained by restricting a `PartialHomeomorph` to a subset of the source. -/
@[simps]
def homeomorphOfImageSubsetSource {s : Set α} {t : Set β} (hs : s ⊆ e.source) (ht : e '' s = t) :
s ≃ₜ t :=
have h₁ : MapsTo e s t := mapsTo'.2 ht.subset
have h₂ : t ⊆ e.target := ht ▸ e.image_source_eq_target ▸ image_subset e hs
have h₃ : MapsTo e.symm t s := ht ▸ ball_image_iff.2 <| fun _x hx =>
(e.left_inv (hs hx)).symm ▸ hx
{ toFun := MapsTo.restrict e s t h₁
invFun := MapsTo.restrict e.symm t s h₃
left_inv := fun a => Subtype.ext (e.left_inv (hs a.2))
right_inv := fun b => Subtype.eq <| e.right_inv (h₂ b.2)
continuous_toFun := (e.continuousOn.mono hs).restrict_mapsTo h₁
continuous_invFun := (e.continuousOn_symm.mono h₂).restrict_mapsTo h₃ }
#align local_homeomorph.homeomorph_of_image_subset_source PartialHomeomorph.homeomorphOfImageSubsetSource
/-- A partial homeomorphism defines a homeomorphism between its source and target. -/
@[simps!] -- porting note: new `simps`
def toHomeomorphSourceTarget : e.source ≃ₜ e.target :=
e.homeomorphOfImageSubsetSource subset_rfl e.image_source_eq_target
#align local_homeomorph.to_homeomorph_source_target PartialHomeomorph.toHomeomorphSourceTarget
theorem secondCountableTopology_source [SecondCountableTopology β] (e : PartialHomeomorph α β) :
SecondCountableTopology e.source :=
e.toHomeomorphSourceTarget.secondCountableTopology
#align local_homeomorph.second_countable_topology_source PartialHomeomorph.secondCountableTopology_source
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) :
𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source := by
lift x to e.source using hx
rw [← e.open_source.nhdsWithin_eq x.2, ← map_nhds_subtype_val, ← map_comap_setCoe_val,
e.toHomeomorphSourceTarget.nhds_eq_comap, nhds_subtype_eq_comap]
simp only [(· ∘ ·), toHomeomorphSourceTarget_apply_coe, comap_comap]
/-- If a partial homeomorphism has source and target equal to univ, then it induces a homeomorphism
between the whole spaces, expressed in this definition. -/
@[simps (config := mfld_cfg) apply symm_apply] -- porting note: todo: add a `PartialEquiv` version
def toHomeomorphOfSourceEqUnivTargetEqUniv (h : e.source = (univ : Set α)) (h' : e.target = univ) :
α ≃ₜ β where
toFun := e
invFun := e.symm
left_inv x :=
e.left_inv <| by
rw [h]
exact mem_univ _
right_inv x :=
e.right_inv <| by
rw [h']
exact mem_univ _
continuous_toFun := by
simpa only [continuous_iff_continuousOn_univ, h] using e.continuousOn
continuous_invFun := by
simpa only [continuous_iff_continuousOn_univ, h'] using e.continuousOn_symm
#align local_homeomorph.to_homeomorph_of_source_eq_univ_target_eq_univ PartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv
theorem openEmbedding_restrict : OpenEmbedding (e.source.restrict e) := by
refine openEmbedding_of_continuous_injective_open (e.continuousOn.comp_continuous
continuous_subtype_val Subtype.prop) e.injOn.injective fun V hV ↦ ?_
rw [Set.restrict_eq, Set.image_comp]
exact e.image_isOpen_of_isOpen (e.open_source.isOpenMap_subtype_val V hV)
fun _ ⟨x, _, h⟩ ↦ h ▸ x.2
/-- A partial homeomorphism whose source is all of `α` defines an open embedding of `α` into `β`.
The converse is also true; see `OpenEmbedding.toPartialHomeomorph`. -/
theorem to_openEmbedding (h : e.source = Set.univ) : OpenEmbedding e :=
e.openEmbedding_restrict.comp
((Homeomorph.setCongr h).trans <| Homeomorph.Set.univ α).symm.openEmbedding
#align local_homeomorph.to_open_embedding PartialHomeomorph.to_openEmbedding
end PartialHomeomorph
namespace Homeomorph
variable (e : α ≃ₜ β) (e' : β ≃ₜ γ)
/- Register as simp lemmas that the fields of a partial homeomorphism built from a homeomorphism
correspond to the fields of the original homeomorphism. -/
@[simp, mfld_simps]
theorem refl_toPartialHomeomorph :
(Homeomorph.refl α).toPartialHomeomorph = PartialHomeomorph.refl α :=
rfl
#align homeomorph.refl_to_local_homeomorph Homeomorph.refl_toPartialHomeomorph
@[simp, mfld_simps]
theorem symm_toPartialHomeomorph : e.symm.toPartialHomeomorph = e.toPartialHomeomorph.symm :=
rfl
#align homeomorph.symm_to_local_homeomorph Homeomorph.symm_toPartialHomeomorph
@[simp, mfld_simps]
theorem trans_toPartialHomeomorph :
(e.trans e').toPartialHomeomorph = e.toPartialHomeomorph.trans e'.toPartialHomeomorph :=
PartialHomeomorph.toPartialEquiv_injective <| Equiv.trans_toPartialEquiv _ _
#align homeomorph.trans_to_local_homeomorph Homeomorph.trans_toPartialHomeomorph
end Homeomorph
namespace OpenEmbedding
variable (f : α → β) (h : OpenEmbedding f)
/-- An open embedding of `α` into `β`, with `α` nonempty, defines a partial homeomorphism
whose source is all of `α`. The converse is also true; see `PartialHomeomorph.to_openEmbedding`. -/
@[simps! (config := mfld_cfg) apply source target]
noncomputable def toPartialHomeomorph [Nonempty α] : PartialHomeomorph α β :=
PartialHomeomorph.ofContinuousOpen ((h.toEmbedding.inj.injOn univ).toPartialEquiv _ _)
h.continuous.continuousOn h.isOpenMap isOpen_univ
#align open_embedding.to_local_homeomorph OpenEmbedding.toPartialHomeomorph
variable [Nonempty α]
lemma toPartialHomeomorph_left_inv {x : α} : (h.toPartialHomeomorph f).symm (f x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.left_inv]
exact Set.mem_univ _
lemma toPartialHomeomorph_right_inv {x : β} (hx : x ∈ Set.range f) :
f ((h.toPartialHomeomorph f).symm x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.right_inv]
rwa [toPartialHomeomorph_target]
end OpenEmbedding
namespace TopologicalSpace.Opens
open TopologicalSpace
variable (s : Opens α) [Nonempty s]
/-- The inclusion of an open subset `s` of a space `α` into `α` is a partial homeomorphism from the
subtype `s` to `α`. -/
noncomputable def localHomeomorphSubtypeCoe : PartialHomeomorph s α :=
OpenEmbedding.toPartialHomeomorph _ s.2.openEmbedding_subtype_val
#align topological_space.opens.local_homeomorph_subtype_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_coe : (s.localHomeomorphSubtypeCoe : s → α) = (↑) :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe_coe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_source : s.localHomeomorphSubtypeCoe.source = Set.univ :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_source TopologicalSpace.Opens.localHomeomorphSubtypeCoe_source
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_target : s.localHomeomorphSubtypeCoe.target = s := by
simp only [localHomeomorphSubtypeCoe, Subtype.range_coe_subtype, mfld_simps]
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_target TopologicalSpace.Opens.localHomeomorphSubtypeCoe_target
end TopologicalSpace.Opens
namespace PartialHomeomorph
open TopologicalSpace
variable (e : PartialHomeomorph α β)
variable (s : Opens α) [Nonempty s]
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
produces a partial homeomorphism whose domain is the subtype `s`. -/
noncomputable def subtypeRestr : PartialHomeomorph s β :=
s.localHomeomorphSubtypeCoe.trans e
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
theorem subtypeRestr_def : e.subtypeRestr s = s.localHomeomorphSubtypeCoe.trans e :=
rfl
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
@[simp, mfld_simps]
theorem subtypeRestr_coe :
((e.subtypeRestr s : PartialHomeomorph s β) : s → β) = Set.restrict ↑s (e : α → β) :=
rfl
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
@[simp, mfld_simps]
theorem subtypeRestr_source : (e.subtypeRestr s).source = (↑) ⁻¹' e.source := by
simp only [subtypeRestr_def, mfld_simps]
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
variable {s}
theorem map_subtype_source {x : s} (hxe : (x : α) ∈ e.source): e x ∈ (e.subtypeRestr s).target := by
refine' ⟨e.map_source hxe, _⟩
rw [s.localHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
exact x.prop
#align local_homeomorph.map_subtype_source PartialHomeomorph.map_subtype_source
variable (s)
/- This lemma characterizes the transition functions of an open subset in terms of the transition
functions of the original space. -/
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph α β) :
(f.subtypeRestr s).symm.trans (f'.subtypeRestr s) ≈
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]
refine' EqOnSource.trans' _ (eqOnSource_refl _)
-- f' has been eliminated !!!
have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=
by mfld_set_tac
have openness₂ : IsOpen (s : Set α) := s.2
rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]
refine' EqOnSource.trans' (eqOnSource_refl _) _
-- f has been eliminated !!!
refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _
simp only [mfld_simps, Setoid.refl]
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
theorem subtypeRestr_symm_eqOn (U : Opens α) [Nonempty U] :
EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U).symm) (e.subtypeRestr U).target := by
intro y hy
rw [eq_comm, eq_symm_apply _ _ hy.1]
· change restrict _ e _ = _
rw [← subtypeRestr_coe, (e.subtypeRestr U).right_inv hy]
· have := map_target _ hy; rwa [subtypeRestr_source] at this
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
|
apply PartialHomeomorph.map_source
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
|
Mathlib.Topology.PartialHomeomorph.1460_0.xRULiNOId4c9Kju
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target
|
Mathlib_Topology_PartialHomeomorph
|
case refine'_1.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : TopologicalSpace α
inst✝⁵ : TopologicalSpace β
inst✝⁴ : TopologicalSpace γ
inst✝³ : TopologicalSpace δ
e : PartialHomeomorph α β
s : Opens α
inst✝² : Nonempty ↥s
U V : Opens α
inst✝¹ : Nonempty ↥U
inst✝ : Nonempty ↥V
hUV : U ≤ V
i : ↑↑U → ↑↑V := inclusion hUV
y : β
hy : y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (Opens.localHomeomorphSubtypeCoe U).toPartialEquiv.target
hyV : ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
⊢ ↑(PartialHomeomorph.symm e) y ∈ (PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe V)).toPartialEquiv.source
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
continuousOn_toFun := hc
continuousOn_invFun := e.image_source_eq_target ▸ ho.continuousOn_image_of_leftInvOn e.leftInvOn
#align local_homeomorph.of_continuous_open_restrict PartialHomeomorph.ofContinuousOpenRestrict
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpen (e : PartialEquiv α β) (hc : ContinuousOn e e.source) (ho : IsOpenMap e)
(hs : IsOpen e.source) : PartialHomeomorph α β :=
ofContinuousOpenRestrict e hc (ho.restrict hs) hs
#align local_homeomorph.of_continuous_open PartialHomeomorph.ofContinuousOpen
/-- Restricting a partial homeomorphism `e` to `e.source ∩ s` when `s` is open.
This is sometimes hard to use because of the openness assumption, but it has the advantage that
when it can be used then its `PartialEquiv` is defeq to `PartialEquiv.restr`. -/
protected def restrOpen (s : Set α) (hs : IsOpen s) : PartialHomeomorph α β :=
(@IsImage.of_symm_preimage_eq α β _ _ e s (e.symm ⁻¹' s) rfl).restr
(IsOpen.inter e.open_source hs)
#align local_homeomorph.restr_open PartialHomeomorph.restrOpen
@[simp, mfld_simps]
theorem restrOpen_toPartialEquiv (s : Set α) (hs : IsOpen s) :
(e.restrOpen s hs).toPartialEquiv = e.toPartialEquiv.restr s :=
rfl
#align local_homeomorph.restr_open_to_local_equiv PartialHomeomorph.restrOpen_toPartialEquiv
-- Already simp via `PartialEquiv`
theorem restrOpen_source (s : Set α) (hs : IsOpen s) : (e.restrOpen s hs).source = e.source ∩ s :=
rfl
#align local_homeomorph.restr_open_source PartialHomeomorph.restrOpen_source
/-- Restricting a partial homeomorphism `e` to `e.source ∩ interior s`. We use the interior to make
sure that the restriction is well defined whatever the set s, since partial homeomorphisms are by
definition defined on open sets. In applications where `s` is open, this coincides with the
restriction of partial equivalences -/
@[simps! (config := mfld_cfg) apply symm_apply, simps! (config := .lemmasOnly) source target]
protected def restr (s : Set α) : PartialHomeomorph α β :=
e.restrOpen (interior s) isOpen_interior
#align local_homeomorph.restr PartialHomeomorph.restr
@[simp, mfld_simps]
theorem restr_toPartialEquiv (s : Set α) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr (interior s) :=
rfl
#align local_homeomorph.restr_to_local_equiv PartialHomeomorph.restr_toPartialEquiv
theorem restr_source' (s : Set α) (hs : IsOpen s) : (e.restr s).source = e.source ∩ s := by
rw [e.restr_source, hs.interior_eq]
#align local_homeomorph.restr_source' PartialHomeomorph.restr_source'
theorem restr_toPartialEquiv' (s : Set α) (hs : IsOpen s) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr s := by
rw [e.restr_toPartialEquiv, hs.interior_eq]
#align local_homeomorph.restr_to_local_equiv' PartialHomeomorph.restr_toPartialEquiv'
theorem restr_eq_of_source_subset {e : PartialHomeomorph α β} {s : Set α} (h : e.source ⊆ s) :
e.restr s = e :=
toPartialEquiv_injective <| PartialEquiv.restr_eq_of_source_subset <|
interior_maximal h e.open_source
#align local_homeomorph.restr_eq_of_source_subset PartialHomeomorph.restr_eq_of_source_subset
@[simp, mfld_simps]
theorem restr_univ {e : PartialHomeomorph α β} : e.restr univ = e :=
restr_eq_of_source_subset (subset_univ _)
#align local_homeomorph.restr_univ PartialHomeomorph.restr_univ
theorem restr_source_inter (s : Set α) : e.restr (e.source ∩ s) = e.restr s := by
refine' PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) _
simp [e.open_source.interior_eq, ← inter_assoc]
#align local_homeomorph.restr_source_inter PartialHomeomorph.restr_source_inter
/-- The identity on the whole space as a partial homeomorphism. -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
protected def refl (α : Type*) [TopologicalSpace α] : PartialHomeomorph α α :=
(Homeomorph.refl α).toPartialHomeomorph
#align local_homeomorph.refl PartialHomeomorph.refl
@[simp, mfld_simps]
theorem refl_localEquiv : (PartialHomeomorph.refl α).toPartialEquiv = PartialEquiv.refl α :=
rfl
#align local_homeomorph.refl_local_equiv PartialHomeomorph.refl_localEquiv
@[simp, mfld_simps]
theorem refl_symm : (PartialHomeomorph.refl α).symm = PartialHomeomorph.refl α :=
rfl
#align local_homeomorph.refl_symm PartialHomeomorph.refl_symm
section
variable {s : Set α} (hs : IsOpen s)
/-- The identity partial equivalence on a set `s` -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
def ofSet (s : Set α) (hs : IsOpen s) : PartialHomeomorph α α where
toPartialEquiv := PartialEquiv.ofSet s
open_source := hs
open_target := hs
continuousOn_toFun := continuous_id.continuousOn
continuousOn_invFun := continuous_id.continuousOn
#align local_homeomorph.of_set PartialHomeomorph.ofSet
@[simp, mfld_simps]
theorem ofSet_toPartialEquiv : (ofSet s hs).toPartialEquiv = PartialEquiv.ofSet s :=
rfl
#align local_homeomorph.of_set_to_local_equiv PartialHomeomorph.ofSet_toPartialEquiv
@[simp, mfld_simps]
theorem ofSet_symm : (ofSet s hs).symm = ofSet s hs :=
rfl
#align local_homeomorph.of_set_symm PartialHomeomorph.ofSet_symm
@[simp, mfld_simps]
theorem ofSet_univ_eq_refl : ofSet univ isOpen_univ = PartialHomeomorph.refl α := by ext <;> simp
#align local_homeomorph.of_set_univ_eq_refl PartialHomeomorph.ofSet_univ_eq_refl
end
/-- Composition of two partial homeomorphisms when the target of the first and the source of
the second coincide. -/
@[simps! apply symm_apply toPartialEquiv, simps! (config := .lemmasOnly) source target]
protected def trans' (h : e.target = e'.source) : PartialHomeomorph α γ where
toPartialEquiv := PartialEquiv.trans' e.toPartialEquiv e'.toPartialEquiv h
open_source := e.open_source
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuousOn <| h ▸ e.mapsTo
continuousOn_invFun := e.continuousOn_symm.comp e'.continuousOn_symm <| h.symm ▸ e'.symm_mapsTo
#align local_homeomorph.trans' PartialHomeomorph.trans'
/-- Composing two partial homeomorphisms, by restricting to the maximal domain where their
composition is well defined. -/
protected def trans : PartialHomeomorph α γ :=
PartialHomeomorph.trans' (e.symm.restrOpen e'.source e'.open_source).symm
(e'.restrOpen e.target e.open_target) (by simp [inter_comm])
#align local_homeomorph.trans PartialHomeomorph.trans
@[simp, mfld_simps]
theorem trans_toPartialEquiv :
(e.trans e').toPartialEquiv = e.toPartialEquiv.trans e'.toPartialEquiv :=
rfl
#align local_homeomorph.trans_to_local_equiv PartialHomeomorph.trans_toPartialEquiv
@[simp, mfld_simps]
theorem coe_trans : (e.trans e' : α → γ) = e' ∘ e :=
rfl
#align local_homeomorph.coe_trans PartialHomeomorph.coe_trans
@[simp, mfld_simps]
theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
rfl
#align local_homeomorph.coe_trans_symm PartialHomeomorph.coe_trans_symm
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
rfl
#align local_homeomorph.trans_apply PartialHomeomorph.trans_apply
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
#align local_homeomorph.trans_symm_eq_symm_trans_symm PartialHomeomorph.trans_symm_eq_symm_trans_symm
/- This could be considered as a simp lemma, but there are many situations where it makes something
simple into something more complicated. -/
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=
PartialEquiv.trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source PartialHomeomorph.trans_source
theorem trans_source' : (e.trans e').source = e.source ∩ e ⁻¹' (e.target ∩ e'.source) :=
PartialEquiv.trans_source' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source' PartialHomeomorph.trans_source'
theorem trans_source'' : (e.trans e').source = e.symm '' (e.target ∩ e'.source) :=
PartialEquiv.trans_source'' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source'' PartialHomeomorph.trans_source''
theorem image_trans_source : e '' (e.trans e').source = e.target ∩ e'.source :=
PartialEquiv.image_trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.image_trans_source PartialHomeomorph.image_trans_source
theorem trans_target : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' e.target :=
rfl
#align local_homeomorph.trans_target PartialHomeomorph.trans_target
theorem trans_target' : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' (e'.source ∩ e.target) :=
trans_source' e'.symm e.symm
#align local_homeomorph.trans_target' PartialHomeomorph.trans_target'
theorem trans_target'' : (e.trans e').target = e' '' (e'.source ∩ e.target) :=
trans_source'' e'.symm e.symm
#align local_homeomorph.trans_target'' PartialHomeomorph.trans_target''
theorem inv_image_trans_target : e'.symm '' (e.trans e').target = e'.source ∩ e.target :=
image_trans_source e'.symm e.symm
#align local_homeomorph.inv_image_trans_target PartialHomeomorph.inv_image_trans_target
theorem trans_assoc (e'' : PartialHomeomorph γ δ) :
(e.trans e').trans e'' = e.trans (e'.trans e'') :=
toPartialEquiv_injective <| e.1.trans_assoc _ _
#align local_homeomorph.trans_assoc PartialHomeomorph.trans_assoc
@[simp, mfld_simps]
theorem trans_refl : e.trans (PartialHomeomorph.refl β) = e :=
toPartialEquiv_injective e.1.trans_refl
#align local_homeomorph.trans_refl PartialHomeomorph.trans_refl
@[simp, mfld_simps]
theorem refl_trans : (PartialHomeomorph.refl α).trans e = e :=
toPartialEquiv_injective e.1.refl_trans
#align local_homeomorph.refl_trans PartialHomeomorph.refl_trans
theorem trans_ofSet {s : Set β} (hs : IsOpen s) : e.trans (ofSet s hs) = e.restr (e ⁻¹' s) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) <| by
rw [trans_source, restr_source, ofSet_source, ← preimage_interior, hs.interior_eq]
#align local_homeomorph.trans_of_set PartialHomeomorph.trans_ofSet
theorem trans_of_set' {s : Set β} (hs : IsOpen s) :
e.trans (ofSet s hs) = e.restr (e.source ∩ e ⁻¹' s) := by rw [trans_ofSet, restr_source_inter]
#align local_homeomorph.trans_of_set' PartialHomeomorph.trans_of_set'
theorem ofSet_trans {s : Set α} (hs : IsOpen s) : (ofSet s hs).trans e = e.restr s :=
PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) <| by simp [hs.interior_eq, inter_comm]
#align local_homeomorph.of_set_trans PartialHomeomorph.ofSet_trans
theorem ofSet_trans' {s : Set α} (hs : IsOpen s) :
(ofSet s hs).trans e = e.restr (e.source ∩ s) := by
rw [ofSet_trans, restr_source_inter]
#align local_homeomorph.of_set_trans' PartialHomeomorph.ofSet_trans'
@[simp, mfld_simps]
theorem ofSet_trans_ofSet {s : Set α} (hs : IsOpen s) {s' : Set α} (hs' : IsOpen s') :
(ofSet s hs).trans (ofSet s' hs') = ofSet (s ∩ s') (IsOpen.inter hs hs') := by
rw [(ofSet s hs).trans_ofSet hs']
ext <;> simp [hs'.interior_eq]
#align local_homeomorph.of_set_trans_of_set PartialHomeomorph.ofSet_trans_ofSet
theorem restr_trans (s : Set α) : (e.restr s).trans e' = (e.trans e').restr s :=
toPartialEquiv_injective <|
PartialEquiv.restr_trans e.toPartialEquiv e'.toPartialEquiv (interior s)
#align local_homeomorph.restr_trans PartialHomeomorph.restr_trans
/-- Postcompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def transHomeomorph (e' : β ≃ₜ γ) : PartialHomeomorph α γ where
toPartialEquiv := e.toPartialEquiv.transEquiv e'.toEquiv
open_source := e.open_source
open_target := e.open_target.preimage e'.symm.continuous
continuousOn_toFun := e'.continuous.comp_continuousOn e.continuousOn
continuousOn_invFun := e.symm.continuousOn.comp e'.symm.continuous.continuousOn fun _ => id
#align local_homeomorph.trans_homeomorph PartialHomeomorph.transHomeomorph
theorem transHomeomorph_eq_trans (e' : β ≃ₜ γ) :
e.transHomeomorph e' = e.trans e'.toPartialHomeomorph :=
toPartialEquiv_injective <| PartialEquiv.transEquiv_eq_trans _ _
#align local_homeomorph.trans_equiv_eq_trans PartialHomeomorph.transHomeomorph_eq_trans
/-- Precompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def _root_.Homeomorph.transPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α γ where
toPartialEquiv := e.toEquiv.transPartialEquiv e'.toPartialEquiv
open_source := e'.open_source.preimage e.continuous
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuous.continuousOn fun _ => id
continuousOn_invFun := e.symm.continuous.comp_continuousOn e'.symm.continuousOn
#align homeomorph.trans_local_homeomorph Homeomorph.transPartialHomeomorph
theorem _root_.Homeomorph.transPartialHomeomorph_eq_trans (e : α ≃ₜ β) :
e.transPartialHomeomorph e' = e.toPartialHomeomorph.trans e' :=
toPartialEquiv_injective <| Equiv.transPartialEquiv_eq_trans _ _
#align homeomorph.trans_local_homeomorph_eq_trans Homeomorph.transPartialHomeomorph_eq_trans
/-- `EqOnSource e e'` means that `e` and `e'` have the same source, and coincide there. They
should really be considered the same partial equivalence. -/
def EqOnSource (e e' : PartialHomeomorph α β) : Prop :=
e.source = e'.source ∧ EqOn e e' e.source
#align local_homeomorph.eq_on_source PartialHomeomorph.EqOnSource
theorem eqOnSource_iff (e e' : PartialHomeomorph α β) :
EqOnSource e e' ↔ PartialEquiv.EqOnSource e.toPartialEquiv e'.toPartialEquiv :=
Iff.rfl
#align local_homeomorph.eq_on_source_iff PartialHomeomorph.eqOnSource_iff
/-- `EqOnSource` is an equivalence relation. -/
instance eqOnSourceSetoid : Setoid (PartialHomeomorph α β) :=
{ PartialEquiv.eqOnSourceSetoid.comap toPartialEquiv with r := EqOnSource }
theorem eqOnSource_refl : e ≈ e := Setoid.refl _
#align local_homeomorph.eq_on_source_refl PartialHomeomorph.eqOnSource_refl
/-- If two partial homeomorphisms are equivalent, so are their inverses. -/
theorem EqOnSource.symm' {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.symm ≈ e'.symm :=
PartialEquiv.EqOnSource.symm' h
#align local_homeomorph.eq_on_source.symm' PartialHomeomorph.EqOnSource.symm'
/-- Two equivalent partial homeomorphisms have the same source. -/
theorem EqOnSource.source_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.source = e'.source :=
h.1
#align local_homeomorph.eq_on_source.source_eq PartialHomeomorph.EqOnSource.source_eq
/-- Two equivalent partial homeomorphisms have the same target. -/
theorem EqOnSource.target_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.target = e'.target :=
h.symm'.1
#align local_homeomorph.eq_on_source.target_eq PartialHomeomorph.EqOnSource.target_eq
/-- Two equivalent partial homeomorphisms have coinciding `toFun` on the source -/
theorem EqOnSource.eqOn {e e' : PartialHomeomorph α β} (h : e ≈ e') : EqOn e e' e.source :=
h.2
#align local_homeomorph.eq_on_source.eq_on PartialHomeomorph.EqOnSource.eqOn
/-- Two equivalent partial homeomorphisms have coinciding `invFun` on the target -/
theorem EqOnSource.symm_eqOn_target {e e' : PartialHomeomorph α β} (h : e ≈ e') :
EqOn e.symm e'.symm e.target :=
h.symm'.2
#align local_homeomorph.eq_on_source.symm_eq_on_target PartialHomeomorph.EqOnSource.symm_eqOn_target
/-- Composition of partial homeomorphisms respects equivalence. -/
theorem EqOnSource.trans' {e e' : PartialHomeomorph α β} {f f' : PartialHomeomorph β γ}
(he : e ≈ e') (hf : f ≈ f') : e.trans f ≈ e'.trans f' :=
PartialEquiv.EqOnSource.trans' he hf
#align local_homeomorph.eq_on_source.trans' PartialHomeomorph.EqOnSource.trans'
/-- Restriction of partial homeomorphisms respects equivalence -/
theorem EqOnSource.restr {e e' : PartialHomeomorph α β} (he : e ≈ e') (s : Set α) :
e.restr s ≈ e'.restr s :=
PartialEquiv.EqOnSource.restr he _
#align local_homeomorph.eq_on_source.restr PartialHomeomorph.EqOnSource.restr
/- Two equivalent partial homeomorphisms are equal when the source and target are `univ`. -/
theorem Set.EqOn.restr_eqOn_source {e e' : PartialHomeomorph α β}
(h : EqOn e e' (e.source ∩ e'.source)) : e.restr e'.source ≈ e'.restr e.source := by
constructor
· rw [e'.restr_source' _ e.open_source]
rw [e.restr_source' _ e'.open_source]
exact Set.inter_comm _ _
· rw [e.restr_source' _ e'.open_source]
refine' (EqOn.trans _ h).trans _ <;> simp only [mfld_simps, eqOn_refl]
#align local_homeomorph.set.eq_on.restr_eq_on_source PartialHomeomorph.Set.EqOn.restr_eqOn_source
/-- Composition of a partial homeomorphism and its inverse is equivalent to the restriction of the
identity to the source -/
theorem trans_self_symm : e.trans e.symm ≈ PartialHomeomorph.ofSet e.source e.open_source :=
PartialEquiv.trans_self_symm _
#align local_homeomorph.trans_self_symm PartialHomeomorph.trans_self_symm
theorem trans_symm_self : e.symm.trans e ≈ PartialHomeomorph.ofSet e.target e.open_target :=
e.symm.trans_self_symm
#align local_homeomorph.trans_symm_self PartialHomeomorph.trans_symm_self
theorem eq_of_eqOnSource_univ {e e' : PartialHomeomorph α β} (h : e ≈ e') (s : e.source = univ)
(t : e.target = univ) : e = e' :=
toPartialEquiv_injective <| PartialEquiv.eq_of_eqOnSource_univ _ _ h s t
#align local_homeomorph.eq_of_eq_on_source_univ PartialHomeomorph.eq_of_eqOnSource_univ
section Prod
/-- The product of two partial homeomorphisms, as a partial homeomorphism on the product space. -/
@[simps! (config := mfld_cfg) toPartialEquiv apply,
simps! (config := .lemmasOnly) source target symm_apply]
def prod (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
PartialHomeomorph (α × γ) (β × δ) where
open_source := e.open_source.prod e'.open_source
open_target := e.open_target.prod e'.open_target
continuousOn_toFun := e.continuousOn.prod_map e'.continuousOn
continuousOn_invFun := e.continuousOn_symm.prod_map e'.continuousOn_symm
toPartialEquiv := e.toPartialEquiv.prod e'.toPartialEquiv
#align local_homeomorph.prod PartialHomeomorph.prod
@[simp, mfld_simps]
theorem prod_symm (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
(e.prod e').symm = e.symm.prod e'.symm :=
rfl
#align local_homeomorph.prod_symm PartialHomeomorph.prod_symm
@[simp]
theorem refl_prod_refl {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] :
(PartialHomeomorph.refl α).prod (PartialHomeomorph.refl β) = PartialHomeomorph.refl (α × β) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) univ_prod_univ
#align local_homeomorph.refl_prod_refl PartialHomeomorph.refl_prod_refl
@[simp, mfld_simps]
theorem prod_trans {η : Type*} {ε : Type*} [TopologicalSpace η] [TopologicalSpace ε]
(e : PartialHomeomorph α β) (f : PartialHomeomorph β γ) (e' : PartialHomeomorph δ η)
(f' : PartialHomeomorph η ε) : (e.prod e').trans (f.prod f') = (e.trans f).prod (e'.trans f') :=
toPartialEquiv_injective <| e.1.prod_trans ..
#align local_homeomorph.prod_trans PartialHomeomorph.prod_trans
theorem prod_eq_prod_of_nonempty {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁.prod e₂).source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
obtain ⟨⟨x, y⟩, -⟩ := id h
haveI : Nonempty α := ⟨x⟩
haveI : Nonempty β := ⟨e₁ x⟩
haveI : Nonempty γ := ⟨y⟩
haveI : Nonempty δ := ⟨e₂ y⟩
simp_rw [PartialHomeomorph.ext_iff, prod_apply, prod_symm_apply, prod_source, Prod.ext_iff,
Set.prod_eq_prod_iff_of_nonempty h, forall_and, Prod.forall, forall_const,
and_assoc, and_left_comm]
#align local_homeomorph.prod_eq_prod_of_nonempty PartialHomeomorph.prod_eq_prod_of_nonempty
theorem prod_eq_prod_of_nonempty' {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁'.prod e₂').source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
rw [eq_comm, prod_eq_prod_of_nonempty h, eq_comm, @eq_comm _ e₂']
#align local_homeomorph.prod_eq_prod_of_nonempty' PartialHomeomorph.prod_eq_prod_of_nonempty'
end Prod
section Piecewise
/-- Combine two `PartialHomeomorph`s using `Set.piecewise`. The source of the new
`PartialHomeomorph` is `s.ite e.source e'.source = e.source ∩ s ∪ e'.source \ s`, and similarly for
target. The function sends `e.source ∩ s` to `e.target ∩ t` using `e` and
`e'.source \ s` to `e'.target \ t` using `e'`, and similarly for the inverse function.
To ensure the maps `toFun` and `invFun` are inverse of each other on the new `source` and `target`,
the definition assumes that the sets `s` and `t` are related both by `e.is_image` and `e'.is_image`.
To ensure that the new maps are continuous on `source`/`target`, it also assumes that `e.source` and
`e'.source` meet `frontier s` on the same set and `e x = e' x` on this intersection. -/
@[simps! (config := .asFn) toPartialEquiv apply]
def piecewise (e e' : PartialHomeomorph α β) (s : Set α) (t : Set β) [∀ x, Decidable (x ∈ s)]
[∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquiv.piecewise e'.toPartialEquiv s t H H'
open_source := e.open_source.ite e'.open_source Hs
open_target :=
e.open_target.ite e'.open_target <| H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq
continuousOn_toFun := continuousOn_piecewise_ite e.continuousOn e'.continuousOn Hs Heq
continuousOn_invFun :=
continuousOn_piecewise_ite e.continuousOn_symm e'.continuousOn_symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq)
#align local_homeomorph.piecewise PartialHomeomorph.piecewise
@[simp]
theorem symm_piecewise (e e' : PartialHomeomorph α β) {s : Set α} {t : Set β}
[∀ x, Decidable (x ∈ s)] [∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) :
(e.piecewise e' s t H H' Hs Heq).symm =
e.symm.piecewise e'.symm t s H.symm H'.symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq) :=
rfl
#align local_homeomorph.symm_piecewise PartialHomeomorph.symm_piecewise
/-- Combine two `PartialHomeomorph`s with disjoint sources and disjoint targets. We reuse
`PartialHomeomorph.piecewise` then override `toPartialEquiv` to `PartialEquiv.disjointUnion`.
This way we have better definitional equalities for `source` and `target`. -/
def disjointUnion (e e' : PartialHomeomorph α β) [∀ x, Decidable (x ∈ e.source)]
[∀ y, Decidable (y ∈ e.target)] (Hs : Disjoint e.source e'.source)
(Ht : Disjoint e.target e'.target) : PartialHomeomorph α β :=
(e.piecewise e' e.source e.target e.isImage_source_target
(e'.isImage_source_target_of_disjoint e Hs.symm Ht.symm)
(by rw [e.open_source.inter_frontier_eq, (Hs.symm.frontier_right e'.open_source).inter_eq])
(by
rw [e.open_source.inter_frontier_eq]
exact eqOn_empty _ _)).replaceEquiv
(e.toPartialEquiv.disjointUnion e'.toPartialEquiv Hs Ht)
(PartialEquiv.disjointUnion_eq_piecewise _ _ _ _).symm
#align local_homeomorph.disjoint_union PartialHomeomorph.disjointUnion
end Piecewise
section Pi
variable {ι : Type*} [Fintype ι] {Xi Yi : ι → Type*} [∀ i, TopologicalSpace (Xi i)]
[∀ i, TopologicalSpace (Yi i)] (ei : ∀ i, PartialHomeomorph (Xi i) (Yi i))
/-- The product of a finite family of `PartialHomeomorph`s. -/
@[simps toPartialEquiv]
def pi : PartialHomeomorph (∀ i, Xi i) (∀ i, Yi i) where
toPartialEquiv := PartialEquiv.pi fun i => (ei i).toPartialEquiv
open_source := isOpen_set_pi finite_univ fun i _ => (ei i).open_source
open_target := isOpen_set_pi finite_univ fun i _ => (ei i).open_target
continuousOn_toFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
continuousOn_invFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn_symm.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
#align local_homeomorph.pi PartialHomeomorph.pi
end Pi
section Continuity
/-- Continuity within a set at a point can be read under right composition with a local
homeomorphism, if the point is in its target -/
theorem continuousWithinAt_iff_continuousWithinAt_comp_right {f : β → γ} {s : Set β} {x : β}
(h : x ∈ e.target) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ e) (e ⁻¹' s) (e.symm x) := by
simp_rw [ContinuousWithinAt, ← @tendsto_map'_iff _ _ _ _ e,
e.map_nhdsWithin_preimage_eq (e.map_target h), (· ∘ ·), e.right_inv h]
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_right PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
/-- Continuity at a point can be read under right composition with a partial homeomorphism, if the
point is in its target -/
theorem continuousAt_iff_continuousAt_comp_right {f : β → γ} {x : β} (h : x ∈ e.target) :
ContinuousAt f x ↔ ContinuousAt (f ∘ e) (e.symm x) := by
rw [← continuousWithinAt_univ, e.continuousWithinAt_iff_continuousWithinAt_comp_right h,
preimage_univ, continuousWithinAt_univ]
#align local_homeomorph.continuous_at_iff_continuous_at_comp_right PartialHomeomorph.continuousAt_iff_continuousAt_comp_right
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the right is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_right {f : β → γ} {s : Set β} (h : s ⊆ e.target) :
ContinuousOn f s ↔ ContinuousOn (f ∘ e) (e.source ∩ e ⁻¹' s) := by
simp only [← e.symm_image_eq_source_inter_preimage h, ContinuousOn, ball_image_iff]
refine' forall₂_congr fun x hx => _
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx),
e.symm_image_eq_source_inter_preimage h, inter_comm, continuousWithinAt_inter]
exact IsOpen.mem_nhds e.open_source (e.map_target (h hx))
#align local_homeomorph.continuous_on_iff_continuous_on_comp_right PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
/-- Continuity within a set at a point can be read under left composition with a local
homeomorphism if a neighborhood of the initial point is sent to the source of the local
homeomorphism-/
theorem continuousWithinAt_iff_continuousWithinAt_comp_left {f : γ → α} {s : Set γ} {x : γ}
(hx : f x ∈ e.source) (h : f ⁻¹' e.source ∈ 𝓝[s] x) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (e ∘ f) s x := by
refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩
rw [← continuousWithinAt_inter' h] at fe_cont ⊢
have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=
haveI : ContinuousWithinAt e.symm univ (e (f x)) :=
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
ContinuousWithinAt.comp this fe_cont (subset_univ _)
exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_left PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
/-- Continuity at a point can be read under left composition with a partial homeomorphism if a
neighborhood of the initial point is sent to the source of the partial homeomorphism-/
theorem continuousAt_iff_continuousAt_comp_left {f : γ → α} {x : γ} (h : f ⁻¹' e.source ∈ 𝓝 x) :
ContinuousAt f x ↔ ContinuousAt (e ∘ f) x := by
have hx : f x ∈ e.source := (mem_of_mem_nhds h : _)
have h' : f ⁻¹' e.source ∈ 𝓝[univ] x := by rwa [nhdsWithin_univ]
rw [← continuousWithinAt_univ, ← continuousWithinAt_univ,
e.continuousWithinAt_iff_continuousWithinAt_comp_left hx h']
#align local_homeomorph.continuous_at_iff_continuous_at_comp_left PartialHomeomorph.continuousAt_iff_continuousAt_comp_left
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the left is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_left {f : γ → α} {s : Set γ} (h : s ⊆ f ⁻¹' e.source) :
ContinuousOn f s ↔ ContinuousOn (e ∘ f) s :=
forall₂_congr fun _x hx =>
e.continuousWithinAt_iff_continuousWithinAt_comp_left (h hx)
(mem_of_superset self_mem_nhdsWithin h)
#align local_homeomorph.continuous_on_iff_continuous_on_comp_left PartialHomeomorph.continuousOn_iff_continuousOn_comp_left
/-- A function is continuous if and only if its composition with a partial homeomorphism
on the left is continuous and its image is contained in the source. -/
theorem continuous_iff_continuous_comp_left {f : γ → α} (h : f ⁻¹' e.source = univ) :
Continuous f ↔ Continuous (e ∘ f) := by
simp only [continuous_iff_continuousOn_univ]
exact e.continuousOn_iff_continuousOn_comp_left (Eq.symm h).subset
#align local_homeomorph.continuous_iff_continuous_comp_left PartialHomeomorph.continuous_iff_continuous_comp_left
end Continuity
/-- The homeomorphism obtained by restricting a `PartialHomeomorph` to a subset of the source. -/
@[simps]
def homeomorphOfImageSubsetSource {s : Set α} {t : Set β} (hs : s ⊆ e.source) (ht : e '' s = t) :
s ≃ₜ t :=
have h₁ : MapsTo e s t := mapsTo'.2 ht.subset
have h₂ : t ⊆ e.target := ht ▸ e.image_source_eq_target ▸ image_subset e hs
have h₃ : MapsTo e.symm t s := ht ▸ ball_image_iff.2 <| fun _x hx =>
(e.left_inv (hs hx)).symm ▸ hx
{ toFun := MapsTo.restrict e s t h₁
invFun := MapsTo.restrict e.symm t s h₃
left_inv := fun a => Subtype.ext (e.left_inv (hs a.2))
right_inv := fun b => Subtype.eq <| e.right_inv (h₂ b.2)
continuous_toFun := (e.continuousOn.mono hs).restrict_mapsTo h₁
continuous_invFun := (e.continuousOn_symm.mono h₂).restrict_mapsTo h₃ }
#align local_homeomorph.homeomorph_of_image_subset_source PartialHomeomorph.homeomorphOfImageSubsetSource
/-- A partial homeomorphism defines a homeomorphism between its source and target. -/
@[simps!] -- porting note: new `simps`
def toHomeomorphSourceTarget : e.source ≃ₜ e.target :=
e.homeomorphOfImageSubsetSource subset_rfl e.image_source_eq_target
#align local_homeomorph.to_homeomorph_source_target PartialHomeomorph.toHomeomorphSourceTarget
theorem secondCountableTopology_source [SecondCountableTopology β] (e : PartialHomeomorph α β) :
SecondCountableTopology e.source :=
e.toHomeomorphSourceTarget.secondCountableTopology
#align local_homeomorph.second_countable_topology_source PartialHomeomorph.secondCountableTopology_source
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) :
𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source := by
lift x to e.source using hx
rw [← e.open_source.nhdsWithin_eq x.2, ← map_nhds_subtype_val, ← map_comap_setCoe_val,
e.toHomeomorphSourceTarget.nhds_eq_comap, nhds_subtype_eq_comap]
simp only [(· ∘ ·), toHomeomorphSourceTarget_apply_coe, comap_comap]
/-- If a partial homeomorphism has source and target equal to univ, then it induces a homeomorphism
between the whole spaces, expressed in this definition. -/
@[simps (config := mfld_cfg) apply symm_apply] -- porting note: todo: add a `PartialEquiv` version
def toHomeomorphOfSourceEqUnivTargetEqUniv (h : e.source = (univ : Set α)) (h' : e.target = univ) :
α ≃ₜ β where
toFun := e
invFun := e.symm
left_inv x :=
e.left_inv <| by
rw [h]
exact mem_univ _
right_inv x :=
e.right_inv <| by
rw [h']
exact mem_univ _
continuous_toFun := by
simpa only [continuous_iff_continuousOn_univ, h] using e.continuousOn
continuous_invFun := by
simpa only [continuous_iff_continuousOn_univ, h'] using e.continuousOn_symm
#align local_homeomorph.to_homeomorph_of_source_eq_univ_target_eq_univ PartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv
theorem openEmbedding_restrict : OpenEmbedding (e.source.restrict e) := by
refine openEmbedding_of_continuous_injective_open (e.continuousOn.comp_continuous
continuous_subtype_val Subtype.prop) e.injOn.injective fun V hV ↦ ?_
rw [Set.restrict_eq, Set.image_comp]
exact e.image_isOpen_of_isOpen (e.open_source.isOpenMap_subtype_val V hV)
fun _ ⟨x, _, h⟩ ↦ h ▸ x.2
/-- A partial homeomorphism whose source is all of `α` defines an open embedding of `α` into `β`.
The converse is also true; see `OpenEmbedding.toPartialHomeomorph`. -/
theorem to_openEmbedding (h : e.source = Set.univ) : OpenEmbedding e :=
e.openEmbedding_restrict.comp
((Homeomorph.setCongr h).trans <| Homeomorph.Set.univ α).symm.openEmbedding
#align local_homeomorph.to_open_embedding PartialHomeomorph.to_openEmbedding
end PartialHomeomorph
namespace Homeomorph
variable (e : α ≃ₜ β) (e' : β ≃ₜ γ)
/- Register as simp lemmas that the fields of a partial homeomorphism built from a homeomorphism
correspond to the fields of the original homeomorphism. -/
@[simp, mfld_simps]
theorem refl_toPartialHomeomorph :
(Homeomorph.refl α).toPartialHomeomorph = PartialHomeomorph.refl α :=
rfl
#align homeomorph.refl_to_local_homeomorph Homeomorph.refl_toPartialHomeomorph
@[simp, mfld_simps]
theorem symm_toPartialHomeomorph : e.symm.toPartialHomeomorph = e.toPartialHomeomorph.symm :=
rfl
#align homeomorph.symm_to_local_homeomorph Homeomorph.symm_toPartialHomeomorph
@[simp, mfld_simps]
theorem trans_toPartialHomeomorph :
(e.trans e').toPartialHomeomorph = e.toPartialHomeomorph.trans e'.toPartialHomeomorph :=
PartialHomeomorph.toPartialEquiv_injective <| Equiv.trans_toPartialEquiv _ _
#align homeomorph.trans_to_local_homeomorph Homeomorph.trans_toPartialHomeomorph
end Homeomorph
namespace OpenEmbedding
variable (f : α → β) (h : OpenEmbedding f)
/-- An open embedding of `α` into `β`, with `α` nonempty, defines a partial homeomorphism
whose source is all of `α`. The converse is also true; see `PartialHomeomorph.to_openEmbedding`. -/
@[simps! (config := mfld_cfg) apply source target]
noncomputable def toPartialHomeomorph [Nonempty α] : PartialHomeomorph α β :=
PartialHomeomorph.ofContinuousOpen ((h.toEmbedding.inj.injOn univ).toPartialEquiv _ _)
h.continuous.continuousOn h.isOpenMap isOpen_univ
#align open_embedding.to_local_homeomorph OpenEmbedding.toPartialHomeomorph
variable [Nonempty α]
lemma toPartialHomeomorph_left_inv {x : α} : (h.toPartialHomeomorph f).symm (f x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.left_inv]
exact Set.mem_univ _
lemma toPartialHomeomorph_right_inv {x : β} (hx : x ∈ Set.range f) :
f ((h.toPartialHomeomorph f).symm x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.right_inv]
rwa [toPartialHomeomorph_target]
end OpenEmbedding
namespace TopologicalSpace.Opens
open TopologicalSpace
variable (s : Opens α) [Nonempty s]
/-- The inclusion of an open subset `s` of a space `α` into `α` is a partial homeomorphism from the
subtype `s` to `α`. -/
noncomputable def localHomeomorphSubtypeCoe : PartialHomeomorph s α :=
OpenEmbedding.toPartialHomeomorph _ s.2.openEmbedding_subtype_val
#align topological_space.opens.local_homeomorph_subtype_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_coe : (s.localHomeomorphSubtypeCoe : s → α) = (↑) :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe_coe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_source : s.localHomeomorphSubtypeCoe.source = Set.univ :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_source TopologicalSpace.Opens.localHomeomorphSubtypeCoe_source
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_target : s.localHomeomorphSubtypeCoe.target = s := by
simp only [localHomeomorphSubtypeCoe, Subtype.range_coe_subtype, mfld_simps]
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_target TopologicalSpace.Opens.localHomeomorphSubtypeCoe_target
end TopologicalSpace.Opens
namespace PartialHomeomorph
open TopologicalSpace
variable (e : PartialHomeomorph α β)
variable (s : Opens α) [Nonempty s]
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
produces a partial homeomorphism whose domain is the subtype `s`. -/
noncomputable def subtypeRestr : PartialHomeomorph s β :=
s.localHomeomorphSubtypeCoe.trans e
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
theorem subtypeRestr_def : e.subtypeRestr s = s.localHomeomorphSubtypeCoe.trans e :=
rfl
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
@[simp, mfld_simps]
theorem subtypeRestr_coe :
((e.subtypeRestr s : PartialHomeomorph s β) : s → β) = Set.restrict ↑s (e : α → β) :=
rfl
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
@[simp, mfld_simps]
theorem subtypeRestr_source : (e.subtypeRestr s).source = (↑) ⁻¹' e.source := by
simp only [subtypeRestr_def, mfld_simps]
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
variable {s}
theorem map_subtype_source {x : s} (hxe : (x : α) ∈ e.source): e x ∈ (e.subtypeRestr s).target := by
refine' ⟨e.map_source hxe, _⟩
rw [s.localHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
exact x.prop
#align local_homeomorph.map_subtype_source PartialHomeomorph.map_subtype_source
variable (s)
/- This lemma characterizes the transition functions of an open subset in terms of the transition
functions of the original space. -/
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph α β) :
(f.subtypeRestr s).symm.trans (f'.subtypeRestr s) ≈
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]
refine' EqOnSource.trans' _ (eqOnSource_refl _)
-- f' has been eliminated !!!
have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=
by mfld_set_tac
have openness₂ : IsOpen (s : Set α) := s.2
rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]
refine' EqOnSource.trans' (eqOnSource_refl _) _
-- f has been eliminated !!!
refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _
simp only [mfld_simps, Setoid.refl]
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
theorem subtypeRestr_symm_eqOn (U : Opens α) [Nonempty U] :
EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U).symm) (e.subtypeRestr U).target := by
intro y hy
rw [eq_comm, eq_symm_apply _ _ hy.1]
· change restrict _ e _ = _
rw [← subtypeRestr_coe, (e.subtypeRestr U).right_inv hy]
· have := map_target _ hy; rwa [subtypeRestr_source] at this
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
|
rw [PartialHomeomorph.symm_source]
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
|
Mathlib.Topology.PartialHomeomorph.1460_0.xRULiNOId4c9Kju
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target
|
Mathlib_Topology_PartialHomeomorph
|
case refine'_1.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : TopologicalSpace α
inst✝⁵ : TopologicalSpace β
inst✝⁴ : TopologicalSpace γ
inst✝³ : TopologicalSpace δ
e : PartialHomeomorph α β
s : Opens α
inst✝² : Nonempty ↥s
U V : Opens α
inst✝¹ : Nonempty ↥U
inst✝ : Nonempty ↥V
hUV : U ≤ V
i : ↑↑U → ↑↑V := inclusion hUV
y : β
hy : y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (Opens.localHomeomorphSubtypeCoe U).toPartialEquiv.target
hyV : ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
⊢ ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
continuousOn_toFun := hc
continuousOn_invFun := e.image_source_eq_target ▸ ho.continuousOn_image_of_leftInvOn e.leftInvOn
#align local_homeomorph.of_continuous_open_restrict PartialHomeomorph.ofContinuousOpenRestrict
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpen (e : PartialEquiv α β) (hc : ContinuousOn e e.source) (ho : IsOpenMap e)
(hs : IsOpen e.source) : PartialHomeomorph α β :=
ofContinuousOpenRestrict e hc (ho.restrict hs) hs
#align local_homeomorph.of_continuous_open PartialHomeomorph.ofContinuousOpen
/-- Restricting a partial homeomorphism `e` to `e.source ∩ s` when `s` is open.
This is sometimes hard to use because of the openness assumption, but it has the advantage that
when it can be used then its `PartialEquiv` is defeq to `PartialEquiv.restr`. -/
protected def restrOpen (s : Set α) (hs : IsOpen s) : PartialHomeomorph α β :=
(@IsImage.of_symm_preimage_eq α β _ _ e s (e.symm ⁻¹' s) rfl).restr
(IsOpen.inter e.open_source hs)
#align local_homeomorph.restr_open PartialHomeomorph.restrOpen
@[simp, mfld_simps]
theorem restrOpen_toPartialEquiv (s : Set α) (hs : IsOpen s) :
(e.restrOpen s hs).toPartialEquiv = e.toPartialEquiv.restr s :=
rfl
#align local_homeomorph.restr_open_to_local_equiv PartialHomeomorph.restrOpen_toPartialEquiv
-- Already simp via `PartialEquiv`
theorem restrOpen_source (s : Set α) (hs : IsOpen s) : (e.restrOpen s hs).source = e.source ∩ s :=
rfl
#align local_homeomorph.restr_open_source PartialHomeomorph.restrOpen_source
/-- Restricting a partial homeomorphism `e` to `e.source ∩ interior s`. We use the interior to make
sure that the restriction is well defined whatever the set s, since partial homeomorphisms are by
definition defined on open sets. In applications where `s` is open, this coincides with the
restriction of partial equivalences -/
@[simps! (config := mfld_cfg) apply symm_apply, simps! (config := .lemmasOnly) source target]
protected def restr (s : Set α) : PartialHomeomorph α β :=
e.restrOpen (interior s) isOpen_interior
#align local_homeomorph.restr PartialHomeomorph.restr
@[simp, mfld_simps]
theorem restr_toPartialEquiv (s : Set α) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr (interior s) :=
rfl
#align local_homeomorph.restr_to_local_equiv PartialHomeomorph.restr_toPartialEquiv
theorem restr_source' (s : Set α) (hs : IsOpen s) : (e.restr s).source = e.source ∩ s := by
rw [e.restr_source, hs.interior_eq]
#align local_homeomorph.restr_source' PartialHomeomorph.restr_source'
theorem restr_toPartialEquiv' (s : Set α) (hs : IsOpen s) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr s := by
rw [e.restr_toPartialEquiv, hs.interior_eq]
#align local_homeomorph.restr_to_local_equiv' PartialHomeomorph.restr_toPartialEquiv'
theorem restr_eq_of_source_subset {e : PartialHomeomorph α β} {s : Set α} (h : e.source ⊆ s) :
e.restr s = e :=
toPartialEquiv_injective <| PartialEquiv.restr_eq_of_source_subset <|
interior_maximal h e.open_source
#align local_homeomorph.restr_eq_of_source_subset PartialHomeomorph.restr_eq_of_source_subset
@[simp, mfld_simps]
theorem restr_univ {e : PartialHomeomorph α β} : e.restr univ = e :=
restr_eq_of_source_subset (subset_univ _)
#align local_homeomorph.restr_univ PartialHomeomorph.restr_univ
theorem restr_source_inter (s : Set α) : e.restr (e.source ∩ s) = e.restr s := by
refine' PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) _
simp [e.open_source.interior_eq, ← inter_assoc]
#align local_homeomorph.restr_source_inter PartialHomeomorph.restr_source_inter
/-- The identity on the whole space as a partial homeomorphism. -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
protected def refl (α : Type*) [TopologicalSpace α] : PartialHomeomorph α α :=
(Homeomorph.refl α).toPartialHomeomorph
#align local_homeomorph.refl PartialHomeomorph.refl
@[simp, mfld_simps]
theorem refl_localEquiv : (PartialHomeomorph.refl α).toPartialEquiv = PartialEquiv.refl α :=
rfl
#align local_homeomorph.refl_local_equiv PartialHomeomorph.refl_localEquiv
@[simp, mfld_simps]
theorem refl_symm : (PartialHomeomorph.refl α).symm = PartialHomeomorph.refl α :=
rfl
#align local_homeomorph.refl_symm PartialHomeomorph.refl_symm
section
variable {s : Set α} (hs : IsOpen s)
/-- The identity partial equivalence on a set `s` -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
def ofSet (s : Set α) (hs : IsOpen s) : PartialHomeomorph α α where
toPartialEquiv := PartialEquiv.ofSet s
open_source := hs
open_target := hs
continuousOn_toFun := continuous_id.continuousOn
continuousOn_invFun := continuous_id.continuousOn
#align local_homeomorph.of_set PartialHomeomorph.ofSet
@[simp, mfld_simps]
theorem ofSet_toPartialEquiv : (ofSet s hs).toPartialEquiv = PartialEquiv.ofSet s :=
rfl
#align local_homeomorph.of_set_to_local_equiv PartialHomeomorph.ofSet_toPartialEquiv
@[simp, mfld_simps]
theorem ofSet_symm : (ofSet s hs).symm = ofSet s hs :=
rfl
#align local_homeomorph.of_set_symm PartialHomeomorph.ofSet_symm
@[simp, mfld_simps]
theorem ofSet_univ_eq_refl : ofSet univ isOpen_univ = PartialHomeomorph.refl α := by ext <;> simp
#align local_homeomorph.of_set_univ_eq_refl PartialHomeomorph.ofSet_univ_eq_refl
end
/-- Composition of two partial homeomorphisms when the target of the first and the source of
the second coincide. -/
@[simps! apply symm_apply toPartialEquiv, simps! (config := .lemmasOnly) source target]
protected def trans' (h : e.target = e'.source) : PartialHomeomorph α γ where
toPartialEquiv := PartialEquiv.trans' e.toPartialEquiv e'.toPartialEquiv h
open_source := e.open_source
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuousOn <| h ▸ e.mapsTo
continuousOn_invFun := e.continuousOn_symm.comp e'.continuousOn_symm <| h.symm ▸ e'.symm_mapsTo
#align local_homeomorph.trans' PartialHomeomorph.trans'
/-- Composing two partial homeomorphisms, by restricting to the maximal domain where their
composition is well defined. -/
protected def trans : PartialHomeomorph α γ :=
PartialHomeomorph.trans' (e.symm.restrOpen e'.source e'.open_source).symm
(e'.restrOpen e.target e.open_target) (by simp [inter_comm])
#align local_homeomorph.trans PartialHomeomorph.trans
@[simp, mfld_simps]
theorem trans_toPartialEquiv :
(e.trans e').toPartialEquiv = e.toPartialEquiv.trans e'.toPartialEquiv :=
rfl
#align local_homeomorph.trans_to_local_equiv PartialHomeomorph.trans_toPartialEquiv
@[simp, mfld_simps]
theorem coe_trans : (e.trans e' : α → γ) = e' ∘ e :=
rfl
#align local_homeomorph.coe_trans PartialHomeomorph.coe_trans
@[simp, mfld_simps]
theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
rfl
#align local_homeomorph.coe_trans_symm PartialHomeomorph.coe_trans_symm
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
rfl
#align local_homeomorph.trans_apply PartialHomeomorph.trans_apply
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
#align local_homeomorph.trans_symm_eq_symm_trans_symm PartialHomeomorph.trans_symm_eq_symm_trans_symm
/- This could be considered as a simp lemma, but there are many situations where it makes something
simple into something more complicated. -/
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=
PartialEquiv.trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source PartialHomeomorph.trans_source
theorem trans_source' : (e.trans e').source = e.source ∩ e ⁻¹' (e.target ∩ e'.source) :=
PartialEquiv.trans_source' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source' PartialHomeomorph.trans_source'
theorem trans_source'' : (e.trans e').source = e.symm '' (e.target ∩ e'.source) :=
PartialEquiv.trans_source'' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source'' PartialHomeomorph.trans_source''
theorem image_trans_source : e '' (e.trans e').source = e.target ∩ e'.source :=
PartialEquiv.image_trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.image_trans_source PartialHomeomorph.image_trans_source
theorem trans_target : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' e.target :=
rfl
#align local_homeomorph.trans_target PartialHomeomorph.trans_target
theorem trans_target' : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' (e'.source ∩ e.target) :=
trans_source' e'.symm e.symm
#align local_homeomorph.trans_target' PartialHomeomorph.trans_target'
theorem trans_target'' : (e.trans e').target = e' '' (e'.source ∩ e.target) :=
trans_source'' e'.symm e.symm
#align local_homeomorph.trans_target'' PartialHomeomorph.trans_target''
theorem inv_image_trans_target : e'.symm '' (e.trans e').target = e'.source ∩ e.target :=
image_trans_source e'.symm e.symm
#align local_homeomorph.inv_image_trans_target PartialHomeomorph.inv_image_trans_target
theorem trans_assoc (e'' : PartialHomeomorph γ δ) :
(e.trans e').trans e'' = e.trans (e'.trans e'') :=
toPartialEquiv_injective <| e.1.trans_assoc _ _
#align local_homeomorph.trans_assoc PartialHomeomorph.trans_assoc
@[simp, mfld_simps]
theorem trans_refl : e.trans (PartialHomeomorph.refl β) = e :=
toPartialEquiv_injective e.1.trans_refl
#align local_homeomorph.trans_refl PartialHomeomorph.trans_refl
@[simp, mfld_simps]
theorem refl_trans : (PartialHomeomorph.refl α).trans e = e :=
toPartialEquiv_injective e.1.refl_trans
#align local_homeomorph.refl_trans PartialHomeomorph.refl_trans
theorem trans_ofSet {s : Set β} (hs : IsOpen s) : e.trans (ofSet s hs) = e.restr (e ⁻¹' s) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) <| by
rw [trans_source, restr_source, ofSet_source, ← preimage_interior, hs.interior_eq]
#align local_homeomorph.trans_of_set PartialHomeomorph.trans_ofSet
theorem trans_of_set' {s : Set β} (hs : IsOpen s) :
e.trans (ofSet s hs) = e.restr (e.source ∩ e ⁻¹' s) := by rw [trans_ofSet, restr_source_inter]
#align local_homeomorph.trans_of_set' PartialHomeomorph.trans_of_set'
theorem ofSet_trans {s : Set α} (hs : IsOpen s) : (ofSet s hs).trans e = e.restr s :=
PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) <| by simp [hs.interior_eq, inter_comm]
#align local_homeomorph.of_set_trans PartialHomeomorph.ofSet_trans
theorem ofSet_trans' {s : Set α} (hs : IsOpen s) :
(ofSet s hs).trans e = e.restr (e.source ∩ s) := by
rw [ofSet_trans, restr_source_inter]
#align local_homeomorph.of_set_trans' PartialHomeomorph.ofSet_trans'
@[simp, mfld_simps]
theorem ofSet_trans_ofSet {s : Set α} (hs : IsOpen s) {s' : Set α} (hs' : IsOpen s') :
(ofSet s hs).trans (ofSet s' hs') = ofSet (s ∩ s') (IsOpen.inter hs hs') := by
rw [(ofSet s hs).trans_ofSet hs']
ext <;> simp [hs'.interior_eq]
#align local_homeomorph.of_set_trans_of_set PartialHomeomorph.ofSet_trans_ofSet
theorem restr_trans (s : Set α) : (e.restr s).trans e' = (e.trans e').restr s :=
toPartialEquiv_injective <|
PartialEquiv.restr_trans e.toPartialEquiv e'.toPartialEquiv (interior s)
#align local_homeomorph.restr_trans PartialHomeomorph.restr_trans
/-- Postcompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def transHomeomorph (e' : β ≃ₜ γ) : PartialHomeomorph α γ where
toPartialEquiv := e.toPartialEquiv.transEquiv e'.toEquiv
open_source := e.open_source
open_target := e.open_target.preimage e'.symm.continuous
continuousOn_toFun := e'.continuous.comp_continuousOn e.continuousOn
continuousOn_invFun := e.symm.continuousOn.comp e'.symm.continuous.continuousOn fun _ => id
#align local_homeomorph.trans_homeomorph PartialHomeomorph.transHomeomorph
theorem transHomeomorph_eq_trans (e' : β ≃ₜ γ) :
e.transHomeomorph e' = e.trans e'.toPartialHomeomorph :=
toPartialEquiv_injective <| PartialEquiv.transEquiv_eq_trans _ _
#align local_homeomorph.trans_equiv_eq_trans PartialHomeomorph.transHomeomorph_eq_trans
/-- Precompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def _root_.Homeomorph.transPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α γ where
toPartialEquiv := e.toEquiv.transPartialEquiv e'.toPartialEquiv
open_source := e'.open_source.preimage e.continuous
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuous.continuousOn fun _ => id
continuousOn_invFun := e.symm.continuous.comp_continuousOn e'.symm.continuousOn
#align homeomorph.trans_local_homeomorph Homeomorph.transPartialHomeomorph
theorem _root_.Homeomorph.transPartialHomeomorph_eq_trans (e : α ≃ₜ β) :
e.transPartialHomeomorph e' = e.toPartialHomeomorph.trans e' :=
toPartialEquiv_injective <| Equiv.transPartialEquiv_eq_trans _ _
#align homeomorph.trans_local_homeomorph_eq_trans Homeomorph.transPartialHomeomorph_eq_trans
/-- `EqOnSource e e'` means that `e` and `e'` have the same source, and coincide there. They
should really be considered the same partial equivalence. -/
def EqOnSource (e e' : PartialHomeomorph α β) : Prop :=
e.source = e'.source ∧ EqOn e e' e.source
#align local_homeomorph.eq_on_source PartialHomeomorph.EqOnSource
theorem eqOnSource_iff (e e' : PartialHomeomorph α β) :
EqOnSource e e' ↔ PartialEquiv.EqOnSource e.toPartialEquiv e'.toPartialEquiv :=
Iff.rfl
#align local_homeomorph.eq_on_source_iff PartialHomeomorph.eqOnSource_iff
/-- `EqOnSource` is an equivalence relation. -/
instance eqOnSourceSetoid : Setoid (PartialHomeomorph α β) :=
{ PartialEquiv.eqOnSourceSetoid.comap toPartialEquiv with r := EqOnSource }
theorem eqOnSource_refl : e ≈ e := Setoid.refl _
#align local_homeomorph.eq_on_source_refl PartialHomeomorph.eqOnSource_refl
/-- If two partial homeomorphisms are equivalent, so are their inverses. -/
theorem EqOnSource.symm' {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.symm ≈ e'.symm :=
PartialEquiv.EqOnSource.symm' h
#align local_homeomorph.eq_on_source.symm' PartialHomeomorph.EqOnSource.symm'
/-- Two equivalent partial homeomorphisms have the same source. -/
theorem EqOnSource.source_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.source = e'.source :=
h.1
#align local_homeomorph.eq_on_source.source_eq PartialHomeomorph.EqOnSource.source_eq
/-- Two equivalent partial homeomorphisms have the same target. -/
theorem EqOnSource.target_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.target = e'.target :=
h.symm'.1
#align local_homeomorph.eq_on_source.target_eq PartialHomeomorph.EqOnSource.target_eq
/-- Two equivalent partial homeomorphisms have coinciding `toFun` on the source -/
theorem EqOnSource.eqOn {e e' : PartialHomeomorph α β} (h : e ≈ e') : EqOn e e' e.source :=
h.2
#align local_homeomorph.eq_on_source.eq_on PartialHomeomorph.EqOnSource.eqOn
/-- Two equivalent partial homeomorphisms have coinciding `invFun` on the target -/
theorem EqOnSource.symm_eqOn_target {e e' : PartialHomeomorph α β} (h : e ≈ e') :
EqOn e.symm e'.symm e.target :=
h.symm'.2
#align local_homeomorph.eq_on_source.symm_eq_on_target PartialHomeomorph.EqOnSource.symm_eqOn_target
/-- Composition of partial homeomorphisms respects equivalence. -/
theorem EqOnSource.trans' {e e' : PartialHomeomorph α β} {f f' : PartialHomeomorph β γ}
(he : e ≈ e') (hf : f ≈ f') : e.trans f ≈ e'.trans f' :=
PartialEquiv.EqOnSource.trans' he hf
#align local_homeomorph.eq_on_source.trans' PartialHomeomorph.EqOnSource.trans'
/-- Restriction of partial homeomorphisms respects equivalence -/
theorem EqOnSource.restr {e e' : PartialHomeomorph α β} (he : e ≈ e') (s : Set α) :
e.restr s ≈ e'.restr s :=
PartialEquiv.EqOnSource.restr he _
#align local_homeomorph.eq_on_source.restr PartialHomeomorph.EqOnSource.restr
/- Two equivalent partial homeomorphisms are equal when the source and target are `univ`. -/
theorem Set.EqOn.restr_eqOn_source {e e' : PartialHomeomorph α β}
(h : EqOn e e' (e.source ∩ e'.source)) : e.restr e'.source ≈ e'.restr e.source := by
constructor
· rw [e'.restr_source' _ e.open_source]
rw [e.restr_source' _ e'.open_source]
exact Set.inter_comm _ _
· rw [e.restr_source' _ e'.open_source]
refine' (EqOn.trans _ h).trans _ <;> simp only [mfld_simps, eqOn_refl]
#align local_homeomorph.set.eq_on.restr_eq_on_source PartialHomeomorph.Set.EqOn.restr_eqOn_source
/-- Composition of a partial homeomorphism and its inverse is equivalent to the restriction of the
identity to the source -/
theorem trans_self_symm : e.trans e.symm ≈ PartialHomeomorph.ofSet e.source e.open_source :=
PartialEquiv.trans_self_symm _
#align local_homeomorph.trans_self_symm PartialHomeomorph.trans_self_symm
theorem trans_symm_self : e.symm.trans e ≈ PartialHomeomorph.ofSet e.target e.open_target :=
e.symm.trans_self_symm
#align local_homeomorph.trans_symm_self PartialHomeomorph.trans_symm_self
theorem eq_of_eqOnSource_univ {e e' : PartialHomeomorph α β} (h : e ≈ e') (s : e.source = univ)
(t : e.target = univ) : e = e' :=
toPartialEquiv_injective <| PartialEquiv.eq_of_eqOnSource_univ _ _ h s t
#align local_homeomorph.eq_of_eq_on_source_univ PartialHomeomorph.eq_of_eqOnSource_univ
section Prod
/-- The product of two partial homeomorphisms, as a partial homeomorphism on the product space. -/
@[simps! (config := mfld_cfg) toPartialEquiv apply,
simps! (config := .lemmasOnly) source target symm_apply]
def prod (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
PartialHomeomorph (α × γ) (β × δ) where
open_source := e.open_source.prod e'.open_source
open_target := e.open_target.prod e'.open_target
continuousOn_toFun := e.continuousOn.prod_map e'.continuousOn
continuousOn_invFun := e.continuousOn_symm.prod_map e'.continuousOn_symm
toPartialEquiv := e.toPartialEquiv.prod e'.toPartialEquiv
#align local_homeomorph.prod PartialHomeomorph.prod
@[simp, mfld_simps]
theorem prod_symm (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
(e.prod e').symm = e.symm.prod e'.symm :=
rfl
#align local_homeomorph.prod_symm PartialHomeomorph.prod_symm
@[simp]
theorem refl_prod_refl {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] :
(PartialHomeomorph.refl α).prod (PartialHomeomorph.refl β) = PartialHomeomorph.refl (α × β) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) univ_prod_univ
#align local_homeomorph.refl_prod_refl PartialHomeomorph.refl_prod_refl
@[simp, mfld_simps]
theorem prod_trans {η : Type*} {ε : Type*} [TopologicalSpace η] [TopologicalSpace ε]
(e : PartialHomeomorph α β) (f : PartialHomeomorph β γ) (e' : PartialHomeomorph δ η)
(f' : PartialHomeomorph η ε) : (e.prod e').trans (f.prod f') = (e.trans f).prod (e'.trans f') :=
toPartialEquiv_injective <| e.1.prod_trans ..
#align local_homeomorph.prod_trans PartialHomeomorph.prod_trans
theorem prod_eq_prod_of_nonempty {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁.prod e₂).source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
obtain ⟨⟨x, y⟩, -⟩ := id h
haveI : Nonempty α := ⟨x⟩
haveI : Nonempty β := ⟨e₁ x⟩
haveI : Nonempty γ := ⟨y⟩
haveI : Nonempty δ := ⟨e₂ y⟩
simp_rw [PartialHomeomorph.ext_iff, prod_apply, prod_symm_apply, prod_source, Prod.ext_iff,
Set.prod_eq_prod_iff_of_nonempty h, forall_and, Prod.forall, forall_const,
and_assoc, and_left_comm]
#align local_homeomorph.prod_eq_prod_of_nonempty PartialHomeomorph.prod_eq_prod_of_nonempty
theorem prod_eq_prod_of_nonempty' {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁'.prod e₂').source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
rw [eq_comm, prod_eq_prod_of_nonempty h, eq_comm, @eq_comm _ e₂']
#align local_homeomorph.prod_eq_prod_of_nonempty' PartialHomeomorph.prod_eq_prod_of_nonempty'
end Prod
section Piecewise
/-- Combine two `PartialHomeomorph`s using `Set.piecewise`. The source of the new
`PartialHomeomorph` is `s.ite e.source e'.source = e.source ∩ s ∪ e'.source \ s`, and similarly for
target. The function sends `e.source ∩ s` to `e.target ∩ t` using `e` and
`e'.source \ s` to `e'.target \ t` using `e'`, and similarly for the inverse function.
To ensure the maps `toFun` and `invFun` are inverse of each other on the new `source` and `target`,
the definition assumes that the sets `s` and `t` are related both by `e.is_image` and `e'.is_image`.
To ensure that the new maps are continuous on `source`/`target`, it also assumes that `e.source` and
`e'.source` meet `frontier s` on the same set and `e x = e' x` on this intersection. -/
@[simps! (config := .asFn) toPartialEquiv apply]
def piecewise (e e' : PartialHomeomorph α β) (s : Set α) (t : Set β) [∀ x, Decidable (x ∈ s)]
[∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquiv.piecewise e'.toPartialEquiv s t H H'
open_source := e.open_source.ite e'.open_source Hs
open_target :=
e.open_target.ite e'.open_target <| H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq
continuousOn_toFun := continuousOn_piecewise_ite e.continuousOn e'.continuousOn Hs Heq
continuousOn_invFun :=
continuousOn_piecewise_ite e.continuousOn_symm e'.continuousOn_symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq)
#align local_homeomorph.piecewise PartialHomeomorph.piecewise
@[simp]
theorem symm_piecewise (e e' : PartialHomeomorph α β) {s : Set α} {t : Set β}
[∀ x, Decidable (x ∈ s)] [∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) :
(e.piecewise e' s t H H' Hs Heq).symm =
e.symm.piecewise e'.symm t s H.symm H'.symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq) :=
rfl
#align local_homeomorph.symm_piecewise PartialHomeomorph.symm_piecewise
/-- Combine two `PartialHomeomorph`s with disjoint sources and disjoint targets. We reuse
`PartialHomeomorph.piecewise` then override `toPartialEquiv` to `PartialEquiv.disjointUnion`.
This way we have better definitional equalities for `source` and `target`. -/
def disjointUnion (e e' : PartialHomeomorph α β) [∀ x, Decidable (x ∈ e.source)]
[∀ y, Decidable (y ∈ e.target)] (Hs : Disjoint e.source e'.source)
(Ht : Disjoint e.target e'.target) : PartialHomeomorph α β :=
(e.piecewise e' e.source e.target e.isImage_source_target
(e'.isImage_source_target_of_disjoint e Hs.symm Ht.symm)
(by rw [e.open_source.inter_frontier_eq, (Hs.symm.frontier_right e'.open_source).inter_eq])
(by
rw [e.open_source.inter_frontier_eq]
exact eqOn_empty _ _)).replaceEquiv
(e.toPartialEquiv.disjointUnion e'.toPartialEquiv Hs Ht)
(PartialEquiv.disjointUnion_eq_piecewise _ _ _ _).symm
#align local_homeomorph.disjoint_union PartialHomeomorph.disjointUnion
end Piecewise
section Pi
variable {ι : Type*} [Fintype ι] {Xi Yi : ι → Type*} [∀ i, TopologicalSpace (Xi i)]
[∀ i, TopologicalSpace (Yi i)] (ei : ∀ i, PartialHomeomorph (Xi i) (Yi i))
/-- The product of a finite family of `PartialHomeomorph`s. -/
@[simps toPartialEquiv]
def pi : PartialHomeomorph (∀ i, Xi i) (∀ i, Yi i) where
toPartialEquiv := PartialEquiv.pi fun i => (ei i).toPartialEquiv
open_source := isOpen_set_pi finite_univ fun i _ => (ei i).open_source
open_target := isOpen_set_pi finite_univ fun i _ => (ei i).open_target
continuousOn_toFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
continuousOn_invFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn_symm.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
#align local_homeomorph.pi PartialHomeomorph.pi
end Pi
section Continuity
/-- Continuity within a set at a point can be read under right composition with a local
homeomorphism, if the point is in its target -/
theorem continuousWithinAt_iff_continuousWithinAt_comp_right {f : β → γ} {s : Set β} {x : β}
(h : x ∈ e.target) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ e) (e ⁻¹' s) (e.symm x) := by
simp_rw [ContinuousWithinAt, ← @tendsto_map'_iff _ _ _ _ e,
e.map_nhdsWithin_preimage_eq (e.map_target h), (· ∘ ·), e.right_inv h]
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_right PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
/-- Continuity at a point can be read under right composition with a partial homeomorphism, if the
point is in its target -/
theorem continuousAt_iff_continuousAt_comp_right {f : β → γ} {x : β} (h : x ∈ e.target) :
ContinuousAt f x ↔ ContinuousAt (f ∘ e) (e.symm x) := by
rw [← continuousWithinAt_univ, e.continuousWithinAt_iff_continuousWithinAt_comp_right h,
preimage_univ, continuousWithinAt_univ]
#align local_homeomorph.continuous_at_iff_continuous_at_comp_right PartialHomeomorph.continuousAt_iff_continuousAt_comp_right
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the right is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_right {f : β → γ} {s : Set β} (h : s ⊆ e.target) :
ContinuousOn f s ↔ ContinuousOn (f ∘ e) (e.source ∩ e ⁻¹' s) := by
simp only [← e.symm_image_eq_source_inter_preimage h, ContinuousOn, ball_image_iff]
refine' forall₂_congr fun x hx => _
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx),
e.symm_image_eq_source_inter_preimage h, inter_comm, continuousWithinAt_inter]
exact IsOpen.mem_nhds e.open_source (e.map_target (h hx))
#align local_homeomorph.continuous_on_iff_continuous_on_comp_right PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
/-- Continuity within a set at a point can be read under left composition with a local
homeomorphism if a neighborhood of the initial point is sent to the source of the local
homeomorphism-/
theorem continuousWithinAt_iff_continuousWithinAt_comp_left {f : γ → α} {s : Set γ} {x : γ}
(hx : f x ∈ e.source) (h : f ⁻¹' e.source ∈ 𝓝[s] x) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (e ∘ f) s x := by
refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩
rw [← continuousWithinAt_inter' h] at fe_cont ⊢
have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=
haveI : ContinuousWithinAt e.symm univ (e (f x)) :=
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
ContinuousWithinAt.comp this fe_cont (subset_univ _)
exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_left PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
/-- Continuity at a point can be read under left composition with a partial homeomorphism if a
neighborhood of the initial point is sent to the source of the partial homeomorphism-/
theorem continuousAt_iff_continuousAt_comp_left {f : γ → α} {x : γ} (h : f ⁻¹' e.source ∈ 𝓝 x) :
ContinuousAt f x ↔ ContinuousAt (e ∘ f) x := by
have hx : f x ∈ e.source := (mem_of_mem_nhds h : _)
have h' : f ⁻¹' e.source ∈ 𝓝[univ] x := by rwa [nhdsWithin_univ]
rw [← continuousWithinAt_univ, ← continuousWithinAt_univ,
e.continuousWithinAt_iff_continuousWithinAt_comp_left hx h']
#align local_homeomorph.continuous_at_iff_continuous_at_comp_left PartialHomeomorph.continuousAt_iff_continuousAt_comp_left
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the left is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_left {f : γ → α} {s : Set γ} (h : s ⊆ f ⁻¹' e.source) :
ContinuousOn f s ↔ ContinuousOn (e ∘ f) s :=
forall₂_congr fun _x hx =>
e.continuousWithinAt_iff_continuousWithinAt_comp_left (h hx)
(mem_of_superset self_mem_nhdsWithin h)
#align local_homeomorph.continuous_on_iff_continuous_on_comp_left PartialHomeomorph.continuousOn_iff_continuousOn_comp_left
/-- A function is continuous if and only if its composition with a partial homeomorphism
on the left is continuous and its image is contained in the source. -/
theorem continuous_iff_continuous_comp_left {f : γ → α} (h : f ⁻¹' e.source = univ) :
Continuous f ↔ Continuous (e ∘ f) := by
simp only [continuous_iff_continuousOn_univ]
exact e.continuousOn_iff_continuousOn_comp_left (Eq.symm h).subset
#align local_homeomorph.continuous_iff_continuous_comp_left PartialHomeomorph.continuous_iff_continuous_comp_left
end Continuity
/-- The homeomorphism obtained by restricting a `PartialHomeomorph` to a subset of the source. -/
@[simps]
def homeomorphOfImageSubsetSource {s : Set α} {t : Set β} (hs : s ⊆ e.source) (ht : e '' s = t) :
s ≃ₜ t :=
have h₁ : MapsTo e s t := mapsTo'.2 ht.subset
have h₂ : t ⊆ e.target := ht ▸ e.image_source_eq_target ▸ image_subset e hs
have h₃ : MapsTo e.symm t s := ht ▸ ball_image_iff.2 <| fun _x hx =>
(e.left_inv (hs hx)).symm ▸ hx
{ toFun := MapsTo.restrict e s t h₁
invFun := MapsTo.restrict e.symm t s h₃
left_inv := fun a => Subtype.ext (e.left_inv (hs a.2))
right_inv := fun b => Subtype.eq <| e.right_inv (h₂ b.2)
continuous_toFun := (e.continuousOn.mono hs).restrict_mapsTo h₁
continuous_invFun := (e.continuousOn_symm.mono h₂).restrict_mapsTo h₃ }
#align local_homeomorph.homeomorph_of_image_subset_source PartialHomeomorph.homeomorphOfImageSubsetSource
/-- A partial homeomorphism defines a homeomorphism between its source and target. -/
@[simps!] -- porting note: new `simps`
def toHomeomorphSourceTarget : e.source ≃ₜ e.target :=
e.homeomorphOfImageSubsetSource subset_rfl e.image_source_eq_target
#align local_homeomorph.to_homeomorph_source_target PartialHomeomorph.toHomeomorphSourceTarget
theorem secondCountableTopology_source [SecondCountableTopology β] (e : PartialHomeomorph α β) :
SecondCountableTopology e.source :=
e.toHomeomorphSourceTarget.secondCountableTopology
#align local_homeomorph.second_countable_topology_source PartialHomeomorph.secondCountableTopology_source
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) :
𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source := by
lift x to e.source using hx
rw [← e.open_source.nhdsWithin_eq x.2, ← map_nhds_subtype_val, ← map_comap_setCoe_val,
e.toHomeomorphSourceTarget.nhds_eq_comap, nhds_subtype_eq_comap]
simp only [(· ∘ ·), toHomeomorphSourceTarget_apply_coe, comap_comap]
/-- If a partial homeomorphism has source and target equal to univ, then it induces a homeomorphism
between the whole spaces, expressed in this definition. -/
@[simps (config := mfld_cfg) apply symm_apply] -- porting note: todo: add a `PartialEquiv` version
def toHomeomorphOfSourceEqUnivTargetEqUniv (h : e.source = (univ : Set α)) (h' : e.target = univ) :
α ≃ₜ β where
toFun := e
invFun := e.symm
left_inv x :=
e.left_inv <| by
rw [h]
exact mem_univ _
right_inv x :=
e.right_inv <| by
rw [h']
exact mem_univ _
continuous_toFun := by
simpa only [continuous_iff_continuousOn_univ, h] using e.continuousOn
continuous_invFun := by
simpa only [continuous_iff_continuousOn_univ, h'] using e.continuousOn_symm
#align local_homeomorph.to_homeomorph_of_source_eq_univ_target_eq_univ PartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv
theorem openEmbedding_restrict : OpenEmbedding (e.source.restrict e) := by
refine openEmbedding_of_continuous_injective_open (e.continuousOn.comp_continuous
continuous_subtype_val Subtype.prop) e.injOn.injective fun V hV ↦ ?_
rw [Set.restrict_eq, Set.image_comp]
exact e.image_isOpen_of_isOpen (e.open_source.isOpenMap_subtype_val V hV)
fun _ ⟨x, _, h⟩ ↦ h ▸ x.2
/-- A partial homeomorphism whose source is all of `α` defines an open embedding of `α` into `β`.
The converse is also true; see `OpenEmbedding.toPartialHomeomorph`. -/
theorem to_openEmbedding (h : e.source = Set.univ) : OpenEmbedding e :=
e.openEmbedding_restrict.comp
((Homeomorph.setCongr h).trans <| Homeomorph.Set.univ α).symm.openEmbedding
#align local_homeomorph.to_open_embedding PartialHomeomorph.to_openEmbedding
end PartialHomeomorph
namespace Homeomorph
variable (e : α ≃ₜ β) (e' : β ≃ₜ γ)
/- Register as simp lemmas that the fields of a partial homeomorphism built from a homeomorphism
correspond to the fields of the original homeomorphism. -/
@[simp, mfld_simps]
theorem refl_toPartialHomeomorph :
(Homeomorph.refl α).toPartialHomeomorph = PartialHomeomorph.refl α :=
rfl
#align homeomorph.refl_to_local_homeomorph Homeomorph.refl_toPartialHomeomorph
@[simp, mfld_simps]
theorem symm_toPartialHomeomorph : e.symm.toPartialHomeomorph = e.toPartialHomeomorph.symm :=
rfl
#align homeomorph.symm_to_local_homeomorph Homeomorph.symm_toPartialHomeomorph
@[simp, mfld_simps]
theorem trans_toPartialHomeomorph :
(e.trans e').toPartialHomeomorph = e.toPartialHomeomorph.trans e'.toPartialHomeomorph :=
PartialHomeomorph.toPartialEquiv_injective <| Equiv.trans_toPartialEquiv _ _
#align homeomorph.trans_to_local_homeomorph Homeomorph.trans_toPartialHomeomorph
end Homeomorph
namespace OpenEmbedding
variable (f : α → β) (h : OpenEmbedding f)
/-- An open embedding of `α` into `β`, with `α` nonempty, defines a partial homeomorphism
whose source is all of `α`. The converse is also true; see `PartialHomeomorph.to_openEmbedding`. -/
@[simps! (config := mfld_cfg) apply source target]
noncomputable def toPartialHomeomorph [Nonempty α] : PartialHomeomorph α β :=
PartialHomeomorph.ofContinuousOpen ((h.toEmbedding.inj.injOn univ).toPartialEquiv _ _)
h.continuous.continuousOn h.isOpenMap isOpen_univ
#align open_embedding.to_local_homeomorph OpenEmbedding.toPartialHomeomorph
variable [Nonempty α]
lemma toPartialHomeomorph_left_inv {x : α} : (h.toPartialHomeomorph f).symm (f x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.left_inv]
exact Set.mem_univ _
lemma toPartialHomeomorph_right_inv {x : β} (hx : x ∈ Set.range f) :
f ((h.toPartialHomeomorph f).symm x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.right_inv]
rwa [toPartialHomeomorph_target]
end OpenEmbedding
namespace TopologicalSpace.Opens
open TopologicalSpace
variable (s : Opens α) [Nonempty s]
/-- The inclusion of an open subset `s` of a space `α` into `α` is a partial homeomorphism from the
subtype `s` to `α`. -/
noncomputable def localHomeomorphSubtypeCoe : PartialHomeomorph s α :=
OpenEmbedding.toPartialHomeomorph _ s.2.openEmbedding_subtype_val
#align topological_space.opens.local_homeomorph_subtype_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_coe : (s.localHomeomorphSubtypeCoe : s → α) = (↑) :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe_coe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_source : s.localHomeomorphSubtypeCoe.source = Set.univ :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_source TopologicalSpace.Opens.localHomeomorphSubtypeCoe_source
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_target : s.localHomeomorphSubtypeCoe.target = s := by
simp only [localHomeomorphSubtypeCoe, Subtype.range_coe_subtype, mfld_simps]
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_target TopologicalSpace.Opens.localHomeomorphSubtypeCoe_target
end TopologicalSpace.Opens
namespace PartialHomeomorph
open TopologicalSpace
variable (e : PartialHomeomorph α β)
variable (s : Opens α) [Nonempty s]
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
produces a partial homeomorphism whose domain is the subtype `s`. -/
noncomputable def subtypeRestr : PartialHomeomorph s β :=
s.localHomeomorphSubtypeCoe.trans e
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
theorem subtypeRestr_def : e.subtypeRestr s = s.localHomeomorphSubtypeCoe.trans e :=
rfl
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
@[simp, mfld_simps]
theorem subtypeRestr_coe :
((e.subtypeRestr s : PartialHomeomorph s β) : s → β) = Set.restrict ↑s (e : α → β) :=
rfl
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
@[simp, mfld_simps]
theorem subtypeRestr_source : (e.subtypeRestr s).source = (↑) ⁻¹' e.source := by
simp only [subtypeRestr_def, mfld_simps]
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
variable {s}
theorem map_subtype_source {x : s} (hxe : (x : α) ∈ e.source): e x ∈ (e.subtypeRestr s).target := by
refine' ⟨e.map_source hxe, _⟩
rw [s.localHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
exact x.prop
#align local_homeomorph.map_subtype_source PartialHomeomorph.map_subtype_source
variable (s)
/- This lemma characterizes the transition functions of an open subset in terms of the transition
functions of the original space. -/
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph α β) :
(f.subtypeRestr s).symm.trans (f'.subtypeRestr s) ≈
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]
refine' EqOnSource.trans' _ (eqOnSource_refl _)
-- f' has been eliminated !!!
have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=
by mfld_set_tac
have openness₂ : IsOpen (s : Set α) := s.2
rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]
refine' EqOnSource.trans' (eqOnSource_refl _) _
-- f has been eliminated !!!
refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _
simp only [mfld_simps, Setoid.refl]
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
theorem subtypeRestr_symm_eqOn (U : Opens α) [Nonempty U] :
EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U).symm) (e.subtypeRestr U).target := by
intro y hy
rw [eq_comm, eq_symm_apply _ _ hy.1]
· change restrict _ e _ = _
rw [← subtypeRestr_coe, (e.subtypeRestr U).right_inv hy]
· have := map_target _ hy; rwa [subtypeRestr_source] at this
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
|
exact hyV
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
|
Mathlib.Topology.PartialHomeomorph.1460_0.xRULiNOId4c9Kju
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target
|
Mathlib_Topology_PartialHomeomorph
|
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : TopologicalSpace α
inst✝⁵ : TopologicalSpace β
inst✝⁴ : TopologicalSpace γ
inst✝³ : TopologicalSpace δ
e : PartialHomeomorph α β
s : Opens α
inst✝² : Nonempty ↥s
U V : Opens α
inst✝¹ : Nonempty ↥U
inst✝ : Nonempty ↥V
hUV : U ≤ V
i : ↑↑U → ↑↑V := inclusion hUV
y : β
hy : y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (Opens.localHomeomorphSubtypeCoe U).toPartialEquiv.target
hyV : ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
⊢ ↑(Opens.localHomeomorphSubtypeCoe V)
(↑(PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe V)) (↑(PartialHomeomorph.symm e) y)) =
↑(Opens.localHomeomorphSubtypeCoe V)
(inclusion hUV (↑(PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe U)) (↑(PartialHomeomorph.symm e) y)))
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
continuousOn_toFun := hc
continuousOn_invFun := e.image_source_eq_target ▸ ho.continuousOn_image_of_leftInvOn e.leftInvOn
#align local_homeomorph.of_continuous_open_restrict PartialHomeomorph.ofContinuousOpenRestrict
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpen (e : PartialEquiv α β) (hc : ContinuousOn e e.source) (ho : IsOpenMap e)
(hs : IsOpen e.source) : PartialHomeomorph α β :=
ofContinuousOpenRestrict e hc (ho.restrict hs) hs
#align local_homeomorph.of_continuous_open PartialHomeomorph.ofContinuousOpen
/-- Restricting a partial homeomorphism `e` to `e.source ∩ s` when `s` is open.
This is sometimes hard to use because of the openness assumption, but it has the advantage that
when it can be used then its `PartialEquiv` is defeq to `PartialEquiv.restr`. -/
protected def restrOpen (s : Set α) (hs : IsOpen s) : PartialHomeomorph α β :=
(@IsImage.of_symm_preimage_eq α β _ _ e s (e.symm ⁻¹' s) rfl).restr
(IsOpen.inter e.open_source hs)
#align local_homeomorph.restr_open PartialHomeomorph.restrOpen
@[simp, mfld_simps]
theorem restrOpen_toPartialEquiv (s : Set α) (hs : IsOpen s) :
(e.restrOpen s hs).toPartialEquiv = e.toPartialEquiv.restr s :=
rfl
#align local_homeomorph.restr_open_to_local_equiv PartialHomeomorph.restrOpen_toPartialEquiv
-- Already simp via `PartialEquiv`
theorem restrOpen_source (s : Set α) (hs : IsOpen s) : (e.restrOpen s hs).source = e.source ∩ s :=
rfl
#align local_homeomorph.restr_open_source PartialHomeomorph.restrOpen_source
/-- Restricting a partial homeomorphism `e` to `e.source ∩ interior s`. We use the interior to make
sure that the restriction is well defined whatever the set s, since partial homeomorphisms are by
definition defined on open sets. In applications where `s` is open, this coincides with the
restriction of partial equivalences -/
@[simps! (config := mfld_cfg) apply symm_apply, simps! (config := .lemmasOnly) source target]
protected def restr (s : Set α) : PartialHomeomorph α β :=
e.restrOpen (interior s) isOpen_interior
#align local_homeomorph.restr PartialHomeomorph.restr
@[simp, mfld_simps]
theorem restr_toPartialEquiv (s : Set α) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr (interior s) :=
rfl
#align local_homeomorph.restr_to_local_equiv PartialHomeomorph.restr_toPartialEquiv
theorem restr_source' (s : Set α) (hs : IsOpen s) : (e.restr s).source = e.source ∩ s := by
rw [e.restr_source, hs.interior_eq]
#align local_homeomorph.restr_source' PartialHomeomorph.restr_source'
theorem restr_toPartialEquiv' (s : Set α) (hs : IsOpen s) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr s := by
rw [e.restr_toPartialEquiv, hs.interior_eq]
#align local_homeomorph.restr_to_local_equiv' PartialHomeomorph.restr_toPartialEquiv'
theorem restr_eq_of_source_subset {e : PartialHomeomorph α β} {s : Set α} (h : e.source ⊆ s) :
e.restr s = e :=
toPartialEquiv_injective <| PartialEquiv.restr_eq_of_source_subset <|
interior_maximal h e.open_source
#align local_homeomorph.restr_eq_of_source_subset PartialHomeomorph.restr_eq_of_source_subset
@[simp, mfld_simps]
theorem restr_univ {e : PartialHomeomorph α β} : e.restr univ = e :=
restr_eq_of_source_subset (subset_univ _)
#align local_homeomorph.restr_univ PartialHomeomorph.restr_univ
theorem restr_source_inter (s : Set α) : e.restr (e.source ∩ s) = e.restr s := by
refine' PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) _
simp [e.open_source.interior_eq, ← inter_assoc]
#align local_homeomorph.restr_source_inter PartialHomeomorph.restr_source_inter
/-- The identity on the whole space as a partial homeomorphism. -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
protected def refl (α : Type*) [TopologicalSpace α] : PartialHomeomorph α α :=
(Homeomorph.refl α).toPartialHomeomorph
#align local_homeomorph.refl PartialHomeomorph.refl
@[simp, mfld_simps]
theorem refl_localEquiv : (PartialHomeomorph.refl α).toPartialEquiv = PartialEquiv.refl α :=
rfl
#align local_homeomorph.refl_local_equiv PartialHomeomorph.refl_localEquiv
@[simp, mfld_simps]
theorem refl_symm : (PartialHomeomorph.refl α).symm = PartialHomeomorph.refl α :=
rfl
#align local_homeomorph.refl_symm PartialHomeomorph.refl_symm
section
variable {s : Set α} (hs : IsOpen s)
/-- The identity partial equivalence on a set `s` -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
def ofSet (s : Set α) (hs : IsOpen s) : PartialHomeomorph α α where
toPartialEquiv := PartialEquiv.ofSet s
open_source := hs
open_target := hs
continuousOn_toFun := continuous_id.continuousOn
continuousOn_invFun := continuous_id.continuousOn
#align local_homeomorph.of_set PartialHomeomorph.ofSet
@[simp, mfld_simps]
theorem ofSet_toPartialEquiv : (ofSet s hs).toPartialEquiv = PartialEquiv.ofSet s :=
rfl
#align local_homeomorph.of_set_to_local_equiv PartialHomeomorph.ofSet_toPartialEquiv
@[simp, mfld_simps]
theorem ofSet_symm : (ofSet s hs).symm = ofSet s hs :=
rfl
#align local_homeomorph.of_set_symm PartialHomeomorph.ofSet_symm
@[simp, mfld_simps]
theorem ofSet_univ_eq_refl : ofSet univ isOpen_univ = PartialHomeomorph.refl α := by ext <;> simp
#align local_homeomorph.of_set_univ_eq_refl PartialHomeomorph.ofSet_univ_eq_refl
end
/-- Composition of two partial homeomorphisms when the target of the first and the source of
the second coincide. -/
@[simps! apply symm_apply toPartialEquiv, simps! (config := .lemmasOnly) source target]
protected def trans' (h : e.target = e'.source) : PartialHomeomorph α γ where
toPartialEquiv := PartialEquiv.trans' e.toPartialEquiv e'.toPartialEquiv h
open_source := e.open_source
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuousOn <| h ▸ e.mapsTo
continuousOn_invFun := e.continuousOn_symm.comp e'.continuousOn_symm <| h.symm ▸ e'.symm_mapsTo
#align local_homeomorph.trans' PartialHomeomorph.trans'
/-- Composing two partial homeomorphisms, by restricting to the maximal domain where their
composition is well defined. -/
protected def trans : PartialHomeomorph α γ :=
PartialHomeomorph.trans' (e.symm.restrOpen e'.source e'.open_source).symm
(e'.restrOpen e.target e.open_target) (by simp [inter_comm])
#align local_homeomorph.trans PartialHomeomorph.trans
@[simp, mfld_simps]
theorem trans_toPartialEquiv :
(e.trans e').toPartialEquiv = e.toPartialEquiv.trans e'.toPartialEquiv :=
rfl
#align local_homeomorph.trans_to_local_equiv PartialHomeomorph.trans_toPartialEquiv
@[simp, mfld_simps]
theorem coe_trans : (e.trans e' : α → γ) = e' ∘ e :=
rfl
#align local_homeomorph.coe_trans PartialHomeomorph.coe_trans
@[simp, mfld_simps]
theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
rfl
#align local_homeomorph.coe_trans_symm PartialHomeomorph.coe_trans_symm
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
rfl
#align local_homeomorph.trans_apply PartialHomeomorph.trans_apply
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
#align local_homeomorph.trans_symm_eq_symm_trans_symm PartialHomeomorph.trans_symm_eq_symm_trans_symm
/- This could be considered as a simp lemma, but there are many situations where it makes something
simple into something more complicated. -/
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=
PartialEquiv.trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source PartialHomeomorph.trans_source
theorem trans_source' : (e.trans e').source = e.source ∩ e ⁻¹' (e.target ∩ e'.source) :=
PartialEquiv.trans_source' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source' PartialHomeomorph.trans_source'
theorem trans_source'' : (e.trans e').source = e.symm '' (e.target ∩ e'.source) :=
PartialEquiv.trans_source'' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source'' PartialHomeomorph.trans_source''
theorem image_trans_source : e '' (e.trans e').source = e.target ∩ e'.source :=
PartialEquiv.image_trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.image_trans_source PartialHomeomorph.image_trans_source
theorem trans_target : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' e.target :=
rfl
#align local_homeomorph.trans_target PartialHomeomorph.trans_target
theorem trans_target' : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' (e'.source ∩ e.target) :=
trans_source' e'.symm e.symm
#align local_homeomorph.trans_target' PartialHomeomorph.trans_target'
theorem trans_target'' : (e.trans e').target = e' '' (e'.source ∩ e.target) :=
trans_source'' e'.symm e.symm
#align local_homeomorph.trans_target'' PartialHomeomorph.trans_target''
theorem inv_image_trans_target : e'.symm '' (e.trans e').target = e'.source ∩ e.target :=
image_trans_source e'.symm e.symm
#align local_homeomorph.inv_image_trans_target PartialHomeomorph.inv_image_trans_target
theorem trans_assoc (e'' : PartialHomeomorph γ δ) :
(e.trans e').trans e'' = e.trans (e'.trans e'') :=
toPartialEquiv_injective <| e.1.trans_assoc _ _
#align local_homeomorph.trans_assoc PartialHomeomorph.trans_assoc
@[simp, mfld_simps]
theorem trans_refl : e.trans (PartialHomeomorph.refl β) = e :=
toPartialEquiv_injective e.1.trans_refl
#align local_homeomorph.trans_refl PartialHomeomorph.trans_refl
@[simp, mfld_simps]
theorem refl_trans : (PartialHomeomorph.refl α).trans e = e :=
toPartialEquiv_injective e.1.refl_trans
#align local_homeomorph.refl_trans PartialHomeomorph.refl_trans
theorem trans_ofSet {s : Set β} (hs : IsOpen s) : e.trans (ofSet s hs) = e.restr (e ⁻¹' s) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) <| by
rw [trans_source, restr_source, ofSet_source, ← preimage_interior, hs.interior_eq]
#align local_homeomorph.trans_of_set PartialHomeomorph.trans_ofSet
theorem trans_of_set' {s : Set β} (hs : IsOpen s) :
e.trans (ofSet s hs) = e.restr (e.source ∩ e ⁻¹' s) := by rw [trans_ofSet, restr_source_inter]
#align local_homeomorph.trans_of_set' PartialHomeomorph.trans_of_set'
theorem ofSet_trans {s : Set α} (hs : IsOpen s) : (ofSet s hs).trans e = e.restr s :=
PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) <| by simp [hs.interior_eq, inter_comm]
#align local_homeomorph.of_set_trans PartialHomeomorph.ofSet_trans
theorem ofSet_trans' {s : Set α} (hs : IsOpen s) :
(ofSet s hs).trans e = e.restr (e.source ∩ s) := by
rw [ofSet_trans, restr_source_inter]
#align local_homeomorph.of_set_trans' PartialHomeomorph.ofSet_trans'
@[simp, mfld_simps]
theorem ofSet_trans_ofSet {s : Set α} (hs : IsOpen s) {s' : Set α} (hs' : IsOpen s') :
(ofSet s hs).trans (ofSet s' hs') = ofSet (s ∩ s') (IsOpen.inter hs hs') := by
rw [(ofSet s hs).trans_ofSet hs']
ext <;> simp [hs'.interior_eq]
#align local_homeomorph.of_set_trans_of_set PartialHomeomorph.ofSet_trans_ofSet
theorem restr_trans (s : Set α) : (e.restr s).trans e' = (e.trans e').restr s :=
toPartialEquiv_injective <|
PartialEquiv.restr_trans e.toPartialEquiv e'.toPartialEquiv (interior s)
#align local_homeomorph.restr_trans PartialHomeomorph.restr_trans
/-- Postcompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def transHomeomorph (e' : β ≃ₜ γ) : PartialHomeomorph α γ where
toPartialEquiv := e.toPartialEquiv.transEquiv e'.toEquiv
open_source := e.open_source
open_target := e.open_target.preimage e'.symm.continuous
continuousOn_toFun := e'.continuous.comp_continuousOn e.continuousOn
continuousOn_invFun := e.symm.continuousOn.comp e'.symm.continuous.continuousOn fun _ => id
#align local_homeomorph.trans_homeomorph PartialHomeomorph.transHomeomorph
theorem transHomeomorph_eq_trans (e' : β ≃ₜ γ) :
e.transHomeomorph e' = e.trans e'.toPartialHomeomorph :=
toPartialEquiv_injective <| PartialEquiv.transEquiv_eq_trans _ _
#align local_homeomorph.trans_equiv_eq_trans PartialHomeomorph.transHomeomorph_eq_trans
/-- Precompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def _root_.Homeomorph.transPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α γ where
toPartialEquiv := e.toEquiv.transPartialEquiv e'.toPartialEquiv
open_source := e'.open_source.preimage e.continuous
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuous.continuousOn fun _ => id
continuousOn_invFun := e.symm.continuous.comp_continuousOn e'.symm.continuousOn
#align homeomorph.trans_local_homeomorph Homeomorph.transPartialHomeomorph
theorem _root_.Homeomorph.transPartialHomeomorph_eq_trans (e : α ≃ₜ β) :
e.transPartialHomeomorph e' = e.toPartialHomeomorph.trans e' :=
toPartialEquiv_injective <| Equiv.transPartialEquiv_eq_trans _ _
#align homeomorph.trans_local_homeomorph_eq_trans Homeomorph.transPartialHomeomorph_eq_trans
/-- `EqOnSource e e'` means that `e` and `e'` have the same source, and coincide there. They
should really be considered the same partial equivalence. -/
def EqOnSource (e e' : PartialHomeomorph α β) : Prop :=
e.source = e'.source ∧ EqOn e e' e.source
#align local_homeomorph.eq_on_source PartialHomeomorph.EqOnSource
theorem eqOnSource_iff (e e' : PartialHomeomorph α β) :
EqOnSource e e' ↔ PartialEquiv.EqOnSource e.toPartialEquiv e'.toPartialEquiv :=
Iff.rfl
#align local_homeomorph.eq_on_source_iff PartialHomeomorph.eqOnSource_iff
/-- `EqOnSource` is an equivalence relation. -/
instance eqOnSourceSetoid : Setoid (PartialHomeomorph α β) :=
{ PartialEquiv.eqOnSourceSetoid.comap toPartialEquiv with r := EqOnSource }
theorem eqOnSource_refl : e ≈ e := Setoid.refl _
#align local_homeomorph.eq_on_source_refl PartialHomeomorph.eqOnSource_refl
/-- If two partial homeomorphisms are equivalent, so are their inverses. -/
theorem EqOnSource.symm' {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.symm ≈ e'.symm :=
PartialEquiv.EqOnSource.symm' h
#align local_homeomorph.eq_on_source.symm' PartialHomeomorph.EqOnSource.symm'
/-- Two equivalent partial homeomorphisms have the same source. -/
theorem EqOnSource.source_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.source = e'.source :=
h.1
#align local_homeomorph.eq_on_source.source_eq PartialHomeomorph.EqOnSource.source_eq
/-- Two equivalent partial homeomorphisms have the same target. -/
theorem EqOnSource.target_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.target = e'.target :=
h.symm'.1
#align local_homeomorph.eq_on_source.target_eq PartialHomeomorph.EqOnSource.target_eq
/-- Two equivalent partial homeomorphisms have coinciding `toFun` on the source -/
theorem EqOnSource.eqOn {e e' : PartialHomeomorph α β} (h : e ≈ e') : EqOn e e' e.source :=
h.2
#align local_homeomorph.eq_on_source.eq_on PartialHomeomorph.EqOnSource.eqOn
/-- Two equivalent partial homeomorphisms have coinciding `invFun` on the target -/
theorem EqOnSource.symm_eqOn_target {e e' : PartialHomeomorph α β} (h : e ≈ e') :
EqOn e.symm e'.symm e.target :=
h.symm'.2
#align local_homeomorph.eq_on_source.symm_eq_on_target PartialHomeomorph.EqOnSource.symm_eqOn_target
/-- Composition of partial homeomorphisms respects equivalence. -/
theorem EqOnSource.trans' {e e' : PartialHomeomorph α β} {f f' : PartialHomeomorph β γ}
(he : e ≈ e') (hf : f ≈ f') : e.trans f ≈ e'.trans f' :=
PartialEquiv.EqOnSource.trans' he hf
#align local_homeomorph.eq_on_source.trans' PartialHomeomorph.EqOnSource.trans'
/-- Restriction of partial homeomorphisms respects equivalence -/
theorem EqOnSource.restr {e e' : PartialHomeomorph α β} (he : e ≈ e') (s : Set α) :
e.restr s ≈ e'.restr s :=
PartialEquiv.EqOnSource.restr he _
#align local_homeomorph.eq_on_source.restr PartialHomeomorph.EqOnSource.restr
/- Two equivalent partial homeomorphisms are equal when the source and target are `univ`. -/
theorem Set.EqOn.restr_eqOn_source {e e' : PartialHomeomorph α β}
(h : EqOn e e' (e.source ∩ e'.source)) : e.restr e'.source ≈ e'.restr e.source := by
constructor
· rw [e'.restr_source' _ e.open_source]
rw [e.restr_source' _ e'.open_source]
exact Set.inter_comm _ _
· rw [e.restr_source' _ e'.open_source]
refine' (EqOn.trans _ h).trans _ <;> simp only [mfld_simps, eqOn_refl]
#align local_homeomorph.set.eq_on.restr_eq_on_source PartialHomeomorph.Set.EqOn.restr_eqOn_source
/-- Composition of a partial homeomorphism and its inverse is equivalent to the restriction of the
identity to the source -/
theorem trans_self_symm : e.trans e.symm ≈ PartialHomeomorph.ofSet e.source e.open_source :=
PartialEquiv.trans_self_symm _
#align local_homeomorph.trans_self_symm PartialHomeomorph.trans_self_symm
theorem trans_symm_self : e.symm.trans e ≈ PartialHomeomorph.ofSet e.target e.open_target :=
e.symm.trans_self_symm
#align local_homeomorph.trans_symm_self PartialHomeomorph.trans_symm_self
theorem eq_of_eqOnSource_univ {e e' : PartialHomeomorph α β} (h : e ≈ e') (s : e.source = univ)
(t : e.target = univ) : e = e' :=
toPartialEquiv_injective <| PartialEquiv.eq_of_eqOnSource_univ _ _ h s t
#align local_homeomorph.eq_of_eq_on_source_univ PartialHomeomorph.eq_of_eqOnSource_univ
section Prod
/-- The product of two partial homeomorphisms, as a partial homeomorphism on the product space. -/
@[simps! (config := mfld_cfg) toPartialEquiv apply,
simps! (config := .lemmasOnly) source target symm_apply]
def prod (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
PartialHomeomorph (α × γ) (β × δ) where
open_source := e.open_source.prod e'.open_source
open_target := e.open_target.prod e'.open_target
continuousOn_toFun := e.continuousOn.prod_map e'.continuousOn
continuousOn_invFun := e.continuousOn_symm.prod_map e'.continuousOn_symm
toPartialEquiv := e.toPartialEquiv.prod e'.toPartialEquiv
#align local_homeomorph.prod PartialHomeomorph.prod
@[simp, mfld_simps]
theorem prod_symm (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
(e.prod e').symm = e.symm.prod e'.symm :=
rfl
#align local_homeomorph.prod_symm PartialHomeomorph.prod_symm
@[simp]
theorem refl_prod_refl {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] :
(PartialHomeomorph.refl α).prod (PartialHomeomorph.refl β) = PartialHomeomorph.refl (α × β) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) univ_prod_univ
#align local_homeomorph.refl_prod_refl PartialHomeomorph.refl_prod_refl
@[simp, mfld_simps]
theorem prod_trans {η : Type*} {ε : Type*} [TopologicalSpace η] [TopologicalSpace ε]
(e : PartialHomeomorph α β) (f : PartialHomeomorph β γ) (e' : PartialHomeomorph δ η)
(f' : PartialHomeomorph η ε) : (e.prod e').trans (f.prod f') = (e.trans f).prod (e'.trans f') :=
toPartialEquiv_injective <| e.1.prod_trans ..
#align local_homeomorph.prod_trans PartialHomeomorph.prod_trans
theorem prod_eq_prod_of_nonempty {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁.prod e₂).source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
obtain ⟨⟨x, y⟩, -⟩ := id h
haveI : Nonempty α := ⟨x⟩
haveI : Nonempty β := ⟨e₁ x⟩
haveI : Nonempty γ := ⟨y⟩
haveI : Nonempty δ := ⟨e₂ y⟩
simp_rw [PartialHomeomorph.ext_iff, prod_apply, prod_symm_apply, prod_source, Prod.ext_iff,
Set.prod_eq_prod_iff_of_nonempty h, forall_and, Prod.forall, forall_const,
and_assoc, and_left_comm]
#align local_homeomorph.prod_eq_prod_of_nonempty PartialHomeomorph.prod_eq_prod_of_nonempty
theorem prod_eq_prod_of_nonempty' {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁'.prod e₂').source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
rw [eq_comm, prod_eq_prod_of_nonempty h, eq_comm, @eq_comm _ e₂']
#align local_homeomorph.prod_eq_prod_of_nonempty' PartialHomeomorph.prod_eq_prod_of_nonempty'
end Prod
section Piecewise
/-- Combine two `PartialHomeomorph`s using `Set.piecewise`. The source of the new
`PartialHomeomorph` is `s.ite e.source e'.source = e.source ∩ s ∪ e'.source \ s`, and similarly for
target. The function sends `e.source ∩ s` to `e.target ∩ t` using `e` and
`e'.source \ s` to `e'.target \ t` using `e'`, and similarly for the inverse function.
To ensure the maps `toFun` and `invFun` are inverse of each other on the new `source` and `target`,
the definition assumes that the sets `s` and `t` are related both by `e.is_image` and `e'.is_image`.
To ensure that the new maps are continuous on `source`/`target`, it also assumes that `e.source` and
`e'.source` meet `frontier s` on the same set and `e x = e' x` on this intersection. -/
@[simps! (config := .asFn) toPartialEquiv apply]
def piecewise (e e' : PartialHomeomorph α β) (s : Set α) (t : Set β) [∀ x, Decidable (x ∈ s)]
[∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquiv.piecewise e'.toPartialEquiv s t H H'
open_source := e.open_source.ite e'.open_source Hs
open_target :=
e.open_target.ite e'.open_target <| H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq
continuousOn_toFun := continuousOn_piecewise_ite e.continuousOn e'.continuousOn Hs Heq
continuousOn_invFun :=
continuousOn_piecewise_ite e.continuousOn_symm e'.continuousOn_symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq)
#align local_homeomorph.piecewise PartialHomeomorph.piecewise
@[simp]
theorem symm_piecewise (e e' : PartialHomeomorph α β) {s : Set α} {t : Set β}
[∀ x, Decidable (x ∈ s)] [∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) :
(e.piecewise e' s t H H' Hs Heq).symm =
e.symm.piecewise e'.symm t s H.symm H'.symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq) :=
rfl
#align local_homeomorph.symm_piecewise PartialHomeomorph.symm_piecewise
/-- Combine two `PartialHomeomorph`s with disjoint sources and disjoint targets. We reuse
`PartialHomeomorph.piecewise` then override `toPartialEquiv` to `PartialEquiv.disjointUnion`.
This way we have better definitional equalities for `source` and `target`. -/
def disjointUnion (e e' : PartialHomeomorph α β) [∀ x, Decidable (x ∈ e.source)]
[∀ y, Decidable (y ∈ e.target)] (Hs : Disjoint e.source e'.source)
(Ht : Disjoint e.target e'.target) : PartialHomeomorph α β :=
(e.piecewise e' e.source e.target e.isImage_source_target
(e'.isImage_source_target_of_disjoint e Hs.symm Ht.symm)
(by rw [e.open_source.inter_frontier_eq, (Hs.symm.frontier_right e'.open_source).inter_eq])
(by
rw [e.open_source.inter_frontier_eq]
exact eqOn_empty _ _)).replaceEquiv
(e.toPartialEquiv.disjointUnion e'.toPartialEquiv Hs Ht)
(PartialEquiv.disjointUnion_eq_piecewise _ _ _ _).symm
#align local_homeomorph.disjoint_union PartialHomeomorph.disjointUnion
end Piecewise
section Pi
variable {ι : Type*} [Fintype ι] {Xi Yi : ι → Type*} [∀ i, TopologicalSpace (Xi i)]
[∀ i, TopologicalSpace (Yi i)] (ei : ∀ i, PartialHomeomorph (Xi i) (Yi i))
/-- The product of a finite family of `PartialHomeomorph`s. -/
@[simps toPartialEquiv]
def pi : PartialHomeomorph (∀ i, Xi i) (∀ i, Yi i) where
toPartialEquiv := PartialEquiv.pi fun i => (ei i).toPartialEquiv
open_source := isOpen_set_pi finite_univ fun i _ => (ei i).open_source
open_target := isOpen_set_pi finite_univ fun i _ => (ei i).open_target
continuousOn_toFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
continuousOn_invFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn_symm.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
#align local_homeomorph.pi PartialHomeomorph.pi
end Pi
section Continuity
/-- Continuity within a set at a point can be read under right composition with a local
homeomorphism, if the point is in its target -/
theorem continuousWithinAt_iff_continuousWithinAt_comp_right {f : β → γ} {s : Set β} {x : β}
(h : x ∈ e.target) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ e) (e ⁻¹' s) (e.symm x) := by
simp_rw [ContinuousWithinAt, ← @tendsto_map'_iff _ _ _ _ e,
e.map_nhdsWithin_preimage_eq (e.map_target h), (· ∘ ·), e.right_inv h]
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_right PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
/-- Continuity at a point can be read under right composition with a partial homeomorphism, if the
point is in its target -/
theorem continuousAt_iff_continuousAt_comp_right {f : β → γ} {x : β} (h : x ∈ e.target) :
ContinuousAt f x ↔ ContinuousAt (f ∘ e) (e.symm x) := by
rw [← continuousWithinAt_univ, e.continuousWithinAt_iff_continuousWithinAt_comp_right h,
preimage_univ, continuousWithinAt_univ]
#align local_homeomorph.continuous_at_iff_continuous_at_comp_right PartialHomeomorph.continuousAt_iff_continuousAt_comp_right
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the right is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_right {f : β → γ} {s : Set β} (h : s ⊆ e.target) :
ContinuousOn f s ↔ ContinuousOn (f ∘ e) (e.source ∩ e ⁻¹' s) := by
simp only [← e.symm_image_eq_source_inter_preimage h, ContinuousOn, ball_image_iff]
refine' forall₂_congr fun x hx => _
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx),
e.symm_image_eq_source_inter_preimage h, inter_comm, continuousWithinAt_inter]
exact IsOpen.mem_nhds e.open_source (e.map_target (h hx))
#align local_homeomorph.continuous_on_iff_continuous_on_comp_right PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
/-- Continuity within a set at a point can be read under left composition with a local
homeomorphism if a neighborhood of the initial point is sent to the source of the local
homeomorphism-/
theorem continuousWithinAt_iff_continuousWithinAt_comp_left {f : γ → α} {s : Set γ} {x : γ}
(hx : f x ∈ e.source) (h : f ⁻¹' e.source ∈ 𝓝[s] x) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (e ∘ f) s x := by
refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩
rw [← continuousWithinAt_inter' h] at fe_cont ⊢
have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=
haveI : ContinuousWithinAt e.symm univ (e (f x)) :=
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
ContinuousWithinAt.comp this fe_cont (subset_univ _)
exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_left PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
/-- Continuity at a point can be read under left composition with a partial homeomorphism if a
neighborhood of the initial point is sent to the source of the partial homeomorphism-/
theorem continuousAt_iff_continuousAt_comp_left {f : γ → α} {x : γ} (h : f ⁻¹' e.source ∈ 𝓝 x) :
ContinuousAt f x ↔ ContinuousAt (e ∘ f) x := by
have hx : f x ∈ e.source := (mem_of_mem_nhds h : _)
have h' : f ⁻¹' e.source ∈ 𝓝[univ] x := by rwa [nhdsWithin_univ]
rw [← continuousWithinAt_univ, ← continuousWithinAt_univ,
e.continuousWithinAt_iff_continuousWithinAt_comp_left hx h']
#align local_homeomorph.continuous_at_iff_continuous_at_comp_left PartialHomeomorph.continuousAt_iff_continuousAt_comp_left
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the left is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_left {f : γ → α} {s : Set γ} (h : s ⊆ f ⁻¹' e.source) :
ContinuousOn f s ↔ ContinuousOn (e ∘ f) s :=
forall₂_congr fun _x hx =>
e.continuousWithinAt_iff_continuousWithinAt_comp_left (h hx)
(mem_of_superset self_mem_nhdsWithin h)
#align local_homeomorph.continuous_on_iff_continuous_on_comp_left PartialHomeomorph.continuousOn_iff_continuousOn_comp_left
/-- A function is continuous if and only if its composition with a partial homeomorphism
on the left is continuous and its image is contained in the source. -/
theorem continuous_iff_continuous_comp_left {f : γ → α} (h : f ⁻¹' e.source = univ) :
Continuous f ↔ Continuous (e ∘ f) := by
simp only [continuous_iff_continuousOn_univ]
exact e.continuousOn_iff_continuousOn_comp_left (Eq.symm h).subset
#align local_homeomorph.continuous_iff_continuous_comp_left PartialHomeomorph.continuous_iff_continuous_comp_left
end Continuity
/-- The homeomorphism obtained by restricting a `PartialHomeomorph` to a subset of the source. -/
@[simps]
def homeomorphOfImageSubsetSource {s : Set α} {t : Set β} (hs : s ⊆ e.source) (ht : e '' s = t) :
s ≃ₜ t :=
have h₁ : MapsTo e s t := mapsTo'.2 ht.subset
have h₂ : t ⊆ e.target := ht ▸ e.image_source_eq_target ▸ image_subset e hs
have h₃ : MapsTo e.symm t s := ht ▸ ball_image_iff.2 <| fun _x hx =>
(e.left_inv (hs hx)).symm ▸ hx
{ toFun := MapsTo.restrict e s t h₁
invFun := MapsTo.restrict e.symm t s h₃
left_inv := fun a => Subtype.ext (e.left_inv (hs a.2))
right_inv := fun b => Subtype.eq <| e.right_inv (h₂ b.2)
continuous_toFun := (e.continuousOn.mono hs).restrict_mapsTo h₁
continuous_invFun := (e.continuousOn_symm.mono h₂).restrict_mapsTo h₃ }
#align local_homeomorph.homeomorph_of_image_subset_source PartialHomeomorph.homeomorphOfImageSubsetSource
/-- A partial homeomorphism defines a homeomorphism between its source and target. -/
@[simps!] -- porting note: new `simps`
def toHomeomorphSourceTarget : e.source ≃ₜ e.target :=
e.homeomorphOfImageSubsetSource subset_rfl e.image_source_eq_target
#align local_homeomorph.to_homeomorph_source_target PartialHomeomorph.toHomeomorphSourceTarget
theorem secondCountableTopology_source [SecondCountableTopology β] (e : PartialHomeomorph α β) :
SecondCountableTopology e.source :=
e.toHomeomorphSourceTarget.secondCountableTopology
#align local_homeomorph.second_countable_topology_source PartialHomeomorph.secondCountableTopology_source
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) :
𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source := by
lift x to e.source using hx
rw [← e.open_source.nhdsWithin_eq x.2, ← map_nhds_subtype_val, ← map_comap_setCoe_val,
e.toHomeomorphSourceTarget.nhds_eq_comap, nhds_subtype_eq_comap]
simp only [(· ∘ ·), toHomeomorphSourceTarget_apply_coe, comap_comap]
/-- If a partial homeomorphism has source and target equal to univ, then it induces a homeomorphism
between the whole spaces, expressed in this definition. -/
@[simps (config := mfld_cfg) apply symm_apply] -- porting note: todo: add a `PartialEquiv` version
def toHomeomorphOfSourceEqUnivTargetEqUniv (h : e.source = (univ : Set α)) (h' : e.target = univ) :
α ≃ₜ β where
toFun := e
invFun := e.symm
left_inv x :=
e.left_inv <| by
rw [h]
exact mem_univ _
right_inv x :=
e.right_inv <| by
rw [h']
exact mem_univ _
continuous_toFun := by
simpa only [continuous_iff_continuousOn_univ, h] using e.continuousOn
continuous_invFun := by
simpa only [continuous_iff_continuousOn_univ, h'] using e.continuousOn_symm
#align local_homeomorph.to_homeomorph_of_source_eq_univ_target_eq_univ PartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv
theorem openEmbedding_restrict : OpenEmbedding (e.source.restrict e) := by
refine openEmbedding_of_continuous_injective_open (e.continuousOn.comp_continuous
continuous_subtype_val Subtype.prop) e.injOn.injective fun V hV ↦ ?_
rw [Set.restrict_eq, Set.image_comp]
exact e.image_isOpen_of_isOpen (e.open_source.isOpenMap_subtype_val V hV)
fun _ ⟨x, _, h⟩ ↦ h ▸ x.2
/-- A partial homeomorphism whose source is all of `α` defines an open embedding of `α` into `β`.
The converse is also true; see `OpenEmbedding.toPartialHomeomorph`. -/
theorem to_openEmbedding (h : e.source = Set.univ) : OpenEmbedding e :=
e.openEmbedding_restrict.comp
((Homeomorph.setCongr h).trans <| Homeomorph.Set.univ α).symm.openEmbedding
#align local_homeomorph.to_open_embedding PartialHomeomorph.to_openEmbedding
end PartialHomeomorph
namespace Homeomorph
variable (e : α ≃ₜ β) (e' : β ≃ₜ γ)
/- Register as simp lemmas that the fields of a partial homeomorphism built from a homeomorphism
correspond to the fields of the original homeomorphism. -/
@[simp, mfld_simps]
theorem refl_toPartialHomeomorph :
(Homeomorph.refl α).toPartialHomeomorph = PartialHomeomorph.refl α :=
rfl
#align homeomorph.refl_to_local_homeomorph Homeomorph.refl_toPartialHomeomorph
@[simp, mfld_simps]
theorem symm_toPartialHomeomorph : e.symm.toPartialHomeomorph = e.toPartialHomeomorph.symm :=
rfl
#align homeomorph.symm_to_local_homeomorph Homeomorph.symm_toPartialHomeomorph
@[simp, mfld_simps]
theorem trans_toPartialHomeomorph :
(e.trans e').toPartialHomeomorph = e.toPartialHomeomorph.trans e'.toPartialHomeomorph :=
PartialHomeomorph.toPartialEquiv_injective <| Equiv.trans_toPartialEquiv _ _
#align homeomorph.trans_to_local_homeomorph Homeomorph.trans_toPartialHomeomorph
end Homeomorph
namespace OpenEmbedding
variable (f : α → β) (h : OpenEmbedding f)
/-- An open embedding of `α` into `β`, with `α` nonempty, defines a partial homeomorphism
whose source is all of `α`. The converse is also true; see `PartialHomeomorph.to_openEmbedding`. -/
@[simps! (config := mfld_cfg) apply source target]
noncomputable def toPartialHomeomorph [Nonempty α] : PartialHomeomorph α β :=
PartialHomeomorph.ofContinuousOpen ((h.toEmbedding.inj.injOn univ).toPartialEquiv _ _)
h.continuous.continuousOn h.isOpenMap isOpen_univ
#align open_embedding.to_local_homeomorph OpenEmbedding.toPartialHomeomorph
variable [Nonempty α]
lemma toPartialHomeomorph_left_inv {x : α} : (h.toPartialHomeomorph f).symm (f x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.left_inv]
exact Set.mem_univ _
lemma toPartialHomeomorph_right_inv {x : β} (hx : x ∈ Set.range f) :
f ((h.toPartialHomeomorph f).symm x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.right_inv]
rwa [toPartialHomeomorph_target]
end OpenEmbedding
namespace TopologicalSpace.Opens
open TopologicalSpace
variable (s : Opens α) [Nonempty s]
/-- The inclusion of an open subset `s` of a space `α` into `α` is a partial homeomorphism from the
subtype `s` to `α`. -/
noncomputable def localHomeomorphSubtypeCoe : PartialHomeomorph s α :=
OpenEmbedding.toPartialHomeomorph _ s.2.openEmbedding_subtype_val
#align topological_space.opens.local_homeomorph_subtype_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_coe : (s.localHomeomorphSubtypeCoe : s → α) = (↑) :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe_coe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_source : s.localHomeomorphSubtypeCoe.source = Set.univ :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_source TopologicalSpace.Opens.localHomeomorphSubtypeCoe_source
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_target : s.localHomeomorphSubtypeCoe.target = s := by
simp only [localHomeomorphSubtypeCoe, Subtype.range_coe_subtype, mfld_simps]
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_target TopologicalSpace.Opens.localHomeomorphSubtypeCoe_target
end TopologicalSpace.Opens
namespace PartialHomeomorph
open TopologicalSpace
variable (e : PartialHomeomorph α β)
variable (s : Opens α) [Nonempty s]
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
produces a partial homeomorphism whose domain is the subtype `s`. -/
noncomputable def subtypeRestr : PartialHomeomorph s β :=
s.localHomeomorphSubtypeCoe.trans e
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
theorem subtypeRestr_def : e.subtypeRestr s = s.localHomeomorphSubtypeCoe.trans e :=
rfl
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
@[simp, mfld_simps]
theorem subtypeRestr_coe :
((e.subtypeRestr s : PartialHomeomorph s β) : s → β) = Set.restrict ↑s (e : α → β) :=
rfl
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
@[simp, mfld_simps]
theorem subtypeRestr_source : (e.subtypeRestr s).source = (↑) ⁻¹' e.source := by
simp only [subtypeRestr_def, mfld_simps]
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
variable {s}
theorem map_subtype_source {x : s} (hxe : (x : α) ∈ e.source): e x ∈ (e.subtypeRestr s).target := by
refine' ⟨e.map_source hxe, _⟩
rw [s.localHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
exact x.prop
#align local_homeomorph.map_subtype_source PartialHomeomorph.map_subtype_source
variable (s)
/- This lemma characterizes the transition functions of an open subset in terms of the transition
functions of the original space. -/
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph α β) :
(f.subtypeRestr s).symm.trans (f'.subtypeRestr s) ≈
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]
refine' EqOnSource.trans' _ (eqOnSource_refl _)
-- f' has been eliminated !!!
have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=
by mfld_set_tac
have openness₂ : IsOpen (s : Set α) := s.2
rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]
refine' EqOnSource.trans' (eqOnSource_refl _) _
-- f has been eliminated !!!
refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _
simp only [mfld_simps, Setoid.refl]
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
theorem subtypeRestr_symm_eqOn (U : Opens α) [Nonempty U] :
EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U).symm) (e.subtypeRestr U).target := by
intro y hy
rw [eq_comm, eq_symm_apply _ _ hy.1]
· change restrict _ e _ = _
rw [← subtypeRestr_coe, (e.subtypeRestr U).right_inv hy]
· have := map_target _ hy; rwa [subtypeRestr_source] at this
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
exact hyV
·
|
rw [V.localHomeomorphSubtypeCoe.right_inv hyV]
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
exact hyV
·
|
Mathlib.Topology.PartialHomeomorph.1460_0.xRULiNOId4c9Kju
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target
|
Mathlib_Topology_PartialHomeomorph
|
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : TopologicalSpace α
inst✝⁵ : TopologicalSpace β
inst✝⁴ : TopologicalSpace γ
inst✝³ : TopologicalSpace δ
e : PartialHomeomorph α β
s : Opens α
inst✝² : Nonempty ↥s
U V : Opens α
inst✝¹ : Nonempty ↥U
inst✝ : Nonempty ↥V
hUV : U ≤ V
i : ↑↑U → ↑↑V := inclusion hUV
y : β
hy : y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (Opens.localHomeomorphSubtypeCoe U).toPartialEquiv.target
hyV : ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
⊢ ↑(PartialHomeomorph.symm e) y =
↑(Opens.localHomeomorphSubtypeCoe V)
(inclusion hUV (↑(PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe U)) (↑(PartialHomeomorph.symm e) y)))
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
continuousOn_toFun := hc
continuousOn_invFun := e.image_source_eq_target ▸ ho.continuousOn_image_of_leftInvOn e.leftInvOn
#align local_homeomorph.of_continuous_open_restrict PartialHomeomorph.ofContinuousOpenRestrict
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpen (e : PartialEquiv α β) (hc : ContinuousOn e e.source) (ho : IsOpenMap e)
(hs : IsOpen e.source) : PartialHomeomorph α β :=
ofContinuousOpenRestrict e hc (ho.restrict hs) hs
#align local_homeomorph.of_continuous_open PartialHomeomorph.ofContinuousOpen
/-- Restricting a partial homeomorphism `e` to `e.source ∩ s` when `s` is open.
This is sometimes hard to use because of the openness assumption, but it has the advantage that
when it can be used then its `PartialEquiv` is defeq to `PartialEquiv.restr`. -/
protected def restrOpen (s : Set α) (hs : IsOpen s) : PartialHomeomorph α β :=
(@IsImage.of_symm_preimage_eq α β _ _ e s (e.symm ⁻¹' s) rfl).restr
(IsOpen.inter e.open_source hs)
#align local_homeomorph.restr_open PartialHomeomorph.restrOpen
@[simp, mfld_simps]
theorem restrOpen_toPartialEquiv (s : Set α) (hs : IsOpen s) :
(e.restrOpen s hs).toPartialEquiv = e.toPartialEquiv.restr s :=
rfl
#align local_homeomorph.restr_open_to_local_equiv PartialHomeomorph.restrOpen_toPartialEquiv
-- Already simp via `PartialEquiv`
theorem restrOpen_source (s : Set α) (hs : IsOpen s) : (e.restrOpen s hs).source = e.source ∩ s :=
rfl
#align local_homeomorph.restr_open_source PartialHomeomorph.restrOpen_source
/-- Restricting a partial homeomorphism `e` to `e.source ∩ interior s`. We use the interior to make
sure that the restriction is well defined whatever the set s, since partial homeomorphisms are by
definition defined on open sets. In applications where `s` is open, this coincides with the
restriction of partial equivalences -/
@[simps! (config := mfld_cfg) apply symm_apply, simps! (config := .lemmasOnly) source target]
protected def restr (s : Set α) : PartialHomeomorph α β :=
e.restrOpen (interior s) isOpen_interior
#align local_homeomorph.restr PartialHomeomorph.restr
@[simp, mfld_simps]
theorem restr_toPartialEquiv (s : Set α) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr (interior s) :=
rfl
#align local_homeomorph.restr_to_local_equiv PartialHomeomorph.restr_toPartialEquiv
theorem restr_source' (s : Set α) (hs : IsOpen s) : (e.restr s).source = e.source ∩ s := by
rw [e.restr_source, hs.interior_eq]
#align local_homeomorph.restr_source' PartialHomeomorph.restr_source'
theorem restr_toPartialEquiv' (s : Set α) (hs : IsOpen s) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr s := by
rw [e.restr_toPartialEquiv, hs.interior_eq]
#align local_homeomorph.restr_to_local_equiv' PartialHomeomorph.restr_toPartialEquiv'
theorem restr_eq_of_source_subset {e : PartialHomeomorph α β} {s : Set α} (h : e.source ⊆ s) :
e.restr s = e :=
toPartialEquiv_injective <| PartialEquiv.restr_eq_of_source_subset <|
interior_maximal h e.open_source
#align local_homeomorph.restr_eq_of_source_subset PartialHomeomorph.restr_eq_of_source_subset
@[simp, mfld_simps]
theorem restr_univ {e : PartialHomeomorph α β} : e.restr univ = e :=
restr_eq_of_source_subset (subset_univ _)
#align local_homeomorph.restr_univ PartialHomeomorph.restr_univ
theorem restr_source_inter (s : Set α) : e.restr (e.source ∩ s) = e.restr s := by
refine' PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) _
simp [e.open_source.interior_eq, ← inter_assoc]
#align local_homeomorph.restr_source_inter PartialHomeomorph.restr_source_inter
/-- The identity on the whole space as a partial homeomorphism. -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
protected def refl (α : Type*) [TopologicalSpace α] : PartialHomeomorph α α :=
(Homeomorph.refl α).toPartialHomeomorph
#align local_homeomorph.refl PartialHomeomorph.refl
@[simp, mfld_simps]
theorem refl_localEquiv : (PartialHomeomorph.refl α).toPartialEquiv = PartialEquiv.refl α :=
rfl
#align local_homeomorph.refl_local_equiv PartialHomeomorph.refl_localEquiv
@[simp, mfld_simps]
theorem refl_symm : (PartialHomeomorph.refl α).symm = PartialHomeomorph.refl α :=
rfl
#align local_homeomorph.refl_symm PartialHomeomorph.refl_symm
section
variable {s : Set α} (hs : IsOpen s)
/-- The identity partial equivalence on a set `s` -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
def ofSet (s : Set α) (hs : IsOpen s) : PartialHomeomorph α α where
toPartialEquiv := PartialEquiv.ofSet s
open_source := hs
open_target := hs
continuousOn_toFun := continuous_id.continuousOn
continuousOn_invFun := continuous_id.continuousOn
#align local_homeomorph.of_set PartialHomeomorph.ofSet
@[simp, mfld_simps]
theorem ofSet_toPartialEquiv : (ofSet s hs).toPartialEquiv = PartialEquiv.ofSet s :=
rfl
#align local_homeomorph.of_set_to_local_equiv PartialHomeomorph.ofSet_toPartialEquiv
@[simp, mfld_simps]
theorem ofSet_symm : (ofSet s hs).symm = ofSet s hs :=
rfl
#align local_homeomorph.of_set_symm PartialHomeomorph.ofSet_symm
@[simp, mfld_simps]
theorem ofSet_univ_eq_refl : ofSet univ isOpen_univ = PartialHomeomorph.refl α := by ext <;> simp
#align local_homeomorph.of_set_univ_eq_refl PartialHomeomorph.ofSet_univ_eq_refl
end
/-- Composition of two partial homeomorphisms when the target of the first and the source of
the second coincide. -/
@[simps! apply symm_apply toPartialEquiv, simps! (config := .lemmasOnly) source target]
protected def trans' (h : e.target = e'.source) : PartialHomeomorph α γ where
toPartialEquiv := PartialEquiv.trans' e.toPartialEquiv e'.toPartialEquiv h
open_source := e.open_source
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuousOn <| h ▸ e.mapsTo
continuousOn_invFun := e.continuousOn_symm.comp e'.continuousOn_symm <| h.symm ▸ e'.symm_mapsTo
#align local_homeomorph.trans' PartialHomeomorph.trans'
/-- Composing two partial homeomorphisms, by restricting to the maximal domain where their
composition is well defined. -/
protected def trans : PartialHomeomorph α γ :=
PartialHomeomorph.trans' (e.symm.restrOpen e'.source e'.open_source).symm
(e'.restrOpen e.target e.open_target) (by simp [inter_comm])
#align local_homeomorph.trans PartialHomeomorph.trans
@[simp, mfld_simps]
theorem trans_toPartialEquiv :
(e.trans e').toPartialEquiv = e.toPartialEquiv.trans e'.toPartialEquiv :=
rfl
#align local_homeomorph.trans_to_local_equiv PartialHomeomorph.trans_toPartialEquiv
@[simp, mfld_simps]
theorem coe_trans : (e.trans e' : α → γ) = e' ∘ e :=
rfl
#align local_homeomorph.coe_trans PartialHomeomorph.coe_trans
@[simp, mfld_simps]
theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
rfl
#align local_homeomorph.coe_trans_symm PartialHomeomorph.coe_trans_symm
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
rfl
#align local_homeomorph.trans_apply PartialHomeomorph.trans_apply
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
#align local_homeomorph.trans_symm_eq_symm_trans_symm PartialHomeomorph.trans_symm_eq_symm_trans_symm
/- This could be considered as a simp lemma, but there are many situations where it makes something
simple into something more complicated. -/
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=
PartialEquiv.trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source PartialHomeomorph.trans_source
theorem trans_source' : (e.trans e').source = e.source ∩ e ⁻¹' (e.target ∩ e'.source) :=
PartialEquiv.trans_source' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source' PartialHomeomorph.trans_source'
theorem trans_source'' : (e.trans e').source = e.symm '' (e.target ∩ e'.source) :=
PartialEquiv.trans_source'' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source'' PartialHomeomorph.trans_source''
theorem image_trans_source : e '' (e.trans e').source = e.target ∩ e'.source :=
PartialEquiv.image_trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.image_trans_source PartialHomeomorph.image_trans_source
theorem trans_target : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' e.target :=
rfl
#align local_homeomorph.trans_target PartialHomeomorph.trans_target
theorem trans_target' : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' (e'.source ∩ e.target) :=
trans_source' e'.symm e.symm
#align local_homeomorph.trans_target' PartialHomeomorph.trans_target'
theorem trans_target'' : (e.trans e').target = e' '' (e'.source ∩ e.target) :=
trans_source'' e'.symm e.symm
#align local_homeomorph.trans_target'' PartialHomeomorph.trans_target''
theorem inv_image_trans_target : e'.symm '' (e.trans e').target = e'.source ∩ e.target :=
image_trans_source e'.symm e.symm
#align local_homeomorph.inv_image_trans_target PartialHomeomorph.inv_image_trans_target
theorem trans_assoc (e'' : PartialHomeomorph γ δ) :
(e.trans e').trans e'' = e.trans (e'.trans e'') :=
toPartialEquiv_injective <| e.1.trans_assoc _ _
#align local_homeomorph.trans_assoc PartialHomeomorph.trans_assoc
@[simp, mfld_simps]
theorem trans_refl : e.trans (PartialHomeomorph.refl β) = e :=
toPartialEquiv_injective e.1.trans_refl
#align local_homeomorph.trans_refl PartialHomeomorph.trans_refl
@[simp, mfld_simps]
theorem refl_trans : (PartialHomeomorph.refl α).trans e = e :=
toPartialEquiv_injective e.1.refl_trans
#align local_homeomorph.refl_trans PartialHomeomorph.refl_trans
theorem trans_ofSet {s : Set β} (hs : IsOpen s) : e.trans (ofSet s hs) = e.restr (e ⁻¹' s) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) <| by
rw [trans_source, restr_source, ofSet_source, ← preimage_interior, hs.interior_eq]
#align local_homeomorph.trans_of_set PartialHomeomorph.trans_ofSet
theorem trans_of_set' {s : Set β} (hs : IsOpen s) :
e.trans (ofSet s hs) = e.restr (e.source ∩ e ⁻¹' s) := by rw [trans_ofSet, restr_source_inter]
#align local_homeomorph.trans_of_set' PartialHomeomorph.trans_of_set'
theorem ofSet_trans {s : Set α} (hs : IsOpen s) : (ofSet s hs).trans e = e.restr s :=
PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) <| by simp [hs.interior_eq, inter_comm]
#align local_homeomorph.of_set_trans PartialHomeomorph.ofSet_trans
theorem ofSet_trans' {s : Set α} (hs : IsOpen s) :
(ofSet s hs).trans e = e.restr (e.source ∩ s) := by
rw [ofSet_trans, restr_source_inter]
#align local_homeomorph.of_set_trans' PartialHomeomorph.ofSet_trans'
@[simp, mfld_simps]
theorem ofSet_trans_ofSet {s : Set α} (hs : IsOpen s) {s' : Set α} (hs' : IsOpen s') :
(ofSet s hs).trans (ofSet s' hs') = ofSet (s ∩ s') (IsOpen.inter hs hs') := by
rw [(ofSet s hs).trans_ofSet hs']
ext <;> simp [hs'.interior_eq]
#align local_homeomorph.of_set_trans_of_set PartialHomeomorph.ofSet_trans_ofSet
theorem restr_trans (s : Set α) : (e.restr s).trans e' = (e.trans e').restr s :=
toPartialEquiv_injective <|
PartialEquiv.restr_trans e.toPartialEquiv e'.toPartialEquiv (interior s)
#align local_homeomorph.restr_trans PartialHomeomorph.restr_trans
/-- Postcompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def transHomeomorph (e' : β ≃ₜ γ) : PartialHomeomorph α γ where
toPartialEquiv := e.toPartialEquiv.transEquiv e'.toEquiv
open_source := e.open_source
open_target := e.open_target.preimage e'.symm.continuous
continuousOn_toFun := e'.continuous.comp_continuousOn e.continuousOn
continuousOn_invFun := e.symm.continuousOn.comp e'.symm.continuous.continuousOn fun _ => id
#align local_homeomorph.trans_homeomorph PartialHomeomorph.transHomeomorph
theorem transHomeomorph_eq_trans (e' : β ≃ₜ γ) :
e.transHomeomorph e' = e.trans e'.toPartialHomeomorph :=
toPartialEquiv_injective <| PartialEquiv.transEquiv_eq_trans _ _
#align local_homeomorph.trans_equiv_eq_trans PartialHomeomorph.transHomeomorph_eq_trans
/-- Precompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def _root_.Homeomorph.transPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α γ where
toPartialEquiv := e.toEquiv.transPartialEquiv e'.toPartialEquiv
open_source := e'.open_source.preimage e.continuous
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuous.continuousOn fun _ => id
continuousOn_invFun := e.symm.continuous.comp_continuousOn e'.symm.continuousOn
#align homeomorph.trans_local_homeomorph Homeomorph.transPartialHomeomorph
theorem _root_.Homeomorph.transPartialHomeomorph_eq_trans (e : α ≃ₜ β) :
e.transPartialHomeomorph e' = e.toPartialHomeomorph.trans e' :=
toPartialEquiv_injective <| Equiv.transPartialEquiv_eq_trans _ _
#align homeomorph.trans_local_homeomorph_eq_trans Homeomorph.transPartialHomeomorph_eq_trans
/-- `EqOnSource e e'` means that `e` and `e'` have the same source, and coincide there. They
should really be considered the same partial equivalence. -/
def EqOnSource (e e' : PartialHomeomorph α β) : Prop :=
e.source = e'.source ∧ EqOn e e' e.source
#align local_homeomorph.eq_on_source PartialHomeomorph.EqOnSource
theorem eqOnSource_iff (e e' : PartialHomeomorph α β) :
EqOnSource e e' ↔ PartialEquiv.EqOnSource e.toPartialEquiv e'.toPartialEquiv :=
Iff.rfl
#align local_homeomorph.eq_on_source_iff PartialHomeomorph.eqOnSource_iff
/-- `EqOnSource` is an equivalence relation. -/
instance eqOnSourceSetoid : Setoid (PartialHomeomorph α β) :=
{ PartialEquiv.eqOnSourceSetoid.comap toPartialEquiv with r := EqOnSource }
theorem eqOnSource_refl : e ≈ e := Setoid.refl _
#align local_homeomorph.eq_on_source_refl PartialHomeomorph.eqOnSource_refl
/-- If two partial homeomorphisms are equivalent, so are their inverses. -/
theorem EqOnSource.symm' {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.symm ≈ e'.symm :=
PartialEquiv.EqOnSource.symm' h
#align local_homeomorph.eq_on_source.symm' PartialHomeomorph.EqOnSource.symm'
/-- Two equivalent partial homeomorphisms have the same source. -/
theorem EqOnSource.source_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.source = e'.source :=
h.1
#align local_homeomorph.eq_on_source.source_eq PartialHomeomorph.EqOnSource.source_eq
/-- Two equivalent partial homeomorphisms have the same target. -/
theorem EqOnSource.target_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.target = e'.target :=
h.symm'.1
#align local_homeomorph.eq_on_source.target_eq PartialHomeomorph.EqOnSource.target_eq
/-- Two equivalent partial homeomorphisms have coinciding `toFun` on the source -/
theorem EqOnSource.eqOn {e e' : PartialHomeomorph α β} (h : e ≈ e') : EqOn e e' e.source :=
h.2
#align local_homeomorph.eq_on_source.eq_on PartialHomeomorph.EqOnSource.eqOn
/-- Two equivalent partial homeomorphisms have coinciding `invFun` on the target -/
theorem EqOnSource.symm_eqOn_target {e e' : PartialHomeomorph α β} (h : e ≈ e') :
EqOn e.symm e'.symm e.target :=
h.symm'.2
#align local_homeomorph.eq_on_source.symm_eq_on_target PartialHomeomorph.EqOnSource.symm_eqOn_target
/-- Composition of partial homeomorphisms respects equivalence. -/
theorem EqOnSource.trans' {e e' : PartialHomeomorph α β} {f f' : PartialHomeomorph β γ}
(he : e ≈ e') (hf : f ≈ f') : e.trans f ≈ e'.trans f' :=
PartialEquiv.EqOnSource.trans' he hf
#align local_homeomorph.eq_on_source.trans' PartialHomeomorph.EqOnSource.trans'
/-- Restriction of partial homeomorphisms respects equivalence -/
theorem EqOnSource.restr {e e' : PartialHomeomorph α β} (he : e ≈ e') (s : Set α) :
e.restr s ≈ e'.restr s :=
PartialEquiv.EqOnSource.restr he _
#align local_homeomorph.eq_on_source.restr PartialHomeomorph.EqOnSource.restr
/- Two equivalent partial homeomorphisms are equal when the source and target are `univ`. -/
theorem Set.EqOn.restr_eqOn_source {e e' : PartialHomeomorph α β}
(h : EqOn e e' (e.source ∩ e'.source)) : e.restr e'.source ≈ e'.restr e.source := by
constructor
· rw [e'.restr_source' _ e.open_source]
rw [e.restr_source' _ e'.open_source]
exact Set.inter_comm _ _
· rw [e.restr_source' _ e'.open_source]
refine' (EqOn.trans _ h).trans _ <;> simp only [mfld_simps, eqOn_refl]
#align local_homeomorph.set.eq_on.restr_eq_on_source PartialHomeomorph.Set.EqOn.restr_eqOn_source
/-- Composition of a partial homeomorphism and its inverse is equivalent to the restriction of the
identity to the source -/
theorem trans_self_symm : e.trans e.symm ≈ PartialHomeomorph.ofSet e.source e.open_source :=
PartialEquiv.trans_self_symm _
#align local_homeomorph.trans_self_symm PartialHomeomorph.trans_self_symm
theorem trans_symm_self : e.symm.trans e ≈ PartialHomeomorph.ofSet e.target e.open_target :=
e.symm.trans_self_symm
#align local_homeomorph.trans_symm_self PartialHomeomorph.trans_symm_self
theorem eq_of_eqOnSource_univ {e e' : PartialHomeomorph α β} (h : e ≈ e') (s : e.source = univ)
(t : e.target = univ) : e = e' :=
toPartialEquiv_injective <| PartialEquiv.eq_of_eqOnSource_univ _ _ h s t
#align local_homeomorph.eq_of_eq_on_source_univ PartialHomeomorph.eq_of_eqOnSource_univ
section Prod
/-- The product of two partial homeomorphisms, as a partial homeomorphism on the product space. -/
@[simps! (config := mfld_cfg) toPartialEquiv apply,
simps! (config := .lemmasOnly) source target symm_apply]
def prod (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
PartialHomeomorph (α × γ) (β × δ) where
open_source := e.open_source.prod e'.open_source
open_target := e.open_target.prod e'.open_target
continuousOn_toFun := e.continuousOn.prod_map e'.continuousOn
continuousOn_invFun := e.continuousOn_symm.prod_map e'.continuousOn_symm
toPartialEquiv := e.toPartialEquiv.prod e'.toPartialEquiv
#align local_homeomorph.prod PartialHomeomorph.prod
@[simp, mfld_simps]
theorem prod_symm (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
(e.prod e').symm = e.symm.prod e'.symm :=
rfl
#align local_homeomorph.prod_symm PartialHomeomorph.prod_symm
@[simp]
theorem refl_prod_refl {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] :
(PartialHomeomorph.refl α).prod (PartialHomeomorph.refl β) = PartialHomeomorph.refl (α × β) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) univ_prod_univ
#align local_homeomorph.refl_prod_refl PartialHomeomorph.refl_prod_refl
@[simp, mfld_simps]
theorem prod_trans {η : Type*} {ε : Type*} [TopologicalSpace η] [TopologicalSpace ε]
(e : PartialHomeomorph α β) (f : PartialHomeomorph β γ) (e' : PartialHomeomorph δ η)
(f' : PartialHomeomorph η ε) : (e.prod e').trans (f.prod f') = (e.trans f).prod (e'.trans f') :=
toPartialEquiv_injective <| e.1.prod_trans ..
#align local_homeomorph.prod_trans PartialHomeomorph.prod_trans
theorem prod_eq_prod_of_nonempty {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁.prod e₂).source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
obtain ⟨⟨x, y⟩, -⟩ := id h
haveI : Nonempty α := ⟨x⟩
haveI : Nonempty β := ⟨e₁ x⟩
haveI : Nonempty γ := ⟨y⟩
haveI : Nonempty δ := ⟨e₂ y⟩
simp_rw [PartialHomeomorph.ext_iff, prod_apply, prod_symm_apply, prod_source, Prod.ext_iff,
Set.prod_eq_prod_iff_of_nonempty h, forall_and, Prod.forall, forall_const,
and_assoc, and_left_comm]
#align local_homeomorph.prod_eq_prod_of_nonempty PartialHomeomorph.prod_eq_prod_of_nonempty
theorem prod_eq_prod_of_nonempty' {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁'.prod e₂').source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
rw [eq_comm, prod_eq_prod_of_nonempty h, eq_comm, @eq_comm _ e₂']
#align local_homeomorph.prod_eq_prod_of_nonempty' PartialHomeomorph.prod_eq_prod_of_nonempty'
end Prod
section Piecewise
/-- Combine two `PartialHomeomorph`s using `Set.piecewise`. The source of the new
`PartialHomeomorph` is `s.ite e.source e'.source = e.source ∩ s ∪ e'.source \ s`, and similarly for
target. The function sends `e.source ∩ s` to `e.target ∩ t` using `e` and
`e'.source \ s` to `e'.target \ t` using `e'`, and similarly for the inverse function.
To ensure the maps `toFun` and `invFun` are inverse of each other on the new `source` and `target`,
the definition assumes that the sets `s` and `t` are related both by `e.is_image` and `e'.is_image`.
To ensure that the new maps are continuous on `source`/`target`, it also assumes that `e.source` and
`e'.source` meet `frontier s` on the same set and `e x = e' x` on this intersection. -/
@[simps! (config := .asFn) toPartialEquiv apply]
def piecewise (e e' : PartialHomeomorph α β) (s : Set α) (t : Set β) [∀ x, Decidable (x ∈ s)]
[∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquiv.piecewise e'.toPartialEquiv s t H H'
open_source := e.open_source.ite e'.open_source Hs
open_target :=
e.open_target.ite e'.open_target <| H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq
continuousOn_toFun := continuousOn_piecewise_ite e.continuousOn e'.continuousOn Hs Heq
continuousOn_invFun :=
continuousOn_piecewise_ite e.continuousOn_symm e'.continuousOn_symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq)
#align local_homeomorph.piecewise PartialHomeomorph.piecewise
@[simp]
theorem symm_piecewise (e e' : PartialHomeomorph α β) {s : Set α} {t : Set β}
[∀ x, Decidable (x ∈ s)] [∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) :
(e.piecewise e' s t H H' Hs Heq).symm =
e.symm.piecewise e'.symm t s H.symm H'.symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq) :=
rfl
#align local_homeomorph.symm_piecewise PartialHomeomorph.symm_piecewise
/-- Combine two `PartialHomeomorph`s with disjoint sources and disjoint targets. We reuse
`PartialHomeomorph.piecewise` then override `toPartialEquiv` to `PartialEquiv.disjointUnion`.
This way we have better definitional equalities for `source` and `target`. -/
def disjointUnion (e e' : PartialHomeomorph α β) [∀ x, Decidable (x ∈ e.source)]
[∀ y, Decidable (y ∈ e.target)] (Hs : Disjoint e.source e'.source)
(Ht : Disjoint e.target e'.target) : PartialHomeomorph α β :=
(e.piecewise e' e.source e.target e.isImage_source_target
(e'.isImage_source_target_of_disjoint e Hs.symm Ht.symm)
(by rw [e.open_source.inter_frontier_eq, (Hs.symm.frontier_right e'.open_source).inter_eq])
(by
rw [e.open_source.inter_frontier_eq]
exact eqOn_empty _ _)).replaceEquiv
(e.toPartialEquiv.disjointUnion e'.toPartialEquiv Hs Ht)
(PartialEquiv.disjointUnion_eq_piecewise _ _ _ _).symm
#align local_homeomorph.disjoint_union PartialHomeomorph.disjointUnion
end Piecewise
section Pi
variable {ι : Type*} [Fintype ι] {Xi Yi : ι → Type*} [∀ i, TopologicalSpace (Xi i)]
[∀ i, TopologicalSpace (Yi i)] (ei : ∀ i, PartialHomeomorph (Xi i) (Yi i))
/-- The product of a finite family of `PartialHomeomorph`s. -/
@[simps toPartialEquiv]
def pi : PartialHomeomorph (∀ i, Xi i) (∀ i, Yi i) where
toPartialEquiv := PartialEquiv.pi fun i => (ei i).toPartialEquiv
open_source := isOpen_set_pi finite_univ fun i _ => (ei i).open_source
open_target := isOpen_set_pi finite_univ fun i _ => (ei i).open_target
continuousOn_toFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
continuousOn_invFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn_symm.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
#align local_homeomorph.pi PartialHomeomorph.pi
end Pi
section Continuity
/-- Continuity within a set at a point can be read under right composition with a local
homeomorphism, if the point is in its target -/
theorem continuousWithinAt_iff_continuousWithinAt_comp_right {f : β → γ} {s : Set β} {x : β}
(h : x ∈ e.target) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ e) (e ⁻¹' s) (e.symm x) := by
simp_rw [ContinuousWithinAt, ← @tendsto_map'_iff _ _ _ _ e,
e.map_nhdsWithin_preimage_eq (e.map_target h), (· ∘ ·), e.right_inv h]
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_right PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
/-- Continuity at a point can be read under right composition with a partial homeomorphism, if the
point is in its target -/
theorem continuousAt_iff_continuousAt_comp_right {f : β → γ} {x : β} (h : x ∈ e.target) :
ContinuousAt f x ↔ ContinuousAt (f ∘ e) (e.symm x) := by
rw [← continuousWithinAt_univ, e.continuousWithinAt_iff_continuousWithinAt_comp_right h,
preimage_univ, continuousWithinAt_univ]
#align local_homeomorph.continuous_at_iff_continuous_at_comp_right PartialHomeomorph.continuousAt_iff_continuousAt_comp_right
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the right is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_right {f : β → γ} {s : Set β} (h : s ⊆ e.target) :
ContinuousOn f s ↔ ContinuousOn (f ∘ e) (e.source ∩ e ⁻¹' s) := by
simp only [← e.symm_image_eq_source_inter_preimage h, ContinuousOn, ball_image_iff]
refine' forall₂_congr fun x hx => _
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx),
e.symm_image_eq_source_inter_preimage h, inter_comm, continuousWithinAt_inter]
exact IsOpen.mem_nhds e.open_source (e.map_target (h hx))
#align local_homeomorph.continuous_on_iff_continuous_on_comp_right PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
/-- Continuity within a set at a point can be read under left composition with a local
homeomorphism if a neighborhood of the initial point is sent to the source of the local
homeomorphism-/
theorem continuousWithinAt_iff_continuousWithinAt_comp_left {f : γ → α} {s : Set γ} {x : γ}
(hx : f x ∈ e.source) (h : f ⁻¹' e.source ∈ 𝓝[s] x) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (e ∘ f) s x := by
refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩
rw [← continuousWithinAt_inter' h] at fe_cont ⊢
have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=
haveI : ContinuousWithinAt e.symm univ (e (f x)) :=
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
ContinuousWithinAt.comp this fe_cont (subset_univ _)
exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_left PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
/-- Continuity at a point can be read under left composition with a partial homeomorphism if a
neighborhood of the initial point is sent to the source of the partial homeomorphism-/
theorem continuousAt_iff_continuousAt_comp_left {f : γ → α} {x : γ} (h : f ⁻¹' e.source ∈ 𝓝 x) :
ContinuousAt f x ↔ ContinuousAt (e ∘ f) x := by
have hx : f x ∈ e.source := (mem_of_mem_nhds h : _)
have h' : f ⁻¹' e.source ∈ 𝓝[univ] x := by rwa [nhdsWithin_univ]
rw [← continuousWithinAt_univ, ← continuousWithinAt_univ,
e.continuousWithinAt_iff_continuousWithinAt_comp_left hx h']
#align local_homeomorph.continuous_at_iff_continuous_at_comp_left PartialHomeomorph.continuousAt_iff_continuousAt_comp_left
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the left is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_left {f : γ → α} {s : Set γ} (h : s ⊆ f ⁻¹' e.source) :
ContinuousOn f s ↔ ContinuousOn (e ∘ f) s :=
forall₂_congr fun _x hx =>
e.continuousWithinAt_iff_continuousWithinAt_comp_left (h hx)
(mem_of_superset self_mem_nhdsWithin h)
#align local_homeomorph.continuous_on_iff_continuous_on_comp_left PartialHomeomorph.continuousOn_iff_continuousOn_comp_left
/-- A function is continuous if and only if its composition with a partial homeomorphism
on the left is continuous and its image is contained in the source. -/
theorem continuous_iff_continuous_comp_left {f : γ → α} (h : f ⁻¹' e.source = univ) :
Continuous f ↔ Continuous (e ∘ f) := by
simp only [continuous_iff_continuousOn_univ]
exact e.continuousOn_iff_continuousOn_comp_left (Eq.symm h).subset
#align local_homeomorph.continuous_iff_continuous_comp_left PartialHomeomorph.continuous_iff_continuous_comp_left
end Continuity
/-- The homeomorphism obtained by restricting a `PartialHomeomorph` to a subset of the source. -/
@[simps]
def homeomorphOfImageSubsetSource {s : Set α} {t : Set β} (hs : s ⊆ e.source) (ht : e '' s = t) :
s ≃ₜ t :=
have h₁ : MapsTo e s t := mapsTo'.2 ht.subset
have h₂ : t ⊆ e.target := ht ▸ e.image_source_eq_target ▸ image_subset e hs
have h₃ : MapsTo e.symm t s := ht ▸ ball_image_iff.2 <| fun _x hx =>
(e.left_inv (hs hx)).symm ▸ hx
{ toFun := MapsTo.restrict e s t h₁
invFun := MapsTo.restrict e.symm t s h₃
left_inv := fun a => Subtype.ext (e.left_inv (hs a.2))
right_inv := fun b => Subtype.eq <| e.right_inv (h₂ b.2)
continuous_toFun := (e.continuousOn.mono hs).restrict_mapsTo h₁
continuous_invFun := (e.continuousOn_symm.mono h₂).restrict_mapsTo h₃ }
#align local_homeomorph.homeomorph_of_image_subset_source PartialHomeomorph.homeomorphOfImageSubsetSource
/-- A partial homeomorphism defines a homeomorphism between its source and target. -/
@[simps!] -- porting note: new `simps`
def toHomeomorphSourceTarget : e.source ≃ₜ e.target :=
e.homeomorphOfImageSubsetSource subset_rfl e.image_source_eq_target
#align local_homeomorph.to_homeomorph_source_target PartialHomeomorph.toHomeomorphSourceTarget
theorem secondCountableTopology_source [SecondCountableTopology β] (e : PartialHomeomorph α β) :
SecondCountableTopology e.source :=
e.toHomeomorphSourceTarget.secondCountableTopology
#align local_homeomorph.second_countable_topology_source PartialHomeomorph.secondCountableTopology_source
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) :
𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source := by
lift x to e.source using hx
rw [← e.open_source.nhdsWithin_eq x.2, ← map_nhds_subtype_val, ← map_comap_setCoe_val,
e.toHomeomorphSourceTarget.nhds_eq_comap, nhds_subtype_eq_comap]
simp only [(· ∘ ·), toHomeomorphSourceTarget_apply_coe, comap_comap]
/-- If a partial homeomorphism has source and target equal to univ, then it induces a homeomorphism
between the whole spaces, expressed in this definition. -/
@[simps (config := mfld_cfg) apply symm_apply] -- porting note: todo: add a `PartialEquiv` version
def toHomeomorphOfSourceEqUnivTargetEqUniv (h : e.source = (univ : Set α)) (h' : e.target = univ) :
α ≃ₜ β where
toFun := e
invFun := e.symm
left_inv x :=
e.left_inv <| by
rw [h]
exact mem_univ _
right_inv x :=
e.right_inv <| by
rw [h']
exact mem_univ _
continuous_toFun := by
simpa only [continuous_iff_continuousOn_univ, h] using e.continuousOn
continuous_invFun := by
simpa only [continuous_iff_continuousOn_univ, h'] using e.continuousOn_symm
#align local_homeomorph.to_homeomorph_of_source_eq_univ_target_eq_univ PartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv
theorem openEmbedding_restrict : OpenEmbedding (e.source.restrict e) := by
refine openEmbedding_of_continuous_injective_open (e.continuousOn.comp_continuous
continuous_subtype_val Subtype.prop) e.injOn.injective fun V hV ↦ ?_
rw [Set.restrict_eq, Set.image_comp]
exact e.image_isOpen_of_isOpen (e.open_source.isOpenMap_subtype_val V hV)
fun _ ⟨x, _, h⟩ ↦ h ▸ x.2
/-- A partial homeomorphism whose source is all of `α` defines an open embedding of `α` into `β`.
The converse is also true; see `OpenEmbedding.toPartialHomeomorph`. -/
theorem to_openEmbedding (h : e.source = Set.univ) : OpenEmbedding e :=
e.openEmbedding_restrict.comp
((Homeomorph.setCongr h).trans <| Homeomorph.Set.univ α).symm.openEmbedding
#align local_homeomorph.to_open_embedding PartialHomeomorph.to_openEmbedding
end PartialHomeomorph
namespace Homeomorph
variable (e : α ≃ₜ β) (e' : β ≃ₜ γ)
/- Register as simp lemmas that the fields of a partial homeomorphism built from a homeomorphism
correspond to the fields of the original homeomorphism. -/
@[simp, mfld_simps]
theorem refl_toPartialHomeomorph :
(Homeomorph.refl α).toPartialHomeomorph = PartialHomeomorph.refl α :=
rfl
#align homeomorph.refl_to_local_homeomorph Homeomorph.refl_toPartialHomeomorph
@[simp, mfld_simps]
theorem symm_toPartialHomeomorph : e.symm.toPartialHomeomorph = e.toPartialHomeomorph.symm :=
rfl
#align homeomorph.symm_to_local_homeomorph Homeomorph.symm_toPartialHomeomorph
@[simp, mfld_simps]
theorem trans_toPartialHomeomorph :
(e.trans e').toPartialHomeomorph = e.toPartialHomeomorph.trans e'.toPartialHomeomorph :=
PartialHomeomorph.toPartialEquiv_injective <| Equiv.trans_toPartialEquiv _ _
#align homeomorph.trans_to_local_homeomorph Homeomorph.trans_toPartialHomeomorph
end Homeomorph
namespace OpenEmbedding
variable (f : α → β) (h : OpenEmbedding f)
/-- An open embedding of `α` into `β`, with `α` nonempty, defines a partial homeomorphism
whose source is all of `α`. The converse is also true; see `PartialHomeomorph.to_openEmbedding`. -/
@[simps! (config := mfld_cfg) apply source target]
noncomputable def toPartialHomeomorph [Nonempty α] : PartialHomeomorph α β :=
PartialHomeomorph.ofContinuousOpen ((h.toEmbedding.inj.injOn univ).toPartialEquiv _ _)
h.continuous.continuousOn h.isOpenMap isOpen_univ
#align open_embedding.to_local_homeomorph OpenEmbedding.toPartialHomeomorph
variable [Nonempty α]
lemma toPartialHomeomorph_left_inv {x : α} : (h.toPartialHomeomorph f).symm (f x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.left_inv]
exact Set.mem_univ _
lemma toPartialHomeomorph_right_inv {x : β} (hx : x ∈ Set.range f) :
f ((h.toPartialHomeomorph f).symm x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.right_inv]
rwa [toPartialHomeomorph_target]
end OpenEmbedding
namespace TopologicalSpace.Opens
open TopologicalSpace
variable (s : Opens α) [Nonempty s]
/-- The inclusion of an open subset `s` of a space `α` into `α` is a partial homeomorphism from the
subtype `s` to `α`. -/
noncomputable def localHomeomorphSubtypeCoe : PartialHomeomorph s α :=
OpenEmbedding.toPartialHomeomorph _ s.2.openEmbedding_subtype_val
#align topological_space.opens.local_homeomorph_subtype_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_coe : (s.localHomeomorphSubtypeCoe : s → α) = (↑) :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe_coe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_source : s.localHomeomorphSubtypeCoe.source = Set.univ :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_source TopologicalSpace.Opens.localHomeomorphSubtypeCoe_source
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_target : s.localHomeomorphSubtypeCoe.target = s := by
simp only [localHomeomorphSubtypeCoe, Subtype.range_coe_subtype, mfld_simps]
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_target TopologicalSpace.Opens.localHomeomorphSubtypeCoe_target
end TopologicalSpace.Opens
namespace PartialHomeomorph
open TopologicalSpace
variable (e : PartialHomeomorph α β)
variable (s : Opens α) [Nonempty s]
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
produces a partial homeomorphism whose domain is the subtype `s`. -/
noncomputable def subtypeRestr : PartialHomeomorph s β :=
s.localHomeomorphSubtypeCoe.trans e
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
theorem subtypeRestr_def : e.subtypeRestr s = s.localHomeomorphSubtypeCoe.trans e :=
rfl
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
@[simp, mfld_simps]
theorem subtypeRestr_coe :
((e.subtypeRestr s : PartialHomeomorph s β) : s → β) = Set.restrict ↑s (e : α → β) :=
rfl
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
@[simp, mfld_simps]
theorem subtypeRestr_source : (e.subtypeRestr s).source = (↑) ⁻¹' e.source := by
simp only [subtypeRestr_def, mfld_simps]
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
variable {s}
theorem map_subtype_source {x : s} (hxe : (x : α) ∈ e.source): e x ∈ (e.subtypeRestr s).target := by
refine' ⟨e.map_source hxe, _⟩
rw [s.localHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
exact x.prop
#align local_homeomorph.map_subtype_source PartialHomeomorph.map_subtype_source
variable (s)
/- This lemma characterizes the transition functions of an open subset in terms of the transition
functions of the original space. -/
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph α β) :
(f.subtypeRestr s).symm.trans (f'.subtypeRestr s) ≈
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]
refine' EqOnSource.trans' _ (eqOnSource_refl _)
-- f' has been eliminated !!!
have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=
by mfld_set_tac
have openness₂ : IsOpen (s : Set α) := s.2
rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]
refine' EqOnSource.trans' (eqOnSource_refl _) _
-- f has been eliminated !!!
refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _
simp only [mfld_simps, Setoid.refl]
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
theorem subtypeRestr_symm_eqOn (U : Opens α) [Nonempty U] :
EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U).symm) (e.subtypeRestr U).target := by
intro y hy
rw [eq_comm, eq_symm_apply _ _ hy.1]
· change restrict _ e _ = _
rw [← subtypeRestr_coe, (e.subtypeRestr U).right_inv hy]
· have := map_target _ hy; rwa [subtypeRestr_source] at this
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
exact hyV
· rw [V.localHomeomorphSubtypeCoe.right_inv hyV]
|
show _ = U.localHomeomorphSubtypeCoe _
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
exact hyV
· rw [V.localHomeomorphSubtypeCoe.right_inv hyV]
|
Mathlib.Topology.PartialHomeomorph.1460_0.xRULiNOId4c9Kju
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target
|
Mathlib_Topology_PartialHomeomorph
|
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : TopologicalSpace α
inst✝⁵ : TopologicalSpace β
inst✝⁴ : TopologicalSpace γ
inst✝³ : TopologicalSpace δ
e : PartialHomeomorph α β
s : Opens α
inst✝² : Nonempty ↥s
U V : Opens α
inst✝¹ : Nonempty ↥U
inst✝ : Nonempty ↥V
hUV : U ≤ V
i : ↑↑U → ↑↑V := inclusion hUV
y : β
hy : y ∈ e.target ∩ ↑(PartialHomeomorph.symm e) ⁻¹' (Opens.localHomeomorphSubtypeCoe U).toPartialEquiv.target
hyV : ↑(PartialHomeomorph.symm e) y ∈ (Opens.localHomeomorphSubtypeCoe V).toPartialEquiv.target
⊢ ↑(PartialHomeomorph.symm e) y =
↑(Opens.localHomeomorphSubtypeCoe U)
(↑(PartialHomeomorph.symm (Opens.localHomeomorphSubtypeCoe U)) (↑(PartialHomeomorph.symm e) y))
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Logic.Equiv.PartialEquiv
import Mathlib.Topology.Sets.Opens
#align_import topology.local_homeomorph from "leanprover-community/mathlib"@"431589bce478b2229eba14b14a283250428217db"
/-!
# Partial homeomorphisms
# Partial homeomorphisms
This file defines homeomorphisms between open subsets of topological spaces. An element `e` of
`PartialHomeomorph α β` is an extension of `PartialEquiv α β`, i.e., it is a pair of functions
`e.toFun` and `e.invFun`, inverse of each other on the sets `e.source` and `e.target`.
Additionally, we require that these sets are open, and that the functions are continuous on them.
Equivalently, they are homeomorphisms there.
As in equivs, we register a coercion to functions, and we use `e x` and `e.symm x` throughout
instead of `e.toFun x` and `e.invFun x`.
## Main definitions
* `Homeomorph.toPartialHomeomorph`: associating a partial homeomorphism to a homeomorphism, with
`source = target = Set.univ`;
* `PartialHomeomorph.symm`: the inverse of a partial homeomorphism
* `PartialHomeomorph.trans`: the composition of two partial homeomorphisms
* `PartialHomeomorph.refl`: the identity partial homeomorphism
* `PartialHomeomorph.ofSet`: the identity on a set `s`
* `PartialHomeomorph.EqOnSource`: equivalence relation describing the "right" notion of equality
for partial homeomorphisms
## Implementation notes
Most statements are copied from their `PartialEquiv` versions, although some care is required
especially when restricting to subsets, as these should be open subsets.
For design notes, see `PartialEquiv.lean`.
### Local coding conventions
If a lemma deals with the intersection of a set with either source or target of a `PartialEquiv`,
then it should use `e.source ∩ s` or `e.target ∩ t`, not `s ∩ e.source` or `t ∩ e.target`.
-/
open Function Set Filter Topology
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
/-- Partial homeomorphisms, defined on open subsets of the space -/
-- porting note: commented @[nolint has_nonempty_instance]
structure PartialHomeomorph (α : Type*) (β : Type*) [TopologicalSpace α]
[TopologicalSpace β] extends PartialEquiv α β where
open_source : IsOpen source
open_target : IsOpen target
continuousOn_toFun : ContinuousOn toFun source
continuousOn_invFun : ContinuousOn invFun target
#align local_homeomorph PartialHomeomorph
namespace PartialHomeomorph
variable (e : PartialHomeomorph α β) (e' : PartialHomeomorph β γ)
/-- Coercion of a partial homeomorphisms to a function. We don't use `e.toFun` because it is
actually `e.toPartialEquiv.toFun`, so `simp` will apply lemmas about `toPartialEquiv`.
While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs. -/
@[coe] def toFun' : α → β := e.toFun
/-- Coercion of a `PartialHomeomorph` to function.
Note that a `PartialHomeomorph` is not `FunLike`. -/
instance : CoeFun (PartialHomeomorph α β) fun _ => α → β :=
⟨fun e => e.toFun'⟩
/-- The inverse of a partial homeomorphism -/
protected def symm : PartialHomeomorph β α where
toPartialEquiv := e.toPartialEquiv.symm
open_source := e.open_target
open_target := e.open_source
continuousOn_toFun := e.continuousOn_invFun
continuousOn_invFun := e.continuousOn_toFun
#align local_homeomorph.symm PartialHomeomorph.symm
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def Simps.apply (e : PartialHomeomorph α β) : α → β := e
#align local_homeomorph.simps.apply PartialHomeomorph.Simps.apply
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : PartialHomeomorph α β) : β → α := e.symm
#align local_homeomorph.simps.symm_apply PartialHomeomorph.Simps.symm_apply
initialize_simps_projections PartialHomeomorph (toFun → apply, invFun → symm_apply)
protected theorem continuousOn : ContinuousOn e e.source :=
e.continuousOn_toFun
#align local_homeomorph.continuous_on PartialHomeomorph.continuousOn
theorem continuousOn_symm : ContinuousOn e.symm e.target :=
e.continuousOn_invFun
#align local_homeomorph.continuous_on_symm PartialHomeomorph.continuousOn_symm
@[simp, mfld_simps]
theorem mk_coe (e : PartialEquiv α β) (a b c d) : (PartialHomeomorph.mk e a b c d : α → β) = e :=
rfl
#align local_homeomorph.mk_coe PartialHomeomorph.mk_coe
@[simp, mfld_simps]
theorem mk_coe_symm (e : PartialEquiv α β) (a b c d) :
((PartialHomeomorph.mk e a b c d).symm : β → α) = e.symm :=
rfl
#align local_homeomorph.mk_coe_symm PartialHomeomorph.mk_coe_symm
theorem toPartialEquiv_injective :
Injective (toPartialEquiv : PartialHomeomorph α β → PartialEquiv α β)
| ⟨_, _, _, _, _⟩, ⟨_, _, _, _, _⟩, rfl => rfl
#align local_homeomorph.to_local_equiv_injective PartialHomeomorph.toPartialEquiv_injective
/- Register a few simp lemmas to make sure that `simp` puts the application of a local
homeomorphism in its normal form, i.e., in terms of its coercion to a function. -/
@[simp, mfld_simps]
theorem toFun_eq_coe (e : PartialHomeomorph α β) : e.toFun = e :=
rfl
#align local_homeomorph.to_fun_eq_coe PartialHomeomorph.toFun_eq_coe
@[simp, mfld_simps]
theorem invFun_eq_coe (e : PartialHomeomorph α β) : e.invFun = e.symm :=
rfl
#align local_homeomorph.inv_fun_eq_coe PartialHomeomorph.invFun_eq_coe
@[simp, mfld_simps]
theorem coe_coe : (e.toPartialEquiv : α → β) = e :=
rfl
#align local_homeomorph.coe_coe PartialHomeomorph.coe_coe
@[simp, mfld_simps]
theorem coe_coe_symm : (e.toPartialEquiv.symm : β → α) = e.symm :=
rfl
#align local_homeomorph.coe_coe_symm PartialHomeomorph.coe_coe_symm
@[simp, mfld_simps]
theorem map_source {x : α} (h : x ∈ e.source) : e x ∈ e.target :=
e.map_source' h
#align local_homeomorph.map_source PartialHomeomorph.map_source
/-- Variant of `map_source`, stated for images of subsets of `source`. -/
lemma map_source'' : e '' e.source ⊆ e.target :=
fun _ ⟨_, hx, hex⟩ ↦ mem_of_eq_of_mem (id hex.symm) (e.map_source' hx)
@[simp, mfld_simps]
theorem map_target {x : β} (h : x ∈ e.target) : e.symm x ∈ e.source :=
e.map_target' h
#align local_homeomorph.map_target PartialHomeomorph.map_target
@[simp, mfld_simps]
theorem left_inv {x : α} (h : x ∈ e.source) : e.symm (e x) = x :=
e.left_inv' h
#align local_homeomorph.left_inv PartialHomeomorph.left_inv
@[simp, mfld_simps]
theorem right_inv {x : β} (h : x ∈ e.target) : e (e.symm x) = x :=
e.right_inv' h
#align local_homeomorph.right_inv PartialHomeomorph.right_inv
theorem eq_symm_apply {x : α} {y : β} (hx : x ∈ e.source) (hy : y ∈ e.target) :
x = e.symm y ↔ e x = y :=
e.toPartialEquiv.eq_symm_apply hx hy
#align local_homeomorph.eq_symm_apply PartialHomeomorph.eq_symm_apply
protected theorem mapsTo : MapsTo e e.source e.target := fun _ => e.map_source
#align local_homeomorph.maps_to PartialHomeomorph.mapsTo
protected theorem symm_mapsTo : MapsTo e.symm e.target e.source :=
e.symm.mapsTo
#align local_homeomorph.symm_maps_to PartialHomeomorph.symm_mapsTo
protected theorem leftInvOn : LeftInvOn e.symm e e.source := fun _ => e.left_inv
#align local_homeomorph.left_inv_on PartialHomeomorph.leftInvOn
protected theorem rightInvOn : RightInvOn e.symm e e.target := fun _ => e.right_inv
#align local_homeomorph.right_inv_on PartialHomeomorph.rightInvOn
protected theorem invOn : InvOn e.symm e e.source e.target :=
⟨e.leftInvOn, e.rightInvOn⟩
#align local_homeomorph.inv_on PartialHomeomorph.invOn
protected theorem injOn : InjOn e e.source :=
e.leftInvOn.injOn
#align local_homeomorph.inj_on PartialHomeomorph.injOn
protected theorem bijOn : BijOn e e.source e.target :=
e.invOn.bijOn e.mapsTo e.symm_mapsTo
#align local_homeomorph.bij_on PartialHomeomorph.bijOn
protected theorem surjOn : SurjOn e e.source e.target :=
e.bijOn.surjOn
#align local_homeomorph.surj_on PartialHomeomorph.surjOn
/-- Interpret a `Homeomorph` as a `PartialHomeomorph` by restricting it
to an open set `s` in the domain and to `t` in the codomain. -/
@[simps! (config := .asFn) apply symm_apply toPartialEquiv,
simps! (config := .lemmasOnly) source target]
def _root_.Homeomorph.toPartialHomeomorphOfImageEq (e : α ≃ₜ β) (s : Set α) (hs : IsOpen s)
(t : Set β) (h : e '' s = t) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquivOfImageEq s t h
open_source := hs
open_target := by simpa [← h]
continuousOn_toFun := e.continuous.continuousOn
continuousOn_invFun := e.symm.continuous.continuousOn
/-- A homeomorphism induces a partial homeomorphism on the whole space -/
@[simps! (config := mfld_cfg)]
def _root_.Homeomorph.toPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α β :=
e.toPartialHomeomorphOfImageEq univ isOpen_univ univ <| by rw [image_univ, e.surjective.range_eq]
#align homeomorph.to_local_homeomorph Homeomorph.toPartialHomeomorph
/-- Replace `toPartialEquiv` field to provide better definitional equalities. -/
def replaceEquiv (e : PartialHomeomorph α β) (e' : PartialEquiv α β) (h : e.toPartialEquiv = e') :
PartialHomeomorph α β where
toPartialEquiv := e'
open_source := h ▸ e.open_source
open_target := h ▸ e.open_target
continuousOn_toFun := h ▸ e.continuousOn_toFun
continuousOn_invFun := h ▸ e.continuousOn_invFun
#align local_homeomorph.replace_equiv PartialHomeomorph.replaceEquiv
theorem replaceEquiv_eq_self (e : PartialHomeomorph α β) (e' : PartialEquiv α β)
(h : e.toPartialEquiv = e') : e.replaceEquiv e' h = e := by
cases e
subst e'
rfl
#align local_homeomorph.replace_equiv_eq_self PartialHomeomorph.replaceEquiv_eq_self
theorem source_preimage_target : e.source ⊆ e ⁻¹' e.target :=
e.mapsTo
#align local_homeomorph.source_preimage_target PartialHomeomorph.source_preimage_target
@[deprecated toPartialEquiv_injective]
theorem eq_of_localEquiv_eq {e e' : PartialHomeomorph α β}
(h : e.toPartialEquiv = e'.toPartialEquiv) : e = e' :=
toPartialEquiv_injective h
#align local_homeomorph.eq_of_local_equiv_eq PartialHomeomorph.eq_of_localEquiv_eq
theorem eventually_left_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 x, e.symm (e y) = y :=
(e.open_source.eventually_mem hx).mono e.left_inv'
#align local_homeomorph.eventually_left_inverse PartialHomeomorph.eventually_left_inverse
theorem eventually_left_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 (e.symm x), e.symm (e y) = y :=
e.eventually_left_inverse (e.map_target hx)
#align local_homeomorph.eventually_left_inverse' PartialHomeomorph.eventually_left_inverse'
theorem eventually_right_inverse (e : PartialHomeomorph α β) {x} (hx : x ∈ e.target) :
∀ᶠ y in 𝓝 x, e (e.symm y) = y :=
(e.open_target.eventually_mem hx).mono e.right_inv'
#align local_homeomorph.eventually_right_inverse PartialHomeomorph.eventually_right_inverse
theorem eventually_right_inverse' (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ y in 𝓝 (e x), e (e.symm y) = y :=
e.eventually_right_inverse (e.map_source hx)
#align local_homeomorph.eventually_right_inverse' PartialHomeomorph.eventually_right_inverse'
theorem eventually_ne_nhdsWithin (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) :
∀ᶠ x' in 𝓝[≠] x, e x' ≠ e x :=
eventually_nhdsWithin_iff.2 <|
(e.eventually_left_inverse hx).mono fun x' hx' =>
mt fun h => by rw [mem_singleton_iff, ← e.left_inv hx, ← h, hx']
#align local_homeomorph.eventually_ne_nhds_within PartialHomeomorph.eventually_ne_nhdsWithin
theorem nhdsWithin_source_inter {x} (hx : x ∈ e.source) (s : Set α) : 𝓝[e.source ∩ s] x = 𝓝[s] x :=
nhdsWithin_inter_of_mem (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds e.open_source hx)
#align local_homeomorph.nhds_within_source_inter PartialHomeomorph.nhdsWithin_source_inter
theorem nhdsWithin_target_inter {x} (hx : x ∈ e.target) (s : Set β) : 𝓝[e.target ∩ s] x = 𝓝[s] x :=
e.symm.nhdsWithin_source_inter hx s
#align local_homeomorph.nhds_within_target_inter PartialHomeomorph.nhdsWithin_target_inter
theorem image_eq_target_inter_inv_preimage {s : Set α} (h : s ⊆ e.source) :
e '' s = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_eq_target_inter_inv_preimage h
#align local_homeomorph.image_eq_target_inter_inv_preimage PartialHomeomorph.image_eq_target_inter_inv_preimage
theorem image_source_inter_eq' (s : Set α) : e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' s :=
e.toPartialEquiv.image_source_inter_eq' s
#align local_homeomorph.image_source_inter_eq' PartialHomeomorph.image_source_inter_eq'
theorem image_source_inter_eq (s : Set α) :
e '' (e.source ∩ s) = e.target ∩ e.symm ⁻¹' (e.source ∩ s) :=
e.toPartialEquiv.image_source_inter_eq s
#align local_homeomorph.image_source_inter_eq PartialHomeomorph.image_source_inter_eq
theorem symm_image_eq_source_inter_preimage {s : Set β} (h : s ⊆ e.target) :
e.symm '' s = e.source ∩ e ⁻¹' s :=
e.symm.image_eq_target_inter_inv_preimage h
#align local_homeomorph.symm_image_eq_source_inter_preimage PartialHomeomorph.symm_image_eq_source_inter_preimage
theorem symm_image_target_inter_eq (s : Set β) :
e.symm '' (e.target ∩ s) = e.source ∩ e ⁻¹' (e.target ∩ s) :=
e.symm.image_source_inter_eq _
#align local_homeomorph.symm_image_target_inter_eq PartialHomeomorph.symm_image_target_inter_eq
theorem source_inter_preimage_inv_preimage (s : Set α) :
e.source ∩ e ⁻¹' (e.symm ⁻¹' s) = e.source ∩ s :=
e.toPartialEquiv.source_inter_preimage_inv_preimage s
#align local_homeomorph.source_inter_preimage_inv_preimage PartialHomeomorph.source_inter_preimage_inv_preimage
theorem target_inter_inv_preimage_preimage (s : Set β) :
e.target ∩ e.symm ⁻¹' (e ⁻¹' s) = e.target ∩ s :=
e.symm.source_inter_preimage_inv_preimage _
#align local_homeomorph.target_inter_inv_preimage_preimage PartialHomeomorph.target_inter_inv_preimage_preimage
theorem source_inter_preimage_target_inter (s : Set β) :
e.source ∩ e ⁻¹' (e.target ∩ s) = e.source ∩ e ⁻¹' s :=
e.toPartialEquiv.source_inter_preimage_target_inter s
#align local_homeomorph.source_inter_preimage_target_inter PartialHomeomorph.source_inter_preimage_target_inter
theorem image_source_eq_target (e : PartialHomeomorph α β) : e '' e.source = e.target :=
e.toPartialEquiv.image_source_eq_target
#align local_homeomorph.image_source_eq_target PartialHomeomorph.image_source_eq_target
theorem symm_image_target_eq_source (e : PartialHomeomorph α β) : e.symm '' e.target = e.source :=
e.symm.image_source_eq_target
#align local_homeomorph.symm_image_target_eq_source PartialHomeomorph.symm_image_target_eq_source
/-- Two partial homeomorphisms are equal when they have equal `toFun`, `invFun` and `source`.
It is not sufficient to have equal `toFun` and `source`, as this only determines `invFun` on
the target. This would only be true for a weaker notion of equality, arguably the right one,
called `EqOnSource`. -/
@[ext]
protected theorem ext (e' : PartialHomeomorph α β) (h : ∀ x, e x = e' x)
(hinv : ∀ x, e.symm x = e'.symm x) (hs : e.source = e'.source) : e = e' :=
toPartialEquiv_injective (PartialEquiv.ext h hinv hs)
#align local_homeomorph.ext PartialHomeomorph.ext
protected theorem ext_iff {e e' : PartialHomeomorph α β} :
e = e' ↔ (∀ x, e x = e' x) ∧ (∀ x, e.symm x = e'.symm x) ∧ e.source = e'.source :=
⟨by
rintro rfl
exact ⟨fun x => rfl, fun x => rfl, rfl⟩, fun h => e.ext e' h.1 h.2.1 h.2.2⟩
#align local_homeomorph.ext_iff PartialHomeomorph.ext_iff
@[simp, mfld_simps]
theorem symm_toPartialEquiv : e.symm.toPartialEquiv = e.toPartialEquiv.symm :=
rfl
#align local_homeomorph.symm_to_local_equiv PartialHomeomorph.symm_toPartialEquiv
-- The following lemmas are already simp via `PartialEquiv`
theorem symm_source : e.symm.source = e.target :=
rfl
#align local_homeomorph.symm_source PartialHomeomorph.symm_source
theorem symm_target : e.symm.target = e.source :=
rfl
#align local_homeomorph.symm_target PartialHomeomorph.symm_target
@[simp, mfld_simps] theorem symm_symm : e.symm.symm = e := rfl
#align local_homeomorph.symm_symm PartialHomeomorph.symm_symm
theorem symm_bijective : Function.Bijective
(PartialHomeomorph.symm : PartialHomeomorph α β → PartialHomeomorph β α) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
/-- A partial homeomorphism is continuous at any point of its source -/
protected theorem continuousAt {x : α} (h : x ∈ e.source) : ContinuousAt e x :=
(e.continuousOn x h).continuousAt (e.open_source.mem_nhds h)
#align local_homeomorph.continuous_at PartialHomeomorph.continuousAt
/-- A partial homeomorphism inverse is continuous at any point of its target -/
theorem continuousAt_symm {x : β} (h : x ∈ e.target) : ContinuousAt e.symm x :=
e.symm.continuousAt h
#align local_homeomorph.continuous_at_symm PartialHomeomorph.continuousAt_symm
theorem tendsto_symm {x} (hx : x ∈ e.source) : Tendsto e.symm (𝓝 (e x)) (𝓝 x) := by
simpa only [ContinuousAt, e.left_inv hx] using e.continuousAt_symm (e.map_source hx)
#align local_homeomorph.tendsto_symm PartialHomeomorph.tendsto_symm
theorem map_nhds_eq {x} (hx : x ∈ e.source) : map e (𝓝 x) = 𝓝 (e x) :=
le_antisymm (e.continuousAt hx) <|
le_map_of_right_inverse (e.eventually_right_inverse' hx) (e.tendsto_symm hx)
#align local_homeomorph.map_nhds_eq PartialHomeomorph.map_nhds_eq
theorem symm_map_nhds_eq {x} (hx : x ∈ e.source) : map e.symm (𝓝 (e x)) = 𝓝 x :=
(e.symm.map_nhds_eq <| e.map_source hx).trans <| by rw [e.left_inv hx]
#align local_homeomorph.symm_map_nhds_eq PartialHomeomorph.symm_map_nhds_eq
theorem image_mem_nhds {x} (hx : x ∈ e.source) {s : Set α} (hs : s ∈ 𝓝 x) : e '' s ∈ 𝓝 (e x) :=
e.map_nhds_eq hx ▸ Filter.image_mem_map hs
#align local_homeomorph.image_mem_nhds PartialHomeomorph.image_mem_nhds
theorem map_nhdsWithin_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set α) :
map e (𝓝[s] x) = 𝓝[e '' (e.source ∩ s)] e x :=
calc
map e (𝓝[s] x) = map e (𝓝[e.source ∩ s] x) :=
congr_arg (map e) (e.nhdsWithin_source_inter hx _).symm
_ = 𝓝[e '' (e.source ∩ s)] e x :=
(e.leftInvOn.mono <| inter_subset_left _ _).map_nhdsWithin_eq (e.left_inv hx)
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
(e.continuousAt hx).continuousWithinAt
#align local_homeomorph.map_nhds_within_eq PartialHomeomorph.map_nhdsWithin_eq
theorem map_nhdsWithin_preimage_eq (e : PartialHomeomorph α β) {x} (hx : x ∈ e.source) (s : Set β) :
map e (𝓝[e ⁻¹' s] x) = 𝓝[s] e x := by
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.target_inter_inv_preimage_preimage,
e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.map_nhds_within_preimage_eq PartialHomeomorph.map_nhdsWithin_preimage_eq
theorem eventually_nhds (e : PartialHomeomorph α β) {x : α} (p : β → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p y) ↔ ∀ᶠ x in 𝓝 x, p (e x) :=
Iff.trans (by rw [e.map_nhds_eq hx]) eventually_map
#align local_homeomorph.eventually_nhds PartialHomeomorph.eventually_nhds
theorem eventually_nhds' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) (hx : x ∈ e.source) :
(∀ᶠ y in 𝓝 (e x), p (e.symm y)) ↔ ∀ᶠ x in 𝓝 x, p x := by
rw [e.eventually_nhds _ hx]
refine' eventually_congr ((e.eventually_left_inverse hx).mono fun y hy => _)
rw [hy]
#align local_homeomorph.eventually_nhds' PartialHomeomorph.eventually_nhds'
theorem eventually_nhdsWithin (e : PartialHomeomorph α β) {x : α} (p : β → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p y) ↔ ∀ᶠ x in 𝓝[s] x, p (e x) := by
refine' Iff.trans _ eventually_map
rw [e.map_nhdsWithin_eq hx, e.image_source_inter_eq', e.nhdsWithin_target_inter (e.mapsTo hx)]
#align local_homeomorph.eventually_nhds_within PartialHomeomorph.eventually_nhdsWithin
theorem eventually_nhdsWithin' (e : PartialHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
rw [e.eventually_nhdsWithin _ hx]
refine eventually_congr <|
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
rw [hy]
#align local_homeomorph.eventually_nhds_within' PartialHomeomorph.eventually_nhdsWithin'
/-- This lemma is useful in the manifold library in the case that `e` is a chart. It states that
locally around `e x` the set `e.symm ⁻¹' s` is the same as the set intersected with the target
of `e` and some other neighborhood of `f x` (which will be the source of a chart on `γ`). -/
theorem preimage_eventuallyEq_target_inter_preimage_inter {e : PartialHomeomorph α β} {s : Set α}
{t : Set γ} {x : α} {f : α → γ} (hf : ContinuousWithinAt f s x) (hxe : x ∈ e.source)
(ht : t ∈ 𝓝 (f x)) :
e.symm ⁻¹' s =ᶠ[𝓝 (e x)] (e.target ∩ e.symm ⁻¹' (s ∩ f ⁻¹' t) : Set β) := by
rw [eventuallyEq_set, e.eventually_nhds _ hxe]
filter_upwards [e.open_source.mem_nhds hxe,
mem_nhdsWithin_iff_eventually.mp (hf.preimage_mem_nhdsWithin ht)]
intro y hy hyu
simp_rw [mem_inter_iff, mem_preimage, mem_inter_iff, e.mapsTo hy, true_and_iff, iff_self_and,
e.left_inv hy, iff_true_intro hyu]
#align local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter PartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter
theorem isOpen_inter_preimage {s : Set β} (hs : IsOpen s) : IsOpen (e.source ∩ e ⁻¹' s) :=
e.continuousOn.isOpen_inter_preimage e.open_source hs
#align local_homeomorph.preimage_open_of_open PartialHomeomorph.isOpen_inter_preimage
/-- A partial homeomorphism is an open map on its source. -/
lemma isOpen_image_of_subset_source {s : Set α} (hs : IsOpen s) (hse : s ⊆ e.source) :
IsOpen (e '' s) := by
rw [(image_eq_target_inter_inv_preimage (e := e) hse)]
exact e.continuousOn_invFun.isOpen_inter_preimage e.open_target hs
/-- The inverse of a partial homeomorphism `e` is an open map on `e.target`. -/
lemma isOpen_image_symm_of_subset_target {t : Set β} (ht : IsOpen t) (hte : t ⊆ e.target) :
IsOpen (e.symm '' t) :=
isOpen_image_of_subset_source e.symm ht (e.symm_source ▸ hte)
/-!
### `PartialHomeomorph.IsImage` relation
We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e` if any of the
following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
This definition is a restatement of `PartialEquiv.IsImage` for partial homeomorphisms.
In this section we transfer API about `PartialEquiv.IsImage` to partial homeomorphisms and
add a few `PartialHomeomorph`-specific lemmas like `PartialHomeomorph.IsImage.closure`.
-/
/-- We say that `t : Set β` is an image of `s : Set α` under a partial homeomorphism `e`
if any of the following equivalent conditions hold:
* `e '' (e.source ∩ s) = e.target ∩ t`;
* `e.source ∩ e ⁻¹ t = e.source ∩ s`;
* `∀ x ∈ e.source, e x ∈ t ↔ x ∈ s` (this one is used in the definition).
-/
def IsImage (s : Set α) (t : Set β) : Prop :=
∀ ⦃x⦄, x ∈ e.source → (e x ∈ t ↔ x ∈ s)
#align local_homeomorph.is_image PartialHomeomorph.IsImage
namespace IsImage
variable {e} {s : Set α} {t : Set β} {x : α} {y : β}
theorem toPartialEquiv (h : e.IsImage s t) : e.toPartialEquiv.IsImage s t :=
h
#align local_homeomorph.is_image.to_local_equiv PartialHomeomorph.IsImage.toPartialEquiv
theorem apply_mem_iff (h : e.IsImage s t) (hx : x ∈ e.source) : e x ∈ t ↔ x ∈ s :=
h hx
#align local_homeomorph.is_image.apply_mem_iff PartialHomeomorph.IsImage.apply_mem_iff
protected theorem symm (h : e.IsImage s t) : e.symm.IsImage t s :=
h.toPartialEquiv.symm
#align local_homeomorph.is_image.symm PartialHomeomorph.IsImage.symm
theorem symm_apply_mem_iff (h : e.IsImage s t) (hy : y ∈ e.target) : e.symm y ∈ s ↔ y ∈ t :=
h.symm hy
#align local_homeomorph.is_image.symm_apply_mem_iff PartialHomeomorph.IsImage.symm_apply_mem_iff
@[simp]
theorem symm_iff : e.symm.IsImage t s ↔ e.IsImage s t :=
⟨fun h => h.symm, fun h => h.symm⟩
#align local_homeomorph.is_image.symm_iff PartialHomeomorph.IsImage.symm_iff
protected theorem mapsTo (h : e.IsImage s t) : MapsTo e (e.source ∩ s) (e.target ∩ t) :=
h.toPartialEquiv.mapsTo
#align local_homeomorph.is_image.maps_to PartialHomeomorph.IsImage.mapsTo
theorem symm_mapsTo (h : e.IsImage s t) : MapsTo e.symm (e.target ∩ t) (e.source ∩ s) :=
h.symm.mapsTo
#align local_homeomorph.is_image.symm_maps_to PartialHomeomorph.IsImage.symm_mapsTo
theorem image_eq (h : e.IsImage s t) : e '' (e.source ∩ s) = e.target ∩ t :=
h.toPartialEquiv.image_eq
#align local_homeomorph.is_image.image_eq PartialHomeomorph.IsImage.image_eq
theorem symm_image_eq (h : e.IsImage s t) : e.symm '' (e.target ∩ t) = e.source ∩ s :=
h.symm.image_eq
#align local_homeomorph.is_image.symm_image_eq PartialHomeomorph.IsImage.symm_image_eq
theorem iff_preimage_eq : e.IsImage s t ↔ e.source ∩ e ⁻¹' t = e.source ∩ s :=
PartialEquiv.IsImage.iff_preimage_eq
#align local_homeomorph.is_image.iff_preimage_eq PartialHomeomorph.IsImage.iff_preimage_eq
alias ⟨preimage_eq, of_preimage_eq⟩ := iff_preimage_eq
#align local_homeomorph.is_image.preimage_eq PartialHomeomorph.IsImage.preimage_eq
#align local_homeomorph.is_image.of_preimage_eq PartialHomeomorph.IsImage.of_preimage_eq
theorem iff_symm_preimage_eq : e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' s = e.target ∩ t :=
symm_iff.symm.trans iff_preimage_eq
#align local_homeomorph.is_image.iff_symm_preimage_eq PartialHomeomorph.IsImage.iff_symm_preimage_eq
alias ⟨symm_preimage_eq, of_symm_preimage_eq⟩ := iff_symm_preimage_eq
#align local_homeomorph.is_image.symm_preimage_eq PartialHomeomorph.IsImage.symm_preimage_eq
#align local_homeomorph.is_image.of_symm_preimage_eq PartialHomeomorph.IsImage.of_symm_preimage_eq
theorem iff_symm_preimage_eq' :
e.IsImage s t ↔ e.target ∩ e.symm ⁻¹' (e.source ∩ s) = e.target ∩ t := by
rw [iff_symm_preimage_eq, ← image_source_inter_eq, ← image_source_inter_eq']
#align local_homeomorph.is_image.iff_symm_preimage_eq' PartialHomeomorph.IsImage.iff_symm_preimage_eq'
alias ⟨symm_preimage_eq', of_symm_preimage_eq'⟩ := iff_symm_preimage_eq'
#align local_homeomorph.is_image.symm_preimage_eq' PartialHomeomorph.IsImage.symm_preimage_eq'
#align local_homeomorph.is_image.of_symm_preimage_eq' PartialHomeomorph.IsImage.of_symm_preimage_eq'
theorem iff_preimage_eq' : e.IsImage s t ↔ e.source ∩ e ⁻¹' (e.target ∩ t) = e.source ∩ s :=
symm_iff.symm.trans iff_symm_preimage_eq'
#align local_homeomorph.is_image.iff_preimage_eq' PartialHomeomorph.IsImage.iff_preimage_eq'
alias ⟨preimage_eq', of_preimage_eq'⟩ := iff_preimage_eq'
#align local_homeomorph.is_image.preimage_eq' PartialHomeomorph.IsImage.preimage_eq'
#align local_homeomorph.is_image.of_preimage_eq' PartialHomeomorph.IsImage.of_preimage_eq'
theorem of_image_eq (h : e '' (e.source ∩ s) = e.target ∩ t) : e.IsImage s t :=
PartialEquiv.IsImage.of_image_eq h
#align local_homeomorph.is_image.of_image_eq PartialHomeomorph.IsImage.of_image_eq
theorem of_symm_image_eq (h : e.symm '' (e.target ∩ t) = e.source ∩ s) : e.IsImage s t :=
PartialEquiv.IsImage.of_symm_image_eq h
#align local_homeomorph.is_image.of_symm_image_eq PartialHomeomorph.IsImage.of_symm_image_eq
protected theorem compl (h : e.IsImage s t) : e.IsImage sᶜ tᶜ := fun _ hx => (h hx).not
#align local_homeomorph.is_image.compl PartialHomeomorph.IsImage.compl
protected theorem inter {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∩ s') (t ∩ t') := fun _ hx => (h hx).and (h' hx)
#align local_homeomorph.is_image.inter PartialHomeomorph.IsImage.inter
protected theorem union {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s ∪ s') (t ∪ t') := fun _ hx => (h hx).or (h' hx)
#align local_homeomorph.is_image.union PartialHomeomorph.IsImage.union
protected theorem diff {s' t'} (h : e.IsImage s t) (h' : e.IsImage s' t') :
e.IsImage (s \ s') (t \ t') :=
h.inter h'.compl
#align local_homeomorph.is_image.diff PartialHomeomorph.IsImage.diff
theorem leftInvOn_piecewise {e' : PartialHomeomorph α β} [∀ i, Decidable (i ∈ s)]
[∀ i, Decidable (i ∈ t)] (h : e.IsImage s t) (h' : e'.IsImage s t) :
LeftInvOn (t.piecewise e.symm e'.symm) (s.piecewise e e') (s.ite e.source e'.source) :=
h.toPartialEquiv.leftInvOn_piecewise h'
#align local_homeomorph.is_image.left_inv_on_piecewise PartialHomeomorph.IsImage.leftInvOn_piecewise
theorem inter_eq_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(h' : e'.IsImage s t) (hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
e.target ∩ t = e'.target ∩ t :=
h.toPartialEquiv.inter_eq_of_inter_eq_of_eqOn h' hs Heq
#align local_homeomorph.is_image.inter_eq_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.inter_eq_of_inter_eq_of_eqOn
theorem symm_eqOn_of_inter_eq_of_eqOn {e' : PartialHomeomorph α β} (h : e.IsImage s t)
(hs : e.source ∩ s = e'.source ∩ s) (Heq : EqOn e e' (e.source ∩ s)) :
EqOn e.symm e'.symm (e.target ∩ t) :=
h.toPartialEquiv.symm_eq_on_of_inter_eq_of_eqOn hs Heq
#align local_homeomorph.is_image.symm_eq_on_of_inter_eq_of_eq_on PartialHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
theorem map_nhdsWithin_eq (h : e.IsImage s t) (hx : x ∈ e.source) : map e (𝓝[s] x) = 𝓝[t] e x := by
rw [e.map_nhdsWithin_eq hx, h.image_eq, e.nhdsWithin_target_inter (e.map_source hx)]
#align local_homeomorph.is_image.map_nhds_within_eq PartialHomeomorph.IsImage.map_nhdsWithin_eq
protected theorem closure (h : e.IsImage s t) : e.IsImage (closure s) (closure t) := fun x hx => by
simp only [mem_closure_iff_nhdsWithin_neBot, ← h.map_nhdsWithin_eq hx, map_neBot_iff]
#align local_homeomorph.is_image.closure PartialHomeomorph.IsImage.closure
protected theorem interior (h : e.IsImage s t) : e.IsImage (interior s) (interior t) := by
simpa only [closure_compl, compl_compl] using h.compl.closure.compl
#align local_homeomorph.is_image.interior PartialHomeomorph.IsImage.interior
protected theorem frontier (h : e.IsImage s t) : e.IsImage (frontier s) (frontier t) :=
h.closure.diff h.interior
#align local_homeomorph.is_image.frontier PartialHomeomorph.IsImage.frontier
theorem isOpen_iff (h : e.IsImage s t) : IsOpen (e.source ∩ s) ↔ IsOpen (e.target ∩ t) :=
⟨fun hs => h.symm_preimage_eq' ▸ e.symm.isOpen_inter_preimage hs, fun hs =>
h.preimage_eq' ▸ e.isOpen_inter_preimage hs⟩
#align local_homeomorph.is_image.is_open_iff PartialHomeomorph.IsImage.isOpen_iff
/-- Restrict a `PartialHomeomorph` to a pair of corresponding open sets. -/
@[simps toPartialEquiv]
def restr (h : e.IsImage s t) (hs : IsOpen (e.source ∩ s)) : PartialHomeomorph α β where
toPartialEquiv := h.toPartialEquiv.restr
open_source := hs
open_target := h.isOpen_iff.1 hs
continuousOn_toFun := e.continuousOn.mono (inter_subset_left _ _)
continuousOn_invFun := e.symm.continuousOn.mono (inter_subset_left _ _)
#align local_homeomorph.is_image.restr PartialHomeomorph.IsImage.restr
end IsImage
theorem isImage_source_target : e.IsImage e.source e.target :=
e.toPartialEquiv.isImage_source_target
#align local_homeomorph.is_image_source_target PartialHomeomorph.isImage_source_target
theorem isImage_source_target_of_disjoint (e' : PartialHomeomorph α β)
(hs : Disjoint e.source e'.source) (ht : Disjoint e.target e'.target) :
e.IsImage e'.source e'.target :=
e.toPartialEquiv.isImage_source_target_of_disjoint e'.toPartialEquiv hs ht
#align local_homeomorph.is_image_source_target_of_disjoint PartialHomeomorph.isImage_source_target_of_disjoint
/-- Preimage of interior or interior of preimage coincide for partial homeomorphisms,
when restricted to the source. -/
theorem preimage_interior (s : Set β) :
e.source ∩ e ⁻¹' interior s = e.source ∩ interior (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).interior.preimage_eq
#align local_homeomorph.preimage_interior PartialHomeomorph.preimage_interior
theorem preimage_closure (s : Set β) : e.source ∩ e ⁻¹' closure s = e.source ∩ closure (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).closure.preimage_eq
#align local_homeomorph.preimage_closure PartialHomeomorph.preimage_closure
theorem preimage_frontier (s : Set β) :
e.source ∩ e ⁻¹' frontier s = e.source ∩ frontier (e ⁻¹' s) :=
(IsImage.of_preimage_eq rfl).frontier.preimage_eq
#align local_homeomorph.preimage_frontier PartialHomeomorph.preimage_frontier
theorem isOpen_inter_preimage_symm {s : Set α} (hs : IsOpen s) : IsOpen (e.target ∩ e.symm ⁻¹' s) :=
e.symm.continuousOn.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.preimage_open_of_open_symm PartialHomeomorph.isOpen_inter_preimage_symm
/-- The image of an open set in the source is open. -/
theorem image_isOpen_of_isOpen {s : Set α} (hs : IsOpen s) (h : s ⊆ e.source) :
IsOpen (e '' s) := by
have : e '' s = e.target ∩ e.symm ⁻¹' s := e.toPartialEquiv.image_eq_target_inter_inv_preimage h
rw [this]
exact e.continuousOn_symm.isOpen_inter_preimage e.open_target hs
#align local_homeomorph.image_open_of_open PartialHomeomorph.image_isOpen_of_isOpen
/-- The image of the restriction of an open set to the source is open. -/
theorem image_isOpen_of_isOpen' {s : Set α} (hs : IsOpen s) : IsOpen (e '' (e.source ∩ s)) :=
image_isOpen_of_isOpen _ (IsOpen.inter e.open_source hs) (inter_subset_left _ _)
#align local_homeomorph.image_open_of_open' PartialHomeomorph.image_isOpen_of_isOpen'
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpenRestrict (e : PartialEquiv α β) (hc : ContinuousOn e e.source)
(ho : IsOpenMap (e.source.restrict e)) (hs : IsOpen e.source) : PartialHomeomorph α β where
toPartialEquiv := e
open_source := hs
open_target := by simpa only [range_restrict, e.image_source_eq_target] using ho.isOpen_range
continuousOn_toFun := hc
continuousOn_invFun := e.image_source_eq_target ▸ ho.continuousOn_image_of_leftInvOn e.leftInvOn
#align local_homeomorph.of_continuous_open_restrict PartialHomeomorph.ofContinuousOpenRestrict
/-- A `PartialEquiv` with continuous open forward map and open source is a `PartialHomeomorph`. -/
def ofContinuousOpen (e : PartialEquiv α β) (hc : ContinuousOn e e.source) (ho : IsOpenMap e)
(hs : IsOpen e.source) : PartialHomeomorph α β :=
ofContinuousOpenRestrict e hc (ho.restrict hs) hs
#align local_homeomorph.of_continuous_open PartialHomeomorph.ofContinuousOpen
/-- Restricting a partial homeomorphism `e` to `e.source ∩ s` when `s` is open.
This is sometimes hard to use because of the openness assumption, but it has the advantage that
when it can be used then its `PartialEquiv` is defeq to `PartialEquiv.restr`. -/
protected def restrOpen (s : Set α) (hs : IsOpen s) : PartialHomeomorph α β :=
(@IsImage.of_symm_preimage_eq α β _ _ e s (e.symm ⁻¹' s) rfl).restr
(IsOpen.inter e.open_source hs)
#align local_homeomorph.restr_open PartialHomeomorph.restrOpen
@[simp, mfld_simps]
theorem restrOpen_toPartialEquiv (s : Set α) (hs : IsOpen s) :
(e.restrOpen s hs).toPartialEquiv = e.toPartialEquiv.restr s :=
rfl
#align local_homeomorph.restr_open_to_local_equiv PartialHomeomorph.restrOpen_toPartialEquiv
-- Already simp via `PartialEquiv`
theorem restrOpen_source (s : Set α) (hs : IsOpen s) : (e.restrOpen s hs).source = e.source ∩ s :=
rfl
#align local_homeomorph.restr_open_source PartialHomeomorph.restrOpen_source
/-- Restricting a partial homeomorphism `e` to `e.source ∩ interior s`. We use the interior to make
sure that the restriction is well defined whatever the set s, since partial homeomorphisms are by
definition defined on open sets. In applications where `s` is open, this coincides with the
restriction of partial equivalences -/
@[simps! (config := mfld_cfg) apply symm_apply, simps! (config := .lemmasOnly) source target]
protected def restr (s : Set α) : PartialHomeomorph α β :=
e.restrOpen (interior s) isOpen_interior
#align local_homeomorph.restr PartialHomeomorph.restr
@[simp, mfld_simps]
theorem restr_toPartialEquiv (s : Set α) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr (interior s) :=
rfl
#align local_homeomorph.restr_to_local_equiv PartialHomeomorph.restr_toPartialEquiv
theorem restr_source' (s : Set α) (hs : IsOpen s) : (e.restr s).source = e.source ∩ s := by
rw [e.restr_source, hs.interior_eq]
#align local_homeomorph.restr_source' PartialHomeomorph.restr_source'
theorem restr_toPartialEquiv' (s : Set α) (hs : IsOpen s) :
(e.restr s).toPartialEquiv = e.toPartialEquiv.restr s := by
rw [e.restr_toPartialEquiv, hs.interior_eq]
#align local_homeomorph.restr_to_local_equiv' PartialHomeomorph.restr_toPartialEquiv'
theorem restr_eq_of_source_subset {e : PartialHomeomorph α β} {s : Set α} (h : e.source ⊆ s) :
e.restr s = e :=
toPartialEquiv_injective <| PartialEquiv.restr_eq_of_source_subset <|
interior_maximal h e.open_source
#align local_homeomorph.restr_eq_of_source_subset PartialHomeomorph.restr_eq_of_source_subset
@[simp, mfld_simps]
theorem restr_univ {e : PartialHomeomorph α β} : e.restr univ = e :=
restr_eq_of_source_subset (subset_univ _)
#align local_homeomorph.restr_univ PartialHomeomorph.restr_univ
theorem restr_source_inter (s : Set α) : e.restr (e.source ∩ s) = e.restr s := by
refine' PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) _
simp [e.open_source.interior_eq, ← inter_assoc]
#align local_homeomorph.restr_source_inter PartialHomeomorph.restr_source_inter
/-- The identity on the whole space as a partial homeomorphism. -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
protected def refl (α : Type*) [TopologicalSpace α] : PartialHomeomorph α α :=
(Homeomorph.refl α).toPartialHomeomorph
#align local_homeomorph.refl PartialHomeomorph.refl
@[simp, mfld_simps]
theorem refl_localEquiv : (PartialHomeomorph.refl α).toPartialEquiv = PartialEquiv.refl α :=
rfl
#align local_homeomorph.refl_local_equiv PartialHomeomorph.refl_localEquiv
@[simp, mfld_simps]
theorem refl_symm : (PartialHomeomorph.refl α).symm = PartialHomeomorph.refl α :=
rfl
#align local_homeomorph.refl_symm PartialHomeomorph.refl_symm
section
variable {s : Set α} (hs : IsOpen s)
/-- The identity partial equivalence on a set `s` -/
@[simps! (config := mfld_cfg) apply, simps! (config := .lemmasOnly) source target]
def ofSet (s : Set α) (hs : IsOpen s) : PartialHomeomorph α α where
toPartialEquiv := PartialEquiv.ofSet s
open_source := hs
open_target := hs
continuousOn_toFun := continuous_id.continuousOn
continuousOn_invFun := continuous_id.continuousOn
#align local_homeomorph.of_set PartialHomeomorph.ofSet
@[simp, mfld_simps]
theorem ofSet_toPartialEquiv : (ofSet s hs).toPartialEquiv = PartialEquiv.ofSet s :=
rfl
#align local_homeomorph.of_set_to_local_equiv PartialHomeomorph.ofSet_toPartialEquiv
@[simp, mfld_simps]
theorem ofSet_symm : (ofSet s hs).symm = ofSet s hs :=
rfl
#align local_homeomorph.of_set_symm PartialHomeomorph.ofSet_symm
@[simp, mfld_simps]
theorem ofSet_univ_eq_refl : ofSet univ isOpen_univ = PartialHomeomorph.refl α := by ext <;> simp
#align local_homeomorph.of_set_univ_eq_refl PartialHomeomorph.ofSet_univ_eq_refl
end
/-- Composition of two partial homeomorphisms when the target of the first and the source of
the second coincide. -/
@[simps! apply symm_apply toPartialEquiv, simps! (config := .lemmasOnly) source target]
protected def trans' (h : e.target = e'.source) : PartialHomeomorph α γ where
toPartialEquiv := PartialEquiv.trans' e.toPartialEquiv e'.toPartialEquiv h
open_source := e.open_source
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuousOn <| h ▸ e.mapsTo
continuousOn_invFun := e.continuousOn_symm.comp e'.continuousOn_symm <| h.symm ▸ e'.symm_mapsTo
#align local_homeomorph.trans' PartialHomeomorph.trans'
/-- Composing two partial homeomorphisms, by restricting to the maximal domain where their
composition is well defined. -/
protected def trans : PartialHomeomorph α γ :=
PartialHomeomorph.trans' (e.symm.restrOpen e'.source e'.open_source).symm
(e'.restrOpen e.target e.open_target) (by simp [inter_comm])
#align local_homeomorph.trans PartialHomeomorph.trans
@[simp, mfld_simps]
theorem trans_toPartialEquiv :
(e.trans e').toPartialEquiv = e.toPartialEquiv.trans e'.toPartialEquiv :=
rfl
#align local_homeomorph.trans_to_local_equiv PartialHomeomorph.trans_toPartialEquiv
@[simp, mfld_simps]
theorem coe_trans : (e.trans e' : α → γ) = e' ∘ e :=
rfl
#align local_homeomorph.coe_trans PartialHomeomorph.coe_trans
@[simp, mfld_simps]
theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
rfl
#align local_homeomorph.coe_trans_symm PartialHomeomorph.coe_trans_symm
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
rfl
#align local_homeomorph.trans_apply PartialHomeomorph.trans_apply
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
#align local_homeomorph.trans_symm_eq_symm_trans_symm PartialHomeomorph.trans_symm_eq_symm_trans_symm
/- This could be considered as a simp lemma, but there are many situations where it makes something
simple into something more complicated. -/
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=
PartialEquiv.trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source PartialHomeomorph.trans_source
theorem trans_source' : (e.trans e').source = e.source ∩ e ⁻¹' (e.target ∩ e'.source) :=
PartialEquiv.trans_source' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source' PartialHomeomorph.trans_source'
theorem trans_source'' : (e.trans e').source = e.symm '' (e.target ∩ e'.source) :=
PartialEquiv.trans_source'' e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.trans_source'' PartialHomeomorph.trans_source''
theorem image_trans_source : e '' (e.trans e').source = e.target ∩ e'.source :=
PartialEquiv.image_trans_source e.toPartialEquiv e'.toPartialEquiv
#align local_homeomorph.image_trans_source PartialHomeomorph.image_trans_source
theorem trans_target : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' e.target :=
rfl
#align local_homeomorph.trans_target PartialHomeomorph.trans_target
theorem trans_target' : (e.trans e').target = e'.target ∩ e'.symm ⁻¹' (e'.source ∩ e.target) :=
trans_source' e'.symm e.symm
#align local_homeomorph.trans_target' PartialHomeomorph.trans_target'
theorem trans_target'' : (e.trans e').target = e' '' (e'.source ∩ e.target) :=
trans_source'' e'.symm e.symm
#align local_homeomorph.trans_target'' PartialHomeomorph.trans_target''
theorem inv_image_trans_target : e'.symm '' (e.trans e').target = e'.source ∩ e.target :=
image_trans_source e'.symm e.symm
#align local_homeomorph.inv_image_trans_target PartialHomeomorph.inv_image_trans_target
theorem trans_assoc (e'' : PartialHomeomorph γ δ) :
(e.trans e').trans e'' = e.trans (e'.trans e'') :=
toPartialEquiv_injective <| e.1.trans_assoc _ _
#align local_homeomorph.trans_assoc PartialHomeomorph.trans_assoc
@[simp, mfld_simps]
theorem trans_refl : e.trans (PartialHomeomorph.refl β) = e :=
toPartialEquiv_injective e.1.trans_refl
#align local_homeomorph.trans_refl PartialHomeomorph.trans_refl
@[simp, mfld_simps]
theorem refl_trans : (PartialHomeomorph.refl α).trans e = e :=
toPartialEquiv_injective e.1.refl_trans
#align local_homeomorph.refl_trans PartialHomeomorph.refl_trans
theorem trans_ofSet {s : Set β} (hs : IsOpen s) : e.trans (ofSet s hs) = e.restr (e ⁻¹' s) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) <| by
rw [trans_source, restr_source, ofSet_source, ← preimage_interior, hs.interior_eq]
#align local_homeomorph.trans_of_set PartialHomeomorph.trans_ofSet
theorem trans_of_set' {s : Set β} (hs : IsOpen s) :
e.trans (ofSet s hs) = e.restr (e.source ∩ e ⁻¹' s) := by rw [trans_ofSet, restr_source_inter]
#align local_homeomorph.trans_of_set' PartialHomeomorph.trans_of_set'
theorem ofSet_trans {s : Set α} (hs : IsOpen s) : (ofSet s hs).trans e = e.restr s :=
PartialHomeomorph.ext _ _ (fun x => rfl) (fun x => rfl) <| by simp [hs.interior_eq, inter_comm]
#align local_homeomorph.of_set_trans PartialHomeomorph.ofSet_trans
theorem ofSet_trans' {s : Set α} (hs : IsOpen s) :
(ofSet s hs).trans e = e.restr (e.source ∩ s) := by
rw [ofSet_trans, restr_source_inter]
#align local_homeomorph.of_set_trans' PartialHomeomorph.ofSet_trans'
@[simp, mfld_simps]
theorem ofSet_trans_ofSet {s : Set α} (hs : IsOpen s) {s' : Set α} (hs' : IsOpen s') :
(ofSet s hs).trans (ofSet s' hs') = ofSet (s ∩ s') (IsOpen.inter hs hs') := by
rw [(ofSet s hs).trans_ofSet hs']
ext <;> simp [hs'.interior_eq]
#align local_homeomorph.of_set_trans_of_set PartialHomeomorph.ofSet_trans_ofSet
theorem restr_trans (s : Set α) : (e.restr s).trans e' = (e.trans e').restr s :=
toPartialEquiv_injective <|
PartialEquiv.restr_trans e.toPartialEquiv e'.toPartialEquiv (interior s)
#align local_homeomorph.restr_trans PartialHomeomorph.restr_trans
/-- Postcompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def transHomeomorph (e' : β ≃ₜ γ) : PartialHomeomorph α γ where
toPartialEquiv := e.toPartialEquiv.transEquiv e'.toEquiv
open_source := e.open_source
open_target := e.open_target.preimage e'.symm.continuous
continuousOn_toFun := e'.continuous.comp_continuousOn e.continuousOn
continuousOn_invFun := e.symm.continuousOn.comp e'.symm.continuous.continuousOn fun _ => id
#align local_homeomorph.trans_homeomorph PartialHomeomorph.transHomeomorph
theorem transHomeomorph_eq_trans (e' : β ≃ₜ γ) :
e.transHomeomorph e' = e.trans e'.toPartialHomeomorph :=
toPartialEquiv_injective <| PartialEquiv.transEquiv_eq_trans _ _
#align local_homeomorph.trans_equiv_eq_trans PartialHomeomorph.transHomeomorph_eq_trans
/-- Precompose a partial homeomorphism with a homeomorphism.
We modify the source and target to have better definitional behavior. -/
@[simps! (config := .asFn)]
def _root_.Homeomorph.transPartialHomeomorph (e : α ≃ₜ β) : PartialHomeomorph α γ where
toPartialEquiv := e.toEquiv.transPartialEquiv e'.toPartialEquiv
open_source := e'.open_source.preimage e.continuous
open_target := e'.open_target
continuousOn_toFun := e'.continuousOn.comp e.continuous.continuousOn fun _ => id
continuousOn_invFun := e.symm.continuous.comp_continuousOn e'.symm.continuousOn
#align homeomorph.trans_local_homeomorph Homeomorph.transPartialHomeomorph
theorem _root_.Homeomorph.transPartialHomeomorph_eq_trans (e : α ≃ₜ β) :
e.transPartialHomeomorph e' = e.toPartialHomeomorph.trans e' :=
toPartialEquiv_injective <| Equiv.transPartialEquiv_eq_trans _ _
#align homeomorph.trans_local_homeomorph_eq_trans Homeomorph.transPartialHomeomorph_eq_trans
/-- `EqOnSource e e'` means that `e` and `e'` have the same source, and coincide there. They
should really be considered the same partial equivalence. -/
def EqOnSource (e e' : PartialHomeomorph α β) : Prop :=
e.source = e'.source ∧ EqOn e e' e.source
#align local_homeomorph.eq_on_source PartialHomeomorph.EqOnSource
theorem eqOnSource_iff (e e' : PartialHomeomorph α β) :
EqOnSource e e' ↔ PartialEquiv.EqOnSource e.toPartialEquiv e'.toPartialEquiv :=
Iff.rfl
#align local_homeomorph.eq_on_source_iff PartialHomeomorph.eqOnSource_iff
/-- `EqOnSource` is an equivalence relation. -/
instance eqOnSourceSetoid : Setoid (PartialHomeomorph α β) :=
{ PartialEquiv.eqOnSourceSetoid.comap toPartialEquiv with r := EqOnSource }
theorem eqOnSource_refl : e ≈ e := Setoid.refl _
#align local_homeomorph.eq_on_source_refl PartialHomeomorph.eqOnSource_refl
/-- If two partial homeomorphisms are equivalent, so are their inverses. -/
theorem EqOnSource.symm' {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.symm ≈ e'.symm :=
PartialEquiv.EqOnSource.symm' h
#align local_homeomorph.eq_on_source.symm' PartialHomeomorph.EqOnSource.symm'
/-- Two equivalent partial homeomorphisms have the same source. -/
theorem EqOnSource.source_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.source = e'.source :=
h.1
#align local_homeomorph.eq_on_source.source_eq PartialHomeomorph.EqOnSource.source_eq
/-- Two equivalent partial homeomorphisms have the same target. -/
theorem EqOnSource.target_eq {e e' : PartialHomeomorph α β} (h : e ≈ e') : e.target = e'.target :=
h.symm'.1
#align local_homeomorph.eq_on_source.target_eq PartialHomeomorph.EqOnSource.target_eq
/-- Two equivalent partial homeomorphisms have coinciding `toFun` on the source -/
theorem EqOnSource.eqOn {e e' : PartialHomeomorph α β} (h : e ≈ e') : EqOn e e' e.source :=
h.2
#align local_homeomorph.eq_on_source.eq_on PartialHomeomorph.EqOnSource.eqOn
/-- Two equivalent partial homeomorphisms have coinciding `invFun` on the target -/
theorem EqOnSource.symm_eqOn_target {e e' : PartialHomeomorph α β} (h : e ≈ e') :
EqOn e.symm e'.symm e.target :=
h.symm'.2
#align local_homeomorph.eq_on_source.symm_eq_on_target PartialHomeomorph.EqOnSource.symm_eqOn_target
/-- Composition of partial homeomorphisms respects equivalence. -/
theorem EqOnSource.trans' {e e' : PartialHomeomorph α β} {f f' : PartialHomeomorph β γ}
(he : e ≈ e') (hf : f ≈ f') : e.trans f ≈ e'.trans f' :=
PartialEquiv.EqOnSource.trans' he hf
#align local_homeomorph.eq_on_source.trans' PartialHomeomorph.EqOnSource.trans'
/-- Restriction of partial homeomorphisms respects equivalence -/
theorem EqOnSource.restr {e e' : PartialHomeomorph α β} (he : e ≈ e') (s : Set α) :
e.restr s ≈ e'.restr s :=
PartialEquiv.EqOnSource.restr he _
#align local_homeomorph.eq_on_source.restr PartialHomeomorph.EqOnSource.restr
/- Two equivalent partial homeomorphisms are equal when the source and target are `univ`. -/
theorem Set.EqOn.restr_eqOn_source {e e' : PartialHomeomorph α β}
(h : EqOn e e' (e.source ∩ e'.source)) : e.restr e'.source ≈ e'.restr e.source := by
constructor
· rw [e'.restr_source' _ e.open_source]
rw [e.restr_source' _ e'.open_source]
exact Set.inter_comm _ _
· rw [e.restr_source' _ e'.open_source]
refine' (EqOn.trans _ h).trans _ <;> simp only [mfld_simps, eqOn_refl]
#align local_homeomorph.set.eq_on.restr_eq_on_source PartialHomeomorph.Set.EqOn.restr_eqOn_source
/-- Composition of a partial homeomorphism and its inverse is equivalent to the restriction of the
identity to the source -/
theorem trans_self_symm : e.trans e.symm ≈ PartialHomeomorph.ofSet e.source e.open_source :=
PartialEquiv.trans_self_symm _
#align local_homeomorph.trans_self_symm PartialHomeomorph.trans_self_symm
theorem trans_symm_self : e.symm.trans e ≈ PartialHomeomorph.ofSet e.target e.open_target :=
e.symm.trans_self_symm
#align local_homeomorph.trans_symm_self PartialHomeomorph.trans_symm_self
theorem eq_of_eqOnSource_univ {e e' : PartialHomeomorph α β} (h : e ≈ e') (s : e.source = univ)
(t : e.target = univ) : e = e' :=
toPartialEquiv_injective <| PartialEquiv.eq_of_eqOnSource_univ _ _ h s t
#align local_homeomorph.eq_of_eq_on_source_univ PartialHomeomorph.eq_of_eqOnSource_univ
section Prod
/-- The product of two partial homeomorphisms, as a partial homeomorphism on the product space. -/
@[simps! (config := mfld_cfg) toPartialEquiv apply,
simps! (config := .lemmasOnly) source target symm_apply]
def prod (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
PartialHomeomorph (α × γ) (β × δ) where
open_source := e.open_source.prod e'.open_source
open_target := e.open_target.prod e'.open_target
continuousOn_toFun := e.continuousOn.prod_map e'.continuousOn
continuousOn_invFun := e.continuousOn_symm.prod_map e'.continuousOn_symm
toPartialEquiv := e.toPartialEquiv.prod e'.toPartialEquiv
#align local_homeomorph.prod PartialHomeomorph.prod
@[simp, mfld_simps]
theorem prod_symm (e : PartialHomeomorph α β) (e' : PartialHomeomorph γ δ) :
(e.prod e').symm = e.symm.prod e'.symm :=
rfl
#align local_homeomorph.prod_symm PartialHomeomorph.prod_symm
@[simp]
theorem refl_prod_refl {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] :
(PartialHomeomorph.refl α).prod (PartialHomeomorph.refl β) = PartialHomeomorph.refl (α × β) :=
PartialHomeomorph.ext _ _ (fun _ => rfl) (fun _ => rfl) univ_prod_univ
#align local_homeomorph.refl_prod_refl PartialHomeomorph.refl_prod_refl
@[simp, mfld_simps]
theorem prod_trans {η : Type*} {ε : Type*} [TopologicalSpace η] [TopologicalSpace ε]
(e : PartialHomeomorph α β) (f : PartialHomeomorph β γ) (e' : PartialHomeomorph δ η)
(f' : PartialHomeomorph η ε) : (e.prod e').trans (f.prod f') = (e.trans f).prod (e'.trans f') :=
toPartialEquiv_injective <| e.1.prod_trans ..
#align local_homeomorph.prod_trans PartialHomeomorph.prod_trans
theorem prod_eq_prod_of_nonempty {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁.prod e₂).source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
obtain ⟨⟨x, y⟩, -⟩ := id h
haveI : Nonempty α := ⟨x⟩
haveI : Nonempty β := ⟨e₁ x⟩
haveI : Nonempty γ := ⟨y⟩
haveI : Nonempty δ := ⟨e₂ y⟩
simp_rw [PartialHomeomorph.ext_iff, prod_apply, prod_symm_apply, prod_source, Prod.ext_iff,
Set.prod_eq_prod_iff_of_nonempty h, forall_and, Prod.forall, forall_const,
and_assoc, and_left_comm]
#align local_homeomorph.prod_eq_prod_of_nonempty PartialHomeomorph.prod_eq_prod_of_nonempty
theorem prod_eq_prod_of_nonempty' {e₁ e₁' : PartialHomeomorph α β} {e₂ e₂' : PartialHomeomorph γ δ}
(h : (e₁'.prod e₂').source.Nonempty) : e₁.prod e₂ = e₁'.prod e₂' ↔ e₁ = e₁' ∧ e₂ = e₂' := by
rw [eq_comm, prod_eq_prod_of_nonempty h, eq_comm, @eq_comm _ e₂']
#align local_homeomorph.prod_eq_prod_of_nonempty' PartialHomeomorph.prod_eq_prod_of_nonempty'
end Prod
section Piecewise
/-- Combine two `PartialHomeomorph`s using `Set.piecewise`. The source of the new
`PartialHomeomorph` is `s.ite e.source e'.source = e.source ∩ s ∪ e'.source \ s`, and similarly for
target. The function sends `e.source ∩ s` to `e.target ∩ t` using `e` and
`e'.source \ s` to `e'.target \ t` using `e'`, and similarly for the inverse function.
To ensure the maps `toFun` and `invFun` are inverse of each other on the new `source` and `target`,
the definition assumes that the sets `s` and `t` are related both by `e.is_image` and `e'.is_image`.
To ensure that the new maps are continuous on `source`/`target`, it also assumes that `e.source` and
`e'.source` meet `frontier s` on the same set and `e x = e' x` on this intersection. -/
@[simps! (config := .asFn) toPartialEquiv apply]
def piecewise (e e' : PartialHomeomorph α β) (s : Set α) (t : Set β) [∀ x, Decidable (x ∈ s)]
[∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) : PartialHomeomorph α β where
toPartialEquiv := e.toPartialEquiv.piecewise e'.toPartialEquiv s t H H'
open_source := e.open_source.ite e'.open_source Hs
open_target :=
e.open_target.ite e'.open_target <| H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq
continuousOn_toFun := continuousOn_piecewise_ite e.continuousOn e'.continuousOn Hs Heq
continuousOn_invFun :=
continuousOn_piecewise_ite e.continuousOn_symm e'.continuousOn_symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq)
#align local_homeomorph.piecewise PartialHomeomorph.piecewise
@[simp]
theorem symm_piecewise (e e' : PartialHomeomorph α β) {s : Set α} {t : Set β}
[∀ x, Decidable (x ∈ s)] [∀ y, Decidable (y ∈ t)] (H : e.IsImage s t) (H' : e'.IsImage s t)
(Hs : e.source ∩ frontier s = e'.source ∩ frontier s)
(Heq : EqOn e e' (e.source ∩ frontier s)) :
(e.piecewise e' s t H H' Hs Heq).symm =
e.symm.piecewise e'.symm t s H.symm H'.symm
(H.frontier.inter_eq_of_inter_eq_of_eqOn H'.frontier Hs Heq)
(H.frontier.symm_eqOn_of_inter_eq_of_eqOn Hs Heq) :=
rfl
#align local_homeomorph.symm_piecewise PartialHomeomorph.symm_piecewise
/-- Combine two `PartialHomeomorph`s with disjoint sources and disjoint targets. We reuse
`PartialHomeomorph.piecewise` then override `toPartialEquiv` to `PartialEquiv.disjointUnion`.
This way we have better definitional equalities for `source` and `target`. -/
def disjointUnion (e e' : PartialHomeomorph α β) [∀ x, Decidable (x ∈ e.source)]
[∀ y, Decidable (y ∈ e.target)] (Hs : Disjoint e.source e'.source)
(Ht : Disjoint e.target e'.target) : PartialHomeomorph α β :=
(e.piecewise e' e.source e.target e.isImage_source_target
(e'.isImage_source_target_of_disjoint e Hs.symm Ht.symm)
(by rw [e.open_source.inter_frontier_eq, (Hs.symm.frontier_right e'.open_source).inter_eq])
(by
rw [e.open_source.inter_frontier_eq]
exact eqOn_empty _ _)).replaceEquiv
(e.toPartialEquiv.disjointUnion e'.toPartialEquiv Hs Ht)
(PartialEquiv.disjointUnion_eq_piecewise _ _ _ _).symm
#align local_homeomorph.disjoint_union PartialHomeomorph.disjointUnion
end Piecewise
section Pi
variable {ι : Type*} [Fintype ι] {Xi Yi : ι → Type*} [∀ i, TopologicalSpace (Xi i)]
[∀ i, TopologicalSpace (Yi i)] (ei : ∀ i, PartialHomeomorph (Xi i) (Yi i))
/-- The product of a finite family of `PartialHomeomorph`s. -/
@[simps toPartialEquiv]
def pi : PartialHomeomorph (∀ i, Xi i) (∀ i, Yi i) where
toPartialEquiv := PartialEquiv.pi fun i => (ei i).toPartialEquiv
open_source := isOpen_set_pi finite_univ fun i _ => (ei i).open_source
open_target := isOpen_set_pi finite_univ fun i _ => (ei i).open_target
continuousOn_toFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
continuousOn_invFun := continuousOn_pi.2 fun i =>
(ei i).continuousOn_symm.comp (continuous_apply _).continuousOn fun _f hf => hf i trivial
#align local_homeomorph.pi PartialHomeomorph.pi
end Pi
section Continuity
/-- Continuity within a set at a point can be read under right composition with a local
homeomorphism, if the point is in its target -/
theorem continuousWithinAt_iff_continuousWithinAt_comp_right {f : β → γ} {s : Set β} {x : β}
(h : x ∈ e.target) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ e) (e ⁻¹' s) (e.symm x) := by
simp_rw [ContinuousWithinAt, ← @tendsto_map'_iff _ _ _ _ e,
e.map_nhdsWithin_preimage_eq (e.map_target h), (· ∘ ·), e.right_inv h]
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_right PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
/-- Continuity at a point can be read under right composition with a partial homeomorphism, if the
point is in its target -/
theorem continuousAt_iff_continuousAt_comp_right {f : β → γ} {x : β} (h : x ∈ e.target) :
ContinuousAt f x ↔ ContinuousAt (f ∘ e) (e.symm x) := by
rw [← continuousWithinAt_univ, e.continuousWithinAt_iff_continuousWithinAt_comp_right h,
preimage_univ, continuousWithinAt_univ]
#align local_homeomorph.continuous_at_iff_continuous_at_comp_right PartialHomeomorph.continuousAt_iff_continuousAt_comp_right
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the right is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_right {f : β → γ} {s : Set β} (h : s ⊆ e.target) :
ContinuousOn f s ↔ ContinuousOn (f ∘ e) (e.source ∩ e ⁻¹' s) := by
simp only [← e.symm_image_eq_source_inter_preimage h, ContinuousOn, ball_image_iff]
refine' forall₂_congr fun x hx => _
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx),
e.symm_image_eq_source_inter_preimage h, inter_comm, continuousWithinAt_inter]
exact IsOpen.mem_nhds e.open_source (e.map_target (h hx))
#align local_homeomorph.continuous_on_iff_continuous_on_comp_right PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
/-- Continuity within a set at a point can be read under left composition with a local
homeomorphism if a neighborhood of the initial point is sent to the source of the local
homeomorphism-/
theorem continuousWithinAt_iff_continuousWithinAt_comp_left {f : γ → α} {s : Set γ} {x : γ}
(hx : f x ∈ e.source) (h : f ⁻¹' e.source ∈ 𝓝[s] x) :
ContinuousWithinAt f s x ↔ ContinuousWithinAt (e ∘ f) s x := by
refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩
rw [← continuousWithinAt_inter' h] at fe_cont ⊢
have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=
haveI : ContinuousWithinAt e.symm univ (e (f x)) :=
(e.continuousAt_symm (e.map_source hx)).continuousWithinAt
ContinuousWithinAt.comp this fe_cont (subset_univ _)
exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])
#align local_homeomorph.continuous_within_at_iff_continuous_within_at_comp_left PartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
/-- Continuity at a point can be read under left composition with a partial homeomorphism if a
neighborhood of the initial point is sent to the source of the partial homeomorphism-/
theorem continuousAt_iff_continuousAt_comp_left {f : γ → α} {x : γ} (h : f ⁻¹' e.source ∈ 𝓝 x) :
ContinuousAt f x ↔ ContinuousAt (e ∘ f) x := by
have hx : f x ∈ e.source := (mem_of_mem_nhds h : _)
have h' : f ⁻¹' e.source ∈ 𝓝[univ] x := by rwa [nhdsWithin_univ]
rw [← continuousWithinAt_univ, ← continuousWithinAt_univ,
e.continuousWithinAt_iff_continuousWithinAt_comp_left hx h']
#align local_homeomorph.continuous_at_iff_continuous_at_comp_left PartialHomeomorph.continuousAt_iff_continuousAt_comp_left
/-- A function is continuous on a set if and only if its composition with a partial homeomorphism
on the left is continuous on the corresponding set. -/
theorem continuousOn_iff_continuousOn_comp_left {f : γ → α} {s : Set γ} (h : s ⊆ f ⁻¹' e.source) :
ContinuousOn f s ↔ ContinuousOn (e ∘ f) s :=
forall₂_congr fun _x hx =>
e.continuousWithinAt_iff_continuousWithinAt_comp_left (h hx)
(mem_of_superset self_mem_nhdsWithin h)
#align local_homeomorph.continuous_on_iff_continuous_on_comp_left PartialHomeomorph.continuousOn_iff_continuousOn_comp_left
/-- A function is continuous if and only if its composition with a partial homeomorphism
on the left is continuous and its image is contained in the source. -/
theorem continuous_iff_continuous_comp_left {f : γ → α} (h : f ⁻¹' e.source = univ) :
Continuous f ↔ Continuous (e ∘ f) := by
simp only [continuous_iff_continuousOn_univ]
exact e.continuousOn_iff_continuousOn_comp_left (Eq.symm h).subset
#align local_homeomorph.continuous_iff_continuous_comp_left PartialHomeomorph.continuous_iff_continuous_comp_left
end Continuity
/-- The homeomorphism obtained by restricting a `PartialHomeomorph` to a subset of the source. -/
@[simps]
def homeomorphOfImageSubsetSource {s : Set α} {t : Set β} (hs : s ⊆ e.source) (ht : e '' s = t) :
s ≃ₜ t :=
have h₁ : MapsTo e s t := mapsTo'.2 ht.subset
have h₂ : t ⊆ e.target := ht ▸ e.image_source_eq_target ▸ image_subset e hs
have h₃ : MapsTo e.symm t s := ht ▸ ball_image_iff.2 <| fun _x hx =>
(e.left_inv (hs hx)).symm ▸ hx
{ toFun := MapsTo.restrict e s t h₁
invFun := MapsTo.restrict e.symm t s h₃
left_inv := fun a => Subtype.ext (e.left_inv (hs a.2))
right_inv := fun b => Subtype.eq <| e.right_inv (h₂ b.2)
continuous_toFun := (e.continuousOn.mono hs).restrict_mapsTo h₁
continuous_invFun := (e.continuousOn_symm.mono h₂).restrict_mapsTo h₃ }
#align local_homeomorph.homeomorph_of_image_subset_source PartialHomeomorph.homeomorphOfImageSubsetSource
/-- A partial homeomorphism defines a homeomorphism between its source and target. -/
@[simps!] -- porting note: new `simps`
def toHomeomorphSourceTarget : e.source ≃ₜ e.target :=
e.homeomorphOfImageSubsetSource subset_rfl e.image_source_eq_target
#align local_homeomorph.to_homeomorph_source_target PartialHomeomorph.toHomeomorphSourceTarget
theorem secondCountableTopology_source [SecondCountableTopology β] (e : PartialHomeomorph α β) :
SecondCountableTopology e.source :=
e.toHomeomorphSourceTarget.secondCountableTopology
#align local_homeomorph.second_countable_topology_source PartialHomeomorph.secondCountableTopology_source
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) :
𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source := by
lift x to e.source using hx
rw [← e.open_source.nhdsWithin_eq x.2, ← map_nhds_subtype_val, ← map_comap_setCoe_val,
e.toHomeomorphSourceTarget.nhds_eq_comap, nhds_subtype_eq_comap]
simp only [(· ∘ ·), toHomeomorphSourceTarget_apply_coe, comap_comap]
/-- If a partial homeomorphism has source and target equal to univ, then it induces a homeomorphism
between the whole spaces, expressed in this definition. -/
@[simps (config := mfld_cfg) apply symm_apply] -- porting note: todo: add a `PartialEquiv` version
def toHomeomorphOfSourceEqUnivTargetEqUniv (h : e.source = (univ : Set α)) (h' : e.target = univ) :
α ≃ₜ β where
toFun := e
invFun := e.symm
left_inv x :=
e.left_inv <| by
rw [h]
exact mem_univ _
right_inv x :=
e.right_inv <| by
rw [h']
exact mem_univ _
continuous_toFun := by
simpa only [continuous_iff_continuousOn_univ, h] using e.continuousOn
continuous_invFun := by
simpa only [continuous_iff_continuousOn_univ, h'] using e.continuousOn_symm
#align local_homeomorph.to_homeomorph_of_source_eq_univ_target_eq_univ PartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv
theorem openEmbedding_restrict : OpenEmbedding (e.source.restrict e) := by
refine openEmbedding_of_continuous_injective_open (e.continuousOn.comp_continuous
continuous_subtype_val Subtype.prop) e.injOn.injective fun V hV ↦ ?_
rw [Set.restrict_eq, Set.image_comp]
exact e.image_isOpen_of_isOpen (e.open_source.isOpenMap_subtype_val V hV)
fun _ ⟨x, _, h⟩ ↦ h ▸ x.2
/-- A partial homeomorphism whose source is all of `α` defines an open embedding of `α` into `β`.
The converse is also true; see `OpenEmbedding.toPartialHomeomorph`. -/
theorem to_openEmbedding (h : e.source = Set.univ) : OpenEmbedding e :=
e.openEmbedding_restrict.comp
((Homeomorph.setCongr h).trans <| Homeomorph.Set.univ α).symm.openEmbedding
#align local_homeomorph.to_open_embedding PartialHomeomorph.to_openEmbedding
end PartialHomeomorph
namespace Homeomorph
variable (e : α ≃ₜ β) (e' : β ≃ₜ γ)
/- Register as simp lemmas that the fields of a partial homeomorphism built from a homeomorphism
correspond to the fields of the original homeomorphism. -/
@[simp, mfld_simps]
theorem refl_toPartialHomeomorph :
(Homeomorph.refl α).toPartialHomeomorph = PartialHomeomorph.refl α :=
rfl
#align homeomorph.refl_to_local_homeomorph Homeomorph.refl_toPartialHomeomorph
@[simp, mfld_simps]
theorem symm_toPartialHomeomorph : e.symm.toPartialHomeomorph = e.toPartialHomeomorph.symm :=
rfl
#align homeomorph.symm_to_local_homeomorph Homeomorph.symm_toPartialHomeomorph
@[simp, mfld_simps]
theorem trans_toPartialHomeomorph :
(e.trans e').toPartialHomeomorph = e.toPartialHomeomorph.trans e'.toPartialHomeomorph :=
PartialHomeomorph.toPartialEquiv_injective <| Equiv.trans_toPartialEquiv _ _
#align homeomorph.trans_to_local_homeomorph Homeomorph.trans_toPartialHomeomorph
end Homeomorph
namespace OpenEmbedding
variable (f : α → β) (h : OpenEmbedding f)
/-- An open embedding of `α` into `β`, with `α` nonempty, defines a partial homeomorphism
whose source is all of `α`. The converse is also true; see `PartialHomeomorph.to_openEmbedding`. -/
@[simps! (config := mfld_cfg) apply source target]
noncomputable def toPartialHomeomorph [Nonempty α] : PartialHomeomorph α β :=
PartialHomeomorph.ofContinuousOpen ((h.toEmbedding.inj.injOn univ).toPartialEquiv _ _)
h.continuous.continuousOn h.isOpenMap isOpen_univ
#align open_embedding.to_local_homeomorph OpenEmbedding.toPartialHomeomorph
variable [Nonempty α]
lemma toPartialHomeomorph_left_inv {x : α} : (h.toPartialHomeomorph f).symm (f x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.left_inv]
exact Set.mem_univ _
lemma toPartialHomeomorph_right_inv {x : β} (hx : x ∈ Set.range f) :
f ((h.toPartialHomeomorph f).symm x) = x := by
rw [← congr_fun (h.toPartialHomeomorph_apply f), PartialHomeomorph.right_inv]
rwa [toPartialHomeomorph_target]
end OpenEmbedding
namespace TopologicalSpace.Opens
open TopologicalSpace
variable (s : Opens α) [Nonempty s]
/-- The inclusion of an open subset `s` of a space `α` into `α` is a partial homeomorphism from the
subtype `s` to `α`. -/
noncomputable def localHomeomorphSubtypeCoe : PartialHomeomorph s α :=
OpenEmbedding.toPartialHomeomorph _ s.2.openEmbedding_subtype_val
#align topological_space.opens.local_homeomorph_subtype_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_coe : (s.localHomeomorphSubtypeCoe : s → α) = (↑) :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_coe TopologicalSpace.Opens.localHomeomorphSubtypeCoe_coe
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_source : s.localHomeomorphSubtypeCoe.source = Set.univ :=
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_source TopologicalSpace.Opens.localHomeomorphSubtypeCoe_source
@[simp, mfld_simps]
theorem localHomeomorphSubtypeCoe_target : s.localHomeomorphSubtypeCoe.target = s := by
simp only [localHomeomorphSubtypeCoe, Subtype.range_coe_subtype, mfld_simps]
rfl
#align topological_space.opens.local_homeomorph_subtype_coe_target TopologicalSpace.Opens.localHomeomorphSubtypeCoe_target
end TopologicalSpace.Opens
namespace PartialHomeomorph
open TopologicalSpace
variable (e : PartialHomeomorph α β)
variable (s : Opens α) [Nonempty s]
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
produces a partial homeomorphism whose domain is the subtype `s`. -/
noncomputable def subtypeRestr : PartialHomeomorph s β :=
s.localHomeomorphSubtypeCoe.trans e
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
theorem subtypeRestr_def : e.subtypeRestr s = s.localHomeomorphSubtypeCoe.trans e :=
rfl
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
@[simp, mfld_simps]
theorem subtypeRestr_coe :
((e.subtypeRestr s : PartialHomeomorph s β) : s → β) = Set.restrict ↑s (e : α → β) :=
rfl
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
@[simp, mfld_simps]
theorem subtypeRestr_source : (e.subtypeRestr s).source = (↑) ⁻¹' e.source := by
simp only [subtypeRestr_def, mfld_simps]
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
variable {s}
theorem map_subtype_source {x : s} (hxe : (x : α) ∈ e.source): e x ∈ (e.subtypeRestr s).target := by
refine' ⟨e.map_source hxe, _⟩
rw [s.localHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
exact x.prop
#align local_homeomorph.map_subtype_source PartialHomeomorph.map_subtype_source
variable (s)
/- This lemma characterizes the transition functions of an open subset in terms of the transition
functions of the original space. -/
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph α β) :
(f.subtypeRestr s).symm.trans (f'.subtypeRestr s) ≈
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]
refine' EqOnSource.trans' _ (eqOnSource_refl _)
-- f' has been eliminated !!!
have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=
by mfld_set_tac
have openness₂ : IsOpen (s : Set α) := s.2
rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]
refine' EqOnSource.trans' (eqOnSource_refl _) _
-- f has been eliminated !!!
refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _
simp only [mfld_simps, Setoid.refl]
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
theorem subtypeRestr_symm_eqOn (U : Opens α) [Nonempty U] :
EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U).symm) (e.subtypeRestr U).target := by
intro y hy
rw [eq_comm, eq_symm_apply _ _ hy.1]
· change restrict _ e _ = _
rw [← subtypeRestr_coe, (e.subtypeRestr U).right_inv hy]
· have := map_target _ hy; rwa [subtypeRestr_source] at this
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
exact hyV
· rw [V.localHomeomorphSubtypeCoe.right_inv hyV]
show _ = U.localHomeomorphSubtypeCoe _
|
rw [U.localHomeomorphSubtypeCoe.right_inv hy.2]
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target := by
set i := Set.inclusion hUV
intro y hy
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
have hyV : e.symm y ∈ V.localHomeomorphSubtypeCoe.target := by
rw [Opens.localHomeomorphSubtypeCoe_target] at hy ⊢
exact hUV hy.2
refine' V.localHomeomorphSubtypeCoe.injOn _ trivial _
· rw [← PartialHomeomorph.symm_target]
apply PartialHomeomorph.map_source
rw [PartialHomeomorph.symm_source]
exact hyV
· rw [V.localHomeomorphSubtypeCoe.right_inv hyV]
show _ = U.localHomeomorphSubtypeCoe _
|
Mathlib.Topology.PartialHomeomorph.1460_0.xRULiNOId4c9Kju
|
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens α} [Nonempty U] [Nonempty V] (hUV : U ≤ V) :
EqOn (e.subtypeRestr V).symm (Set.inclusion hUV ∘ (e.subtypeRestr U).symm)
(e.subtypeRestr U).target
|
Mathlib_Topology_PartialHomeomorph
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
⊢ prod (map (fun r => X + C r) s) = ∑ j in Finset.range (card s + 1), C (esymm s j) * X ^ (card s - j)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
|
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
⊢ prod (map (fun r => X + C r) s) = ∑ j in Finset.range (card s + 1), C (esymm s j) * X ^ (card s - j)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
|
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
⊢ ∀ x ∈ range (card s + 1),
sum
(map ((fun p => prod (map (fun r => X) p.1) * prod (map (fun r => C r) p.2)) ∘ fun t => (s - t, t))
(powersetCard x s)) =
C (esymm s x) * X ^ (card s - x)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
|
intro _ _
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
x✝ : ℕ
a✝ : x✝ ∈ range (card s + 1)
⊢ sum
(map ((fun p => prod (map (fun r => X) p.1) * prod (map (fun r => C r) p.2)) ∘ fun t => (s - t, t))
(powersetCard x✝ s)) =
C (esymm s x✝) * X ^ (card s - x✝)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
|
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
x✝ : ℕ
a✝ : x✝ ∈ range (card s + 1)
⊢ ∀ x ∈ powersetCard x✝ s,
((fun p => prod (map (fun r => X) p.1) * prod (map (fun r => C r) p.2)) ∘ fun t => (s - t, t)) x =
C (prod x) * X ^ (card s - x✝)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
|
intro s ht
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s✝ : Multiset R
x✝ : ℕ
a✝ : x✝ ∈ range (card s✝ + 1)
s : Multiset R
ht : s ∈ powersetCard x✝ s✝
⊢ ((fun p => prod (map (fun r => X) p.1) * prod (map (fun r => C r) p.2)) ∘ fun t => (s✝ - t, t)) s =
C (prod s) * X ^ (card s✝ - x✝)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
|
rw [mem_powersetCard] at ht
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s✝ : Multiset R
x✝ : ℕ
a✝ : x✝ ∈ range (card s✝ + 1)
s : Multiset R
ht : s ≤ s✝ ∧ card s = x✝
⊢ ((fun p => prod (map (fun r => X) p.1) * prod (map (fun r => C r) p.2)) ∘ fun t => (s✝ - t, t)) s =
C (prod s) * X ^ (card s✝ - x✝)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
|
dsimp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s✝ : Multiset R
x✝ : ℕ
a✝ : x✝ ∈ range (card s✝ + 1)
s : Multiset R
ht : s ≤ s✝ ∧ card s = x✝
⊢ prod (map (fun r => X) (s✝ - s)) * prod (map (fun r => C r) s) = C (prod s) * X ^ (card s✝ - x✝)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
|
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s✝ : Multiset R
x✝ : ℕ
a✝ : x✝ ∈ range (card s✝ + 1)
s : Multiset R
ht : s ≤ s✝ ∧ card s = x✝
⊢ prod (map (fun r => X) (s✝ - s)) * C (prod (map (fun r => r) s)) = C (prod s) * X ^ (card s✝ - x✝)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
|
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
|
Mathlib.RingTheory.Polynomial.Vieta.38_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ coeff (prod (map (fun r => X + C r) s)) k = esymm s (card s - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
|
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ esymm s (card s - k) = coeff (∑ j in Finset.range (card s + 1), C (esymm s j) * X ^ (card s - j)) k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
|
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ esymm s (card s - k) = ∑ x in Finset.range (card s + 1), if k = card s - x then esymm s x else 0
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
|
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ esymm s (card s - k) = if k = card s - (card s - k) then esymm s (card s - k) else 0
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
·
|
rw [if_pos (Nat.sub_sub_self h).symm]
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
·
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ ∀ b ∈ Finset.range (card s + 1), b ≠ card s - k → (if k = card s - b then esymm s b else 0) = 0
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
·
|
intro j hj1 hj2
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
·
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
j : ℕ
hj1 : j ∈ Finset.range (card s + 1)
hj2 : j ≠ card s - k
⊢ (if k = card s - j then esymm s j else 0) = 0
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
|
suffices k ≠ card s - j by rw [if_neg this]
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
j : ℕ
hj1 : j ∈ Finset.range (card s + 1)
hj2 : j ≠ card s - k
this : k ≠ card s - j
⊢ (if k = card s - j then esymm s j else 0) = 0
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by
|
rw [if_neg this]
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
j : ℕ
hj1 : j ∈ Finset.range (card s + 1)
hj2 : j ≠ card s - k
⊢ k ≠ card s - j
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
·
|
intro hn
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
·
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
j : ℕ
hj1 : j ∈ Finset.range (card s + 1)
hj2 : j ≠ card s - k
hn : k = card s - j
⊢ False
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
|
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
j : ℕ
hj1 : j ∈ Finset.range (card s + 1)
hj2 : j ≠ j
hn : k = card s - j
⊢ False
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
|
exact Ne.irrefl hj2
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ card s - k ∈ Finset.range (card s + 1)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
·
|
rw [Finset.mem_range]
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
·
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ card s - k < card s + 1
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
|
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
|
Mathlib.RingTheory.Polynomial.Vieta.57_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
σ : Type u_2
s : Multiset σ
r : σ → R
k : ℕ
h : k ≤ card s
⊢ coeff (prod (map (fun i => X + C (r i)) s)) k = esymm (map r s) (card s - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
|
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff]
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
|
Mathlib.RingTheory.Polynomial.Vieta.75_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
σ : Type u_2
s : Multiset σ
r : σ → R
k : ℕ
h : k ≤ card s
⊢ esymm (map r s) (card (map r s) - k) = esymm (map r s) (card s - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;>
|
rw [s.card_map r]
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;>
|
Mathlib.RingTheory.Polynomial.Vieta.75_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h
R : Type u_1
inst✝ : CommSemiring R
σ : Type u_2
s : Multiset σ
r : σ → R
k : ℕ
h : k ≤ card s
⊢ k ≤ card (map r s)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;>
|
rw [s.card_map r]
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;>
|
Mathlib.RingTheory.Polynomial.Vieta.75_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h
R : Type u_1
inst✝ : CommSemiring R
σ : Type u_2
s : Multiset σ
r : σ → R
k : ℕ
h : k ≤ card s
⊢ k ≤ card s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r];
|
assumption
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r];
|
Mathlib.RingTheory.Polynomial.Vieta.75_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
σ : Type u_2
s : Finset σ
r : σ → R
k : ℕ
h : k ≤ Finset.card s
⊢ coeff (∏ i in s, (X + C (r i))) k = ∑ t in Finset.powersetCard (Finset.card s - k) s, ∏ i in t, r i
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
|
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
|
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
|
Mathlib.RingTheory.Polynomial.Vieta.81_0.Pzl2ZiAMCjMzQGp
|
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommSemiring R
σ : Type u_2
s : Finset σ
r : σ → R
k : ℕ
h : k ≤ Finset.card s
⊢ ∑ t in Finset.powersetCard (card s.val - k) s, Finset.prod t r =
∑ t in Finset.powersetCard (Finset.card s - k) s, ∏ i in t, r i
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
|
rfl
|
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
|
Mathlib.RingTheory.Polynomial.Vieta.81_0.Pzl2ZiAMCjMzQGp
|
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
⊢ esymm (map Neg.neg s) k = (-1) ^ k * esymm s k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
|
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
|
Mathlib.RingTheory.Polynomial.Vieta.94_0.Pzl2ZiAMCjMzQGp
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
⊢ ∀ x ∈ powersetCard k s, (prod ∘ map Neg.neg) x = (-1) ^ k * prod x
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
|
intro x hx
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
|
Mathlib.RingTheory.Polynomial.Vieta.94_0.Pzl2ZiAMCjMzQGp
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
x : Multiset R
hx : x ∈ powersetCard k s
⊢ (prod ∘ map Neg.neg) x = (-1) ^ k * prod x
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
|
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
|
Mathlib.RingTheory.Polynomial.Vieta.94_0.Pzl2ZiAMCjMzQGp
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
x : Multiset R
hx : x ∈ powersetCard k s
⊢ (prod ∘ map Neg.neg) x = prod (map (Function.const R (-1)) x) * prod x
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
|
nth_rw 3 [← map_id' x]
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
|
Mathlib.RingTheory.Polynomial.Vieta.94_0.Pzl2ZiAMCjMzQGp
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
x : Multiset R
hx : x ∈ powersetCard k s
⊢ (prod ∘ map Neg.neg) x = prod (map (Function.const R (-1)) x) * prod (map (fun x => x) x)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
|
rw [← prod_map_mul, map_congr (Eq.refl _)]
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
|
Mathlib.RingTheory.Polynomial.Vieta.94_0.Pzl2ZiAMCjMzQGp
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
x : Multiset R
hx : x ∈ powersetCard k s
⊢ (prod ∘ map Neg.neg) x = prod (map ?m.868853 x)
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
x : Multiset R
hx : x ∈ powersetCard k s
⊢ ∀ x_1 ∈ x, Function.const R (-1) x_1 * x_1 = ?m.868853 x_1
R : Type u_1 inst✝ : CommRing R s : Multiset R k : ℕ x : Multiset R hx : x ∈ powersetCard k s ⊢ R → R
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];
|
rfl
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];
|
Mathlib.RingTheory.Polynomial.Vieta.94_0.Pzl2ZiAMCjMzQGp
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
x : Multiset R
hx : x ∈ powersetCard k s
⊢ ∀ x_1 ∈ x, Function.const R (-1) x_1 * x_1 = -x_1
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
|
exact fun z _ => neg_one_mul z
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
|
Mathlib.RingTheory.Polynomial.Vieta.94_0.Pzl2ZiAMCjMzQGp
|
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
⊢ prod (map (fun t => X - C t) s) = ∑ j in Finset.range (card s + 1), (-1) ^ j * (C (esymm s j) * X ^ (card s - j))
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
|
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
| prod (map (fun t => X - C t) s)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
|
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
| prod (map (fun t => X - C t) s)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
|
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
| prod (map (fun t => X - C t) s)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
|
congr
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a
R : Type u_1
inst✝ : CommRing R
s : Multiset R
| map (fun t => X - C t) s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
|
congr
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a.f
R : Type u_1
inst✝ : CommRing R
s : Multiset R
| fun t => X - C t
case a.s R : Type u_1 inst✝ : CommRing R s : Multiset R | s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
|
ext x
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a.f.h
R : Type u_1
inst✝ : CommRing R
s : Multiset R
x : R
| X - C x
case a.s R : Type u_1 inst✝ : CommRing R s : Multiset R | s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
|
rw [sub_eq_add_neg]
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a.f.h
R : Type u_1
inst✝ : CommRing R
s : Multiset R
x : R
| X + -C x
case a.s R : Type u_1 inst✝ : CommRing R s : Multiset R | s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
|
rw [← map_neg C x]
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
⊢ prod (map (fun x => X + C (-x)) s) = ∑ j in Finset.range (card s + 1), (-1) ^ j * (C (esymm s j) * X ^ (card s - j))
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_2
R : Type u_1
inst✝ : CommRing R
s : Multiset R
⊢ prod (map (fun x => X + C (-x)) s) = prod (map (fun r => X + C r) (map (fun t => -t) s))
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
·
|
rw [map_map]
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
·
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_2
R : Type u_1
inst✝ : CommRing R
s : Multiset R
⊢ prod (map (fun x => X + C (-x)) s) = prod (map ((fun r => X + C r) ∘ fun t => -t) s)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map];
|
rfl
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map];
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommRing R
s : Multiset R
⊢ ∑ j in Finset.range (card s + 1), (-1) ^ j * (C (esymm s j) * X ^ (card s - j)) =
∑ j in Finset.range (card (map (fun t => -t) s) + 1),
C (esymm (map (fun t => -t) s) j) * X ^ (card (map (fun t => -t) s) - j)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
·
|
simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
·
|
Mathlib.RingTheory.Polynomial.Vieta.104_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j))
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ coeff (prod (map (fun t => X - C t) s)) k = (-1) ^ (card s - k) * esymm s (card s - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
|
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| coeff (prod (map (fun t => X - C t) s)) k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
|
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| coeff (prod (map (fun t => X - C t) s)) k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
|
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| coeff (prod (map (fun t => X - C t) s)) k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
|
congr
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| prod (map (fun t => X - C t) s)
case a R : Type u_1 inst✝ : CommRing R s : Multiset R k : ℕ h : k ≤ card s | k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
|
congr
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a.a
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| map (fun t => X - C t) s
case a R : Type u_1 inst✝ : CommRing R s : Multiset R k : ℕ h : k ≤ card s | k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
|
congr
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a.a.f
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| fun t => X - C t
case a.a.s
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| s
case a R : Type u_1 inst✝ : CommRing R s : Multiset R k : ℕ h : k ≤ card s | k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
|
ext x
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a.a.f.h
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
x : R
| X - C x
case a.a.s
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| s
case a R : Type u_1 inst✝ : CommRing R s : Multiset R k : ℕ h : k ≤ card s | k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
|
rw [sub_eq_add_neg]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case a.a.f.h
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
x : R
| X + -C x
case a.a.s
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
| s
case a R : Type u_1 inst✝ : CommRing R s : Multiset R k : ℕ h : k ≤ card s | k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
|
rw [← map_neg C x]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ coeff (prod (map (fun x => X + C (-x)) s)) k = (-1) ^ (card s - k) * esymm s (card s - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_2
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ coeff (prod (map (fun x => X + C (-x)) s)) k = coeff (prod (map (fun r => X + C r) (map (fun t => -t) s))) ?convert_1
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
·
|
rw [map_map]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
·
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_2
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ coeff (prod (map (fun x => X + C (-x)) s)) k = coeff (prod (map ((fun r => X + C r) ∘ fun t => -t) s)) ?convert_1
case convert_1 R : Type u_1 inst✝ : CommRing R s : Multiset R k : ℕ h : k ≤ card s ⊢ ℕ
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map];
|
rfl
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map];
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ (-1) ^ (card s - k) * esymm s (card s - k) = esymm (map (fun t => -t) s) (card (map (fun t => -t) s) - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
·
|
rw [esymm_neg, card_map]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
·
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case convert_2
R : Type u_1
inst✝ : CommRing R
s : Multiset R
k : ℕ
h : k ≤ card s
⊢ k ≤ card (map (fun t => -t) s)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
·
|
rwa [card_map]
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
·
|
Mathlib.RingTheory.Polynomial.Vieta.120_0.Pzl2ZiAMCjMzQGp
|
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
⊢ coeff p k = leadingCoeff p * (-1) ^ (natDegree p - k) * esymm (roots p) (natDegree p - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
|
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
| coeff p k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs =>
|
rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
| coeff p k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs =>
|
rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
| coeff p k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs =>
|
rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs =>
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
⊢ coeff (C (leadingCoeff p) * prod (map (fun a => X - C a) (roots p))) k =
leadingCoeff p * (-1) ^ (natDegree p - k) * esymm (roots p) (natDegree p - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
|
rw [coeff_C_mul, mul_assoc]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
⊢ leadingCoeff p * coeff (prod (map (fun a => X - C a) (roots p))) k =
leadingCoeff p * ((-1) ^ (natDegree p - k) * esymm (roots p) (natDegree p - k))
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc];
|
congr
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc];
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case e_a
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
⊢ coeff (prod (map (fun a => X - C a) (roots p))) k = (-1) ^ (natDegree p - k) * esymm (roots p) (natDegree p - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
|
have : k ≤ card (roots p) := by rw [hroots]; exact h
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
⊢ k ≤ card (roots p)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by
|
rw [hroots]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
⊢ k ≤ natDegree p
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots];
|
exact h
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots];
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case e_a
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
this : k ≤ card (roots p)
⊢ coeff (prod (map (fun a => X - C a) (roots p))) k = (-1) ^ (natDegree p - k) * esymm (roots p) (natDegree p - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
|
convert p.roots.prod_X_sub_C_coeff this using 3
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3.h.e'_5.h.e'_6
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
this : k ≤ card (roots p)
⊢ natDegree p - k = card (roots p) - k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;>
|
rw [hroots]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;>
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_3.h.e'_6.h.e'_4
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hroots : card (roots p) = natDegree p
k : ℕ
h : k ≤ natDegree p
this : k ≤ card (roots p)
⊢ natDegree p - k = card (roots p) - k
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;>
|
rw [hroots]
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;>
|
Mathlib.RingTheory.Polynomial.Vieta.137_0.Pzl2ZiAMCjMzQGp
|
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
⊢ ∏ i : σ, (Polynomial.X + Polynomial.C (X i)) =
∑ j in range (Fintype.card σ + 1), Polynomial.C (esymm σ R j) * Polynomial.X ^ (Fintype.card σ - j)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
|
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
|
Mathlib.RingTheory.Polynomial.Vieta.165_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
⊢ ∏ i : σ, (Polynomial.X + Polynomial.C (X i)) =
∑ j in range (Fintype.card σ + 1), Polynomial.C (esymm σ R j) * Polynomial.X ^ (Fintype.card σ - j)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
|
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
|
Mathlib.RingTheory.Polynomial.Vieta.165_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
⊢ Fintype.card σ = Multiset.card s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
|
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
|
Mathlib.RingTheory.Polynomial.Vieta.165_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
this : Fintype.card σ = Multiset.card s
⊢ ∏ i : σ, (Polynomial.X + Polynomial.C (X i)) =
∑ j in range (Fintype.card σ + 1), Polynomial.C (esymm σ R j) * Polynomial.X ^ (Fintype.card σ - j)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
Mathlib.RingTheory.Polynomial.Vieta.165_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
this : Fintype.card σ = Multiset.card s
⊢ Multiset.prod (Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val) =
∑ x in range (Multiset.card (Multiset.map (fun i => X i) univ.val) + 1),
Polynomial.C (Multiset.esymm (Multiset.map X univ.val) x) *
Polynomial.X ^ (Multiset.card (Multiset.map (fun i => X i) univ.val) - x)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
|
convert Multiset.prod_X_add_C_eq_sum_esymm s
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
|
Mathlib.RingTheory.Polynomial.Vieta.165_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_2.h.e'_3
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
this : Fintype.card σ = Multiset.card s
⊢ Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val =
Multiset.map (fun r => Polynomial.X + Polynomial.C r) s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
|
simp_rw [Multiset.map_map, Function.comp_apply]
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
|
Mathlib.RingTheory.Polynomial.Vieta.165_0.Pzl2ZiAMCjMzQGp
|
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
h : k ≤ Fintype.card σ
⊢ Polynomial.coeff (∏ i : σ, (Polynomial.X + Polynomial.C (X i))) k = esymm σ R (Fintype.card σ - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
|
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
h : k ≤ Fintype.card σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
⊢ Polynomial.coeff (∏ i : σ, (Polynomial.X + Polynomial.C (X i))) k = esymm σ R (Fintype.card σ - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
|
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
h : k ≤ Fintype.card σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
⊢ Fintype.card σ = Multiset.card s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
|
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
h : k ≤ Fintype.card σ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
this : Fintype.card σ = Multiset.card s
⊢ Polynomial.coeff (∏ i : σ, (Polynomial.X + Polynomial.C (X i))) k = esymm σ R (Fintype.card σ - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
rw [this] at h ⊢
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
h : k ≤ Multiset.card s
this : Fintype.card σ = Multiset.card s
⊢ Polynomial.coeff (∏ i : σ, (Polynomial.X + Polynomial.C (X i))) k = esymm σ R (Multiset.card s - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
|
rw [MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
h : k ≤ Multiset.card s
this : Fintype.card σ = Multiset.card s
⊢ Polynomial.coeff (Multiset.prod (Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val)) k =
Multiset.esymm (Multiset.map X univ.val) (Multiset.card s - k)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
rw [MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
|
convert Multiset.prod_X_add_C_coeff s h
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
rw [MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_2.h.e'_3.h.e'_3
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
h : k ≤ Multiset.card s
this : Fintype.card σ = Multiset.card s
⊢ Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val =
Multiset.map (fun r => Polynomial.X + Polynomial.C r) s
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
rw [MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_coeff s h
|
dsimp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
rw [MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_coeff s h
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
case h.e'_2.h.e'_3.h.e'_3
R : Type u_1
σ : Type u_2
inst✝¹ : CommSemiring R
inst✝ : Fintype σ
k : ℕ
s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
h : k ≤ Multiset.card s
this : Fintype.card σ = Multiset.card s
⊢ Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val =
Multiset.map (fun r => Polynomial.X + Polynomial.C r) (Multiset.map (fun i => X i) univ.val)
|
/-
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang
-/
import Mathlib.Data.Polynomial.Splits
import Mathlib.RingTheory.MvPolynomial.Symmetric
#align_import ring_theory.polynomial.vieta from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
/-!
# Vieta's Formula
The main result is `Multiset.prod_X_add_C_eq_sum_esymm`, which shows that the product of
linear terms `X + λ` with `λ` in a `Multiset s` is equal to a linear combination of the
symmetric functions `esymm s`.
From this, we deduce `MvPolynomial.prod_X_add_C_eq_sum_esymm` which is the equivalent formula
for the product of linear terms `X + X i` with `i` in a `Fintype σ` as a linear combination
of the symmetric polynomials `esymm σ R j`.
For `R` be an integral domain (so that `p.roots` is defined for any `p : R[X]` as a multiset),
we derive `Polynomial.coeff_eq_esymm_roots_of_card`, the relationship between the coefficients and
the roots of `p` for a polynomial `p` that splits (i.e. having as many roots as its degree).
-/
open BigOperators Polynomial
namespace Multiset
open Polynomial
section Semiring
variable {R : Type*} [CommSemiring R]
/-- A sum version of **Vieta's formula** for `Multiset`: the product of the linear terms `X + λ`
where `λ` runs through a multiset `s` is equal to a linear combination of the symmetric functions
`esymm s` of the `λ`'s .-/
theorem prod_X_add_C_eq_sum_esymm (s : Multiset R) :
(s.map fun r => X + C r).prod =
∑ j in Finset.range (Multiset.card s + 1), (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
classical
rw [prod_map_add, antidiagonal_eq_map_powerset, map_map, ← bind_powerset_len,
map_bind, sum_bind, Finset.sum_eq_multiset_sum, Finset.range_val, map_congr (Eq.refl _)]
intro _ _
rw [esymm, ← sum_hom', ← sum_map_mul_right, map_congr (Eq.refl _)]
intro s ht
rw [mem_powersetCard] at ht
dsimp
rw [prod_hom' s (Polynomial.C : R →+* R[X])]
simp [ht, map_const, prod_replicate, prod_hom', map_id', card_sub]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_eq_sum_esymm Multiset.prod_X_add_C_eq_sum_esymm
/-- Vieta's formula for the coefficients of the product of linear terms `X + λ` where `λ` runs
through a multiset `s` : the `k`th coefficient is the symmetric function `esymm (card s - k) s`. -/
theorem prod_X_add_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun r => X + C r).prod.coeff k = s.esymm (Multiset.card s - k) := by
convert Polynomial.ext_iff.mp (prod_X_add_C_eq_sum_esymm s) k using 1
simp_rw [finset_sum_coeff, coeff_C_mul_X_pow]
rw [Finset.sum_eq_single_of_mem (Multiset.card s - k) _]
· rw [if_pos (Nat.sub_sub_self h).symm]
· intro j hj1 hj2
suffices k ≠ card s - j by rw [if_neg this]
· intro hn
rw [hn, Nat.sub_sub_self (Nat.lt_succ_iff.mp (Finset.mem_range.mp hj1))] at hj2
exact Ne.irrefl hj2
· rw [Finset.mem_range]
exact Nat.lt_succ_of_le (Nat.sub_le (Multiset.card s) k)
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff Multiset.prod_X_add_C_coeff
theorem prod_X_add_C_coeff' {σ} (s : Multiset σ) (r : σ → R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun i => X + C (r i)).prod.coeff k = (s.map r).esymm (Multiset.card s - k) := by
erw [← map_map (fun r => X + C r) r, prod_X_add_C_coeff] <;> rw [s.card_map r]; assumption
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_add_C_coeff' Multiset.prod_X_add_C_coeff'
theorem _root_.Finset.prod_X_add_C_coeff {σ} (s : Finset σ) (r : σ → R) {k : ℕ} (h : k ≤ s.card) :
(∏ i in s, (X + C (r i))).coeff k = ∑ t in s.powersetCard (s.card - k), ∏ i in t, r i := by
rw [Finset.prod, prod_X_add_C_coeff' _ r h, Finset.esymm_map_val]
rfl
set_option linter.uppercaseLean3 false in
#align finset.prod_X_add_C_coeff Finset.prod_X_add_C_coeff
end Semiring
section Ring
variable {R : Type*} [CommRing R]
theorem esymm_neg (s : Multiset R) (k : ℕ) : (map Neg.neg s).esymm k = (-1) ^ k * esymm s k := by
rw [esymm, esymm, ← Multiset.sum_map_mul_left, Multiset.powersetCard_map, Multiset.map_map,
map_congr (Eq.refl _)]
intro x hx
rw [(mem_powersetCard.mp hx).right.symm, ← prod_replicate, ← Multiset.map_const]
nth_rw 3 [← map_id' x]
rw [← prod_map_mul, map_congr (Eq.refl _)];rfl
exact fun z _ => neg_one_mul z
#align multiset.esymm_neg Multiset.esymm_neg
theorem prod_X_sub_X_eq_sum_esymm (s : Multiset R) :
(s.map fun t => X - C t).prod =
∑ j in Finset.range (Multiset.card s + 1),
(-1) ^ j * (C (s.esymm j) * X ^ (Multiset.card s - j)) := by
conv_lhs =>
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_eq_sum_esymm (map (fun t => -t) s) using 1
· rw [map_map]; rfl
· simp only [esymm_neg, card_map, mul_assoc, map_mul, map_pow, map_neg, map_one]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_eq_sum_esymm Multiset.prod_X_sub_X_eq_sum_esymm
theorem prod_X_sub_C_coeff (s : Multiset R) {k : ℕ} (h : k ≤ Multiset.card s) :
(s.map fun t => X - C t).prod.coeff k =
(-1) ^ (Multiset.card s - k) * s.esymm (Multiset.card s - k) := by
conv_lhs =>
congr
congr
congr
ext x
rw [sub_eq_add_neg]
rw [← map_neg C x]
convert prod_X_add_C_coeff (map (fun t => -t) s) _ using 1
· rw [map_map]; rfl
· rw [esymm_neg, card_map]
· rwa [card_map]
set_option linter.uppercaseLean3 false in
#align multiset.prod_X_sub_C_coeff Multiset.prod_X_sub_C_coeff
/-- Vieta's formula for the coefficients and the roots of a polynomial over an integral domain
with as many roots as its degree. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_card [IsDomain R] {p : R[X]}
(hroots : Multiset.card p.roots = p.natDegree) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) := by
conv_lhs => rw [← C_leadingCoeff_mul_prod_multiset_X_sub_C hroots]
rw [coeff_C_mul, mul_assoc]; congr
have : k ≤ card (roots p) := by rw [hroots]; exact h
convert p.roots.prod_X_sub_C_coeff this using 3 <;> rw [hroots]
#align polynomial.coeff_eq_esymm_roots_of_card Polynomial.coeff_eq_esymm_roots_of_card
/-- Vieta's formula for split polynomials over a field. -/
theorem _root_.Polynomial.coeff_eq_esymm_roots_of_splits {F} [Field F] {p : F[X]}
(hsplit : p.Splits (RingHom.id F)) {k : ℕ} (h : k ≤ p.natDegree) :
p.coeff k = p.leadingCoeff * (-1) ^ (p.natDegree - k) * p.roots.esymm (p.natDegree - k) :=
Polynomial.coeff_eq_esymm_roots_of_card (splits_iff_card_roots.1 hsplit) h
#align polynomial.coeff_eq_esymm_roots_of_splits Polynomial.coeff_eq_esymm_roots_of_splits
end Ring
end Multiset
section MvPolynomial
open Finset Polynomial Fintype
variable (R σ : Type*) [CommSemiring R] [Fintype σ]
/-- A sum version of Vieta's formula for `MvPolynomial`: viewing `X i` as variables,
the product of linear terms `λ + X i` is equal to a linear combination of
the symmetric polynomials `esymm σ R j`. -/
theorem MvPolynomial.prod_C_add_X_eq_sum_esymm :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i))) =
∑ j in range (card σ + 1), Polynomial.C
(MvPolynomial.esymm σ R j) * Polynomial.X ^ (card σ - j) := by
let s := Finset.univ.val.map fun i : σ => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
simp_rw [this, MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_eq_sum_esymm s
simp_rw [Multiset.map_map, Function.comp_apply]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.prod_C_add_X_eq_sum_esymm MvPolynomial.prod_C_add_X_eq_sum_esymm
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
rw [MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_coeff s h
dsimp
|
simp_rw [Multiset.map_map, Function.comp_apply]
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k) := by
let s := Finset.univ.val.map fun i => (MvPolynomial.X i : MvPolynomial σ R)
have : Fintype.card σ = Multiset.card s := by
rw [Multiset.card_map, ← Finset.card_univ, Finset.card_def]
rw [this] at h ⊢
rw [MvPolynomial.esymm_eq_multiset_esymm σ R, Finset.prod_eq_multiset_prod]
convert Multiset.prod_X_add_C_coeff s h
dsimp
|
Mathlib.RingTheory.Polynomial.Vieta.181_0.Pzl2ZiAMCjMzQGp
|
theorem MvPolynomial.prod_X_add_C_coeff (k : ℕ) (h : k ≤ card σ) :
(∏ i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =
MvPolynomial.esymm σ R (card σ - k)
|
Mathlib_RingTheory_Polynomial_Vieta
|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
v w : V
hvw : Adj G v w
v✝ w✝ : V
h : (fun a b => ⟦(v, w)⟧ = ⟦(a, b)⟧) v✝ w✝
⊢ Adj G v✝ w✝
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
|
rw [← G.mem_edgeSet, ← h]
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.82_0.BlhiAiIDADcXv8t
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
v w : V
hvw : Adj G v w
v✝ w✝ : V
h : (fun a b => ⟦(v, w)⟧ = ⟦(a, b)⟧) v✝ w✝
⊢ ⟦(v, w)⟧ ∈ edgeSet G
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
|
exact hvw
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.82_0.BlhiAiIDADcXv8t
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
v w : V
hvw : Adj G v w
a b : V
h : (fun a b => ⟦(v, w)⟧ = ⟦(a, b)⟧) a b
⊢ a ∈ {v, w}
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
|
apply_fun fun e ↦ a ∈ e at h
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.82_0.BlhiAiIDADcXv8t
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
v w : V
hvw : Adj G v w
a b : V
h : (a ∈ ⟦(v, w)⟧) = (a ∈ ⟦(a, b)⟧)
⊢ a ∈ {v, w}
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
|
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.82_0.BlhiAiIDADcXv8t
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
v w : V
hvw : Adj G v w
a b : V
h : a = v ∨ a = w
⊢ a ∈ {v, w}
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
|
exact h
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.82_0.BlhiAiIDADcXv8t
|
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
G₁ G₂ : Subgraph G
a b : V
⊢ Subgraph.spanningCoe G₁ = Subgraph.spanningCoe G₂ ↔ G₁.Adj = G₂.Adj
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
exact h
#align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj
namespace Subgraph
variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V}
protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj :=
fun v h ↦ G.loopless v (G'.adj_sub h)
#align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless
theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v :=
⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩
#align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm
@[symm]
theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm
protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm
protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v :=
H.adj_sub h
#align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub
protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts :=
H.edge_vert h
#align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem
protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts :=
h.symm.fst_mem
#align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem
protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v :=
h.adj_sub.ne
#align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne
/-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/
@[simps]
protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where
Adj v w := G'.Adj v w
symm _ _ h := G'.symm h
loopless v h := loopless G v (G'.adj_sub h)
#align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe
@[simp]
theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub
-- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`.
protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) :
H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h
#align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe
/-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/
def IsSpanning (G' : Subgraph G) : Prop :=
∀ v : V, v ∈ G'.verts
#align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning
theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ :=
Set.eq_univ_iff_forall.symm
#align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff
/-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning
subgraph, then `G'.spanningCoe` yields an isomorphic graph.
In general, this adds in all vertices from `V` as isolated vertices. -/
@[simps]
protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where
Adj := G'.Adj
symm := G'.symm
loopless v hv := G.loopless v (G'.adj_sub hv)
#align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe
@[simp]
theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) :
G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe
theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by
|
simp [Subgraph.spanningCoe]
|
theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.176_0.BlhiAiIDADcXv8t
|
theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
G₁ G₂ : Subgraph G
a b : V
G' : Subgraph G
e : Sym2 V
v : V
he : e ∈ edgeSet G'
hv : v ∈ e
⊢ v ∈ G'.verts
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
exact h
#align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj
namespace Subgraph
variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V}
protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj :=
fun v h ↦ G.loopless v (G'.adj_sub h)
#align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless
theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v :=
⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩
#align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm
@[symm]
theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm
protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm
protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v :=
H.adj_sub h
#align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub
protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts :=
H.edge_vert h
#align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem
protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts :=
h.symm.fst_mem
#align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem
protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v :=
h.adj_sub.ne
#align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne
/-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/
@[simps]
protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where
Adj v w := G'.Adj v w
symm _ _ h := G'.symm h
loopless v h := loopless G v (G'.adj_sub h)
#align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe
@[simp]
theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub
-- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`.
protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) :
H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h
#align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe
/-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/
def IsSpanning (G' : Subgraph G) : Prop :=
∀ v : V, v ∈ G'.verts
#align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning
theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ :=
Set.eq_univ_iff_forall.symm
#align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff
/-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning
subgraph, then `G'.spanningCoe` yields an isomorphic graph.
In general, this adds in all vertices from `V` as isolated vertices. -/
@[simps]
protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where
Adj := G'.Adj
symm := G'.symm
loopless v hv := G.loopless v (G'.adj_sub hv)
#align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe
@[simp]
theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) :
G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe
theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by
simp [Subgraph.spanningCoe]
#align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj
/-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/
@[simps]
def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe
where
toFun v := ⟨v, h v⟩
invFun v := v
left_inv _ := rfl
right_inv _ := rfl
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning
/-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if
they are adjacent in `G`. -/
def IsInduced (G' : Subgraph G) : Prop :=
∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w
#align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced
/-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/
def support (H : Subgraph G) : Set V := Rel.dom H.Adj
#align simple_graph.subgraph.support SimpleGraph.Subgraph.support
theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support
theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts :=
fun _ ⟨_, h⟩ ↦ H.edge_vert h
#align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts
/-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/
def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w}
#align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet
theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v :=
fun _ ↦ G'.adj_sub
#align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset
theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts :=
fun _ h ↦ G'.edge_vert (adj_symm G' h)
#align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts
@[simp]
theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet
/-- A subgraph as a graph has equivalent neighbor sets. -/
def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v
where
toFun w := ⟨w, w.2⟩
invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩
left_inv _ := rfl
right_inv _ := rfl
#align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv
/-- The edge set of `G'` consists of a subset of edges of `G`. -/
def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm
#align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet
theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet :=
Sym2.ind (fun _ _ ↦ G'.adj_sub)
#align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset
@[simp]
theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet)
(hv : v ∈ e) : v ∈ G'.verts := by
|
revert hv
|
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet)
(hv : v ∈ e) : v ∈ G'.verts := by
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.245_0.BlhiAiIDADcXv8t
|
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet)
(hv : v ∈ e) : v ∈ G'.verts
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.